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O. Introduction.

The problem of maintaining a representation of equivalence classes
or partitions of a set arises in many applications. Aho, Hopcroft, and
Ullman [1, Chapter 4] have called this the UNION-FIND problem, and they

begin their exposition by introducing the following simple data organization:

Let R[x] be the name of the equivalence class containing element x .

Let N[s] be the number of elements in equivalence class s .

Let L[s] designate a linked list containing the elements of class s .

To merge disjoint equivalence classes s and t , where N[s] < N[t],
set R[x] «t for all x in L[s] , append L[s] to L[t],

add N[s] to N[t] , and call the new equivalence class t .

Initially all classes have size 1 , and they are merged into larger and
larger classes as the algorithm proceeds.

This strategy allows us to find the equivalence class containing a
given element in constant time; and the cost of replacing two classes
by their union is essentially proportional to the size of the smaller
class, i.e., the nuﬁber of times R[x] is changed. If there are n
elements in all, it is easy to see that R[x] is changed at most 1lg n
times:/ for each x , since the class containing x must at least double
in size whenever R([x] changes. Therefore it will take at most O(n log n)
units of time to do all the union operations.

In this paper we shall prove that the average amount of time to do
all unions by the above method is only O(n) , thereby establishing a

conjecture of A. C. Yao [12]. The probability distribution on the set of

:/ We use 1lg for 1og2 and 1ln for loge ‘
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possible input sequences, which leads to such "average" behavior, can be
defined in several equivalent ways corresponding to the conventional notion
of a random graph; in essence, the probability that classes s and t will
be merged at any particular step is proportional to N[s]N[t].

Section 1 describes a convenient way to deal with large random
graphs, by analogy with the treatment of large systems of particles in
statistical mechanics, an approach which was first suggested by
V. E. Stepanov [10]. Section 2 develops several estimates useful in
the study of this probability model, and Section 3 explains how to apply
the resulting formulas to the above algorithm. The proof of linearity
is completed in Sections 4, 5, and 6.

Following Yao [12], we shall call the above algorithm QFW , for
"quick find weighted"; one can quickly find the equivalence class
containing x by simply looking at R[x] , and the class sizes or
weights N[s] are used to decide how the updating is done. QFW is a
refinement of the slgorithm QF , which dispenses with the N[s] table
and simply updates one of the two classes selected arbitrarily. 1In
Section 7 the QF algorithm is shown to require ~'n2/8 updates on the
average. IEmpirical experiments on QF and QFW , confirming this theory,
appear in Section 8.

Section 9 discusses another probability model under which we might
wish to study the average behavior of QF and QFW , based on the hypothesis
that the actual unions to be performed take place in random order.
Recurrence relations which arise in this model are studied in Sections 10,
11, and 12, culminating in detailed exact or asymptotic calculations of the

average coct,

N

o




Finally, Section 13 discusses the distribution of "union trees"

associated with equivalence algorithms, and relates such trees to two

other algorithms (QM4 and QMW) described by Yao, in addition to QF

and QFW . Several open problems conclude the paper.
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1. Connectivity of Random Graphs.

Let us imagine that each of the (ne-n)/2 pairs of distinct elements
{x,¥]}] has been associated in some manner with (n2-n)/2 independent equal-sized
samples of some radioactive substance like radium, where there is probability
e-t that any particular sample of radium has emitted no « particles
between time O and time t . When the radium associated with {x,y}
fires off its first particle, we immediately draw a line between x and y ;
at any time t > O the lines drawn in this way define an undirected graph
on the n given elements.
Let Pn(t) be the probability that the random graph defined in this

way is connected at time t ; thus Pn(t) is an increasing function which

approaches 1 as t -« ., It is easy to verify, for example, that

Pl(t) P e
-t
Pe(t) = l_e b
Py (t) = 1-3e" " 506"
B, (t) = 1—he'3t-5e'ht+ et

Another way to define a random graph is to say that each of the
(ne-n)/E edges is independently present with probability p and absent

with probability q = l-p ; then Pn(t) is the probability of connectedness

if we set q = e't . This definition was introduced by Gilbert [ 3 ], who
N
wrote, for example, " P, = l—3q‘+2q3 "3 but we shall see that Stepanov's

b)
physical interpretation tends to be more suggestive in developing the

theory.
Incidentally, Pn(t) may be regarded as a generating function for

two types of discrete quantities associated with random graphs: If C(n,m)
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denotes the number of connected graphs on n labeled vertices having m

edges, we have

2 cf{n,m) (l-e't)m e-t((nz-n)/g_m)

o & P (T
@D @ - B

(%02 w o my (et 5
m_>_0

and if A(n,m) denotes the number of ordered sequences of edges
{xl,yl}, {xg,ye}, ey {xm,ym} defining a connected graph, where X, # Y3
but duplicate edges {:{i,yi} = {xa.,y J} are allowed, we have
-(n2-n)t/2 m
(1.2) P(t) = e Z Almm)t /m: |,
n
m>0
since e-t tk/kl is the probability that a given edge has "fired" exactly
k times. The sum in (l.l) can, of course, be restricted to the range

< (ne-n)/’e , since C(nym) = 0 when m < n-1 ; similarly, we can

o
1
=
VAN
B
VAN

replace " m >0 " by " m > n-l " I (1.2).
It is easy to compute the functions Pn(t) for ne= 1,2;¢.s by using

the recurrence formula

n-l)Pk(t)e-k(n-k)t g s

(1‘3) k_l

Z
k>1
this formula follows immediately fram the fact that the k-th term of the
sum is the probability that a particular point x is connected to exactly
k points (including itself) at time t . Identity (1.3) has a remarkable

corollary,

(1.%) kzgl i:i)Pk(t)(e-kt-q- z)n-k i (l+2)n-l )

which holds for all =z ; the coefficient of 2" on the left-hand side of
(1.4) can be shown to equal the coefficient on the right, using (1.3).

Stepanov (9] discovered two nonlinear identities

-2 -k(n-1-k)t _-k(n-k)t
£ e s Bt It e N R s,

b

6
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' ot e -k(n-k)t
(1.6) pr(t) = 25 kgl.(i‘l)Pk(t)Pn'k(t)e (

for which he gave rather lengthy algebraic and analytic proofs. His
first formula can be proved more directly by observing that the k-th
term in the sum is the probability of a connected graph in which a

particular point x would be connected to exactly k points if another

n-2
k-1

the k-1 other points, and the graph restricted to x and those other

particular point y were removed. There are ( ) ways to choose
points must be connected, as must the graph restricted to the remaining
n-k points including y ; and there must be at least one edge from the
k points to y , but none from the k points to the remaining n-1l-k .
Stepanov's second formula can be proved by noting that Pﬂ(t)dt is the
probability that the graph becomes connected at time t (i.e., between
t and t+dt ); this is the number of ways to choose an edge {x%,y} ,
times the number of ways to divide the n points into a set of k elements
containing x and a set of n-k elements containing y , times the
probability that the k points and the n-k points are already connected,
times the probability e-tdt that the edge {x,y} has just "fired", times
the probability that the other k(n-k)-1 edges between the two sets have
not yet fired.

Incidentally, Pn(t) is also relevant to random directed graphs on
I - vertices: I each ¢of the n2 possible arcs (%,y) is independently
present with probability l-e"t » then Pn(t) is the probability that a
particular vertex x is a "root", i.e., that there is an oriented path
from x to all other vertices. Perhaps the simplest way to prove this fact

is to show that the stated probability satisfies recurrence (1.3).




Bounds on the Probability of Connectedness.

If we set z = et in (1.4), we find

-nt\n-1 -1 -kt
(2.1) Pn(t) - flee™ )n - 1<§<n ( E_l)Pk(t)(e -e

hence (ef. [10])

-nt\n-1
)

(22 Pn(t) < (1-e

In fact, a similar argument proves the sharper upper bound

(l_e—(n—l)t)n-l

2

P,(t) <

but we will not need this improvement. When +t is large, the bound in
(2.2) is very good because the correction terms dropped from (2.1) become
exponentially small; but when t 1is near zero, we can squeeze another
factor of n out of the upper bound, since (cf. [11, p. 228])

n-2 (l—e_t )n-l

(2.3)  By(t) <n

This formula follows because a connected graph must contain a spanning tree as

a subgraph; there are n""®  spanning trees on n labeled points and (l-e't)n'l

is the probability that any particular spanning tree is present, A simple lower

bound for Pn(t) can be obtained by considering only the term for m = n-1

£ S

n-e( _e-t)n-l(e-(n-Q)t/2)n-l

(2.4) P(t) > n &

Relations (2.3) and (2.4) combine to give the formula

(2.5) P (t) = o™ 2240 < oln®t)) .

(Here and in the sequel we shall use O notation to stand for functions bounded

by abzolute conctants, depending only on specified conditions. For example,
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L in (2.5) the O(ngt) stands for any function of n and t whose absolute
";; value is at most Cn2t for some C, when n >1 and t > 0]
;1 We shall be especially concerned with values of Pn(t) for % << 1/,
ﬂ'% and the upper bound (2.2) shows that Pn(t) is exponentially small in
’é this critical range. 1In order to understand more easily what is going
t on, let us magnify the values by defining

(2.6) @ (%) = B (£)/(1-TH .

If we apply formula (1.6), together with formula (1.5) both as it stands

and with k replaced by n-k , we obtain

(2.7) @ (t) = ((l-e-nt)Pr'l(t)-n(n-l)e-ntPn(t))/(l-e-nt)n

FAt)R . (t) _ W .
_ an) s (ﬁ-i) k r:llé e k(n-k)b(y_ -nt _ -nt Kt ;. (0 Kt ),
k>1 (1-e77) _
k ¢ n-k -
n(n-1) n-2 -k(n-k)t [ 1-e7¥* 1.~ (m-K)t
5 2 Z ko1 ) B8 g (B)e -t -t ’
k>1 l-e 1l-e »
»: !
hence (Dn(t) satisfies a surprisingly simple differential difference 1
E ’ :
! equation (cf. [10]): i
| i n R o k k n-k sinh(nt/2) sinh(nt/2)
E ﬁ o It follows in particular that wn(t) is monotone increasing. Our bounds T
on Pn(t) imply that *
% (2.9) wn(t) = % (1+ O(net)) for t = O(n-g) 3
1 1 ]
= <Ww
h: (2.20) = <cw(t) <1 . :




We can also obtain a recurrence for wn(t) analogous to (1.3) and (2.7),

wsing (1.5} with 2 = «e 2% ,

-nt = Lo

l-e

k-1 S (n-k)t )n-k
l-e

-kt

We shall make several uses of the following estimate for wn(t) s Which

is of particular interest when t < n"3/2 :

Lemma 1. a)n(t) < %exp(an/et) , where c =+r/8 =~ .62666 .

Proof. Tt is easy to verify that sinh(at)/sinh(bt) < a/b when 0 < & <b
and t > 0, hence (2.8) implies

n-k

(2.12) w!(t) < % %3( - ) k‘“k(t)(n'k)wn-k(t)(_f—l )k( &E)

n
llote that equality holds when t = 0 . Let us now consider the quantity

p(n, k) = (i)(%)k(nn;k)n‘k

which appears in this sum. Since

@©
In mi =" 08 In n-n+ln'\/2¢n+f t-gh(t)dt 5
n

n(t) = 5 (t}{1-t} , ve have

n -2
In p(n,k) = 1n J BeEln - t T h(t)at ;

Ty ¢ S B e
0<k<n 4 - “/2“ 0<k<n “k(n-k)

il
n dx /n 3 XL
S j(‘) NVx(1-x) - Vo B(E v 5)




By induction we have kwk(t)'(n—k)wn-k(t) < exp(c(k3/2+ (n-k)B/e)t)

< exp(cna/zt) » so (2.12) yields

wr'l(t) < J@ exp(an/et)

17
w (t) < rl—1+ C’\/-I-l-j(‘) exP(CﬂB/Eu)du & %exp(an/Qt) ;

Incidentally, it can be shown that

(2.33) @ (0) = 5 (am)-1) ,

where

(2.1%)  Q(n)

% O(n-5/2)

on 13550

by using "Abel identities"; see [8, Section 1.5] and [4, Section 1.2.11.3].

Egs. (1.1), (2.6), and (2,12) imply that

(2.057) C(nyn) = atot (Q(n) -2+ %) 5

a formula which can also be proved by the combinatorial argument sketched

in [L4, exercise 2.3.L4.L-17].




B Connection to the Equivalence Algorithm,

When the radium associated with edge {x%,y} emits an a-particle, we
can imagine invoking the equivalence algorithm at that instant, merging
classes R[x] and R[y] if they are distinct. Then the equivalence
classes at any time will be the same as the connected components of the
random graph. The probability that two edges fire simultaneously is zero;
and as t — o the graph becomes connected with probability 1 . 1In effect
we are considering a random execution of the equivalence algorithm where the
classes to be merged at each stage are selected by choosing uniformly among
all pairs (x,y) of elements that are not already equivalent. This seems
to be the most natural way to define the average behavior of the process.

When R[x] is a class of size k and R[y] is a class of size m,
let us say that the algorithm does a (k,m) -merge; the cost of such a
merge is min(k,m) . Therefore the average running time to do n-1 unions

which connect the graph is

(31} 2 min(k,m)E
1<k,m<n G

where En,k,m is the average number of (k,m) -merges performed. In more
intuitive terms, the average number of times the firing of an a-particle
causes a component of size k to be joined to a component of size m is
En,k,mﬁhEn,m,k , when k #£m,

Given any fixed way to partition the n elements into sets (A,B,C)
of respective sizes (k,m,n-k-m) , the probability that the random process !

will at some time do a (k,i) -merge with A and B as the respective

classes is 1

f“ }k(t)}m(t)e-(k+m)(n-k-m)t a(1-e7kmty
0

\
ST




since l-e"kmt is the distribution function for the firing of at least
one of the km edges between A and B , while

- (rm) (n-k-m)t 5 o oy probability that A and B are

P (t)E (t)e
internally connected but not joined to C at time t . (The factor 1/2
in (3.2) accounts for the probability that x instead of y belongs to
class A when the edge ix,y} fires, since we may regard (X,y) and

(y,x) as equally probable.) By considering all possible choices of A,

B, and C , we have

-kmt e-(k+m)(n-k—m)t at

o n. 4
(3.5) En,k,m ol o3y vy l; Pk(t)Pm(t)knle

For example, consider the simplest case k=m =1 : The expected

number of times we form a class of size 2 is
@©
n(n-1 -(on-3)t 3

SR el dast) % . 7 8t = n(-1)/(n-6) ~ a/h .
It follows that about n/2 singletons are built into pairs, while the
other n/2 elements begin their interactions by being hooked to larger
components.

When k and m are fixed, we can deduce the asymptotic behavior of

E as n - = by using only the comparatively weak estimate (2.5),

n, k, m

since the important contribution to the integral occurs when t is very

small, Let t

0

(3.5) ! = km 3 é
then ’
@ 2 v
. 1 /) k-1 m-1 -2 & 2 -(ng-¢ +km)t «
n,km (3)(}&) I P21 0(aPe)) (1 - o)) (AL T g ?




and the integral is

(l‘f)kin)!-l iz O(n-l)

as n - =
(nt-12

It follows that

k+m-2 k
: nkom =L 7 afpim)

k-2 m-2

e 0o(1)

when k and m are fixed.
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breparations for the Estimations.

Our main goal is to prove that the sum (3.1) is O(n) , and since

E

Ao does not seem to have a simple formula we must content ourselvesg
3 4%9

with approximate values.
Stirling's approximation applied to (3.6) indicates that we might

expect the estimate

; n
(L.1) B - O(k3/'2m3/2(k+m)l/§)

to be valid. If (4.1) could be proved, we would be done, since it implies

that

L2 min(k,m)E < k(E +E
o l<l§m<n tom), m < l<k§m<n k™ B, 1)

/2
z ol —r = T of:E2—1] = o) .
l<k<m<n \k/2g2 1<m<n

Actually (4.1) is not true when k=1 and m = n-1, as we shall see
later; however, the methods we shall discuss below are strong enough to prove

(4.1) in the special cases
(3) kmgo®? o xm >3,

Fortunately this suffices to prove the desired result, since the "uncontrolled"

termc have a sum bounded by n : We have

(Loh) 5 k(K
l-ik-:ng/3

n?/3 <m<n

+ E
n,m, k

)

n, k,m

cince the left-hand side is less than the average number of times the QFW

slgorithm changes R[x] while including x for the first time in a class
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of gize > ne/5 > and this can happen at most once for any element.

By Lemma 1 and Equations (2.6), (3.3) our mission will be accomplished

if we can prove that

(-5) FrmrtmT J, (e e 0 exp(c9/ 20/ st (m) (-

n
10/ 2/ 2(k+m)l7§)

under condition (4.3).  1In other words we are interested in integrals of

the form

@

6y Iemvl e Tt in ML S,

N

0

|
o
|
|
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9 kstimate of the Integral.

Using the identity

pEvL-SESC R Y

o

oo RN o MBS ISR Sl P NG 3

5.1 l-e

repeatedly in (4.6), we can express I(k,m,w) in the form

1

r‘ . . .
o
| 9

J‘l k+m-2
0
= ¢

(k-1 m-1 Jf" "

exp(-wt-k(xf. . .+xk_l)t-m(yl+. . .+ym_l)t Ydx dy dt ,
0

—_——
k-1+m-1 times

where dx=dxl...dxk_l and dy:dyl...dym_l. Hence

I 1
(5.2) I(k,myw) = kk-lmm-l(k+m-2)l I v ey
) \k+m-l
0 0 (w+Xkg +m7)

vhere € = Xpteeetx , and M= LU LR R Let us now translate

the domain of integration, writing

(5.3) I(k,mw) = kk'lmm'l(k+m-2):J(k,m,w+ k(k-1)/2 + m(m-1)/2)

)

+1/2 +1/2
(5.1) Hemw) » [ ves Sy

-1/2 -1/2  (w+kg+ mT})k+m-l

We wish to estimate

J(k,m,w) , but first let us try the same kind
of operations on a similar but simpler integral

@©

J‘ (l-(:-at' )k-le-mdt
(0]

1/2
- o t(x-1)2 f/ ik § ax

-1/2 -1/2 (w+a(k-1)/2+ )k

since the integral in thic case can be evaluated exactly ac a Beta integral,

h §
B o (%r (l_u)k--luv.v/oz-ldu . 1 n{x)riw/a

e
(\l_“-(.lt)k-le-wt; r :
0 0 a [(k+w/a




T R A G P 1 (O A, 7

derived the rather remarkable formula

1/2 1/2

‘[1/2“. J;1/2 (w+d:g)k : c% gé:ﬁglégigfg
(w -a -—) (w- = ) i (w+o¢

Incidentally, (5.5) may be regarded as a consequence of the considerably

more general identity

(5 6) nf< ) E n)( g n-jf< ; i i (n)
Y Ae(w) = 3(3 )™ emi) = fofo £ (et +ouitt)at, ..t

used in interpolation theory.
Equation (5.5) can be used to estimate (5.4). First, since the
logarithm function is concave (In(x+ty) > (1-t) 1g x + t lg(x+y)) ,

we have
(k*m) In(w+kg+mn) > k In(w+Kkg)+m In(w+kE+ (k+m)T) ;
hence

e 1/2 1/2 N
5.7) J(kmw) < f // £ j‘// 7 )kf : j-/ dy (w+ ke ..m‘n,m
-l 2 'l 2 + k _l 2 _1 o) + KE + k+ \

k-1 m-1

< (w L ReL) m(rr;—l)') ;

[ - =
/2 1/2 (wrke){ wrkg- (om) B ) (e g+ (om) B2

Secondly, cince




for x >1/2 , we have

6oy a((v-m)(v-22) e )

v+m/2
In u du + 0(1)
v-m/2

mlnv - f(mv) + 0(1) ,

where

(5.9) f(m,v) m+ ( )ln( " %) _( ln( %)
() @) &) )

is a convergent series provided that m < 2v . Therefore (5.7) yields

a o A° 12 dx Wtk
J(kymyw) < O(w+k“+m )J-l/e.” Lk m exp( (m:' ))

< O(w+k +m ) Il/e 1/2 ax (f(m’w—ﬂ.k_lL)\

i ———— e)(p e
“ife elfe (w+ke)Tm .

Again we can use concavity of the logarithm to conclude that

(ktm) In(w+k€) > m In w+k ln(w+ (k+m)Eg)

Using (5.5) again,

Heomw) < Otk +n®) exp(e(m, (w-k(ke1)/2)/ (ktm)))
W (W= (ktm) (k=1)/2) ou. (w+ (k+m) (k-1)/2)

91"’_1‘_2_’“1,@( (m,z_k(k_-l_zL)+f(k,_ ))

19



The only hypothesis we have required is that k < 2z when f(k,z) is
to be evaluated. We can therefore state the result of our calculations

. as follows.

Lemma 2. If k <m and m(ktm) < 2w+m(m-1) , we have

3 k-1 m-1
Kk m k+m-2 ). + S -12{
36k %) =0 ( ) o (f(m’ - mk’:m : )

(w+ k(k-1)/2 + m(m-1)/2) K™

A f(k, w+ k(k-1)/2 + m(m-1) /2 )) :

k+m

;o il
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¢. Completion of the Proof'.

The argument of Section L4 together with Lemma 2 now yields

Theorem l. The average time for the QFW algorithm to do its set unions

is o(n) .

Proof. Let k and m satisfy (4.3) and ktm <n ; we may assume that

k. < m ket

(DL) w = (k+tm)n - (k+m)2+km-c(k3/2+m3/2)

so that

n.

3 oY 1 <
(v.2) "n,k,m — k'm!(n-k-m). (kmw) .

We wish to apply Lemna 2 to estimate I(k,m,w) ; so we must check that

m(k+m) < 2w+ m(m-1) , i.e,,
i i D e
(€.3) ce(k/“+m’/ %) < 2(ktm)(n-k-m) + (k-1)m .

A S nz/‘?) this certainly holds for all sufficiently large n ; and
when nl/2 Inn<k <m weobtain (6.3) for all large n by the estimates
2c(k5/2+m3/2) < hcm-’s/g < m3/2 Inn-m < (n]‘/2 Inn-1)m < (k-1)m .,
(We really only need to consider k n?/3 in this argument, but the more
pgeneral ectimate will be useful in the proof of Theorem 2 below. )

In order to cimplify the formulas obtained after applying Lemma 2 in
(©e2), we chall write

¥ >

(:"el) y

s - (w-+(§§)+(§))/(k+m> ,

noting that

n- (ktm-1)/2 ,



wle, /2

(:'\.')\ y=Z+l+C'—'—k_;F—'—£Z+l+C'\/—m— .

The factor n!/(n-k-m): in (6.2) can be rewritten as

(y - (ktm=1)/2)(y - (k+m=3)/2) ... (y+ (ktm-1)/2) = o(y*"™® e~ T(ErmY),
by (5.8); hence (6.2) and Lemma 2 imply that

(6,67 3 i mm-l(k+m-2)l yk+

kim! (k+m) -l ke

m

)ef(m, z-k(k-1)/2(ktm) )+ £(k, z)-£ (k+m, y)

oR

= O = ’
/2 m3/2(k+m):I7§

4"1 Lol &~ k k“l
E {6.7) R = 1(m,z-,C\—?E;-n%)'*f(k,z)-f‘(k+m,y)+0(mlog%) " &
r

{ The proof of Theorem 1 will be complete if we can show that R ig bounded

E X above, since we have already noted that Theorem 1 follows from (4.1) under
4 condition (L.3).

;‘J ‘ Relations (6.4), (6.5) make it clear that z >n/3 for all large n ,
: hence

4 1/2
' f (5.8) L w1+ o(m—-) 3
! Z n

Furthermore it is clear from (5.9) that

f(myv+d) = £(myv)+0(md/v) ,
and that

f(ktmyy) = £(k,y) > f(ktmyu) - £(k,u) when y < u .

Let us set

et A O M Y 1

Bet -
N i
z g k+m k k-l
Y g (g & — -
Ty (£e9) LA (y 2(ktm ) K




Then y S u <2y, and we can simplify R as follows:

< 3/2 1/2 /2 \
(0el0) R = f(m,y - %)+o(m}, >+f(k,y)+o(kmy )-f(k+m,y)+o(' =

=)

&

>
VAR T oSt )

PRI R s b B B 3

R G
omrreege = e e tm —pe g
a p oy Gt L had

= f(m, ﬁ?ﬁ u) + £(k,y) - f(ktm,y) + O(

m3/2) ;

< f(m, k—Tﬁ u) + £k, u) - £(ktm,u) + o(

f(m, kl:;m u) + f(k,u) - £(ktm,u)

5 L (m(em)®I + 12T (1em)2I
J>1 2j(25+1)(2w)?

5 k((em)®d - ¥
i>1 2j(2s+1) (2u)?d

R 1is surely bounded when k <m - r12/5 . On the other hand when

P
=

n/3 <k<m, let g(n) = 5/2/n ; then

2 3 /2 5 3/2
2 L) oy o)
o 96n = 96n3 =

- —917) g(n)h/5+ 0(g(n))

ic lesg than some absolute constant. d

The above proof of Theorem 1 shows that En % is exponentially small
LA

n1/2+ 3

2/3+ ¢ : !
when Kk >n and also in certain other cases (e.g. k = ’

nluE s

m = Thus it ic rare to merge two large classes; one way to state

thicz is




VS ————

Theorem 2. The probability that the equivalence algorithm merges two

classes of sizes k and m , with

i) 2 ke,

n

is exponentially small; i.e.,, it is O(n-b) for all constants b .

Proof, The argument used to prove Theorem 1 shows that

2 3/2
B, kym = °<k3/2m3/;(k+m)1/2) e’fp(' 91212 % °<T )) ;

this is exponentially small since

2 o(22) < 2B (L ma. o)

96n

and m5/2/n >Inn . Summing over all k and m leaves an exponentially

small result., O




T. The Unweighted Algorithm.

If the QFW algorithm had not used the array N[s] , so that unions
would be done by renaming the elements in the larger class with probability
1/2 , the average running time would be significantly greater. Let En,k
be the average number of equivalence classes of size k formed during a
random execution of the algorithm, i.e., the average number of components
of size k which appear, as the edges of the random graph appear in random

order. The average running time of the "unweighted" algorithm can be

expressed as

Gay g L KE y >

since the elements of each component of size < n have a 50-50 chance
of being renamed.
As in Equation (3.3), we can write down an integral for E ) » this
J

time more easily than before:

(7.2) E ( E )j’m Pk(t)d(l_e‘k(n—k)t)
0

(i) j‘m Pk(t)k(n-k)e-k(n—k)tdt
0

We can now argue as before to obtain satisfactory estimates of En k when
)

k < n2/ 5 or when k 1is sufficiently large:
Theorem 3.
2
n n ck3/
(a) —_ < < == exp(—-——) y Ior o > K% C\/;
2 S Tk =2 n-k-cyk )

where c¢ is the constant of Lemma 1;




3

o |

(v) By = 1-¥(Hh-un_k)+o(l—‘°;—n) for e<km<1,

*
where—/ the constant implied by the O may depend on ¢ .

Proof. Since aﬁ{(t) > 1/k we have

@©
n kt k-1 -k(n-k)t
Bk - (k)fo (1-e"") " (n-k)e dt
n\ n-k > k-1 n-k-1 n
= (k) _k—‘f (l-X) X ax = —2 »
0 k

on setting x = e'kt and using well known properties of the Beta function.

The upper bound follows in a similar manner,

Gt ' 2
Bk S ( ﬁ)fo (1-ekt)k-l(n-k)e0k3/ t-k(n-k)t o,

dx

n
e N

n n-k - k-1 n-k-c«/i-l
D

n (n~1)(n-2) +.. (n-k)
k (n-cﬁ:-l)(n-cx/i—E) - (n—cx/‘lz-k)

neex-p c'\/-l-c(

IA
I

i e D e A
n-c'\/-lz-l n-c'\/-l-:-k

since x/(x-y) < ey/(x-y) 5

To prove (b) we use Stepanov's theorem [10] that

(7.3) @ (%) = (1-(@+nt)e™)(1+0(1))

uniformly for t > yo/n 5 by careful analysis of his proof we can replace

the o(l) term by O0(log n/n) , where the constant implied by this 0

:/ Hn=z l/k.

l§k5n
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depends on Yo * Thus

=
n

n,k

(i ) -F (1- (21+xt)e™) (3'-"3-1{1")k-'.l'k(n-k)e'k(n'k)tdt (l+ O(IOen i ))
0 =&

yo/k
+ ( » )O j(‘) (l-e-kt)k_lk(n-k)e-k(n-k)tdt

1
( ; )(n-k) ‘I;) Er=0n x5 (l'x)k-lxn-k-ldx(l + 0( loen - )>

1
+0 ( E) (n-k) j;-zo (l—x)k'lxn-k-ldx

k
0 J

0 sufficiently small as a function of ¢ we can ensure

where 1l-z, = exp(-yo) . The latter integral is clearly less than z
and by choosing 2z

that

k
Zo < Z = 3 H

this is small enough to wipe out the contribution from (ﬁ)(n-k) s SO

|
the correction term is negligible., The first integral is
5 k_n-k-1 * k-1 n-k
f (1-x)"x" " “dx + f (1-x)*"*%""* 1n x ax
0 0

L
! - - ! - —
kc nnk l ° + d J‘ (l-x)k lxn ki
¥ o %

ki (n-k-1): (k-1)!(n-k)! [ 1 1 8
n. n! 6 nf " Rl - 4
Part (a) of this theorem implies that

(Toh) B w0 for ked¥, w<efs j
b

this is rather striking when 1/2 <a<?2/3, since it approaches n-]‘/3 .




e —

Apparently the components of a random graph tend to grow very rapidly once
they get to this size range, they must move quickly past such value:c of k .

The approximation for En k in part (b) of the theorem,
2

1- 5K om0 =1 (F- l)ln(l- £)+ o)

]
Wm
-

n
P

k
'5n'+°(— -) ’
n

has the right order of growth when k = n2/5 » but it has been proved only
for k > én .

At any rate we can determine the asymptotic yalue of (7.1) without
knowing too much about En,k in the middle range of k . The sum of
kEn,k for Kk < en 15 abt most en2 , since it is obvious that
Bk = Ln/k| for all k . (A1l components of size k formed during
the algorithm are disjoint, so there are never more than Ln/kj of' them, )
The sum of KE for k > en differs from nE/h by at most

En2+-0(n log n) , since

(7.5) L (k- w0 -5, = 3(3)

1<k<n

and each term in this sum is less than n . Thus

a6 (5-3)0° <

for akl © >0

asymptotically

weighted cacse,

|-

1
R kEnk < (§+5)n2
l<k<n 2

and all sufficiently large n ; the running time is
n2/8 , a factor of order n times what it was in the

It is tempting to conjecture that a stronger result

actually holds, namely

] | o

(7.7)

—




4». ‘,.‘.v

E F

-

b |

|

E© since 2 kE ~ (2/3)n In n .

‘t Ick<?/3 Wk

e | =

L i 3 4 A A =

o A comparison of formulas (3.3) and (7.2) shows that En, oy 2En,l,n-l 3

p !

b | and indeed this relation is obvious by the nature of the equivalence

‘;i

.,‘i algorithm, since any component of size n-1 must be merged with the

remaining singleton element. Theorem 3 (b) now yields

Bl | |

5} 1
- : = logn '
: F;

:.}rr 4
g hence (4,1) does not hold in general. '

!k 3
! 4
2
4

- e

L et
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‘ 8.  Numerical Results.
* a Some Monte Carlo experiments were made to test the above theory;
"t for each value of n , random edges {x,y} were generated until the
corresponding graph was connected, and this process was repeated ten
fi z times. Here are the results (with "t " indicating one unit of standard
b deviation):
e g
1) n Observed cost, QF 3 n + 3 nlnn Observed cost, QFW
B
g 2 1.0 L 0.0 0.9 1.0 * 0.0
L k3 T 0.3 3,85 5.4t 0.2
‘ 8 5.7t 0.3 13.5 8.5 * 0.2
) 16 50.8 £ 2.4 46.8 eo0.2 ¥ 0,8
32 785 £ 5.7 165.0 5.6 + 0.9
: 64 638 * 19 600.7 99.0 ¥ 1.9
E v 128 25715 L 11 2255.0 212.3 t 4,k
: i ; 256 8609 * 153 8665 .2 B G
512 33938 £ 590 33832.7 %6 t 13
1024 133012 t 972 133437.9 941 t 15
b
» 2048 532637 t 5969 529493.1 3955 t 39
ks L4096 2130655 t 11233 2108508.5 7927 t 4o
3 ;, Note that the values in the unweighted case conform well to the predicted

asymptotic behavior, and the values in the weighted case seem to be less

—

. than 1.9n .
For small n it is possible to calculate exact values without great

difficulty; e.g., when n = 4 we readily find

| o

6 -
HLATE » i Rl T 7 Bop =5

hence the true average costs of the unweighted and weighted algorithms are

respectively .4 and 3.2 .

Ak




’
|
k|

When n =8 the E values are respectively
n, k,m

m=1 m=2 m=3 m= L m=5 m=6 m=
=2 B OR oz B e R SR
k=2 E B U ¥ o0
o 185 I&%% ST

0881
k=b S

and the average costs are respectively 16290696/1062347 = 15,3 and
12265252/1448655 ~ 8.47 . Except for the fact that the denominators

are composed of small prime factors (e.g., 1062347 = 11.13.17.19.23 ),
there appears to be no simple pattern to these numbers. (It is easy to

bound the size of the prime factors by proving that 2((k+m)(n - (k+m+l)/2)):En .
¢ B

is an integer,)

The following tableau shows En,k o &nd En,m when n = 16 and
)

k<m:




k=1

b m=1 4138 16.000
E}‘ﬁ-’. m=2 0.976 0.29L 4,138
a4 m=3 0.449 0,148 0.079 1.951
| m=L4 0.274 0.095 0.052 0.035 1.191
?*; m=5 0.198 0.071 0.039 0.027 0.020 0.846
4t m=6 0.160 0,058 0.033 0.022 0.017 0.01lk 0.665
i & m=7 0.4 0,052 0.029 0.020 0.0l% 0.011 0.008 0.565
A m=8 0,133 0.049 0.027 0.018 0.013 0.009 0.006 0.002  0.511
- & m=9 0.33 0.0 0,02 0.017 0.,0ll 0,006 0.003 0.187
by m=10 0.1%0 0.050 0.026 0.015 0.008 0.003 0.185
| m=11 0.156 0.055 0.026 0.013 0.00k 0.50k
; m=12 0.182 0.058 0.02% 0.008 0.543
E . m=13 o0.224 0.061 0.017 0.60k
4 m=14% 0.290 0.056 0.692
F m=15 0.407 0.814

Note that E16,2, 12 < El6, 2,13 > El6, 2,14 * so the values of En,k,m are

not convex in general. The true average costs for n = 16 are 51.120

and 20.332 ; thus the Monte Carlo results appear to be valid.




9. Another Model for Average Cost.

We might also wish to study the average behavior of an equivalence
algorithm under the assumption that the operations consist of the edges
of a random spanning tree in random order; thus, we assume that the

nn'z(n-l)l possible sequences of union operations of the form

" merge {R[xl],R[yl]}; ... ; merge {R[x

n_l],R[yn_l]} " are equally likely.

The difference between this model and the previous one can be seen
in the case n = 4 : There are 12 spanning trees which form a
hamiltonian path (type 1), and U4 which form a "star" (type 2 ). After
creating the first component {a,b} of size 2, the new algorithm will
create a disjoint second component {c,d} with probability 1/3 if the
tree is to be type 1, and never if it is to be type 2, hence the overall
probability is l/h that two disjoint components of size 2 are formed.
The random process we have studied above, however, will create {c,d}
with probability 1/5 , since {c¢,d} is only one of five inequivalent
pairs that might fire next. The new model is qualitatively different from
the old because it makes the merging of two large components signiticantly
more probable; thus, we would not expect the weighted rule to give such
a substantial improvement over the unweighted rule when using this model.

The random spanning tree model has been studied by A. C. Yao [12];
we shall analyze it in a somewhat different way, so that its similarities
and differences with respect to the random graph model are clarified.

In the next few sections we shall use the symbols En,k,m and En,k
to represent quantities in the new model analogous to those in the old;
in other words, En,k is the expected number of classes of size k

formed during the algorithm, and E, is the expected number

s Kym




X
_; of times we merge a class R[x] of size k with a class R[y] of
; size m . Note that we must have

(9.1) E = T
1ck<cs MRk

in both models when £ > 1, since every class of size > 1 is obtained
by merging.

In the new model the ratio E

n,k,l-k/En,[ is independent of n ,

b since the (-1 unions which form a class of size ¢ do not affect the
behavior of other unions. More precisely, consider any subset A of ¢
f E elements, and any sequence of unions in which A is formed. Then we can
‘o replace the (-1 unions forming A by any of the 11_2(1-1): such
sequences, obtaining in this way all sequences of n-l1 union operations
in which class A is formed and the n-¢ other unions are held constant.

5 . It follows that

(9.2) En,k,l-k/En,l 5 El,k,l-k ’

n so we must only determine the numbers En,k and En,k,n-k in the new
‘ model in order to deduce all the En,k,m values.

To determine E

; b &, tiak consider how many sequences of unions end
a s K,n-

by merging R[x] with R[y] , where class R[x] is a particular set A
of size k ., There are kk-e(k—l)l sequences of unions which construct A »
(n-k)n-k-e(n-k-l)l sequences of unions which connect up the other elements,

(2:?) ways to intermix these sequences, and km wunions which could

come last, hence

P TR I

93) By = 3 (3 ) 20e0): (k)" B (0o (15 ) AP0

n-k-1

-t ()(E)(2)

3L

il y cialbie
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(As in Equation (3.2) we must include a factor of 1/2 because of the
symmetry between x and y .) Note that for fixed k and ¢ , the
asymptotic ratio of En,k,t-k/En,z as n -« in our former model
approaches El,k,t-k s the exact ratio of En,k,z-k/En,l in the present -
model, by Equation (3.6) and Theorem 3(a). Therefore the new model
essentially reflects the "local" behavior of the former model on small

components., Alternatively we can regard the spanning tree model as an

indication of the "early" behavior of the former model, since

B = lim B, 1y 1)
s 2
Ltk = o0 TE T

where the quantities on the right are obtained by substituting T for =

in (3.3) and (7.2).

Let Pk * En,k,n-k be the probability that the final union is a
(k,n-k) -merge, and let CSFW , CSF be the average total cost of unions
in the weighted and unweighted equivalence algorithms, respectively. The

independence argument by which we established (9.2) shows also that

QFW 5 QFW QFW
e R I R B W B
e e e B g el rely
0<k<n

because the behavior of the algorithm within the classes of sizes k and
n-k 1is the same as its behavior on classes of total size k and n-k .
A. C. Yso [12] has proved that CO" y n logn, ¥ x 22/2 , using a

different approach to the analysis; by studying recurrences (9.4) and (9.5),

we will be able to obtain more precise results.




¥

I 10. Solution of Recurrences.

According to the equations we have just derived, the average

behavior of equivalence algorithms in the spanning tree model can be

described by recurrence relations of the general form

; (10.1) X = c + T opo e *x )
‘h n 0 5ck<n nk k" *n-k
where
i fares) % B 1 o k k-1 ik n-k-1
| ; nk 2(n-1) \ k n n i
i Before considering this particular recurrence in detail, it will be
k interesting to deduce properties implied by (10.1) for any choice of
i

the Do such that Zk Pox = 1l , since such recurrences arise also in

the solution of several other algorithms (e.g., in studies of gquicksort

and of digital search trees). If cg=1 and c =0 forall n>1

e

it is immediate that X, =n for all n ; similarly if ¢, = 0 and

i

c, = 1l for all n >1 we have . n-1 for all n . In general X,
)
is a monotone function of (cl, ""Cn) » hence these particular solutions
&
allow us to conclude that ]
(10.3) c_=0(1) implies x_= 0O(n) .
“ n n
( Let us now specialize (10.1) to the case that
|
(10.4) Py = r(k)r(n-k)/s(n) :
|
| {
‘ for some functions r and s, where r(n) =0 for n<O and "
(10.5) s(n) = 2 r(k)r(n-k) . g
k |
: Clearly (10.2) has this form, with r(n) = nn-l/n: for n>1, and
>4 n-2, .
E‘, s(n) = 2(n-1)n “/n! . When Ppk = Pp pox e can replace (10.1) by

56

s e, - i s




‘"" (10.6) X = c +2 P TR, .
b v ST ST GRS

If we can find sequences (xn) such that kankxk has a simple form,
we can insert the corresponding values into (10.6) and obtain a sequence
¥ (cn) with a known solution (xn) ; linear combinations of these special
sequences (cn) can then be used to obtain many further solutions. The
form of (10.k4) suggests that we try X, = r(n-m)/r(n) for some fixed

nonnegative integer m ; then we have

%pnkxk = s(n-m)/s(n) ,

E ‘f
E’A hence xﬁm) = r(n-m)/r(n) is the solution to (10.6) when
g« (10.7) i c(m) _ ro-m)  s(n-m
£ i n Mg et O s(n ¢
1
L If r(n) # 0 for n>1, we can obtain any sequence (c,) asa (possibly ,
1 %
infinite) linear combination of the special sequences (Cr(1m)> s since
m m . :
| cr(1 ) =0 for n<m and céﬁ_{ = r(1)/r(mtl) £ O ; the solution to (10.6) :
will then be the same linear combination of the sequences (xém)) . §

In our case (10.2), we find for example when m = 1 that
X, = (l-l/n)n-2 solves (10.1) when c, = (l-l/n)n-2(2/(n-l)2-l)

for n >2 . However, this general approach does not seem to lead to

sufficiently simple formulas, so we shall now restrict consideration to

the particular case (10.2), when more powerful techniques can be used.

e




1l. Solution of the Spanning Tree Recurrence,

Let us assume that ¢ = 0 , since we have already determined the

dependence of x, on ¢, . When p. is given by (10.2), we can multiply

both sides of (10.6) by (n-1)nn’l/n: , obtaining
v =l k-1
(n-1)n X L ﬁp-k)n-k-l
(11.1) e et Z Kl (n-k)! :
* 0<k<n i %

where

L2 d = (n-l)nn-lcn/n! .

The form of (11.1) suggests that we introduce the generating functions

e
(11.3) 6(z) = T —— 2,
n>2 ;
n-1 o
(gl F(z) = 2 e z s
n>1 =
(as)y - ols) & ae
n>2

and we obtain the equivalent relation

(11.6)  6'(2) -z7M6(z) = 27Mp(z) + & (F(z)6(z))

2" ID(z) + F' (2)6(z) + F(2)G' (z) .

It is well known (see e,g., [4, p., 392]) that this particular function F(z) satisfies

CELeT ) F(z) = zeF(z)

b

hence

(11.8)  F'(2) = -l

skasie




?

-

We can now multiply (11.6) by 1/F(z) and rewrite it as

(11.9) = %lc(z)) : z_]i%)y :

the solution with ¢ = @ ‘is
(11.10) 6(z) = _F(z) fz D(w)aw
1-F(z) A wF (w) .

Let us now imitate our procedure of the previous section, finding a

set of functions Dm(w) such that the integral in (11.10) has a simple

form and then expressing the general case as a linear combination of these

special ones, It is natural to set
(11.11) D (z) = «F(2)" F'(z) = F(2)™/Q-F(z)) ;

then the corresponding generating function is

z
l—f‘% J;) F(W)m-:L a F(w)

J_-lj(Fz()z) . F(;)m - %Dm(z> s Bor imcs 0

6, (=)

]

(In other words, Dm(z) is an eigenfunction of the linear mapping I & G
defined by (11.10), with eigenvalue 1/m .) To find the power series
expansion of Dm(z) s we may use Lagrange's general inversion formula,

according to which the relations z = tf(t) = t+ flt2+ f2t5+ veouo - SOd |

o)

1, Wizt wz,za+ eee =g(t) = l+glt+ g2t2+ cos imply that nw, is the

coefficient of t2° in g (t)f(t)™ . Letting t = F(z) , f(t) = o "

J

g(t) = tml/(l-t) , we obtain nw_= 2

k ' n-m
n 0<k<n-m B (n-k)/k. =n /(n-m—l)l

hence

BBt e o SRS
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nn-m-l -
(13.38)  Bley s 0 & Z :

- 1
m iy AnemeL

The corresponding c's, according to (11.2), are given by

C(m) . (n-2)! _ n-=2 n-m for n > 2

= e e s

(1050 o =
n n nm'l(n-m-l)L n n

We have proved the following result:

Lemma 3., Let m be a positive integer. The solution to (10.1), (10.2)

\ oGy mel (m)
(BALGD) X, = X = :
when ¢ = Cﬁm) is the sequence defined in (11.13). O

In order to translate Lemma 3 into a more useful form, let us write
(ef. [6])
(11.15) Q(ao,al,ag,..')(n) = ay +a) —i— Ty S "

By successively setting n = 1,2,3,... in this formula we see that any

function of the positive integer n can be written as Q(ao,al,ah,...)(n)
[=

for come sequence (ao,al,az,...) » and if we are lucky the a's will form
a nice pattern.
Suppose ¢ = Q(ao,al,an,...)(n) where a = 1 and all the other a,

are zero, We have

ry D=l ne2 pem  om o (m) , 1 (mtl)
GLLL15) R A L S b 3

2o the solution X muct be




n-1 n-1 (m+1) n-1 n n-1 n-2
{11 27} ————C = s, b I8 St
(m+l)2 n mt+l (m+l)2 B L

note that this works also when m = O . Therefore Lemma 3 can be rephrased

as follows:

Corollary. The solution to (10.1), {10.2) when c = Q(ro,al, ag,...)(n)
is

/

/8

/ a a,
(11018) i xn = (n-l)Q<—3-9 =i A oco>(n)+nQ ;Ce)' ;) 'a_;- b} —% ] 0-¢>(n>
2 >




e
i

—

2
k|
¢ |

12. Application to the Spanning Tree Model.

Let us now use the results of the previous section to determine the
average behavior of the spanning tree model. First we shall study some
special cases of the general @ function defined in (11.15), It is not
ditficult to verify that
(22.1) Q2. 2;3, .0} » B 3

furthermore

(12.2) G131, 1, 000 3(8)

Q(n) = A/?-2—F -%+ o(n-1/2)

is the function discussed in (2.,14). Let us now write Qo(n) =n

q (n) = q(n) and

(125 Q<l,2 ’5 ...>(n) = Q2(n) .

W |
(12.4) Q<l,'2—2,;2-: --->(n) = %(n) ;

M. D. Kruskal has proved [7] that
(12.5) (n) = ilnn+-%-(7+ln2)+o(l)
~ Natilame > )

and it is obvious that

6,(n) < 1+ 3+ 1+ .. = 0Q) .
3 5 3

According to Equation (11,18),

(12.%) c, = QJ.(n) implies x = (n-l)Qj+l(n)+an+2(n) .

Combining this with (10.%3) and the above estimates, we see that




o £ o Ll
¢12.7) c, = avn + 0(1) implies X, = ’\/5.1_( nlnn+ 0oln) ,

for any constant a , since c = (2a/N2n )Ql(n)+ 0(1) . similarly we

can improve (10.3) to
(12.8) 0 = 0(log n) implies X, = olm)y

For the unweighted algorithm, we have c = pfe for n>2 (ef. (9.5)),
hence the average cost of unweighted unions can be expressed in "closed

form" as

(12.9) ¥ = Z (n-1)Q(n) + 3 na,(n) - 3 n

—«/é? n5/2+)]jnlnn+(%:(7+ln2)-%)n+o(n) .

For the weighted algorithm, we must sum

(12.10) 2 - P min(kn-k) -,
W gk

but this does not appear to have a simple closed form., By arguing as in

Lemma 1, we have

1
Prix = Bln-1) k

1 n /

{34 = 2 F _—
5 0O<k<n/2 AB8rx ¥2(n-k)>/2

By Euler's summation formula,




1
b,
0<k< n/2 kl; # (n-k)5; &

adx

X172(n_x)372

hence ¢ = VEn/n + 0(1) . Relation (12.7) now yields the asymptotic

behavior of the algorithm in the weighted case,
(12.11) CSFW =Znlnn+o@) .
We have proved

Theorem L. The average number of times the QFW algorithm changes
entries in its R table while doing n-1 set unions, under the spanning
trce model, is n'lrlln n+0(n) ; the (unweighted) QF algorithm makes

(n/i)l/2n5/24-o(n log n) such changes, on the average. i

Here are the results of empirical tests analogous to those in Section 8,

using the spanning tree model:




e xfm - 3
Observed cost, QF Wn/8 n s 4 Inn Observed cost, QFW

1.06T 0 2.1 3.0 %
0.1 6.4 3.4 1
18.3 9.0
1.9 51.2 22.6
3 2 1k 52.1
b s 387 121.2
L7 1063 oth.6 T
210 2922 580 *
* 580 8058 1350
+ 1765 22309 2837
3980 61984 6175
12930 172792 13496

The true values of (CgF, CSFW) for n=2,4,8,16 are respectively

(1,1) , (5375, 5.25) ; (Ah,62, B.B5) » (W26, 22.00) .

If we set c_=8§ in recurrence (10.1), the resulting value of

n nk

X will be En Kk’ the average number of classes of size k . Hence the
)

general solution to (10.1), (10.2) can be written

(12.12) x = %ckh:n’k .

We chall complete our study of the recurrence by determining Bwm? for
)

fixed m > 2 , using the methods of Section 1l.




According to (11.5) and (11.10) we have

z m-2 -1
(12.13) o¢(z) = 1_?%(225% h%dw .

This integral can be evaluated by using the known formula (cf. [k,
exercise 2,3.4.4.29])

n-l-r
n

(-r)7

(l2.ak) Fz)f « ¢ & B

n>r

the integral becomes

n" (n+2) (n+3) ... (n+m-1) B
(n+m) !

We wish to write the latter term as a linear combination of the functions
sz(z)'k s for 1 <k <{m ; thus, we set

m=2

n
(12.19) £ T Tn—fm_ (n+2) ... (n*m-1)z

n_>_-m

n+m

¥ ‘bkzml?(z)'k

likim

Z kb (n+ktl) ..y (n4m) )25
1<k<m 72

and the b 'c must satisfy

b, (n+2) ooe (ntm) + ebgn(n+3) s (OEMYCE sk (m-l)bm_lnm'g(mm) + mbmnm°l

m-2

i %%:57 (n+2) (n+3) ¢u. (n+m-1)




for al1 n . ©Since both sides of this equation are polynomials in n of

degree m-1 , the b's can be determined by successively inserting the -
values n = -m, «es, n = ~1 , and we find without difficulty that
bm-J = m'J-e/jl ) for O<3J<me ;
b, = ™/ (m-1) 3 -mm'l/m‘. P
Now (12.13), (12.1k4), (12.15) and (11.8) yield
G(z) = —J'é- lf‘FZz * Z bksz(z)—kzF'(z)
m 1<k<m
i 5 n _]; ﬁ $ mm i jg- )n-m E 5 mJ-2 (n_m)n-g-l
= e 1 1 o 1 =t 5t - 1 .
n>m m2 T m} (n-m): 0<j<m S s g=an
Hence
m-1 n-1 v
(12.37) E . = =n —12-+ — (1 -g (;:i)‘
£ m 2 (n-m)" “(n-m)!
e s nd ™2 1.0 s (n-1)!
0<j<m Je < (n-m)?(n-j-1)!
In particular,
o n=2
» — n E o
(12.18) e (u (1 n) .
For fixed m as n - = we have
n m mmJrl m‘j
(12.19) E ~ = [ 1+e” — - o —
n,m m2 m. O_ij<m e
n me "
i m_2 1+ m! (m" Q(m)) .

.
Thic coefficient, of order m 5/2 y i significantly different from our
recult E ~ n/k2 in the random graph model.
n, k
L7

DU = sl i
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13. Union Trees.

In order to analyze a variety of equivalence class algorithms in a
variety of models, we can construct an extended binary tree which retains
essentially all of the necessary information about the set union operations
which caused classes to merge. Given a sequence of ordered pairs
(xl,yl),...,(xn_l,yn_l) such that the unordered pairs {xl,yl},...,{xn_l,yn_l}
form a spanning tree on the vertices {L,E,...,n} , let the associated
union tree be defined as follows: For 1 < j <n , construct a new node
whose left subtree is the union tree for the current component of x.
and whose right subtree is the union tree for the current component of yj .
(By "current component" we mean the connected component defined by the
previous edges {xl,yl},...,{xj_l,yj_l} .) The union tree for a component
of size 1 1is a single terminal node.

Thus, for example, the union tree associated with the sequence

AL i

(3:0) ) ()"l) ’ (’3)9)1 (9:8)) (311): (6:5): (2:9)) (1)5): ()4)7) 1

(The labels chown on these terminal nodes are not really part of the tree,
they merely help to indicate the manner of construction.) Note that the

union tree hac been defined for ordered pairs (xj,yj) 3 if the last pair




o

AV o

i

e

of the example were (7,4) instead of (L,7) the tree would be different.
This convention about ordered pairs avoids complications that would other-
wise arise when counting binary trees whose left and right subtrees are
isomorphic.

We can extend the models of random behavior used above to obtain
definitions of random union trees by assuming that each edge {x,y}
occurring in the random graph or random spanning tree is equally likely to
appear as (x,y) or as (y,x) when the corresponding union tree is being
built up. Then each of the (2n-2)!/n!(n-1)! possible binary trees with

terminal nodes will occur with a certain probability. For example,

when n = 4 the five possible union trees

RO NEAEal N

cach occur with probability 1/5 in the random graph model, while the
respective probabilities are ;L b - > ;L in the spanning

39 > 1 ies ¢ T AR T v e T P
tree model.

The protability of a particular tree T can be calculated in the
random graph model by considering the function P(T,t) which denotes the
probability that T has been formed at time t . Let |T‘ be the number
of terminal nodes of T j and if ‘”‘ > 1L le% TI and Tr be the

respective left and right cubtreec of the root, so that |Tl|-‘|Tr| = |T|
When |T| = 1 we define P(T,t) = 1, otherwise we let
RE

R b
(1505> j(';.)tj = ‘f < ! rl
o(|T, |-1)s (] |-2): "o

I(Tl,u)P(Tr,u)du i

49
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Then P(T,») is the probability that T is formed by the algorithm.
For example, when T is the middle tree of (13.2) it can be shown
that

P(T,t) = % - 3e°ht + 25—,4 e-St-Ee-6t ;

but for the other four trees we have

P(T,t) =

|
1
o

The sum of P(T,t) over all five trees T is, of course, Ph(t) .
Although all five trees will occur with probability 1/5 , the middle
tree tends to occur "faster" when it does occur, since the middle function

" -2
t e Lt)

ig (e = 3 larger than the others.

Let T, be the tree with || =1, and let T  be the tree with

I,

tree, having the longest path length over all trees with n terminal

= n whose right subtree is Tn-l 5 thus Tn is a "degenerate"

nodes, For these special trees an inductive argument can be used to express

the P function as a fairly simple sum,

vk ni(n-1)!(2n-1-2k) _-k(2n-1-k)t/2
O<§<n (-1) k! (2n-1-K); "

I

(13.4) F(Tn,t)

Curiously we have

(13.5)  P(T,=) = ni(n-1)!/(en-2): ,

which is the exact reciprocal of the total number of binary trees; in other

words, the degenerate tree occurs just as often as it would in a uniform

dictribution over trees.




Unfortunately the probabilities P(T,») for other trees do not
have such simple properties, and for n > 4 the distribution becomes

far from uniform. Computer calculations for n = 10 show that the tree

(13.6)

has maximum probability over all 18:/10:!9! = L4862 binary trees with 10
terminal nodes; its probability is T74615232/35942281 times 1/L4862 .
The least probable trees are obtained by joining two degenerate T5 's;
their probability is only 8515903/27199564 times 1/4862 . According
to results we have already derived, a tree whose left subtree has nearly
n/2 terminal nodes will almost never occur for large n .

The tree probabilities in the spanning tree model are much simpler.
Let S(T) be the set of all n-1 nonterminal subtrees of T , when
|Tl =n ; then it is not difficult to prove that T occurs in the spanning

tree model with probability

(13.7)  B(1) = =2 ] -
(en)™t res(r) |71
For the probability is clearly
r(|7,e(lT,]) 1 r(|])
v ooy PEbieE S ey T W L SRR

using the notation of (10.4); and r(n)/s(n) = n/2(n-1) .

DB oo oD o SE VM ——————
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Incidentally, whenever the probability distribution for trees has
the "separable" form

(23.8)  B(T) = £(|T]) T[( )g(lrl)

Te S(T

for some functions f and g , we can use recurrences like (lO.l) satisfying
property (10.4) to analyze cost functions on the trees. Three examples of
such probability distributions appear in [5, exercise 6.3-36],

Once we know the tree probabilities, we can analyze several
equivalence algorithms. The cost of tree T in the QFW algorithm is

(13.8)  c¥W(1) - T min(jr,) |t

1€ i

and in the unweighted algorithm it is

(13.10) c¥(1) = )3 17,1
T e S(T)

When the probability model assigns equal probabilities to (x,y) and (y,x) ,
co that all trees obtainable from a given tree by interchanging left and
right subtrees are equiprobable, (13.10) can be replaced by one-half the

external path length of T , i.e.,

5 T o
Te ST
because |7, | will be i(|T|+|T ) = ilTl on the average. The
e /) Gl V2 { T 2 y

quantity (13.11) will have the same mean as (13.10), but not the same
variance,

A. C. Yao [12] has analyzed two other algorithms which he calls

'quick merge" and "quick merge weighted". It is not difficult to see

that we can study the length of "find" operations on the merge steps of




these algorithms by considering union trees, using the respective costs

(g etem s F e Ryl
e S(m)

(5.8) - G e e iediia]
T e s(T)

provided that the probability model we are using assigns equal probability

to all sequences (xl,yl),...,(xn_l,yn_l> in which (xj,yj) is replaced

-

by (xé,y5> , where x5 and yé are in the same current components as
Xj and yj . Both of the models we are considering have this property;
in the random graph model these formulas do not account for "find"
operations when a redundant edge is encountered. 1In the spanning tree

model we can obtain the average behavior of these two algorithms by solving

the recurrences

M GF Q -3
(13.1L) ¢ = C, /n+ 2 g }}:‘m Pl ]

CQW 4 ':',

7 S Q/\Iw e QFw DT
(15.15) C, = C, /n+ 2 fZ‘ P,k -

0 n

as in Section 12 above. From (12.7), (12.8), and Theorem L we may conclude
that C&M = % n ln n+ 0(n) and CSMW = 0(n) , thereby confirming and

slightly sharpening Yao's results.

Doyle and Rivest [2] have studied equivalence algorithms under a third

probability model, assuming that each union takes place between a random pair
of equivalence classes present at the time, regardless of the sizes of these
classes. Although their model may be unrealistic, it is interesting to note
that it leads to union trees with the same probability distribution as that of

binary search trees; cf. [5, Section 6.2.2]. For example, the five union
P e T e e ) :
in

4

treec in (1%.2) have the expected probabilities (3, 7'35'%'¢




this model., Since the first union leaves classes of sizes (2,1,...,1) ,

and since the subsequent behavior of the algorithm is to construct a

random union tree from these n-1 classes, it is clear that random union
E ; trees with n terminal nodes are obtained from those with n-1 by
t replacing a random terminal node by a branch node, and this is essentially

the same process which produces random binary search trees. We can analyze

the four union algorithms in this model by using Equations (9.L4), (9.5),
(13.14), and (1%3.15) with the separable probability distribution

Pok = 1/(n-1) . The resulting solutions are

| :

(13.16) ¢, = n(H -1) = n 1n n+0(n) ;
' CSFW il N %nHLn/z_} - I'n/21 = %n 1In n+0(n) ;
| CSM = 2nHr(12) e =0 *1 = %nz-Q)n+O(log I
! CSMW = Gln)y

Note that in this model the union tree tends to be reasonably well- 1

balanced, =o the weighted algorithm saves only a factor of 2 .




14, Qpen froblems.

We have proved that the QFW algorithm has linear expected running
time in the random graph model, and we have analyzed four distinct
algorithms in the other models, but several related questions are still

waiting to be recolved.

Perhaps the most important problem remaining is to determine the

s : - =3/2 -1 < -
asymptotic behavior oi }h(t) when n 5/ =<t <n 5 Since our estimates

are unsaticfactory in this interval. Such an improvement should help in
the analysic of many other algorithms, because the function Pn(t)
deccribes the behavior of random graphs. A detailed knowledge of Pn(t)
would probably establish the conjecture (7.7), and perhaps it would also
lead to an analytic determination of the constant iz;;_ﬁmfchw/n) :

Given random input sequences of length { in the random graph model,
ig it true that the expected running time of algorithm QFW is 0(£) ? Our
proof gives O(f+n) , which is satisfactory if # is order n at least;
and for very small [ the individual components almost always have bounded
gize. But for { ¥ n/log n , say, we do not know now to answer this question.

Another natural problem the authors have not been able to resolve is
the estimation of F(T,») for given trees T . This ought to shed further

light on eqguivalence algorithms and the connectivity of random graphs.
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