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The Expected Linearity of a Simple Equivalence Algorithm

by
S

Donald E. Knuth and Arnold Sch6nhage

Abstract.

-
~~ The average time needed to form unions of disjoint eq~iivalence

classes, using an algorithm suggested by Aho, Hopcroft, and Uliman, is
I

shown to be linear in the total number of elements, thereby estáb.lishing

a conjecture of A. C. Yao. The analytic methods used to prove this

result are of interest in themselves, as they are based on extensions

of Stepanov’s approach to the study of random graphs. Several refinements

• of Yao ’ s analyses of related algorithms are also presented.

Keywords: analysis of algorithms, asymptotic methods, connected components,

random graphs, random trees, recurrence relations, set union

algorithms, union-find problems.
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- - 0. Introduction.

The problem of maintaining a representation of equivalence classes

• 
or partitions of a set arises in many applications. Aho, Hopcroft, and

Ullman [1, Chapter 1~] have called this the UNION-FIND problem, and they

begin their exposition by introducing the following simple data organization:

Let R[x] be the name of the equivalence class containing element x

Let N [s] be the number of elements in equivalence class s

Let L[sJ designate a linked list containing the elements of class s .

To merge disjoint equivalence classes s and t , where N [sI < N[t} ,

set R[x] — t for all x in L[s] , append L[s] to LEt] ,

add NEd to N[t] , and call the new equivalence class t .

Initially all classes have size 1 , and they are merged into larger and

larger classes as the algorithm proceeds.

This strate~~r allows us to find the equivalence class containing a

given element in constant time; and the cost of replacing two classes

4’ by their union is essentially proportional to the size of the smaller

class, i.e., the number of times R[x] is changed. If there are n

elements in all, it is easy to see that R[x) is changed at most lg n

times
~
’ for each x , since the class containing x must at least double

in size whenever R[x] changes. Therefore it will take at most O(n log n)

units of time to do all the union operations.

In this paper we shall prove that the average amount of time to do

all unions by the above method is only 0(n) , thereby establishing a

conjecture of A. C. Yao [12]. The probability distribution on the set of

(
We use ig for log

2 
and ln for log

e
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possible input sequences, which leads to such “average” behavior, can be

defined in several equivalent ways corresponding to the conventional notion

of a random graph; in essence, the probability that classes s and. t will

be merged at any particular step is proportional to N[s]N[t].

Section 1 describes a convenient way to deal with large random

graphs, by analogy with the treatment of large systems of particles in

statistical mechanics, an approach which was first suggested by

V. E. Stepanov [10]. Section 2 develops several estimates useful in

the study of this probability model, and Section 3 explains how to apply

the resulting formulas to the above algorithm. The proof of linearity

is completed in Sections ~4, 5, and 6.

Following Yao [12], we shall call the above algorithm QJW , for

“quick find weighted”; one can quickly find the equivalence class

containing x by simply looking at R[x] , and the class sizes or

weights N[s] are used to decide how the updating is done. QFW is a

refinement of the algorithm QF , which dispenses with the N [s) table

4’ and simply updates one of the two classes selected arbitrarily. In

Section 7~ the QF algorithm is shown to require n2/8 updates on the

average. E~npirica1 experiments on Q~F and QFW , confirming this theory,

appear in Section 8.

Section 9 discusses another probability model under which we might

wish to study the average behavior of Of and QFW , based on the hypothe~i~

that the actual unions to be performed take place in random order.

Recurrence relations which arise in this model are studied in Sections 10,

11, and 12, culminating in detailed exact or asymptotic calculations of the

average c~~t.

_ _



~~~~~~~~~~~~~~~~~ ~, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
...

~~
_ ‘ . -

~
.——.---.. :,-.~-~--‘,. ~‘ ~~~~~~~~~~~~~

r

- Finally, Section 13 discusses the distribution of “union trees” -

associated with equivalence algorithms, and relates such trees to two

other algorithms (~ 4 and ~4w) described by Yao, in addition to Of

and QFW . Several open problems conclude the paper.
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1. Connectivity ol Random Graphs.

Let us imagine that each of the (n2-n)/2 pairs of distinct elements

2[x ,y)  has been associated in some manner with (n -n)/2 independent equal-.’ized

samples of some radioactive substance like radium, where there is probability

e t that any particular sample of radium has emitted no a particles

between time 0 and. time t • \~hen the radium associated with [x,y)

~if1 fires off its first particle, we immediately draw a line between x and y

at any time t > 0 the lines drawn in this way define an undirected graph

on the n given elements.

Let ~~(t) be the probability that the random graph defined in this

way is connected at time t ; thus F (t) is an increasing ~~nction whichr ~ approaches 1 as t -. . It is easy to verify, for example, that

P1(t )  = 1

-tp
2(t) = l-e

-2t -~tp
3

( t)  = l - 3e  +2 e -’

= l_ ~~e
_3t

_ 3e
_
~
t + l2e

_5t _ 6e 6t

Another way to define a random graph is to say that each of the

(n 2-n)/2 edges is independently present with probability p and absent

with probability q = 1-p ; then P~ ( t )  is the prob ability of connectedness

if we set q = e . This definition was introduced by Gilbert [3 ], who

wrote, for example, P~ = l_ 3q2 +2q3 “ ; but we shall see that Stepanov ’ s

physical interpretation tenth~ to b more suggestive in developing the

L 

theory.

Incidentally, p (t) may be regarded as a generating function forn

two types of’ discrete quantities associated with random graphs: If C(n,m)

- , - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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denotes the number of connected graphs on n labeled vertices having m

edges, we have

p (t) = ~ C(n,m)(l~e
t
)
m e t 2

/2m )

= e~~
” -n)t/2 ~ C(n,m)(e

t_l)m ;
m >O

and if A (n,m) denotes the number of ordered sequences of edges

CX1,Y1),[x2,Y2),...,[X ,Y) defining a connected graph, where x~ ~

but duplicate edges 
~~~~~~ ~~1 = (x ., y

,~) 
are allowed, we have

(1.2) ~~(t) = e
_
~~
2 

)t/2 E A(n,m)t
m
/m~m > O

sin ce e
_t 

tk
/k: is the probability that a given edge has “fired” exactly

k times. The sum in (1.1) can, of course, be restricted to the range

n-i ~
.. m < (n

2
-n)/2 , since C(n,m)  = 0 when m < n-i ; similarly, we can

replace “ m > 0 “ by “ m > n-l “ in (1.2).

It is easy to compute the functions P~(t) for n = 1,2,... by using

the recurrence formula

(1.3) 
k > l  

( )pk t e~~~~~~~
t 

= i

this formula follows immediately from the fact that the k-th term of the

sum is the probability that a particular point x is connected to exactly

k points (including itself) at time t . Identity (1.3) has a remarkable

corollary,

(i.~~) E 
(~~~~)Pk

t
~~

e
~~~

+z
~~~~ = (l÷Z)

n_l

k > l

which holds for all z ; the coefficient of ~
m 

on the left-hand side of

(1.14) can be shown to equal the coefficient on the right, using (1.3).. 5

Stepanov (9] discovered two nonlinear identities

:~
‘ ‘ 

(1.5) P (t) = ~ 
(

n_2
)
~ (t)p (t)(e

_k _ t
_ e _k(fl_k)t)

k > l  -

6
~~~~~~‘-~ ~~~~~~~ --.—.~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ 
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(1.6) p ’( t )  = 
n(n-l) 

~ (~~~~)Pk
(t)Pfl k t)e~~~~~~

)t

k>l-

-
~~~~ for which he gave rather lengthy algebraic and analytic proofs . His

first formula can be proved more directly by observing that the k-th

term in the sum is the probability of a connected graph in which a

particular point x would be connected to exactly k points if another

particular point y were removed. There are (~:~) ways to choose

the k-i other points, and the graph restricted to x and those other

points must be connected, as must the graph restricted to the remaining

n-k points including y ; and there must be at least one edge from the

k points to y , but none from the k point s to the remaining n-i-k

Stepanov’s second formula can be proved by noting that P’(t)dt is the

probability that the graph becomes connected at time t (i.e., between
0

t and t+dt ) ;  this is the number of ways to choose an edge [x,y) ,

times the number of ways to divide the n points into a set of k elements

containing x and a set of n-k elements containing y , times the

4’ 
probability that the k points and the n-k points are already connected,

times the probability e
t
dt that the edge (x,y) has just “fired”, times

the probability that tIi~ other k(n-k)-1 edges between the two sets have

not yet fired.

I 
• Incidentally, ~~(t) is also relevant to random directed graphs on

n vertices: If each of the n
2 

po~’sib1e arcs (x,y) is independently

jr~~er.t with probability 1_e
_t 

, t.hen P~(t) is the probability that a

particular vertex x is a “root”, i.e., that there is an oriented path

from x to all other vertices. Perhaps the simplest way to prove this fact
A l

is to show that the stated probability satisfies recurrence (1.5). 

. — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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2. Bounds on the Probability of Connectedness.

If we set z = _e_r~
t in (1.14), we find

~~:

¶ (2.1) P ( t )  = (l_e flt )
fl_l 

- 

~~ ( ~
_
~~)P k t e

_
~~~_ e _flt

)
fl_k

l (k < n~~ 
-

hence (cf.  [10] )

- ,~~~~ (2.2) Pn ( t )  < (l_e _fl t )
fl_ l

In fact, a similar argument proves the sharper upper bound

F 
P (t) < ( le

(1
~~~

)t
)

T1
~~

I’

but we will not need this improvement. Wheu t is large, the bound in

(2.2) is very good because the correction terms dropped from (2.1) become

exponentially small; but when t is near zero, we can squeeze another

factor of n out of the upper bound, since (cf. [11, p. 228])

(2.3) P~(t) < n
fl_2(l_e

_t
)
fl_l

di This formula follows because a connected graph must contain a spanning tree as

I a subgraph; there are n~~
2 spanning trees on n labeled points and (l_e

_t
)
’
~
_1

is the probability that any particular spanning tree is present. A simp le lower

bound for ~~(t) can be obtained by considering only the term for m = n-i

• ~n (1.1):

(2.14) P~(t) > 
n_2

(l
_t
)
n_1

(e
_ (n_2)t/2

)
n_l

Relations (2.3) and (2.14) combine to give the formula

1n~~~ = ~n~2 t~~~~( l - O ( n2t ) )

(Here and in the sequel we shall use 0 notation to stand for functions bounded

-
~~~~~~~ . %  

. L:i absolute constants, depending only on specified conditions. For example,

8 

-—-~~~~
. ——---~~~~~~~~~
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in ( 2 . 5)  the 0(n2t) stands for any function of n and t whose absc1ut~

value is at most Cn2t for some C , when n > 1 and t 
~ 
0 . )

We shall be especially concerned with values of P~(t) for t << 1/n

and the upper bound (2 .2) shows that P~ ( t )  is exponentially small in 8

this critical range . In order to understand more easily what is going

on, let us magnify the values by defining

(2.6) w (t) = P~ ( t )/ ( l_ e~~
t ) fl

~~

If we apply formula (1.6), together with formula ( 1 .5)  both as it stands

and with k replaced by n-k , we obt ain

(2.7) w’(t) = ((l~e~~
t
)pi (t) ~~~~~~~~~~~~~~~~~~~~~~~~~

= 
n(n-l)  

(~~

_

~~
) 

Pk(t)Pf l k(t) 
e ( t (l_e _flt _ e _flt

(e
kt_l+e

(fl_k)t _l))
k> 1  - 

(l-e~~ )r~

= 
n(n -i)  

k > l ( k1) k 
( ie m n t) E i e~~

n t )  
‘

hence w ( t )  satisfies a surprisingly simple differential difference-
di n

equation (c~ . [10]):

(2.~~) w’(t) 
~ k(t)~~~~~~n~k(t)(:j4~~~~ )

k
~ 

i n (~~~ k)t/2) )
flk

It follows in particu1~~ that w (t) is monotone increasing. ~~~ b~unds

on ~~(t) imply that

(2.9) w (t) = ~ (l+ 0(n2t)) for t = 0(n 2
)

(2.10) ~ w (t) 1 •

() 

-- .~ -~~-—— - - -~~~~~~~ ~~~~~~~~ -.—-~~~~ ~~~~~~~~~~
,, --—-~~~~~~~~~ — ~. .--. -. -~~--.
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We can also obtain a recurrence for w~(t) analogous to (1.3) and (2.7),
-ntusing (1.14) with z = -e

(2.11) 
k>l ( k1) k 

(iI :-flt 
)

~~‘(ie~~~~~)t)~~~ 
= 1.

We shall make several uses of the following estimate for W (t) , which

is of particular interest when t <

Lemma 1. w~(t) < ~ exp(cn
3/2t) , where c = ~~ .62666

Proof. It is easy to verify that sinh(at)/sinh(bt ) < a/b when 0 < a < b

and t > 0 , hence (2.8) implies

(2.12) w’(t) < E ( 
~ 
) ko

k(t)(n~
k)a 

k(t)(_ )

k

( 
n-k 
)

flk

- 

‘

~ 
note that equality holds when t = 0 • Let us now consider the quantity

Ø(n , k) = (n)(k)
k
~~~~

k)
~~~

which appear s in this sum . Since

in n n ln n-n+ln~~~~n +  
~ 

t 2
h(t)dt 

‘

where h(t ) = ~~ [t)[ 1-t) , we have

• 
ln ~ (n , k) = 

~~~~ ~J2~k(n-k) 
- 

(
~~

÷ 
~~
_k) 

t 2
h(t) dt ;

~~~~

~ Ø(k ,n) < 1
0 < k < n — ‘~ 0 ( k < n  ~Jk( n -k)

~~~~~~~~~~~~~~~~~~~~~~~~~~~1i 11 ~



By induction we have kW
k(t).(

n_k
~~f l k

(t) < exp(c(~~~~~+ (n k) 5/2 )t )

< exp(cn~
/
~t) , so (2. 12) yields

UY ( t )  <~~~~~~~ exp(cn3/2t )  ,

w (t)  < + c~~~ ~ 
exp(cn3/2u)du = ~ exp(cn~~~ t )  .

Incidentally, it can be shown that

(2.13 ) W T ( O )  = ~~ (Q(n)-1) , 
-

where

(2.l~~) Q(n )  = 1 + ÷ + ...
f~W 1 + 1 /~ .._.~L.. + 0 ( 

-3/2
- ‘~J 2 - 

~ 12 ~/ 2n 
- 

135n ~ ) ,

by using “Abel identities” ; see [8, Section 1.5] and. [14, Section 1.2.11.3].

Eqs . (1.1), (2. t ) ,  and (2.12 ) imply that

(2.15) C(n,n) = ~ ~~~~ (Q( n) - 2  ÷

a formula which can also be proved by the combinatorial argument sketched

in [14, exercise 2.3.14.14-17].

a ’

a
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3. Connection to the Equivalence A~gorithm.

When the radium associated with edge (:c,yJ emits an a-particle, we

can imagine invoking the equivalence algorithm at that instant, merging

classes R[x] and R[y] if they are distinct. Then the equivalence

classes at any time will be the same as the connected components of the

random graph. The probability that two edges fire simultaneously is zero;

and as t -. ~ the graph becomes connected with probability 1 • In effect

we are considering a random execution of the equivalence algorithm where the

classes to be merged at each stage are selected by choosing uniformly among

all pairs (x,y) of’ elements that are not already equivalent. This seems

to be the most natural way to define the average behavior of the process.

When R[x ]  is a class of size k and R[y] is a class of size m

let us say that the algorithm does a (k,m) -merge ; the cost of such a

merge is min(k,m) . Therefore the average running time to do n-i unions

which connect the graph is

(3.1) ~I min (k,m)E kl <k ,m<n n~ ,m

where E
fl,k,m 

is the average number of (k,m) -merges performed. In more

a in tu i tive  terms, the average number of t imes the firing of an a-particle

causes a component of size k to be joined to a component of size m is

~‘. + 1. , when k~~~m .ri,k,m n,m,k

Gi ven any fixed way to partition the n elements into sets (A, B,c)

of respective sizes (k,m,n-k-m) , the probability that the random process

w1 11 at some time do a (k, ~) -merge with A and B as the respective

~1a~ 5(~s is

(3 .2)  ~ -~.T :k (t)P (t)e d (l_e
_
~~

t
)

IiIll ~L . . .  —.-.-. 
. — -. - - — - — ‘ -.. —-
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• -kmt • •si nce 1-c is the distribution function for the f ir ing of at least

one of the km edges between A and B , while

is the probability that A and B are

internally connected but not joined to C at time t . (The factor 1/2

in (3.2) accounts for the probability that x instead of y belongs to

class A when the edge tx, y~ fires, since we may regard (x, y) and

- 
(y,x) as equally probable.) By considering all possible choices of A

B , and C , we have

En,k,m = 2 .k~m~ (n-k-m)~ 
~ Pk(t)Pm(t)kme 

e
_
~~~

m) _k_m )t 
dt

-
4”

For example, consider the simplest case k = m = 1 : The expected

number of times we form a class of size 2 is

(3 . 14) 
~n , l, l = 

n(~ -1) 
~ 

e 2~~3)t  dt = n(n-1)/ (14n-( ) n/ 14 . —

It follows that about n/2 singletons are built into pairs, while the

other n/2 elements begin their interactions by being hooked to larger

components.

When k and m are fixed , we can deduce the asymptotic behavior of

1
~n,k,m 

as n -. by using only the comparatively weak estimate (2.5),

• 

since the important contribution to the integral occurs when t is very

small. Let

(~ . 5)  = k+m ;

r
then

= 

~ 
(
~)(~

) k lmm
~~ f t

2 ( l_ 0 ( k2t ) ) ( 1 _ 0 ( m 2t ) )e
_
~~~~~~

)t dt

_ _ _ _  
~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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and the integral is

- ( i-2) .~ -I
• 2 1 - 0(n ) as n - .~~

- r  (n i — i  + }~~) —

It follows that

(~ .6) En, k,m = (k~rn~2) 
2(k±rn)~~

m
~~~~~~~~~

when k and m are fixed.

di

_ _ _ _ _
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14. ~‘reparations for the Estimations.

Our main goal is to prove that the sum (3.1) is 0(n) , and since

• H ~ does not seem to have a simple formula we must content ourselvesn,,m

with approximate values.

Stirling’ s approximation applied to (3.6) indicates that we might

exiect the estimate

(14.1) En,k,m = 
0(k3/2m3/~ (k+m)l/2)

to be valid. If (14.1) could be proved, we would be done, since it implies

that

( 14.2) ~~
‘ min (k,m)E k < k(E 

k 
+E 

k~l<k,m <n 
i•i~ ,m — 

l< k<m<n fl~ ,m n,m,

• ‘ l/2~’
= ~( 1 2~~ 

= ~ o( 
m
2 ) 

= 0(n)
- . l< k< Zm<n ~ k 

/ m J 1<m<n m

Actually (14.i) is not true when k = 1 and m = n-l , as we shall see

later; however, the methods we shall discuss below are strong enough to prove

F ’  (14.1) in the special cases

(14.~~) k,m < ~2/3 or k,m > ~2/3

Fortunately this suffices to prove the desired result, since the “uncontrolled”

• terms have a sum bounded by n : We have

k(E + E ) < n ,
2/Z n,k,m n,m,k —

l<k<n ~~~
‘

p2/3 -~m n

- 
- 

~~rc~’ the lril l,_hand sidc is less than the average number of times the QFW

~~~~~~~~~~~~~~~ changes R{xJ while including x for the first time in a class

15 
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I
of size ~, ~2/3 , and this can happen at most once for any element.

By Lemma 1 and Equations (2.6), (3.3) our mission will be accomplished

- 
. if we can prove that

( 14.5) 
k~mL (n~k-m~~ ~ 

(l_e
_kt
)
k (l_e

_mt
)
m
~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

= 
o( ~~/2~~/2(k)l7~~)

under condition ( 14 3 ) In other words we are interested in integrals of

th e form

( 14.6) I(k,m,w) = S (l_e t
)
k_l

(l_e
_mt
)
m_1

e
_
~~~dt

- I  
-

di

I

I

16

—

A —~~~
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5.  Hsti rnat e of the Integral.

- 
- Using the identity

1 -xc~t(5. 1) 1~~ e <~ = aJ t e  1

repeatedly in ( 14.6), we can express I(k,m,w) in the form

k lmm
~~ f~ . . . ~~~~~~~~ e~~ (_ ~~ _k( x1+ ...+x~ 1)t~m(y1÷ ...+y 

1
’t)th: .~y Jt

k—l + rn—i t imes 
—

where dx = 
~~l 

dXk l  and ~~ = 
~
‘l ‘

~
m_i Hence

1 1
(5 . 2 ) 1(k,~n,w) = k

k_l
m
m_l

(k+m_ R ) S dxdY
k0 

~ 
(w+ k~ 

- -  mT~)

, 0
where ~ x~~-~ •~~~~

+ X
k~~ and ‘fl :~ y1+ • •~~+ Ym l  . Let us now translate

the domain of integration , writ ing

(5 . 3)  I(k,m,w) = k rnm~~(k+m_2)~J(k,m,w + k(k_1)/2+m(m_l)/2) ,

di

+1/2 +1/2
(5. 14) J(k ,m, w) = .. .  I’ k+ 1-l/2 -l/2 ( w + k ~~ - m ~ ) m-

A

We wish to estimate J(k,m,w) , but first let us try the same kind

~~~~ operat~~)n: on a siniilar but cin~iler integral

f i _  _xt k_I _
~~~1~ = (I

k_l
(kl)~ 

1/2 1/2

‘ 0 v
1/~ ‘ -1/2 ( w +  ~x(k - 1~ /2 +

:~irv~ th~ r , t~~~~r~ij r i  LiLi ~
- ‘ :tsC can be ~valuated exactly a I - ’ta integral,

~~~~~~~ 

£t ) k~1~~~~~~ ~ f 
(i-u) u~~~~

’du = ! ~~~~ , 
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E~fl - we have derived the rather remarkable formula

- 1/2 1/2 
_ _ _ _ _  - 

i F(w/a-(k-l)/2

I 

• S 112 ~~l/2 (÷a ~)
k — 

a
k F(w/a+ (k+l)/2

1
= 
(w~~a~~~~)(w~~a~~~~~)... (w÷a~~~~)(w+a~~~~~)

Incidentally, ( 5 . 5 )  may he regarded as a consequence of the considerably

more general identity

4 (5. 6) A~f ( w) = 
~~~ 

(
~~)(_l)

n_i
f(~~~) = f ...f f ( ~~ t1+...+t~~ dt1...dt

-
~~ used in interpolation theory.

Equation (5.5) can be used to estimate (5. 14). First, since the

logarithm function is concave (ln(x + ty) > (i-t) lg x + t lg(x+y)) ,

-
- we have

(k+m) ln(w+k~ -i- mii) > k ln (w+k~)+m ln(w-i- k~ -i- (k÷m)’rl) ;

di
— hence

- 
- 

1/2 1/2 1/2 1/2
(5.~~) J(k,m,w) < •

~~
• 

dx 
~ 

j . dy (w+k~~- mTh

-1/2 -1/2 (w+k~)~ -1/2 -1/2 (w+k ~
+ (k+m)rI)

m
~~~~~~~~~~~~~

k-l ni-l•

•i 

_______ _______< (w + 
k(k-l) + m(m..l))

p 1/2 1/2

~~l/2 ~~1/2 (w÷k ~)k( w+k~~- (k+m) ~~)... (w+k~ + (k+m)

Secondly, since 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~-———
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I x+1/ 2

r inudu = ln x -i- Q(x )
‘x-l/2

for x > 1/2 , we have a

(5.8) in((v -~~~~~~(v~~~~~~)...(v+~~~~~))
! 

~

‘ 

v+m/2
= 5 lnudu+O (1)

v-m/2

= m in v - f(m,v) + 0(1)

where

(5.9) f(m ,v) =

I l f m \ ~ 1 I m \~ i f m \ ~= 2 v _
~~y) +~~~-~. I ~~-_.)  +

~~
-
~
--

~
— )  +

p

is a convergent series provided that m < 2v . Therefore (5.7) yields

p

1/2 1/2 , /
J(k,m,w) < 0 ( w + k 2 + m 2 ) 

5 

dx 
k+ exp(~f(,~

m , y I k~
-1/2 -1/2 (w+k ~) 

m m
di 

< 0(w+k2+m2) 

~~l/2 ’~ 1/2 (W+k )
k+m e~~(f(m , 

w_ k (k_ 1)/2))

I 
Again we can use concavity of the logarithm to conclude that

(k+m) ln (w+k~) > m in w+k ln(w+ (k+m)~ )

Using (5.5) again,

J ( k ,m,w) < O(w+k2+m
2) 

exp(f(m, (w-k(k-l)/2)/(k+m)))
— 

wm ( (k+m)(k- 1)/2 ) ... (w+ (k+m)(k-l)/2)
= 

0 (w +~~~~ + m2) 
exp ( f (m , 

w - k(k-lJL)~~~ + f ( k ,

______ ____ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~
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The only hypothesis we have required is that k < 2z when f(k,s) is

— ‘ to be evaluated. We can therefore state the result of our calculations

as follows.

Lemma 2. If Ic <m  and m(k+m) < 2w+m (m-l) , we have

I(k,m,w) < 
~~~~~~~~~~~~~~~~~~~~~~~k+)~~~~ 

e~~~(f(m , 
w+m (rn-l)/2)

+ f(k, 
w+ k(k-1)/2+ rn(m-l)/2

))

- I

di

~~~~~~~ - 
_

_ __ __ _  _ _ _ _ _ _ _ _
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, - . ~..o~:u’1ct.iofl of the }‘roo±.

The argLmlent of Section 14 together with Len~~a 2 n ow yield:

Theorem 1. The average time for the 09W algorithm to do its set unions

is 0(n )

1 roof. Let k and m satisfy (14.3) and k+m <: n ; we may assume that

k~~~m .  Let

(- .1~ w = (k+m)n - (k+m)
2+km_ c(~~

/2+~~~/2)

so that

k~m~(n-k-m) 
I(k,rn,w)

-

• We Li i  to m p ly Lemma 2 to estimate I(k,m,w) ; so we must check th at

- w ~ i (o~—1~ , i.e . ,

~~~ 
7/ 0- ( .

~ 
c(k” + an ” ‘ )  < 2(k+m) (n-k-rn) + (k-l)m .

a

S 0/ 3
1$ Ic m 

— 
~~“ / this certainly holds for all sufficiently large n ; and

di when ~l/2 in n < k ri we obtain (6.3) for all large n by the estimates

- 
-~ 2c(kJ/2 + ~~~~“)  < 14 cm~~~ ~~~~ in n - r n  (f l V2 in n - l)m ~ (k-l)r;

(We really only need Is e - i i c i d e r  k n ’ in tiLi : argument, but the s. r•

f?I~ i(:r~ji € :timate will be usefu l  in tIre proof of Theorem 2 below. )

In rdcr ti simpli ~y LLL - t o r rnuI-~s - t tained after applying Lemma 2 iii

(~~~.‘ , w :h-l1 write

(:J ~) y - (k+rn-1)/2 ,

IJ 7- = (w + ( ~~ )~~ (~~~))/
(k+rn) ,

~~ t ,~ r~t 



- - - ~~~ - :~~~~~

- J r

(r .5~ y = z + 1 + c K z + 1 + c~~~

The factor n:/(n-k-m) in (6.2) can be rewritten as

(y- (k+m_l)/2 )(y- (k+m-3)/2) ... (y÷ (k+m-l)/2) = Q(~
k+m 

e
_f
~~~

m
~~~)

(5 .  8) ;  hence (6.2) and Lemma 2 imply that

( - ) - 
= 0(k

k_1 
m
m_l

(k÷m_2)~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
n,k,m 

~ k~m~ (k+m)~~
m_l

zk+m~~ )

= °(
~~~~~~~ 

m3/2(k+m)~~2)

wh or 0

(
~ . - R = z - 

~~~~~~ 
) + f(k,z) - f(k+m ,y)  ÷ 0 (m  log 

~ 
) .

• The Troof of Theorem 1 will be complete if we can shc.w that B is bounded

rt3 o~:e, since we have already noted that Theorem 1 follows i rorl (14.1) under

condition ( ‘ . .~~).

Relations (6.14), ( 6 . 5)  make it clear that z > n/ 3 for all large n

0

1/2
• (,

_
.-

~ )

j-~~~hermor~ it is clear from (5 . 9)  that

f(m,v+d) = f(rn,v) + 0(md/v )

and that

f(k+m,y)- f(k,y) > f(k+m,u)- f(k,u) when y < u

Let uz set

k+m I k(k-l
• 

(( .~~ u = rn - 

2~k+m
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Then y — U < 2y , and we can simplify B as follows:

(6 .10) R = fçm,y - ;~~~~ + o(~~~~~) ÷ f (k,y ) + o ( ~~~~
2 

) f (k+ ) ÷  (
~~~~2

- 

;~ 
= f ( m )~~~~~u ) + f ( k ,y) _ f(k+m,y) + o(~~~~_ )
< f(m~ ~~~~u)÷f(k~u)

_ f(k+m,u)÷0 (~~~~~)

Since —

( .n) f(m , ~~~ u )  + f (k ,u) - f(k+m , u)

= 
1 

2 (m(k÷m)2~ + k2~~
1 

- (k+m)
2
~~
1
)

J>l  2j(2j+l)(2u) ~

- E k((k+m)
2
~~-k

2
~1 < - -

j~~ l 2j (2j+l) (2u)  ‘~ 214u 96n

B is surely bounded when k < m ~2/3 . On the other hand when

~2/3 
. k K in , let g(n ) = m3/2/n ; then

R - 
~~~~ 

+ 

~ 
- 

9(,~ I+/3 
+ 0( ~&i!.

)

j = -

• is less than some absolute constan t .

The above proof of Theorem 1 shows that E k is exponentially small
2/3 + 

,m 
1/2+when k -

~~ n - - and also in certain other cases (e .g. k = n

). Thus it is rare to merge two large classes; one w- iy t o state

S J S

C .

26
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I • Theorem 2. The probability that the equ.ivalence algorithm merges two

- classes of sizes k and m , with

(6.12 ) ~~
1

~~~~~ < k < m ,
, 1 -

is exponentially small; i.e., it is O(n~~) for all constants b

Proof. The argument used to prove Theorem 1 shows that

( n \ ( ~~2 (~~~/2~~~En,k,m = O~ 
k31’2m3/”2(k+m)

1
~
’2 

) 
exp~~ - 

96n~ 
+ 

~~~~ )) 
;

- this is exponentially small since

~~~~~2~~~°(n) 
m3/2

(
~~~~~~~~~~~~~

)

3/2and in ’ /n > in n . Summing over all k and m leaves an exponentially

small result . ~

d

•

214 

_IA - -
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7. The Unweighted. Algorithm.

If the QF’W algorithm had not used the array N[s ]  , so that unions

would be done by renaming the elements in the larger class with probability

1/2 , the average running time would be significantly greater. Let E~, Ic

be the average number of equivalence classes of size k formed during a

F .. random execution of the algorithm, i.e., the average number of components

- - 
of size Ic which appear, as the edges of the random graph appear in random

order. The average running time of the “unweighted” algorithm can be

expressed as

(7.1) E k E  kl< k < n

since the elements of each component of size < n have a 50 - 50 chance

of being renamed.

As in Equation (3.3), we can write down an integral for E
fl,k 

this

time more easily than before :

(7 .2) E
fl ,k = 

(~~~)f Pk(t)d(l~e )

= (
~ 

) ~~ Pk(t)~c(r~_~~~ dt

We can now argue as before to obtain satisfactory estimates of E~l,k when

k < ~2/3 or when Ic is sufficiently large:

Theorem 5.

(a) ~ ~~~, k ~~ e~~
( n k c ~~k )  

, for n > Ic + c~~~ ,

• where c is the constant of Lemma 1;



- - -

(b) 
~~~, Ic = - 

n
;
k (

~~ 
- Hfl k) + o( 

log 
n) for < k/n < 1

*/where-’ the constant implied by the 0 may depend on E

Proof. Since W
k(t) > 1/k we have

En,k � (~~~
)
~~ 

(l_ekt
)
k (n_k)e~~~~~~~

t dt

= (~~~
) ~~~~~~~~ 

r ( ~-X)’~ ~
n_k_l 

dx = ~~ ,

on setting x = e~~~ and using well known properties of the Beta function.

The upper bound follows in a similar manner,

E
fl ,k ~ 

(
~~~)f (l_ekt

) ~~~~~~~~~~~~~~~~~~~~ dt

= (
~

) ~~~ ! ( ~~
-X)

~~~~~ 

n-k-c~~~-1 dx

ri (n-1)(n-2) ... (n-k)
= 

k2 (n~c~J~~_1) (n_cAji~2) ... (n-.c~J i - k)

~~ e~~ (c~~ (n_c~~~~l 
+ + 

n_c
~~~~k))

since x/(x-y) < ~~~~~~~

• To prove (b) we use Stepanov’s theorem [10] that

(v .3) w (t) = (1~~(1+nt)e~~
t
)(1+o(l))

uniformly for t > y0/n ; by careful analysis of his proof we can replace

the o(l) term by O(log n/n) , where the constant implied by this 0

= El<k<fl 1/k .

26 
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depends on y
0 . Thus

En,k = (~~
)
~~ 

(i-  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

j 
-

~~ 

+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

r = 
(~~)(n~

k) ~ (1- (l - in x)x)(l~x)~~
1
x 1

dx (l÷0 (b0~~~))
+ 0 (n-k) 

~~~~ 

(l_x)
k_1

x
n_
~~
l
dx)

- 

I~ 
where 1-so = exp(-y0) . The latter integral is clearly less than z~ ~

and by choosing z0 suff iciently small as a function of 
~ we can ensure

that

k ~n -nz
0 < z0 = 3 ;

this is small enough to wipe out the contribution from 
(~~)

(n_k) , so

the correction term is negligible. The first integral is

1 1
+ 

5 ~~~~~~~~~~~~ in x dx

= 
k~ (n-k-1)~ + 

~~ 5 
(l~X)

k_ 1
Xn_k

dx

• — k~ (n-k-i) - (k-l) (n-k)~ ( 1 + 
1 

+ ÷ 1
— n n \~, n n-i ~~~~~ n-k+l ~

Part (a) of this theorem implies that

(7 . 14) E~, Ic 
~l_2a for k = n

a 
a < 2/3

this is rather striking when 1/2 < a  < 2/3 , since it approaches ~-l/3

• 27
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Apparently the component s of a random graph tend to grow very r’ss~ dl;,- one :

they get to this size range, they must move quickly past such values of Ic

- _

. The approximation for En k  in part (b) of the theorem,

1 
~~~~~ ( H H k ) 

: 

~~~~~~~~~~~~~~~~~~~ 

I + o(~~~)

has the right order of growth when Ic = ~2/3 , but it has been proved only

for k > C n .

At any rate we can determine the asymptotic value of (7.1) without

knowing too much about E~ k in the middle range of k . The sum of

• kE
fl ,k for k < 5n is at most ~n2 

~ since it is obvious that

• E
fl , k ~ Ln/kJ for all k . (All components of size k formed during

the algorithm are disjoint, so there are never more than L n / k J  of them .

The sum of kE~ Ic 
for k > cn differs from n2/ 14 by at most

,

cn2+ 0(n log n) , since

(7 .5) 
~~~ 

(k-(n-k)(
~~~

-Hf l k) )  =

l < k < n

and each term in thi s sum is less than n . Thus

• (7. ) (
~~~_~~
)
~~2 < ~~ k E  < (~~~÷~~~)n

2
- 2 1 k<n n, —

for all ~ > 0 and all sufficiently large n ; the running time is

asymptotically n
2
/8 , a factor of order n times what it was in the

weighted case . It is tempting to conj ecture that a stronger result

actually holds, namely

(7 .7) ~T k E  k = 
1 2 1

1 ( )
l<k<n

~~~
j  28 
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since L 2~ 
k E  

k (2/3)n in n .
l<k<n~~

3 n,

A compari son of formulas (3.3) and (7 .2) shows that E~, n-i = 2En, i, n-i ‘ 
- 

-

- and indeed this relation is obvious by the nature of the equivalence

algorithm, since any c~~rponent of size n-i must be merged with the

remaining singleton element. Theorem 3 (b) now yields

(7. 8) E
n,i,n_i = + o(1o~ n)

hence (14.1) does not hold in general.

A

di

•

~

.

I() 
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8. Numerical Results.

- 
- 

- Sane Monte Carlo experiments were made to test the above theory;

for each value of n , random edges [x ,y) were generated until the

corresponding graph was connected, and this process was repeated ten

- 

-
. times. Here are the results (with “t ”  indicating one unit of standard

deviation):

n Observed cost, QF ~ n2 
+ n in n Observed cost, QFW

:~~ 
_ _ _ _ _ _ _ _ _ _ _ _ _ _  

3 
_ _ _ _ _ _ _ _ _ _ _ _ _ _

2 1.0 1 0.0 0.96 1.0 ~ 0.0

14 14.3 ± 0.1 3.85 3.14 t 0.2
8 15.7 ± 0.3 13.5 8.5 ÷ 0.2

16 50.8 ± 2. 11 146.8 20.2 ~ 0.8

32 178.14 ± 5.7 i65.o li5.6 + 0.9

614 638 t 19 600.7 99.0 t 1.9
128 2375 ± 71 2255.0 212.3 ± 14. 14

- 256 8609 ± 153 8665.2 1451.2 t 7.7

512 33938 ± 590 33832.7 936 ± l~
• 10214 133012 ± 972 1331437.9 19141 ± 15

20148 532637 ± 5969 5291493.1 3955 ± 39
- 

P 14096 2130655 t 11233 2108508.5 7927 ~ 149

Note that the values in the unweighted case conform well to the predicted

asymptotic behavior, and the values in the weighted case seem to be less

• than l.95n

For small n it is possible to calculate exact values without great

difficulty; e.g., when n = 14 we readily find

6 2 1
B14,1,1 = ~ E14,1,~~ = E14,1,3 

= ~ ~~~~~~~ = ~
- 

~

hence the true average costs of the unweighted and weighted algorithms are

• respectively 11.14 and 3.2

30
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When n ~ 8 the E values are respectivelyn, k, m

m = 1  m = 2  m = 3  m = 1 4  m = 5  m = 6  m = 7

- - • 28 28 60 5096 3014.6 168 1929822k = 1 214035 15214.9 5311735

k 2 2 130514 66958
— IT 167739 ~~8695

k 292 911.72 2114.1482
- 

_ ; = 3 141485 1871473 5311735

-
~~~~ k 14 30881= 

937365

and the average costs are respectively 16290696/10623147 ~ 15.3 and

12265252/114148655 8.147 . Ebccept for the fact that the denominators

are composed of small prime factors (e.g., 10623147 = fl•13.17.19 .23 ),
there appears to be no simple pattern to these numbers. (it is easy to

bound the si ze of the prime factors by proving that 2((k+m)(n - (k+ITh 1
~l )/2) )~ En k m

• is an integer.)

di The following tableau shows B K and E when n = 16 and

k < m  : 
n,m

•

4

-~ 3].

_ _  - - —--~~~~- _  -
~~~~~

- 
~~~~~~~~~~~~~~ 
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~ I
k 1  k = 2  k = 3 k = 1 4  k 5  k = 6  k 7  k = 8  Bn,m

• in = 1 14.138 16.000

• m = 2 0.976 0.2914 14.138 —

H • m = 3 0.11149 0.1148 0.079 1.951

m = 14 0.2714 0.095 0.052 0.035 1.191

in 5 0.198 0.071 0.039 0.027 0.020 0.8146

m = 6 0.160 0.058 0.033 0.022 0.017 0.0114 0.665
in = 7 0.114]. 0.052 0.029 0.020 0.0114 0.011 0.008 0.565

m 8 0.133 0.0149 0.027 0.018 0.013 0.009 0.006 0.002 0.511

in = 9 0.133 0.0148 0.026 0.017 0.011 0.006 0.003 0.1487
in = 10 0.1140 0.050 0.026 0.015 0.008 0.003 0.1485

= 11 0.156 0.053 0.026 0.013 0.0014. 0.50 14

in = 12 0.182 0.058 0.0211. 0.008 0.5143
in = 13 0.2211. 0.061 0.017 0.6014

m = lii. 0.290 0.056 0.692
— 

. m = 15 0.14(77 0.8114

Note that B16, 2, 12 < E16,2,13 > E16,~ ,114 ~ so the values of E11, k, in 
are

- not convex in general. The true aver age costs for n = 16 are 51.120

and 20.332 ; thus the Monte Carlo result s appear to be valid.
di

- - - t-
• 

- 
t
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9. Another Model for Average Cost.

We might also wish to study the average behavior of an equivalence

algorithm under the assumption that the operations consist of the edges

of a random spanning tree in random order ; thus, we assume that the

possible sequences of union operations of the form

merge ~R [x1] ,R [y11}; ... ; merge [R[x~~1], R [y~~1J) “ are equally likely.

The difference between this model and the previous one can be seen

in the case n = 14 : There are 12 spanning trees which form a

hamiltonian path ( type 1), and 14 which form a “ star” (typ e 2 ) .  After

creating the first component [a,b) of size 2 , the new algorithm will

create a disjoint second component (c,d) with probability 1/3 if the

tree is to be type 1, and never if it is to be type 2 , henc e the overall

probability is 1/14 that two disjoint components of size 2 are formed.

The random process we have studied above, however, will create [c,d}

with probability 1/5 , since [c,d) is only one of five inequivalent

pairs that might fire next. The new model is -qualitatively different from

the old because it makes the merging of two large components significantly

more probable ; thus, we would not expect the weighted rule to give such

a substantial improvement over the unweighted rule when using this model.

The random spanning tree model has been studied by A. C. Yao [12];

• 
we shall analyze it in a somewhat different way, so that its similarities

and differences with respect to the random graph model are clarified.

In the next few sections we shall use the symbols 
~~ k 

and E Icn,
- - 

to represent quantities in the new model analogous to those in the old;

in other words, Efl,k is the expected number of classes of size k

formed during the algorithm, and E Ic is the expected numbern,,m
S

33 
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of times we merge a class R[x] of si ze k with a class R [y3 of

size m • Note that we must have

(9.1) B = ~ E K £ kn, 1<k<I ~~~ ‘ 
-

in both models when I > 1 , since every class of size > 1 is obtained

by merging.

In the new model the ratio E~ k I-k’~~i ~ 
is independent of n ,

since the 1-1 unions which form a class of size I do not affect the

behavior of other unions. More precisely, consider any subset A of I

elements, and any sequence of unions in which A is formed. Then we can

replace the 1-1 unions forming A by any of the £ 1 2 (I _ 1)  such

sequences, obtaining in this way all sequences of n-i union operations

in which class A is formed and the n-f other unions are held constant.

• It follows that

• (9.2) En,k,I_k/En,I = EI,k,,_k

so we must only determine the numbers B k and B k k in the newn, n, ,n—
model in order to deduce all the E.. values.

To determine E k K ~ consider how many sequences of unions end

by merging REx] with R(y] , where class R[x] is a particular set A

of size k • There are k
k_2

(k_l)l sequences of unions which construct A ,

(n_ k)
fl_ k_ 2 

(n~k-i) sequences of union s which connect up the other elements ,

ways to intermix these sequences, and }~n unions which could

come last, hence

(9.3) E
fl,k,fl k = ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

, , k-i, n-k-i1 (n ~~(k\ (fl-k
= 2(n-l) %~k/%..n ) ~ n

314 
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(As in Equation (3.2) we must include a factor of 1/2 because of the

- -
~ synmietry between x and y . )  Note that for fixed k and L , the

asymptotic ratio of k,I-k’~~,I 
as n -‘ in our former model

approaches B
1 k, I-k ~ 

the exact ratio of E~, K, f_k/En, £ 
in the pre sent~

model, by Equation (3.6) and Theorem 3(a). Therefore the new model

essentially reflects the “local” behavior of the former model on small

components. Alternatively we can regard the spanning tree model as an

indication of the “early” behavior of the former model, since

• 
E

fl,k,,_k
(T)

El k  k~~~~~~~ E TT~‘ ‘ — T—.0 ~,f \ ~

where the quantities on the right are obtained by substituting T for ~

~n (3.3) and (7.2).

Let p k = E K k be the probability that the final union is a

(k,n-k) -merge, ~~d let Cr , be the average total cost of unions

in the weighted and unweighted equivalence algorithms, resj~ctively. The

independence argument by which we established (9.2) shows also that
d

(9.14) C~~’W 
= 

~~~~~~~~~~~~~~~~~~~~~~~~~ 
C~~~)

(9 .5) c~~~
’ 

= ~~ p~~(k + C~~
’ 

+ C~~~) ‘ -

0 ( k < n

because the behavior of the algorithm within the classes of sizes k and

n-k is the same as its behavior on classes of total size k and n-k .

A. C. Yao [12] has proved that cr ~ 
n log n , C~~ 

~~ ~5/2 , using a

different approach to the analysis; by studying recurrences (9.14) and (9 .5),

we will be able to obtain more precise results.

: 1 35
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10. Solution of Recurrences.

According to the equations we have just derived, the average

• behavior of equivalence algorithms in the spanning tree model can be

described by recurrence relations of the general form

(10.1) x = c + 
~ 

p (x~+x k~0<lc<n

where

(10.2) 
~nk = 2(n-l) (

~~
)(

~~ 
)

k l
(k  
)

n~k~1

Before considering this particular recurrence in detail, it will be

interesting to deduce properties implied by (10.1) for ~~~ choice of

the 
~nk such that EkPnk = 1 , since such recurrences arise also in

the solution of several other algorithms (e.g., in studies of quicksort
‘ and of digital search trees). If c1 = 1 and c~ = 0 for all n > 1

it is immediate that x~ = n for all n ; similarly if c1 = 0 and

c~ = 1 for all n > 1 we have x~ = n-i for all n • In general x~

is a monotone function of (c1, . . .,c~) , hence these particular solutions
di

allow us to conclude that

(10.3) cn = 0(1) implies x~ = 0(n)

Let us now specialize (10.1) to the case that

(10.14) 
~nk = r ( k)r (n ~k)/ s (n )

for some functions r and s , where r(ri) = 0 for n < 0 and.

(10.5) s(n) = ~~~ r (k) r (n-k)
k

Clearly (10.2) has this form, with r(n) n
r
~~ /n for ~ 1 , and

~(n) = 2(~~_ 1)~~fl_2
/

~~ . When 
~nk ~n,n-k 

we can replace (10.1) by 

~~~~~ -~~~~~~~ ---- - -~~ --  
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( 10.6) x~ = c + 2 
~~

‘ PnkXk0 < k < n

If we can find sequences (xe) such that EkPnkXic has a simple form,

we can insert the corresponding values into (10.6) and obtain a sequence

(ce) with a known solution (x~) ; linear combinations of these special

• sequences (ca) can then be used to obtain many further solutions. The

form of (10.14) suggests that we try x~ = r(n_m)/r(n) for some fixed

nonnegative integer m ; then we have

E P nkXk = s (n_m)/ s(n )

hence ~~
m) 

= r(n_m)/r(n) is the solution to (10.6) when

— 
(m) r(n-m) s(n-m)

n n r(n) s(n)

If r(n) ~ 0 for n > 1 , we can obtain any sequence (C s) 
as a (possibly

infinite) linear combination of the special sequences (C~
m)
) , since

c~
m ) 

= 0 for n < m and ~~~~ = r(i)/r(m+l) ~ 0 ; the solution to (10.6)

di 
will then be the same linear combination of the sequences

In our case (10.2), we find for example when m = 1 that

- t 

x~ = (l - l/n)~~
2 solves (10.1) when c = (l - 1/n)~~

2
(2/(n-1)

2
-l)

for n > 2 . However, this general approach does not seem to lead to

sufficiently simple formulas, so we shall now restrict consideration to

the particular case (10.2), when more powerful techniques can be used.

L _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  —-~~~~-- -~~ 
- - - -—~~~~~~~
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11. Solution of the Spanning Tree Recurrence.

Let us assume that c1 = 0 , since we have already determined the

dependence of x~ on c1 . When p~~ is given by (10.2), we can multiply

• - both sides of (10.6) by (n_ i)n ,in~ , obtaining

, ~~n-l k-i
~fl-l ) fl x k x. n-k-i

(11.1) = d + n  L k’0<k<n ‘ ~.

where

(11.2) d = (n-l)n ’~~ c /n:

The form of (11.1) suggests that we introduce the generating functions

n-i- 4  n x
(11.3) G(z) = E n ’ 

~
n > 2

n-i
(11. 14) F ( z )  = �~ 

n

n > l

(11.5) D(z) = ~~~
n > 2

di and we obtain the equivalent relation

(11.~ ) G’(z)-z 1G(z) = z~~D(z) + 
~j~

_ (F(z)G(z))

= z~~D(z)+F’(z)G(z)+F(z)G’(z)

it is well known (see e.g. [14, p. 392]) that this particular function F(z) satisfies

(11.1) F(z) = z/~~~

hence

• (ll .- P)  F ’ ( z )  = z(l~~(z))

38



— — —_ - -.—..- .— .—~~ ——~ 
- -

-

We can now multiply (11.- ) by l/F(z) and re~rite it as

(11.9) 
d (i;F~z) G(z) ) = ;

the solution with = 0 ~s

(11.10) G(z)  = F(z) 
r

Z 
D(w)cIw

l-F(z) 
~b wF(w)

Let us now imitat e our procedure of the previous section, finding a

set of functions D (w) such that the integral in (11.10) has a simple

form and then expressing the general case as a linear combination of these

spee~~J ones. it is natural to set

(u.U) D (z) = ZF(Z )
m 

F ’ ( z )  = F ( z) ~~
1
/(1-F(z))

then the corresponding generating function is

G (Z) = i~~~~ z) ~ F(W)
m
~
ldF (W)

F(z’) F(z) 1
= / . = —D(z) , for i n - > 0 .

1-F~z) m m m

(In other words, Dm(~
) is an eigenfunction of the linear mapping D ~ G

defined by (11.10), with eigenvalue i/rn .) To find the power series

• e: .n:i-~r~ of Dm(Z) , we may use Lagrange’s general inversion formula,

according t i  which the relations z = tf(t) = t + f1t~ + f2t
3 + ... and -

l+w1z+ ~~~ ~ ... = g(t) = i+g1t+g2t
2+ ... imply that nwn is the

coefficient of in g’(t)f(t)~~ . Letting t = F(z) , f ( t )  = e
_t

g(t) = t~~~/ ( i-t ) , we obtain nw~ = 
~~Q < k <  ~~~~~~~~~~ = n

n_m
/(n m_l)~

hence

3-,
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n-rn-i
(l1.l:~) 0 (z) = 

n~~m 
(~i-m-l): 

Z
n 

.

The corresponding c ‘s, according to (11.2), are given by

(in) (n-2)~ n-2 n-rn
— (11.1~) C = c = rn-i = —h-- 

~~ 
— , for n > 2

n (n-rn-i).

-~- have pr wed the following result:

Lonn~o . Let in be a positive integer. The solution to (10.1), (iD.2 ’
~

(11.114) ~~ = 
(m) 

= 
n-i (in)

when c~ = ~~
m) is the sequence defined in (11.13). ~

In order to translate Le~~a 3 into a more useful ~o~~::, let us write

(c: . [ -
~~

] )

(11.15) 0Ka01 a1,a2,...)(n) = a0 
+ + a~ +

By succe~;siveiy setting n = 1,2,3,... in this io~~uJ~ we see th-~t

:unct~on ~-f the positive integer n can be written as Q(a0,a1,a2,...)(n)

~or some cequence (a0, a1, a~, . . . ) , and if we are iuc1~~ the a ’ s will f:n~i

‘
~ ~~ce ~at~orn .

:uppo:’- c = , a1, 
r~~ , . . .)(n) where a

m = 1 and all the other a4

ar: ~-r . - l laVL

(ii 1- ) - - -
~~ 

-rn in (in) + 1 c (m
~~~. n n n rn+ 1 n rn+l

- -a ~~ ~ol:i~~~rt ;-: rnu :t  be

140
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• n-i (m) 
+ 

n-i (ari-i’1 ( n-i 
+ n n-i n-2 n-rn(ll.i( nr~1 

C 

(rn+l) 2 C — 
%~~m+l (m~i~l) 2)  n n ~~~ n ‘

note that this works also when m = 0 . Therefore Lemma 3 can be rephrased

as follows:

- Corollary. The solution to (10.1), (10.2) when c~ =

(fl.1- ~ ) x ~
- (n~l)Q(~~~~ ~~~~~, ~~~~~, ... )(n)+nQ ~~~~~ ~~~~~, ~~~~~,

p

4.

~1~ •
- •~~ •
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iT. Arrlication to the Spanning Tree Model.

Let us now use the results of the previous section to determine the

- 

- 

average behavior of the spanning tree model. First we shall study sonic

special cases of the general Q function defined in (11.15). It is not

di~ ficult to verify that

(12.1) QçL,2,3,...)(n) = n

~~ !~ furthermore

(12.2) Q(i,l,1,...)(n) = Q(n) = - ~~~+ 0(n~~-/2)

is the function discussed in (2.114). Let us now write Q0(n) = n

Q1(n) = Q(n) and

(12.3) 
~~~~~~~~~~ 

... )(n) = ~~(n)

( 12.14) Q~~l , ~~~~, ~~~~, ~~~~~~~~~ = ~~(n)

4.

0. Kruskal has proved [7] that

: (12.5) ~~(n) = ~~~n + ~ (y+ln 2)+o (l)

aro it is abvious that

,(n) < i + - ~~ + - ~~ + ... = o( i )
2 3

Aocor~!J ng to Equation (11.18),

(L? .() C = Q.(n) implies X
n = (n- 1)Q~~1( n ) + n Q . ÷2 ( n )

~~ne~ ning thi s with (10.5) and the above estimate~, we see that
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(12.7) c
11 

a~J~~ + 0(1) implies x~ = n ln n + 0(n)

for any constant a , since en = (2a/.J~~~)Q1(n)+0(1) . Similarly we

- - can improve (10.3) to

( 12.8) c~ = 0(log n) implies x~ = 0(n) .

For the unweighted algorithm, we have C
n = n/2 for n >2 (cf . (9.5)),

hence the average cost of unweighted unions can be expressed in “ closed

form ” as

— 
(12.?) c~~ = ~ (n- l )Q(n)  + ~~

. nQ~ (n) - n

= ~~~~~ n3/2 + ~~n ~~ n + ( y + I n  2) - ~~)n  + o (n )

For the weighted algorithm, we must sum

(12.10) en = 
~nk 

min (k,n-k)
0 < k  <n

but this does not appear to have a simple closed form. By arguing as in
4.

Lemma 1, we have

1 n n 1 n3/2 ( i’i

~nk 
= 2( n-l) ~ (n-k) Ø(n ,k) = -

~~~~~~ k3/2 ( n_ k ) 3/2 ~~~~~°Lk  
+

• hence

3/2
C = 2 

0 < k < n/2 ~j ~3n kV2(n_k)3/2 
+ 0(1)

By -~uler’s summation formula,

- -

- 
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1 n/2 
____________ 3 

- ,

~

0<k (n/2 k1/2(n~k)
3/’2 

= 
•ç x1/2(n~x)

3/2 
+ 0(n 

~~~~ )

+ 
i n/2

( 
- - 

~
) 

x~~~~~~ x~~ ’o

= 
2 n/2 

dt~~~~ 
~1/2 

+

= ~~~~+ 0(n~~~~~)

hence Cn = ~j2n/ir + 0(1) . Relation (12.7) now yields the asymptotic

a behavior of the algorithm in the weighted case,

• (12.11) C~~
’
~ = n in n + 0(n)

• Wo have proved

Theorem 14. The average number of times the QFW algorithm changes

entries in it: R table while doing n-i set unions, under the spanning

t r .  model, is it~~ nin n+0(n) ; the (unweighted) Qy algorithm makes

( / ~)1/2 3/2+0 ( log n) such changes, on the average. ~

Here are the results 01 empirical tests analogous to those in Section :~,

u:Jng the spanning trio - model:

)
~ 1 4
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n Observed cost , Q~ ~
f1

~7~~~ 
~3/2 + n ln n Observed cost , QFW n in n

2 1.0 ~ 0 2.1 1.0 ~ 0 0.1.

14 ~ 0.1 6.14 3. 14 ~ 0.2 1.8

8 114.3 t 0.3 18.3 9.0 t 0.2 5.3

16 1414.2 t 1.9 51.2 22. 6 ~ 0.6 114.1

- 
- 32 135 t 9 1141 52.1 t 2.2

3143 ~ 13 387 121.2 ~ 2.7

128 992 + 147 1063 27 14.6 ~ 5.9 197.7

256 2980 t 210 2922 580 + 9 L~ 2

512 71490 t 520 8058 1350 + 21 1017

10214 22450 ~ 1765 22309 2837 t 56 2259

20148 56637 t 3980 61984 6175 t 80 14970

l~ 9~28 t 12930 172792 131496 t 266 io8145

The true values of (cr’, C~~
’W
) for n = 2 , 14 , 8 , 16 are respectively

(1,1) , (14.375 , 3.25) , (114.62 , 8.85 ) , (1414.26, 22 .09 )

If we set en ~nk in recurrence (10.1), the result ing value of

will be E
fl , k ~ the average number of classes of size k • Hence the

general solution to (10.1), (10.2) can be written

(12.12) x = E Ck E kk

We shall comp lete our study of the recurrence by determining 
~n ,m for

fixed ~ ? 2 , us ing the methods of Section 11.

~
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According to (11.5) and (11.10) we have

(12.13) G(z)  = 1~~~ ?z) S ( 2)’ j~
_y dw

This integral can be evaluated by using the known formula (cf. [14,

exercise 2.3.1#.14.29])

n-l-r
(12 .114) F(z) ’~ = r 

~~ (n-r)~ 
Z r ~ 0n i ~— r

the integral becomes

m-2 n n+m
‘12 15’ rn fl z

• - (m-2)~ n - 1  (n+1): ~~~

— 
1 

_____  ~~ ~n (~ ÷2) (~÷3) (n-fm-i) n+m
— 

2 (m-2)~ n > - m  (n+m)~ 
Z

We wish to write the latter term as a linear combination of the functions

, for 1 < k m ; thus, we set

di rn-2 n
(12 .i- ) 

(m-2)~ (n+m)~ 
(n+2) ... (n+m_l)z~~m

- n>-m

~-. b
k
z1
~F(z)

_k

1 < k - m

= - 

~ (n+rn)’ ( ~~ 
kb
k(n+k+l) ... (n+m ~~~~~~n - r n  ~~~~1< k < m

-~nd the b ‘ s must satisfy

b1(n+2) ... ( n + m ) + 2 b  n (n+3 ) ... (n+m) + ...+ (m_ l )b m 1nhl_ 2 ( n + m ) + m b  ~m_ l

=  (n+ (n+~~ ... (n+m-l)

Li 
__
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• for all n • Since both sides of this equation are polynomi als in n of

degree rn-i , the b ‘ s can be determined by successively inserting the

values n = -m , •.. , n = -1 , and we find without difficulty that

b i = rn~~
2
/j: , for 0 < j  ~ m-2 ;

b1 = m
in_3

/(rn_1)~ _ rn
in
~~/rn~

Now (12.13), (12.14), (12.15) and. (n.8) yield

0(z) = ~~ - 
l~~~~~ rn 

bkz
~~~(z)~~~

z F t ( z )

I n rn-i n-rn j-2 n-j-1
>

-

~ 

n 1 n 
+ 

in (n-rn) ~~~~ in (n-rn)
= 

n~’m 
n~ m (n-rn~: O<Z j<m ~: (n-j-i)~

• Hence

(12.17) Ln m  = + 
~~~~ 

- 
~~~~~~

m (n-rn ) (n-rn).

j—2 j  i n—i
- ~ rn ( i ~~~~~1 (n-i) .

di O < j ( m ~ . ~ nj  (n-m) 3 (n-j - 1) :

rn particular,

I n-2 \
(12.1?) 

n,2 = ~ ~~i÷ (~ - ~) ) .

V •

For xed m as n we have

(12.1?) 
~n,m 

~~ 

(

~~~~~~

(

~~~1 
- 
0(j<m 

3

- 

= 
n 

~ (m — Q(m)) ) 

- 

.

Th.t coel fieaent , of order m , a s  si~~ufmcantiy different from our

r~ . ;ul t En , ~ n/k in the random graph model.
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13. Union Trees.

In order to analyze a variety of equivalence class algorithm: in a

variety of models, we can construct an extended binary tree which retains

essentially all of the necessary information about the :~ t union -J~~rations

which caused classes to merge. Given a sequence of ordered Jairs

1,y1) , • • • ,  (x~~1,y 1) such that the unordered pairs jx 1,y 1), ~~~~~~~~~~~~~~~

form a spanning tree on the vertices [1,2,.. .,n) i t  the assacT ated

union tree be defined as follows: For 1 < i < fl , construct a new node

whose left subtree is the union tree for the current component of x.

and whose right subtree is the union tree for the current corn j nent of y. . —

(By “ current component” we mean the connected component defined by the

previous edges ~~~~~~~~~~~~~~~~~~~~~~~ • )  The union tree for a component

of si ze 1 is a single terminal node.

Thus, for example, the union tree associated with the sequence

(3, 0 ) ,  (14 , 1),  (, 2 ) ,  (9, ? ) ,  (3, 1), (6 , 5 ) ,  (2 ,9 ) ,  (1 ,5 ) ,  ( 14 , 7)

di 

(i~ .i) 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(The labels shown on these terminal nodes are not really part of the tree,

th-7/ merely hel~ to indicate the manner of construct ion.)  Note that 1 h- ~

- 1 0 I O Y I  t ree ha : been d.c-fined for ordered pairs (x~~~~1 ) ; if the last pai r

14- - - , 

~~~~~~~~~~~~. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~
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F

07 th~. L~:-~s i l e  were (~~~, 
14) instead of (14,7) the tree would be different.

p
. This s-~nv en l  hn ahout  ordered pairs avoids complications that would other-

~-sisc a r i s e  when counting binary trees whose left and right subtrees are

is~ -r. i i~ s

~ c-ir. -xt-311d the models of random behavior used above to obt ain

d e fin I t i o ns  of raaic1~ n union trees by assuming that each edge [x,y)

occurri ic~~ in th e  r-indom graph or random spanning tree is equally likely to 

s (:-:,~ -) or as (y, x) when the corresponding union tree is being

built i i .  Th-s t~ each 01 the (2n -2 )~ /n (n-l) possible binary trees with

n t~-r:nna1 riod~: will occur with a certain probability. For example,

a 
~-h~~ n = 1. t } i-- lye possible union trees

(13.2)

each occur W t 1  prot ai. 1 lity 1/5 in the random graph model, while the

r:srectiv i i o~ ~ iii~ tr 
(~~~

‘

~ 

, 
~~~

‘ , , , f..
) 

in thc spanning

The i r - io-  J~ el particular tree T can be calculated in thc

I 
• 

r~~L r. g r j r  no-i-:i ~:- - )n:]dering the function P(T,t) which denotes the

reo- th~ ii :; h - It F h- 1: LI - - r i l orined at time t . Let be the number

of rm~ n~ L ne-Vs o~ T ; ‘ rid i L > 1 let T~ and Tr be the

re-si ct iv- - le - c i - ~ r.gh~~: uhti”i--: -7  th ’- root, so that I T~ I 
— IT r I I T~

~ i icfl 
~T I ~- 1 w- - f hi (T , t )  = 1 , otherwise we let

‘ t —~T I~~ I~~(13.5) i ( - -
, ) = 

S 
e ~ r 

F(Tf~u)~~(T ,
u~du2 ( I T I~ 1 ) : ( I ~~~I~ l ) ~ 0 r

1 4 4

-S-- - a - rn 
~~~~~~~~~~~~~~~ 

- -
~~~~~~~~ -~~~~~~ - -~~~~ --

-S-S--
~~~~~~~-—- - - ~~~~~~~~~~~~~ - -_ _ _ _ _ _ _
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Then P(T,a) is the probability that T is formed by the algorithm.

For example, when T is the middle tree of (13.2) it can be shown

that

P(T, t )  = - 3e’14
~ + ~~ e

_5t _2e 6t

but for the other four trees we have

P(T,t) = - ~~~ + ~~~ - e 6t 
.

The sum of P(T,t) over all five tr ees T is, of course, P4 ( t )

Although all five trees will occur with probability 1/5 , the middle

tree tends to occur “faster” when it does occur, since the middle function

is (e
_t 

- e
_4t
)3 larger than the others.

Let T1 be the tree with = 1 , and let T~ be the tree with

n whose right subtree is Tn_i ; thus T is a “degenerate”

tree, having the longest path length over all trees with n terminal

nodes • For these special trees an inductive argtanent can be used to express
4.

the I function as a fairly simple sum,

(13.14) r— (T ,t) = ~ 
(_ 1) k n~~(n-i) (2n-~ -2k) e

_ 2
~~

1 1
~~
t/2

0< k<n

Oir ously we have

(13 .5) ~~~~~~~ = n~ (n-l) /(i- n-~ )

which is the exact ren I~ recna of tt- t t,al number of binary trees; in ctber

word:, the -Iegerierate r 1)ccur: ji:t as )f~ en -~ : it would in a uni for-s.

-Li :1 r.~ hut i on ov-~ r tree:. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



Unfortunately the probabilities P(T,=) for other trees do not

have such simple properties, and for n > 14 the distribution become: - -

far from uniform. Computer calculations for n = 10 show that the tree

(13.6)

has maximum probability over all l8~/10~9~ = 14862 binary trees with 10

terminal nodes; it: probability is 714615232/359142281 times 1/4862 •

The least probable trees are obtained by joining two degenerate T
5 

‘s;

their probability is only 8515903/271995614 times 1/14862 . According

to result-: we have already derived, a tree whose left subtree has nearly

:72 terminal nodes will almost never occur for large n . 
4

The tree probabilities in the spanning tree model are rnuch simpler.

Let 3(T) be the set of all n-l nonterminal subtrees of T , when

= n ; then it is not difficult to prove that T occurs in the spanning

tree model with probabilitj

(13.7) 1(T) = 
n 

~ 

I~ I
(2~~)

r _  
T ~ s(T) I T I-i

lo r the prn ta  li ty is clearly

r(jT I )r (IT I) 
__ 

r( IT I)
~ ~~~(T) ~ 1’ I~~I T i S(T) (I I) 

r 
= r(

l
n) 

~~~S(T) 
(
~~~ I

i: n11 the notaf ie r i of (10.1 4 ) ;  and r ( n ) / s ( n )  = n/2(n-1)

51
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I~
Incidentally, whenever the probability distribution for trees has

3 the ‘separable” form

(13.8) P(T) = f ( I T I )  
U 

g(~~T~~)
T c S ( T )

for some functions f and g , we can use recurrences like (10.1) satisf~-i ne

rroperty (10.14) to analyze cost functions on the trees. Three example: of

such probability distrIbutions appear in [5, exercise 6.~~- 5( J .

Once we know the tree probabilities, we can analyze several

edui valence algorithms. The cost of tree T in the Q~’W algorithm is

(1?. 8) c~~~~(T )  = 
~~~ 

min (IT,I , I T I )
‘t 7(T)

and In the uLwe~~-h t e i  algorithm it is

(i~ .i )  c~~~(T) = 
~~~T~~ 7(T ) £

~h-~-n t he  p r obability rn- -ieI assi~~: equal probabilities to (x,y ) and (y, x)
- di 

~~ that all t rees  obtainable from a given tree by interchanging left and

ri~~-:~ subt -r ’ :es are equiprobable, (15.10) can be replaced by one-half the

external ~ ath length of T , i. e .,

(13.11) n~~ (T) = 2 . NIj T ç 7 ( T )

b ;e-au :e I T L I will be ~ ( I T , I +  IT rM = ~ N I  on the average. The

: - ian t i t y  (is.li) will have the sam e mean as (13 .10) -. but not the sam e

Vari P~r e : .

— . A. 7. Yao [12] ha: analyzed two other algorithms which he calls

“~c k  merge ” and “ nfl -L merli n weighted” . It is not diffi cult t 5CC

tha t  we can ~lidy the length of ‘ri nd” ci-erat l ons en the merge steps of

52
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t he s e  algorithms by considering union trees, using the respective costs

(15.12) CQM
(T) = ~~ c~~~(~~)/ I T L

T€S(T)

( 13.13) c~~~~(T) = ~ C~~~~~ ( T) /  IT I
TcS(T)

provided that the probability model we are using assigns eq~ia1 rrobability

to all sequences (x1,y1),...,( x~~1,y01~ in which (x.,y.~ Is replaced

by ~~~~~~ , where x
,~ 

and y’. are in the same current components as

x~ and y
~ • Both of the models we are considering have this property ;

3 
in the random graph model these formulas do not account for “find”

4 o:erations when a redundant edge is encountered. In the spanning tree

model we can obtain the average behavior of these two algorithms by solving

the recurrences

(13.114) C = + 2 1 pnk Ck0 — k ( n

(13 .15 ) C e~~ = C~~~/ri + 2 
0 —:: n 

Pnk C
~~~

4.

as In  Section 12 above. From (12.7), (12.8), and Theorem 14 we may conclude

that C~ = n in n + 0(n) and ~~~~ = 0(n) , thereby confirming and

:li~ ht1y -harj ening lao’ s result:.

Doy le and Rivest [2] have studi ed equivalence algorithm : under a third

j -rob abiLty mo - el , ac :w- i rig that each uni on takes place between a random si r

01 equ iva - - r VC e  classes j r - -sent at the t im e , regardless of the si zes of the: -

classes. Although t he i r  model may be unreali :10 :, it is interesting to n ote

that it lead: t anion trees with the same pr obab I l i t y distr ibut i on as that of

hinary search trees; Ct. [5, Section 6.2.2]. For exancle, the Live union

tree: in (15 . ) have the expected probabilities (~
, 
~

, 
~

, 
~

, in - 
-
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this model. Since the first union leaves classes of sizes (2,1,...,l)

and since the subsequent behavior of the algorithm is to construct a

- 

- 
- random union tree from these n-i classes, it is clear th at random union

- trees with n terminal nodes are obtained from those with n-i by

- replacing a random terminal node by a branch node, and this is essentially

- the same process which produces random binary search trees. We can analyze

- 
-

- the four union algorithms in this model by using Equations (9 .4 ) ,  (° . e ) ,

(13.114), and (i~.15) with the separable probability distribution

hnk = l/(n-l) . The resulting solutions are

(13.16) C~~ = n(H -1) n

C~~
’W 

= f l H  - ~~f l H  /2j  
- ri/21 = n ln n+ 0(n)

C?1 = 2 n }J~2) - 2n - H0 + 1 = ~2 - 2 ) n + a (log n;
= 0(n )

70t e that i n th i s  model the union tree tends to be reasonably well-

balanced, ~O t~~e weighted algorithm saves only a factor of 2
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We h ave  ~ r ev -  i that Lii - ~i-W algorithm has linear exp-ectee runn ing
-

~~ t ine in the random graph m u - I - C l , and we have analyzed four di stinct

-, algeritlun: hi the  other model:, but several related questions are still

wai t ing to i - u  r - - : olve-t .

th e l o t  i nii ortant problem remaining is to determine the

-
. - - -vi i ot I- (t) when ~_5/2 t < n~~ , since -~~~ es t imate s

are ui::: - -
- :lu - - - i ’ s in  I L :  interval . Such an improvement should help in

th- - ::vly:i: of ~‘:iJ:y u t l u - r  algori If :- :: , because the function m n (t )

m J C ~~L b C  i ’ h- - - - h - L 0  -1 u: random graphs. A detailed knowledge of

- t  F 3 : 14- i ;  ~ :t - ’ib1 J s i t  l}~~ conjecture (7 .7) ,  and perh at : it would also

t 1- - a - i t - -  an Lfl ’LL ! l - j  e- - - - : roL i Io Lu on of the con:ti~~t lim (C~~~ /n )  

.L:- j0~ LIt sequence: of length £ in the r andom gr aph model ,

~: it tru teat Lil ’ o:-:j~~nLe:i  running time of algorithm QFW is 0 ( i )  ? Our

1 f 0 . g h z-:: 0 (gf- ::) , wh ich  s satisfactory if £ is order n at ieast~

-
~
xar tsr  v- - r ~ :s all 2 i i i - - ridivi dual --mij-onent : almost always have boU n d — ; I

- - 4.
s i z e .  But for 

~ ~ 
n/1u~ a , say , we do not know how to answer thIs ~j u - : t t u i i.

f~~et }  - r -  r - 11 n i l  -J r 1 - the :iothurs have r i ot  been able- to resolve :s

-  ; s t i n s . i - -o o I (‘r . = i  i C O  giv e t -r- - - -: T . Thi s r sghI Lu shed : h r U i - - r -

j I l~~b f en i v o l c - r i e - e  - l!y~ri t LLO: : :fld the connectivity of random gra i-hi c .

- I i

- 55 
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