
 
 
 

HOW TO USE THE CPC BOOSTER+ 
 
 The CPC booster+ is very easy to use, even through BASIC. In this document 
I will explain how to use all the functions of the card by analyzing the memory 
map. I will use both Assembly and Basic, but in most cases you will have to use 
only assembly to use the speedy characteristics (you can’t have 230400 baud 
serial communication in Basic!). The only thing you need is simple IN and OUT 
commands to give orders to the board. All the addresses are 16bit, but the high 
byte is always &FF for the CPC booster. 
 When you switch on your CPC, after one second the led of the card will be 
turned on. This means that the card is working. If during the operation the led 
flashes it means that the microcontroller is resetting itself because the power 
supply is insufficient. This may happen if you have an external drive connected 
which takes power from the CPC and not from an external power supply or if you 
have too many peripherals connected. In this case, send me an e-mail and we’ll 
see what we can do to avoid this problem. Be sure that you have connected the 
cable in the right way otherwise the led won’t flash at all. 
 The CPC Booster+ is an open source project. Since most of you know Z80 
assembly, then it will be easy for you to write your own routines in AVR 
assembly, which is very similar to the Z80. Right now, there is a LOT of free 
space in the bios of the booster to fill it with anything you want. Imagine that 
the booster has a faster processor not only because of the crystal frequency of 
the 11.05292 MHz, but AVR is also a RISC processor, almost every command is 
executed in 1 machine cycle. 
 If you are willing to add your own routines, then don’t hesitate to 
contact me in order to give you all the software and details you need to write 
your own stuff. But I would advice you to send the changed source code back to 
me in order to spread it and keep one version of the bios for everyone. Don’t 
forget that an update of the bios is possible through the CPC. 
 If you also have trouble on using the booster, even after reading the 
manual, then contact me and perhaps we can make a forum that we could discuss 
about it. I can tell you that the booster’s capabilities can be a very long 
subject to analyze. 
 The CPC Booster hardware includes the following things: 
 
-One RS232/485 serial port. 



-Two Analog to digital converters (8 Bit) with rec level 
-Two PWM channels, used as digital to analog converters 
-One 5bit TTL output 
 
WARNING: Before you use any of the fast routines, in most cases you have to 
disable the interrupts first: 
  
 LD HL,&C9FB 
 LD (&38),HL 
 
 Or use DI 
 
Let’s start describing all the functions: 
 
 
;**************************************************************** 
;MEMORY MAP OF THE CPC BOOSTER+ 
 
;00  IN  10101010  TEST BYTE #1 
  OUT  00-$FF  RESET BOOSTER 
;01  IN  01010101  TEST BYTE #2 

OUT  00-$FF  RESET BOOSTER 
 
;02  OUT  00-$FF  PWM CHANNEL 1 
;03  OUT  00-$FF  PWM CHANNEL 2 
 
;04  IN/OUT 00-$FF  UBRR/BAUD RATE 
;05  IN/OUT 00-$FF  UDR READ/WRITE 
;06  IN/OUT 00-$FF  UART REG 1 
;07  IN/OUT 00-$FF  UART REG 2 
;08  OUT  00-$FF  UART TX/AUTO POLLING 
;09  IN  00/$FF  UART WAIT UDR CHARACTER 
;0A  IN/OUT 00-$FF  UART READ TIME OUT*50ms 
;0B  IN/OUT 000XXXXX  UART REG 3 
 
;0C  IN/OUT 00-$01  EEPROM ADDRESS HIGH 
;0D  IN/OUT 00-$FF  EEPROM ADDRESS LOW 
;0E  IN/OUT 00-$FF  EEPROM READ/WRITE 
 
;0F  IN/OUT 00000XXX  ADC SAMPLING FREQUENCY 
;10  IN/OUT 00-$01  ADC CHANNEL SELECTION 
;11  IN  00-$FF  READ ADC VALUE 
 
;12  IN/OUT 00-$FF  KEYBOARD READ 
 
;13  OUT  00-$7F  PAGE WRITE FOR UPDATE 
;14  OUT  00-$FF  DATA FOR UPDATE BUFFER 
;15  IN/OUT 00-$7F  ADDRESS OF BUFFER FOR BIOS UPDATE 
 
;16  IN/OUT   00-$7F  ROM PAGE NUMBER 
;17  IN/OUT 00-$7F  ADDRESS OF PAGE 
;18  IN  00-$FF  READ ROM DATA (PAGE MODE) 
 
;19  IN/OUT   00-$3F  ROM ADDRESS HIGH 
;1A  IN/OUT   00-$FF  ROM ADRESS LOW 
;1B  IN  00-$FF  READ ROM DATA (ADDRESSING MODE) 
 
;1C IN  00-$FF  AVAILABLE CHARACTER IN UART BUFFER 
            OUT         00-&FF            RESET UART BUFFER 
;1D  IN  00-$FF  READ CHARACTER FROM BUFFER 
 



;1E  IN/OUT 00-$1F  5 BITS PORT DIRECTION SETTING 
;1F  IN/OUT 00-$1F  5 BITS PORT LATCH (OUTPUT) 
;20  IN  00-$1F  5 BITS PORT INPUT 
 
;21  OUT  00-$FF  MULTIPLIER 1 
;22  OUT  00-$FF  MULTIPLIER 2 
;23  IN  00-$FF  RESULT HIGH BYTE 
;24  IN  00-$FF  RESULT LOW BYTE 
 
;25  IN  00-$FF  READ VERSION 
  OUT   00-$FF  RESET TEXT ADDRESS 
 
;26  OUT  00-$FF  PWM BUFFERED STEREO 
;27  OUT  00-$FF  PWM MONO TO BOTH CHANNELS 
 
 
ADDRESS:&FF00 + &FF01    IN/OUT TEST BYTES / RESET 
 
      Those two addresses are used to test the board, mainly to check if the 
connector’s cable is working. If you type in BASIC  
 
?INP(&FF00),INP(&FF01) 
 
and you get the results 170 , 85 then the board is working. Address 00 always 
reads 170 and address 01 always reads 85. If you get any other values, then 
there must be a problem with your cable. Try moving the cable a little bit till 
you get the correct values. The CPC connector is a problematic one ☺ 
 If you make an OUT any value to those addresses, then the CPC booster 
makes a Reset. 
 
OUT &FF00,n or OUT &FF01,n (n = any value from 0 to 255) 
 
ADDRESS:&FF02 + &FF03    IN/OUT PWM CHANNELS 
     
 The board has two 8BIT PWM channels. PWM stands for Pulse Width Modulation, 
which means that it is an output that gives you pulses which we can alter their 
width. To alter the width, we send 8bit values to those addresses. To send a 
value to channel 1 for example, you type in BASIC 
 
OUT &FF02,X where X is the value we want to send 
 
In assembly we type 
     
    LD BC,&FF02 
    LD A,X 
    OUT (C),A 
      
 It’s the same thing for channel two: instead of &FF02, we use &FF03. If 
you make an in on any of those two channels, you can read the last value you 
sent. The output needs a pre-amplifier, or just a good amplifier. Due to the 
low-pass filter, which is used to turn the pulses into DC signals (the Digital 
to analog converter) , you will get a more bass sound. No need for digiblaster 
or soundplayer if you have a CPC Booster+, you can play stereo samples and the 
quality is good. 
 
ADDRESS:&FF26 IN/OUT PWM BUFFERED STEREO 
 
 In order to have values played on both channels at the same time, you can 
use this address. First you send the value for PWM channel 1 which is buffered 
and when you send the value for PWM channel 2, both values are transferred to 
the output at the same time. If you make an IN, you clear the buffer and the 



routine is waiting again for a value for PWM channel 1. You can clear the buffer 
at first, you don’t have to clear it after every two values you send. 
 
 LD BC,&FF26 
 IN A,(C)  ;Clear the buffer 
LOOP: LD A,X  ;Value for channel 1 
 OUT (C),A  ;Store the value to the buffer 
 LD A,Y  ;Value for channel 2 
 OUT (C),A  ;Now send both values to PWM channels 
 JR LOOP 
 
ADDRESS:&FF27 IN/OUT PWM VALUE TO BOTH CHANNELS 
 
 If you want to play mono samples at both channels, to have one value 
played at the same time to the two PWM channels, you can use this address. 
  
 LD BC,&FF27 
 LD A,X 
 OUT (C),A  ;Value is transfered to both channels PWM 1 & 2 
 
 

THE USART – SERIAL COMMUNICATION 
 
 The addresses from &FF04 to &FF0B are used for the UART, which means 
Universal synchronous/asynchronous receiver-transmitter. Or just RS232. I 
suggest you to use assembly though it’s possible to use Basic at low Baud rates. 
An important thing in high speed communication is to disable the interrupts 
first. We can control and set up the RS232 using three registers of the CPC 
Booster+: UART REG1, UART REG2 and UART REG3. 
 The CPC Booster+ has also an RS485 network. You can transmit to the RS485 
and the RS232 at the same time but you can only read data from one of them. 
There’s a switch on the board which selects from which port to read data. 
 
 
ADDRESS:&FF04        IN/OUT        UBRR (Baud rate) 
 
      The address &FF04 is used to select the baud rate of the UART. It’s a 
value between 0-255 and it’s calculated like this:  
 
UBRR= (( FREQUENCY / BAUDRATE) / 16 ) – 1 
BAUDRATE= FREQUENCY / ((UBRR+1)*16) 
 
In our case: 
UBRR= ((11059200 / BAUDRATE) / 16 ) – 1 
There are two modes to select the baud rate. The normal and the double speed 
(U2X) can be selected in the UART REG3 which will be described later.  
 
   U2X=0  U2X=1 
UBRR   BAUDRATE BAUDRATE 
 
4800   143  X 
9600   71  143 
14400   47  95 
19200   35  71 
28800   23  47 
38400   17  35 
57600   11  23 
115200  5  11 
230400  2  5 
345600  1  3 
691200  0  1 



1382400  X  0 
 
 
If we want to select 57600, then we type in BASIC 
 
OUT &FF04,11 
 
And in assembly 
 
LD A,11 
LD BC,&FF04 
OUT (C) ,A 
 
We have the ability to read also the UBRR value we’ve selected 
 
?INP(&FF04) in BASIC 
 
and in assembly: 
 
LD BC,&FF04 
IN A,(C) 
 
 
ADDRESS:&FF05        IN/OUT        UDR READ/WRITE 
 
 
 This address has actually two separate functions, one for IN and one for 
OUT. When we use the IN command, we read the RX input of the UART and when we 
make an OUT, we transmit a value to the UART. But in order to use the UART 
properly, we will have to examine the flags first. 
 
ADDRESS:&FF06        IN/OUT        UART REGISTER 1 
 
RXC 
TXC 
UDRE 
FE 
DOR 
PE 
RXB8 
TXB8 
 
 This register contains 6 flags in order to control the UART. To read them 
we use in Basic 
 
?INP(&FF06)  
 
and in assembly 
 
LD BC,&FF06 
IN A,(C) 
 
 
BIT 7 – RXC: UART RECEIVE COMPLETE 
      This bit is set when the UART has received a character. So before we use 
the address &FF05 to read a value, we have to check first this bit to see if a 
character was received. This bit is cleared by reading the UDR (&FF05). 
 
BIT 6 – TXC: UART TRANSMIT COMPLETE 
      This bit is set when the entire character was transmitted, including the 
stop bit. This is used mainly for half duplex communication, where you have to 



know when your character has been transmitted before you send the next one or to 
enter receive mode. This bit is cleared by writing a logical one to the bit.  
 
BIT 5 – UDRE: UART DATA REGISTER EMPTY 
      This bit is set (one) when a character written to UDR (&FF05) is 
transferred to the transmit shift register of the microcontroller and the UDR is 
empty. When this bit is set it means that we can send a new character to UDR 
(&FF05). This bit is cleared when we send a character to UDR. 
 
BIT 4 – FE: FRAMING ERROR 
      This bit is set if a framing error condition is detected, i.e. when the 
stop bit of an incoming character is zero. The FE bit is cleared when the stop 
bit of received data is one. 
       
BIT 3 – OR: OverRun 
      This bit is set if an overrun condition is detected, i.e. when a character 
already present in the UDR register is not read before the next character has 
been shifted into the receiver shift register. The OR bit is buffered , which 
means that it will be set once the valid data  still in UDRE is read. The OR bit 
is cleared when data is received and transferred to UDR. 
 
BIT 2 – PE: Parity error 
 This bit is set if the next character of the UART had a parity error when 
received and the the parity checking was enabled at that point. This bit is 
valid until the UDR (&FF05) is read. Always set this bit to zero when writing to 
UART REG1. 
 
BIT 1 – RXB8: Receive data bit 8 
 RXB8 is the ninth data bit of the received character when operating with 
serial frames with nine data bits. Must be read before reading the low bits from 
UDR. 
 
BIT 0 – TXB8: Transmit data bit 8 
 TXB8 is the ninth data bit in the character to be transmitted when 
operating with serial frames with nine data bits. Must be written before writing 
the low bits to UDR. 
 
       
OK, if those bits seem like chinese, don’t worry. Here are some routines to make 
things more clear: 
 
BASIC – Receiving data 
 
10 A=INP(&FF06)        ;READ THE FLAGS 
20 A=A AND 128         ;CHECK THE RXC FLAG 
30 IF A=0 THEN 10      ;IF RXC IS NOT SET THEN GOTO 10 
40 A=INP(&FF05)        ;READ THE CHARACTER (RXC IS NOW CLEARED) 
50 PRINT A 
60 GOTO 10 
 
ASSEMBLY – Receiving data 
 
            LD BC,&FF06 
RX_LOOP:    IN A,(C)        ;Read the flags 
            AND A,%10000000 ;Check if RXC bit is set 
            JR Z,RX_LOOP    ;If zero, goto RX_LOOP 
            DEC C           ;Select &FF05 
            IN A,(C)        ;Read the received character and clear the RXC 
 
BASIC – Sending a character / HALF DUPLEX communication 
 



10 A=X                 ;X is an 8bit character we want to transmit 
20 OUT &FF05,A         ;Send character 
30 A=INP(&FF06)        ;Read the flags 
40 A=A AND 64          ;Leave only the TXC flag 
50 IF A=0 THEN 30      ;Wait till the TXC flag is SET. The flag will be set when 
the entire character is transmitted 
60 A=64                ;You can skip this since A is already 64 
70 OUT &FF06,A         ;Set the TXC bit to clear it (strange, isn’t it?) 
80 GOTO 10 
 
ASSEMBLY- Sending a character / HALF DUPLEX communication 
 
            LD BC,&FF05 
            LD A,X             ;X= data we want to transmit 
            OUT(C),A           ;Send the character to UDR 
            LD BC,&FF06         
TXC_LOOP:   IN A,(C)           ;Read the flags 
            ANDI A,%01000000   ;Check the TXC 
            JR Z,TXC_LOOP      ;If cleared, goto TXC_LOOP 
            LD A,64            ;You can skip this 
            OUT (C),A          ;Clear the TXC by writing a logic one to it. 
 
BASIC – Sending a character / FULL DUPLEX communication 
 
10 A=INP(&FF06)       ;Read the flags 
20 A=A AND 32         ;Check the UDRE bit 
30 IF A=0 THEN 10     ;If UDRE is cleared, then the UART is not ready to send a 
new character 
40 A=X                ;X= Data we want to transmit 
50 OUT (&FF05),A      ;Transmit data 
 
ASSEMBLY – Sending a character / FULL DUPLEX communication 
 
            LD BC,&FF06 
UDRE_LOOP:  IN A,(C)            ;Read the flags 
            AND A,32            ;Check the UDRE bit 
            JR Z,UDRE_LOOP      ;If zero, goto UDRE_LOOP 
            LD A,X              ;X= data we want to transmit 
            LD BC,&FF05         
            OUT(C),A            ;Transmit character 
           
ADDRESS:&FF07  IN/OUT UART REG2 
 
UMSEL 
UPM1 
UPM0 
USBS 
UCSZ2 
UCSZ1 
UCSZ0 
UCPOL 
 
 This register contains settings for the UART. 
 
BIT 7 – UMSEL: USART mode select 
 This bit selects between asynchronous (0) and synchronous (1) mode of 
operation. 
 
BITS 6,5 – UPM1,UPM0: Parity Mode 
 These bits enable and set type of parity generation and check. If enabled, 
the transmitter will automatically generate and send parity of the transmitted 



data bits within each frame. The receiver will generate a parity value for the 
incoming data and compare it to the UPM setting. If a mismatch is detected, the 
PE flag in UART REG1 will be set 
 
UPM1 UPM0  Parity mode 
 
0 0  Disabled 
1 0  Even parity 
1 1  Odd parity 
 
BIT 4 – USBS: Stop bit select 
 This bit selects the number of Stop bits to be inserted by the transmitter. 
The receiver ignores this setting. 
USBS=0  1 stop bit  
USBS=1  2 stop bits 
 
BIT 3,2,1 – UCSZ2,UCSZ1,UCSZ0: Character size 
 The UCSZ2:1:0 bits set the number of data bits (character size) in a frame 
the receiver and transmitter use.  
 
UCSZ2 UCSZ1 UCSZ0  Character size 
0 0 0  5 bit 
0 0 1  6 bit 
0 1 0  7 bit 
0 1 1  8 bit 
1 1 1  9 bit 
 
BIT 0 – UCPOL: Clock polarity 
 This bit is used for synchronous mode only. Write this bit to zero when 
asynchronous mode is used. The UCPOL bit sets the relationship between data 
output change and data input sample, and the synchronous clock (XCK). 
 

Transmitted data changed (TX pin) Received data sampled (RX pin) 
 
UCPOL=0 Rising XCK edge    Falling XCK edge 
UCPOL=1 Falling XCK edge    Rising XCK edge 
 
 
ADDRESS:&FF08 OUT  TX – AUTO POLLING 
 
 If you want to transmit a character in a full duplex or a half duplex 
communication then you just send the character to the address &FF08 and the 
flags are automatically checked by the program of the microcontroller! 
 
BASIC:        A=X     
              OUT &FF08,A 
 
ASSEMBLY:     LD BC,&FF08 
              LD A,X 
              OUT(C),A 
 
 To select the type of communication you want to have (full duplex, half 
duplex or 485 halfduplex), you can use UART REG3. 
 
 
ADDRESS:&FF09       IN        RX – WAIT UDR CHARACTER 
ADDRESS:&FF0A       IN/OUT    TIME OUT VALUE * 50msec 
 
 The address &FF09 uses a time-out function. When you make an IN from this 
address, if a character is received, you’ll read the value 255, if no character 



appears after a time-out then you will read the value 0. To set the time-out, we 
use the address &FF0A. Examples in BASIC and assembly: 
 
BASIC – Receiving a character 
 
10 OUT &FF0A,10  ;Set the time out at 10*50= 500 msec 
20 A=INP(&FF09)  ;Check if there is an available character in UDR 
30 IF A=0 THEN 50 ;If after 500msec no character appears then we the  

;get the result 0 
40 A=INP(&FF05):END ;Else, we read the received character 
50 PRINT “NO CHARACTER” 
 
ASSEMBLY- Receiving a character 
         
            LD A,10 
            LD BC,&FF0A 
            OUT(C),A  ;Set the time out at 10*50= 500msec 
            LD BC,&FF09 
RX_LOOP:    IN A,(C)  ;Check if there is an available character in UDR 
            CP A,0  ;If A=0 then goto RX_LOOP 
            JR Z,RX_LOOP 
            LD BC,&FF05     
            IN A,(C)  ;Read the received character 
 
 As I said above, when you make an IN from address &FF09, if no character 
is received, you’ll get the value 255 after the time out, in our example the 
500msec. But as soon as a character is received, you’ll get immediately the 
value 0, you won’t have to wait the 500msec to pass. 
 
ADDRESS:&FF0B        IN/OUT    UART REG3 
 
UART BUFFER ON/OFF 
U2X 
485 AUTO POLLING 
FULL/HALF DUPLEX 
MASTER/SLAVE 
  
 Only the 5 lsb are used in this register. Bits 7,6 and 5 are always read 
as zero. 
 
BIT 4 – UART BUFFER ON/OFF: Enables/disables the UART buffer. 
 The CPC booster has a buffer of 255 bytes for the UART which improves the 
communication. It can be enabled by writing 1 to this bit. More details about 
the buffer in the following addresses. 
 
BIT 3 – U2X: Double UART speed 
 This bit selects between normal and double speed for the UART. To 
calculate UBRR when the double speed is selected you use this: 
UBRR= (( FREQUENCY / BAUDRATE) / 8 ) – 1 
BAUDRATE= FREQUENCY / ((UBRR+1)*8) 
 
BIT 2 – 485 AUTO POLLING 
 If BIT 1 of UART REG3 is set (half duplex selected) then the Master/Slave 
pin of the 485 is automatically driven by the CPC Booster when you use the 
routine of TX AUTO POLLING (&FF08). If BIT 1 is reset (full duplex selected), 
then this bit has no effect. 
 
BIT 1 – FULL/HALF DUPLEX 
 With this bit you can select the type of communication to use with the TX 
AUTO POLLING (&FF08) routine. 
0=FULL DUPLEX 



1=HALF DUPLEX 
 
BIT 0 – MASTER/SLAVE 
 This bit directly drives the pin of TX/RX enable of the 485. Whenever you 
want to transmit something to the 485 you have to set this bit and after the 
transmission is over, you have to reset it. By setting BIT 1 and BIT 2 of the 
UART REG3, this pin is driven automatically by the CPC booster when you use the 
TX AUTO POLLING routine. 
 Except for the 485, this bit is also connected to the RS232 port as the 
Carrier Detect signal. 
 

UART BUFFERING 
 
  While I was trying to make my terminal program, I figured out that our CPC 

is kind of slow for terminal emulation. Imagine what a terminal program does: 
Checks for incoming characters, prints them, scans the keyboard, print and 
transmits the pressed keys. The CPC was losing bytes even at very low speed. At 
first I thought of installing a buffer on the CPC. I did that and there was a 
huge improvement but still every now and then , some bytes were missing. So I 
thought about installing a buffer inside the CPC booster. And it really works! 
The communication is perfect even at 230400! 

  The UART buffer is 255 bytes long. It can be enabled or disabled. If the 
buffer is enabled then you shouldn’t use &FF05 or &FF06 to read incoming 
characters cause you will mess with the buffer. If the buffer is disabled you 
use the old routines without changing anything. Enabling the buffer affects only 
the incoming characters, the transmitting methods (half duplex/full duplex) 
remain the same. 

 
ADDRESS:&FF1C        IN/OUT NUMBER OF AVAILABLE BYTES IN BUFFER / RESET BUFFER  
ADDRESS:&FF1D        IN  READ DATA FROM BUFFER 

 
  If the buffer is enabled, then the address &FF1C contains the number of 

available characters in the buffer when you make an IN. Making an OUT any value 
at this address, resets the buffer. 

 
  To enable/disable the buffer, you use BIT 4 of UART REG3. 
   
  When you make an IN from the address &FF1D, then you read the incoming 

data from the buffer, and the number of available bytes in the buffer decreases. 
When characters are received, then the number of bytes in the buffer increases. 

 
 An example in BASIC 
  

10 OUT &FF0B,16   ;Enable the buffer  
20 OUT &FF1C,0   ;Reset the buffer 

 30 IF INP(&FF1C)=0 THEN 30 ;Wait for incoming characters in the buffer 
 40 ?INP(&FF1D)   ;Print data from the buffer 
 50 GOTO 30     
  
 An example in Assembly (don’t worry, I know that the code is not optimized :)) 
 
 LD A,1  

LD BC,&FF1C 
 OUT(C),A    ;Reset the buffer 
 LD BC,&FF1D 
 OUT(C),A    ;Enable the buffer 
LOOP: LD BC,&FF1C 
 IN A,(C) 

CP A,0    ;Loop until a character appears  
 JR Z,LOOP 
 LD BC,&FF1D 



 IN A,(C)    ;Read data from buffer 
 CALL &BB5A    ;Print data 
 JR LOOP 

 
 
 

512 BYTES EEPROM 
 
 Since the microcontroller had the EEPROM, I thought that I should give the 
ability for the CPC to access it. I know it’s not much but incase you want to 
save some settings, it's quite good. Anyway, the addresses are from 0 till 511 
(0-&1FF in HEX). 
 
ADDRESS:&FF0C        IN/OUT    EEPROM ADDRESS HIGH BYTE 
ADDRESS:&FF0D        IN/OUT    EEPROM ADDRESS LOW BYTE 
 
 The high byte can only be 0 or 1,  a value bigger than 1 will be 
automatically changed to 1 
 
ADDRESS:&FF0E        IN/OUT    EEPROM READ/WRITE 
 
 This accesses the byte of the address of the EEPROM we’ve selected with 
the addresses &FF0C and &FF0D. Here are some examples in BASIC 
      
10 OUT &FF0C,0 
20 OUT &FF0D,5         ;Select address 5 
30 OUT &FF0E,25        ;Store the value 25 at the address 5 
40 OUT &FF0C,&1 
50 OUT &FF0D,&4E       ;Select address &14E (334 in decimal) 
60 A=INP(&FF0E)        ;Read the contents of the address &14E 
70 PRINT A 
 
 
 
 

THE ANALOG TO DIGITAL CONVERTER 
 
 The CPC booster gives you the ability to make 8bit samples on the CPC. 
Ofcourse, there were some samplers in the past for the CPC, like the Music 
Machine, but this time it’s easier than ever! The sampler can be used only 
through assembly because in Basic the sampling rate is worse than an 1 bit 
sample! 
 
 
ADDRESS:&FF0F        IN/OUT    ADC SAMPLING FREQUENCY 
 
 With this address, we can select the sampling rate. We don’t have to make 
complicated routines on the CPC, the baud rate can be set directly on the CPC 
booster, so we just make a simple IN to get the data and all the timing is done 
automatically. There are 8 possible values to select frequency, value 0 and 1 
are the same: 
 
       VALUE        DIVISION FACTOR        SAMPLING FREQUENCY 
       0                2                    5529 KHz 
       1                2                    5529 KHz 
       2                4                    2764 KHz 
       3                8                    1382 KHz 
       4                16                    691 KHz 
       5                32                    345 KHz 
       6                64                    172 KHz 
       7                128                    86 KHz 



 
 As you understand, if the frequency is high, you have good quality but it 
takes a lot of memory and you can’t make long samples. In the worst quality, 86 
KHz, you can create around 14 sec long sample, which takes 64 KB. 
 
ASSEMBLY:        LD A,3                    ;Select 1382 KHz sampling freq. 
                 LD BC,&FF0F 
                 OUT(C),A 
 
ADDRESS:&FF10        IN/OUT    ADC CHANNEL SELECTION 
 
 With this address you select from which channel you will get the data. 
There are two channels, so we have the possibility to make stereo samples, or to 
record a stereo sample from a music CD and turn it into mono. To select channel 
1, we send the value 0, to select channel 2 we send value 1. Any value between 2 
and 255 selects channel 1 again (I’ve just noticed that!). 
 
ASSEMBLY:        LD A,0                ;Select channel 1 
                 LD BC,&FF10 
                 OUT(C),A 
 
 
ADDRESS:&FF11        IN        READ ADC VALUE 
 
 To read the data from the A/D convertor, we make an IN from this address. 
Could it be simplier? Here’s a routine which stores a sample with max width 10KB 
 
            LD HL,16384        ;Address to store the sample 
            LD DE,10000        ;Byte counter (10KB long sample) 
            LD BC,&FF11        ;Address for reading data 
SAMPLE:     IN A,(C)           ;Read byte from the convertor 
            LD(HL),A           ;Store byte in the address that HL points 
            INC HL             ;Increase sample address to store next byte 
            DEC DE             ;Decrease counter 
            LD A,D 
            OR E 
            JR NZ,SAMPLE       ;Check if sample is 10KB long. 
 
 During the recording of a sample, you can adjust the incoming record 
volume with the potensiometer located on the top of the CPC booster. Use a 
screwdriver and adjust it till you get a clear sound. A way to do this 
adjustment is to make an in with &FF11 and send the value directly to the PWM. 
 
 
ADDRESS:&FF12        IN/OUT   KEYBOARD SCANNING FUNCTIONS  
 

The functions on the address &FF12 are combined with a routine on the CPC. 
What this routine does is by having the 10 bytes of the CPC keyboard scan, can 
return to you the pressed key. There is a table which will help you find out the 
exact key pressed. This routine can only be used in an editor, when you can only 
press one key at a time (combined with shift). 

First of all, let's see the routine on the CPC. What this routine does is 
making the whole keyboard scan and sending each line's byte to the CPC Booster. 

 
  LD BC,&FF12:IN A,(C) ;Making a false read in the beginning of the 
program just to reset the routine 
  ... MAIN PROGRAM ... 
  CALL KEYSCAN  ;Call routine to scan the CPC keyboard 
  LD BC,&FF12 
  IN A,(C)   ;Get pressed key 
  ... JUMP TO MAIN PROGRAM ... 



KEYSCAN: LD BC,&F40E:OUT(C),C 
  LD BC,&F6C0:OUT(C),C 
  DB &ED,&71 
  LD BC,&F792:OUT(C),C 
  LD BC,&F640:OUT(C),C:LD B,&F4:IN A,(C):LD BC,&FF12:OUT(C),A 
 ;Read the byte from the scanned line 
  LD BC,&F641:OUT(C),C:LD B,&F4:IN A,(C):LD BC,&FF12:OUT(C),A 
 ;and send it to the CPC booster 
  LD BC,&F642:OUT(C),C:LD B,&F4:IN A,(C):LD BC,&FF12:OUT(C),A 
  LD BC,&F643:OUT(C),C:LD B,&F4:IN A,(C):LD BC,&FF12:OUT(C),A 
  LD BC,&F644:OUT(C),C:LD B,&F4:IN A,(C):LD BC,&FF12:OUT(C),A 
  LD BC,&F645:OUT(C),C:LD B,&F4:IN A,(C):LD BC,&FF12:OUT(C),A 
  LD BC,&F646:OUT(C),C:LD B,&F4:IN A,(C):LD BC,&FF12:OUT(C),A 
  LD BC,&F647:OUT(C),C:LD B,&F4:IN A,(C):LD BC,&FF12:OUT(C),A 
  LD BC,&F648:OUT(C),C:LD B,&F4:IN A,(C):LD BC,&FF12:OUT(C),A 
  LD BC,&F649:OUT(C),C:LD B,&F4:IN A,(C):LD BC,&FF12:OUT(C),A 
            LD BC,&F782:OUT(C),C:LD BC,&F600:OUT(C),C:RET 
 
 The routine in the CPC booster, after receiving 10 bytes, it will 
automatically find the pressed key and will give you its value when you will 
make an IN from the address &FF12. If we send 9 bytes or any value less than 10, 
then we will read 0. You have to send 10 bytes to get a correct response. Here’s 
the table with the returned values: 
 
00=No key  128=No key 
01=a   129=A 
02=b   130=B 
03=c   131=C 
04=d   132=D 
05=e   133=E 
06=f   134=F 
07=g   135=G 
08=h   136=H 
09=i   137=I 
10=j   138=J 
11=k   139=K 
12=l   140=L 
13=m   141=M 
14=n   142=N 
15=o   143=O 
16=p   144=P 
17=q   145=Q 
18=r   146=R 
19=s   147=S 
20=t   148=T 
21=u   149=U 
22=v   150=V 
23=w   151=W 
24=x   152=X 
25=y   153=Y 
26=z   154=Z 
27=1   155=!  
28=2   156=” 
29=3   157=# 
30=4   158=$ 
31=5   159=% 
32=6   160=& 
33=7   161=’ 
34=8   162=( 
35=9   163=) 
36=0   164=_ 



37=-   165== 
38=^   166=EURO 
39=@   167=| 
40=[   168={ 
41=:   169=* 
42=;   170=+ 
43=]   171=} 
44=,   172=< 
45=.   173=> 
46=/   174=? 
47=\   175=` 
48=f0 
49=f1 
50=f2 
51=f3 
52=f4 
53=f5 
54=f6 
55=f7 
56=f8 
57=f9 
58=f. 
59=cursor left 
60=cursor right 
61=cursor up 
62=cursor down 
63=CLR 
64=DEL 
65=RETURN 
66=ENTER 
67=SPACE 
68=COPY 
69=CAPS LOCK 
70=CONTROL 
71=TAB 
72=ESC 
 

As you can see, you can check bit7 to see if the shift key is pressed or 
not. To transform these values into ascii, you can use a 256 bytes page alligned 
table and a small routine: 
 
LD BC,&FF12 
IN A,(C) 
LD L,A 
LD H,High byte of the table’s address 
LD A,(HL) 
 
 
 

PROGRAM MEMORY READ/WRITE 
 
 The AVR mega16 has 16KB of program memory. The CPC booster gives you the 
ability to read and write this memory, that’s why the update of the peripheral 
is possible. Right now, less than 5 KB of this memory is used for the bios of 
the CPC booster, so you have around 10KB for your own purposes. Ofcourse, you 
already know that you should be careful to which address you will store your 
data, because you may accidentally erase data. If this happens, then you should 
try to re-update the bios and if that fails, then you will have to send the 
microcontroller back to me to re-program it. 
 A few words about the memory of the microcontroller. It is divided into 
128 pages of 128 bytes each. 128*128=16384 bytes. Every command of the AVR is 



16bit, which means that it takes two bytes. There are two ways to use the 
program memory through the CPC Booster, the page mode and the address mode. In 
the page mode, you select the address using two registers, one contains the page 
number and the other the address inside the page. In the address mode, the 
memory is divided like a normal ram, there are 16384 addresses of 8 bit each. 
You use two registers, one for the high byte and one for the low byte. 
 You can use both ways when you want to read the program memory but you can 
only store data using the page mode. 
 
ADDRESS:&FF13        OUT WRITE PAGE  
ADDRESS:&FF14        OUT STORE BYTES TO PAGE BUFFER 
ADDRESS:&FF15    IN/OUT ADDRESS OF THE PAGE BUFFER 
 
 To write a page you have to fill the data into a buffer and then make an 
out at the address &FF13. To explain it better, here’s a small basic program to 
store data to a page. 
 
10 ADDRESS=16384   ;Source address data from the CPC 
20 PAGE=80    ;We will write the data to page 80 (0-127) 
30 FOR BUFFER=0 TO 127   ;Storing 128 bytes 
40 OUT &FF14,PEEK(ADDRESS) ;Sending each byte to the CPC booster buffer. This 

function auto increases the buffer’s address. 
50 ADDRESS=ADDRESS+1 
55 NEXT BUFFER 
60 OUT &FF13,PAGE ;After filling the buffer, write the data to the 

selected page. 
  
  The address &FF15, points at the next address of the buffer. If we make an 

OUT &FF14,X, then the contents of the &FF15 will be automatically increased. 
Ofcourse, when it reaches 128, it goes back to 0. You can use this address if 
you want to reset the buffer or to see how many bytes you‘ve already stored 
inside the buffer. Kind of useless function but anyway. 

 
ADDRESS:&FF16        IN/OUT PAGE NUMBER  
ADDRESS:&FF17        IN/OUT ADDRESS INSIDE PAGE 
ADDRESS:&FF18    IN  READ DATA 

 
  Those addresses are used to read data from the program memory using the 

page mode. Address &FF16 contains the page you want to read, address &FF17 
contains the address inside the page (0-127) and using &FF18 after you set the 
previous addresses, you read the data. 

 
 EXAMPLE IN BASIC 
 
 10 PAGE=27 
 20 ADDRESS=0 
 30 OUT &FF16,PAGE 
 40 OUT &FF17,ADDRESS 
 50 ?INP(&FF18) 
 

ADDRESS:&FF19        IN/OUT ADDRESS HIGH BYTE  
ADDRESS:&FF1A        IN/OUT ADDRESS LOW BYTE 
ADDRESS:&FF1B    IN  READ DATA 

 
  I don’t think that you need further explanations... I remind you that the 

addresses are from 0 till 16383. 
 
 
 

TTL INPUT/OUTPUT 
 



  This is a 5 bit port which can be used as input/output for TTL signals. I 
think that it’s one of the most important characteristics of the CPC Booster 
because it gives you the ability to have a parallel port even if you only have 5 
bits to control. People who like electronics and especially digital circuits 
already know how important this is. 

  The port is bi-directional with optional internal pull-ups. 
 

ADDRESS:&FF1E    IN/OUT 5 BIT PORT DATA DIRECTION (DDx) 
ADDRESS:&FF1F    IN/OUT 5 BIT PORT DATA REGISTER (PORTx) 
ADDRESS:&FF20    IN  5 BIT PORT INPUT (PINx) 
 
 Those are the three addresses to control the port. Each one has 5 bits 
which control the 5 pins of the outport. 
 We can name the bits as DDx, PORTx and PINx. The DDx bit in the Data 
direction register selects the direction of the x pin (output or input). If the 
bit is zero, then the pin is an input, if it is set then the pin is an output. 

If PORTx is set when the pin is configured as an input by the DDx bit, 
then the internal pull-up resistor is activated. To switch the pull-up resistor 
off, PORTx has to be zero or the pin must be configured as an output. 

If PORTx is set when the pin is configured as an output pin, the port pin 
is driven high (5 Volts output). If PORTx is zero when the pin is configured as 
an output pin, then the port pin is driven low (0 Volts output). 

Independent of the setting of the Data direction bit (DDx), the port pin 
can be read through the PINx register bit. 

 
Some examples: 
 

LD A,%11111 
LD BC,&FF1E 
OUT (C),A  ;All the pins are set as output pins 
LD A,%10101 
LD BC,&FF1F 
OUT (C),A  ;Pins 1,3 and 5 are driven high and 
   ;pins 2 and 4 are driven low. 
 
LD A,%11001 
LD BC,&FF1E 
OUT (C),A  ;Pins 1,4,5 are configured as outputs. 
LD A,%10111 
LD BC,&FF1F 
OUT (C),A  ;Pins 1 and 5 are driven high. In pins 2 and 3, 
   ;the internal pull-ups are activated. 
LD BC,&FF20 
IN A,(C)  ;A has the state of each of the 5 pins. 

 
 A pull-up resistor is used when we set a pin as an input. Incase we have 
nothing connected to that pin externally, if we read the PINx register bit, we 
will get the value 1 because it’s internally connected to the VCC through a 
resistor. A signal connected to the ground through a switch can drive this pin 
low. If you want to connect a button or a switch, one pin of the switch is 
connected to the ground and the other to the CPC Booster pin. 
 When the button is not pressed, you read “1” because of the internal pull-
up. When the button is pressed, then the ground is connected to the pin and you 
read “0”. I can’t give you any more information about the TTL signals and the 
use of pull-ups because this is a manual for the CPC booster, not a lesson in 
electronics. But you can have a look at the PDF of the ATMega16, where the 
functions of the pins are described in a better way. 
 The pins are from left to right (TOP VIEW OF THE CPC BOOSTER):  

 
GND, PIN1, PIN2, PIN3, PIN4, PIN5 
 



 
 

MULTIPLICATION 
 

ADDRESS:&FF21    IN/OUT MULTIPLIER 1 
ADDRESS:&FF22    IN/OUT MULTIPLIER 2 
ADDRESS:&FF23    IN  RESULT HIGH BYTE 
ADDRESS:&FF24    IN  RESULT LOW BYTE 
 
 I think that this function is very easy. First you give a value for 
multiplier 1 and then you give a value for multiplier 2. Whenever you enter a 
value to multiplier 2, a multiplication between multiplier 1 and multiplier 2 is 
done and the result is stored in addresses &FF23 and &FF24. The result will 
remain intact as long as the next multiplication takes place.  
 This is a multiplication between two 8 bit numbers and the result will be 
a 16 bit number. 
 
10 INPUT “MULTIPLIER 1”;A 
20 INPUT “MULTIPLIER 2”;B 
30 OUT &FF21,A 
40 OUT &FF22,B 
50 PRINT INP(&FF23)*256+INP(&FF24) 
 

READ VERSION OF THE CPC BOOSTER+ 
 
ADDRESS:&FF25    IN/OUT READ VERSION / RESET TEXT POINTER 
 
 You can read some info of the booster+ you have using this routine: 
 
10 OUT &FF25,0  ;RESET TEXT POINTER 
20 A=INP(&FF25) 
30 IF A=0 THEN END 
40 PRINT CHR$(A); 
50 GOTO 20 


