July 1981 Report. No. STAN-CS-81-86'7

ADAM- An Ada based Language
for Multi-Processing

by

D. C. Luckham, H. J. Larsen,
D. R. Stevenson, F. W. von Henkc

LpLisSUTtL Ly

Defense Advanced Research Projects Agency

Department of Computer Science

Stanford University
Stanford, CA 94305

ADAM
An Ada based Language for Multi-processing

D. C. Luckham, H. J, Larsen, .D.R. Stevenson, F. W. von Henks

July 1081

Abstract:

Adam is an experimental language derived from Ada. it was developed to facilitate study
of issues in Ada implementation. The two primary objectives which motivated the
development of Adam were: to program supervisory packages for multitask scheduling, and
to formulate algorithms for compilation of Ada tasking.

Adam is a subset of the sequential program constructs of Ada combined with a set of
parallel processing constructs which are lower level than Ada tasking. in addition, Adam
places strong restrictions on sharing of global objects between processes. Import
declarations and propagate declarations ate included.

A compiler has been implemented in Maclisp on a DEC PDP-10. It produces assembly code
for a PDP- 10. It supports separate compilation, generics, exceptions, end parallel
pt ocesses,

Algorithms translating Ada tasking into Adam parallel processing have been developed and
implemented. An experimental compiler for most of the final Ada language design,
including task types and task rendezvous constructs, based on the Adam compiler, is
presently available on PDP-10's. This compiler uses a procedure call implementation of
task rendezvous, but will be used to develop and study alternate implementations.

. This research was supported by the Advanced Research Projects Agency of the Department
- of Defense under Contract MDA 003-80-C-0150.

CONTENTS
1. INTRODUCTION 4
1.1 Notation and Conventions 6
2. OVERVIEW OF Adam 7
2.1 Types for Scheduling 7
2.2 Exceptions 7
2.3 Modules 8
2.4 Processes 8
2.6 Program Units, Visibility and Imports 9
2.6 Adam Runtime Environment 11
3. TYPES AND DECLARATIONS 12
3.1 Object Declarations 12
3.2 Types and Subtypes 13
3.3 Predefined Types 13
3.4 Types for Scheduling 13
3.6 Machine Dependent Types 16
4. STATEMENTS 16
4.1 Reserve Statement 16
4.2 Initiate Statement 16
6. SUBPROGRAMS 17
6.1 Propagate Declarations 18
6.2 interrupt Procedures 19
6. MODULES 19
6.1 Schedulers 20
6.2 Devices 21
6.3 Scheduled Modules 21
6.4 Instantiation 23
6.6 Examples 23
7. PROCESSES 28
7.1 Channels Declarations and Use Clauses 29
7.2 Initiation of Processes 31
7.3 Termination of Processes 31
7.4 Instantiation of Processes 32
8. VISIBILITY RULES and IMPORTS 33
8.1 Visible Declarations 33
8.2 Declarations Requiring Importation gg

8.3 Imports

9. CONCLUSIONS 36
9.1 Writing Supervisors 36
8.2 Transporting the Adam Compiler and Runtime Environment 37
9.3 Translating Ada Multitasking 37

REFERENCES 40

APPENDICES 42
A Syntax 42
B Reserved Words 61
C List of Pragmas 61
D Predefined Attributes 62
E Predefined Exceptions 62
F A Standard Supervisor 63
G Ada Multitasking Translation Example 63

H Compiler Commands 68

introduction -4 -
1. INTRODUCTION.

Adam is an experimental multiprocessing language based on Ada. It consists of a large
subset of the non-tasking constructs of the Ada language [6]}, augmented by some simple
primitive constructs for scheduling and parallelism. The sequential subset includes Ada
packages, generic units, and exceptions; the omissions have mainly to do with numeric

types.

Adam is intended to remain as close as possible to the final Ada language design while

facilitating:

(1) construction of schedulers and runtime supervisors for multitask programs intended to
run on either single or multiple processor hardware,

(i) formulation of translation algorithms for Ada tasking, and for other high level parallel
constructs, and

(i) specification of parallel programs.

The additional constructs for parallelism are lower level than Ada tasking. These
constructs include (1) units, called processes, which may execute in parallel, (2)
constructs for communication among processes, specifically scheduled modules, which are
packages that schedule access to their visible procedures, and (3) the predefined types
Locks, Process Names, and Condition Variables. Some of these constructs are related to
concepts in Concurrent Pascal [1] and Modula [18]. In every case, their compilation is well

understood.

The reader might well ask why we feel it is necessary to deviate from Ada.

Goal (i) is motivated by the prediction that users of Ada tasking (or indeed any high level
multiprocessing language) will need to modify “standard" runtime scheduling and
supervisory packages to suit their own needs. (The reader who doubts this should
consider, e.g., the design philosophy changes that took place between references [1] and
[2]. Certainly, if one man can go through such changes, how widely might two men, an
implementor and a user, disagree on the necessary language constructs for scheduling and
their implementation? There are many other publications discussing this problem, e.g., [6]
and [9].) It is therefore necessary to study the structure of runtime supervisors and to
develop languages that facilitate their construction.

Why not use Ada? Most supervisory packages can be written in Ada provided the
programmer obeys a very strict discipline in coding critical regions, and is content to
- simulate low level protection with high level constructs. Some simple additions to Ada

might help. Adam attempts to alleviate some of the burdensome discipline by introducing

the scheduled module and tesetve constructs, and also provides the very low level
scheduling objects, Locks and Process Names.

Additional problems arise in writing a supervisor in Ada if it is itself a parallel program (as
might well be the case in a multiprocessor system, or indeed must be so if it uses
interrupts). This requires coding a "subsupervisor® which in turn would provide scheduling
for tasks in the main supervisor. But the Ada task rendezvous semantics ([6], 9.6) implies
a very rigid scheduling algorithm. So tasks in the supervisor have to have a special

Intr oduction -5~

semantics (e.g., as interrupt entry procedures, [6],18.6.1). In Adam parallelism is
expressed by the process construct, the semantics of which do not imply any particular
scheduling. Also, because process names are objects in Adam, a subsupervisor may be
easily coded to schedule the processes in the main supervisor. (e.f., discussion of
programming process scheduling in [6].)

Goal (ii) became a concern during the study of the preliminary Ada tasking design. it very
soon became clear that the informal semantics of task rendezvous given in the preliminary
Ada Rationale was by no means the only viable method of implementation. indeed,
translation algorithms for high level parallelism based on CSP [4] or similar concepts
appear to require formulation and analysis. A promising approach is to implement these
algorithms at a very high level, i.e., as translations from Ada to an existing high level
parallel language. This should result in (a) precise definition of translation algorithms, (e.qg.,
as input/output relations between Ada source and programs in the target language), and
(b) the possibility of formalizing correctness of the tasking translation algorithms.

To do this, the semantics of parallelism in the target language has to be already well
understood. Existing languages with clearly defined parallelism included Concurrent Pascal
and Moduia. So the parallelism in Adam is closely related to processes in these two

languages.

Goal (iii) is concerned with the accurate description of parallel programs. How should a
programmer document (by comments, formal specifications, or whatever) the intended
behaviour of an Ada program, especially one containing packages or tasks? What
descriptive facilities should the language provide, what restrictions should be enforced?
This is an area of research that is relevant to such immediate questions as how to teach
Ada and how to develop standards of documentation for Ada. (Some of these questions
are being studied separately, e.g.,in [8],{10] or [11].) There are also many possible
longer term consequences; these might Include techniques for formal verification and
automatic generation of programs from their specifications.

One immediate reason for considering goal (iii) in the Adam design is to ensure that the
translations of Ada tasking conform to a structure and discipline which makes them easy to
specify and anaiyse. Since the translation algorithms are themselves defined in terms of
input/output relations between Ada and Adam, this clearly affects the formulation and

study of their correctness.

The crucial question is exactly how much weight to give goal (iii) in the design decisions,
particularly when it appears to conflict with the goal of useability. In Adam we chose a
form of parallel processes such that all interactions between processes can be deduced
from their declarations and instances. To do this requires changing the visibility rules of
Ada. In Ada these rules permit undeclared use of global objects, e.g. between tasks, in
packages, or in exception handlers, which makes any attempt at precise documentation
difficult. Their generality (or permissiveness) is a pitfall to the uninitiated and an area
where good programming practice should be developed and taught. Here, Adam simply
enforces restrictions that prevent processes from communicating (i.e., influencing each

others computations) in arbitrary ways.

The discipline enforced by Adam includes: (a) restricting the visibility rules of Ada, (b)

Intr oduction -6 -

limiting the interactions among processes and requiring that such interaction be explicitly
declared in process specifications, (c) requiring import declarations to specify the use of
global units in modules, and (d) requiring propagate declarations to specify the exceptions

propagated by a unit.

The Adam restrictions can In fact be followed in Ada by disciplined programming; but the
programmer will have to invent his own commentary to specify what he is doing, and his
own methods of checking that he does it. On the issue of useability, the value of these
restrictions in terms of whether they help or hinder current programming techniques
remains to be studied.

We can report the following progress:

An Adam compiler has been running on DEC PDP-10 computers since June 1980. This
compiler is implemented in Maciisp and generates PDP-10 assembly language. The
compiler provides a small set of commands permitting users to manipulate library files for
separate compilation. Runtime supervisor packages have been written in Adam, compiled,
and now form part of our Ada runtime environment (an example is given in Appendix F). So
far, these supeyisors schedule processes on a single CPU; multiprocessor supervisors
have not yet been constructed. A discussion of experience in transporting the compiler
and environment is given in section Q, and a short description of the compiler facilities is in

Appendix H.

Three algorithms for translating Ada task types and tasking constructs into the lower level
Adam processing have been defined; an example is given in Appendix G, a description of
the algorithms is given in [12], and a detailed report is forthcoming. One of these
translation algorithms has been implemented in the compiler (as a subfunction of the static
semantic checking). Many examples of Ada tasking programs have been compiled and run
using separately compiled i/O and supervisor packages; the compiler has been used in
teaching courses on Ada programming. Implementation of the other translation algorithms is
in progress, and experiments comparing their runtime characteristics are planned.

1.1 Notation and Conventions.

This report is addressed to readers who already have some familiarity with the Ada
reference manual [6]. The notation and formatting conventions of Ada are adopted with a
few changes. This report describes those constructs of Adam that are not in Ada.
. Constructs common to both languages are only listed. Description of constructs is by an
informal general format and examples; BNF syntax is given in Appendix A.

in both general formats and BNF the following notation is used.

Square brackets, [],indicate an optional construct. Curly brackets, {}, indicate zero or
more repetitions of a construct.

Terminology. Modules and processes are called units. Nongeneric declarations are often
called actual. Variables and actual modules are called objects. Elements declared in the

Introduction -7 -

specification - or visible - part of a module are said to be exported by the module.
Elements declared in the body of a module are said to be encapsulated by the module.

2, OVERVIEW OF Adam.

Adam consists of a large subset of the non-tasking constructs of the Ada language [6],
augmented by some simple primitive constructs for scheduling and paraiieiism. This section
presents a brief overview of the scheduling and parallel features together with the
rationale for them. Syntax and examples are given in later sections.

2.1 Types for Scheduling.

The type differences between Ada and Adam are described in Section 3. The type
facilities in Adam are not as rich as Ada, the general philosophy being not to include
facilities that are not essential to studying the construction of multiprocess programs.

However, Adam includes some new types that are important in writing schedulers and
process supervisors.

(1) Locks. Variables of type Lock provide a low-level facility for programming critical
regions.

(i) Process Names. Processnames provide a means of refering to the process (or thread of
control) currently executing an instruction. This facility is important in programming
scheduling of shared variables (or any interaction between processes), supervision of
resources, and message-passing operations.

(ili) Conditions. Condition variables provide a fifo queue of process names.

2.2 Exceptions.

Exception handling and propagation is the same as Ada except that there is no direct
propagation of exceptions between processes. in addition, ail exceptions propagated from
units must be declared in the specification part of the unit by means of propagate
declarations (this can be practiced in Ada using the comment facility - see [8]).

Propagate declarations ensure that a calling unit will not receive any "surprise" errors.
Their use permits compiletime checking (a) that the propagate declarations are consistent
with the set of exceptions raised but not handled in the unit body, and (b) that exceptions
are not propagated outside of the scope of their declaration, a somewhat ambiguous

Overview -8 -

situation permitted in Ada, The use of propagate declarations in a method of specifying
programs with exceptions is described in [10].

2.3 Modules,

Modules in Adam correspond to packages in Ada. They provide facilities for encapsulation

or abstraction. in addition Adam provides special modules:

(1) Device modules: Devices are intended for interfacing with hardware. Devices may
contain machine coded operations and interrupts.

(i) Schedulers: Schedulers are used to encapsulate scheduling and synchronization
operations.

(i) Scheduled modules (and devices): units for commmunication between processes. A
scheduled module is simply a module containing a scheduler; its visible operations are
associated with scheduler operations by scheduling declarations. Details are in
Section 6.

Generic modules-are declared and instantiated as in Ada.

2.4 Processes.

Processes are program units which may be initiated and run in parallel. The major
difference from Ada tasks is that the constructs for communication between processes are
essentially lower level than the Ada Rendezvous, and are more restricted.

Processes communicate by operating on scheduled modules. These modules are called
communication channels and are declared by means of a channels declaration in the
specification part of process declarations. The Monitor construct of Concurrent Pascal
[1] and the mailbox concept of Gypsy [3] are examples of scheduled modules.

There are no means of communication among processes, other than channels; in particular,
processes do not import values (see 2.6), may not reference external values, and do not

have exports.

Execution of a process is begun by means of the initiate statement. Multiple initiations of
a process are permitted; each initiation results in a new copy of the process. initiation is

* the only operation on processes. A process terminates when it reaches the end of its

body. A scope may be left only when all dependent processes have terminated (see 7.3).

Processes may be generic (but may have only type and in parameters). A generic process
may be Instantiated to an actual process.

The choice of communication constructs in Adam has several consequences and
implications. First, the Ada rendezvous constructs, including entry procedures and accept
and select statements, are omitted. Second, all communication among processes in a
system can be determined from the specification parts of the process declarations. (in

Overview -9 -

Ada the bodies of consumer tasks must be examined to determine which service tasks
they communicate with.) It Is expected that this will be of some advantage in developing
specifications for multiprocess systems. Third, the Adam programmer has to construct
schedulers which determine interaction with the runtime supervisor in a multiprocess
system. This may be burdensome for high level parallel processing applications, but should
be close to the kind of programming required in constructing embedded computer systems.
For high level multiprocessing it is expected that standard library communication modules
with underlying supervision will be available in a separately compiled units. Fourth, Ada
multitasking systems can be translated into Adam multiprocessing [12]. Different
translation algorithms exist, each having advantages in runtime efficiency depending on
the system to be translated, the facilities exported by the runtime supervisor, and the
hardware.

2.6 Program Units, Visibility and imports,

The visibility rules of Adam differ from those of Ada. The motivation for the difference is to
ensure that all interactions between processes are deducible from the process
declarations. There are two changes from Ada. First, the visibility of outside objects
within a process, (i.e., the Adam version of a task) is restricted to be exactly the
scheduled modules declared as communication channels of the process. No other outside
objects may be mentioned within a process. Second, all outside objects mentioned inside a
module must be declared as imports of the module. As a consequence of these two
changes, all objects by means of which processes may be able to influence each others,
computations can be enumerated by taking the transitive closure of the channels, their
imports, imports of imports, and so on.

it remains to motivate the definition of object. The elements out of which Adam programs
are constructed are declarations (of types and subtypes, variables, constants,
subprograms, modules, and processes) and statements.

The elements that may be used to communicate are those that have accessible values or
states that may vary during a computation, i.e., variables and actual modules. These we

define to be objects.

Elements that are purely definitional in nature and do not have states are type, subtype
and generic unit declarations. (Note: Adam visibility rules for generic units ensure that
they are purely definitional.) These cannot be used to communicate when shared between
processes, and their visibility is exactly as in Ada.

Processes have states but their states are not accessible by other units. The only action
that can be performed on a process is initiation. The only manner in which an external unit
may effect the state of an initiated process is to operate on a channel shared with the
process. So the visibility of processes is also unrestricted,

Finally, the treatment of subprograms results from a compromise with useability
considerations. A subprogram declaration is definitional unless there are global objects. We
could require imports declarations on subprograms, in which case their visibility need not

Overview -lo-

be restricted. However, the introduction of modules into a programming language appears
to change the role of subprograms from basic unit (as in Pascal) to small subunit of a
module. The unencapsuiated subprogram becomes a rarity, But in its new role as building
block of modules, it is normal for a subprogram to import the local data of a module body.
So imports declarations would then be part of most subprograms. But the imports
declarations on subprograms internal to a module body are invisible outside the body and
no longer contribute to the specification of outer systems of processes. So instead of
requiring imports declarations on subprograms, we have restricted the visibility of
subprograms (which is what seems to be happening naturally anyway).

We may now summarize the visibility rules of Adam for units.

Declarations that are always visible within a unit if they are visible at the point of
declaration of that unit are:

(i) type declarations (including the constants of an enumeration type),

(i) constants,

(iil) generic unit declarations,

(iv) processes,

(v) exception declarations.

(vi) predefined system modules (e.g., process supervisor = 2.6.1).

Declarations that are not visible unless explicitly imported into a unit:

(i) variable declarations,
(i) nongeneric module declarations (including instantiations of generic modules).

Note: Thus, outside unencapsulated subprograms are never visible inside units.

Channels
The channels declaration of a process permits an actual scheduled module to be visible

inside a process body. This is the only kind of external object that can be made visible
inside a process.

Imports
import declarations can appear only in nongeneric modules. Such declarations permit a list

of outside objects to be visible inside a module specification or a module body. if a module
declaration mentions external objects, those objects must be declared as imports.

in the case of an instantiation of a generic module, those generic parameters that are
objects are imports. A separate imports declaration is omitted. (See Section 8.3.)

Note: A generic module may not have imports.

Notes:

1. in defining those objects whose importation must be declared, there are two possible
approaches. Make every identifier an object, as in Euclid. This is very simple but leads to
lengthy and irrelevant imports lists containing many "objects" that cannot possibly be used
to communicate between parallel computations. Alternatively, define as objects exactly
those elements that a process may be able to use to influence another’s computation.
This requires more complex visibility rules and forces the programmer to think, but leads to
more relevant lists of imports. We take the second approach,

Over view -11 -

2. Construction of the transitive closure of channels lists and imports lists is easily
automated and may prove useful in checking for some common errors,

3. Ada with clauses function as imports declarations between separately compiled units.

4. Essentially, the stricter visibility rules enforce a discipline in Adam that can be
practiced in Ada.

2.6 Adam Runtime Environment

2.6.1 Process Supervisor.

One of the design goals of Adam is to provide a language for writing process scheduling,
often called supervision here. Consequently, the semantics of the basic multiprocessing
constructs of Adam do not assume calls on an underlying supervisor.

However, it is important to define a minimal expected interface of operations to be
provided by most supervisors. This facilitates programming scheduling of processes (since
scheduling often involves supervisor calls) and substitution of new supervisors into
multiprocess programs.

The Adam compiler assumes the presence of a predefined scheduled module, supervisor,
that implements a set of visible standard procedures for activating and suspending

processes:

procedure SUSPEND,;

procedure ACTIVATE (P : PROCESSNAME);
procedure SWITCH (P : PROCESSNAME);
procedure START (D : INIT_DATA);
procedure Fl NI SH;

(The types PROCESSNAME and INIT_DATA (process initialization data) are discussed in
Section 3.6.) The supervisor procedure START is called when an initiate statement is
executed; it sets up the proper entries in the supervisor tables and activates the
process. When a process has reached the end of its body, the supervisor procedure
FINISH is called. A call to SUSPEND results in the suspension of the calling process and
(normally) the running of another process in its place. The procedure ACT | VATE
reactivates a process after suspension. The procedure SWITCH causes a context switch
from the calling process to process P, i.e. suspends the calling process and activates P.
Examples of these supervisor procedures are given in Appendix F.

We assume that any Adam environment contains a predefined supervisor (cf. Appendix F).
Calls to START and FIN1 SH are generated by the compiler; these procedures have to be
present in every supervisor. The other standard supervisor procedures are most often
called directly by scheduling procedures in user programs. However, when processes are

Overview -12 -

nested the compiler may also have to generate calls to SUSPEND and ACTIVATE, e.g. for
synchronizing termination of outer and inner process,

The interface of standard supervisor procedures is ail the compiler knows about
supervision. it is thus easy to substitute a user-written supervisor that conforms with the
interface for the standard one and have it used in the compilation of multiprocess
programs. A pragma, SUPERVISOR, notifies the compiler to substitute ceils to procedures of
the same name from a new module for calls to the standard supervisor procedures. For

instance, the pragma,
pragma SUPERVISOR (M) ;

where M is a module name, will result in the replacement of all calls to ACTIVATE by calls to
M.ACTI VATE in the compilation, and similarly for the other expected procedures in the
supervisor interface. (Obviously, the supervisor pragma has to appear in the program text
before any calls to supervisor procedures are to be compiled.)

A user-supplied supervisor may be more sophisticated and implement additional
procedures. For instance, the supervisor presented in Appendix F supports
multiprocessing on a one-processor installation; a supervisor for programs intended to run
on multiprocessor hardware must deal with additional problems like possible time races. On
the other hand, in some applications, e.g., where processors are dedicated to single
processes, the user-supplied supervisor may be trivial and provide only the START and

FI NI SH procedures.

2.6.2 Input-Output.

The Adam runtime environment also includes a predefined module for input and output to
files and terminals. The module provides an implementation of the standard package for
1/0 as defined in Section 14 of the Ada Reference Manual [6].

3. TYPES AND DECLARATIONS.

3.1 Object Declarations.
In Adam objects are declared as in Ada:

identifier-list : [constant] type [:= expression];

Types and Declarations -13 -

3.2 Types and Subtypes.

The type structure of Adam is derived from that of Ada with the following major differences
and restrictions. Range constraints must be static. There is only one Integer type. Float,
and fixed types are not implemented. There are no type conversions.

For the syntax of type definitions refer to Appendix A.

3.3 Predef ined Types.

The predefined type identifiers of Adam include the following subset of the predefined Ada
language environment:

type | NTEGER is implementation-defined;
type NATURAL is INTEGER range 1..INTEGER'LAST;
type BOOLEAN is (FALSE, TRUE);

type CHARACTER is (NUL,...,'a',...,'"");
type STRING is array (NATURAL range ¢»>) of CHARACTER,;

3.4 Types for Scheduling,

In addition to the standard Ada types listed above, the following new types are
implemented in Adam. Variables of these types are intended to facilitate the writing of
scheduling and synchronization,

3.4.1 Locks,

Variables of type LOCK are used to implement primitive mutual exclusion. For purposes of
description, locks may be thought of as being in one of two states, ON and OFF. There are
three procedures that may be applied to locks :

TEST-SET (L:in out LOCK; B: out BOOLEAN) = gains exclusive access to L; if L is
OFF changes L to ON and sets B to TRUE, else sets B to
FALSE.

SET (L : in out LOCK) = busy waits until L is OFF, then gains exclusive access to
L and changes the state to ON.

RESET (L : out LOCK) - gains exclusive access to L, then changes state of L
from ON to OFF.

These are the only operations that may be applied to locks.

Example 3-2: The <body> is protected by L from simultaneous execution.

Types and Declarations -14 -
L : LOCK; -- variable L is declared to be a lock with Initial state OFF.
begin
SET (L) ; -- busy wait to gain access to L and <body>.
<body>
RESET(L); -- reset L so next user may gain access.
end;

3.4.2 Processnames,

Values of type PROCESSNAME are created by the initiate statement. These values are
distinct. This is the only way that processnames can be created. The only permissable
operations are assignment, equality, and selection using MYNAME which returns the name of
the thread of control executing the call to MYNAME.

The type PROCESSNAME also includes a constant, null, which is not associated with any
process.

3.4.3 Conditions.

Values of type CONDITION are a FIFO queue of processnames. Variables of type
COND I T1 ON are called condition variables.

The operations on condition variables are as follows. Ail of these operations are indivisible
(e.g., a possible implementation of indivisibility is to protect operations on each variable of
type condition by disabling interrupts and locking the operations).

Selectors and constructors:

function EMPTY (CV: CONDITION) return BOOLEAN
-- returns TRUE If the queue of CV is empty; initial value is TRUE.

procedure INSERT (CV : in out CONDITION; P : PROCESSNAME)
-- inserts P on the queue of CV;
-- raises CONDITION-QUEUE-FULL exception /f the queue of CV isfull.

procedure REMOVE (CV : in out CONDITION; P : out PROCESSNAME)
-- removes the first processname from the queue of CV and returns it as the

-- value Of P;
-- raises CONDITION-QUEUE-EMPTY except/on if the queue of CV /s empty.

Example 3-3: Two synchronization operations coded using condition variables.

The following two procedures are typical operations used to implement schedulers for
modules in a multiprocessor environment. They include both decisions to queue (or
dequeue) processes and calls to the process supervisor. They are, in turn, protected by
locks.

Types and Declarations - &-

procedure WAITFOR(CV :in out CONDITION; CVL : in out LOCK) is
-- tests some condition followed by a queuing operation and a
-- supervisor call if the test is FALSE.
-- CVL should be a unique lock protecting a/l operations on CV.
begin
SET (CVL);
if <some-condition> then
INSERT (CV,MYNAME O) ;
RESET (CVL);
SUSPEND;
else
RESET (CVL);
end if;
end;

procedure SIGNAL (CV:in out CONDITION; CVL : in out LOCK) is
-- removes the first processname from the queue CV (If nonempty) and
-- actlvates It. CVL is a unique lock protecting all operations on CV.
P : PROCESSNAME;
begin
SET (CVL);
if <some-condition> and not EMPTY (CV) then
REMOVE (CV,P);
RESET (CVL);
ACT1 VATE (P);
else
RESET (CVL);
end if;
end;

Another example of use of condition variables is given in Section 7.6, Example 7-4.

3.6 Machine Dependent Types.

The initiate statement interfaces with the runtime supervisor by passing a record of
information about the initiated process. The structure of this record is implementation
dependent. For our PDP-10 implementation it has the form:

type INIT_DATA is
record
PNAME : PROCESSNAME;
CODESTART : ADDRESS;
STKSTART : ADDRESS;
PRIORITY : PRIORITY;
end record:;

Statements -16 -
4. STATEMENTS.

The statement syntax of Adam is taken from that of Ada with some minor differences and
additions. All of the sequential statements of Ada are provided.

Since the multitasking in Adam differs from that of Ada there are no delay, abort, select,
accept, or terminate statements in Adam.

4.1 Reserve Statement.

The reserve statement is used to reserve a scheduled module. It allows a process to
perform a sequence of operations on the module without any intervening operations by
another process on the same module, It is intended for use when the number of operations
is determinable only at runtime.

The form of areserve statement is:

reserve scheduled-module-name do

statement-list
end reserve;

Example 4- 7: Printing a file of arbitrary length.

reserve LPT,DRIVER do

loop
-- get next line of file

LPT,DRIVER. PRINT (...); -- print it on the line printer
end loop;
end reserve;

The compilation of reserve statements using the REQUEST and RELEASE operations of the
module’s scheduler is described in Section 6.3.2.

4.2 initiate Statement.

The initiate statement is used to cause a process to begin its execution. The general
form of the statement is:

initiate 1 ist-of-process-names;

A process may be initiated any number of times, with each initiation causing a new copy of
the process to begin execution,

Subprograms -17 -
6. SUBPROGRAMS.

A subprogram is either a procedure or function as in Ada. Adam includes the generic
facility of Ada.

The main differences from Ada are required declarations in the specification part of a

subprogram declaration. The new required declarations specify exceptions, and

scheduling.

(1) If the subprogram is part of a scheduled module, it may be linked to procedures of a
scheduler by a scheduling declaration - see Section 6.3.1.

(2) All exceptions that may be propagated by the subprogram must be named in a
propagate declaration. Such a declaration must be within the scope of the exception.

The form for a subprogram declaration is:

subprogram-declaration =
subprogram-header;
| generic-subprogram-declaration - as in Ada
| generic-subprogram-instantiation - as in Ada

subprogram-header ::=
function designator [formal-part) return subtype-indication
| procedure identifier [formal-part]
| interrupt identifier called from number

The form for a subprogram body is:

subprogram-body =
subprogram-header is
specification-part
declarative-part
begin
statement-list
[exception
(exception-handler)]
end [designator];

specification-part =
[propagate-declaration]
[scheduling (scheduling-item, scheduling-item);]

where:
propagate declaration - propagate list of exception names;
scheduling-item is either a procedure call or else null; (see section 6.3.1).

Subprograms -18 -

6.1 Propagate Declarations.

Propagate declarations specify which of the declared exceptions may be raised and
propagated by a subprogram. The others clause may be used in one propagate declaration
to refer to all unnamed exceptions that may be propagated.

Propagate declarations may be annotated, and thus may be used to specify not only the
exceptions that may be propagated, but also the conditions under which propagation of

exception8 will occur.
Example 8- 7 : Subprogram specifications with propagate declarations with annotation.

In the procedure SEARCH, when propagation of the exception, NOT-FOUND, occurs, it is
specified that the key, X, is not in array A. This illustrates a use of exceptions to break
the normal output specification of a procedure into cases.

type NARRAY is array (1..N) of INTEGER;
f@o:r_'FOiJNb: exception;

procedure SEARCH (N, X : INTEGER; A : NARRAY; | : out INTEGER) is
propagate NOT-FOUND; -- 1 <=J<=N=>X /=A(J);
- -~ annotation states a property of parameter values when propagation occurs.
— exit 1 <= I<= N and X =A();
- - exit comment specifies parameter values on normal exit from Search.
begin

raise NOT_FOUND;

end;

6.2 Interrupt Procedures.

Interrupts are special procedures that are called directly from the hardware. Interrupt
procedures can occur only in device modules (cf. Section 6.2). Interrupt procedures may
not be generic and may not have parameters; they may have global variables.

6, MODULES.

Module declarations in Adam are the same as for Ada packages except:

(i) Global objects in generic module declarations are not permitted.

(i) Declaration of global objects imported into nongeneric modules is required.
(iii) Declaration of exceptions that may be propagated is required.

Modules -19 -

(iv) Scheduling declarations are used in a scheduled module body to associate visible
operations with scheduling operations.
(v) Different kind8 of modules can be defined:

module - basic module declaration,
device - bodies of devices may contain machine code and interrupts,
scheduler = provide8 procedure8 for scheduling,

scheduled module =-a module containing a scheduler; this is the program unit for
communication between processes.

Separate compilation of module specification and body is Supported. The general format
for module declarations is:

[generic generic parameter 1 ist]

module M is
[Imports (imports list);]
exception declarations -- declaration of those exceptions propagated
-- by the procedures and functions if they
-- are not already declared,;
type declarations -- including private types,
procedure specifications -- the visible procedures and functions are
function specifications -- called the module operations,
module specifications
[private . . .] -- private part
e nd M)

moduI; l;oc.iy M is
[imports (imports list);] -- encapsulated imports, see Section 8

type declarations
variable declarations
other declarations -- must include the bodies of all operations

-- and modules specified In the visible part
end [MI ;

Ngte:

An imports list is a list of variables and actual modules. Each import must be visible at the
point of declaration. It is then imported or made visible inside the declaration. Each
imported variable has a mode in, out, or in out), and each imported module has the nature
module). See Section 8.

Example 6-7: Adam version of the visible part of the ON-STACKS example from the Ada
Reference Manual [6], p. 12-5. Some annotations are included.

generic
SIZE . INTEGER;
type ELEM is private;
--entry SIZE » O; -- assertion on gener /¢ parameters.

module ON-STACKS is

Modules - 20 -

type STACK Is prlvate;
OVERFLOW, UNDERFLOW : exception; -- visibility of exceptions /s the same as
-- the module declaration.

procedure PUSH (S: i n out STACK; E: in ELEM);
propagate OVERFLOW; -- f ull (8) ;

procedure POP (S:in out STACK; E: out ELEM);
propagate UNDERFLOW; -- empty (S);

-- comments specifying visible operations PUSH and POP, and f ul 1 and empty.

private
type STACK is

end ON_STACKS;

Note; The formal annotation of modules is currently a topic of research. A discussion of
annotation of Ada package8 can be found in [11].

6.1 Schedulers.

Schedulers are intended to encapsulate both the synchronization and protection for
scheduled modules shared between processes. Schedulers implement (a) the scheduling
procedure8 for entry to, and exit from module operations, (b) procedure8 REQUEST and
RELEASE (for the r eser ve statement), and (c¢) procedures for synchronization between
module operations. Scheduler procedure declarations follow the normal format for
procedure8 (Section &), except they may not contain scheduling declarations; REQUEST

and RELEASE do not have parameters.

A nongeneric declaration of a scheduler must be in the body of a scheduled module.
Conversely, a scheduled module must contain exactly one scheduler. Generic schedulers
may appear in any declarative part. An instance of a scheduler may be declared only in
the body of @ scheduled module.

Example 6-2: A common format for scheduler declaration8 within scheduled modules is:

scheduled module M is
-- specification part of M,

. o

end M;
scheduled module body M is

-- local variables of M,

scheduler SCHED Is -- schedule; for M.
imports (1 ist of local variables of M);
procedure REQUEST; -- REQUEST and RELEASE are procedures
procedure RELEASE; - used for scheduling reserve (Sec. 6. 3. 2) .
procedure ENTER(...);-- ENTER, LEAVE, DELAY, . . . are other
procedure LEAVE (. . .); -- scheduling procedures exported by SCHED
procedure DELAY (. . .)

end SCHED:

Modules -21 -

-- body of M with scheduling declarations

-- (see Section 6.3.1) for each of the visible
-- operations of M.

-- body of SCHED.

end M;

6.2 Devices.

Device modules are the only program units that may contain machine code and interrupt
procedures. They are intended to encapsulate the machine-dependent parts of a system.
Devices may be generic if they do not contain interrupts.

6.2.1 Machine code.

Machine code is inserted into a program through the use of an aggregate as in Ada. (An
example is given in Appendix F.) Unlike Ada, both machine code and Adam statements may

appear in the same subprogram.

6.2.2 Interrupts,
Interrupt procedures are declared by:

interrupt P called from number is
P -- procedure body as in 6.3

Notes:

1. Interrupt procedures may not be generic.

2. Interrupts may not have parameters, but may reference global variables. See example
6-56, Section 6.6.

3. A separately compiled device which has an interrupt procedure in its body must contain
a subprogram header for that procedure in its private part.

Remark: Specifications for interrupt procedures are certainly inadequate. For example, it
would be useful to be able to name a procedure that must be called before the interrupt
can be enabled and which will resume whenever the interrupt is disabled.

6.3 Scheduled Modules,

A scheduled module is a module whose visible operations are scheduled by a scheduler
local to its body. Scheduling of operations is declared by scheduling declarations. If a
scheduled module is named in a reserve statment, then the scheduler for the module must
provide REQUEST and RELEASE procedures.

Modules -22 -

6.3.1 Scheduling Declarations,

Let p be an operation of a scheduled module, A scheduling declaration for p has the format,

procedure P (parameter list) is
Tscheduling (scheduling list);

where
scheduling list has the form: p1(L1), p2(L2)
and each pi is either a visible procedure of the local scheduler or else is null.
p1 - scheduling before entry to p,
p2 - scheduling on exit from p,
Li = parameter lists.

The effect of a scheduling declaration for a procedure Pin a module with a scheduler S is
that the body of P, is compiled as

S pl (L1); -- omitted if p 1 (L1) isnull.
<body of P»
S. p2(L2); -- omitted if p2(L2) Isnull.

Notes:

1. Within the body of a scheduled module with scheduler, S, calls to a scheduler
procedure, p, are stated in the usual format, S.p, unless they are in the scope of a
"use S" clause.

2. Scheduling declarations permit specification of "before" and "after" scheduling. The
set of scheduling declarations specifies explicitly the scheduling of entrance to and
exit from the boundary of the scheduled module.

3. Internal synchronization between module operations cannot be declared by this
mechanism. For this, one must still use calls to scheduler procedures.

6.3.2 Reserve Statements.
Let M be a scheduled module with scheduler S.

reserve M do statement-list end reserve;
is compiled as

S. REQUEST;
statement-list
S. RELEASE;

if REQUEST and RELEASE are not supplied by the scheduler, attempts to compile reserve
statements for the module will result in an error message.

Modules - 23 -

6.3.3 Exceptions in Scheduled Modules.

if an exception which is unhandled reaches the outer level of a scheduled operation the
operation% exit procedure is run before the exception is propagated out of the operation.

6.4 Instantiation.
Instances of generic modules are declared as in Ada:

module M isnew N (L)

where N is a generic module and L is a list of actual generic parameters. Similarly for
scheduler and scheduled module. Each new instance of a generic scheduled module or
device has a new instance of the local scheduler.

6.6 Examples.

Example 6-3: Buffer module. A buffer is a typical example of a scheduled module. We give
first a very simple version; the example is presented in two stages, first the top level
structure showing the scheduling, then the implementation of the scheduler.

generic
BOUND : INTEGER;
scheduler BUFFER,SCHED is

procedure FOO,1; -- f Irst scheduler operation,
procedure FOO,2; -- second scheduler operation,
procedure FOOQO,3; -- third scheduler operation.

end BUFFER,SCHED;

generic
type ITEM is private;
SIZE : INTEGER;
scheduled module BUFFER is

procedure READ (X: out ITEM);
procedure WRITE (Y:in ITEM);
end . BUFFER;

scheduled module body BUFFER is
o« oo -- declaration of local variables of BUFFER,

scheduler ‘SCHED is new BUFFER,SCHED (SIZE) ; == declaration of scheduler,

procedure READ (X:out ITEM) is
scheduling (FOO_1,F00.3); -- scheduling for READ - see below,

procedure WRITE (Y:in ITEM) is
scheduling (F00_2,F00.3) ; -- scheduling for WRITE - see below,

Modules -24 -

end BUFFER;

scheduled module BIG-BUFFER is new BUFFER (CHARACTER, 120);
-- declaration of an instance of BUFFER.

The declaration of Bl G BUFFER will result in the declaration of a new scheduler that is an
instance of BUFFER,SCHED. The scheduler for BIG-BUFFER is not named, but conceptually

its declaration is:
scheduler BIG,BUFFER,SCHED is new BUFFER,SCHED (120);

The effect of the scheduling declarations in BUFFER is that calls to Bl G BUFFER will be
compiled as,

BIG,BUFFER,SCHED.FOQO,1; BIG,BUFFER,SCHED.FOOQ,?2;
BIG_BUFFER. READ (X); BIG,BUFFERWRITE (Y);
BIG,BUFFER,SCHED.FOQ,3; BIG,BUFFER,SCHED.FOQ,3;

Example 6-4: Implementation of BUFFER,SCHED.

scheduler body BUFFER,SCHED is

PROTECT : LOCK: -- local variables of scheduler

COUNT : INTEGER range 0.. BOUND: =0;
INUSE : BOOLEAN := FALSE;

. CONDI TION; -- queue for readers
WRITEQ : CONDITION -- queue for writers
procedure FOO, 1 is -- schedules entry to READ,
begin
SET (PROTECT) ; -- wait to gain exclusive access,
if COUNT = 0 or INUSEthen -- BUFFER is empty or in use,
| NSERT (READQ, MYNAMEO); -- place reader on queue,
RESET (PROTECT); - - release BUFFER, SCHED (note 2 below),
SUSPEND: -- supervisor ceil to suspend caller,
else
INUSE: = TRUE; -- prepare to enter free BUFFER,
end if;
COUNT : = COUNT - 1 -- reduce no. of items in BUFFER,
RESET (PROTECT) ; -- release BUFFER,SCHED.
end FOO,1;
procedure FOOQO,2 is -- schedules entry to WRITE,

begin

Modules -26 -
SET (PROTECT); -- wait to gain exclusive access,
if COUNT = BOUND or INUSEthen -- BUFFER i's full orin use,
| NSERT (WRI TEQ MYNAME()); - - place writer on queue,
RESET (PROTECT); --rel ease BUFFER SCHED (see note 2 below)
SUSPEND; -- supervisor call to suspend caller,
else
INUSE := TRUE; - - prepare to enter free BUFFER,
end if;
COUNT := COUNT + 1, - - increase no. of items In BUFFER,
RESET (PROTECT); --rel ease BUFFER, SCHED.
end FOQ 2,
procedure FOO, 3 is - - schedules exit from READ end WRI TE,
P: PROCESSNAME;
begin
SET (PROTECT); -- wait to gain exclusive access,
i f COUNT s0andnot EMPTY (READQ then
REMVE (READQ P);
ACTI VATE (p); - supervisor cal | to activate a reader
elseift COUNT <« BOUND and not EMPTY (WRI TEQ then
REMWVE (WRI TEQ P);
ACTIVATE(P); -- supervisor cell to actlvate a wr iter
else
INUSE : = FALSE; -- else BUFFER is free
RESET (PROTECT) ;
end if;
end FOO, 3;
begin
RESET (PROTECT);

end BUFFER' SCHED;

Notes: .
1. Al procedures of BUFFER, SCHED are protected by the same lock, PROTECT. Only one

-thread of control, P say, can have access to BUFFER, SCHED at any time. Processes
busy wait to enter BUFFER, SCHED. The implementation of waiting in SET is not required
to be fair, and this could cause a process to be starved.

2. Each BUFFER, SCHED procedure calls the supervisor. PROTECT is reset before calls to
SUSPEND. In a multiprocessor system this means an ACT| VATE (P) might be executed
(by -another thread of control) in FOO, 3 before SUSPEND is executed by p itself in
FOO, 1 or FOO, 2. This will not cause blocking only if the supervisor can remember en
ACTI VATE that arrives ahead of the matching SUSPEND.

An alternative design of supervisor calls is to permit locks as parameters of ACTIVATE end
SUSPEND, and require these procedures to reset the lock.

3. Operations of the scheduler, BUFFER, SCHED, and BUFFER may execute simultaneously.
However the very simple scheduling in BUFFER, SCHED makes BUFFER a critical region
also. It is a simple exercise to change BUFFER, SCHED so that Read and Write

operations may execute simultaneously in BUFFER.

Example 6-5: Simple device module using interrupts.

Modules - 26 -

The following example demonstrates the use of interrupts and scheduling in device
modules, The device module Line-Out is to be used for sending a line of output to a
device, such as a line printer, which is initiated by receipt of the first character of the line
and which will generate an interrupt when it is ready to accept each succeeding
character, A user of the device does. a call to the procedure Send. If the device is
already in use, the caller will be put on a wait queue and suspended. The body of the
Send procedure performs the initial output to the device and then suspends the calling
process via a call to the scheduler procedure Await. The interrupt procedure within the
device module performs the output of the remaining characters in the line and activates
the calling process upon completion of the 10. Upon leaving the module, the awakened
caller checks if other processes have been suspended awaiting access to the device and

activates the first process on the wait queue.

scheduled device LINE-OUT is
L | NE-LENGTH : constant INTEGER : = 80;

subtype CHAR-POSITION is INTEGER range 1 .. LINE-LENGTH,;
type LINE is aray (1 .. LINE-LENGTH)of CHARACTER,

type n RESULT is (OK, ERR);
procedure SEND (L:in LINE; R : out RESULT) ;

end;
scheduled device body LINE-OUT is
subtype IO-RESULT is INTEGER range 1..2;-=1 for error,2 for ok

LINE-STORE : LINE;
CURRENT-CHAR : CHAR-POSITION : = 1;

DEVI CE,STATUS : I0-RESULT;

scheduler LINE,SCHED is
procedure ENTER,;
procedure AWAIT;
procedure LEAVE;
procedure LEAVE-INTERRUPT,;
end LI NE,SCHED;

procedure INITIALIZE-DEVICE (C: in CHARACTER; IR :out IO-RESULT) is
machine code . . . -- machine code procedure to send a
-- character to the device; see appendix F.

end INITIALIZE-DEVICE;

procedure TERM1 NATEDEVI CE is
machine code . . . -- machine code to tell device to stop /nterrupting

end TERM1 NATEDDEVI CE;

procedure SEND (L: in LINE; R : out RESULT) s
scheduling (ENTER, LEAVE) ;
, begin
LINE-STORE : =L;
CURRENT-CHAR : =1;

Modules - 27 =

INITIALIZE-DEVICE (LINE_STORE (CURRENT-CHAR), DEVICESTATUS);
if DEVICE-STATUS = 1 then

R = ERR;
else

LINE_SCHED. AVAIT;

if DEVICE-STATUS = 1then

R :=ERR;
else
R :=0K;
end if;
end if;
end SEND:;

interrupt OUT-CHAR called from 0016 is
scheduling (null, LEAVE-INTERRUPT);
begin
CURRENT-CHAR : = CURRENT-CHAR + 1,
INITIALIZE-DEVICE (LINE_STORE(CURRENT_CHAR), DEVICE-STATUS);
if DEVICE-STATUS = 1 or CURRENT-CHAR = LINE-LENGTH then
TERMINATE-DEVICE;
end if; :
end OUT-CHAR;

--the scheduler procedures insure mutual exclusion on the send procedure
--and provide synchronization between SEND and the interrupt

scheduler body LI NE,SCHED is
imports (CURRENT-CHAR, DEVICE-STATUS : in);

SCHED,LOCK : LOCK;

BUSY : BOOLEAN : = FALSE;
WAIT_QUEUE : CONDITION,;
USER : PROCESSNAME;

procedure ENTER is
begin
SET (SCHED,LOCK);
if BUSY then
INSERT (WAIT-QUEUE, MYNAMEQ);
RESET (SCHED_LOCK);
SUSPEND;

else
BUSY : = TRUE;
RESET (SCHED,LOCK);
end if;
end ENTER;

procedure AWAIT is
begin
SET (SCHED,LOCK) ;
USER := MYNAMEO;
SUSPEND;
RESET (SCHED,LOCK) ;
end AWAIT;

Modules

procedure LEAVE is
NEXT : PROCESSNAME;
begin
SET (SCHED,LOCK) ;
if not EMPTY (WAIT_QUEUE) then
REMOVE WAIT-?UEUE, NEXT) ;
ACTI VATE (NEXT) ;

else
BUSY : = FALSE;
end if;
RESET (SCHED,LOCK) ;
end LEAVE;
procedure LEAVE-INTERRUPT is
begin

SET (SCHED,LOCK);
if DEVICE-STATUS = 1 or CURRENT-CHAR = LINE-LENGTH then

ACTIVATE (USER);
end if;
RESET (SCHED,LOCK);
end LEAVE-INTERRUPT;

begin
RESET (SCHED,LOCK);
end L | NE,SCHED,;

end LINE-OUT,;

7. PROCESSES.

- 28 =

Processes are program units which may be initiated and run in parallel. Processes
communicate by operating on scheduled modules. These modules are called communication
channels and are declared in the specification part of process declarations. Channels are
the only means of communication among processes. Processes may not import objects and
objects declared within processes may not be imported by other units. Processes may be
generic (but may have only type and in parameters). Channel parameters (scheduled

modules) may also be generic.

The general format for a process declaration is:

[generic

generic process parameter list]
process p [is

channels channels 1 ist;

end [plI;

A process body has the form:

Processes -20 -

process body pis
declarative part
begin
statement-list
end [pl;

where:
(a) generic process parameter list has the form,

list of generic type and in parameters; channels generic channels-list;
(b) generic-channels_ list is a list of declarations of the form,-

m is n (L) [restricted (operations list) |

- where n is a generic scheduled module, L is a list each member of which is in the
preceding list of generic type and in parameters. n(L) must be an instance of n
obtained by replacing the generic formal parameters of n by generic formal type and in
parameters of process p. Any actual module substituted for m in an instance of p must
be an instance of n with the same parameters as those substituted for corresponding
members of L. (See Examples 7-2, 7-3, and Section 7.4.)

(c) channels list has members of the form

m [restricted (operations list)]

- where m is an actual scheduled module.
(d) operations list - a list of visible operations of a module.

Notes:
1. Optional clauses of the form, restricted (operations-list), in a channels declaration

restrict the operations on the channel which can be performed by the process.
2. Processes are an encapsulation unit; they have some important differences from

modules:
(a) channels declarations provide the only form of importation.
(b) Processes cannot propagate exceptions.
(c) generic parameters can only be type or in parameters.
8. A generic process declaration may have actual channel parameters (perhaps in addition

- to generic channel parameters),

7.1 Channels Declarations and Use Clauses.

The channels declaration may also include a use clause containing some of the names of
the scheduled modules in the channels list. This avoids duplication of channels and use
declarations.

Examples.

Example 7=7 : Nongeneric Process.

Processes

type BLOCK i's .
type LINE is. . .
scheduled device LPT is
procedure WRI TE-LINE (L : LINE);

end LPT;’

scheduled module DISKFILE i s
procedure READ- BLOCK (B : out BLOCK);

end DISKFILE:

process FI LE, PRI NT is
channels use LPT, Dl SKFI LE;
end FI LE- PRI NT;

process body FI LE-PRINT is

type LI NE- STORE is array (1..C)of LI NE;

procedure BLOCK-TO-LINES 8 : BLOCK; A : out LINE-STORE) is
-- transfers a block to a line store.

end BLOC‘K_.TO'_LI NES;
BUF : LI NE-STCRE;

BLOC : BLOCK:
begin
READ- BLOCK (BLOC); -- read into BLOC from DISKFILE.
BLOCK- TO- LI NES (BLOC, BUF); -- transfer BLOC to BUF.
reserve LPT do -- tesetve LPT
foriinl . . C loop _
WRI TE- LI NE (BUF(1)); -- wite onto LPT
end loop;
end reserve;
end FI LE- PRI NT;

Example 7-2. Generic process with generic channels.

generic
type T is private;
SIZE INTEGEFF%; .
scheduled module BUFFER 1s
procedure READ (X: out T);
procedure WRI TE (Y: in T);

end BUFFER;

generic
type ITEM is private;

- 30 ~

Processes -31 -

LENGTH : | NTEGER;
channels A Is BUFFER (1 TEM LENGTH) restricted (READ),

B is BUFFER (I TEM LENGTH) restricted (VIRI TE);

-- instances of TRANSFER must have channels
-- that ate instances of BUFFER with the same
-- pair of actual genetic parameters.

process TRANSFER,;

process body TRANSFER is
c. |TEeM
begin
joop
A READ (C);
B. WRITE (C);
end loop;
end TRANSFER;

7.2 Initiation of Processes.
Processes are initiated by the initiate statement:
initiate process-list;
where process-list is a list of previously declared actual processes.

A process may be initiated more than once; each time a new activation of execution of the
process body occurs. Previously initiated instances of a process ate not effected by later
initiations, except in as much as the instances share channels.

Initiate statements compile as a sequence of calls to the supervisor procedure, START
(one call for each process in process list).

7.3 Termination of Processes.

The visibility and declaration rules of Adam establish a similar dependency relation for
processes as exists for tasks in Ada [6, pg. 9-6]. Processes depend on subprograms,
blocks, or processes within which they are initiated. Termination of a process occurs when
the process execution reaches the end of its body and all dependent processes, if any,
have terminated. Termination of a process compiles as a call to the supervisor procedure

FI'NI SH.

The dependency relationship of a process to a subprogram, block, or process imposes
significant requirements on the techniques used to implement scope exit in Adam. Each
unit which may have dependent processes must have an associated count or list of its
nonterminated dependent proceses, in order to detect satisfaction of the exit condition.
Only when the count reaches zero, or the list is empty, may the subprogram return, the
block be left, or the process terminate. However, the scope exit problem in Adam is much
less complicated and requires less runtime mechanism than is needed for scope exit in

Processes -32 -

Ada. Because Adam has no analogue of the terminate alternative of Ada and processes
do not have visible operations, the only manner in which a process can terminate is by
reaching the end of its body, either normally or by means of an exception. Once the end
of its body has been reached, no further activity occurs in the process. The semantics of
terminate in Ada requires that a dependent task inform the unit on which it depends when
it selects a terminate alternative. This information could be exchanged either by
decrementing a count or removing an object from a list as in Adam. However, in Ada the
dependent task may have to change its terminate vote because of a call to an entry in the
select statement containing the terminate. This communication of state information
among scopes and their dependent tasks must be carefully implemented to insure absence
of race and deadlock conditions and requires a considerably more sophisitcated task

supervisor.

7.4 Instantiation of Processes.
instances of generic processes are created as follows:
process Pis new Q (L; channels M);

where
L is a list of actual compiletime generic parameters,

M is a list of actual channels.

Rules for matching actual and formal generic parameters in instantiation of a generic
process extend the Ada rules for generic instantiation [6,12.8]). Scheduled modules
match generic formal channel parameters. The actual channel must be an instance of the
formal channel obtained by replacing its generic formal parameters by actual generic
parameters of the process instance. Thus, above, each member of M must be an instance
of the corresponding generic channel with the members of L indicated in the declaration of

Q.

Example 7-3. We continue with the previous example: correct and incorrect instantiations
of the process, Transfer.

scheduled module BUF!1is new BUFFER (APPLES, 120);
scheduled module BUF2 is new BUFFER (APPLES, 120);
scheduled module BUF3 is new BUFFER (ORANGES, 120);

process Tlisnew TRANSFER (APPLES, 120; channels BUF1,BUF2);
-- This is a proper instance of TRANSFER,

process T2 is new TRANSFER (APPLES, 120; channels BUF1,BUF3);
-- This is an improper instance of TRANSFER, since the declaration of

-- TRANSFER requires that the genetic parameters in the declaration of
-- BUF3 be the same as those in the declaration of T2, namely, APPLES, 720.

Visibility Rules and Imports - 33~
8, VISIBILITY RULES and IMPORTS,

The visibility rules of Adam are those of Ada with the following restrictions placed on the
visibility of subprograms and objects within units. Outer declarations of objects are not
visible within modules unless explicitly imported by an imports declaration. Outer
declarations of objects are not visible within processes, except those scheduled modules
declared by a channels declaration. There are no restrictions on the visibility of objects
within subprograms. Outer subprograms that are not exported from a module are not
visible in units.

These restrictions ensure that all objects shared among processes can be enumerated
from channels and imports declarations. The correctness of these declarations can be
checked.

8.1 Visible Declarations.

Declarations that are always visible within the body of a unit if they are visible at the
point of declaration of that unit are the following:

(i) type declarations (including the constants of an enumeration type),

(i) constants,

(iii) generic unit declarations,

(iv) exception declarations.

(v) processes,

(vi) predefined system modules (e.g., Supervisor).

8.2 Declarations Requiring Importation.

The following declarations must be imported in order to be visible within a module:

(1) variable declarations,
(i) _nongeneric module declarations (including instantiations of generic modules).

8.3 Imports.

Declarations requiring importation can be explicitly imported into a nongenetic module
specification or body by an imports declaration of the form:
imports (imports list);
where
imports list u= import-item {; import-item}
import-item == [use] identifier-list : import-kind
import-kind ==in | out|in out | module

Imports are declared as part of the specification or body of a nongeneric module (see

Visibility Rules and Imports -34 -

formats, Section 6). Any external object that is mentioned syntactically in amodule must
be declared in its imports.

Imports declared in the specification of a module are also imported into the body;

repetition of the imports declaration in the body is not required. However, a module body
may have additional imports that are not declared in the module specification.

Note: Generic module declarations may not have imports.

8.3.1 Redundant Imports Declarations

Some parts of Ada and Adam declarations already perform the function of declaring imports.
In these cases a separate imports declaration is unnecessary:

1. Objects listed in a with clause are imports.

2. When a generic module is instantiated, those generic parameters that are objects are
imports of the "actual instantiation.

8.3.2 Using Imports.

To avoid duplication of Imports and use lists, a use declaration may appear within an
imports list (see syntax above).

Examples.

Example 8=7: Imports and using imports.

module Ais -- declaration of actual module A
procedure P (...);
end A;’
module body B is
imports (A: module) ; ==4 is now visible In body of 8.
procedure C (...) s
begin
i SN
end C; Y \y :

end B;

Visibility Rules and Imports -356-

module body D is

imports (use A: module) ; --A is both visible and used /n body of O.
procedure EC...)is
begin
i"(S N -- call to A.P
end E;' '

Example 8-2: Visibility of generics and instances.

generic . . .
module STACK is
procedure PUSH (.. .);
end STACK;
module body CATALOGUE is

module GLOBAL_STACK is new STACK (...);
-- generic STACK is visible /n the body of CATALOGUE.

module SYMBOL_TABLE |s
imports (use GLOBAL-STACK: module) ;
-- nongenetic GLOBAL-STACK must be imported
module LOCAL-STACK is new STACK (...)}
-- generic STACK s visible.

"PUSH (. . .); - - GLOBAL_STACK.PUSH (. + +).
LOCAL_STACK.PUSH (. . .);

end SYMBOL_TABLE;
end CATALOGUE;

8.3.3 Encapsulated Imports.

Modules may be encapsulated by an enclosing module and exported by the outer module.
In this case, the declaration within the body of the encapsulating module may have imports
of local objects that are not visible in the exported specifications. These are called
encapsulated imports. Modules may be used to encapsulate and hide imports from outside
users. Thus careful modularization should result in only essential objects appearing in

imports lists.

Example 8-3: Encapsulation of imports. The FILE TEMPLATE module body has two imports
local to DISKFILES. These imports are implementation details encapsulated in the body of

DISKFILES and not declared in the specification of FILE-TEMPLATE.

Vlsibiiity Rules and Imports - 36 -

module DISKFILE is -- DISKFILE exports FILE_ TEMPLATE.

scheduled module FILE-TEMPLATE Is
N == no imports are declared In specification

end F | LE_TEMPLATE; -- of FILE-TEMPLATE.

end DISKFILE;

module body DISKFILE is -- body of FILE-TEMPLATE is local to DISKFILE.
module FI LE_LMANAGER is -- FILE-MANAGER /s encapsulated by DISKFILE.

end FI LE_MANAGER;
device DISK is -- DISK is encapsulated by DISKFILE.

end DISK; .

module body FI LE,TEMPLATE is
imports (use FI LE_.MANAGER, DI SK : module) ;
- -- both imports are local to DISKFILE.

end FI LE_TEMPLATE;
end DISKFILE:

9. CONCLUSIONS.

Although our use of Adam in pursuing the goals which motivated development of the
language is not complete, our experience has led us to several conclusions which will be
useful in our continued experimentation with Adam and Ada. We hope these results will
assist others who are involved in similar efforts and may be considering similar techniques.

0.1 Writing Supervisors.

A supervisor for scheduling processes on a single POP-10 processor has been written in
Adam, compiled, and is part of the runtime environment. It is used by Adam programs with
processes and Ada programs with tasks. Two versions are currently in use; one interfaces
with the SU-AlI WAITS operating system and the other is for use with TOPS-20. Appendix F

gives a simplified version of the WAITS supervisor.

Supervisors so far constructed fit very naturally into the structure of a scheduled device
module encapsulating both interrupts and machine code. First, it turns out that the
standard procedures, ACTIVATE (P : PROCESSNAME), . . ., require only the simple “before

Conclusions - 37 -

and after" protection provided by Adam scheduling declarations. Second, the
encapsulation of protection in a separate scheduler subunit and the use of scheduling
declarations improves the structure of the supervisor; the scheduling is much easier to
understand than if each subprogram body contains protection, scheduling and computation
all mixed together. This is true even in cases where the scheduler operations are trivial
(e.g., simply disabling and enabling interrupts). For example, in Appendix F two of the
standard supervisor procedures have null scheduling on exit. If these declarations were
absent the reader might well consider the omission of enabling interrupts on exit from
these procedures to be an error. Thirdly, it has been possible so far to encapsulate all
machine language procedures (for switching contexts on the CPU and enabling and
disabling interrupts) in a single subdevice such as CPU in Appendix F. (in fact, the two
versions of the supervisor for WAITS and TOPS-20 differ only in the CPU subdevice.) In
addition, process names have provided an adequate means of refering to threads of
control in user-defined process scheduling and in interaction between such scheduling and

the supervisor.

Further development is being undertaken to determine the extent to which the scheduled
device structure suffices as a paradigm for more sophisticated supervisors and other
varieties of resource scheduling systems. A first step in this work is to extend the
current existing supervisér to provide facilities necessary for implementation of the Ada
terminate alternative, the abort statement, and the FAILURE exception. We also intend to
develop supervisors for more varied and complicated applications, including large system
control, realtime interrupt driven processing, device handling, and multiple CPU interfacing.
By considering a broad class of supervisor implementations, we hope to demonstrate the
utiiity of Adam constructs or, perhaps, to discover generalizations of the Adam notions
which will better meet the requirements for scheduling programs.

9.2 Transporting the Adam Compiler and Runtime Environment.

Our experience in transporting the Adam compiler to different operating systems has
demonstrated the utility of providing a simple module interface between the compiler and
the runtime system. The only changes to the compiler which were required in moving from
thg WAITS to TOPS-20 systems involved changes in file naming for i/O and interrupt
initialization code. Ail other operating system differences were absorbed by the supervisor
written in Adam and, as mentioned above, the changes needed in the supervisor were
confined to a single local device.

9.3 Translating Ada Multitasking.

in extending the Adam compiler to support Ada multitasking, we have used Adam as an
intermediate target language. This use results essentially in a translation of Ada tasking
into the lower level multiprocessing facilities of Adam. The development of this translation
proceeded in two stages. First, for each Ada tasking construct we defined Adam text
corresponding to the semantics of the construct and utilizing the scheduling features of
Adam. Thus, the translation algorithm is defined by a mapping between Ada source and

Conclusions - 38 -

Adam target programs; an example of this mapping is given in Appendix G. The second
step in the translation was to augment the semantic processing phase of the compiler with
MACLISP routines which replace abstract syntax tree nodes for Ada multitasking
constructs with the corresponding Adam trees. Thus, though the algorithms for translating
Ada multitasking were defined by correspondences between Ada and Adam program text,
the implementation is by tree surgery on the parsed form of Ada programs. The actual text
translation could be constructed by applying apretty printer to the Adam syntax tree after
completion of the compiler's semantic phase.

Our experience in using Adam as a target language for implementing Ada multitasking has
led us to several conclusions, which are given below.

Q.3.1 Advantages of Using a High Level Target Language

The main advantages were reliability and ease of implementation; others include clarity and
understandability of the translator.

We found that using Adam to specify the translation of Ada multitasking was an excellent
technique for quickly producing a reliable implementation. Errors in the definition of
Ada/Adam correspondence were easily identified and corrected by analyzing the proposed
Adam text; we are certain that these errors would not have been so easily detected if it
we had decided to hand generate and analyze sample assembly code. In fact, we were
able to give quite short and convincing informal proofs that the Adam translations were
semantically equivalent to the corresponding constructs of Ada. (Because adequate proof
methods for the semantic correctness of parallel programs have not yet been developed,
use of informal arguments is the best step towards verification of tasking translators that
can be expected at the moment.)

Starting with the compiler for the parallel constructs of Adam, we implemented the tree
transformations required for a substantial subset of Ada multitasking, including task types,
rendezvous, select, conditional entry call, and a simplified abort statement (no abortion of
dependent tasks) in a short time. Less than two man months were expended in writing and
debugging the MACLISP code which was added to the compiler. Relatively few difficulties
arose during the translation implementation and those that did were generally resolved at
the level of the Adam text. The transforming operations basically emit a subtree of an
Adam program, utilizing the context of the Ada abstract syntax tree. When a problem was
encountered in the implementation, it was possible to identify the Adam source which was
needed in the tree, to compile and dump the syntax tree for that Adam program, and then
simply to write the (correct) constructor for that tree. We anticipate that the advantages
of using Adam in our initial implementation of Ada tasking will carry over to the alternative
implementations currently underway.

9.3.2 Using Ada as a Target for Translating Ada

One might ask whether the same advantages of using a high level language for the target

Conclusions -39 -

of the multitasking translation would not have accrued if a pure subset of Ada had been
used. For those parts of the translation specification which describe only sequential
operations, Ada would certainly suffice, since sequential Adam is sequential Ada. However,
one would still have to deal with describing concurrency by using a restricted target
subset of Ada. The target, of course, could not utilize any form of rendezvous. One could.
restrict the usage of tasks to only those with no‘ entries, eliminate select and accept
statements, and have ail inter-task communication be carried out by operations on shared
data structures (packages) for which one had explicitly written the exclusion and
synchronization mechanisms. However, in such an Ada system, the problems of interfacing
to a supervisor and of naming tasks would still be present. Furthermore, the discipline of
scheduling the visible operations of the shared data structures would have to be carefully
followed. in such a system in Ada, it would not be possible to determine from their visible
parts which packages were shared by tasks (and hence had scheduling) and which
packages were not. Clearly, solution of these problems was a primary factor in developing
many of the constructs of Adam, and, hence, specifying the multitasking translation is much
more easy and clear in Adam.

9.3.3 Multiprocessors and Optimization

We believe that use of an intermediate Adam transformation to implement Ada multitasking
will expedite research into multiprocessor implementations and optimization techniques.
The translation algorithms we currently use separate ail scheduling operations and
rendezvous code from the thread of control of a task. By such a breakdown it will be
easier to identify computations which may be truly carried out in parallel and to isolate the
critical sections and synchronizations required for multiprocessor environments. Also, it is
relatively easy to identify, as an optimization, those tasks which may be compiled as static
rather than active structures.

9.3.4 Disadvantages of the Translation Technique

Thg use of Adam in developing the tasking translation algorithms has had some drawbacks.
First, strong typing was occasionally very annoying and cumbersome. For example, in a
message passing implementation of rendezvous, it is necessary to declare complicated
variant record types in which the variant parts are lists of the parameters of the task
entries. in a directly compiled impiementation the manipulation of the parameters could be
handled. without the type definitions. A second difficulty encountered was due to some
mismatch between the Adam constructs and the desired translated semantics. For
example, the task type construct for tasks with entries is not readily translatable into
Adam. The actual impiementation of task types required modifying the code generator of
our Adam compiler to permit creation of copies of scheduled module local data (almost like
including a module type). Most of the mismatch problems occurred because much of the
Adam design was based on Preliminary Ada and was maintained although the tasking was

siginificantiy revised in final Ada.

Conclusions - 40 -

9.3.6 Future Research

Our experience thus far has not been sufficient to allow us to draw conclusions about a
number of questions associated with the multitasking translation. We have not been able
to evaluate the compilation overhead and implemention efficiency of translating the
internal form as compared to directly checking semantics and generating assembly code
for the tasking constructs. Our experiments with modifying and replacing supervisors have
been limited, and have not yet included supervisors and tasking for multiprocessor
systems. The use of the multitasking translation for specification and verification of Ada
task systems, including proof of equivalence of an Ada program and its corresponding Adam
program, has not progressed much beyond the concept stage. These questions, and many
other related issues, are the objects of ongoing research.

Acknowledgment:

The authors wish to thank Anthony Garagaro for many helpful comments on an earlier draft
of this paper.

REFERENCES.

[1] Brinch Hansen, Per, “Architecture of Concurrent Progams,* Prentice Hail.

[2] Brinch Hansen, Per, "The Design of Edison”, University of Southern California, Comp.
Science Dept. report, Sept. 1980.

[3] Good,D.l., et al, Gypsy Manual, University of Texas Report.

[4] Hoare, C.A.R.,, @Communicating Sequential Processes’@ Comm. ACM 21, 1978, pp. 666~
677.

[6] Holden, J.,, and Wand, I.C.,"An Assessment of Modula", Software Practice and
Experience, Vol. 10, pp. 693-621, 1980.

[6] Ichbiah, J., et al.,, “Reference Manual for the ADA language”, proposed standard
document, U.S. Dept. of Defense, July 1980. see also: “Preliminary Ada Reference
Manual and Rationale,” ACM Sigplan Notices vol. 14.6, June 1979.

[7] Karp, R. A, “Proving concurrent systems correct”, Computer Science Department
Report No. STAN-(X-79-783, Stanford University, Nov. 1879,

[8] Krieg Bruckner, B., and Luckham, DC., "ANNA : Towards a language for annotating Ada
programs”, Proceedings of the ACM Sigplan Symposium on the Ada Programming
Language, ACM Sigpian Notices, vol. 15, No. 11, November 1980.

[9] Lohr, K-P., “Beyond Concurrent Pascal”, Proc. Sixth ACM Symposium on Operating
System Principles, Nov. 1977, pp.1 73-180.

[10]Luckham, D.C., and Polak, W., "Ada Exceptions: Specification and proof techniques,"
Stanford University Computer Science Dept. Program Verification Group Report 16;
also TOPLAS April 1980.

[11]Luckham, DC., and Poiak, W., "A Practical Method of Documenting Ada Programs with
Packages”, Proceedings of the ACM Sigpian Symposium on the Ada Programming
Language, ACM Sigpian Notices, vol. 16, No. 11, November 1980.

References -41 =

[12] Stevenson, D.R., “Algorithms for Translating Ada Multitasking®, Proceedings of the
ACM Sigplan Symposium on the Ada Programming Language, ACM Sigpian Notices, vol.
16, No. 11, November 1980.

[18] wirth, N., "Modula - 2", ETH report, Zurich, March 1980.

Appendix A ¢ Syntax -42=-

APPENDIX A : SYNTAX.

Notation:

Reserved words are in boldface. Square brackets, [], indicate an optional construct.
Curly brackets, (}, indicate zero or more repetitions of a construct. To indicate one or
more repetitions we use { }+. The bar, |, is used to indicate alternation in the right-hand-
side of a production. Any nonterminal of the form xxx-name is syntactically the same as

name.

compilation = (compilation-unit)
compilation-unit :=
context-specification module-specification;
| context-specification generic-module-declaration
| context-specification module-body
| context-specification subprogram-body
context-specification = (with-clause [use-clause])

with-clause == with unit-name {, unit-name);

DECLARATIONS.

declarative-part :=
(declarative-item) {representation-specification) (program-component}

declarative-item = declaration | use-clause
program-component := body | module-declaration
body #= subprogram-body | module-body | process-body

declaration =

object-declaration | type-declaration
subtype-declaration | subprogram-declaration
| module-declaration | process-declaration

| exception-declaration | renaming-declaration
use-clause = use module-name {, module-name);
object-declaration =

identifier-list ¢+ [constant] subtype-indication [:= expression];
| identifier-list : [constant] array-type-definition [:= expression3

Appendix A : Syntax

ident if ier-list u= identifier {, identifier)

exception-declaration u= identifier-list : exception

renaming-declaration :=
identifier : type-mark renames name;

| identifier : exception renames name;
| module-nature identifier renames name;

TYPES.

type-declaration =
type identifier is type-definition;
| incomplete-type-declaration;

type-definition =
enumeration-type-definition | array-type-definition
| record-type-definition | access-type-definition
| private-type-definition

subtype-declaration :=
subtype identifier is subtype-indication;

subtype-indication := type-mark [constraint]

type-mark = type-name | subtype-name

constraint := range-constraint | index-constraint
range-constraint = range range

range = simple-expression .. simple-expression

index-constraint :=(discrete-range {, discrete-range))
discrete-range = [type-mark range] range

enumeration-type-definition = (enumeration-literal {, enumeration-literal))

enumeration-literal == identifier | character-literal

chararacter-literal =" character ®

record-type-definition s:=
record
component-list
end record

- 43 =

Appendix A : Syntax

component -list =
(component-declaration}+

component-declaration :=

identifier-list : subtype-indication [:= expression];
| identifier-list : array-type-definition [:= expression)

array-type-definition =
array (index {, index)) of subtype-indication
| array index-constraint of subtype-indication

index := type-mark range <
access-type-definition = access subtype-indication
incomplete-type-declaration == type identifier ;
private-type-definition == [limited] private

representation-specification == address-specification

address-specification =
for identifier use at expression;

EXPRESSIONS.

expression-list == expression {, expression)

expression = relation (logical-operator relation)

relation == simple-expression (relational-operator simple-expression)
simple-expression s [unary-operator] term (adding-operator term)
term == factor (multiplying-operator factor)

factor #= primary {#* primary)

primary = literal | aggregate | name | function-call | (expression) | allocator

logical-operator x= and | or | xor | and then | or else

relational-operator imm| fm]<|<m|>]>=

Appendix A : Syntax

adding-operator tm + |-
multiplying-operator z=%| /] mod

unary-operator u=+|-] not

literal ::= number | enumeration-literal | character-string | null
aggregate u=

[type-mark’] { component-association {, component-association))
component-association u= [choice {| choice} =>] expression

choice = simple-expression | range | others

allocator == new type-mark [{ expression)]} new type-mark aggregate

function-call = function-name { expression-list)| function-name ()

name = identifier | indexed-component | selected-component | attribute
indexed-component = name (expression-list)
selected-component = name.identifier | name.all

attribute = name’identifier

identifier u= letter { letter | digit | underscore }
number = digit (digit)

character-string = “(character)”

STATEMENTS.
statement-list = statement (statement)

statement = (label) simple-statement | (label) compound-statement

simple-statement =
assignment-statement | exit-statement
| return-statement | goto-statement
| raise-statement | procedure-call

-4 6 -

Appendix A : Syntax

| code-statement
| initiate-statement | null;

compound-statement ::=
if-statement | case-statement
] loop-statement | block
| reserve-statement
label ::= <<identifier>>

assignment-statement := name := expression;
exit-statement == exit [identifier] [when expression];
return-statement:= return [expression];
goto-statement = gotoidentif ier;

raise-statement :u= raise [exception-name];
procedure-call == procedure-name [(expression-list)}

code-statement == aggregate

initiate-statement = initiate process-name {, process-name};

if-statement =
if expression then
statement-list
{elsif expression then
statement-list }
[else
statement-list]
end if;

loop-statement = [identifier:] [iteration-clause] basic-loop

iteration-clause =
while expression
| for identifier in [reverse] range

basic-loop u=
loop
statement-list
end loop;

case-statement u= _
case expression IS

{ when choice {| choice) => statement-list }+
end case;

block s

-l 6=

Appendix A : Syntax

[identifier:]
[declare
declarative-part]
begin
statement-list
[exception

(except ion-handler)]
end;

exception-handler :=
when exception-choice {| exception-choice) =>
statement-list

exception-choice ::= exception-name | others

reserve-statement u=
reserve module-name do
statement-list
end reserve; _

SUBPROGRAMS.

subprogram-declaration «:=
subprogram-header;
| generic-subprogram-declaration
| generic-subprogram-instantiation

subprogram-body =
subprogram-header is
specification-part
declarative-part
. begin
statement-list
[exception
(exception-handler)]
end [designator];

subprogram-header ::=

function designator [formal-part] return subtype-indication

| procedure identifier [formal-part]
| interrupt identifier called from number

designator == identifier | character-string

- 47 -

Appendix A ¢ Syntax

formal-part s:=
(parameter-declaration {; parameter-declaration))

parameter-declaration =
identifier-list : mode subtype-indication

mode == [in] }out]in out
specification-part =

[propagate-declaration]

[scheduling (scheduling-item, scheduling-item);]
imports-list ::= imports (import-item {; import-item));
import-item = [use] identifier-list : import-kind

import-kind == in|out|in out}module

propagate-declaration == propagate identifier-list;

scheduling-item = identifier [(expression-list)] | null

generic-subprogram-declaration = generic-part subprogram-header;
generic-part = generic (generic-formal-parameter)

generic-formal-parameter :=
parameter-declaration;
| with subprogram-header;
| type identifier is private-type-definition;

generic-subprogram-instantiation =
procedure identifier is generic-instantiation;
| function designator is generic-instantiation;

generic-instantiation = new identifier [expression-list)]

MODULES.

module-declaration =
module-specification;
| generic-module-declaration
| generic-module-instantiation

- 48 -

Appendix A : Syntax

module-specification =

module-nature identifier is
[import-list]
(declarative-item)

[private
(declarative-item}
{representation-specification}]

end [identifier]

generic-module-declaration = generic-part module-specification;

generic-module-instantiation =
module-nature identifier Is generic-instantiation;

module-body =

module-nature body identifier Is
[import-list]
declarative-part

[begin
statement-list

[exception
(exception-handler)]]

end [identifier];

module-nature =
scheduler | device | module | scheduled device

| scheduled module

PROCESSES.

process-declaration :=
process-specification
| generic-process-declaration
"] generic-process-instantiation;

process-specification :u=
process identifier [is
[channels actual-channel {, actual-channel};]
end];

generic-process-declaration := process-generic-part process-specification
generic-process-instantiation =

process identifier is new identifier [(instantiation-actuals)}

process-body ::m=
process body identifier is

- 49 -

Appendix A : Syntax

declarative-part
begin

statement-list
[exception

(exception-handler}]
end [identifier];

actual-channel = identifier [restricted (identifier-list)]

process-generic-part =
generic [(process-generic-parameter)
[channels generic-channel {, generic-channel);]]

process-generic-parameter =
identifier-list : [in] type-mark;
| type identifier is private-type-definition;

generic-channel =
identifier is-module-name [(expression-list)]

[restricted (identifier-list)]

instantiation-actuals «=
expression-list
| channels-list
| expression-list; channels-list

channels-list #= channels identifier-list

- 60 =

Appendix 8: Reserved Words

APPENDIX B: RESERVED WORDS.

and for new reserve
array from not restricted
at function null return
reverse

begin generic of
body got0 or scheduled

others scheduler
called if out scheduling
case imports subtype
channels in pragma
constant initiate private then

interrupt procedure to
declare is process type
device program
do limit propagate use
loop

else raise when
eisif mod range while
end module record with
exit renames
exception requires xor

APPENDIX C: LIST OF PRAGMAS,

pragma INCLUDE (file name)
pragma PRIORITY (number between O and 10)

pragma SUPERVISOR (module name)
pragma MAIN

- explained in Section 2.8
= specify main program

-561 -

Appendix D: Predefined Attributes - 62 -

APPENDIX D: PREDEFINED ATTRIBUTES.

Attributes of any object:
ADDRESS X ‘ADDRESS returns an integer corresponding to the location of the

first storage cell of X.

Attributes of any type or subtype:

SIZE T'S | ZE gives the number of storage units used to represent the type.
Attributes of any scalar type or subtype:

FIRST T'FRST returns the minimum value in the range of T.

LAST T' LAST returns the maximum value in the range of T.
Attributes of any discrete type or subtype T:

POS (O Returns an integer which is the ordinal position of X in the type T.

VAL (D) Returns the enumeration value occupying the Ith position in T.
Attributes of any array object or array type with specified bounds:

FIRST -- Returns the value in the first index which is the lower bound of that

index.

FIRST(i) Same as FIRST for the ith index.

LAST Upper bound for the first index.

LAST (1) Same as LAST for the ith index.

LENGTH Number of elements in the first dimension.

LENGTH (1) Same as LENGTH for the ith dimension.

APPENDIX Et PREDEFINEO EXCEPTIONS,

Exception Name When Raised

CONSTRAINT-ERROR When exceeding the declared range of a variable, or when
an index value is outside the range specified for an array,
or when dereferencing an access variable that has the

value null
STORAGE-ERROR When all free storage in the heap is used up.
CONDITION-QUEUE-FULL When attempting to insert into a full condition queue

CONDITION_QUEUE_EMPTY When attempting to remove from an empty condition queue

Appendix F: Standard Supervisor - 63 -
APPENDIX F: A STANDARD SUPERVISOR.

This appendix presents a simplified version of the process supervisor that we have been
using in our implementation of Adam on SAIL WAITS. Processes are given a fixed size time
slice and are preempted if they exceed their time slice. Scheduling within a priority level is
round-robin. The WAITS operating system provides timer interrupts to implement the timing.
The priority of a process may be specified by a pragma.

scheduled device SUPERVISOR is
type INIT_DATA is limited private;

subtype TICK-COUNT is INTEGER range O..INTEGER'LAST;
subtype PRIORITY is INTEGER range 0 . . 10;

subtype ADDRESS is INTEGER range 0 . . 2 #« 18 - 1;
procedure SUSPEND,;

procedure ACTIVATE (P : PROCESSNAME);

procedure SWITCH (P : PROCESSNAME);

procedure START -(D:INIT_DATA);

procedure FINISH,;

procedure DELAY-FOR (I : TICK-COUNT);

private
type INIT_DATA is
record
PNAME . PROCESSNAME;

CODESTART : ADDRESS:

STKSTART : ADDRESS,

PRIORITY : PRIORITY;
end record;

interrupt TIMER-INTERRUPT called from O;
end SUPERVISOR;

with DEC10_INSTRUCTIONS;
scheduled device body SUPERVISOR is

-- DEC10__INSTRUCTIONS is a package which defines the formats for insetting
-- machine code.

MAX-PROCESSES : constant INTEGER := 40;
subtype PT,INDEX is INTEGER range 0, , MAX-PROCESSES

NO-PROCESS: constant PT,INDEX : =0;
type PROCESS-STATUS Is (RUN, READY, BLOCKED);

type QHEADER is
record
FIRST . PT,INDEX;
LAST : PT,INDEX;
end record;

Appendix F: Standard Supervisor - 64 =

type READYQS is
array (PRIORITY) of QHEADER,;

type REGISTER-SET is
array (0. .15)of INTEGER;

type PROCESS-DATA is

record
NAME : PROCESSNAME;
STATUS . PROCESS-STATUS;
PC : ADDRESS;
REG . REGISTER-SET:;
PRIORITY : PRIORITY;

DELAY-TIME : TICK-COUNT;
NEXT, PRIOR : PT_INDEX;
end record;

PT . array (PT,INDEX range 1.. MAX-PROCESSES) of PROCESS-DATA;

MAIN-PROGRAM : constant PT,INDEX :=1;
RUNNING : PT,INDEX :=MAIN_PROGRAM;- table index of the currently running

-- process
FREE : PT,INDEX :=2;
READYQ : READYES;
DELAYQ : QHEADER;
BLOCKED-COUNT : INTEGER : = 0; -- count of number of blocked processes
TICK-LENGTH : constant INTEGER ¢ =6; --=6/60 of a second

TIME-SLICE : constant TICK-COUNT : =10;--=70*7TICK_LENGTH = 7 second

RUNNERS-TICKS : TICK-COUNT := 0;
SP : constant INTEGER : = 14; -- register which points to stack frame

TOP: constant INTEGER: = 15;
MAIN-PRIORITY : PRIORITY; -- priority of the maln program

for MAIN-PRIORITY use at"PRITY®™"; --this teptesentatlon specification
-=-Is known at link time

scheduler S is

procedure ENTER;

procedure LEAVE;

pragma | NLI NE (ENTER, LEAVE) ;
end S;

module Qs

procedure INSERT (Q:in out QHEADER; 1 : PT,INDEX);
procedure REMOVE (Q:in out QHEADER; 1 :in out PT,INDEX);

Appendix F: Standard Supervisor

procedure DELETE (Q:in out QHEADER; i : PT,INDEX);
function EMPTY (Q : QHEADER) return BOOLEAN,;
pragma | NLI NE (EMPTY) ;

procedure INSERT (A : in out READYQS, i : PT,INDEX);

procedure REMOVE (A :in out READYQS; i:in out PT,INDEX);

procedure DELETE (A : in out READYQS; i : PT,INDEX);
function EMPTY (A : READYQS) return BOOLEAN;
function FIRST (A : READYQS)return PT,INDEX;
pragma INLINE (EMPTY, DELETE, INSERT);

end Q;

device CPU is
-- machine dependent code

procedure IDLE;
procedure START-PROCESS (D : PROCESS-DATA) ;
procedure SAVE-CONTEXT (D:in out PROCESS-DATA);
procedure DISABLE;
procedure ENABLE;
pragma | NLI NE (ENABLE, DI SABLE) ;

procedure STARTUP (D : PROCESS-DATA);
procedure SAVE-STATE (D : in out PROCESS-DATA);

end CPU:;

function NAME-TO-INDEX (P: PROCESSNAME) return PT,INDEX is
-- convert a processname /nto a table index
begin
if P/= null then
for i in PT_INDEX'FIRST + 1 . . PT_INDEX'LAST loop
if PT (1) NAME = Pthen
return i;
end if;
end loop;
end if;
return NO-PROCESS;
end NAME-TO-INDEX;

procedure UNBLOCK (i : PT,INDEX) is
PCB: PROCESSDATA renames PT(i);
begin
if PCB. DELAY_TIME> 0 then
Q. DELETE (DELAYQ, i);
PCB. DELAY_TIME:= O;
end if;
end;

procedure DO-SUSPEND is
begin

- 66 =

Appendix F: Standard Supervisor

CPU. SAVE-CONTEXT (PT (RUNNING));
PT (RUNNING) . STATUS: = BLOCKED:
BLOCKED-COUNT : = BLOCKED-COUNT + 1;

if QQEMPTY (READYQ) then
CPU. IDLE;
else
Q.REMOVE (READYQ, RUNNING);
PT (RUNNING). STATUS: = RUN:
CPU. START_PROCESS (PT (RUNNING));

end if;
end DO-SUSPEND;

procedure START (D:INIT_DATA)is
scheduling (ENTER, LEAVE);
i : PT,INDEX;
begin
if FREE = NO-PROCESSthen
raise STORAGE-ERROR;

else
i = FREE; FREE := PT (FREE).NEXT;
PT (1) .= (NAME => D.PNAME,
STATUS => READY,)
PC =) D.CODESTART,
REG => (SP =>D. STKSTART, others =>0),
PRIORITY => D. PRIORITY,
DELAY-TIME =) 0,
NEXT | PRIOR => NO-PROCESS);
Q. INSERT (READYQ, 1);
end if;
end START,;

procedure FINISH is
scheduling (ENTER, null) }
begin
PT (RUNNING). NEXT: = FREE; FREE : = RUNNING;
PT (RUNNING) . NAME: = null;
if QEMPTY (READYQ) then
CPUJDLE;

Q.REMOVE (READYQ, RUNNING);
PT (RUNNING) . STATUS ; = RUN:
CPU. START_PROCESS (PT (RUNNING));
end if;
end FINISH;

else

procedure ACTIVATE (P : PROCESSNAME) is
scheduling (ENTER, LEAVE);

- 66 -

Appendix F: Standard Supervisor

i ¢ constant PT_I NDEX := NAME-TO-INDEX (P);
begin
if 1 /= NO-PROCESS and then PT (1). STATUS= BLOCKED then

UNBLOCK (1);

BLOCKED-COUNT : = BLOCKED-COUNT + 1,

Q. INSERT (READYQ, 1);

PT (1). STATUS: = READY,;

end if;
end ACTIVATE;

procedure SUSPEND Is
scheduling (ENTER, null) ;
begin
DO-SUSPEND;
end SUSPEND;

procedure SWITCH (P : PROCESSNAME) is
scheduling (ENTER, LEAVE);
1 : constant PT,INDEX : = NAME-TO-INDEX (P);

procedure DO-SAVE (D:in out PROCESS-DATA) is
begin
CPU.SAVE,CONTEXT (D);
end,
begin
If /= NO-PROCESS and then PT (i). STATUS /= RUN then
DO-SAVE (PT (RUNNING));
PT (RUNNING). STATUS : = BLOCKED,;
RUNNING : =1;
if PT(1). STATUS = READY then
DELETE READY%i);
I LOCKED-COUNT : = BLOCKED-COUNT + 1;
else
UNBLOCK (1);
end if;
PT (i). STATUS := RUN;
CPU.START,PROCESS (PT(1));
end if;
end SWITCH;

procedure DELAY-FOR (I : TICK-COUNT) is
scheduling (ENTER, LEAVE);

begin
if 1 > O then
Q. INSERT (DELAYQ, RUNNING);
PT (RUNNING). DELAY_TIME = |;
DO-SUSPEND:;
end if;

end;

- 67 -

Appendix F: Standard Supetvisot

module body Q is

function EMPTY (Q : QHEADER) return Boolean is
begin

return Q. FIRST = KO,PROCESS;
end;

procedure | NSERT @ : inout QHEADER; 1 : PT, | NDEX)
begin

PT (). PRICR : = NO PROCESS:

if Q.FIRST = NO—PROCESSthen

| Q FIRST : =1i; P, NEXT : = NO PROCESS,
else
. _ET Q. LAST). PRIOR:=i; PT (1), NEXT := Q. LAST;
ena It,
Q LAST : =1

end;

procedure DELETE (Q:inout QHEADER; {:PT_INDEX) is
PCB : PROCESS-DATA renames PT(1);
begin
if i = Q.FIRST then
Q.FIRST : = PCB.PRIOR;
if Q.FIRST /= NO-PROCESS then
PT (Q. FIRST). NEXT: = NO-PROCESS,
end if;
elsif 1 = Q.LAST then
Q.LAST : = PCB.NEXT;
if Q.LAST /= KO,PROCESS then
PT (Q. LAST). PRIOR ;: = NO-PROCESS;
end if;
else

PT (pcB, PRIOR). NEXT : = PCB, NEXT:
PT (pcb. NEXT). PRICR : « PCB, PRICR

end if;
end;

procedure REMOVE (@ : inout QHEADER, i :in out PT_INDEX) is
begin

i -0 FIR
OFIRST : = PT (). PRI CR;

if Q. FIRST /= NO-PROCESS then

PT (Q. FIRST). NEXT: = NO-PROCESS;

end if;

end;

procedure DELETE (A :in out READYQS § @ PT, | NDEX) is
begin
Q. DELETE BADYQ (PT (). PRIORITY), i);

end;

- 68 -

Appendix F: Standard Supervisor

procedure | NSERT (A : inout READYQS; 1 : PT, | NDEX) is

begin
] Q. | NSERT (READYQ(PT(i).PRIORITY), {);
end;

function EMPTY (A : READYQS) return BOOLEAN is
begin
return Q FI RST (A) = NO PROCESS;

end;

procedure REMOVE (A :in out READYQS; i:in out PT,INDEX) is

begin

for jinreverse PRORITY' FIRST . . PRIORITY LAST loop

if not Q EMPTY (READYQ(§)) then
Q. REMOVE (READYQ(J), 1);
exit;
end if;
end loop;
end;

function FI RST (A: READYQS) retun PT, | NDEX is
begin

for j in reverse PRIORITY'FIRST . . PRIORITY'LAST loop

if not Q EMPTY (READYQ(j)) then
return READYQ(j). FIRST;
end if;
end loop;
return NO- PROCESS:
end;
end Q;

device body CPU is
use DEC10_INSTRUCTIONS;
use REG | STERS,

procedure DISABLE is
begin
uuo' (INTMSK, (LI TERAL, 0));

end;

procedure ENABLE is
begin
uvo' (INTMSK, (LI TERAL, -1));

end;

-89 -

Appendix F. Standard Supervisor

procedure STOP is
begin

FAIL_INSERTION' (TEXT => "EXIT");
end;

procedure SLEEP is

-- this procedure is called when there ate only blocked processes
begin

loop

1;
UUo (SLEEP, 1, (QUOTED, "")); -- dleep for 1 second

DISABLE;
if not Q. EMPTY (READYQ) then

Q.REMOVE (READYQ, RUNNING);
PT (RUNNING) . STATUS: = RUN;
CPU.START,PROCESS (PT (RUNNING));

end if;
end loop;
end;

procedure IDLE is

-- this procedure is called when there ate no ready processes to run
begin

RUNNING : = NO-PROCESS;

if BLOCKED-COUNT = 0 then
STOP;
else
SLEEP;
end if;
end;

procedure SAVE-STATE (D :in out PROCESS- DATA) is
-- this procedure is called when a process Is preempted during atimer
- - Interrupt
SAIL,REG,SAVE : REGISTER-SET;
SAIL-PC-SAVE : INTEGER;
for SAIL,REG,SAVE use at 16;
for SAIL-PC-SAVE use at 87;
begin
D. REG : = SAIL_REG_SAVE;
DEC10' (HRRZ, 1, (ADDRESS, SAI L- PC- SAVE)) ;

D.PRC: = R1:;
end;

procedure STARTUP (D : PROCESS-DATA) is
begin
CPU.DISABLE;
UUQ' (OP => DEBREAK);
; CPU. START_PROCESS (D);
end;

-60.

Appendix F: Standard Supervisor

procedure START-PROCESS (D : PROCESS-DATA) is

begin
RUNNERS-TICKS : = 0;
RO := D.PC;

DECIO" (MOVEM, 0, (LABEL, "XFER", 1));
DEC10' (MOVSI, O, (ADDRESS, INTEGER' (D. REG)));
DECIO' (BLT, O, (REG, 15));
UUO' (INTDEJ, (LABEL, "XFER",0));
FAIL_LABEL' ("XFER", (VALUE, -1));
DIRECTIVE' (BLOCK, (VALUE, 1));

end;

procedure SAVE-CONTEXT (D:in out PROCESS-DATA) is
-- this procedure must be called 3 dynamic links away from the
-- stack frame of the caller of the kernel

begin
DEC 10'(HLRZ,1, (I NDEX, 0, 14))4~ get caller’'s saved return address
DECIO' (HLRZ, 1, (INDEX, 0, 1))4- by following dynamic links
DECIO' (HRRZ, O, (INDEX, O, 1));

D. PC: = RO;
DECIO' (HLRZ, 0, (INDEX, 0, 1))4- get caller's dynamic link
D.REG(SP): = RQ,
D. REG (TOP) : =Rt-1 --save caller's top of stack pointer
end;
end CPU;

procedure DO, WAKEUPS is _
i Pr.I NDEX : = DELAYQ FIRST, | : PT.INDEX;
begin
while 1 /= NO-PROCESS loop
declare PCB : PROCESS-DATA renames PT (1) ; begin

PCB.DELAY,TIME := PCB.DELAY,TIME -1
it PCB. DELAY-TI'ME ¢= 0 then

j +#4; 4 := PCB.PRIOR;

Q. DELETE (DELAYQ, j);

Q. INSERT (READYQ, J);

BLOCKED-COUNT = BLOCKED-TIME -1
else

i =p8 PROR
end if;
end;
end loop;
end;

interrupt TIMER-INTERRUPT called from 0 is

i Tl NDEX
begin
DO,WAKEUPS,

if RUNNLNG /= NO- PROCESS then

-61 -

Appendix F: Standard Supervisor

RUNNERS-TICKS: = RUNNERS-TICKS +1;

if not Q. EMPTY (READYQ) and then
(RUNNERS-TICKS » TIME-SLICE or
PT (Q. FIRST (READYQ)). PRIORITY » PT (RUNNING) @ PRIORITY) then
CPU.SAVE,STATE (PT(RUNNING));
PT (RUNNING). STATUS: = READY;
Q. REMOVE (READYQ, 1);
Q. INSERT (READYQ, RUNNING);
RUNNING : =1;
PT (1). STATUS: = RUN;
CPU. STARTUP (PT(1));

end if;

end if;
end TIMER-INTERRUPT:;

scheduler body S is

procedure ENTER is
begin

CPU. DISABLE;
end;

procedure LEAVE is

begin
CPU.ENABLE;
end;
end S;
begin
PT MAIN_PROGRAM): = (NAME => PROCESSNAME' (1),
STATUS => RUN,
PC => 0,
REG => (others =>0),
PRIORITY => MAIN-PRIORITY,

DELAY-TIME =) O,
NEXT | PRIOR => NO-PROCESS);

for 1in PRIORITY loop
READYQ(i). FIRST: = NO-PROCESS;
end loop;

DELAYQ.FIRST : = NO-PROCESS,

for 1 in PT,INDEX'FIRST + 2 . . PT,INDEX'LAST -1loop
PT(1) NEXT:=1 + 1;
PT (). NAME : = null;
end loop;
PT (PT_INDEX'LAST). NEXT: = NO-PROCESS;
PT (PT_INDEX'LAST) . NAME : = null;
CPU. ENABLE;
UUO' (CLKINT, (VALUE, TICK-LENGTH)); -- enable timer /nterrupts

end SUPERVISOR,;

- 02 -

Appendix G: Translation Example - 63 -
APPENDIX G: ADA MULTITASKING TRANSLATION EXAMPLE.

This appendix presents an example of techniques used in translating the multitasking
constructs of Ada into Adam. Various algorithms for such translation are being developed
and are described in detail in [9].

Tasking in Ada provides a very general, expressive, and elegant means of designing
parallel systems. However, because of their generality, the high level tasking constructs
of Ada pose a significant challenge for language implementers. Much concern has been
expressed about the efficiency and even possibility of implementing the full multitasking
capabilities of Ada. The multiprocessing constructs of Adam, on the other hand, are much
lower level than those of Ada and create no major compilation difficulty. Hence, by
developing implementations of Ada tasking in Adam the problem a Ada multitasking may be
readily identified and studied. Automation of the algorithms will permit testing and
comparing performance of implementations which use different execution, scheduling, and
resource allocation schemes. Also, the algorithms may be used with the existing Adam
compiler to produce a two-step compiler for Ada tasking.

The essential step of the translation algorithms is to transform the components of an Ada
multitasking system into corresponding elements of an Adam system. Any Ada task which
does not have visible entries is transformed into an Adam process. Ada tasks with entries,
which we term "service tasks”, are translated into both a process and a scheduled module
in Adam. This division of the service task into two parts separates the truly independent
thread of control of the task from the synchronization and inter-task communication

functions of the task.

The example below presents the general form of translation for a very simple Ada task
system, a buffer and two user tasks. In Ada, such a system might appear as follows:

task CHARACTER-BUFFER Is
entry PUT-CHAR(C: In CHARACTER);
entry GET-CHAR (C: out CHARACTER);
.end CHARACTER-BUFFER;

task body CHARACTER-BUFFER is
MAX : constant INTEGER : = 200;

subtype BUFFER-POINTER is INTEGER range 0 . . MAX;

BUFFER : array (1.. MAX) of CHARACTER;
IN,PTR : BUFFER-POINTER = 1;
OUT,PTR : BUFFER-POINTER : = 0;

begin
loop

select
when IN,PTR /= OUT,PTR =»
accept PUT-CHAR (C: In CHARACTER) do
BUFFER(IN_PTR): = C;
end PUT-CHAR;
IN,PTR:= IN,PTR mod MAX + 1;

Appendix G: Translation Example -64 -

if OUT, PTR = O then

QUT,PTR : = 1;
end if;
or
when QUT, PTR =/ 0 =»
accept CET-CHAR (C : out CHARACTER) do
= BUFFER (QUT, PTR) ;
end GET CHAR
QUT, PTR : = QUT, PTR mod MAX +1;
if (lJT, PTR = | N, PTR then
QUT,PTR : = 0: INPTR: = 1;
end if;
end select;
end loop;
end CHARACTER- BUFFER;
task PRODUCER - - the body of PRODUCER contains calls to
- CHARACTER- BUFFER. PUT
task CONSUVER: - the body of CONSUMER contains calls to

- CHARACTER-BUFFER GET

One algorithm used for translation of Ada tasking uses procedure call to implement the user
task/service task rendezvous. In this scheme, the calling t ask executes the body of the
accept and awakens the service task at completion of the rendezvous to perform

scheduling and internal actions.

scheduled module CHARACTER- BUFFER i s
procedure PUT- CHAR (C : in CHARACTER) ;
procedure CGET- CHAR (C : out CHARACTER) ;
procedure NEW PROCESS- ENTRY; -- this procedure corresponds to the separate

-- thread of control of the service task
end CHARACTER- BUFFER;

scheduled module body CHARACTER- BUFFER i s
MAX - constant | NTEGER : = 200:

subtype BUFFER- POl NTER is | NTEGER range 0. . MAX;

BUFFER : array(1 . . MQ\XEZ of CHARACTER,
| N.PTR : BUFFER-PO NTER : :=1;
QUT, PTR : BUFFER-PONTER : = 0;

type ENTRY- NAME is (PUT- CHAR, GET-CHAR) ;
subtype SYNCHRONI ZATI ON-LEVEL |'s | NTEGER range 1 . . 3;

SL : SYNCHRON ZATI ON- LEVEL, -- this variable Is used to track which accept
-- or select statement Is being executed

scheduler BUFFER, SCHED is
imports (1 N, PTR, OQUT, PTR . in; SL : inout);
procedure ENTER (E : in ENTRY- NAME) ;
procedure COMMON- EXI T;
procedure AWAI T,

end BUFFER, SCHED,;

Appendix G: Translation Example - 66 -

procedure PUT-CHAR (C: in CHARACTER) is

scheduling (ENTER (PUT-CHAR), COMMON-EXIT);
begin

BUFFER(IN_PTR): = C; -- executed by the ceiling process
end PUT-CHAR;

procedure GET-CHAR (C: out CHARACTER) is

scheduling (ENTER (GET-CHAR), COMMON_EXIT);
begin

C := BUFFER(OUT_PTR); -- executed by the calling process
end GET-CHAR;

procedure NEW-PROCESS-ENTRY is

begin
loop -- executed by the thread of control of
-- the buffer
SL:= 1,
BUFFER_SCHED. AWAIT; -- schedule entry calls and suspend
-- until entry call Is complete
case SL is -- current value of 8L determines
-- which call was accepted
when 2=> IN,PTR := IN,PTR mod MAX + 1;
if OUT,PTR =0 then
OUT,PTR : =1,
end if;
when 3=> OUT,PTR:= OUT,PTR + 1,
if OUT,PTR = IN,PTR then
OUT,PTR ¢=0; IN.PTR:= 1;
end if;
when others => null;
end case;
end loop;

end NEW-PROCESS-ENTRY;

-- NOTE: the bodies of the visible procedures above contain the translation of
-- the Ada source statements; the scheduler procedures below contaln the

-=- implementation of scheduling and mutual exclusion fat entry calls which would

-- be provided by the compiler in an implementation of Ada.

scheduler body BUFFER,SCHED is

PROTECTION : LOCK; -- mutual exclusion in module scheduling
BUSY : BOOLEAN : = TRUE;-- whether module is in use
ENTRY-OPEN : array (ENTRY-NAME) of BOOLEAN: -- which entries open
ENTRY-Q . array (ENTRY-NAME) of CONDITION§- queues for names

- of calling processes

BUFFER-NAME : PROCESSNAME;-- internal name for thread of control
-- of the buffet

procedure ENTER (E:in ENTRY-NAME) is
begin
SET (PROTECTION);
if BUSY or else not ENTRY-OPEN(E) then -- module is in use

Appendix G: Translation Example

| NSERT (ENTRY- Q (E), MYNAMEO); -- or guard is false
RESET EPROTECH N ; -- so calling process

SUSPEND: -- suspends itself
else
BUSY : = TRUE; -- call is accepted so set module
RESET (PROTECTION); - in use
end if;
case E is
when PUT- CHAR =»
sL: =2 -- Put call is being accepted
when GET- CHAR =»
L. =3 -- Get call is being accepted
end case;
end ENTER;
procedure COWMON-EXIT is
begin
ACTI| VATE (BUFFER_NAME);-~ Activate thread of control of buffet
end COWON EX I T:

procedure AVAI T is
NEXT : PROCESSNAME;
begin
SET (PROTECTION); --wait for protection on scheduling
BUFFER- NAME : = MYNAME 0; --setup internal name for buff et
ENTRY-OPEN : = (IN PTR /= QUT, PTR, QUT, PTR /= 0) ;
BUSY : = FALSE, --anticipate module not busy
for E | n ENTRY_NAME'FIRST . . ENTRY_NAME'LAST loop
if ENTRY- OPEN(E) and then not EMPTY (ENTRY_Q(E)) then
case E is
when PUT- CHAR =»
SL . = 2 -- Put call is being accepted
when GET- CHAR =>
L. =3 -- Get call is being accepted
end case;

- 66 -

REMWVE (ENTRY-Q (E), NEXT) ; --remove next caller from queue

BUSY : = TRUE, --set module is busy

ACTI VATE (NEXT) ;- and activate

exit;

end if;
end loop;
RESET (PROTECTIQN); -- release scheduling protect/on
SUSPEND; -- and suspend
end AMAIT;

end BUFFER, SCHED,
end CHARACTER- BUFFER;

process NEW PROCESS s -- this process is the separate thread

Appendix G: Translation Example - 67 -

- - Of control Of the buffet
channels CHARACTER- BUFFER;

end NEW PROCESS;
process body NEW PROCESS is
begin
CHARACTER_BUFFER. NEW_PROCESS_ENTRY;
end NEW PROCESS:

process PRODUCER is
channels CHARACTER- BUFFER, -- the body of PRODUCER contains calls to
- - CHARACTER_BUFFER. PUT_CHAR

end PRODUCER,;
process CONSUVER Is
channels CHARACTER- BUFFER; -- the body of CONSUMER contains calls to
- - CHARACTER_BUFFER. GET_CHAR
end CONSUVER;

Note that the scheduling used for calls to the CHARACTER- BUFFER will accept PUT*s before
GET's whenever the Buffer is not full, This selection scheme is consistent with the
specification of Ada, which only requires that the choice among open alternatives be
“performed arbitrarily? In general, however, identification of an optimal selection scheme
depends on the global semantics of a program, so it is not possible to make such an
identification in the syntax directed translation used with the Adam compiler. The method
of selection implemented in Ada to Adam translation utilizes a pseudorandom number
generator to make a choice among the open aternatives. Thus, the general implementation
of select is random, which is also consistent with the Ada requirement for arbitrariness.

Appendix H: Compiler Commands - 68 -
APPENDIX H: COMPILER COMMANDS,

This appendix briefly describes a compiler we have implememented for Adam. The compiler
is written in Maclisp, runs on a PDP-10, and produces POP-10 assembly language code.
The compiler is interactive. It accepts commands from the terminal user to compile files,
manipulate libraries, etc. It has three phases: a parser which constructs an abstract
syntax tree, a phase which does static semantic checking, and a code generation phase.
The parser is constructed by an SLR parser generation system.

The compiler supports the Ada separate compilation facility. A compilation consists of a
library file and a set of compilation units. A compilation unit can be a module specification,
module body, subprogram body, or module body subunit. The main program is designated by
having a subprogram body compilation unit with the name MAIN, or by having a subprogram
body compilation unit which has the pragma MAIN in its outermost declarative part.
Compilation units can refer to units already in the library and the new units in a compilation
will be added to the library or replace old units with the same name in the library. The
compiler has commands to create libraries, open and close libraries, list the table of
contents of libraries, etc.

1. Compiler Commands.
The compiler is invoked by typing:

r adanm

The compiler prints a prompt and waits for a command to be typed.

A command to the compiler consists of a command name, or a command name followed by a
list of arguments. All commands are terminated by a semicolon. Arguments are separated
by commas. After a command has been executed another prompt is printed and another
command can be typed.

When the compiler is initially invoked, all file operations will be defaulted to the job's
current directory. The defaults for various kinds of file operations can be changed by the
following commands.

Alias <dir>; - will change the default directory for all operations to <dir>.
Input <dir>; - will change the default directory for source program Input to
<dir>.

Output <dir »; - will change the default directory for any output which the
compiler generates to <dir»>.

Libdir <dir>; - wili change the default directory for library related i/o to <dir ».

Appendix H: Compiler Commands - 69 -

where <dir> has the form <directory-name> on TOPS-20 or p, pnon SAIL WAITS.

Quit; - terminates the compiler.
Help; = prints a list of the available commands.

2. Compiling a Source File.

Before any source file is compiled a library must be opened. See section on libraries for
how to do this.

To compile a source file, which is in the file, name.ada, the command is:

Compile name;

This has the following effect. The file is opened and the program is parsed. If there is a
syntax error the compiler returns to the command level. If there are no syntax errors the
static semantic checking is done. if there are semantic errors, messages will be Written to
the terminal and also to a file called name.err. The compilation units in the source file will
be inserted into the open library, If there are no semantic errors code generation is done.
The compiler generates a file of Fail source code called name.fai.

To run a main program which is in the currently open library, the command is:

Execute main-program-name;

This command tests for completion of the the compilation tree rooted at the main program.
If it is complete a do file is created with commands to link and run the program, the
compiler terminates.

The command:

Compile;

will recompile the most recently compiled file from the current compilation session.

3. Separate compilation and libraries.

A library consists of a set of compilation units. The information recorded for a compilation
unit in a library includes: Its name, the kind of unit it is, the name of the source file it came
from, the name of the file to which code was generated for it, the time and date it was
compiled, its with requirements of other units in the library, and a copy of the abstract
syntax tree for the unit. For non-generic units an abstract syntax tree for the

Appendix H: Compiler Commands - 70 ~-

specification part is kept. For generic units the abstract syntax tree for the entire unit is
retained.

All library operations during a compilation session are done with respect to the currently
open library. -

Commands for libraries.

To create a new library the command is:
Create name; -- this creates a file name.lib
-- in the default library directory

To open an existing library the command is:
Open name; -- looks for name.lib in the default library
-- directory and opens it if found

To close the currently open library the command is:
Close;
A quit command will also close any open library.

To copy a library unit from some library to the currently open library the command is:

Copy 1 ibraryname. uni tname;

Example:
Open myli b; -- open an existing library
copy 1o. tty,io; -- copy a tty i/o module called tty_io from the

-- library io to the library mylib

The following commands can be applied to an open library.

Dir; -- list the table of contents of the library

Tdir; -- list times when units were compiled

Fdir; -- list the files from which units came and were compiled into
Wdir; -- list the ‘with’ requirements of the units in the library

Remove uni tname; -- remove the named unit from the library.

An example of a command sequence to create a library of utility modules:

. T adam

ce -- compiler prints signon message and & prompt
-> create util; -- create and open a new library named util.lib
-> compile util; - - compiles a file of units from the source

-- file wutil.ada

-- generates code to a file named util.fal
Adding STACK to the library -- complier comments
Adding RAT-NUMBERS to the library

Appendix H: Compiler Commands -71 -

-> close; -- close the library
-> quit; -- terminate the compiler

At a later compilation session one can type:

-> open util; -- open an existing library

=> dir; -- see what's in it

module STACK

module RAT-NUMBERS . . .

-> compile foo; -- compile some file that uses wnits in the library
-> open mylib; -- open some other library, closes utH

~> compile bar; -- compile some other f ile

-> quit; ‘ -~ close any open library and terminate

