
ALGORITHMIC  ASPECTS-OF  VERTEX ELIMINATION
ON DIRECTED  GRAPHS

bY
Donald J. Rose
Robert E. Tar jan

STAN-CS-75-531
NOVEMBER  1975

COMPUTER SC IENCE DEPARTMENT
School of Humanities  and Sciences

STANFORD  UNIVERSITY



ALGORITHMIC ASPECTS OF VERTEX ELIMINATION  ON DIRECTED GRAPHS

-I*Donald J. Rose
Applied Mathematics, Aiken Computation  Laboratory
Harvard University, Harvard, Massachusetts  02138

Robert Endre Tarjan -I
**

Computer Science Department
Stanford University, Stanford, California 94305

c

Abstract

We consider a graph-theoretic  elimination process which is related

to performing Gaussian elimination on sparse systems of linear equations.

We give efficient algorithms to:

(1) calculate the fill-in produced by any elimination ordering;
-=.

(2) find a perfect elimination ordering if one exists; and

(3) find a minimal elimination ordering.

We also show that problems (1) and (2) are at least as time-consuming

as testing whether a directed graph is transitive, and that the problem

of finding a minimum ordering is NP-complete.

Keywords: directed graph, elimination ordering, fill-in, Gaussian

elimination,  NP-complete problem, perfect elimination  graph,

sparse linear system.

f* Research partially su-pported by the Office of Naval Research under
contract ~000%67-A-0298-0034 at Harvard University.

El Research partially supported by a Miller Research Fellowship at
University of California, Berkeley; by National Science
Foundation,  grant DCR72-03752  A02 and by the Office of Naval
Research contract NR 044-402. Reproduction  in whole.or in part
is permitted for any purpose of the United States Government.

1



1. Introduction and Notation.

A directed graph (digraph) is a pair G = (V,E) where V is a

finite set of n = \V\ elements called vertices and E c f(v,w) \ v,w EV,

v # w] is a set of

I
-1  -

e = IEI ordered vertex pairs called edges.. .

Given veV , the set
c

adjacent out from v

of vertices adjacent

L.

A(v) = {weV 1 (v,w) EE] is the set of vertices

; the set B(v) = [XV \ (u,v) EE] is the set

into v . A(v) and B(v) are called the

adjacency sets for vertex v . \Nv) \ = do(v) is the out-degree

of v ; \B(v) I = P(v) is the in-degree of v . The notation v -,w

means weA ; v hw means wfA(v) . If W 2 V , the induced

subgraph G(W) of G is the subgraph G(W) = (W,E(W)) where--.

E(W) = CbY) E E \ X,Y 4 l

For distinct vertices v,weV , a v,w path of length k is a

sequence of distinct vertices p = [v = v1,v2, .."vk+l = w] such that

v. 3v
1

i+l for i = 1,2,...,k  . A graph is strongly connected if there

is a path from every vertex to every other. A cycle of length k is

a sequence of distinct vertices k = [v1’v2,““vk1 such that v
i 3 vi+l

for 1,2,...,k and vk --) v1 . A graph is acyclic if it has no cycles.

The transitive closure of graph G = (V,E) is the graph G" = (V,E+) ,

where (v,w) eE+ if and only if v f: w and there is a path from v

to w in G . A graph G is transitive  if it is equal to its

transitive  closure. Equivalently, G is transitive  if and only if

forall u,v,w, u-+v and vdw togetherimply u-rw or u=w.

A clique is a graph G = (V,E) with E = ((v,w) \ v,weV, v f w] .

For a graph G = (V,E) with IV\ = n , an ordering of V is a

bijection  a: {1,2,...,n]  * V . Ga = (V,E,a) is an ordered graph.

2



c

i

t

L

For a vertex v , the deficiency D(v) is the set of edges

defined by

D(v) = ~(XYY) \ ⌧ -+ VY v + YY ⌧ f, YY ⌧ + Y] l

The graph Gv = (V-b] Y E(V-{v)> UD(v>> is called the v-elimination. .

graph of G . For an ordered graph Ga = (V,E,a) , the elimination

Process

P( Gal = [G = Ga,Gl,G2,  . . ..Gnwl]

is the sequence of elimination graphs defined recursively  by Go = G ,

Gi = (G. )1-1 a(i) for i = 1,2,...,n-1  . If Gi = (Vi,Ei) for

i = O,l,...,n-1  , the fill-in F(GQI) is defined by

--. n-l
F(G,) = U Di-l(a(i)I

i-l

where D i_lCa( i> 1 is the deficiency of a(i) in Gi-l ' and the

elimination graph Gz is defined by

G; = (V, EUF(G& .

The notion of vertex elimination arises in the solution of sparse

systems of linear equations by Gaussian elimination. Given any nxn

matrix M = (mij) which represents the coefficients of a set of linear

equations, we can construct an ordered graph Ga = (V,E,a) , where

vertex v
i corresponds to row i , and (vi,vj) EE if and only if

m
ij

f0 and i{j. The unordered graph G = (V,E) corresponds to

the equivalence class of matrices PMPT , where P is any permutation

matrix.

If we solve the system with coefficients M using Gaussian

elimination, eliminating variables in the order 1,2,...,n , then the



k

L

i

L

t

edges D (v.)
i-l 1

correspond exactly to the new non-zero elements

created when row i is eliminated (assuming no lucky cancellation

of non-zero elements). For further discussion of this correspondence,

see [lO,ll]. To make the eliminat.ion process efficient, we might, for

example, like to create no more non-zero elements than necessary,

that is, to find an elimination ordering which minimizes the fill-in.

Given a graph G = (V,E) , an ordering a of V is a perfect

elimination ordering of G if F(Ga) = # . Thus a is a perfect

ordering if u --) v, v ---) w,a -1
(u) < min(a

-1
(v) ,&l(w)) together

imply u=w or u-+w. A graph which has a perfect elimination

ordering is called a perfect elimination graph.--. An ordering a is

a minimal elimination ordering of G if no other ordering @ satisfies

F(Gp) = F&J where the containment is proper. An ordering a is a

minimum elimination ordering of G if no other ordering 8 satisfies

Imp1 l < IF&J l l Any elimination graph Gi is a perfect elimination

graph, since a is a perfect ordering of this graph. Any perfect

ordering of a graph is minimum, and any minimum ordering is minimal.

If a graph is a perfect elimination graph, any minimal ordering is

perfect.

A problem important in practice is that of finding a minimum

elimination ordering for any graph G . We shall show that this

problem is NP-complete. -I* To balance this negative result, we give

polynomial-time  algorithms for some simpler problems. We present

?Y The so-called NP-complete  problems are the hardest problems solvable
by non-deterministic  Turing machines in polynomial time. Either all
the NP-complete  problems have polynomial-time  algorithms, or none of
them do. Such famous hard problems as the traveling salesman
problem, the satisfiability  problem of propositional calculus, and
the maximum clique problem are NP-complete. See [2,6].

4



methods for

L

L

L

L

0) computing the fill-in produced by any ordering a , in O(ne)

time;

(2) generating a perfect ordering, if one exists, in o(ne) time;

(3) generating a minimal ordering, in 4O(n ) time.

(For all time bounds we assume n<et-1, which holds for all graphs

that are at least weakly connected.)

We shall also show that any method for either (1) or (2) can be

used to test whether an arbitrary directed graph is transitive. Thus,

achieving a time bound of better than O(min(ne, n '081)) for either of

these problems would improve on the best bound known for Boolean matrix

multiplication [3]. The restrictions to undirected graphs of problems

0)' WY (3) have been considered  in [12], which presents an

O(n+ er) algorithm for (1) (where e' is the number of edges in Gz ),

an O(n+ e) algorithm for (2)' and an O(ne) algorithm  for

(Ohtsuki [9] has also devised an O(ne) algorithm  for (3)).

This paper is divided into several sections. Section 2

u

(3)

contains

some properties of fill-in and elimination orderings which provide a

basis for the algorithms. Section 2 also informally describes the

algorithms. Section 3 contains implementations  of the algorithms and

analyses of their running times. Section 4 describes relationships

among problems (1)' (2)' and the transitive closure problem, and between

the minimum ordering problem and the NP-complete problems.



i

c

c

c

c

2. Properties of Fill-in and Elimination Orderings.

Our first result characterizes the fill-in produced by any

elimination ordering.

L-al. Let G = (V,E,a) be an ordered digraph. Then (v,w) is

an edge of Gi = (V,EUF(G~)) if and only if there exists a path

p=[v=v f5’ l l dk+l = w] in Ga such that

(1) CC1(vi) < min(CX-l(v),CX-l(w)) for 2<i<k.- -

Proof. We show by induction on 1 = min(a
-1

(~),a
-1

(w)) that, given

any edge (v,w) in Gz , there exists a path from v to w with

the required property (1). If I = 1 , (v,w) is in G and (1)

holds vacuously. Suppose the result holds for all l,< 1 ,< lo and

let 1 = ao+l . If v-'w in G then (1) again holds vacuously.

Otherwise (VYW> E F(G,) and we have by the definition of F(G,) an

xeV with C?(x) < min(c?(v),&w)) and v --,x , x 4 w in G*
a l

The induction hypothesis implies the existence of v,x and x,w

paths in Ga satisfying (1) and combining these paths gives the

required v,w path.

The converse is established  by induction on k , the length of p .

If k=l, v-'w in Gi trivially. Suppose the converse holds for

all k-<ko and let k =
ko
+l . Let p = [v = vl,v2,~~~,vk+l  = w]

be a path in Ga satisfying (1) and choose x = v. such that
1

&Vi) = max(&vj) \ 2 ,< j 5 k) . The induction hypothesis implies

*
that v 4 x

*
and x ---) w in G l hence v -rw ina ' G

a l

c l

6



i

L

L

c

I

c

We can use this lemma as the basis of an O(ne) time algorithm

for computing the fill-in produced by any ordering a . It is

sometimes more efficient, however, to compute the fill-in directly.

If v and w are any vertices,

(v,w) EE or there isa u such

(v,u) EEUF, and (uyw) EEUF l

(v,w) eEUF if and only if either

that 8(u) < mir&(v),a-l(w))  ,

We can compute the fill-in edges
-I

b’W> ’ in increasing order on the value of (X-~(V) , by using this

observation. This method of computation is called row elimination

or Doolittle elimination [4] when it is used to carry out numeric,

rather than symbolic, Gaussian elimination. Section  3 discusses two

algorithms for computing fill-in, one based on this direct method and
--.

one based on Lemma 1.

Lemma2. Let G = (V,E) be a perfect elimination graph, with perfect

ordering a . Let xeV and let Gr = (V, EUD(x)) . Then Q! is a

perfect elimination ordering of G' .

Proof. We must show that given w + y , y+z in Gr with w # z

and a-'(y) < min(&w),&z)) , it follows that w -+ z in G' .

We must consider three cases. If (w,y),(y,z) EE , (w,z) EE since

a is perfect. If (~,y),(y,z) ED(X) , then w --) x , x 3 z in G

and (w,z) cEUD(x) . The last case is (w,y) EE , (y,z) ED(X)

(or equivalently (w,y) ED(X) , (y,z) EE ). In this case y + x ,

x4z in G and ybz in G. If w=x,then (w,z)~E.

Otherwise  (i.e., if w { x ), a
-1

(x) >Q
-1

(y) since a is perfect,

and w 4 x in G , also since CX is perfect. But w 4x , x4z

in G imply (w,z) EE UD(x) . 0

c

7



i

c

c

c

Corollary 1. If G = (V,E) is a perfect elimination  graph and x

is any vertex, the x-elimination  graph Gx = (V-{x], E(v-(x)) UD(x)]

is also a perfect elimination  graph.

Corollary 2. If G = (V,E) is a perfect elimination graph and x

is any vertex with D(x) = $ , there is a perfect elimination ordering

a with a(l) =x.

Corollary  2 implies the correctness of the following algorithm

for finding a perfect ordering if one exists.

algorithm PERFECT(G): bs

i := 0;--.
while G has some vertex v with D(v) = @ do beginNV-

i := i+l;

a(i) := v;

delete v and all incident edges from G;

end end PERFECT;NCN-

If this algorithm succeeds in ordering all the vertices, G is

perfect; if not, G is not perfect. Section 3 gives an O(ne) time

implementation of this algorithm.

Our next results give properties of minimal orderings. Let

G = (V,E) be a graph. A set F of edges is a fill-in for G if

EnF =@ and G'=(V,EUF) is a perfect elimination  graph.

F is a minimal fill-in if no set F. C F is such that Go = (V, EUFO)

is a perfect elimination graph.

c



L

L

b

c

c

L

Lemma3. Let G = (V,E) be a perfect elimination  graph. Suppose

FM is a fill-in for G . Let G' =(V,EUF) . Then 3feF such

that Gf-f = (V,EUF-{f)) is perfect elimination  (i.e., F-(f) is

a fill-in). . .

Proof. We prove the lemma by induction on n = 1~1 . If n < 2 ,-

the result is obvious since any graph with one or two vertices is

perfect elimination. Suppose the result is true for all n ,< no and

let n = no+1 . Let R = (x 1 D(X) = $$) where D(x) is the deficiency

in G and let S = [x 1 D'(X) = @) where D'(x) is the definiciency

in G' . We know R # fl and S # fi . We must consider two cases.

--.
(i) For some x63 there exists an edge feF of the form f = (u,x)

or f = (x,u) . By Corollary  2 there is a perfect elimination

order 8 for Gr with ~(1) = x . Then f3 is also a perfect

order for G'-f .

(ii) Case (i) does not hold. We prove 3xeS with F &D(x) . Pick

any ZES . If FQW ’

D(Z) C, F , F = D(z) . In

By Corollary 2, there is a

a(1) = x ' and by Lemma 2,

Thus x& . Since D(x) =

let x = z . Otherwise, since

this case, let x be any vertex in R .

perfect ordering cx of G such that

a is a perfect ordering of G' .

@ ’ F g D(⌧) l

Now Gx = (V-{X}~  E(V-(x]> UD(x>) and G-3;  = (V-(x),E(V-{x))~JFuD(x))

are perfect elimination by Corollary 1. By the induction hypothesis

3f EF-D(X) such that Gx-f is perfect elimination. But then G*-f

is perfect elimination since f/D(x) l c]

L

c

Lemma  3 gives the following theorem.

9



Theorem 1. Let G = (V,E,a) be an ordered graph. Then a is a

minimal elimination ordering if and only if for each -(G,) I

G;-f = (V, EUF(G,)-{f]) is not perfect elimination.

Suppose G = (V,E) is a graph and F is a fill-in for G .
L

c

L

c

every vertex x has D(x) = F then F is clearly minimal. If some

vertex x has D(x)cF , then the first recursive call on MINFILL

produces a fill-in Fl C F minimal for Gx .- If' D(x) = fl , Fl is

minimal for G by Corollary 2. If D(x) # fl , then for all proper

subsets Fi C Fl and all subsets F2 c D(X) ,- G" = (V, EUFiUF2)

is not a perfect elimination graph by Lemma 2 and Corollary  2. Thus,

Lemmas 2 and 3 lead to the following recursive procedure for finding

a minimal fill-in F. c F .-

WMINFILL (VyE,F,Fo);  begin

declare FlyF2 set variables= to procedure MINFILL;

EG = (V,E) has no vertex x with D(x) c F then F
-0 := F

else beginNyvv--.m.
let x be a vertex with D(x) c F;

call 1: MINFILL (V-[x},E(V-{x})  UD(x),F(V-(x))-D(x),Fl);

ED(x) = #

else begin

call Gmz (V, EUFl,D(x),F2);

F. := yJF2;

end end end MINFILL;NW--

It is not hard to see that this procedure works correctly: If

if F2 CD(x) is a minimal fill-in for G" = (V, EUFl) , then-

FlUF2 is a minimal fill-in for G .

10



IL-

L.-

c.

i

(':mbining MU!1 I~'lr,l, with the algorithms for computing fill-in

and finding a perfect ordering, it is easy to build an algorithm to

find a minimal ordering. Section 3 contains such an algorithm,

i.mplemented so that it runs in O(n2e') time, where e' = IEUF\ .

We conclude this section with a lemma proved in [5] giving a

necessary condition for a graph to be perfect elimination. We shall

use the lemma in Section 4.

Lemma 4 (Haskins and Rose [5])* Let G be a perfect elimination

graph  l Then for every set X of k > 2 vertices there is a subset

Y of k-l vertices such that any cycle on X has a subsequence which
--.

is a cycle on Y .

i



3. Implementation and Complexity  of the Algorithms.

Fill-in.

L

i

To calculate the fill-in produced by an ordering a using Lemma 1
. .

we must find the vertices w reachable from each vertex v by a path

whose intermediate vertices satisfy (1). To find paths which start at

a fixed vertex v and have this property, we conduct a search starting

from v . First we allow the search to pass through only the vertex

of lowest elimination number. Then we extend the search through

vertices of second lowest number, third lowest number, and so on.

In this way we can find appropriate  paths efficiently. A program to
-.e.

implement this method appears below in Algal-like notation. Given an

ordered digraph Ga = (V,E,CX) with adjacency list A(v) for each WV ,

*
it calculates the edges in G .

a

12



e

L

c

c

c

Algorithm FILL1 (G,): bs

zi := lmunnd&ba

v= a(i) ;

aj := 1 e n do beginNV-
reach(j) := #; ..

mark(j) := ,f*;

end;

zk(i) := ts

Ew EA(v) do begin--
mark@(w)) := *;

add w to reach (6'(w));

mark (v,w) as an edge of Gi;

2;

search: := 1 mun i-l do

while reach(j) h #do begin-- --
delete a vertex w from reach(j);

E z CA(W) sg -I mark@
-1

(z)) then begin

mark (a-'(z))
--

:= true; l

if a-'(z) > j thexgin-
---=I-

add z to reach (a (z));

mark (v,z) as an edge of Gz;

end else add z to reach(j);lvvv-
end end end FILLl;mm-

It is easy to show, using Lemma 1, that this algorithm correctly

calculates the fill-in produced by a . The time required per execution

of statement search is O(e) since each vertex v can only have

mark(v) set true once and thus each edge can only be examined once.

The total time for algorithm  FILL1 is thus O(ne) . FILL1 requires

O(e) storage space, plus space for the output.

For graphs with a small number of edges but a large fill-in,

FILL1 is an efficient way to compute the fill-in. For graphs with

13



smaller fill-in, it is more efficient to use a direct method based

e

c

on the observation following Lemma 1. The only tricky part of such

an algorithm is avoiding adding edges to the fill-in twice. To handle

this difficulty,  we use a bit vector fill(j) which records, for some

current value of i , whether (a(i)ya(j>> has been added as a fill-in

edge.

algorithm FILL2 (G,): bs

Ej := lmunn do- fill(j) := m

for i :=- 2 murxn do begina"""""""""'""""""""""  -
list := $8;

E (a(i),w) EE S&B

fiAl(O?(w)) := t2;

x c2(w) <
end;-

i then add w to list;

while list f fl--
delete some

do begin-rcNIcw
w from list;

-I 7
z (w,y) EE UF with a-"(w) < a-'(y) do-

if lfill(a
-1

- - (y)) then begin--
add (a(i),y) to F;

if a-'(y) < i then add y to list;-
end end

f&T(z) EEUF gk~ fill@?(w)) := E;

end end FILL2;--

It is immediate that this algorithm correctly computes the fill-in

F produced by an ordering a . FILL requires (er) storage space,

where e' = IEUF~ . To estimate the time requirements of FILL2, let

dl(v) = ((v,w) eEUF 1 Q+(V) > a-'(w)) and let

d2!v) = ((v,w) EE U F I a-'(v) < C?(W)) . Then FILL2 requires

0 er + c dl(v)'d2(v)
>

time.
VEV 1

14



i

Algorithm  FILL2 has the advantage that its computation  time is

proportionalto the number of arithmetic operations necessary to do

numeric Gaussian elimination. Thus FILL2 can be used to precompute

the fill-in for a numeric equation solver at a cost of only a constant,

factor in the running time. (See [16].) This is not necessarily true

of FILLl. However, for sparse graphs or graphs with large fill-in

algorithm FILL1 is more efficient.

c
Perfect Orderings.

c

To implement the perfect ordering algorithm  so that it is

efficient, we need lists to keep track of the deficiencies of each

vertex. We use the following lists. For each VEV , D(v) is a

list of triples (X'V'Y) such that (x,y) is in the deficiency

of v . For each XEV , L(x) contains one pointer to each occurrence

of a triple of the form (x,v,y) in some D(v) , and one pointer to

each occurrence of a triple of the form (y,v,x) in some D(v) .

When a vertex x is deleted from the graph, we use L(x) to update

the deficiency lists of the vertices.' We need two other variables:

a(v) is a Boolean array used to help initialize the D and L lists,

and N is a list of the vertices v with D(v) = # .

Until N=# , the algorithm must carry out the following steps:

find a vertex in N ; delete it and its incident edges from the graph;

and update the D lists appropriately. An implementation  is presented

below.

15

c



algorithm PERFECT(G); b*

init:

L

L

c

delete:

comment compute initial deficiencies;
._

gu~v &b&

zw EA(u) ds

E v CA(U) g

for-wt-A(v)

44 := tz;

$o- El a(w) ar& (w { u) t-b-

f=veV gb&D(v) := L(v) := $; a(v) := false end;--
N := $8;

add triple (u,v,w) to D(v);

add to lists L(u) and L(w) pointers to this triple (u,v,w);

end;

z w EA(u) & a(w) := e

en&;

comment initialize list of deletable vertices;

EVEV ggD(v) := # t&add v to N;

e delete as many vertices as possible;

i := 0;

y*N { @ do begin--

update:

delete some vertex u from N;

a-3 1U := i := i+l;

a(i) := u;

E p EL(U) do beginNV-
delete from D(v) the triple (x,v,y) at which p points,

if this triple has not been deleted already;

if D(v) = # then add v to N;-
end end;NW-
comment if i := n then G is a perfect elimination graph;

otherwise G is not a perfect elimination graph;

end PERFECT;-

This program clearly implements algorithm  PERFECT correctly. We

analyze the running time of the program. For each edge (u'V> ' f2-E

c program spends w+ do(v)) t ime in the initialization loop init .

16



The total time spent in init is thus 0 n+ e+ c dI(v) do(v) .
WV

Since all the entries in the D and L lists are created in init ,

and each vertex is added to N at most once, the total storage

requirements of PERFECT are 0 n+ e+ c dI(v) do(v) . The time
vcv

spent executing statement delete is 0 n+ e+ c d,(v) do(v)
VEV >

since the amount of time spent in update is proportionalto  the

number of entries in the D and L lists, and the amount of time
c

spent in delete outside of update is O(n) . Thus PERFECT requires

0 n+ e+ c dI(v) do(v)
>

time total.
VEV

Since do(v) <n for all v-

and c dI(v) = e , the running time is O(ne) . If d,(v)+ do(v) < d-
VEV

for all vertices, the bound is O(nd2) . If storage space is at a

premium, PERFECT can be implemented to run in O(n+e) space and O(n2e)

time.

Minimal Orderings.
i

i

c

We can use procedure MINFILL in combination with FILL and PERFECT

to compute a minimal ordering for any graph. Given a graph G = (V,E)

we choose any ordering CX and calculate its fill-in F = F(G,) using

FILL. Next, we compute certain sets which MINFILL needs for its

calculations. These include the deficiency D(x) in Gz for each

vertex x , the set DF(x) = ((u,v) I u 4 x,x 3 v in Gz, u # v, and

b' 4 is a fill-in edge) for each x , and certain lists necessary

for updating the graph and the sets D(x) and DF(x) . Then we apply

MINFILL(F) l MINFILL(F) is coded as a recursive procedure which,
c

17

L



c

given a graph G = (V,E) and a fill-in F , finds a minimal fill-in

F. C F and updates G to include the edges in F. . Once a minimal

fill-in F. is found, we apply PERFECT to find a perfect ordering @

of G' = (V,EUFO) l This ordering is a minimal ordering of the
. .

original graph G . An outline of the algorithm appears below.

algorithm MINIMAL(V,E); begin

MINFILL(Gs

delete: we some undeleted vertex x has D(x) = @ and 3 an edge

(u,x) or (x,u) in F do-
delete all edges (u,x) or (x,u) from F, updating

lists representing  graph accordingly;

split: E some undeleted vertex x has (D(x) = @) g (DF(x) c I?)

--then begin--
delete edges in DF(x) from fill-in and add to graph

temporarily;

delete x and incident edges from graph;

F := F-DF(x);

call 1: MINFILL(F);

add x and incident edges to graph;

gDF(x) { fl then begin--
delete edges in DF(x) from graph and add to fill-in;

F := DF(x);

call 2: MINFILL(F);

end end else add all edges in F to F. and to graph, and---
setF:= ;$

end MINFILL;-
find any ordering a of vertices V;

compute fill-in F = F(G,) using FILL(Gol);

compute initial deficiencies;

F. := PI ;

MINFILL(F);

18



L

c

e

c

comment as MINFILL executes, it adds to FO and to the graph

edges which are found to be in a minimal fill-in;

find a perfect ordering p of graph GO = (V, EUFO) using

PERFECT(G0);

B ,!3 is a minimal ordering of G;
. .

end MINIMAL;-

We still need to fill in the details of this algorithm and to

estimate its time and space requirements. The tricky part of the

implementation  is representing  the deficiencies so that they are easy

to update. We use various lists similar to those used in PERFECT; we

need extra lists here since we must keep track of the fill-in edges.

For each v<V , A(v) and B(v) are adjacency  lists for v in G ,

and A'(v) and B'(v) are adjacency lists for v in G' =(v,EUF) .

M(v,w) is an n xn matrix such that M(v,w) = 0 if (v,w)bEUF ,

Mbv) = 1 if (v,w) EF ., and M(v,w) = 2 if (v,w) EE . For each

vertex v , D(v) is a list of edges (u,w) such that u 4 v , v -,w

in EUF, u /= w ) and u /+w in EUF . DF(v) is a list of edges

(u,w) such that u 3 v , VOW in EUF, u # w 9 and (u,w) EF .

pb,w) is an array of pointers such that P(u,v,w) = 0 if

(J&W) bD(v) UDF(v) otherwise. For each veV , g(v) = true if v has

not been deleted from the graph; g(v) = -false if v has been deleted.

c

Below is an implementation of MINIMAL which uses these data

structures.

19



algorithm MINIMAL(G): s

procedure MINFILL(F); bs

delete: WE some vertex x has g(x) and (D(x) = @) and

((A'(x)-A(x))  U (B'(x)-B(x):@) do begin---
s delete edges in fill-in which are incident

to x from graph;

for (u,v) E (A'(X)-A(X)) U(B' (X)-B(X)) do begin- ,- -
F := F-{(u,v)];

M(u,v) = 0;

for ~~3.7 do if g(w) then begin- -- --
g P(u,v,w) k 0 then begin

delete corresztizry in D(v) UDF(v);

P(u,v,w) := 0;

end;-
if P(w,u,v) # 0 then begin

Ivv delete correslp‘;;E;;;izry  in D(u) UDF(u);

P(w,u,v) := 0;

end end end;--MN
for (u,v) E @'(X)-A(X)) u(Bf(x)-B(X))  do

EWEV gg (M(u,w) > 0) s (M(w;) > 0)

then beginNvw-
delete entry (u,v) from DF(w) using pointer

pb, WY v> ;

add entry (u,v) to D(w) and put a pointer to

end;-
end delete;-

split: if some vertex x has g-
then begin--

this entry in P(u,w,v);

delete (u,v) from A'(u) and B'(v);

(x) and (D(x) = @)

comment delete edges in DF(x) from fill-in

graph temporarily;

comment also delete x and incident edges;

E (u,v) CA(X) UB(x) do-M(u,v) := 0;

z (u,v) EDF(x) &+M(u,v) := 2;

and add to

20



I

L-

c

i

L

c

for distinct u,v,w~V such that (g(u) = g(v) = g(w) =-
tr& and XE(U,W] do- -
if P(u,v,w) { 0 then beginA-

delete corresztizry from D(v) UDF(v);

P(u,v,w) :*7 0;

end;-
g(x) := e;

E (u,v) EDF(x) do-
for weV do

and (w f x) and g(w) then begin.- M/W<-
delete corresponding  entry from DF(w);

P(u,v,w) := 0;

end;

F := F=(x);
--.

call 1: MINFILL(F);

comment restore x and incident edges to graph;

comment delete edges in DF(x) from graph and add

to fill-in;

g(x) := true;

f& (u,;=(x) UB(x) do-M(u,v) := 2;

for (u,v) EDF(x) zM(u,v) := 1;-
ff distinct u,v,w EV such that x E (u,w] 2 (u,w) EDF

a& (x # v>> g

if M(u,v) > 0 and M(v,w) > 0 then begin-
gM(u,w) = 0 s add (u,zoG and

put a pointer to this entry in P(u,v,w);

gM(u,w) = 1 tz add (u,w) to DF(v) and put

a pointer to this entry in P(u,v,w);

end;

call 2: gzx) + $8 tg$in- F := DF(x); MINFILL(F) e&;

end else for (u,v) E F do begin-/cNw- --
comment F is a minimal fill-in;

comment add edges in F to F
0

and to graph;

comment delete all edges from fill-in;

21



M(u,v) := 2;

2WEV zg P(u,w,v) # 0 -in+

delete corresponding  entry from DF(v);

P(u,w,v) := 0;

end;

L

c

I

L

e

add (u,v) to F. -and to E;

add v to A(u);

add u to B(v);

F := fl ;

end E;

end MIGLL;-
find any ordering a of vertices V;

compute

comment

compute

for WV

fill-in F = F(Ga) using FILL(G,);

initialization;

matrix M(v,w);

g D(v) := DF(v) := @;

for u,v,w EV do

-g (M(u,v);O) ar& (M( v,w) > 0) a& (u f: w) then begin--
if M(u,w) = 0 then add (u,w) to D(v) and put a pointer-

to this entzn P(u,v,w)

else if M(u,w) = ltz add (u,w) to DF(v) and put a--
pointer to this entry in P(u,v,w)

* P(u,v,w) := 0;

end else P(u,v,w) := 0;--
Fo:= ;#
$r- VEV do- g(v) := t=;

MINFILL(F);

find a perfect ordering p of Go = (V, E UFO) using PERFECT(GO);

comment p is a minimal ordering of G;

end MINIMAL;-

A few observations help in seeing that this program correctly

implements MINFILL. Matrix M and Boolean array g always encode

22

the current graph, with deleted vertices excluded. Every deleted



vertex has all its incident edges in E (not in F ) when it is deleted.

When a vertex is deleted, the value of DF(x) is left intact, as are

all pointers of the form
PbYXYW)  l This gives us a place to save

DW Y and makes updating the graph after call 1 easier. The graph

updating throughout the program is straightforward.

It is an interesting exercise to figure out the resource requirements

of the algorithm. Let e1 be the number of edges in the graph Gz where

a is the arbitrary ordering selected initially. We shall show that the

total number of calls on MINFILL is O(er) , the maximum depth of nested

calls on MINFILL is O(n) , and MINIMAL uses O(n3) space and O(n*e')

time. We make several observations which lead to these bounds. First,
--.

the time spent in MINIMAL outside of MINFILL is clearly 3O(n ) . Also,

the storage required, not counting storage for the procedure parameter

F in MINFILL, is clearly 3O(n ) .

Now consider the nested recursive calls on procedure MINFILL.

Either a procedure call MINFILL(F) is a bottom-level call on MINFIL or

it leads to two nested calls MINFILL(F') and MINFILL(F"), where

F' = F-DF(x) f $8 and F" = DF(x) { # . Thus the nested calls on

MINFILL may be represented  as a binary tree. The topmost vertex of

the tree corresponds to the outer call MINFILL(F(G,)) . Each leaf

of the tree corresponds to an innermost call on MINFILL. If Fl,F2,.=.,Fk

are the values of the parameters in these innermost calls, then.

FinFj = $ and Fi 5 F(Ga) for all i, j . Since IF(Ga) 1 c e' Y-

k < e'- , and the total number of calls on MINFILL is O(e') .

Consider the depth of nested calls on MINFILL. Suppose the call

MINFILL(F) leads to a call MINFILL(F') with F' = F-DF(x) by

23



statement call 1 with F' = F-DF(x) and to a callMINFILL(F")

with F" = DF(x) by statement call 2 . Suppose we name x the

splitting vertex for the call MINFILL(F). Vertex x is absent from

all graphs considered during the execution of MINFILL(F'). The

fill-in is always contained within DF(x) for all graphs G1

considered  during the execution of MINFILL(F"). Thus x cannot

be a splitting vertex for the calls MINFILL(F'), MINFILL(F"), or any

calls nested within them. It follows that each nested call on MINFILL

has a different splitting vertex (unless it is an innermost call with

no splitting vertex) and the maximum depth of nested calls on MINFILL

is o(n) l --_

Since parameter storage space for one call on MINFILL is O(n2) ,

the total parameter storage requirements for nested calls on MINFILL

are O(n3) , and the total storage required by MINIMAL is O(n') .

Consider the time used during one call on MINFILL, not counting

time spent in nested calls. Time spent testing the condition in while

loop delete is O(n) if we keep track of the sizes of all A(x) ,

A'(x) Y B(x) Y B'(x) as the graph changes. Time spent executing

WE loop delete is O(n) per edge deleted from the fill-in. .

Once an edge is deleted in step delete , it never reappears. Thus

the total time spent in delete over all calls on MINFILL is o(ne')

to test the condition plus O(ne') to delete edges from F and update

the graph.

Time spent testing the if condition in statement split is O(n)-

if we keep track of the size of each DF(x) and the size of F as

the graph changes. Time spent executing the then branch of split



L

I-

e

L

c

c

‘c

L

is O(n2) to update the graph by deleting and later adding x ,

O(n) time per edge in DF(x) to update the graph, and O(e') time

generating each nested call on MINFILL (since the sets F-DF(x) and

DF(x) together have at most O(e:) elements). Thus the total time

spent in the then branch of split over all calls on MINFILL is

O(n2ef) plus O(n) time per edge in DF(x) .

The time spent in the else branch of split is O(n) per edge-

added to F
0 l

An edge added to I?~ is added to the graph and never

deleted. Thus the total time spent in the else branch of split

over all calls on MINFILL is O(ne') .

In summary the total time required by MINFILL is O(n2ef) plus

O(n) time for each edge in each set DF(x) where x is a splitting

vertex. If x is the splitting vertex for the call MINFILL(F), each

edge in DF(x) must be in F . The two nested calls MINFILL(F')

with F' = F-DF(x) and MIXFILL with F" = DF(x) produced by

MINFILL(F) have parameters which are disjoint sets. Thus each edge

can only occur in O(n) parameters, since the maximum depth of nested

calls on MINFILL is O(n) . Thus the O(n) time per edge in each set

DW Y when summed over all splitting vertices, is O(n2eY) . The

total time required by MINFILL is thus O(n2er) , and MINIMAL requires

O(n2er) time, 3O(n ) space, O(e') calls on MINFILL, and an O(n)

maximum depth of nested calls on MINFILL. If storage space is costly,

we can implement MINIMAL to run in the same time using only O(net>

storage space, or to run in O(ne')*) time using only O(e') storage

space.

25



c

4. Computational  Relationships with Other Problems.

In this section we show that algorithms FILL and PERFECT cannot

be improved too much without finding a new and better transitivity-

testing algorithm, and that the minimum fill-in problem is very hard.

In particular, we show that (1) any algorithm which computes an

ordering's fill-in can be used to compute the transitive closure of

a graph; (2) any algorithm which tests whether a graph has a perfect

elimination order can be used to test a graph for transitivity; and

(3) any algorithm which determines whether a graph has a fill-in of

some size ef or less can be used to test a propositional  formula for

satisfiability.

Fill-in, Perfect Orderings, and Transitivity.

Given any acyclic graph G = (V,E) , consider the graph

G2 = (V2,E2) , where V2 = (v(i) I veV, ie {1,23] and

E2 = [(v(2)+(2))  \ (v,w) EEL U {(v(l),v(2)) I WV] . Let a be an

ordering on V such that (v,w) EE implies a -1
(v) <a-'(w) . (Such

an ordering is called a topological sorting of G [?I.) Let a2 be

the ordering on V2 defined by c$'(v(i)) = n(2-1)+6'(v) .

Applying Lemma 1, it is clear that the fill-in F((G2)a ) is
2

defined by

F((G2)a ) = ((v(l),w(2)) 13 a path from v to w in G) .
2

Given G , it is easy to construct G2 in O(n+e) time. Thus we have

26



Theorem 2. Given an acyclic graph G , we can construct in O(nte)

time a graph G2 with 2n vertices and nte edges, and an ordering

a2 , such that the edges in N(G2)a > correspond one-to-one with the
2

edges in the transitive  closure of G .

Thus any algorithm for computing fill-in can be converted into an

algorithm (with the same time and space requirements, to within a

constant factor) for computing the transitive  closure of an acyclic

graph. (The requirement that the graph be acyclic is not a significant

restriction; see [3,8 I.) Thus the fill-in problem is at least as hard

as the transitive  closure problem.

Given any acyclic graph G = (V,E) , consider the graph--.

G3 = (V3,E3) , where V3 = (v(i) \ veV, ie [1,2,3))U {s} , and

E3 = b(%v(j>> \ (uy~->  6 i < j} U {(s,v(l)) I WV)

U {(v(3)+) 1 veV)U {(s,v(3)) \ WV) . Given G , it is easy to

construct G
3

in O(n+e) time.

Lemma 5. G is transitive  if and only if G
3

is perfect elimination.

Proof. Suppose G is transitive. Then for all distinct u, v, w ,

u-+v and v dw in G imply u 4 w . Let cx be any ordering of

the vertices of G
3

such that

&v(2)) E (1,2,...,n)  for veV ,

a-'(v(1)) E (n+l,...,2n) for VEV ,

&v(3)) E {2n+l,...Jn) for veV , and

a-f s) =3n+l .

If G is transitive, elimination of the vertices b(2) 3 causes

no fill-in, since (‘d&V(2))  Y (v(%w(3)) cE3 imply (u(l)+(3))  cE3 l

.

27



c

Then elimination of the vertices b(l) 3 causes no fill-in, since

(s,v(l)) , (v(l),w(3)) eE3 imply (s,w(3)) eE3 . Then elimination of

the vertices {v(3)) causes no fill-in, since s is the only remaining

vertex adjacent to any v(3) l
Thus, if G is transitive, G, is

perfect elimination.

For the converse, suppose u 3 v and v dw in G . Consider

the cycle k = [u(l),v(2),w(3),s]  in G3 l It follows from Lemma 4

that if G3 is perfect elimination, there must be an edge in
G3

joining u(l) and w(3) or joining v(2) and s . The only such

edge possible is (u(l),w(3)) . Thus u 3 w in G , and G is

transitive. 0

--.

Summarizing we have

Theorem 3. Given an acyclic digraph G , we can construct in O(n+e)

time a graph G3 with 3n+l vertices and 3e+ 3n edges such that

G is transitive  if and only if G3 is perfect elimination.

Thus any algorithm for testing whether a graph is perfect

elimination can be used to test a graph for transitivity,  at a cost

of only a constant factor in the running time. Munro [8] has shown

that the transitive closure of a graph can be computed in O(n2.81 )

time using Strassenk fast matrix multiplication method [13]. Various

problems, including transitive  reduction [1] and Boolean matrix

multiplication  [3] are known to be computationally  equivalent to

transitive  closure. There may be a way to solve the fill-in and

perfect ordering problems in O(n2.81) t.une, by reducing them to

transitive closure problems, but any improvement beyond O(n2.81 ) would

improve the best bound-known for Boolean matrix multiplication.

28



Minimum Orderings and the Satisfiability  Problem.

L

L

c

L

c

I

c

Now we show that the problem of finding a minimum elimination

ordering for a graph is NP-complete. For this purpose, we formulate

the problem in the following way: given any graph G = (V,E) and a

size ef , does G have an ordering which produces a fill-in of e'

edges or less? To show that this problem is NP-complete, we must

demonstrate that (1) there is a non-deterministic  polynomial-time

algorithm for solving the problem; and (2) given any instance P

of a known NP-complete  problem p , there is a polynomial-time  trans-

formation which converts P into a graph G and a size ef , such

that the answer to P is "yes" if and only if G has an ordering

with a filLin of ef edges or less. (For those not familiar with

the notion of an NP-complete  problem, references [2,6] provide an

extensive discussion.)

Part (1) is easy: to discover whether

produces a fill-in of size e' or less, we

calculate its fill-in using FILL. Guessing

G has an ordering which

guess an ordering and

an ordering and checking

its fill-in clearly require polynomial time. This algorithm is

non-deterministic; it can guess all possible orderings. If one of

them produces fill-in ef or less, the algorithm  answers "yes".

Part (2) is quite a bit harder. For p we choose the satisfiability

problem of propositional  calculus, which is known to be NP-complete  [2].

Let P be any propositional  formula with m variables. We may assume

that P is in conjunctive normal form with three literals per clause [2].

Let P have k clauses. We shall construct a digraph G(P) and a

size e'(P) such that G(P) has an ordering with fill-in of size

e'(P) or less if and only if there is a truth assignment to the

variables which makes- P true.

29



We use letters x, y, z to denote variables and p, q , r to

denote literals (variables or their negations). We use ? to denote

the negation of x ; we regard z as another notation for x .

G(P) will contain some individual vertices and some cliques of

various sizes. If X and Y are cliques, we use a single "edgeri

(XY y> as shorthand to denote all possible edges from vertices in X

to vertices in Y . Similarly, the "edge" (5 x> will denote all

possible edges from vertex v to vertices in clique X .
c

The basic building block in the construction  is the "ground"

configuration  illustrated  in Figure 1, consisting of a vertex v and

c

c

three cliques Xl, X2 and X
3

. Observe that vertex v must be--.

eliminated first and vertices in X
1 second in any perfect ordering

of this grahh. (Any other ordering produces fill-in at least

min{\X21, IxJ~\xJ~~x~~, IxJ*~x~\} .) This construction  also works

if all the edges are reversed.

Without loss of generality  we may assume that for each variable x ,

X and G occur the same number of times in the clauses of P .

(0therwise, we can add a suitable number of dummy clauses of the form

G or xx% .) We may also assume that no occurrence of any variable

c

x follows an occurrence  of G *in a clause.

For each variable x in P , G(P) contains two vertices, one

corresponding  to x and one to ? . We shall use x and z to

denote these vertices. For each clause (pvp vr) in P , G(P)

contains three vertices and three cliques, denoted by pqr(i) for

i = 1,2,3 , and X31(pqr(i)) for i = 1,2,3 . Thus each literal

occurring in a clause has one vertex and one clique corresponding  to
c

30



c.

i

I

L

L.

c

it (i-e*, pqr(2) Y X31(P9m) correspond  to the literal q in

(PtJqvr) )* G(P) contains nineteen other cliques, denoted by

X2o,X5o,X32,X33  , and Xij for i = 1,2,4,5,6  and j = l,2,3 .

The cliques are arranged into six grounds.L.

Table 1 gives all the adjacencies in G(P) and the sizes of all

the cliques appear in Table 2. The sizes of the cliques are chosen to

make the calculations simple, not to be as small as possible. Figure 2

illustrates G(P) for P = (xv~vz)A  (xvyvz) .

It is clear that the size of G(P) is polynomial  in the length

of P, and that G(P) can be constructed  in polynomial  time given P .

G(P) is designed so that producing a small fill-in requires that
--.

vertices corresponding  to the false literals for some truth assignment

of P must be eliminated before any vertices in cliques
xlJ' x2o'

x61 Y x5o Y Or x41 l If some truth assignment satisfies P , there is

a corresponding  elimination order which produces a small fill-in. If

no truth assignment satisfies P , there is no elimination  order with

small fill-in. The next result formalizes this idea, and finishes

the proof that the minimum fill-in problem is NP-complete.

Theorem 4. G(P) has an ordering with fill-in m+ $+ 1
>
b-l

or less if and only if P is satisfiable.

Proof. First we show that if F is not satisfiable,  every ordering

of G(F) produces fill-in
(
m + F+ 1

1
b or greater. Suppose F

is not satisfiable. Let a be any elimination ordering. We must

consider several cases.

31

c



( >i Some vertex pqr(i) representing  a literal is eliminated after

i

some vertex in X31(pqr(i)) l Then depending on whether a

vertex in X31(pqr(i)) , X32 , or X33 is eliminated first,

4the fill-in is at least c2 , c , or c 4
. Examining  Table 2,

we see that b < (2m+7k+l)c and

< c2 .-

(ii) Case (i) does not hold and some vertex pqr(i) representing  a

literal is eliminated before the corresponding  variable vertex

(P if i = 1 , q if i = 2 , r if i = 3 ). Then the

fill-in is at least c2 >- m+$+lb.
>

(iii) Cases (i) and (ii) do not hold and some vertex v not a variable

vertex, not a literal vertex, not in X32 or X33 , and not in

=Y X31(Pqr(i)) is eliminated before any vertex in Xu is

eliminated. The first such vertex v eliminated causes a

fill-in of at least c2 >-
(
m+$+lb.

>

(iv) Cases (i), (ii), and (iii) do not hold and at most r-n+% -1

vertices among the x , G , and pqr(i) are eljrninated before

any vertex in xl1 l

Then the first elimination of a vertex in

xl1 causes a fill-in of at least
C
m+$+lb.

>

(4 Cases (i), (ii), (iii), and (iv) do not hold. Then before any

vertex in X
61"20 “50 “41 is eliminated, either two vertices

X and ;; or three vertices pv(l) , mr(2) , and pqr(3) must

have been eliminated  (since F is not satisfiable). Either case

produces a fill-in of at least C2 >- m+$+lb.
>

c

32



i-

L

i

i

c

Now suppose that P is satisfiable. Choose a truth assignment

for the variables which satisfies P . Consider the elimination order

given in Table 3. A careful examination of the adjacencies given in

Table 1 reveals that the fill-inlisted  in Table 3 is correct. The

size of the fill-in is bounded by (m+ 4k)c+

this construction  is not strongly

strongly connected by adding a new

m+g+lb-1. 0
>

The graph G(P) used in

connected, but it can be made

vertex s and edges (s,x) and (x,s) for all vertices x in the

original graph. Such an addition does not affect the minimum fill-in.

It seems likely that there is a similar construction  which shows

that the minimum fill-in problem for undirected graphs is W-complete,

but such a construction  is still undiscovered. (See [12] for a

discussion of elimination orderings on undirected  graphs.)

c

c

33



50 Remarks.

This paper has given an O(ne) algorithm for computing the

L- fill-in of any elimination ordering on a graph, an O(ne) algorithm

for finding a perfect ordering, and an O(n2ef) algorithm for finding

a minimal ordering. There may be a way to solve the fill-in and

perfect ordering problems in O(n2.81 ) time, but any improvement

4

beyond this would improve upon the best algorithm known for transitive

closure. The minimal ordering algorithm  may be improvable to O(n2e)

or even to O(n3) .

The construction in Section 4 shows that the problem of finding

a minimum ordering is NP-complete. Since this probably implies that
--.

exponential time is required to find a minimum ordering, any practical

I method for getting a small fill-in must be based on a heuristic.

Two heuristics,  the minimum degree heuristic and the minimum fill-in

heuristic [ll], seem to work well in practice, but there are no

theoretical results to support this assertion. The theoretical study

of such heuristics seems to be a good area for future research. See

[12,13,16]  for further comments regarding related issues.

34



c

References

c

L

PI

PI

I31

I?+1

[51

WI

[71

Ku

I91

DW

D11

WIe

I131

cw

D51

Ml

A. Aho, M. Garey, and J. Ullman, "The transitive reduction of a
directed graph," SIAM J. Comput l , Vol. 1 (1972)) 131-137.
S. Cook, "The complexity of theorem-proving  procedures,"
Proceedings  Third Annual ACM Symposium on Theory of Computing
(197% 151-153. . .

M. Fischer and A. Meyer, "Boolean matrix multiplication  and
transitive  closure," Twelfth Annual Symposium on Switching and
Automata Theory (19711, 129431.

G* E. Forsythe and C. B. Moler, Computer Solution of Linear  Algebraic
Equations, Prentice-Hall, Englewood Cliffs, N. J. (1967).

L. Haskins and D. Rose, "Toward characterization of perfect
elimination digraphs," SIAM J. Cornput., Vol. 2 (1973), 217-224.
R. Karp, "Reducibility among combinatorial problems, If Complexity
of Computer Computations, R. E. Miller and J. W. Thatcher, eds.,
Plenum Press, N. Y. (1972), 85-104.

D. Knuth, The Art of Computer Programming, Vol. 1: Fundamental
Algorithms, Addison-Wesley, Reading, Mass., (1968), 258-265.

I. Munro, "Efficient determination of the transitive closure of
a directed graph," Info. Proc. Letters, Vol. 1 (1971), 56-58.
T. Ohtsuki, "A fast algorithm for finding an optimal ordering in
the vertex elimination on a graph," SIAM J. Cornput., to appear.

D. J. Rose, "Triangulated graphs and the elimination process,'r
Journal of Mathematical  Analysis and Applications, Vol. 32 (1970),
597-609.

D. J. Rose, "A graph-theoretic study of the numerical solution of
sparse positive definite systems of linear equations," Graph
Theory and Computing, R. Read, ed., Academic Press, N. -1973),
183-217.

D. Rose, R. Tarjan, and G. Lueker, "Algorithmic aspects of vertex
elimination on graphs," SIAM J. Comput., to appear.

D. Rose and R. Tarjan, "Algorithmic aspects of vertex elimination/
Proceedings Seventh Annual ACM Symposium on Theory of Computing
(19751, 245-254.

V. Strassen, "Gaussian elimination is not optimalytr  Numer. Math.,
Vol. 13, (1969)y  354-356.

R. Tarjan, "Depth-first search and linear graph algorithmsyff
SIAM J. Comput., vol. 1, (1972), 146-160.

R. Tarjan, "Graph theory and Gaussian elimination," Sparse Matrix
Computations, J. R. Bunch and D. J. Rose, eds., Academic Press,
New York, to appear.

35



c

Vertex or
Clique Size Adjacencies  In Adjacencies  Out

t

c

X 1
x2o' x22

X,X
ll,x41, all pqr(i)

containing x or G, all

X 1 xy x22

X31(pqr(i)  1 with _pqr

containing x or x

X31(xqrW 1,except

X31hd2) 1, X31(p4x(3) 1.

Xl1 ,XG1 yX41y Gqr (i) for
i = 1,2,3, p&(i) for

i = 2,3, PGW, X31(p4rW)

with pqr containing x

or x except X31hqr(l)),

X31(x4'(1)  1, Xjl(wrW 1,

X31(p&2)l, X31(p4xW),

x31(Pqa3)~  l

pqr(l) 1 x5O,x52,x2O,x22, pqr(2), X31(p9'(1))  ,Xll

PyP,q,i,r,T corresponding

to variables, p,p

corresponding to negation

of variables

pqr(2) 1 pqr(l) ,X 52,'20,'22, pqr(3) ,X31(P4r(2)) ,Xll

PyP,q,i,r,~ corresponding

to variables, p,F,q,i

corresponding  to negation

of variables

Table 1: Clique sizes and adjacencies in G(P)

Values of constants appear in Table 2.

36



e

L

c

c

L

c

c

Vertex or
Clique Size Adjacencies  In Adjacencies  Out

PqrW 1

x41

'42

x43

x5o

x51

'52

x53

KJPclr(l))

X&w-C9

C

c2

c2

C

-.b.
1

c2

c2

2
C

c2

wir(2) ,X52*x20'x22P PSP,

Q&G

pqr(3)  9 X52'x20'x22'x21'
x43’x9~

x41*x43

'42

x51

X
52

x53

'51"52 '52

Pqr(l),q,q,r,;,X50,X51,

x52~x20~x21~x22~x3~~P  if

p is the-negation  of a

variable

'32

'32
X52’X2~‘X21’x22,X33~~  if Q

is the negation of a

X41' x3l(Pqr(3)), Xl1

'42

x43

x4l'x42

X51J53mr~1)  ,X41'xl1'
X12,  X31(pq’(l))~

c

variable

Table 1 (cont.)

37



c

c

c

Vertex or
Clique Size Adjacencies  In Adjacencies Out

'32

x33

x11

xl2

xl3

'61

'62

'63

x2o

x21

x22

'23

c2

1

2
C

b--'

1

C

2
C

2
C

C

1

2
C

2
C

Pqr(3),P,;,q,~,X50,X519

x52sx20'x219x22'x33'
F

if r is the negation-.
of a variable

'32

xl2

ii,X
63"22

'61"63

'62

x21

x22

'23

x21'x22

Table 1 (cont.)

'32

xl3

xll'x12

'62

'63

'61"62

x'x11'x129x41' 31X (pqr(i)),

pqr (i)

x23'x20'x41' 31X (pqr(i)>

x22

38



c

C = (m+T + l)(Zm + 7k + 1) + 1

b = (m+4k)c+m+3k+l

I531 = Ix2,l = Ix331 = Ix,,1 = 1

I IXl2 = b

1'201 = 1'501 = 1'411 = 1'611 = '

All other cliques have size c2 .

Table 2: Constants for clique sizes in G(P).

39



c

Elimination Order Fill-in Size

Vertices corresponding to x2()+x’x+x6- mc
.

false variables and negations

of true variables

. .

Vertices pqr(i) corres- X5o + pqr(Z), X5o + pqr(3) < 4kc-
ponding to false literals, pqr (1) -+ X41' pqr(2) -+ X41

in order pqr(l)  ,pqrW ,pqW)

xl1

xl3

xl2

x2o

x21

'23

x22
e

Rest of vertices corresponding

to variables

x5o

x51

X + Xl29 x + X12, p4rW -+ (m + ?$b

xl2

0

- 0

5+ x9 51 + x9 51 + m++

pqr(i)

0

x51 + pqr(i)

0

0

0

2s
2

0

Table 3: Elimination  order for G(P) if P is satisfiable.

40



c

c

Elimination Order Fill-in Size

x53
0

'52
0

rest of vertices pqr(i) in

order pqr(l) s PqrW 9 p4rW

x33

'32
--

x41

x43

'42

'61

'63

Table 3 (cont.)

Total fill-in is 3kz(m+4k)c+(m+-$b+m+3k

0

41

c



c

e

c

Figure 1: A "ground" configuration  used as building block

in NP-completeness  construction. Point v is

c a single vertex; circles denote cliques.

42



‘62

‘63

‘42

x43

Figure 2(a). Edges in G(P) for P= (Gvyvz) A (xvyv;) .

43



c
r

c

x


