T L art TR N,

S DI EEE, D i E e

il e e e SRR AR 7 # AR A i

AD/A-005 413

FORMAL SEMATICS OF LISP WITH APPLI-
CATIONS TO "ROGRAM CORRECTNESS

Malcolm C. Newey

Stanford University’

S T

Prepared for:

Advanced Research Projects Agency

January 1975

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

;
b
B
5
b
;
i
B

R

Sl e s

A

. o A bt e A ¥ H E
g ;*ggeq E@ﬁ’wt}‘f.-!l’,g;t- G '1":3% “33111‘\;;:»‘ h}'&‘“"-ﬁ“;-ﬁ’? i
Epdta i T ; i

T ST TNy PR ‘f:%'*l%m S S T R O S A A B P R s
[
UNCLASSIF IED sig v
SECURITY CLASSIFICATION OF THIS PAGE (When Datus Entered) !
! READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE L o e BRSO
1. REPORT NUMBER 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
STAN-CS-75-L475 AD/A-co5 413 |
4. TITLE (and Subtitle) S. TYPE OF REPORT & PEFRIOD COVERED
FORMAL SEMANTICS OF LISP WITH APPLICATIONS TO technical, Jan. 1975
PROGRAM CORRECTNESS. 6. PERFORMING ORG. REPORT NUMBER
: STAN-CS-T75-475
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
Malcolm C. Newey DAHC 15-73-C-0435
10. z ECT, TAS
5. PERFORMING ORGANIZATION NAME AND ADDRESS e A e b TR
Stanford University
Computer Science Department
Stanford, California 94305

11, CONTRPLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
ARPA/IPT Attn: S. D. Crocker Jan. 1975
1400 Wilson Blvd., Arlington, Va. 22209 13. NUMBER OF PAGES
185
‘_rh. MONITORING AGENCY NAME & ADDRESS(/f different from Controlling Oflice) 1S, SECURITY CLASS. (of this report)
ONR Representative : Philip Surra
Durand ‘eronautics Bldg., Em. 165 Unclassified
Stanford University 1Sa, DECLASSIFICATION/ DOWNGRADING
SCHEDULE

Stanford, California 94305
16. DISTRIBUTION STATEMENT (of this Report)

Releasable without limitations on dissemination.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, i{f different from Report)

18. SUPPLEMENTARY NOTES

o

KEY WORDS (Continue on tevorse sldo if nocessary and identify by block number)

St RS S

Reproduend by

NATIONAL TECHNICAL
INFORMATION SERVICE

US Dopartment of Commaico
Springfield, YA. 22151

oy

.
i A

)

20, -lABSTRACT (Continue on reverse aide if necessary and identify by block number)

A Described are some experiments in the formalisation of the LISP
programming language using ICF (Logic for Computable Functions.). The
bulk of each experiment was concerned with applying the formalisation
to proofs of correctness of some interesting LISP functions using

Milner's mechanised version of LCF.
A definition of Pure LISP is given in an environment which includes

an axiomatisation of LISP S-expressions. A primitive theory (a body ?

of theorems in LCF) of Pure LISP is derived and is applied to (continued) ‘)ﬁ

= F3 A
DD ,fO"M 1473 EoITION OF 1 NOV 65 IS OBSOLETE K
Tl AUET3 n UNCIASSTRTED ko
L SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) z,g ;:
I & {
¥ 3

AR

bV Y Fra g

UNCLASSIFIED n ¢

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

proving tie correctness of some simple LISP functions using the LCF
proof checking system. A proof of correctness of McCarthy's interpreter
is described and a machine checked prouf of the partial correctness
is outlined.

A more substantial subset of LISP and a subset of LAP (a LISP-
oriented assembly language for the PDP-10 computer) were [melised
and simple theories for the two languages were developed with computer
assistance. This was done with a view to proving the correctness of
a compiler, written the LISI’ subset, which translates LISP functions
tu Lab subroubines. Qlie Cualse sbiuclure of such a compiler correctness
proof is displayed.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

i g D Sh L Y atulbed e, Sl g g el s R g e

s B e

st CRIA AR

NEafs R

W)

{,"
B\

s e P T T e

o 06314 —-
i Stanford Artificial Intelligence Laboratory Ji NUARY 1975

Memo AIM-257
o Computer Science Department

Report No. STAN-CS-75-475

m T
—
v : ;
0 Formal Semantics of LISP
< With Applications to Program Correctness :'-
- i
by
=T -:
(= Malcolm C. Newey i
<C :
Research sponsored by
Advanced Rescarch Projects Agency :
ARPA Order No. 2494
COMPUTER SCIENCE DEPARTMENT © , coym i~y = pmoh,
Stanford University D; E—),HCF_‘\M
: mﬁﬂz.ﬂiﬁd' LT
{OFER AR 0(S H
WEEERT U L
NATIONAL TECHNICAL L
INFORMATION SERVICE
(2%

A e o gyt st s e (G b il o (sl i o vl b d s

T 2

Stanford Artificial Intelligence Laboratory JANUARY 1975
Memo AIM-257

Computer Science Department
Report No. STAN-CS-75-475

Formal Semantics of LISP
With Applications to Program Correctness

by ' : e
TN i e
f"':':{,w { ’1 “\2" "f
Malcoim C. Newey ol el f/e*_;;’ir;:?;“
EEE=nE
FEE 19 wmos i
(uliq ? z ¥
N e
ST Y
ABSTRACT I

Described are some experonents in the formalisauon of the LISP programming languaye using
LCF (Lopme for Gompuiahle Functions). The bulk of each experiment was concained with
applying the formalisation to proufs of correctnes of” some interesting LISP functions using
Milner's mechamsed version of LCF,

A dehnition of Pure LISP s given m an environment which includes an axiomatisation of LISP
S-expressions. A priomuve theary (4 hody of theorems in LCF) of Pure LISP is derived and is
‘“ﬂ'lm"l by e g Whie dmrrectaess ol e 1,j,|~.|,{|.'m LIST [ruietions Llllllg ithe LCF Eum—_:[Ehl‘l.'hillg
system. A proof of correctness of McCarthy's interpreter is described and a machine checked
proof of the partial correctness 1s outhned. -

A more substantial subset of LISP and a subset of LAP (& LISP-oriented assembly language for
the PDP-10 computer) were formalised and simple theories for the two languages were developed
with computer assistanice. ‘This was done with a view to proving the correctness of a compiler,
written the L ISP cibet which trinslates LISP functions 1o L AP subrodatines The coarse
structure of snch a compiler corvectness pronf is displayed.

This research was supported Iy the Advancel Research Profects Agency of the Department of
Defense under Contract DAHC 15-73-C-0435 . The views and conclusions contained in this
docanent wre those of wod atthon{s) and Shold not be interpreted as necersarily reprezenting the
official policies, ctther expiessed or implied, of Stanford University, ARPA, or the . S.
Government.

Reproduced in the U.S.A. Available from the National Technical Information Service, S pringfield,
Virginia 22151,

Reproduced from
est available copy.

Ll

Particular attention is paid, mn describing the experiments, to deficiencies revealed in the
expressive power of LCF as a logical language and to limitations on the deductive power of the
machine implementation of the lugic.

A dissertation submitted ta the Depaviment of Computer Science and the Committee on Graduate
Studies of Stanford University in partial fulfillment of the requirements for the degree of Doctor of
Philosaphy.

Reproduced from
besl available copy.

ACKNOWLEDGEMENTS

| feel a great debt to John McCarthy, Robin Milner and Richard Weyhrauch
who kindled my interest in the 'ngical aspects of Computer Science. These people
were sleo the main source of background and prineipal agents of stimulation for my
research. In particular Robin Milner deserves a lot of credit for his vision in
originating the LCF project. |

Special thanks are due to Tony Hoare for his very helpful and detailed
criticism of the first draft of this thesis.

| would also like to thank David Barstow for the help which made it
possible for me to edit the dissertation and produce hard copy at Stanford while
living in Edinburgh.

Finally, | would like to express my deep gratitude to my wife, Marie, for

lots of assistance, patience and encouragement.

oLl i §
A R

L KA ¥ o s

TABLE OF CONTENTS

SECTION or CHAPTER

1 Introduction
1.1 Summary
1.2 History of the ‘LCF Project’
1.3 Past Work in Formal Semantics
i.4 A Treatment of Pure LISP
1.5 Correctness of a Compiler
1.6 Second Generation LCF
1.7 The Problem of Side-Effects

2 Pure LCF
2.1 Terms, Types and Domains:
2.1.1 Syntax
2.1.2 Semantics
2.1.3 Strictiess and Discreteness
2.1.4 An Example
2.2 Formulae, Sentences and Proofs:

2.3 The Axioms and Rules of Inference.,

iv

PAGE

N o N

w W

11
11
11
12
13
14
15
16

TR 2

3

et BRI AR

2.4 Some Examples:
2.4.1 A=B, B=C |} A=C.
2.4.2 F=G, A=B | F(A)=G(B) .

The LCF Proof Checking System

3.1 Proofs:
3.2 Formulae and Terms:
3.3 Using the LCF System:
3.3.1 Substitution:
3.3.2 Contradictions:
3.3.3 Theorems:
3.3.4 Simplification:
3.3.5 Prefix Stripping:
3.4 Examples of LCF System Proofs:
3.4.1 Ac=B,FsG | F(A)sG(B) .
3.4.2 (P-LF)=F [P=F

3.5 Concrete Representation:

The Mathematical Environment
4.1 Axiom Free Theorems in LCF:
4.2 Equality and Definedness:
4.3 Natural Numbers:

4.4 The Integers:
4.5 Integer Arithmetic:
4.6 A Theory of Lists:

Notation, Denotation and the Nature of LISP Expressions

5.1 Notation and Denotation:
5.2 Abstract Syntax
5.3 S-expressions:
5.4 LISP Expressions:
5.4.1 List Notation.
5.4.2 LISP Functions:

An Axiomatic Theory of Pure LISP
6.1 Extending the Environment for Names:
6.2 Axioms for Interpreting Pure LISP;
6.3 Discussion of the Axioms:ﬂ
6.3.1 A Different ‘evcon’.
6.3.2 ‘lisp’ is not ‘evalquote’.
6.3.3 Strictness of ‘eval’ and ‘apply’.
6.3.4 Total Formality.
6.4 Theorems of Pure LISP:

44
44
45
46
48
50
51

52
52

54
60
60
61
Gl
63
63

Applications of the Theory of Pure LISP
7.1 The NULL Function:

7.2 The EQUAL Function:

7.3 The ASSOC Function:
7.4 Remarks:

8 The Correctness of an Interpreter
8.1 Meaning of PAIRLIS:
8.2 Important Lemmas:
8.3 Informal Proof of Interpreter Correctness:

8.4 Interpreter Correctness in LCF:

8.5 Partial Correctness:

8.6 Total Correctness:

Compiler Correctness (I) - Language Definitions
9.1 Extensions to the Environment:
9.2 LComO LISP:
9.2.1 Informal Description

9.2.2 Formal Description

9.2.3 Theory of LComO LISP
9.2.4 ‘BFD’ - Basic Functions Defined
925 Well-Formedness Predicate

Vi

#

9.3 LComO LAP - Informal Description: 102
9.4 LComO LAP - Formal Description: 106
L 9.4.1 States and functions on states: 106
?: 9.4.2 LAP Functions and operations on them: 108
9.4.3 Interpreting LAP. 109
9.5 Towards a Theory of LAP. 111
10 Compiler Correctness (II) - Outline of a Proof 116
10.1 The Compiler: 116
10.1.1 Some Slight Changes 120
10.1.2 Predicate ‘CFD’ - Compiler Functions Defined 120
. 10.2 Meaning of the Compiler: 121
10.3 Properties of the Compiler Functions. 126
10.3.1 Totality 127

10.3.2Completeness 128

10.3.3 Distribution of Labels ' 129

10.4 Statement of Correctness. 129

10.4.1 Correctness of the Compiling Algorithm 130 .%

10.4.2 The Principal Lemma 131 £ {{5

10.4.3 Environment Correspondence 131 q%

10.4.4 Second Level Subgoals 132 : ;

viii 3

%

T

T A R S e

&
¥

S p E

ReATALS T Sty ki NG L TP N O Rl S

10.4.5 Attacking the Subgoals.

10.5 Feasibility of a Full Compiler Proof

11 Second generation LCF System
11.1 Prior Accomplishments

11.2 Proof Generation vs. Proof Checking

11.3 High Level Command Language
11.3.1 Data Types and Cxpressions 144 !21
11.3.2 Conirol Structures 144 bl
11.4 Revised Axiom Structure 145 ,‘

11.5 Extending the Pure Logic

11.5.1 Derived Deduction Rules
11.6 Concrete Syntax
11.7 Extending Simplification
11.7.1 Inequalities
11.7.2 Split Level Simplification
11.7.3 n~time Simplification
11.7.4 Subgoals from Conditional Simplification
11.7.5 Case Analysis in Simplification
11.7.6 Simplifying Procedures

11.8 Types

. o3 - y A ey
VTN L AP L oA eI R

11.9 Miscellaneous Improvements
11.9.1 Solving Equations
11.9.2 Definitional Facilities
11.9.3 Automatic Forward Reasoning

i1.9.4More Abbreviations

12 Conclusion

APPENDIX | - Theorems of LComO LISP

APPENDIX 2 - Yet Another LISP Subset

REFERENCES

152
152
153
153
153

1565

165

169

25 B i--\glz’*_.»yﬂ lz“ TR AT [Ao

AR A T A L O R R O,

LIST OF FIGURES

TITLE PAGE
? The Pure LISP Interpreter of McCarthy | ‘ 55
The Definition of ‘Eval’. 59 |
S-expression Form of the Interpreter. 76
S-expression Form (ctd). 77
Some Lemmas about SevlisB and SapplyB. . 82
Some Lemmas about SevconB and SevalB. 83
g Some Lemmas about eval, apply, evlis & evcon. ‘ 84
The Important Partial Correctness Subgoals. 89
Axioms for I.ComO LISP. 97
The Built-in Functions of LComO LISP. 98
Relationships Between ‘eval’, ‘apply’ etc. | 99
Some Basic LISP Functions. 101
Woell-Formedness of LISP expressions. 103
Partial Semantics of 8 Lap Instructions. 112
Partial Semantics of the CALL Instruction. 113 E-
The LISP Functions that Make up LComO. 117

LComO LISP Functions (ctd). 118
LCom0O LISP Functions (ctd). 119

AR

o SR e I e S A Eh B U AR PRI e, D

o 3 v e e e A T o

‘comp’ - the meaning of ‘COMP’. 122
Auxiliary Functions for ‘comp’. 123
Auxiliary Functions for ‘comp’. 124
Theorems Explicating ‘compexp’ and ‘combool’ 125
Subgoals Describing Effects of ‘compexp’. 133
Subgoals Describing Effects of ‘complis’, 134
Subgoals Describing Effects of ‘comcond’. 135
Subgoal Describing Effects of ‘combool’. 136
Subgoal Describing Effects of ‘compandor’. 137
Axioms for Yet Another LISP. 166
Axioms for LISP (ctd). 167
Axioms for LISP (ctd). 168
(7148

PR

Tl
Attty

P e

2

FReA, i e

e

e

S

AV

s
s Sl

CORE Rt it Ty)

Bl £t oy T

B S "‘!ﬂt{i{e:"‘?".’_‘f i (U LR

CHAPTER 1

Introduction

1.1. Summary

This thesis discusses the appiication of LCF (Logic for Computable
Functions) to the problem "Given a programming language, define precisely the
semantics and develop a mathematical theory which is suitable for reasoning about
programs of the language”. It is primarily concerned with building an axiomatic

theory of Pure LISP which can be used in the -extraction of meanings of LISP

functions. Particular functions discussed, in terms of correctness, are ones which /
perform interpretation and compilation of subsets of LISP. A principal aim of the ;;,
investigation was an evaluation of both the expressive and the deductive power of 54
LCF. i

1.2. History of the ‘LCF Project’ a

The starting point was an underground paper by Dana Scott [1] in 1969 ’ i
describing a typed combinatory logic which was suitable for recursive function g

P Al LT T o R T e S LA T T el L sl L LR i e oy

SO e

.y B2

LA ity LT R fal ol

R T S s

R

theory. Rebin Milner, in 1971, replaced the combinators with typed lambda calculus
ard that logic will be referred to as Pure LCF. He also implemented a proof checker
for this version of the logic and this program (later improved upor) is called the LCF
System, or simply LCF. Milner described Pure LCF and the LCF System in [2]
(including some examples of the use of the program), [3] is a user’s manual for the
system and [4] contains the orly available technical discussion of the model theory
of the logic. For the sake of self-containment, a short tutorial on Pure LCF is
included in thia reporl as Ohapter 2 and becauee improvements to the LCF System
are a major concern of this study, Chapter 3 is a brief description of the LCF
System as it now exists (in fact an improvement on the version described in [3).
Milner saw LCF as an excellent tool for the Mathematical Theory of
Computation (MTC) and it is in this capacity that LCF has attracted some attention
(within the field of computer science). The first chapters in the application of this
tool to MTC problems were written by Milner and Weyhrauch (1972) with two
documented experiments involving proofs of program properties. [5] discusses the
proof of the correctness and termination of a simple program (for the factorial
function) in a simple algebraic language defined by means of its abstract syntax. [6]
reports on the development in the LCF System of a proof of the correctness of a
sirple cornpiling algorithm. That algorithm dealt with the abstract analytic syntax of

the source language which featured the constructs of arithmetic expression (with

P T Ny PR U DA T L RO

ksl S At AR Sat it

binary opcrators and variables) with assignment, conditional, compound and ‘while’
statements. The target language was for a machine with an accumulator, a memory
and a slack; it containcd conditional and absolute jumps, toad and fetch commands,
labels and an instruction to apply arbitrary binary operators. Much of this
experiment was concerned with the application of algebraic techniques to give
structure to the proof.

Although the proofs in the Weyhrauch-Milner experiments were machine
checked, it was expedient to assume many theorems from areas such as arithmetic
and finite set theory rather than prove them in axiomatically based subtheories.
The results in question were all considered ‘intuitively ‘obvious’ but the practice
allows errors to creep in. What was needad for succeeding experiments was a
mathematical environment based on axiomatic treatments of the usual
background areas such as arithmetic. A step in this direction was taken by Newey
[71 who gave suitable devclopments of a basic propositional logic, natural numbers,
arithmetic over the integers, lists &nd finite sets. The library of results obtained in
that venture amounted to some 1000 theorems and was more comprehensive than
our present needs require. We give, therefore, Chapter 4 as summary of of the
parts of [7] that are relevant to giving the sernantics cf LISP.

Viewed in the light of this history, the formalisation of LISP semantics (in

LCF) appears as another step in the application of LCF to the problems of MTC. In

AR Sel

:

e gt s
D T T T T R T R s 88 A siars rt A s e S R R R ey

fact one of the main concerns in the experimental work is that

it should inspire

criticism of the current LCF system that can be translated into imprevements to be

realized in the next version,

1.3. Past Work in Formal Semantics

A survey on semantics of programming languages was given by J.W. de
Bakker in [18]. Although it is getting old, we shall simply update it with pointers in

the bibliography to more recent work by Burstall, Gordon, Hoare, Lauer, Manna,

Waldinger and the Oxford school as well as the Milner-Weyhrauch work cited above,

Of particular relevance is a short survey in [6] on compiler correctness.

There have not yet been any critical comparisons with previous formalisms
but certain properties of LCF must be conceded to be big advantages. First it is
bascd in logic and so it has deductive as well as expressive power (i.e. we can use

it to reason about programs as well as define the semantics of languages). Second,

it deals with functions (possibly partial) and functionals conveniently because of the

lambda calculus base. Last, there are very good chances that automatic deduction

will be moderately successful,

In terms of foundations for the present work, we follow the constructive

approach that McCarthy has used but do it axiomatically in a logic as Burstall

et s ey e B e S

b s T

N o A L0 A LI VT

- e
MY S R e R A S D ST R s i

94 2
;},
5 X
S

) proposed. When we develop mathematical theories of a language we get theorems ;

about the local effect of language features that rather resemble Hoare’s rules. We

e .

also depand heavily on McCarthy’s notion of abstract syntax as presented in [25]

4 and [26],
i’ Chapter 5 shows how we are able to factor syntax and semantics for LISP.
The technique makes use of abstract syntax and functions for mapping between
; concrete text and abstract representations of programs and data. That chapter :
discusses the concepts of ‘notation’ and ‘denotation’ in relation to LISP. A\
2 3
1.4 A Treatment of Puve LISP
¥ McCarthy presented Pure LISP in [15] but we take [12] to be the
' authorative reference since it is later (1962) and a touch smoother. Following his
example we specify the language by means of an ‘interpretive semantics’ which uses
association lists to bind values to variables. More precisely, taking both LISé data
5 and functions to be S-expressions over a suitable set of names, a function is defined #
in LCF in such a way that it interprets source LISP expressions appropriately.
. Moreover, that function makes use of ‘eval’ and ‘apply’ functions which behave as i
: the McCarthy Pure LISP functions of the same names. The LCF definitions of these

functions together with the axioms which specify the rotions of ‘name’ and

oty
LA o B R G e

s
(3]
ten

R S W T oy ROy g £

R

Al

E "A !
'
o

2

‘S-expression’ form a basis for a mathematical theory of Pure LISP, Chapter 6
presents the axioms and describes a rudimentary theory (a body of theorems) which
will greatly ease the task of proving things about Pure LISP functions.

This semantics (or theory) was ther used to prove that certain sample Pure
LISP expressions denote the appropriate mappings on S-expressions. The particular
functions were NULL, EQUAL and ASSOC. Chapter 7 discusses the proofs which
were generated and checked using the LCF system since they illustrate some
general techniques.

The examples culminate in a discussion of the correctness of the S-
expression version of McCarthy’s interpreter for Pure LISP which is written in Pure
LISP itselt. Actually, we will seek to establish the correctness of the S-expression
forra of ‘eval® which we will call Seval. The property we want to prove is “For any

A-list al, the function denoted by Seval via intcrpretation is ‘eval’ itself".

ie. Ve a. apply(Seval,{e a)al) = eval(e,a)

Chapter 8 addresses this problem and presents lemmas (proved with
assistance of the LCF system) which show, in particular, that the functions ‘eval’ and
[re a. apply(Sevale a},al)] satisfy almost identical recursive equations. These
lemmas cnable us to conclude in the metatheory of LCF that the functions are

indecd the same. Reasoning within the logic it was possible to prove a sort of weak

correctness:

R e

RS D e]

T S gt S R A D o st st

R

L e R A R B T

P

Ye a. eval(e,a) = apply(Seval,{e a)al)

but the attempts to prove the other half of the above equality led to an
? identification of a deficiency in the LCF system. More specifically the other part of

the proof would have required more space and time for computation than feasible.

1] 1.5. Correctness of a Compiler

London in [13] gave a rather informal proof of the correctness of a certain
v compiler for a subset of LISP; LAP (a variety of PDP10 machine code) was the
target language. This compiler, which is called LComO, was written by McCarthy as
a pedagogic device for a course at Stanford. Also, as mentioned before, Milner and
r Weyhrauch gave a formal proof of a minimal compiling algorithm using LCF. It was
thercfore clear that LCF was an appropriate vehicle for attempting the rigorous
verification of compilers like LCom0.
2 Two chapters are devoted to a detailed study of the feasibility of

establishing the correctness of LComO within the LCF system. The total tack factors

evenly to four subproblems. The first two are the axiomatisations of the two

languages involved. The third is the extraction, from the S-expression version of

PR AR
ey i P TRy
b S A 3

i

the compiler, of its meaning function - ‘the compiling algorithm’. The last is the

establishment of the correctness of this compiling algorithm.

b A3

A R R RS

v el ot s i Sl SV

?}
|
4 3
o

P RTINS
x) Lil's

The treatment of the LISP subset parallels the work on Pure LISP in that
axioms defining the language are expanded into a usable theory for the language by
deriving theorems.

The meanings of those instructions that are generated by LCom0 are glven
in an abstract formalism which interprets the action of assembly code programs on
machine stales The formaliem is an abstraction in that no account is taken of store
size, word size, the actual representation of S-expressions or garbage collection. As
in the case of Pure LISP, certain handy lemmas are proved and described. This
material takes us through Chapter 9,

Chapter 10 starts with the discussion of the: extraction of the compiling
algorithm from the S-expressions for LCom0. The same techniques illustrated in
Chapter 7 are used although the larger S-expressions lead to correspondingly longer
proofs.

The normal use of the compiler is to translate a ‘program’ of LISP functions
into a program of LAP functions. We then say that a statement of compiler
correctness is "“in all such situations the the answer obtained by executing any LAP
function must agrce with the result of calling the corresponding LISP function with
the same arguments",

Whereas our study of the other parts of the problem showed that attacks

using LCF are quite feasible with the current LCF system, the proof of correctness

et

o

b8

N

of the compiling algorithm is much tco long. In retrospect, this is not surprising since
the compiler is an order of magnitude larger than the one Miiner and Weyhrauch
worked with and the languages are also more complicated.

Although the proof was not carried out we do discuss its structure and

suggest in which directions the deductive power of the LCF system must be

improved before the proof becomes feasible.

1.6. Second Generation LCF

Chapter 11 presents suggestions for the design of a new LCF system. The
main design change is that the system should be two separate programs - a simple
proof checker for a restricted form of LCF and an interactive proof generating

program. There are also suggestions for making the input language to the system

more ‘high level’. A mechanism is presented for having a resticted class of derived

deduction rules provable within LCF. Some attention is given to further extensions

of simpiification and some suggestions for new deduction mechanisms are examined. : E
1.7. The Problem of Side-Effects E
Both subsets of LISP mentioned above contain just a few of the interesting §
. ’ 3 %
features of ’practical’ varicties of LISP. The most notable missing features are ‘B
i o8
: i
1z
£
4
i

A N R BT

TG SR N e ¥
SRS S RS e

G L
e et

SETQ’s and PROG’s. The second appendix gives another LCF interpretive semantics

vitich can handie certain side-effect features of LISP - SETQs and the regular
CENCYM drvice. It also deals with the PROG construct but still does not handle
arrays or property lists and certainly not the distinction between the LISP 1.5
functions EJ and EQUAL. Again we deal wilh an idealisation of LISP which is not

subject to recursion depth limits, finite arithmetic or boundeg memory capacity.

10

wad

fos)
=

PESS
Nt

e

W

(5.5

Ao

CHAPTER 2
Pure LCF

In this short exposition of Scott’s logic no justification of the semantics is

given; the curious reader should consult [4].
2.1. Terms, Types and Domains:

2.1.1. Syntax

The terms of LCF are those cf a typed A-calculus with the addition of a
least fixed point operator and certain constants; the two base types are called ‘tr’
(for truth values) and ‘ind’ (for individuals). All types other than ‘tr’ or ‘ind’ are
derived from these two by a finite number of applications of the rule “If a ancd g
denote types then so does (dl-)[{)". With every term of the logic there is an
associated type and we may postfix terms with their types so that, for example,
t:4 indicates that term t has type 4. The syntax of LCF terms is then given by the
productions:

<term:a» = <identifier:3> | <application:4> |
<conditional: 2> | <x-exprnig> | <p-exprn:4>

where <application: 82> = <term:(R1-482)> (<term:1>)

11

RN R TR g i et S

T IR SRR AV DA 5.

S
X7,

e T R e e s e Ay

R LA L e S e A 2
o

oy

R

conditional: 3> = <term:tr> - <term:g> , <term: 4>

<A-exprni{A1-+42)> = [A <identifier:41> . <term:2>]

<p-exprhid> = [u <identifier:3> . <term:g>]

and where identifiers are defined in the usual way.

2.1.2. Semantics

Terms of type 4 denote objects in a domain D; which is to be a partially
ordered set (ordering relation =) with every ascending chain having a least upper
bound in D,. Moreover, each D, contains a minimum element denoted by the logical

constant 1 that is, L, = x for all x ¢ D

The interpretation intended for the relation ‘<’ in the various domains is

that of relative definedness. That is, xcy is to be interpreted as saying vy is at least

as defined as (and consistent with) x. Hence we see that for a domain D4 the
interpretation of L, is that of the completely undefined element.
The base domain D,, (the domain of truth values) contains precisely three

elements (Ly, T, F) in the fixed order given by the diagram:

SRV G

by
K
3.
k'
¥,
;5

G e

} The other base domain D,, (the domain of individuals) is normally

o

s

constrained by the addition of some non-logical axioms to characterise the non- 1

functional data in a universe of discourse.

Finally, Di,.s is the domain of continuous functions from D, to D, A

TR o e e e Ay

continuous function is one which preserves the least upper bounds of ascending

: chains. However, we shall never be using this notion expiicitly so simpiy take it as

’ fact that functions and functionals formed by all the term constructing mechanisms
] (presented above) are continuous. A property of these functions is that they are
b monotonic; i.e., if Fisin D, ., and x: € yiet then F(x) € F(y).
The interpretalions of application and x-abstraction are the usual ones.
The term Sitr ~ T1ig, T2:4 denotes L, or one of the two objects in D, denoted by
b4 T1 and T2, according to whether S denotes L, T or F respecti\;ely. Ej
[#f.S] should be interpreted as denoiing the minimal fixed point of the jl
function [Af.S]. G is a fixed point of [uf.g(f)] if G denotes the same function as g(G); 4
» minimality is taken with respect to ‘c’. r«a
2.1.3. Strictness and Discreteness r
P A function F,.4 is termed strict if the value of F(L,) is 15 A domain ‘
D, is termed discrete or flat if for any x, and y,, x, = v, implies x =y, or
X, =21 .
}
13
)

PARTEI O Sl bl by

e

2.1.4. An Example

To illustrate these notions let us construct the factorial functionlin terms of
arithmetic primitives. We imagine that we are given non-logical axioms which
constrain the domain of individuals to contain a structure which looks like the natural
numbers. So D, contains an individual which we call O and there is a successor
function which generates all natural numbers by repeated application to 0 (1 is the
successor of 0). We suppose Z is a predicate which is T on 0 and F on all other
natural numbers. It is an easy exercise to use monotonicity to show 2(1) must be 1.
(Note we are beginning to omit the mention of types when the information can be
recovered from context.) We also make use of a predecessor function ‘pred’ and a
two argument multiply function *x’.

[HF.[Ax. Z(x) = 1, #(x)(F(pred(x)))]], which we call ‘fact’, is an example of

a term and contains instances of application, conditional expression, x-abstraction

and the minimal fixed point operation. It also involves bound variables (‘*x’ and ‘F’).
This term denotes the least defined function which satisfies the recursive definition

F(x) &= if x=0 then 1 else xxF(x-1) .

The types of the various atoms are as follows:- ‘0", *1” and *x’ all have type

ind; ‘2" has type (ind-*tr); ‘pred’ and ‘F’ have type (ind-ind); %’ has type

(ind=(ind-ind)). To illustrate why we are interested in least fixed points of

functions note that the above recursive definition is satisfied by another function

14

S Gl

el
D A e

L2 5

e

St e ST P e e

. N,

"fact2’ which agrees with ‘fact’ but gives zero on all negative numbers (assuming

these are also in D,y). It will be provable that fact ¢ fact2 .

2.2. Formulae, Sentences and Proofs:

An Atomic Wecll Formed Formula (AWFF) has (for arbitrary
type £) the form <term:8> & <term:8>. The symbol ‘=’ is of course identified
with the ordering relation on D; and so the intefpretation of AWFFs is obviaus.

A Well Formed Formula (WFF) is a set of (zero or more) AWFFs.
WFFs are written as lists using comma as a separator. It follows from this definition
that "acb, c=d" is the same WFF as "ctd, ach, acb" . A WFF is intended to denote
the conjunction of its constituent AWFFs. Hence, the comma should be also
interpreted as conjunction. We abbreviate "sct, tes" as "s=t" .

An LCF sentence has the form P |} Q where P and Q are WFFs. The
‘turnstile’ symbol should be interpreted as implication. If P is empty we omit it
entirely.

Finally, a proof is a sequence of sentences with the property that each is

either an instance of an axiom schema of Pure LCF or a deduction from previous

sentences in the sequence using a rule of inference.

ity iy et A

o
E
;‘%
i3
»
1
<
;:vt
y

;

: (e
o
4
3
i
%
3

ik o e A Ao S T M- T 78

Lo st

bind identifiers.

Inclusion axiom

Axioms for ¢

Axioms for L

Conditional axioms

Conversion axioms

Fixed-point axiom

Conjunction Rule

Cut Rule

Abstraction Rule

2.3. The Axioms and Rules of Inference.

PF Q
F sss
sles2 b t(sl)c=t(s2)
s1es2,52553 | sles3

les
Lis)=L

|-

'.

F Llast=l
F T-st=s
F Fost=t
-
-

[Ax.s)(t)=s{t/x}
[Ax.y(x)]=y

[kx.s]=s{[ux.s]/x}

Pl Ql Pl F Q2

P1UP2} Q1 UQ2
PIFP2 P2} P3

Pl | P3
P | sst

P F [xx.s]s[xxt]
16

We write P{s/x} or t{s/x} to mean the result of substituting s for all free
occurrences of x in P or t, after first systematically changing bound identifiers in P

or t so that no identifier free in s becomes bound by the substitution. Only A and u

(Q a subset of P)

(Application)
(Transitivity)

(y distinct from x)

(x not free in P)

Gz

s
;

BT el

iz et

45
S

ST Y W P T AR A

) etk

B e e B e frikian S
N e R e

AR Cases Rule PssT FQ PeslbQ PssF FQ

P Q

Induction Rule PE QL/x} PQF Qit/x}

P PE Qfuntl/x} (x not free in P
‘ 1 2.4. Some DExamples:

2.4.1. A=B,B-C | A=C.

\ & In this proof of an instance of the transitivity of ‘=", note that the rules of
] Pure LCF are quite low level. The actual ‘proof’ is just the centre column of
sentences and the justifications are for the benefit of the reader.
(@) A=B F A:B by Inclusion Axiom;
i3 (b) B=C | B:C by Inclusion Axiom;
(¢) A=B, B=C | AcB, B:C by Conjunction,(a),(b);
E - (d) AcB, BsC | A:=C by Transitivity Axiom;
(e) A=B, B=C | A:=C by Cut,(c),(d);
(f) A=B | B:=A by Inclusion Axiom;
(g) B=C |} C=B by Inclusion Axiom;
3 (h) A-B, B=C } CcB, BsA by Conjunction,(g),(f);
g Bt (j) CcB, BsA | C:=A by Transitivity Axiom; ;
3 (k) A=B, B~C | CcA by Cut,(h),(j);
(h A:=B, B=C | A=C by Conjunction,(e),(k); 4
i |
1 17 13
5
; {:
b -

R ey PR R L T A R
Lo § A r v (07 T SRl E i e e U g G ol R LS Ul R B S A A T P L L sk Ky
3 S O SRR YR SR RET W e S b pash itk Eoh AR REeR m.,m_ S bz BN R R E T Y] - i i

2.4.2. FcG, AsB | F(A)=G(B) .

o

Although this example is a trivial theorem of monotonicity it can be applied

iteratively to get more complex theorems. Again the proof is quite tedious:

£ R RS !

(a) Ac=B | F(A)=F(B) by Application Axiom;
(b) FeG F [ALHBYJF)=[AHB)G) by Application Axiom;
(c) F [ALHB)YJF)=F(B) by a Conversion Axiom;
(d) [ALHBIF)-F(B) | F(B)e[AtHBYIF) by Inclusion Axiom;

(e) F F(B)[ALAB))F) by Cut,(c),(d);

(f) FeG | F(B) [.HBF), [Af.HBYYF) =[rf.6(B)J(G)
by Conjunction,(e),(b);
(g F(BIAABF), MABYIFY [AUBYIG) | F(B)e[aL.UB)|(G)
by Transitivity Axiom;
(hh FeG F F(B)=ALHB)G) by Cut,(f),(g);

() F [A.f(B))(G)=G(B) by a Conversion Axiom;
(k) [MAHBG)=GB) P [AMHB)JG)=G(B} by Inclusion Axiom;
() F [M.AB))IG)=G(B) by Cut,(j),(k);

(m) FeG F F(B)=[Af.HB))G), [rf.HB)](G)=G(B)

Conjunction,(h),(1);
(n F(BY[AHB)G), [A.(B))(G)=G(B) |} F(B)=G(B)

by Transitivity Axiom;
(p) FeG F F(B)=G(B) by Cut,(m),(n);

(q) AcB, FsG | F(A)<F(B), F(B)=G(B) by Conjunction,(a),(p);
(r) F(A)eF(B), F(B)sG(B) | F(A)sG(B) by Transitivity Axiom;
(s) AcB, FcG | F(A)sG(B) by Cut,(a),(r);

R

Ll
. RS RS
N it 1 o LRSS 34005 SR S BRI v 1 el TR 58 s A o o S A R e STV AL AT SISO 8. B ORI S 2 s L.:J_rf.’:ﬁwsb-’mu*--?ﬁ%

CHAPTER 3
The LCF Proof Checking System
In this section we describe the computer program which aids in the -’
generation of validated proofs in an enhanced version of LCF. Both the program and
) the enhanced logic are called simply "LCF" and ambiguities will be resolved by ;‘
context. When we refer to the logic of Chapter 2 we shall always refer to it as L
Pure LCF,
: 4
| 3.1. Proofs: .,:
¢ A Pure LCF proof is a sequence of sentences subject to the condition that ;
each of the sentences is an instance of one of the logical axiom schemas of Pure]
LCF or follows from previous sentences (in the sequence) by a rule of inference. A
" X proof in the LCF implementation is a sequence of ‘steps’ and a step is a four ;
element list (n, W, D, J) where n is the step-number (an integer), W is an LCF
WFF, D is a list of the dependencies of the step and J is the justification. Steps
3 are numbered sequentially as they are generated and added to the end of the
‘ partial proof. The dependencies of a step are the step numbers of ‘assumptions’
) on which the current step depends. The Justification of a step indicates how
19

:
t the step was generated; it will include the name of the rule of inference employed
L@ and the previous steps that were used.

An assumplion is a special step of the form (n, W, (n), (ASSUME W)).

Note that the only dependency of an assumption is itself. Another special type of

step is @n axiom which has the form (n, W, (), (AXIOM A)) where A is the axiom

name; note that axioms have no dependecies.

We now define the sentence denoted by a step (n, W, (d,dy..d,), J) to

be Wd,v Wd;_,’ de F W where Wdi is the WFF part of the line d, (which will be

an assuraption). Thus, the step (n, W, (), (AXIOM A)) denotes the sentence
F W and the sentence dernoted by the step (n, W, (n), (ASSUME W)) is
clearly W W,

3.2. Formulae and Terms:

Not only do we have somewhat difierent notions of ‘proof’ in the pure logic
and in implemented LCF (albeit there is a correspondence between them), but there

are slight changes to the meanings of WFFs and terms.

First of all "= is not regarded as simply an abbreviation, but has a similar

stalus to "=". Thus, s=t is regarded as an AWFF (as opposed to a WFF in Pure LCF)

and thcre are deduction rules which deal with these ‘equalities’ (so called) rather

S e S S o e e B o s s S B e tha i o g b B i s S

20

e T

s Fan PR, S g W

e I e By 3 R el ek e e il Ll b e s St

ki A RN T e

R ‘7

S AR

) than ‘inequalities’. This change in approach is justifiable via the observation that ‘=’

ts the much commoner relation and much easier to reason with. On the other hand,

E;
3
E,':{

extra deduction rules are necessitated for conversion among the formulge smt ;

{ sct, s} end t=s. The rules provided in the implementation are

HALF

(%]
[i]

1]

t SYM sst EQUIV scttes

——— — ———————

s=t

o<
©
in
—
—
il
%]

It should be noted that experience has (so far) indicated that these rules

are rarely invoked (due in large measure to the rarity of the ‘<’ relation).

Next, also contrary to the definitions in Chapter 2, the WFFs are often

et

regarded by the program more as lists than as sets. For example, s=t is not the

e

P s

2 same WFF as s=t,s=t . This is necessary to some extent since it is convenient to be
able to talk about the n-th AWFF of a WFF but there is also some ugliness about
the implementation in this respect.

3 In the current implementation there is no provision for talking about type
information. (Hencz there can be no type checking.)

Finally therc are some very important abbreviations which are used by the

1 program to make proofs more readable. These apply to both terms and AWFFS.

The following relate to terms:
i) [xa b. t] abbreviates [ra. [xb. t]],
¢ [ra b c. t] abbreviates [ra. [Ab. [rc. t]]] etc.
21

s(t1,t2) abbreviates s(t1)(t2),
s(t1,t2,t3) abbreviates s(t1)(t2)(t3) etc.

iii) if F is a function which normally takes 2 arguments then we

may declare it infix and then we write s F t for F(s,t).

The following relate to AWFFS:
i) Yx.s €t abbreviates [A\x.s] € [\x.t] and
Vx.s =t abbreviates [xx.s] = [xx.l];
The notation so introduced is very suggestive of its normal
application: if we have Yx. s(x)=t(x) then for all terms x

we can deduce s(x)=t(x).

ii) Rs s £t abbreviates R-s,l = R-t,l and
R® s =t abbreviates R-s,l = Rst,L;
The structure abbreviated is an instance of a rather common
device for relativising AWFFS. Noting that the sentence,
W [R3 sst .
is equivalent to the other sentence,
W, R=T | sst,

we see that the ‘3’ connective corresponds to material

implication.

22

A L s Lt ol bt T L T A T R O A 119 17

n e T N Y,

S A e i

oS ad 1 e

s e T e e T T

3.3. Using the LCF System:

The LCF Implementation has really outgrown the name of ‘proof checker’.
Apart from the fact that a user rarely types a WFF {ihe information he gives is
generally a sequence of commands that tell the machine HOW to generate the
required sequence of steps), there are various mechanisms to help him interactively
prove theorems in LCF. On the other hand, one couldn't be so bold to call it even
an ‘interactive’ theorem prover, although this is a direction of future developments.

One of tive most important aids tc proof generation is the machinery that
allows (even encourages) goal directed proving. A user may state target steps and
atte:k them by indicating one of many tactics whereupon the program deduces
appropriate subgoals and perhaps some relevant assumptions. Most of the tactics
are the inverses of rules of inference since appropriate subgoals are ones which, if
achieved, lead to the establishment of the goal by some rule of inference. |

The inference rules of Pure LCF are rather basic and, in applications to

MTC, too low level to be workable. However, the LCF system has five very ‘

important derived deduction mechanisms: substitution, contradiction, theorem use,

simplification and prefix stripping.

23

3.3.1. Substitution:

Substitution is the implementation of three derived deduction rules of Pure

LCF. The first two rules (following only from the CONV and ABSTR rules) are:

PFtlet2 PFtl=t2

P F sesit2/t1} P | s=s{t2/t1}

and the third follows from these together with the TRANS rule (expanded to include

the *=’ relation, of course):

PFtistz , QFwW
PQF Wit2/tl}

There are the usual cautions about capture of bound variables.

3.3.2. Contradictions:

There is an inference rule which enables proofs by contradiction. We take

it that the logic is consistent and so assuming that cne’s non-logical axioms are too,

one can never prove sentences such as p TcF . Hence, given a step containing a

‘contradictory’ WFF (such as * T=1 ')y we should conclude that the dependencies
are inconsistent. Now, given such a step with a ‘contradictory’ WFF (and

dependencies Oj in an LCF proof we could proceed to prove any other WFF with

24

3
]
3
?
]
‘

3 4
)
;
E
%.j:?
3 2
b
g
! X
4
TI;
3
;
.
g T3
E (¢
%
T
B
:«@ y
' ~
; ir
i,
3
: n o
A
*
43
i
.-
g
.
s
e
4‘ 4
p

the same dependencies (D). (It is a nice exercise to show this) The program

recognizes the following four inequalities in D,, as contradictions:

{¥e & Fel TeF FeT

as well as the six equalities between distinct members of Dy, (such as T=F) and

allows the user to prove any goal (i.e. make it a step) by claiming it follows from a

contradiction. The resuiting step wiil have the dependencies of the contradiction.

3.3.3. Theorems:

in the pure logic, a proof of a sentence, say P->T,F=P , in no way
constitutes a proof of any similar sentence (such as | Q-T,F=Q) which differs
from the former only in the naming of free variables (which are not free in the
axioms). However, it is clear that the ability to perform some renaming is absolutely
necessary for a smooth system. in the LCF system such inferences are performed
via the theorem mechanism.

At any point in a proof, a step may be given theorem status and the
sentence that the step denotes acquires a name and is tagged with the names of the
axioms that have been already introduced in the proof. There are, of course, two
parts to a theorem: an antecedent WFF and a consequent WFF. The antecedent is
the WFF dencling oMl dependeneics and the consequent is the WFE part of the step.

When the user desires to use a theorem, he may have the system change

25

L I i PR e

Fege A g

g DA R e

:
a
i
!
A

(throughout the theorem) any free variable (that is not free in any of the
appropriate axioms) to any term (a process called instantiation), and by
providing steps which when conjoined match the antecedent of the theorem, he may
infer the consequent of the theorem. The dependencies part of the new step is the
union of the dependencies of the steps used to match the antecedent. it should be

noted that the user does not have to type any instantiations that the machine can

deduce from the list of steps which must match the antecedent.

3.3.4. Simplification:

As an introduction to simplification, imagine we have three steps of a proof:

(nl) Ya. F(a) = a (a1 ,
(n2) Yb. G(b) = H(b) (d2) |
(n3) M = F(GE(N)) (d3) .

it should be clear that we can proceed (using only features that have been
discussed already) to a step which contains the WFF M = HIN) and has
dependencies d1 U d2 U d3. We might easily proceed through intermediate steps
which state M = F(G(N)) and M = F(H(N)) . None of the proofs will be very short and

the steps involved will proaahly help to obscure perhaps more interesting parts of

the total proof.

in the LCF system sets of equalities (called ‘simpsets’) are maintained (by

26

i,

e L pes—

SR s Pl degiidn

e NGRS
St 2 L P R S AR A Rt i

the user with help from the machine) to help in the automation of such sequences of
simplifying cubstituliore, When the eimplitication mechanism Is Invoked, the Item
(which may be a goal, a step or a term) to be ‘simplified’ is scanned recursively (top
down, left to right) for a subterm which ‘matches’ the left hand side of an equality in
the current simpset. When such a match is found the right hand side of the equality
is used to generate a replacement for the subterm. This simplification process
contillwues until no subterms in the item can be matched to anything in the simpset.

When an AWFF from a step is ‘put in’ a simpset and it has the form
Vx| %, ... X, A = B, the ‘universally quantified’ variables {x, X, .. X} are replaced
in A = E by ‘metavariables’ (a,, a5, .. «,) and the new AWFF Al = Bl is added to
the simpoel. The raison d'etre for metavariables is that they will match any term.
Thus, if the equality Ya. F(a)=a is put iry, ‘a’ becomes a metavariable and, for any
term 't°, occurences of 'F(t)’ will be ‘matched’ and replaced by ‘'t’.

Adding a step to the SIMPSET amounts to adding each of the equalities
(AWFFs) that constitute the WFF. Steps in the simpset carry indication of their
dependorcies; and 38 o sifrplification proceeds o curulalive union is kept 1o which
the dependencies of steps used are added; this union will be contained in the
dependercies of any slep generated as a result of the simplification.

Theorems with no antecedents go into simpsets just' as steps do except
thal lhere are no dopendencies and any Iree varipbles (thal are not free in the

appropriate axioms) are also made intc metavariables.

27

Theorems with antecedents may be put in a simpset, ard when they are

used by the simplifier the phenomenon is known as conditional simplification.

Suppose the theorem F(a)=G(b) b H(ab)=T (where variables ‘a’'b’ are not

free in the axioms) is put in the simpset. The 'a’ and the ‘b’ become metavariables

and the theorem is considered when a subterm (of a term being simplified) is of the

form * H(xx) “. Suppose the term matched is Hst) . What the simplifer does,

instead of simply repiacing the term by T (as it would in the absence of an
antecedent), is to attempt to verify the antecedents of the theorem by simplification,
If the simplifier succeeds in checking the conditions of the theorem it performs the
replacement called for by the consequent. There are depth bounds on the recursion
in connection with this conditional simplification device.

Steps of the proof may also be conditional simplification rules. A WFF in a
step such as Vx. p(x)» F(x) = G(x) , when added to the SIMPSET, is inserted in
two ways - both using one metavariable ‘4’ First way: the left hand side is
"p()=F(4),L" and the right hand side is “p(A)>G(A),L" . Second way: the left and

right sides are "F(4)" and "G(z)" respectively but there is also a condition to be

checked - "p(p)=T"

28

.

R BTy WA

I
b

ot R R A

e et e e M e e e

? 3.3.5. Prefix Stripping:

When a GOAL is an AWFF with several prefixes (Yx. a(x)» Yy 2. A=B has

£
o

four prefixes) the natural way to attack it is by a series of abstractions (to remove

outside universal quantifiers) and cases arguments (to remove relativisations) where
two cases are trivial. This action can be performed in.a single step by means of the

PREF tactic. Abstractions are done automalically and a step is generated which

P AR e R b R TR R Ll

TR

corresponds to the nontrivial case of each relativisation. If the goal is actually

$iz

achieved by the method then the cases steps are deleted.

For example, if the goal were ¥x. A(x)» Yy. Bly)> F(x,y)=G(x,y) then the
assumption steps gencrated and put in the simpset would be A(x)=T and B(y)=T ;

the subgoal would be F(x,y)=G(x,y) .

3.4. Examples of LCF System Proofs:

Before considering a significant example note that example 1 of Chapter 2

is a one step proof - namely, invocation of the ‘Equivalence rule’.

3.4.1. AcB, FeG | F(A)=G(B) .
1 This is the other example of Chapter 2 and is much less painful using the
LCF system. The text below is a conversation with the program. tach command to
the system (the user’s contribution to the interaction) follows a prompt of 5 stars

and terminates with a semicolon. The integers are step numbers.

29

wrxrx ASSUME AcBF=G;
1 A=B (1)
2 FeG (2

xxkex APPL F,1;
3 F(A) = F(B) (1)

ook APPL 2,B;
4 F(B) = G(B) (2

»xxkex TRANS 3,4; =

5 F(A) £ G(B) (1 2) i

xxkcx THEOREM MONOI: -;

THEOREM MONO1: F(A) = G(B) O

ASSUME i

AcB,

FeG i
3.4.2. (P-LF)-F I P=F

This particular proof would already be something like fifty steps in Pure

LCF. The material shown, this time, is not the whole record of the interaction but

just the commands typed by the user and the proof that LCF constructs. S :
ASSUME P-L,F=F; | =
GOAL P=F; | 2
TRY CASES P; ’
TRY 1; SIMPL 1 BY -; QED; el
TRY 2; GIMPL 1 BY -; QED; Lo
TRY 3 SIMPL; %
0t
e

30 ‘:-

3 §
'\

< ST ety S ot S s B L S S
S e i Lol e et s g o G S i

P-LF = [F (1) --- ASSUME.

|

| [TRY #1#1 P=TF :SASSUME P=T
|2 P=T (2) --- SASSUME.

|13 L=F (12 ---SMPL1BY2.

| I[TRY #1#2 P =T :SASSUME P=1
|14 P=1 (4)--- SASSUME.
[15 L=F (1 4 ---SIMPL 1 BY 4.

|
| [TRY #143 P = :SASSUME P=F
||6 P=F (6)--- SASSUME.

The goal structure is reflected by the bexes.

The goal is printed at the top of the box.

The last line of the box is the established goal or
a contradictory WFF.

The comrand "TRY CASES P" caused the "P=F" goal to
split to 3 subgoals:

P-F SASSUME P=T
P-F SASSUME P=lL
P<F SASSUME P=F

A QED command, when the current step is a contradiction,
renders the goal under trial established.

A SASSUME(W) command causes WFF W {o be added
to the simpset after it is ASSUMEd.

1 s i
b B s e st

3.5. Concrete Representation:

It is unusual for computer input character sets to contain many of the
logical symbols that we need and, although the machine at the Stanford A.l. Project
is exceptional in this respect, it is missing some symbols we have used. On that
machine (where the LCF system lives) the following representations are used for
characters which do not appear on the keyboard:
is represented by «
is represented by UU
is represented by ¢
is represented by

is represented by :l.'T
is represented by FF

Hej v n T

The point of nentioning this mat’ - is that the concrete representations of

these characters have appeared in published works where publication language

siould have been used.

32

R

]
i

%
«.j‘

7y
.t
PO O O

S EP —

bR e et

BNRe

e L S e S U

R

MRSy

CHAPTER 4

The Mathematical nvironment

We present here a brief account of those parts of [7] which are relevent
to the LISP semantics experiments That paper discusses the rigorous development
of theories of propositional logic, integer arithmetic, lists and finite sets. It provides
e axiomatic basis for a Hbrary of slandard theorems Wrom those various theories
as well as a collection of results (not depending on axioms) which are useful when
working with the LCF system.

in proving !heorems about the meanings (and other properties) of various
LISP functions, it is necessary to make use of a substantial number of results from
arithmetic. Also, of course, the theory of lists is fundamental to the representation
of LISP functions and the data they manipulate. The set theory of [7] was not
required as background mathematics. Moreover, it was convenient to avoid using
the trealment of proposilicnal logic (thus space was saved since the theorems were
not required).

We proceed, in this summary, by giving the axiomatic bases for each of the
various aspects of the environment together with some indication of the scope and

depth of the corresponding sections of the library of theorems. As an indication of

33

T R R R

TR e

&

Al aa
Aot b A i S5 e N < T e

e
sl s

S

the numbers of theorems involved, we note that the number given in [7] is about

1000 and about 400 of these were selected for use in the LISP experiments. As
was anticipated, this body of theorems needed to be extended by the addition of
some other useful lemmas. About 40 such extra results were added to the
environment (all having very short proofs).

The domain of individuals (D,,,) is thought of as partitioned into subdomains
which correspond to data types. These subdomains are characterised by type-
predicates (functions of LCF type (ind»tr)). For example the predicate ‘isint’

(axiomatised below) gives T on individuals which are supposed to be integers and L

or [F on all else in D,

4.]1. Axiom I'ree Theorems in LCI:

The theorems (or classes of theorems) in the following list depend on no

(nonlogical) axioms. None is very deep but they find frequent use.

i) F [xl]=1

i) F ¥Yp.p»TF =p

iii) F Vp.poil=1

iv) Xel b X=1

v) F(X)=L | F(L)=L

vi) P(L) =T F P=[xT)
P(L) = F P=[DxF]

vii) P(X)=T, P(")=F |} P(Ll)=L

34

s

sebhet T

R O Ay O DTV R RIS

viii) F1cF2, AlcA2
F1eF2, AleA2,
and so on.

ix) P-T,L

FI(Al) = F2(A2)

(A
B2 | FI(A1,B1) = F2(A2,B2)

o m

x
v
L
Sl
O

=T T
=1 1l
=F F
T=F F

n

F
Ble
P
P
P
Q
F

(g)] =

xii) P-T,T=F }

Note that (i), (ii), (iii) are suitable for permanent SIMPSET residence and

that (xii) is good for deriving contradictions.

4.2. Iiquality and Definedness:

We are easily able to axiomatise a sensible equality predicate (=) and a
definedness predicate (a). We want to call all individuals except L defined; that
is, if x is in D,y then we want dx)=T if and only if x is not L. The desired
equality predicate must be T or [F on all pairs of defined elements of Dinsy Must be
refiexive on defined elements and must be such that (x=y)=T indicates x=y. In

postulating such a two place predicate we make a commitment that Ding should be

discrete (flat).

We axiomatise ‘=" and define ‘¢’ in terms of it as follows;

35

T B T T T Ty it

T A

SN

SE T T SR 5 vk

P i, X Fere AEarrs
SR O R R s S AR R b X,

Cint
Vet A

s

SHE

B S 0 2]

RS

R S GOt AR AN e

g

A I

T SR Ly e VO
s S S e

i R e TR A o
e

AXIOM L£Q
VX, (x=x)=x,L = x
Yx y. (x=y)3 x=y,
Yx y. (x=x)-{(y=y)>T,L),L = (x=y)»T,L
(L=1) =1

d = [Ax. x=x]

We use the vertical bars (||) down the left hand edge of the page to
indicate axioms,

As a technical aside to the critical reader, note that the fourth of these
axioms is not necessary if we can talk about some element of Ding other than 1; in
that case we can deduce (L=1)=L" by monotonicity.

Although (X=Y)T | X=Y is the fundamental property of the equality
predicate, '=" should not be confused with ‘=% the latter is not a computable
function.

Both of these functions (definedness and computable equality) have proved
extremely useful and the following are the theorems (or groups of theorems) that

are to be found in tha environment (with comments):-

i) F b)) =1 (Strictness of 9)
i) F Vx. x=L =1 (Strictness of *=?)
F VYx. l=xs1
iii) F Vx. (x=x) = d(x) (Reflexivity of *=?)
iv) aX)=L F X=1 (Totality of ‘o)
) X=Y=L1, dX)=T F Ysl (Totality of *=?)
X=Y=F [aX)=T
etc.
36

e b T T LT ST RLT L gaiare i datdbtii v o
H R e S A st LN T R TR o R Wy g O B B 1 TRt e R B 2

&/

£

DG N T T i A e T AL S i e sy AR Y

B SP At

> PR
e
Yo

E

e
E &

¢

AR

] AR e
N L S SR e e e N N e e bl i T Wi

T F X=Y (Conversion to ‘=)

vi) X=Y=

vii) X=Y, (X)=T F X=Y=T (Conversion from ‘=)
viii) AX)=T | X=X=T (Reflexivity again)

ix) (X=Y)=Tr | (Y(=X)=Tr (Commutativity of ‘=)
x) AX)=T, XeY b X=Y (Discreteness of D,,,)

xi) FX)=F(V)=F b X=YrF
FIR=FMN=F Pk Fll)=1
P(X)=T, P(V)=F F X=Y=F

xii) aX)=F F T=F

xiii) (X=X)=F } T=F

xiv) (X=Y)=l, aX)=T, a(Y)=T } T=F
xV) (X=Y)=F, XeY | Ts=

Note that the theorems suitable for permanent simpset residence form the
first group (i-iii) and those which are contradiction oriented have also been grouped

together (as xii~-xv.

4.3. Natural Numbers:

Although the natural numbers are not used, as such, in the LISP
experiments, and although the theorems concerning these objects have been
removed from the environment as described in [7], the foundations for the
construction of the integers is the axiomatisation of natural numbers. The
interpretations intended for the constants (0, 1, Z, isnat, succ, pred) are the natural
ones. Note that ‘isnat’ is a type predicate which gives T on natural numbers and L

on everything else.

37

AXIOM NN:
Z = [ax. x=0]
Z(0) =T
isnat = [uF. [Ax. Z(x)=TF(pred(x))]]
Vx. isnat(x)» Z(x)-0,succi{pred(x)) = X
Vx. isnat(x)s Z(succ(x)) = F
Vx. isnat(x)» pred(succ(x)) = x
1 = succ(0)
2 = succ(l)

i

Although this set of axioms is simply a building block (in the current
context), we give a set of derivable theorems which correspond to the traditional

Peano Postulates. This indicates that one should expect all the usual results of

basic number theory to be provable.

isnat(0) = T

isnat(X)=T | isnat{succ(X))=T

isnat(X)=T | (succ(X)=0)=F

isnat(X)=T, isnat(Y)=T, succ(X)=succ(Y) F X=Y

g(0)=T, ¥x. isnat(x)3 g(x)» g(succ(x))=T
F ¥ isnat{x)> g(x)=T

4.4. The Integers:

The following axioms specify more completely the tunctions ‘pred’ and

‘succ’ (see above) and introduce the functions *mns’, ‘pos’ and ‘isint’,

38

s

s

&%

e
L8

e

T R AR SRR ST R et e s e S R i e R R R s R

AXIOM INT:

Yx. isnat(x)» pos(x) = Z(x)>FF,T

¥Yx. pos(x)» isnat(x) = T

¥Yx. posimns(x)) = pos(x)=[F, Z(x)-F,T

Yx. pos(x)=T,T = isint(x)->T,L

Yx. isint{x)=mns(mns(x)),mns(x) = isint(x)=x,L
¥x. succ(x) = mns(pred(mns(x)))

¥x, predix) = mns{succimnsix)))

[Ax. isint(x)=>T,T] = g

We first show the results of applying the various functions to the small

integers (0,1,2) and to the undefined element of D,

i) isint(0)=T, isint(1)=T, isint(2)=T, isint(1)=1
i) pos(O)=IF, pos(1)=T, pos(2)=T, pos(l)=l
iii) Z0)=T, Z1l)=F, Z2(2)=F, Z(l)=L

iv) #0)=T, «1)=T, «2)=T, o&l)=1L

v) succ(0)=1, succ(l)=2, succ(l)=l

vi) pred(1)=0, pred(2)=1, pred(l)=L

vii) mns(0)=0, mns(l)=l

The derived theorems are too numerous to list but we now give some

examples selected to give a flavor of them,

i) isint(X)=F F pos(X)=1
isint(X)=F | succ(X)=1

i) F Yx. isint(succ(x)) = isint(x)=T,L
F VYx. Z(mns(x)) = isint(x)=2(x),L
F ¥x. mns(pred(x)) = succ(mns(x))

39

iii) pos(X)=T | isint(X)=T
isint(X)=T P a(X)=T
Asucc(XN=T } isint(X)

iv) isint(X):=T, pos(X)=4,
isint(X)=T, 2(X)=1

4.5, Integer Arithmetic:

LCF is such that once we have axiomatised a structure then many of the
functions we may be interested in can be written as terms of the logic. We give
below definitions of the various operations of arithmetic that were appropriate to

proving things about the LISP subsets that we are interested in.

AXIOM ARITH

== [)\x y. X+mnS(Y)J

*

v

= [AX Y. pos(x-y)]

s

Many other useful and traditional arithmetic functions are defined in [7]

including division, remainder-on-division and bounded-existential and bounded-

universal quantifiers for integer predicates.

40

l_ o
b T

4 2 [“G [)\X y. Z(Y) - (iSint(X)"X,.L):
pos(y) - G(suce(x),pred(y)), G(pred(x),succiy))]]

= [uG. [Ax y. 2(y) = (isint(x)=0,1),
pos(y) = G(x,pred(y))+x, G(x,succ(y))-x]]

= [Ax y. Z(x-y) =T, pos(x-y)]

It is readily proved that all these functions are total over the integers but

Gefined only on the integers; these facts find expression in many theorems in the

environment. Apart from all the well-known basic properties of these functions (such

as commutativity of “+' and **’ or the transitivity of %’ and *>") being given, a large

number of simple relations between 2 or 3 of the constants (1, 0, 1, succ, +, pred, -,

*, =, >, mns) are given as theorems. In fact, the environment contains over 150 such

theorems and there seems no way of categorising them so we can even list

representative theorems. However, it has turned out that this library has been

adequate to handle the modest requirements of the LISP project.

4.6. A Theory of Lists:

In [7] there is an extensive treatment of lists based on the axioms below.

The treatment was substantially LISP-insgired and developed via @ treatment of

certain abstract objects that are similar to $-expressions. In that report they were

called S-expressions but that has turned out to be a bad mistake for the current

work so we will call them PONs (since a PON is either a Pair Or NiL). There is a

pairing function ** (like CONS) and two selector functions (*hd’ and 'tI’ - like CAR and

CDR) for analysing pairs. As in LISP an atom is anything that is not a pair and

repeated selection in a PON eventually yields an atom.

R AR
S

IR e D

B

; AXIOM LIST

? ispon(L) == L
ispon(NIL) = T
“hsg null == [ax. x=NIL]

atom . [xx. ispon(x)=null{x),T]

Yx. atom({x)» hd(x) = 1

Yx. atom(x)=» tI(x) = L

Yx y. hd(x~y) = aly)=x,L

| Yx y. t{xy) = a(x)-y,L

i 1 Yx. hd(x)-tl{x) = atom(x)-L,x

A = [uG[xx.atom(x)-T,Glhd(x))=G(tl(x)),L]]
islist = [uG.[ax. null(x)->T,atom(x)=IF,G(tI(x))]]

b g

We first mention that all of the functions mentioned in the axioms are strict
and that “ispon’, "atem™ & "null’ are total. We give just a few simple results of the

thcory (remembering that most of the theorems in the environment are quite

simple):
i) V=T F Yx. hd(x-Y)=x
i) dX)=T | Vy. tiiX-y)=y
fi) Hhd(X)) =T F atom(X)=[F
iv) atom{X)=[F F a(hd(X))=T
v) ko Vx. a(tl(x))=4(hd(x))
i vi) nuliXY)=T f T=F
vii) hd(X)=X F XeiL |
%' viii) F Vxy. islist(x-y)=d(x)=islist(y),L
42
s

SRS A St s el

i
:
) ix) G(NIL)=T, Yx y. a(x)s islist(y)» G(y)s Glxy)=T
; b V. islist(x)® G(x)=T
; x) Vx. atom(x)» G(x)=T, ¥xy. G(x)® G(y)» G(x-y)=T
. F Yx a(x)® G(x)=T
; We now come to present a selection of the various list operations that
p
were defined in [7]; we define here only those operations that we require icr the
%) experiments in this thesis.
F AXIOM LOP
& = [uG.[ax y. null(x)=y, hd(x)-G(tl(x),y)]]
mem = [xx y. &(x)~ORmap(y,[xz.x=2]),]
4 ORmap = [#G.[rx p. islist(x)-
(null(x}~F, p(hd(x))>T, G(ti(x),p)),L]]
assoc = [uG.[Ax a. (x)~ islist(y)= null(y)=NIL,
(x=hd(hd(y)))~hd(y), G(x,tI(y}), 1,L]] -
’ length = [uG[Ax. null(x)-0, succ(Giti(x)))]] 1 8
; ‘&’ is the append function for lists and ‘mem’ is membership in a list; ‘assoc’
) , . - {4
2 ’ and ‘length’ need no introduction. We do not give any properties of these functions : ;
but simply say that most of the results (about the functions) which were needed, ;
were already available when required in the LISP experiments. :
43
]
¥
’) \

R s TR A

CHAPTER 5

Notation, Denotation and the Nature of LISP Expressicns

5.1. Notation and Denotation:

We recall, here, the distinction between numbers and numerals. Numbers
are abslract (mathematical) objects while numerals are expressions in certain
languages; Numerals are used to denote numbers while numbers provide the
interpretations for numerals. The common number/numeral confusion arises because
of the usual identification of numbers with the numerals of the positional-notation
decimal number system (actually a numeral system). Remember, every numeral
denotes some number and is consequently notation for the number!

Chapter 4 described an environment within which the current exberiments
on a LISP semantics can be performed. Some very important classes of abstract
objects are therein developed: - in'tegers, lists and ordered pairs. A treatment of
LISP muct contain some discussion of notations for these abstract entities but we
find our vecabulary is not rich enough: clearly ‘list’ corresponds to ‘number’ but we
need a word to correspond to ‘numeral’. We shall adopt the convention that when

we have a name for a class of abstract objects we shall write it predominantly

44

B Y L e

i

P it Tt 1 s

3
&'.i
3
g,‘
5
:
k
E"

LTI MAEE PRl ra Pl

Tl i e e L e AT

o LRR da el

g

JUminR Atae s D R AR L St B e e e U R S b i E B R R g R R S RS s e et et e DR B B St e L

i TR M PR AR s A By AT, i g T e TN L P e T T e TR

lower case and when we wish to discuss the class of expressions that represent the
abstract objects we will use all capitals. For example an S-EXPRESSION will be an
expression in a language that denotes a certain S-expression (an abstract object).

f we have a class Pgr of abstract objects and a class PQR of
representations for elements of Pqr, then there is a semantic function, (call it Den)
which maps expressions into the objects they denote. We will refer to Den as a
denotation function. There are also functions which map each abstract object
into an expression of the tanguage we are using to discuss elements of Pqr; we call
these functions notation functions.

Just as "02" "0002" and "2" are different notations for the same number,
the LISP S-EXPRESSIONs "(A B)", "(A . (B)", "(A . (B . NIL)" and "(A . (B . ()"
denote the same S-expression. The fact that systems of notation are often
redundant in this way means that denotation functions are in general many to one. It

is a fundamental property that if N is any notation function for Pgr then for all X in

Par, Den(N(X)) = X . Also, the function [xx. N(Den(x))] selects canonical

representations.

5.2. Abstract Syntax

The term syntax usually refers to rules (perhaps phrased in BNF) which

45

o

e e IR

b i e T e N L e e

<2 Gy vt DT pE < T E

Oy IR SE U S SR TR T

specify which strings of symbols are legal in some language and what the structures
of the language are. McCarthy calls this ‘concrete’ syntax. ‘Abstract’ syntax also
describes the structures of the language but without saying how the structures are
represented by strings of symbols.

Abstract syntax comes in two flavours:- ‘analytic’ and ‘synthetic’. Analytic
abstract syntax makes use of diseriminators such as ‘issum’ and ‘isassignment’
and also selector functions to access components of syntactic entities. Synthetic

abstract syntax deals in constructor functions such as ‘mksum’ and

‘mkassignment’. o
Abstract syntax is no stranger to the LCF project - [5] and [6] depend on ‘

it. We now make the claim that defining denotation and notation functions (in LCF) in:

terms of McCarthy’s notion of abstract syntax is quite straightforward. In the next

N

section this assertion will be illustrated with definitions of such functions for S-

expressions,

5.3. S-expressions:

As mentioned in Chapter 4, the notion of S-expression developed in [7] is
unsatisfactory for our purposes. It is, therefore, part of the task of axiomatising

subsets of LISP to define precisely what constitutes an S-expression. At this point,

e

o

Lo 5l

S SR el S e e B S A

i o

W e UL i Sy SRETA ke wpw Y T oL g e b e e

s s o Sl Em Ao A e I Vel 3 SR R) SV K i ¢ i
YR i U P YL e el IR TR SR LS T 4

A D S e A Ve R O S R S T e T T I A e 4 gk

we can outline what makes one: a certain subset of the atoms of D, will be
S-expressions and if we know X and Y are S-expressions then X+Y is one too. We
cannot be specific about what the subset is, at this point, but it certainly will contain
NIL and certain names or identifiers. Thus we are going to identify the LISP ‘cons’
function with the pairing function -’ that we know so much about. Similarly, we
identify ‘car’ and ‘cdr’ with ‘hd’ and "tI’ respectively.

We are now in a pocition to exhibit denctation and notation functions for
S-expressions. We use abstract syntax (both analytic and synthetic) in the
detmition. We suppose, lor the sake of the example, thal S-~expressions are those
individuals that satisfy the type-predicate:

isSexprn = [uG. [ax. isint(x)=T, isname(x)=T, null(x)»T,
' atom(x)=F, G(hd(x))=G(tl(x)), F]] .

We call the denotation function for S-EXPRESSIONS ‘Sexprnof’ and the
notation function for S-expressions ‘mkSEXPRN’:

Sexprnof = [uG.[xX.isINTEGER(X) - integerof(X),
isSNAME(X) = nameot(X),
isNIL(X) = NIL,
isPAIR(X) = G(leftof(X))-G(rightof(X)),

isLIST(X) = Gfirstof(X))<G(restof(X)),
L]

mkSEXPRN = [pG.[ax.isint(x) » mkINTEGER(x),
isname(x) = mkNAME(x),
(x=NIL) - mkNIL,
isSexprn(x) = mkPAIR(G(hd(x)),G(tI(x))),
By

47

B R

The functions ‘isINTEGER’, ‘isNAME?, isNIL, ‘isPAIR’ and 'isLIST’ are analytic

syntax discriminators; ‘leftof’, ‘rightof), ‘firstof’ and ‘lastof’ are analytic syntax

selector functions; ‘mkPAIR’ and ‘mkNIL’ are synthetic syntax constructor functions.

Of course, we have just passed the buck since integerof’ and ‘nameof’ are also

denotation functions and ‘mkINTEGER’ and ‘mkNAME" are notation functions.

If in this exarmple we have appropriate results about the lower level
functions such as
Vx. isname(x)® nameof| mkNAME(x)) =

Xy
Vx. isINTEGER(x)# isint(integerof(x)) = T
Vx. isname(x)s isINTEGER(mkNAME(x)) =

F

then we are easily able to prove

Yx. isSexprn(x)= Sexprnof(mkSEXPRN(x)) = x .

5.4. LISP Expressions:

Since this thesis is concerned with the semantics of the programming

language LISP, we must inevitably describe what sort of mathematical object a LISP
‘program’ (or a LISP ‘function”) is. We must conclude that, because of the

indistinguishability of program and data in LISP, all expressions in the language

(whether they are intended for ‘execution’ or not) must have the same type; they

must be members of D, . In fact all LISP functions, arguments and results will be

S-EXPRESSIONS.

48

G e

S e e

SRR e

AT sl e T

i

Thsony o7 T ST

T A
TR R AT

What we are lookinz for when we seek a semantics for LISP is a function

{call it LISY) which maps S-EXPRESSIONS onto 5-EXPRESSIONS in the same way as
a LISP interpreter actually running in a machine. For example, LISP should map
the S-EXPRESSION
"(CDR (CONS NIL (QUOTE X»)"
onto the S-EXPRESSION "X" .

A necessary property of such a LISP function is that if S-EXPRESSIONS

"X and ‘Y’ denote the same S-expression then the S-EXPRESSIONS ‘LISP(X)’ and
‘LISP(Y)’ must be the same.
We now point out a method of defining LISP indirectly which is very

important to our work. What we do is to define an interpreting function ‘lisp” which

maps S-expressions onto S-expressions in the appropriate manner. Then by using

denotation and notation functions (D and N) we can define LISP as a composition

of functions:

LISP = [\X. Nilisp(D(X))] .

Note that the function we get depends on the particular choice of ‘N’ but
this is as it should be. Because of the way we have defined LISP we have the

following commutative diagram:

PR BTG RE

S-expressions » S-expressions

lisp I
0 N
LISpP t
S-EXPRESSIONS — S-EXPRESSIONS

Now, if N, is any (other) notation function for S-expressions then we should
be able to prove
lisp = [xx. D(ILISP(N(x)))]
using the basic relationship between denotation and notation functions. This
immediately suggests that the function ‘lisp’ is mare fundamental than any particular
LISP function we might have.
From this point on, therefore, we shall not be concerned with notation in

general or S-EXPRESSIONs in particular; all discussion will centre round

S-expressions,

5.4.1. List Notation.
We mention one point of notational convenience. In the LISP we all know
and love, (A B C) can be thought of as an abbreviation of (A . (B . (C . NIL))). Just

for the purposes of this document we shall use a similar abbreviation for lists but

we use the distinctive brackets *{’ and '). For example {A B C) is an abbreviation

e L e

LN

Y
SRR BRIV

for A«(B-(C-NIL)) (i.e. denotes the list containing A, B, C). Note that {A B C} is not a
term of LCF since the LCF system does not have a capability which allows

introduction of abbreviations.

5.4.2. LISP Functions:
We have taken the position that LISP expressions, in general, and what are

usually termed ‘LISP Functions’, in particular, are simply individuals. This raises the

question "Do °LISP Functions’, such as
(LAMBDA (X} {CAR {CDR {CDR X))}
have any functional character whatsoever?" .
Answer: °‘LISP Functions’, although simply LISP data, induce functions under
interpretation. Hence we may sometimes identify an S-expression with the LCF

function that it induces under interpretation. For example, we will identify with the

‘LISP Function’ above, the LCF function:
[Ay.lisp({{LAMBDA (¥} {(CAR {COR {CDR X))} y}].

which will turn vut to be simply the function [ay. hd(ti(ti(y)))] .

51

Gy R

RIFAGHRS RS

s e T E it T SE e P et g
MRS e S ke pe ARta
T s T L)

EETC
i
{5 L

S

3 2 A

e

e ey Saners PSS e gl
PN L R loh GYL LR T PR) i i

I el T

eon

iR

<

SRR o it

CHAPTER 6

A T P T '",--1':':;. ot

FURT GRS ST N VAT P

An Axiomatic Theory of Pure LISP

6.1. Extending the Environment for Names:

Dhgs, LS
AT P R SR

Both data and programs in Pure LISP are S-expressions built from NiL and

those atoms which are simply names (identifiers). The environment of Chapter 4

gives us scme power to manlpatate such S-expressions because of their structure

but we need to augment these results so we can we can (legically) talk about the

atoms in S-expressions. In fact, we must present axioms which further specify D

ind

to contain names as well as integers etc. Not only do we want to talk about names

in general but we want to introduce certain specific names such as *T°, ‘LAMBDA’

and ‘CAR" .

The first four axioms for Pure LISP are then:

*»AXIOM PL1:
isSexprn = [uF.[ax. null(x)~T, isnarne(x)-T,
atom(x)~IF,G(hd(x))-=G(tl(x)),F]]

**xAXIOM PL2:
Yx. isname(x) = isint(x) = L, atom(x) = X s
isint(x) = atom(x) = x, L, x = x

++xAXIOM PL3:
Il Yx. d(discr(x))s isname(x)=T

52

3]

HEe

RN S T PR A T b K AR Pk

i)

et il - "_'C'- e
AR oS e e 2. .

A B AR Ay Dk Y e i

v A

SR e VL g B8 S

....

d

P

L83

sr
L 734

an

£

4

%2

VA P00 A AT St A AT V0023

PL1 simply expresses in LCF the definition of S-expressions for Pure LISP
which was given in plain language above. Then PL2 further specifies the structure of
the dumain of individuals (D) as baing partioned by the name and integer lype-

predicates. Looking at the consequences of these two axioms we see

F |sname(.L) =
isname(X :1 k- X e s
isname(X)=T | atom(X)=T

isint(X)=T | atom(X)=T
as well as the fact that names, integers and pairs (non-atoms) are all distinct. Finally,
PL3 introduces ‘discr’ which maps names onto integers and is the basis of a compact
way of introducing specific names; we will use it is a discriminating function to give
a total ordering for names (although this fact is not contained in the axiom). To
illustrate its use we just proceed with the axioms for Pure LISP, giving the one
which introduces the ‘reserved words’.

+xAXIOM PL4:
discr(LAMBDA) > discr(LABEL) = T
discr(LABEL) = discr(QUOTE) = T,
discr(QUOTE) > discr(ATOM) = T,
discr(ATOM) > discr(COND) = T,
discr(COND) > discr(CONS) = 'II',
discr(CONS) > discr(CAR) = T
discr(CAR) » discr(CDR) = 'lI',
discr(CDR) :» discr{EQ) =
dlscr(EQ > discr(F) = 'II',

cr(F) > disc(T) = T

When using the LCF system to do the proofs discussed, we decorated the

53

Sk et s s

AR TSR

A i e

e

Nk i D R

w-
S £

2

i
b

G

A

A

T P s e el SR R

specific names (QUOTE, CAR etc.) with a leading underbar. Underbar in an identifier
indicates that the atom is a constant name in D,; and mentioned in the axioms.
However in this report we will simply write _CAR as CAR .

k1

It is a trivial exercise to show that each of these reserved words is a name

(satisfies the ‘isname’ type-predicate). Furthermore, using the transitivity of *>’ we

. can easily show that distinct names are unequal. For example, we can derive
discr(CAR)>discr(T) = T and hence CAR=T=F . -
6.2. Axioms for Interpreting Pure LISP:
As has already been inferred, we will be defining in thic section, a function
\ ‘ lisp’ which ‘interprets’ S-expressions in the appropriate manner. For example, we
| wish the function to satisfy the equations | :
sp({QUOTE T) = T
lisp({{LAMBDA (X} {CONS X {QUOTE F}}) (QUOTE T})) = T - F y
Y where, of course, X is a name.
h [12] contains, in order to be precise about the meaning of the language, an }%
interpreter for Pure LISP. That interpreter, which is written in Pure LISP, and which ;'
|]
we reproduce in Figure 6.1 (next page), is a collection of mutually recursive /i%
functions, the most important of which are ‘eval’ and ‘apply’. ‘eval’ is a function of ‘;
{
%
54 -
ff ; ? :

apply[fnix;a] =
[atom[fn] = [eq[fn,CAR] = caar[x];
eq[fm;COR] = cdar[x};
eq[fn;CONS] = cons[car[x];,cadr[x]];
eq[fn;ATOM] - atom[car[x]];
eq[fmEQ] - eq[car[x]cadr[x]];
T - apply[eval[fm;a]x;a]];
eqg[car[fn,LAMBDA] -
evallcaddr{fn)pairlis[cadr[tn}x;a]);
eq[car[fn};,LABEL] » apply[caddr[fn];x;
cons cons[cadr(fnleaddr(inJkall]

evallesa) =
[atom[e] = cdr[assoc[e;a]);
atom[car[e]] = [eq[car[e;QUOTE] = cadr[e];
eq[car[e];COND] = evcon[cdr[e]a);
T = apply[ear{ejoviis[edriehakall
T - apply[car[e]eviis[cdr[e];a)a]]

evcon[ca] = [eval[caar[c]a] = eval[cadar[e];a];
T = evcon[cdrc]ia]]

evlis[m,a] = [null[m] = NIL;
T = cons[eval[car[m];a]evlis[cdr[m];a]]]

pairlis[x;y;a] = [null[x] = &
T - cons[cons[car[xJcar[y]];
pairlis[cdr{xJicdr[y];al]]

assoc[xja] = [equal[caar[a]ix] - car[a];
T = assoc[x;cdr[a]]]

Figure 6.1 - The Pure LISP Interpreter of McCarthy.

55

et G e S et e

A

B gingh
e By

&

X LI A R K
NI T A IR SR AR ot ot

R
¥

two arguments:- a LISP expression and an association list which is used to hold the
| bindings of variables. ‘eval(E, A)’ gives the LISP interpretation (the evaluation) of
the expression B using A to get the values of variables, Similarly, ‘apply(F, L, A)’
i

applies the LISP function I' to the list L of arguments again using A to bind values
to variables. |

Now in developing a new definition of Pure LISP, we do it in a way that
corresponds as closely as possible to the McCarthy interpreter. In particular we will

have LCF functions ‘eval’, *apply’, ‘evlis’, ‘evcon’ etc., each with almost the same

structure as the LISP function «’ the same name.
3 ‘eval’ is the most basic of the various functions we propose since we are
t: able to define all the others in terms of it:
¥xAXIOM PLS:
I lisp = [xe. eval(eNIL)]
¥ AXIOM PLG:
apply = [uG. [xfn x a, d(x)=~ islist(a)~
(fn=CAR)~ hd(hd(x)),
(fn=CDR)- ti(hd(x)),
(fn=CONS)= hd(x)-hd(ti(x)),
(fn=ATOM)= atom(hd(x)) -+ T, F,
(fn=EQ)= [Ax y.atom(x)-*atom(y)-»(x=y),].,i.]
(hd(x),hd(tl(x)))-T,F,
atom(fn)= G(eval(fn,a),x,a),
(hd(fn)=LAMBDA)- eval(hd(tl(tl(fn))), pairlis(hd(tl(fn)),x,a)),
(hd(fn)=LABEL)~ G(hd(tl(tl(fn))).x,((hd(tl(fn))°hd(tl(t|(fn))))°8)),
L,1,1]]
56

TR L T AL, S A L L Lok
AT i A

B
E
13
53
o
i
&
e
TH
@
g
gl
5
o
o
B
L9
4
7
g
Rt
Ut
4
i
&
oy
X
3
b
5
&
3
g
5
i
E
%
i
[t
2
1
4o
=
b
)
A
‘
Vi
EX
i
3

e

3

*xAXIOM PL7:

eveon = [uG.[xc a.
(eval(hd(hd(c)),a)=T) = eval(hd(ti(hd(c))),a),
(eval(hd(hd(c)),a)=F) = G(ti(c),a) , 1]]

: ! «*AXIOM PL8:
Il evlis = [uG.[am a.nuli(m)-=NIL,eval(hd(m),a)-G(tl(m),a)]]

»¥xAXIOM PLS:
pairlis = [uG.[xx y a. nuli{x)-a,

) (hd(x)<hd(y)) - G(tl(x),ti(y),a)]]
it remains only to define ‘eval’. Inspired by the interpreter we want ‘eval’ “j
. to satisfy the equation z%
eval = [xe a. atom(e) =~ ti(assoc(e,a)), ! j*
hd(e)=QUOTE) = ha(ti(e)), B
(hd(e)=COND) - evcon(ti(e),a), §
apply(hd(e),evlis(tl(e),a),a)] . |
4 14 Now this equation is not satisfactory as a definition since it contains z :
‘ refercnces on the right to functions which depend on ‘eval’; if we adopted this we § v
: would not have a set of definitions but a set of mutually recursive equations. Worse : g
¢ yet, this set of simultaneous equations, although consistent, does not specify the ;&
functions adequately. An example will show this: Consider the computation of i
eval((G}, (G-(LAMBDA NIL {G}}}) %
. ! through apply(G, NIL, {G-{LAMBDA .3}) %
and apply((LAMBDA NIL {G}3,NIL,{G-{LAMBDA...;3 %
: back to eval({G), {G{LAMBDA NIL (G}}}) §

&7
)

It is not inconsistent with the above equation, then, to assert, for example

‘eval({G), (G{LAMBDA NIL (G}}} = T . We actually want our definition of ‘aval’
to specify the results of all computations.

The solution is clear, we take the definitions of ‘evcon’, ‘apply’ and ‘evlis’

and substitute them in the above equation for ‘eval’; we then take the fixed point of

the right hand side; lastly we add a leading condition to ensure strictness. We

prescnt the resulting axiom (PL10) as Figure 6.2 (next page). With this definition
of ‘eval’ we get as a theorem
eval = [xe a. islist(a)~
(atom(e) - ti(assoc(e,a))),
((hd(e)=QUOTE) - hd(ti(e)),

(hd(e)=COND) ~ evcon(ti(e),a),
apply(hd(e), evlis(ti(e),a), a)), L]

A noteworthy technique for working in LCF was just used but the following
abstract example will illustrate it better since it has less irrelevant detail; we
'suppose two functions (L,M) satisfy the equations:

L=PLM and M= QLM

The MUTUAL least fixed points for L and M are given by the definitions:
L = [uF. P(F,[aGQF,G)])] and M = [uG. QLG)].

Similarly, supposing three functions (L,MN) satisfy the equations:

L = P(L,MN) M = QILMN) N = R(L,M,N)

the MUTUAL least fixed points for LLM,N are given by the quite lengthy definitions:

58

B A ¥ pa s e oy I e UE

*xAXIOM PL10:

eval = [uB[xe a.
islist(a)=
(atom(e) - tl{assocle,a)),
hd(e)=QUOTE = kditi(e)),
hd(e)=COND -
[#G.[xc a. (B(hd(hd(c)),a)=T) = B(hd(ti(hd(c))),a),
(B(hd(hd(c)),a)=F) - G(tl(c),a),L]]tI(e),a),

{rG{xfn x & alx~ istist{al>
(fn=CAR) - hd(hd(x)),
(fn=CDR) =~ tI(hd(x)),
(fn=CONS) - hd(x)-hd(ti(x)),
(fn=ATOM) = atom(hd(x)) » T, F,
{n=EQ) = [Ax y.atom{xj-atomly)={x=y},
1,L)(hd(:q),hd(ti(x)))> T,F,
atom(fn) = G(B{fn,a),x,a),
(hd(fn)=LAMBDA) - B(hc(tl(tl(fn))), pairlis(hd(ti(fn)),x,a)),
(hd(fn)=LABEL) = G(hd(tl(tl(fn))),x,
((hd(ti(fn))-hd(tI(t}(fn))))ea)),1,L,L]]

(hd(e),
[1G.[xm a. null{m)=NIL,
B(hd(m),a)*G(tl(m),a)]}(t!(e),a),

a), 1]

Figure 6.2 - The Definition of ‘Eval’.

L = [uF. P(F, [4G. Q(F,G,[tHR(F,GH)]L[uH. R(F [uG.Q(F GHLH)]
M = [4G. Q(LG[RHRILGH)]]
N = [uH. RILMH)]

6.3. Discussion of the Axioms:

6.3.1. A Different ‘evcon’.
Because we have modelled the above definitions on McCarthy’s interpreter,
an actual difference in the semantics is accented - a difference in the actions of the

two functions ‘evcon’. That there is discrepancy is illustrated by the example:

eval({COND { {QUOTE X} {QUOTE X} }
{ {QUOTE T} {QUOTE T} } 3, NIL)

In our semantics. this term is L whereas the old interpreter will yield the
answer T. We feel justified in making this small change since it seems that the
action of McCarthy’s interpreter (in this case) is at variance with the natural
language description of Pure LISP. We quote from [12] the definition of conditional
expression;

" A conditional expression has the following form:
[Pi=e)i pomesi.spaey),

where each p, is an expression whose value may be
truth or falsity, and each e is an expression. "

e
s o

e : Ares e

6.3.2. ‘lisp’ is not ‘evalquote’.
[12] presents the top level of the Pure LISP interpreter to be the
‘evalquote’ functicn which corresponds to

[xfn x. apply(fnx,NIL)] .

We could also have defined ‘lisp’ to be that term, but have chosen instead

to follow the example of the usual LISP systems which use ‘eval’ as the ‘top level’,

6.3.3. Strictness of ‘eval’ and ‘apply’.

Next note that the definitions of ‘eval’ and ‘apply’ have the following
structure:

eval = [uF.[re a. islist(a)=(atom(e}=(.),(.),L]]
apply = [#G.[rfn x a. d{x)=islist(a)-
({(fn=CAR)=(.),{.),4,L]] .

The main point of the ‘islist(a)’ and ‘a(x)’ conditions is to ensure that each
of these two functions is strict in each argument position. Of course, ‘d(a)’ would
have guaranteed strictness equally well as ‘islist(a)’ but the latter was chosen for
imagined technical convenience: we are only interested in the function when the last
argument is an association list so it might as well be undefined if that argument is
not ever a list. In retrospect it would be preferable to replace ‘islist(a)’ by ‘3(a)’ in

both definitions since some theorems are more compactly stated and many proofs

become easier.

61

Actually, strictness in the last argument position for tapply’ is not essential

but strictness in the second argument positions of both ‘eval’ and ‘apply’ is required
to prevent counter-intuitive results, The following examples illustrate this fact:
i) lisp({LAMBDA (X} {QUOTE T}}-NIL) .
This term computes to
apply({LAMBDA (X} (QUOTE T}},NIL,NIL)
and then to
eval({(QUOTE T),1).
Bepending on whether we have the ‘islist(a)’ condition in the
definition of ‘eval’ or not this further computes to L or T
respectively. Now L is the appropriate answer since a
disaster occured during the computation. We would expect
mechanical computation (as with an interpreter) of this
exarple to FAIL at the point where "hd(NIL)’ is required.

i) lisp({{(LAMBDA NIL {QUOTE T3})
{ (LABEL N {LAMBDA NIL (N33} NIL}})

Noting that
eval({{LABEL N {LAMBDA NIL {N}}} NILJNIL) = 1
This term computes to

apply((LAMBDA NIL {QUOTE T3}, L, NIL) .

62

s EE TS,

SA ey

B3 s
s Rt
i .

: < - R — - SRR AT R T R VS
i ;
r) Then, depending on whether the ‘d(x)’ condition is in the
j definition of ‘apply’ or not, we get, as the answer, either L or
i T . Again the latter answer is counter-intuitive since
2 mechanical interpretalion (using McCarlhy’s model) of
eval({{LABEL N {LAMBDA NIL {N}}} NIL},NIL)
would go on forever.
e& 6.3.4. Total Formality.

Since the meaning of Pure LISP is embodied in the function ‘lisp’ in the

axiomatic setting we have provided, we have succeeded in giving a completely

formal specification of the language. Contrast this with the method of [12] where

Pure LISP is first described in plain language and then this definition is ‘tightened up’

by the presentation of an interpreter. Note that this interpreter is not a definition of

the language since it is only meaningful in the context of the accompanying natural

language description.

6.4. Theorems of Pure LISE:

Having the definitions frr ‘lisp’ and the auxiliary functions is barely half the

job ©f constructing a ‘theory of Pure LISP’ that can be applied to proofs of

correctness of programs. We now need to develop a body of theorems which we

can expect will facilitate

such applications. Prescnted in this section is such a

collection of lemmas giving properties of the functions ‘eval’ etc. and giving the

results of these functions in special cases. Most of the theorems are suilable for

inclusion in a SIMPSET.

We start by presenting some lemmas for the functions ‘eval’, ‘evlis’ and

‘pairlis’ . These functions are strict in almost all argument positions. Where

appropriate the strictness results such as F Yxeviis(L,x) = L were proved

although we do not list them. More interesting are the following:
i) F Vxy a. evcon({{QUOTE T} x}+,a) =d(y)seval(x,a),L

i) dX)=T, aN=T b Yw a. eveon({w X3)-Y, a)
= (evallw,a)=T)=eval(X,a),
(eval(w,a)=F)-.~evcon(Y,a),J.

iii) F Va. evlis(NIL,a) = NIL
F Vx a eviis({x}a) = {eval(x,a)}

F ¥xya evlisi{x y)a) = {eval(x,a) eval(y,a)}
etc.

iv) F Vxy a pairlis({x},{y},a) = (Xey)oa
F Vxl x2 yl y2 a, pairlis({x] x2}, {yl y2), a)

= (xleyl) o ((x2:y2) - a)
etc.

Building on these resuits, we are able to derive more easily basic lemmas

describing the effects of ‘eval’ and ‘apply’ on come common constructs. (Again we do

not concarn ourselves with strictness resuits but just report on their existence.)

We start with three special cases of ‘eval’ on expressions which do not involve

function calls:

64

tpss R s

o i e

e

R e

GRS T

BT A R

G

Ao TR

e

g

Fid
"

WA AR g,

FENY A AT T e G AL AL 2k e R T e TR T

V) F ¥x a evall COND-x, a) = evcon(x,a)
vi) F Vx a eval({QUOTE x}, a) = islist(a)-x,L
vii) atom(X)=T } Yy a. eval(X,(X-y)-a) = islist(a)-y,L

viii) atom(X)=T, X=X1=F
F Yy yl a eval(X,(X1eyl)«{(Xey)-a))
= jslist{a) = a(yl)=y,L, L

There is some taste involved in how one states many of these theorems.
This last theorem, for instance, could have been written as
atom(X)=T, X=X1=F, islist(A)=T, & Yl) =T
F Yy eval(X,(X1-Y 1)«((X-y)-A)) =
The next group of theorems concerns the application of the five standard
functions: ﬁ

i) F Vx a. apply(CAR(x},a) = sll t(a) = hd(x)
F Vx a apply (ATOM,{x},a) = islist(a)- (atom(x)-»T,F), L

and similar rasults for CDOR, CONS and EQ

) F ¥Yx a eval({CDR x}, a) = tl{eval(x,a))
F Yxy a eval((CONS x y}, a) = eval(x,a)-eval(y,a)

and similar results for CAR, ATOM and EQ.

Finally there are theorems (cr families of theorems) for the cases of ‘eval’
and ‘apply” which involve functions which are given explicitly as LABELed
expressions or as LAMBDA expressions:

xi) F ¥n fx a apply((LACEL n £x,a) = apply(fx,(nef)a)

65

xii) F Vnfxa eval({{LABEL n f} x},a) = apply(i,eviis(x,a),(nef)-a)

xiii) F Vb a. apply({LAMBDA NIL b3,NIL,a) = eval(b,a)
F Vxy b a apply((LAMBDA {x} b}{y}a) = eval(b,(x+y)+a)
etc. for higher arities of the function.)

Xiv) F Yb a eval({{LAMBDA NIL b3a) = eval(b,a)
F Vxyb a eval({{LAMBDA {x} b} y),a) = eval(b,(x-eval(y,a))-a)

o u
E: i
E - i
e ws &
o 3
- e
& 66 3
2 i
=L
i
e
S .
o
- i

e i e P e B

e et s

5

3 b g
i dl et v «reas Tt ad i

P
b 4

CHAPTER 7
Applications of the Theory of Pure LISP

We shall discuss ir this brief chapter the application of the semantics of

Pure LISP (developed in Chapter 6) to the correciness of several simple LISP
functions. The purpose of working these examples is to illustrate some simple
techniques that may help in converting LISP functions to the the LCF functionals that
they yield via interpretation. The three functions we use need to be defined and
discussed anyway because they are used in the LISP interpreter that we discuss in

the next chapter. The functions are

i) The NULL function of one argument X; It returns T if X is NIL else

returns F; There is no recursion involved,

i) The EQUAL function of two arguments X,Y; It returns T if X is the
sarne individual as Y; It is recursive but calls no other recursive
function internally.

iii) An ASSOC function of two arguments X,A; It returns the first pair in
list A whose head is X although if there is no such pair it gives
NIL; It is recursive and it makes a call on another recursive

function (EQUAL).

67

kR S et

Before we discuss the examples in turn, some more axioms must be given
(added to the environment axioms of Chapter 4 and the Pure LISP axioms of Chapter
6). We must say that EQUAL, X, A, ASSOC etc. are all names (of functions or
parameters) and distinct from each other and from the names LAMBDA, CAR etc.

Also it is convenient to have names for the S-expressions which are the bodies of

the functions NULL, EQUAL, ASSOC. So:

+xAXIOM PL11:

disct{ASSOC) = discr(T) = T,
discr(EQUAL) > discr(ASSOC) = T,
discr(NULL) > discr(EQUAL) = T,
discr(A) » discr(NULL) = T,
discr(X) > discr(A) = T,

discr(Y) > diser(X) = T

++AXIOM PL1 2:
Snull = {LAMBDA {X} {COND

{{QUOTE T} {QUOTE F3}}}}

v AXIOM PL13:
Sequal = {LABEL EQUAL SequalB},
SequalB = {LAMBDA (X Y} {COND
{(ATOM X} {COND
(CATOM Y) (EQ X Y
{{QUOTE T} {QUOTE F}}})
{(ATOM Y} {QUOTE F)}
((EQUAL (CAR X} (CAR Y))

{{QUOTE T} {QUOTE F}}}

68

((ATOM X} (EQ X {QUOTE NIL}}}

(EQUAL {CDR X} {CDR Y33}

"

-y

+xAXIOM PL14:
Sassoce = {LABEL ASSOC SassocB),
SassocB = {(LAMBDA {X A} {COND
((NULL A} (QUOTE NIL}}
((EQUAL (CAR {(CAR A)} X} (CAR A)}
{{QUOTE T} {ASSOC X {CDR A3))}}

7.1. The NULL Function:

The correctness of the NULL function, given by an S-expression above, is
succinctly captured in the theorem:

F Ve lispl (Snull €}) = nul{evaile) » T, F .

However, two theorems which are much more useful are:
I Ve a. apply(Snuli,{e),a) = islist(a)-(null(e)=T,F),L
and
l Ye a.eval({Snull e},a) = null(eval(e,a))=T,F .
Actually, these theorems cover only the important and usual case where
the function is applied to precisely one argument. A more general result is:
F VYx a. apply(Snull,x,a) = islist(a)>(null(hd(x))-T,F),L .
In fact, all of these theorems are trivial to prove in the LCF system and it

suffices to consider just the second of the four. The appropriate attack is with

ABSTRaction followed by CASES on ‘islist(a)’ and ‘d(e)’. The only subcase with any

69

Mo LR ER L S e L R BT :

interest s the one in which we have ‘islist(a)=T, a(e)=T". We use SIMPLification on

this and the subgoal we get is

atom(e) - (atom(e)=(e=NIL),L)-=T/F,
atom(e) » L,F = null(e)-TF .

This subgoal happens to be easily provable by CASES on ‘atom(e)’ but the
important thing about it is that it contains no mention of ‘eval’, ‘apply’ etc,; It is
simply a proposition in LCF involving the equality of two terms which denote

individuals and proving this subgoal has nothing whatever to do with the semantics

of LISP. The number of substitutions which were ordered by the simplification

routine is quite large and so we see we are reaping benefits from having a SIMPSET

which was rich in special cases of the LISP primitives.

G i e By, S LR i i T e e S o
A S S e S e L L

i

5

The NULL function is a good example of the simple (but common) case of a

function F' which is just a LAMBDA term and which contains no nested LABEL *
constructs and uses no unbound variables. As a statement of correctness of F, we ﬂ
will be seeking to prove a theorem that looks like

Va x y... apply(F,{x y ..},a) = islist(a)»G(x,y,...),L 4

It is proposed that in proving such a result one attacks with ABSTRactien,
does CASES on ‘islist(a)" and CASES on the definedness of each of the arguments
(x,y,..). If we are lucky all but one of the subgoals are trivial and the nontrivial cne

SIMPLifies to a subgoal which is quite free of ‘eval’, apply’ etc.

S A e

Y
T PSS R

}
£ L) 7.2. The EQUAL Function:
EQUAL is an example of a function which is recursive but does not call any
% other recursive funclion internally (i.e. it does not contain any LABEL constructs).
Again the statement of correctness is simple and comes in a variety of forms such
as:
- Vx y a. apply(Sequal,{x y}a) = islist(a) » (x=y)-TF, L.
Recalling that Sequal and SequalB are the S-expressions that are the whole
LISP function and its body respectively, we tackle the above theorem via the lemma:
) Yx y a d(x)> dly)» assoc(EQUAL,a)=(EQUAL-SequalB)»
apply(SequalB, {x y}, a) = (x=y)=TF .

This lemma is appropriately attacked by induction on the structure oi either
of the arguments of EQUAL since the recursion of this function takes both apart.
More specifically we do induction on some occurences of ‘o' using an equation that

was introduced as an axiom in the Theory of Lists in Chapter 4

d = [uG.[ax. atom(x)-T,G(hd(x))-G(tI(x)),L]]

The base case is trivial and the other case reduces to a subgoali where we

have

Gthd(x)~T, G(tx)=T, ay)=T,

assoc(EQUAL,a)~(EQUAL-SequalB),

Yxy a.G(x)» a(y)» assoc(EQUAL,a)=(EQUAL-SequalB)=
apply(SequalB, {x y}, a) = (x=y)»TF i

AR i

71 1

1A

and we must prove
apply(SequalB, {x y}, a) = (x=y)=TF
The next attack on the problem is by using the definition of SequalB and
the SIMPSET which is primed with the nice lemmas that we described in Chapter 6.
Simplification does not simplify it to something which is free of ‘apply’ and ‘eval’; the
subterms which are the recursive calls on EQUAL are almost intact. However, by
doing the CASES arguments that suggest thernselves and applying the induction
hypothesis we complete the proof of the lemma and then the proof of the main
result for EQUAL quickly follows.
fhe important technique illustrated is that when one has a LISP function F
which is an S-expression {LABEL F B) (where B is the body), and we wan! to
establish a theorem that looks like
Yxy .. apply(F{x y ..}a) = islist(a)=G(x,y,...),L
then we try io prove a lemma that looks like
Vx y .. a d(x)* a(y)s ..» assoc(F,a)=(F-B)=
apply(B,{x y ..},a) = G(x,y,..)
and we attack the problem using an induction that reflects the computation that
function G performs; perhaps we use the definition of G and perhaps we use

induction on the structure of an argument of G that it tears apart.

72

<

RS,

ek

P R i A e

P T A ST

e

s

B o

) 7.3. The ASSOC Funotion:

We refer back to the start of the chapter for the S-expression form of

ASSOC (the S-expression is named Sassoc). We also give here a corresponding Pure

)
LISP function in M-notation
assoc[x;a] = [null[a]=NIL;
equal[car[a)x]~car[x);
P T-assoc[x;cdr{a]]]
As shown by its definition, the ASSOC function chosen is recursive and also
makes internal use of another recursive function; that is, it has a nested LABEL
'.
construct. The correctness results for ASSOC are typified by:
¥x y a. apply(Sassocix y),a) = islist(a)~ assoc(x,y), L .
2 The recursion aspect is handled in the same manner as it was in the proof
of correctness of EQUAL; we prove the lemma
¥x y a. d(x)» d(y)» assoc(ASSOC,a)=(ASSOC-SassocB)»
apply(Sassoc,{x y}a) = assoc(x,y)
! doing it by induction on the second argument of ASSOC. The internal call on the
: recursive function EQUAL is no problem because we already have the result (last
section):
t
Yx y a. apply(Sequal,{x y)a) = islist(a)=(x=y)>TF,L
which is great as a simplification rule.
‘f Y B
; i A
73 | 4
|
| '
» {

bittb i st o

In general when a function contains a call on 3 recursive function, we prove

a correctness result for the sub-function first,

7.4. Remarks:

The extraction of meaning functions for LISP functions from their S-
expression forms, provided mutual recursion is not involved, seems rather straight-
forward and the prognosis for automation of the process is good. The simplification
mechanism already does a huge amount of the work and it is the author’s belief that
more cffort spent on the scope of the Theory of Pure LISP and further development
of the LCF system would make the proofs even easier to generate and comprehend.

Although we have not worked any simple examples of correctness of
mutually recursive functions the LISP Interpreter proof in the next chapter involves

several case of mutual recursion (and is rather complicated).

74

SR TR e ARt S s, T

RN Y S A B S R S T R s

TR

é‘

]
¢
H
H

S e r R A A L N e Sy

L T TR LTI AR R

CHAPTLR 8

'The Correctness of an Interpreter

Wher: McCarthy presented an interpreter for Pure LISP he did so in
‘m-expression’ notation but the report also contained an algorithm for translating
m-expressions to S-expressions, Following his prescription (and making the change
to ‘evcon’ recommended in Chapter 6), we present in Figure 8.1 (next two pages)
the various functions (that constitute this interpreter) as S-expressions; we also
give names to these terms so they are given as an extra axiom (PL15). Note that
we still need all the axioms of Chapter 7 (as well as those for Pure LISP and the

environment) since EVAL, APPLY etc. make use of NULL, EQUAL and ASSOC.

Note that these functions are oriented towards EVAL being the function
called at the top level. in Pure LISP one does not declare the various functions one
uses but writes them down in every place they are called except inside of
themselves. Hence, as PL15 is written, Sapply must just be considered a
subexpression of Seval; ‘lisp({Sapply x})’ will be undefined for all S-expressions x
that require a call of EVAL. Similar remarks hold for Sevlis and Sevcon. If it was
desired that APPLY be the main function (as in the ‘evalquote’ model of the top
tevel) then one could change (in PLIB) the ‘EVAL's in ‘SapplyB’ to ‘Seval’ and the
*Sapply’ in ‘Seval’ to *APPLY’ .

*xAXIOM PL165; .
“ Seval = (LABEL EVAL Seval3) :
SevaIB = (LAMBDA {E A} {COND
{{(ATOM E) (CDR {Sassoc E A

" ((ATOM (CAR E)} {COND
{{EQ ¢{CAR E} {QUOTE QUOTE}) {CAR {CDR E)n
((EQ {CAR E} {QUOTE COND}} {Sevcon (CORE} A

' {{QUOTE T {Sapply (CAR E {Sevlis {CDR E} A} A})})
4 I (QUOTE T3 (Sapply (CAR E} (Sevis {COR E3 AY 33

Sapply = {LABEL APPLY SappIyB‘ % i
SapplyB = {LAMBDA {FN X A} {COND &
({ATOM FN3 {COND
((EQ FN {QUOTE CAR}} {CAR {CAR X3}
((EQ FN (QUOTE CDR}) {CDR {CAR X33} E
{(EQ FN {QUOTE CONS}} |
{CONS {CAR X} {CAR {COR X333}
(EQ FN {QUOTE ATOM)} {ATOM {CAR x
{{EQ FN {QUOTE EQ})
{EQ {CAR X} {CAR {CDR X}}}}
{{QUOTE T3 {APPLY (EVAL FN A} X AN i,
((EQ {CAR FN} {QUOTE LAMBDA}} :
(EVAL {CAR {CDR {CDR FN}} §

207
’Spa|rlls (CAR {CDR FN3} X A}}
((EQ {CAR FN} {QUOTE LABEL}}
(APPLY ’CAR {CDR 'CDR FN3) X

{CONS {CONS {CAR {CDR FN
{CAR {CDR {CDR FN}}

Figure 8.1a - S-expression Form of the Interpreter.

76

j Reproduced from
best available copy.

Sevcon ~ {LABEL EVCON SevconB)
SevconB = {LAMBDA {C A) {(COND
{{EVAL {CAR {CARC)) A)
{EVAL (CAR {CDR {CAR C)}} A}
{{EQ {EVAL (CAR (CAR C}} A) {QUOTE F))
(EVCON (CDR C) A})}

Sevlis = (LABEL EVLIS SevlisB}
SevlisB = (LAMBDA {M A) {COND
{{Snull M} {QUOTE NIL}}
({QUOTE T} {CONS {EVAL {CAR M) A}
{EVLIS {COR M) A1)

Spairlis == {LABEL PAIRLIS SpairlisB}
SpairlisB = {LAMBDA {X Y A} {COND

((Snull X} A}

{(QUOTE T} {CONS {CONS {CAR X} {CAR Y}}
{PAIRLIS {CDR X} {CDR Y} A)}}})

Figure 8.1b - S-expression Form of the Interpreter (ctd).

AR TR e e R R]

R

-

4
Sl

t5e

Before we discuss the correctness of these functions we must give yet one

more axiom to introduce the various function names and formal parameter names for

. . the functions:

PAIRLIS, APPLY, ASSOC, EVCON, EVLIS, EVAL, FN, C, E, M

Ll R, <

We do this in the same way as we introduced particular names in Chapters 2 and 3;

that is:

P A

»+AXIOM PL16:
discr(PAIRLIS) > discr(Y) = T,
discr(APPLY) > discr(PAIRLIS) = T

etc. ’

8.1. Meaning of PAIRLIS:

The PAIRLIS function is similar in structure to the ASSOC function (see ¥
previous chapter) in that it is recursive and has an internal call to another function,

It is not involved in the mutual recursion that is exhibited by EVAL etc. so we are

able to give a meaning function for it just as we did with ASSOC. It should come as g

- no surprise to learn that the function induced by PAIRLIS under interpretation is the

‘pairlis’ function which is part of the axioms for Pure LISP.

A convenient statement of correctness for the PAIRLIS function is the

following:

Vx y a al. apply(Spairlis, {x y a}, al)
= islist(al)~ aly)~ pairlis(x,y,a), L, * .

78

Care should be ucaed to avoid confusion (here and in the rest of the
chapter) when two A-lists appear in a theorem; one will be used in the LCF
interpretation of the interpreter functions (such as EVAL and EVLIS) and the other is
a parameter of these functions. in the case we have here, PAIRLIS needs an A-list
as a parameter and ‘apply’ need an A-list to interpret the Interpreter function

PAIRLIS.

8.2. Important Lemmas:

The big problem with EVAL, APPLY, EVCON and EVLIS is that they are
mutually recursive; each of APPLY, EVCON and EVLIS call EVAL and EVAL calls the
other three. Although it is rafher comolicated as an example, it is hoped that the
proof of correctness of EVAL will give some insight to the rather cbmmon
phenomenon of mutual recursion.

We now present the main correctness theorsm for the S-expression form
of the Pure LISP interpreter:

Ve a al. apply(Seval,{e a},al) = islist(al)» eval(e,a),L

and we will also seek the auxiliary results:

*k | assoc(EVAL,al)=(EVAL-SevalB)
F VYe a. apply(SevalB,{e a},al) = eval(e,a)

*%2 assoc(EVAL,al)=(EVAL-SevalB)
F Ve a. apply(Seveonc a),al) = evcon(c,a)

79

o8 S Yo A

%3 assoc(EVAL,al)=(EVAL-SevalB)
F Vm a apply(Seviis,(m ajal) = evlis(m,a)

x4 assoc(EVAL,ah)=(EVAL-SevalB)
F Yfnxa. apply(Sapply,{fn x a)al) = appiy(fn,x,a)

(Note that by a property of ‘assoc’ we can deduce from ‘9(assoc(X,al))=T"

the fact ‘islist(al)=T").

Without seeking prior motivation, consider just the ‘evlis’ function (because
it is the simplest) and the following propesition:

*#5 islist(a) T,
assoc(EVLIS,al): (EVLIS-SevlisB)
assoc(EVAL,al)-(EVAL-SevalB),
F ¥Ym. apply(Sevlis, {m a),al)
= [aall. nullim) = NIL,

apply(SevalB,{hd(m) a,all) apply(SevlisB,{ti(m) a},all)]
(Mem)+((A-a)-al) .

One cannot help but notice a strong resemblance between the consequent

of this equation and the recursive equation that ‘evlis’ is the least fixed point of:

evlis == [xm a null(m) = NIL,eval(hd(r),a) « svlis(ti{m).a) 1T

This lerma (++5) is aptly characterised as a statement of ‘relative

rorrectness’ of EVLIS since if the function EVAL were correct (i.e. obeys result xx1)

then a simple induction will transform it into the correctness statement xx3.

The proof of the lemna (x45) is conceptually very simple involving only the

80

de prodionss

‘ﬁ-
%
Pix

Igé

S A

T TR

e

Bt

RN

e W ’s
" .‘
» multiple application of the definition of ‘apply’ (and the other interpreting functions)
f and is generable interactively very easily: it involves less than 30 steps (mainly :
CASES and SIMPLifications) although there are hundreds of behind-the-scenes 4
e substitutions performed by the simplification algorithm. 5
; Similar lemmas are provable for the cther 3 functions (eval, apply and §
i evcon) and we state all four results as Figure 8.2 (next two pages). These ’%
5 theorems should be compared closely with those of Figure 8.3 to note the §
correspondence of structure. The four proofs are almost mechanical since they E
involve primarily obvicus CASES arguments and SIMPLifications. The proof of the ‘
lemma involving APPLY is the longest being about 60 steps. :
8.3. Informal Proof of Interpreter Correctness: 3
Now, speaking quite informally, and omitting any discussion of the i
definedness (or listness) of arguments of EVAL, APPLY etc. it is readily seen that f

these four lemmas can serve as a basis for computing values of the function

[xe a al. apply(Seval,{e a)al}]

just as the equations of Fig 8.3 can serve as a basis for computing values of ‘eval’.

For example,

eval({ATOM {QUOTE X}}, NIi.)
computes through
apply(ATOM,evlis({{QUOTE X3},NIL),NIL)

81

RS ¥ (4!

L A L o e o e T va e et RS - LR T A e e Tl o e Rl s e s Lt e e e g e e e e b e e pr et B R Sl

i islist(a) = T |
Ym al . assoc(EVLIS,al) =(EVLIS-Sevlis3)=
\ assoc(EVAL,al)=(EVAL-SevalB) »
apply(SevlisB,m-(a-NIL),al) = null(m)-NIL,
(apply(SevalB,hd(m)+(a:NIL),(M>m)+({ A-a)-al))
*apply(SevlisB,tI(m)«(a:NIL),(Mern)-((Aa)-al)))

islist(a) = T |
Vfn x al . assoc(APPLY,al)=(APPLY-SapplyB) »
assoc(EVAL,al)=(EVAL-SevalB) =
apply(SapplyB,fn-(x~(a-NIL)),al) = (fn=CAR)-hd(hd(x)),
((In=CDR)~tI(hd(x)),
((fn=CONS)-(hd(x)-hd(tI(x))),
((fn=ATOM)-(ator(hd(x))~ I F),
E” ((fn-EQ)~([Ax y .atom(x)-(atom(y)~(x=y),1),1]
3 (hd(x),hd(t1)))~T,F),
1 (atom(fn)-apply(SapplyB,apply(SevalB,fn-(a-NIL),
1 (FN-fn)+((X=x)>({A-a)-al)))(x-(a:NIL)),
| (FNsfn)o((X=x)~((A-a)-al))),
((hd(fn)=LAMBDA)-apply(SevalB,
: hd(ti(tI(fn)))«(pairlis(hd(tl(fn)),x,a)-NIL),
(FN-fn)((Xsx)+({ Aea)-al))),
((hd(fn)=LABEL)~apply(SapplyB,
ha(tItI(fn)))e(x-((thd(tl(fn))shd(tI(tI(fn))))-a) $NIL)),
(FNefn)e((Xex)((A<a)<al))), L))

Figure 8.2a - Some Lemmas about SevlisB and SappiyB.

B0 17 10,25 T IO, D TRCE een Le

i

¢ ¥

§

g 1t islist(@) = T

' Yc al . assoc(EVCON,al)=(EVCON-SevconB) »

assoc{EVAL,al)=(EVAL.SevalB) »
apply(SevconB,c«(a:NIL),al) =

(apply(SevalB,hd(hd(c))-(a-NIL),(Cec)-((A-a)-al))=T)-

: . apply(SevalB,hd(ti(hd(c)))«(a:NIL),(Csc)+((A-a)-al)),

. ((apply(SevalB,hd(hd(c))«(a-NIL),(C+c)«(A-a)+al))=F)-

: apply(SevconB,ti(c)«(aNIL),(Crc)+((Asa)eal)),L)

islist(a) = T |
z Vx al. assoc(EVAL,al)=(EVAL-SevalB) »
apply(SevalB,x«(a"NIL),al) = (atom(x)-ti(assoc(x,a)),
3 ((hd(x)=QUOTE)-=hd(tl(x)),
4 ((hd(x)=COND)=apply(SeveonB,ti(x)s(aNIL),
3 (EVCON-SevconB)«((E:x)+({A-a)eal))),
apply(SapplyB,hd(x)«(apply(SevlisB,ti(x)«(a-NIL),
TR (EVLIS:SevlisB)«((Esx)«((A-a)-al)))«(a-NIL)),
(APPLY-SapplyB)«((Esx)«((A-a)eal)))))),L

R
%

3

i

Figure 8.2b - Some Lemmas about SevconB and SevalB.

i

83 |

| 3

F eval - [xe a.
islist(a)~
(atom(e) - tl(assoc(e,a)),
hd(e)=QUOTE - hd(tl(e)),
hd(e)~COND - evcon(tl(e) a),
apply(hd(e), evlis(tl(e),a), 1]

F evcon = [xc a. (eval(hd(hd()) a)=T) = eval(hd(tl(hd(c))) a),
(eval(hd(hd(c)),a)=F) = evcon(tl(c),a) , 1]

F apply : [afn x a. a(x)~ islist(a)=
(fn-CAR) = hd(hd(x)),
(fn—-CDR) = tl(hd(x}),
(fn=CONS) = hd(x)-hd(tl(x)),
(fn=ATOM) = atom(hd(x)) = T, F,
(fn=EQ) » [Ax y. atom(x)-=atom(y)-+(x=y), L, 1]
(hd(x),hd(tl(x)))= T, F,
atom(fn) = apply(eval(fn,a),x,a), :
(hd(fn)=LAMBDA) - eval(hd(tl(ti(fn))).
pairlis(hd(tl(fn)),x,a)),
(hd(fn)=LABEL) = apply(hd(ti(tl(fn))), x,

((hd(tl(fn))-hd(tI(ti(fn))))-a)),
4, 14,1]

F evlis = [xm a. null{m)-NIL, eval(hd(m),a) * evlis(tl(m),a)]

Figure 8.3 - Some Lemmas about eval, apply, evlis & evcon.

84

b g Rr e ey

T e

-

A

PR g TS L (L

and
apply(ATOM,{eval({QUOTE X},NIL)},NIL)
and
apply(ATOM,{X3,NIL)
to
T-41
Similarly,

apply(SevalB,{{ATOM {QUOTE X}) NIL}, NIL)
computes through

apply(SapplyB,{ATOM
y apply(SevlisB,{{(QUOTE X}} NIL),al1) NiL)all)
an
apply(SapplyB,{ATOM
: {apply(SevalB,{{QUOTE X} NIL},al2)} NIL},al1)
an
apply(SapplyB,(ATOM (X} NIL}AL1)
to

T.

In all such examples, the computation terminates when there is no
applicable lemma; this will be just when there is no more instances of the
interpreting functions (‘apply’ etc.) and if the computation does not terminate then
the result will be L.

It should be apparent that it we do the computations for ‘eval(e,a)’ and
‘apply(SevalB,{e a},al)’ then because of the structural similarity between the two
sets of computation rules, those two computations wili proceed in parallel just as

they did in the above example. Moreover, if ane of these computations terminates

85

S

Lo g g E L A Rl SRl ket e o o e h e R P e R e e S e B e S ALy AR <
B it - " . g e .

T e . ; 0 B o Lt e e 7y By e, i it 1 W it el A arad iy a ae RE
o et s b e LR G e YR e Sh b G o e s s LB N e L 'S o) S] Qe T L) sl LT A T T A TR Y Pt YIRIE s

with a certain result then so will the other and if one never halts then neither will

the other. That completes the informal proof.

8.4. Interpreter Correctness in LCF:

The above informal proof suggests an attack on the desired main restits
(»x1 to x+4) using the results of Figure 8.2 and computation induction. It is
appropriate to do induction on the definition of ‘eval’ but we notice that in terms of
recursion on the computation of ‘eval’ (and ‘apply’ etc.) the ieft hand sides of the
desired results compute much slower than the right hand sides. This is because the
interprctation of each expiession is done directly on the right hand side but
indirectly (via interpretation of EVAL, APPLY, EVLIS or EVCON) on the left. Thus in
doing the proof we are forced to break each of the four equivalences into two
‘inequivalences’:

assoc(EVAL,AL)~(EVAL-SevalB)
F ¥x a apply(SevalB, {x a}, AL) = eval(x,a} ,

assoc(EVALAL) =(EVAL-SevalB)
F V¥x a. eval(x,a) & apply(SevalB, {x a}, AL) ,

assoc(EVAL,AL) =(EVAL-SevalB)
I Yc a. apply(Sevcon, {c a), AL) = evcon(c,a)

etc.

86

i R friwl oy DR Gy o T 3 SR e

R i
i il

) 85. Partial Correctness:

S T

We first report on the proof of the inequality

" *% 6 F Vx a al. assoc(EVAL,al)=(EVAL-SevalB)=»
' eval(x,a) = apply(SevalB, {x a), al)

or, using the predicate Q=[xal.assoc(EVAL,al)=(EVAL-SevalB)],

F Vx aal Q(al)® eval(x,a) = apply(SevalB,{x a)al) .
v
We consider this proof in greater detail than any previous one because it is

quite complex involving several nested inductions. The outermost induction uses the

b definition of ‘eval’ and the inner ones correspond to the definitions of ‘apply’, ‘evlis’

and ‘evcon’.
First we rewrite the definition of ‘eval’ from Fig 6.1 in the form
eval = [#BP(B)] thus defining functional ‘P’ which is free of B. Then we

attack the goal with an induction that uses this equation, to give the subgoals:

) VYx a al Qal)» L(x,a) = apply(SevalBfx a}al) ,
i) Vx a al Q(al)» B(x,a) = apply(SevalB,{x a},al)
F VYxaal Qal)» P(Bx,a) = apply(SevalB{x a},al) .
Now subgoal (i) is trivial by SIMPLification. We attack the second by
ASSUMing the antecedent, doing PREFix removal in the consequent, CASES on

tatom(x)’ and SIMPLification. We therefore have an induction hypothesis assumed

s

and one (complex) subgoal corresponcing to the interesting case where

87

§
B
3

1

b TG i Ll e o I3

by CASES, SIMPLification and USEs of monotonicity theorems (extensive use is also

“islist(a) T,

3 assoc(EVAL,al)=(EVAL-SevalB),

f;;; ator(x)=IF * .

We further attack this subgoal by CASES on ‘hd(x)=QUOTE’ and CASES on
‘hd(x) =COND’ and by using some monotonicity theorems we get four subgoals which
3

are shown in Figure 8.4 (next page).

F The key to proving each of these is an initial induction; in the last we use
the siructure of the first argument of EVLIS; in the first three we do induction on
the fixed point term that appears on the left hand side. Each proof then proceeds

made of the lemmas of Fig 8.2).

ROy

Having established xx6, it is easy to prove the complementary results.

F ¥Yxaal Qah» evlis(x,a) = apply(SevlisB,{x a)al) ,

A N R T R

F V¥x aal Qal)» evcon(x,a) € apply(SeveonB,{x a),al) ,

W aptunts, o

F V¥xaal Qlab* apply(x,a) = apply(SapplyB,{x a}al)

Skt

and also

*x7 islist(AL)=T, d(eval(X,A)=T | eval(x,a)=apply(Seval,{x,a},AL)

which is a statement of Partial Correctness for EVAL, since it says that for

any expression which can be evaluated in the context of a certain association list

88 1

G i o 2 oS

L s e A S R T s o i Bl e e T e e i i TR o G e e 2 e+ e e R R i) Bt 8 e S (e L ket o alet Sl

s B

.2

GOAL ¥YX A AL. islist(A)® assoc(EVALAL)=(EVAL-SevalB)»
H(X)=» assoc(EVCON,AL)=(EVCON-SevconB)=»
[uG.[xc a. (B(hd(hd(c)),a)=T)-B(hd(tl(hd(c))),a),
(B(hd(hd(c)),a)=F)-G(tl(c),a),L J}(X,A)
£ apply(SevconB,X«(A-NIL),AL);

GOAL YX A AL. islist(A)» assoc(EVAL,AL)=(EVAL-SevalB)=
d(X)*» assoc(EVLIS,AL)=(EVLIS-SevlisB)=2
[#G.[xm a. null(m)-NIL,B(hd(m),a)-G(tI(m),a)]} X,A)
& apply(SevlisB,X:(A:NIL),AL);

GOAL YFN X A AL. islist(A)* assoc(EVAL,AL)=(EVAL:SevalB)»
(X)# assoc(APPLY,AL)=(APPLY-SapplyB)»
[G.[rfn x a. () = islist(a) =
(fn=CAR) = hd(hd(x)),
(fn=CDR) - ti(hd(x)),
(fn=CONS) = hd(x)-hd(tI(x)),
(fn=ATOM) = atom(hd(x)) = T, F,
(fn=EQ) - [Ax y. atom(x)~atom{y)(x=y), 1, 1]
(hd(x),hd(tl(x)))= T, F,
atom{fn) = G(B(fn,a),x,a),
(hd(fn)=LAMBDA) = B(hd(tI(tl(fn))), pairlis(hd(tifn)),x,a)),
(hd(fn)=LABEL) ~ G(hd(tI(ti(fn))),x,
((hd(tl(fr))hd(tI(tifn))))-a)),
L 1, L JXEN,XA)

& apply(SapplyB,FN:(X-(A-NIL)),AL);

GOAL VX A AL. islist(A)® assoc(EVAL,AL)=(EVAL:SevalB)s
a(X)» assoc(EVLIS,AL)=(EVLIS-SevlisB)»
islist(apply(SevlisB,X«(A-NIL),AL)) & T;

Figure 8.4 - The Important Partial Correctness Subgoals.

89

IS

A:g-;‘eg‘w-. P e D AR PR

i Bt o e R s

(of variable bindings), the function induced by Seval (under interpretation) will
correctly evaluate it.

It remains only to comment that the total amount of proof generated so far
in thic proof of correctness of the interpreter is quite large and has pushed the LCF
system to its limits. The proofs of the lemmas of Fig. 8.2 each required a seperate
core image and the proof mentioned in this section required the largest core image
possible (128K of which 50K is the LCF system). The main reason for the gross size
of the proofs was the magnitude of the formulae involved but there were over g
thous.ind steps involved too. Moreover the CPU time involved was rather large (just
over a hundred minutes) reflecting a huge amount of work aone by simplification -
many thousands of substitutions automatically performed. It must be stressed that

werc it not for the partial automation afforded by the simplification mechanism of

LCF, cuch a formal proof would not have been possible.

8.6. Total Correctness:

We know from our informal reasoning that the ‘deval(X,A))=T" condition of
(++7) can be dropped to give
islist(AL) =T | VYx a.eval(x,a) = apply(Seval,(x a)AL)
but to establish this formally we need yet to prove the other half of (xx1), namely:

Yx a al. assoc(EVAL,al)=(EVAL-SevalB)»
apply(SevalB, {x a}, al) = eval(x,a) .

90

R L R T GRS T 1y o T

Fiaihe aEalis e T s N i 2 R

e A T .e'.«-:":'a‘=;:;__ e Y v L R S

=

This goal is naturally tackled by first expanding the left hand side a little so

that the ‘apply’ vanishes and we have an ‘eval’ there Instead. Remembering that
SevalB is a LAMBDA term we actually get the subgoal

Vx a al. assoc(EVAL,al)=(EVAL-SevalB)=»
eval(hd(ti(t(SevalB))),(X-x):((A+a)+al)) = eval(x,a)

which is appropriately attacked by induction on the definition of ‘eval’.

Once the induction is initiated, we are then faced with the work of breaking
down the structure of the S-expressions SevalB, SapplyB etc. that appear In the
left hand side before we can hope tc apply the inductive hypothesis. However, in
the subgoal to be proved there is NO occurrences of ‘eval’, ‘apply’ etc. There is
thus little chance to use SIMPLification since

(a) the theorems we have found so useful (so far) have ‘apply’,

‘eval’ etc. on the left hand side.
(b) we are forced to deal with inequalities since the results we
must use to break down the left hand side are lemmas such as
‘B c=eval F Yx a B({CAR x},a) = hd(B(x,a)) ’
instead of using theorems of the form
'k VYx a. eval({CAR x},a) = hd(eval(x,a)) * .
At this point, it appears that to pursue the current objective will demand

repeating all the work which preceded the proof of the first half of (xx1) in a

91

TRy

AT

ik i it S S S i R

slightly more general form (as illustrated by the last 2 theorems). Furthermore to

complete the proof we are faced with an approximately parallel proof (to thst

described in the last section) but where SIMPLification was used before we will
need to use monotonicity results. Now since the current LCF system is so biased
towards equalities, the second half of the proof would be extremely tedious using
the present system.

Because of this argument, the formal proof of the total correctness of the

EVAL function was not carried out. It can again be given consideration when a
version of the LCF system is available which can give as much assistance with

monotonicity arguments as the current system gives with substitutions.

92

g L A g

Lo

fitar R Ao
ks o o D e e o B Rl

e RS iend Y - o, i
Sk e e Lt o pe— ot B s L LS TR A L DRI it fil s BRI g ik i e s i B St Gt o, St
AT i e e 1S e Tl e i R S L L b S e R R, TN & 3 i Dnda :

AT, L T

CHAPTER 9

Compiler Correctness (I) - Language Definitions

In this chapter, we describe axiomatirally based theories of the source and
target languages of the simple compiler LCom0. We cannot apply the Theory of
Pure LISP (except by way of example); instead we must build an alternative (ulbeit
similar) set of axioms and theorems for LComO LISP (so-called). For each of the

languages, the formal definition will be preceded by an informal description.

8.1. Extensions to the Environment:

As in Chapter 6, we precede axiomatisation of languages with some
extensions to the environment described in Chapter 4. We identify the axioms
introduced in this section by names of the form EEn.

*xkAXIOM EE1:

Yx. isname(x)-~ isint(x)-1, atom(k)'-»x,x', s
isint(x)= atom(x)-x,L, x = x

Yx. e(discr(x))»> isname(x) = T

Vx. isname(x)» discr(gensym(x))>discr(x) = T

isSexprn = [uG.[rx. null{x)~T, isname(x)~T,

isint(x)=T, atom(x)~F,
G(hd(x;)>G(tI(x)),F] 9

Y L T A Oy U R TR PT ot s

T -

el s A et T
Y DAL L SR AT T G L
R b T T oAk 22 TN G SR GO L0 gt Sl et it e R AL, ¥ .

S it Uiteiin St KU U X R ST el R AL Nt bl i AL A

e LR e O e e

These axiorns introduce names (in general), define S-expressions and
provide the appropriate properties of the functions ‘discr’ and ‘gensym’. ‘discr’ is
the same function that was described in Chapter 6 but is specified more completely
by these axioms. The important property of ‘gensym’ is that it maps names onto
names in such a way that if we build sequences of names by successive application
of the function then no item appears more than once.

We also have many specific names to introduce and the technique for daing
this has been illustrated several times so we will just point out the effects of
several axioms:
++#AXIOM EE2 Introduces the rescrved words of the source language
of the compiler (a subset of LISP):

LAMBDA, QUOTE, COND, AND, OR, T .
#*AXIOM EE3 Introduces the built-in function of the LISP subset:
GRE/TERP, NUMBERP, GENSYM, EQUAL, MINUS, TIMES,
ATOIM, CONS, PLUS, CAR. CDR, NOT .
+*xAXIOM EE4 Introduces the names of some basic LISP functions:

DIFFERENCE, APPEND, LENGTH, ISLIST, APPN2, ASSOC,
LESSP, LIST, NULL .

**AXIOM EES Introduces the special words of the target language:
JUMPE, JUMPN, MOVEI, CALL, JRST, MOVE, POPJ,
PUSH, SUB, C, E, P .

++AXIOM EE6 Introduces names of the compiler functions;
COMPANDOR, COMBQOL, COMCOND, COMPEXP, COMPLIS,
LOADAC, MKPUSH, COMP, PRUP .

++AXIOM EE7 Introduces names that are used as forrnal parameters:
VARS, EXP, FLG, VPR, FN, L1, L2, NL, K, L,
MNUXY,Z.

94

t 3

9.2. LComO LISP:

It was mentioned that LComO (McCarthy’s compiler discussed by London in

r13)) compiles a certain subset of LISP which we will call LComO LISP. It should be

noted that LComO is also written in LComO LISP.

: 9.2.1. Informal Description
The language (LComO LISP) is rather similar in scope to Pure LISP but the
few differences are rather important; in LComO LISP:
i) the AND and OR constructions of LISP 1.5 are available;
ii) falsehood is represented as NIL (as opposed to F in Pure LISP) and
(although most predicates will return either ‘T’ or NIL) tests for

- truth are tests of inequality with NIL;

iii) NIL evaluates to NIL;
iv) there is no LABEL construction and no functional arguments;

v) functions are introduced by fiat at the top level (and there will be

a global A-list for function definitions);

vi) S-expressions are based on integers as well as NIL and riames;

vii) the built-in functions are CAR, CDR, CONS, ATOM, EQUAL, LIST, NOT,

95

B Pt T T e b oy 4

Ll R R e B

B e T T B o s SN T L L s e

PLUS TIMES, MINUS, NUMBERP, GREATERP and GENSYM; (These 4
functions are the same as in regular LISP except that ‘GENSYM’

takes a name as input rather than remembering the last name it

generated.) s
9.2.2. Formal Description)
Figure 9.1 gives an axiom (SL!) in wiich the main functions of an 9

interpretive semantics for LComO LISP are defined and Figure 9.2 completes the

B e S e R S

axiomatisation of LComO LISP (with axiom SL2) Ly giving the meanings of the built-

2 in functions (CAR, CDR etc)). (We identify the axioms related to the LISP subset by 3

names of the form ‘SLn’ where ‘SL’ denotes ‘Source Language’) This formal

description of the language parallels the definition of Pure LISP semantics so we will
avoid lengthy discussion. However, we will emphasize that there are two A-list
parameters for ‘eval’ etc,; the first is used to store variable bindings and the second
(constant through the levels of recursion) gives function definitions. If the equations

(of Figure 9.1) are a little hard to follow then a glance at Figure 9.3 might help since ®

TR S NS

it shows the recursive equations of which ‘eval’, ‘apply’ etc. are the mutually least

fixed points,

xxAXIOM SL1:
eval = [uB. evalF(B)],
evalF = [AB x vb fl. a(vb) = a(fl) »
null(x) = NIL,
[4 isint(x) = x,
isname(x) = ti(assoc(x,vb)),
. atom(x) - L,
hd(x)=QUOTE - hd(tl(x)),
hd(x)=COND = [G.evconF(B,G)J(ti(x),vbfl),
| hd(x)=AND - [uG.evandF(B,G)] (ti(x),vb,fl),
¥ : hd(x)=OR > [uG.evorF(B,G)] (tI(x),vb,fl),
[uG.applyF(B,G)]
(hd(x), [uG.evlisF(B,G) J(ti(x),vb,fl),vb,fl),

1, 1],
evcon = [uG. evconF(eval,G)],

¥ eveonF = [AF G x vb fl. null(F(hd(hd(x)),vb,f1))=G(tI(x),vb,fl),

F(hd(ti(hd(x))),vb,fl)],
4 evand = [uG. evandF(eval,G)],
E evandF = [AF G x vb fl. null(x)=T, nulI(F(hd(x),vb,fl))-»NIL,G(tI(x),vb,fl)],

evor = [uG. evorF(eval,G)),
z evorF = [AF G x vb fl. null(x)-NIL, null(F(hd(x),vb,f1))=G(tI(x),vb,fl),T],

apply = [uG. applyF(eval,G)],
applyF = [AF G fn x vb fl. a(x) = a(vb) = a(fl) -
isBF(fn) = applyBF(fn,x),
isname(fn) - G(tl(assoc(fn,fl)),x,NILfl),
b8 (hd(fn)=LAMBDA)- F(hd(tI(tI(fn))),pairlis(hd(tl(fn)),x,vb),fI),
L,1,1,1]

evlis == [uG. evlisF(eval,G)],
evlisF = [A\F G m vb fl. null{m)-NIL, F(hd(m),vb,fl)-G(tI(m),vb,fl)],

-~ pairlis = [uG.[Ax y vb. null(x) = vb, (hd(x)<hd(y))-G(tl(x),tl(y),vb)]]

Figure 9.1 - Axioms for LCom0 LISP.

97

Give ke L g B

+xAXIOM SL2:

isBF = [ax. (x=CAR)=T, (x=CONS)=T, (x=MINUS)-T,
(x=CDR)=T, (x=PLUS)-T, (x=GENSYM)-T,
(x=NOT)-T, (x=EQUAL)-T, (x=NUMBERP)~T,
(x=ATOM)-T, (x=TIMES)>T, (x=GREATERP)-T,
(x=LIST)],

applyBF(CAR) = [xx. hd(hd(x))],

applyBF(CDR) -+ [xx. tI(hd(x))],

applyBF(NOT) = [ax. null(hd(x)=T,NIL],

applyBF(ATOM) = [xx. atom(hd(x))-T,NIL],

applyBF(CONS) = [ax. hd(x)shd(tl(x))],

applyBF(LIST) = [ax. x],

applyBF(PLUS) = [xx. hd(x)+hd(tl(x))],

applyBF(EQUAL) = [xx. hd(x)=hd(ti(x))~T,NIL],

applyBF\TIMES) = [ax. hd(x)xhd(tl(x))],

applyBF(MINUS) = [xx. mns(hd(x))],

applyBF(GENSYM) = [xx. gensym(hd(x)}],

apply BF(NUMBERP) - [ax. isint(hd(x))=T,NIL],

applyBF(GREATERP) - [xx. (hd(x):hd(tl(x)))>T,NIL]

Figure 9.2 - The Built-in Functions of LComO LISP.

98

o

it i e e b e pse i YR SRy 1 LN ¢ e MR VN VR W T L e (e,

;k:) FTRT o T " s o '.
L2
’

eval = [x x vb fl. a(vb) = a(fl) » 1

null(x) = NIL, i1

isint(x) = x, 3
isname(x) = ti(assoc(x,vb)), g
aiom(x) = 1,

hd(x)=QUOTE - hd(ti(x)), 1

hd(x)=COND - evconF(tl(x),vb,fi), F

hd(x)=AND = evandF(ti(x),vb,fl), 1

hd(x)=0R = evorF(ti(x),vb,fl),
applyF(hd(x), eviisF(ti(x),vb,fl), vb, fi), L, 1],

evcon = [ax vb fl. null(eval(hd(hd(x)),vb,fl))»evcon(tl(x),vbfl),
eval(hd(ti(hd(x))),vb,fl)],

evand = [Ax vb fl. nuli(x)-T, null(eval(hd(x),vb,fl))-NIL, i
evand(ti(x),vb,fl)],

evor = [ax vb fl. null(x)-NIL,
null(eval(hd(x),vb,fl))=evor(ti(x),vb,fl),T],

apply = [xfn x vb fl. d(x) = a(vb) = o(fl) =
isBF(fn) - applyBF(fn,x),
isname(fn) = apply(ti(assoc(fn,{l)) x,NIL,ti),

RS OAT S TR A R R SR T
a) e e e oy Ty et
s s 1 ; s 2

(hd(fn)=LAMBDA)= eval(hd(tl(ti(fn))),pairlis(hd(ti(fn)),x,vb),fl),
4L4,4,1L]l ; _;
evlis = [xm vb fi. null(m)-NIL, eval(hd(m),vb,fl)-eviis(ti(m),vb,fl}], .‘
:
£
Figure 9.3 - Relationships Between ‘eval’, ‘apply’ etc. ; _
99 f

£ v oo e A P Y a0 Sl S N s

VKL Lk R S R i sk

R IR S s 1 e bt R
ISR G P EE S VS -

9.2.3. Theory ef LComO LISP

As we did with Pure LISP, we prepare for applications by developing &

‘theory’ based on the axioms. We do two things in this regard. First, we define some

basic LISP functions (actually the ones we need for the compiler proof) such ag

DIFFERENCE and LENGTH. Next we assemble a collection of theorems (mainly
oriented towards SIMPSET inclusion); we exhibit these as an Appendix. |

The definitions of the basic LISP functions that we want are given in Figure ’
9.4 and are given as the actual entries of the function definition A-list (namely:

function-name/function-body pairs). i

9.2.4. 'r.FD" - Basic Functions Defined

ri

ARy et RS el e e b S e B R o M S B L S Sl o

We will never actually construct a function list but we require a predicate

which says that all the basic functions are declared in some given function list.

-~ k-

(‘BFD’ is mnemonic for 'Basic Function Defined’):

+«+AXIOM SL3:
BFD = [fl. ti(assoc(NULL,H))=Snull - ;
tl{assoc(DIFFERENCE, fl))~Sdifference -
ti(assoc(ISLIST, 1)) =Sislist » :
‘ titassoc(ASSOC, ¢1)) = Sassoc -»
tl(assoc(LENGTH,f))=Slength - 4
ti{assoc(APPEND,fI))=Sappend,IF,IF,F,F,IF]

oy b A b, Lite R, L s.

100

B St LG RS it s b e e T

R PR N T O F P

i
spans
e

»xAXIOM SL4:
Srull = {(LAMBDA (X} (EQUAL X NIL}},

Sdifference = (LAMBDA (X Y} {PLUS X {MINUS Y}}}

N

Sislist = (LAMBDA (X} {COND
((NULL X (QUOTE T}
{(ATOM X} NIL}
{{QUOTE T} {ISLIST {CDR X}}}}},

Sassoc = {LAMBDA (X Y} {COND
({NULL Y} NIL}
({EQUAL X (CAR (CAR Y}}} (COND
{{ISLIST Y} (CAR Y})}}
{{QUOTE T3 {ASSOC X (CDR Y}}}}},

Slength = (LAMBDA (X} {COND
((NULL X} 03
{(QUOTE T} (PLUS 1 {LENGTH {CDR X)}}3}},

Sappend = {LAMBDA {X Y} {COND
{(NULL X} Y}
({QUOTE T} {CONS {CAR X}
(APPEND {CDR X) Y333},

Figure 9.4 - Some Basic LISP Functions. |

Ko T

101 F

e TR

o R e % driren ¥,

R I R R AR AR

9.2.5. Well-Formedness Predicate
We give as Figure 9.5 the definition of a predicate ‘iswfe’ (IS Well Formed
Expression) which tells whether an S-expression is structurally good LISP code. It

is important because it will be seen later that LComO will be total on inputs that

satisfy ‘iswfe’. Note that one of the things checked is thal functions are not called .

with more than a certain number mna of arguments. Note also that all variables

referred to inside @ well formed expression must be bound by occurring in the

formal parameter list of a LAMBDA term.

9.3. LComO LAP - Inform=al Description:

McCarthy's compiler translates the subset of LISP that we call LComO LISP
into LAP - a special version of PDP10 assembly code which is oriented toward LISP
compilation (LAP is an acronym for LISP Assembly Program). Of course, only a
subset of the PDP10 instruction set is generable by the compiler and so we wili be
concerned only with certuin variants of nine instructions (given below) although
our formal description will allow later and/or more complete specification of the
tanguage. Apart frorn simply considering a subset of LAP we make some simplifying
assumptions about the behaviour of the PDP10; we point out these idealisations

below.

102

g = e b L LB e i i

Sl AL G G R e S

L o

B o amis e MERART Srthct bny

3
xxAXIOM SL4:
iswfe = [re. iswfl(eNIL)],
,t ' iswfle = [xe. iswf4(iswfe,e,NIL)],
iswfl = [uG.[xe vl.
d null(e)-T,
(e=T)"T1
isint(e)-T,
14 atom(e)-~mem(e,vl),
(hd(e)=QUOTE)-IsSexprn(ti(e)),
(hd(e)=AND)~iswt2(G I(e),vI),
(hd(e)=0R)~iswf2(Gtl(e),vI),
(hd(e) =COND)=iswf3(G,tI(e),vl),

. atom(hd(e))- (length(ti(e))>mna)-F,
: iswf2(G,tI(e),vl),
: iswf4(G,e,vl)]],
E iswi2 = [WHILG x vi. null(x)~T,
G(hd(x),vI)=H(Gt1(x),vI),F),
: iswf3 = [H[AG x vi. null(x)-T,
_ G(hd(hd(x)),vI)= G(hd(tl(x)),v1)=> H(GI(x),vI),IF,F],
1 iswf4 = [AG x vI. (hd(x)=LAMBDA)~ iswf5(hd(tI(x)))->
an length(hd(tl(x)))>mna = G(hd(tI(tI(x))),vI& hd(tl(x))),F,F]},
1 iswf5 = [sH[Ax. null(x)~T, isname(hd(x))~H(ti(x)),F]]
i

Figure 9.5 - Well-Formedness of LISP expressions.
?
103
)

o U i AL a2 e SN LA VR S A 1l 0 s Dl L o s A b S M 20 o A e A B e
L 2 = s T T P £ o [bt £ S s PR

il 2

e o P 2 o1

- T T o O T o s T s e T, M L e P = e el o PUC ey, g e
,(wmim“m? et e TRy o - -

In our simplified view of the architecture of the PDP10, we take it to be

*

simply a Central Processing Unit and a Memory. The CPU executes lists of
instructions and each instruction executed can affect the flow of control in certain
ways and/or affect the state of the memory. The memory is an infinite array of
words such that every word has an address which is a positive integer. Also the
first sixteen words can be used as accumulators or index registers.

We do not want to become involved in the processes of assembling or
loading of LAP. Also, we do not admit the possibility that LAP instructions will be
overwritten during the execution of a prograir. Hence we make the further
assumption that LAP code is interpreted directly (symbolically) and not resident in
memory in any way.

The contents of words of the PDP10 are usually treated as integers but we
also want to represent S-expressions in memory. We do not want to get involved
in questions of representation so we just say that there exists a coding of S-
expressions into integers. The only thing we specify about the coding is that it is
one-to-one and that the coding of NIL is 0. This assumption enables us to avoid any
questions related to free-storage management. Further note that there is no bound
to the integers that words may contain. Moreover, we assume that the contents of
any word is only defined if a value has been written in alre :dy.

Now just as an LComO LISP program is a collection of LISP functions, we

Lol d S

pat L S A i

e Ty g T T e %
i |

~ PR 2
' & I R
Tyl e

s
¥
o

Ao

e
heis

&

e

i

Ty (AT oA S
A e RS
RS o

R B Kt WA BN e Tt

R A T T BTSN YRR oU

AP A Lt i SLb Rk EA R S A i Gt B R s i G R S R At ot e - s
it AR s e e ke

take a LAP program to be a collection of LAP functions; we define a LAP function to

be triple (FNNAFB) where TN is the function name, ‘NA' is the number of

arguments of the function and ‘FB’ is the function body. Functions expect their n

arguments loaded in the accumulators 1 fo m a funclion body is & list of S-

expressions which are either labels (if atomic) or instructions.

We now come to describe the nine instructions that LCom0 makes use of

(we use C[n] to stand for “"contents of accumulator n"):

(JRST O L}

(JUMPE n L}

(JUMPN n L}

{MOVEI n {(QUOTE x}}

(MOVE n m P}

(PUSH P n}

(SUBP{CO0O0nNnN))

(CALL n FN}

is an unconditional jump te label L in the
current function;

causes a jump to L in the current function if
contents of accumulator n is zero;

causes a jump to L in the current function if
contents of accumulator n is nonzero;

contents of accumulator n (C[n])is set to
the coding of S-expression x;

C[n] is set to C[C[!P] + m]
increments the stack pointer (acc !P) by one
and puts C[n] on the stack;

decrements the stack pointer (acc !P) by n;

current routine is suspended and control
passes to function in program with name FN
(which presumably has n parameters) after
incrementing stack pointer by one; If FN is a

105

: a i il e gt oo Tl et b oy Sl e
B e st b e e i e T e e T e A7

e e et
Sy

e R R R R il

L

S S T R S R T

standard function it will restore the valye of
stack pointer before entry and leave its
result in accumulator 1;
{POPJ P} return from current function to instruction
after the one that CALLed the current fun.
(stack pointer is decremented by 1);
The particular accumulator numbered IP (referred to by the name ‘P’ in the
above instructions) is used as a stack pointer. Not. that we do not worry about
stack overflow since we are noi assuming finiteness of memory. Also note that,

since the arguments of a function are passed in the low accumulators, the maximum

number of arguments for a function is less than !P.
9.4. LComO0 LAP - Formal Description:

9.4.1. States and functions on states:

The notion of ‘state’, in the following semantics, is intended to reflect the
correspondence between word addresses and contents - not as a function but as an
association list. More specifically, a state will be an A-list of pairs (n°x) where n is
an address and x is the coding (by function ‘code’) of an S-expression; a property of

these A-lists is that the pairs are in order of increasing address.

The following axiom gives functions for changing and interrogating states

and also other 'properties of the memory:

106

:
b
3
&
P

STV b\ ¥ 5

4
X
b

¥

T S o M N e T b TS s g0 o o

*xAXIOM TL1:
get = [ax st. ti(assoc(x,st))],

set = [uG.[Ax y st. null(st)= / .y)NIL, (hd(hd(st))=x)= (xsy)stl(st),
(hd(hd(st))>x)= (x-y)est, hd(st)-Gix,y ti(st))]],

putargs = [xa st. length(a)>mna=L,putargx(length(a),rev(a),st)],
putargx = [uG.[an x st. Z{n)- st, set(n,code(hd(x)),G(n-1,tI(x),st))]],

argsin = [xa st. length(a)>mna=FF,argsinx(length(a),rev(a),st)},
argsinx = [uG.[xn x st. Z(n)> T, (get(n,st)=hd(x))=G(n-1,tkx),st),F]],

PDL > P =T,
P> mna =T,
mna:2 =T,

code(NIL)=0,
Yx. dec(code(x))=x

The function ‘get’ is for interrogating the memory and takes one argument -
an address; the function ‘set’ is used for putting information in the memory and its

arguments are an address and a value. ‘putargs’ puts a list of arguments (values)

into the accumulators starting at number 1; ‘argsin’ testifies that a list of arguments
is already contained in the accumulators (starting at 1). The constant ‘mna’ denotes
the maximum number of arguments for functions while P’ is the address of the

stack pointer (an index register).

107

ik
£ e T e B S

o ERE Y

e

£

P AL R

R EL Y

|
i
G W;‘;“

ARSI BT
TR Oy F TR [P PORLa

P Bl s et Lo pc b, o i i) Maal i v b B e Ve ol Y M R e

9.4.2. LAP Functions and operations on them:

We have characterised a LAP program as a collection of LAP functions and

so a program is a sort of environment in which to execute function calls. Actually in

the axiomatisation a program wili be an A-list: from which we can extract function
bodies and check numbers of parameters. The function ‘body’ does just this:

*xAXICM TL2:

body = [xfn P n. (nzhd(tl(assoc(fn,P))))~tl(ti(assoc(fn,P))), L]

Now when we are dealing with a LAP function we want to consider it
simply a sequence of instructions and labels. Hence the LCF functions we define in
the axiom below are applicable to all groups of instructions and labels:
+¥AXIOM TL3:

INST = [uH. [xg n. atom(hd(gh)=H(tI(g),n),Z(n)=hd(g) H(tI(g),n-1)]],
loc « [uH. [xx g. atom(hd(g))= (hd(g)=x)-0,H(x,tI(g)), Hx,tl(g)+11],
GL - [uH. [xg. null(g)=0, atom(hd(g))~ H(ti(g)), H(ti(g))+1]],

complete = [xg exc. comp2(g,labs(g)& exc)],

k comp2 = [uH.[xg labs. null(g)=T, atom(hd(g))~HtI(g),labs),
isdUMP(hd(hd(g))) -
mem(hd(ti(ti(hd(g)))),labs)=H(tI(g),labs),F,
H(tl(g),labs)]],

labs += [#H.[xg. null(g)-=NIL,atom(hd(g)) - hd(g)-H(tI(g)), H(ti(g))]]

108

AL TR s e

LA |

£ T A Lt Bt ALY £y it iV ik B ROl it st fiip p i A) peb s S s g e)
Sl Ei AR s, e S S A e s Bt B e AR L SR L SN

B O T AT o Vb S LMY el Dt Pt R IR R EE

If X is a group of instructions and labels then ‘INST(X, n)® will pick out the
n-th instruction, ‘GL(X)’ will compute the number of instructions In X, abs(X)* will
list all the labels in X and ‘loc(L, X)* will compute the number of instructions that
precede label L in X.

The predicate ‘complete’ is used to indicate whether all labels referred to
by ‘JUMP instructions’ (in a group of instructions and labels) are also in the group or

in a list (of labels) which is the other parameter.

9.4.3. Interpreting LAP.

The highest level function of the semantics of LAP will be called ‘lap’ and
will take three arguments; 'lap(F, L, P)’ is to be the result oi executing, Inside
program P, the function F' with actual parameter list 7, (of S-expressions).

The next level of interpreting-function must manage the ‘flow of control’
within function bodies - or, more generally, within arbitrary sequences of labels and
instructions. Defined below is a function ‘exec’ which gives the effect (on a state)
of executing a group of orders (from some point onwards) in the context of some
program. More particularly, ‘exec(G, P, o, st)’ will be the (possibly flagged) state
produced by executing G (a group of instructions) from P (a program) starting at

the c-th instruction of G and with initisl state st. States are flagged while

executing a group of orders to indicate that an ‘exit’ instruction such as ¥POPJ P’

108

Bt o0 K s S T o B B P A

B S S AR e

N e e e
o < i) el e o

T T ik W S I S L T e e S N

A SRS R T TR P Y S IR AT . LA

R e A A et Rl e

has been encountered. This flagging (accomplished by pairing ‘T’ with the state) is
undone when control gets back to the instruction that ‘called” the function being
executed.

Naturally, the function ‘exec’ is written in terms of the meanings of
individual orders. Now, since no instruction may do more than affect the memory
and cause a transfer of control to its label, we are able to specify the semantics of
individual orders by means of two LCF functions - ‘NST’ (New STate) and ‘TOC’
(Transfer Of Control). To define these explicitly would be to give the semantics of
the entire instruction set so we just axiomatise it for the particular cases we are
intetested in.

‘TOC’ is an LCF function of type (D,,¢=(D,,s=Dy)) and ‘TOC(I, st)’ indicates
whether I (a jump instruction) should cause a transfer of control if executed in st
(an unflagged state). Since it is only applicable for jump instructions, there is a
predicate 'isJUMP’ whose value is axiomatised for each of the nine instructions we
consider.

'NST(I, e, P, st)’ gives the new state after executing instruction I in state
st and in the context of program P; ‘e’ has the same type as ‘exec’ and is used to
interpret a function if one is called by I. This ‘extraneous’ parameter is required
because we want to define ‘exec’ in such a way that it is not mutually recursive
with 'NST™ which will only be partially specified.

Here then are the definitions for ‘lap’ and ‘exec’:

110

I A R 1 e oy 2 e P it ek i N T i s ek i oD SR e s Lt s

L Tk it b S L AR Yo Bk e ATy R s M e WA A e e

G ¢ Nt ore e 1Y SR Lk bl ey Eh i o -
e R o A e S R e b S R S e i B . s v

)
Bl
>,
3
s

T S N S

*xxAXIOM TL4:

lap = [xfn args P. dec (get(1,ti(exec(body(fn,P,length(args)), P, O,
putargs(args,set(!P,PDL,NIL))))))],

exec = [uH. [xg P c st.
(c=GL(g)) - st,
(hd(st)=T) - st,
[xz. H(g, P,
isJUMP(hd(2)) = TOC()z,st)-ﬂloc(hd(tI(tl(z))),z),(c-c-l),
(c+1),
NST(z,H,P,st))] (INST(g,c))]),

isdUMP(JRST)=T, isJUMP(JUMPE)=T, isJUMP(JUMPN)=T,
isdUMP(MOVE)=F, isJUMP(MOVEN=F, isJUMP(SUB)=F,
isJUMP(PUSH)=IF, isJUMP(POPJ)=F, isJUMP(CALL)=F .

Refer to Figures 9.6 and 9.7 for the specification of the functions ‘NST’ and
‘TOC’, as appropriate, for each of the nine instructions that we consider in our

treatment of LAP.

9.5. Towards a Theory of LAP.

The aim of this part of the thesis is to prove the correctness of LComO and
we do not have time to consider developing even an elementary theory of the
language LAP. However, we have given an axiomatic framework for defining most
aspects of the language, we have been forced to prove some basic lemmas and so

we actually have the beginnings of a theory.

111

s r ol T i ek e e
i e A T et et € e S L S s e e e

«xAXIOM TL5:

¥x
Vx

Vx.

Yx

Y
Yx

Yx

Yx

. isname(x)*> TOC({JRST 0 x}) = [ast. T},
. isname(x)> NST({JRST 0 x))
= [xe fi st st),

isname(x)» TOC({JUMPE | x}) = [xst. Z(get(1,st)],
. isname(x)> NST({JUMPE 1 x})
= [xe fl st. st),

. isname(x)s TOC({JUMPN 1 x}) = [xst. Z(get(1,s1))>F,T],
. isname(x)> NST({JUMPN | x})
= [xe fl st. st],

. NST({MOVEI 1 {QUOTE x}}
= [xe fl st. NiL-set(1,code(x),st)],

y. isint(y)s NST({MOVE x y P}
= [ae fl st. (O>x)=1, (x>mna)-L,set(x(get(P,st)+y),st)],

¥x. NST({SUB P {C 0 0 x x}}) = [xe fi st. set(P,get(P,st)-x,st)],

Vx. (x>0)3 NST({PUSH P x))

= [xe fl st.[rxz. set(P,z+1,set(z,get(x,st),st) J(get(P,st))],

NST({POPJ P}) == [xe fl st. Test]

Figure 9.6 - Partial Semantics of 8 Lap Instructions.

112

- ey Ty . 5 5 . g e i it ol Bt o e
Rt et e i i, S i g e s g S e i - g s - o e e 0 e 2

. o e AT N A T i

M

*xAXIOM TL6:

Vx y. NST({CALL x y})
= [xe fl st. (x>mna) » L,

isBF(y) - set(1,callBF(y,x,st),st),
ti(e(body(y,fl,x),fl,0,NIL-st))},

callBF(CAR) = [xn st. (n21)~hd(get(1,st)),L],

callBF(COR) = [an st. (n21)-ti(get(1,st),L],

callBF(CONS) = [n st. (n22)- get(1,st)-get(2,st), 1],

callBF(LIST) = [xn st. [uf.[xi. I>n = NIL, get(i,st)f(i+1)]](1)],

. CallBF{ATOM) = [xn st. (nz1)~atom(get(1,st))~code(T),code(NIL),L I}

callBF(EQUAL) = [xn st. (n22)- ((get(1,st)=get(2,st))+code(T),code(NIL)), 1),

callBF(PLUS) a [an st. (n22)= code(dec(get(1,st)) +dec(get(2,st))), 1],
callBF(TIMES) = [xn st. (n22)~ code(dec(get(1,st))xdec(get(2,st))), 1}
callBF(MINUS) = [xn st. (n21)=code(mns(dec(get(1,st)))),L],

callBF(GENSYM) = [an st. (nz21)~code(gensym(dec(get(1,st))),L],
callBF(NUMBERP) = [an st. (n21)-isint(dec(get(1,st)))=code(T),code(NIL), L)
callBF(GREATERP) = [xn st. (n22)~

((dec(get(1,st))>dec(get(2,st)))~code(T),code(NIL)),L]

Figure 9.7 - Partial Semantics of the CALL Instruction.

113

LA CURER Bt

SEEREt SR RN R S S R G Qe N WSTUACY (PR R v T 3 i i il e e s -
ot pg s i - . - -
- : R AT - "

= SR SR

e T e e L5 o
o RS . e gt

" R .
Bec 7 e BT R e e amiad ™ 2 AT I S

There are quite obvious strictness results for the various functions and we
point out that they are proved, but the important aspect of the behaviour of the
various functions we have introduced is relative to their effects on groups

appended together. We give some of these

F Vxy. labs(x&y) = labs(x)&labs(y)
F VYxy. GL(x&y) = GL(x) + GL(y)

F VYxyc INST(x&y,c) = (c2GL(x)) = INST(y, c-GL(x)),
a(y) = INST(x,c), L

complete(X,L)=T, complete(Y,L)=T |} complete(X&Y,L)=T
F YL xy. loc(L,x&y) = mem(x,labsix}) + da(y)=loc(L,x),L,
loc(L,y)+GL(x}

By far the most important result that was proved for LAP itself gave the
effect of executing two groups of instructions joined together in terms of executing
them sequentially.

Yx. mem(x,labs(G1))» mem(x,labs(G2))=TF,
complete(GI,NIL)=T, complete(G2,NIL)=T
F YPc st. exec(G1&G2,P,c,st)
= (c2GL(G1))> exec(G2,P,c-GL(G1),st),
exec(G2,P,0,exec(G1,P,c,st))

which has the most important corollary that under certain suitable conditions on G1

and G2:

114

r exec(G1&G2,P,0,st) = exec(G2,P,0,exec(G1,P,0,st)

We note that the proof of this result required about 300 steps of LCF

" preof. That is, of course, after certain simple and general theorems are proved

about ‘complete’, ‘labs’ etc.

C R e L e S

S £ i R W

e,
.

TR T

o

CHAPTER 10

Compiler Correctness (II') - Outline of a Proof

Having axiomatised the source and target languages of the compiler, we

turn to the compiler itself.

10.1. The Compiler:

We start by exhibiting the compiler itself; Figure 10.1 (next three pages)
gives the m-expression form of this ‘LISP Function’ which (via interpretation) maps
S-expressions which are LISP Functions into other S-expressions which are LAP
Functions.

In order to talk about the S-expression form of the compiler we must
introduce axioms to give the names to the bodies of the various functions.
+xAXIOM COl

Sappn2 = {LAMBDA (X Y} {CONS {CAR Y} {(APPEND X {CDR Y}}}}

ete.

The S-expressions so introduced are Sappn2, Scomp, Sprup, Smkpush,

Sloadac, Scomplis, Scompexp, Scomcond, Scombool and Scompandor.

116

w0

X
=

appn2[xiy] = cons[car[yJappend[x;cdry]]]

comp[fn;vars;exp] =
A[[n]; append[append[mkpush[n;1J;
compexp[exp;minus[n}prup[vars;1]J;

gensym[fn]]];
list[list[SUB;P;list[C;0;0;mn;]);
list[POPJ;PINIL]]
[length[vars]]
prup[vars;n] =

[null[vars] = NIL;
T = cons[cons[car[vars]in]; prup[cdr[vars]plus[n;1]]]]

mkpush[nm] =
[greaterp[m,n] = NIL;
T = cons[list[PUSH;P;m]; mkpush[n;plus{m;1]]]]

loadac[n;k] =
[greaterp[n;0] - NIL;
T = cons[list[MOVE;k;nPJ; loadac[plus[n;1 hplus[k;11]]]

complis[u;m;vprinl] =
[nulifu] = cons[ni;NIL};
T = A[[xJappn2[cdr[x];
appn2[((PUSH P 1));
complis[cdr[u]idifference[m;1];
vpricar[x]]]1]
[compexp[car[u]im;vpr;nl]]

Figure 10.1a - The LISP Functions that Make up LCom0

117

mmamm’\

I

FMW o
3
é
3
;:-
g
:
r
L
E,?
:
.E,
g.
'%
3
:
{.
~
;
72
{:
7;.
é
3
i
4
]
3
¥
;

|

i
AL
.
5
-
5
M
‘Fq

4

compexp|exp;m;vpr;nl] =
[or[nulllexpJiequal[exp;T]] = Iist[nl;list[MOVEl;l;list[QUOTE;exp]]];
atom[exp] - list[nl;list[MOVE;l;plus[m;cdr[assoc[exp;vpr]]];P]];
or[equal[car[exp]:AND];equaI[car[exp];OR];equal[car[exp];NOT]] -
append[combool[exp;m;nl;NIL;vpr;gensym[gensym[nl]]];
list[(MOVEI 1 (QUOTE T));
list[JRST; gensym[nI]};
nl; (MOVEI 1 (QUOTE NIL)); gensym([nl]]};
equal[car[exp],COND] - comcond[cdr[exp];m;nl;vpr;gensym[nl]];
equal[car[exp],QUOTE] - list{nl;list[MOVEL; 1;exp]J;
atom|[car[exp]] =
rM[n}k append[complis[cdr[exp];m;vpr;nl];
append[loadac|difference[1;n];1;
list[list[SUB;P;list[C;0;0;msn];
list[CALL;n;Iist[E;car[exp]]]]]]]
[length[cdr[exp]]];

equal[car[car[exp];LAMBDA] -
A[[nix J;append[appn2[cdr[x];
compexp(car[cdr[cdr[car[exp]]]];
difference[m;n];
append[prup[car[cdr[car[exp]]};
difference[1;m]];
vpr];
car[x]]};
list [list[SUB;P;Iist[C;O;O;n;n]]]]]
[length[cdr[exp]]); complis[cdr{expJ;m;vpr;nl]]

Figure 10.1b - The LISP Functions that Make up LComO (ctd)

118

&

Caded s et e g e

e T TN TR

G i e i e sk i 2

R

comcond[u;mil;vpr;nl] =

[nulifu] = list[nl}l]};
] r T = A[[x}; Aliy}; appn2[car[x];
: appn2[cdr[y];

appn2[list[list[JRST;inl];
comcond[cdr[u};m;l;vpricar[y]11]]]
[compexp[car[cdr[car[u]]}m;vpricar{x]]]

[combool[car[car[u]];mnl;NIL;vpr;gensym[ni]]]]

ORI T oLy T PR g Ty Sy S T Bt T X S

combool[p;m;l;fig;vpr;nl] =
[atom[p] = append[compexp[pim;vprinl];
list[list[[fig =~ JUMPN; T - JUMPE]; L;i]]3;
equalfcar[pJ;AND] = [not[flg] » compandor[cdr[p]m;iNiL;vprinl];
T - append[compandor{cdr[pJ;m;nl;NIL;vpr;gensym[nl]];
list[list[JRST;IJinl 1]}
equal[car[p];OR] = [fig = compandor[cdr[p];m;;T;vpr;nl};
T - append[compandor[cdr[pm;nl;T;vprigensym[nl]];
list[list[JRST;I Jini]]);
equal[car[p}iNOT] = combool[car[cdr[p]];not[flg];vprint];
T = append[compexp[p;m;vpr;nl];
list[list[[flg = JUMPN; T - JUMPEJ1;111]]

compandor[u;m;i;fig;vpr;nl] =
[nuli[u] = list[nl];
T = A[[x]; appn2[cdr[x];compandor[cdr[u];m;l;fig;vpricar[x]]]]
[comboaol[zar[u];m;l;flg;vprini]]]

Figure 10.1c - The LISP Functions that Make up LComO (ctd.)

119

- ctladiy- st il i S i il A S A L

T B e S S

.

SRRt e EiE A R -

10.1.1. Some Slight Changes

Close comparison of this compiler with the original will reveal that there
are small differences. We have already indicated that, in LComO LISP, the function
GENSYM takes one argument (usually the name it generated last time it was
invoked) instead of no arguments (as in LISP 1.5). This change in the language was
compensated by a suitable change in the compiler: each function that could generate
labels internally acquired an extra parameter - namely, the next label to be used;
also each of these functions gave as result a pair of next-label-to-be-generated
and a list-of-instructions.

Finally, there is some slight saving in the number of subsidiary functions

required. For example, LESSP is avoided by changing the program to use GREATERP.

10.1.2. Predicate ‘CFD’ - Compiler Functions Defined

Having available the S-expression forms of all the compiler functions, we
now introduce an axiom to define a predicate (on lists) which can testify to all the
LISP Functions used (directly or indirectly) by LComO being in a function list:

v+AXIOM CO2:
CFD = [xfl, BFD(fl) -
tl(assoc(PRUP,fl))=Sprup -
tI(assoc(MKPUSH,fl))=Smkpush -
tl{assoc(LOADAC,fl))=Sloadac -
ti(assoc(APPN2,fl))=Sappn2 -
t(assoc(COMP,fl)) =Scomp -

ti(assoc(COMPEXP,fl))=Scompexp -

120

Bl [t g BT L SR i S B SO

Bt oA It G Saaert o i S Al

ti(assoc(COMPLIS,fl))=Scomplis -
ti{assoc(COMCOND,ft))=Scomcond -
ti{assoc(COMBOOL,fl))=Scombool -
ti(assoc(COMPANDOR,fl))=Scompandor,
F.FFFF, FFFFF]

10.2. Meaning of the Compiler:

Figure 10.2 (next three pages) gives the meaning functions that the
compiler LISP Functions induce under interpretation. Figure 10.3 contains theorems
which explicate the definitions of ‘compexp’ anu ‘combool’ which are the hardest to
follow. We shall therefore consider the LCF function ‘comp’ to be the compiling
algorithm of LCom0., The purpose of introducing the meaning functions isv to factor
the whole proof of correctness of the compiler into two substantial but independent
parts:

i) the correctness of the S-expression form of LComO relative to the

compiling algorithm;

i) the correctness of the compiling algorithm.

The technical statement of the first subproblem is simply:

CFD(FL)=T F VYf v e. apply(COMP,{f v e}NILFL) = comp(f,v,e)
which we arrive at via the family of lemmas:

CFD(FL)=T F VYe m vpr nl vb. apply(COMPEXP,{e m vpr ni},vb,FL)
= jslist(vb) = compexp(um,vprnl), L

121

TUTT L J T L T T P W

o

78

+xAXIOM CO3:

comp = [af v e[an(mkpush(n,1)
&tI(compexp(e,mns(n),prup(v,1),gensym(f))))
& {{SUB P {C 0 0 n n}} ¢POPJ F) NiL})iength(v)],

compexp = [uG.[xexp m vpr nl.
(null(exp)-a']I',(exp=T)-t']I',isint(exp)) -
{nl {MOVEI 1 (QUOTE expl))

»n
atom(exp) = {nl {MOVE 1 m+ti(assoc(exp,vpr)) B
((hd(exp)=AND)—>']I',(hd(exp)=OR)-¢'H',(hd(exp)=NOT)) -
combooIF(G)(exp,m,nI,NIL,vpr,gensym(gensym(nl)))
& {{MOVEI 1 {QUOTE T} {JRST 0 gensym(nl)}
nl {MOVEI 1 {QUOTE NIL}} gensym(nl)3,
(hd(exp)=COND) -~
comcondF(G,comboolF(G)) (tI(exp),m,nl,vpr,gensym(nl)),
(hd(exp)=QUOTE) = {nl {MOVE] 1 exp)),
atom(hd(exp)) = cormplisF(G)(tI(exp),m,vpr,nl)
& [xnloadac(1-n,1) & ¢ {(SUBP {C 0 0 n n)
(CALL n ¢E hd(exp))))](length(tI(exp))),
(hd(hd(exp)) <L AMBDA) -
[xn x vpr2, apan(tI(x),G(hd(tI(tI(hd(exp)))),m-n.vpr2,hd(x)))
& {{SUBP{COOn n3 3 (length(ti(exp)),
complisF(G)(tI(exp),m,vpr,nl),

; vpr & prup(hd(tithd(exp))),1-m)),
L]},

complisk = [xce. [uH.[Au m vpr nl. null(u)- {ni},
[xx. appn2(ti(x), appn2({ {(PUSH P 13,
H(tI(u),m-1,vpr,hd(x)))) J(celha(u),m,vpr,ni)) 11,

Figure 10.2a ‘comp’ - the meaning of ‘COMP.

1 3

3

&

4

comboolF = [xce. [kH.[Ap m | flg vpr nl.
atom(p) = ce(p,m,vpr,nl)
& ¢ {null(flg)=JUMPE,JUMPN) 1 I3},
(hd(p)=AND) -
null(flg) = compandorF(H}tI(p),m,,NIL,vpr,nl),
compandorF(H)(tl(p),m,nl,NIL,vpr,gensym(nl))
& { {JRST O I} nl},
(hd(p)=0R) -
null(flg) » compandorF(H)(tI(p),m,nl,T,vpr,gensym(nl))
& { (JRST O I} nl},
compandorF(H)(tI(p),m,|,T,vpr,nl),
(hd(p)=NOT) = H(hd(ti(p)),m,|(null(flg)->TNIL),vpr,nl),
ce(p,myvpr,nl) & ¢ {(null{flg)>JUMPE,JUMPN) 1 133]]],

compandorF = [acb. [uF.[au m | fig vpr nl. null(u)- {nl3,
[Ax. appn2(tl(x),F(ti(u),m,),flg,vpr,hd(x)))]
(cb(hd(u),m/l,flg,vpr,A)) 1],

comcondF = [xce cb. [uH.[au m | vpr nl. null(u) = {nl 1},
[Ax. [ay. appn2(ti(x),
appn2(ti(y),
appn2({ {JRST O I} nl},
H(tI(u),m,l,vpr,hd(y))))]
(ce(hd(tI(hd(u))),m,vpr,hd(x)))]
(cb(hd(hd(u)),m,nl,NIL,vpr,gensym(ni)))1]],

Figure 10.2b - Auxiliary Functions for ‘comp’.

123

el L

TR

et oy vy o

ST R LY e

e T b e e 1]

complis = complisF(compexp),
combool = comboolF(compexp),
compandor = compandorF(combool),

comcond = comcondF(compexp, combool)

appn2 = [xx y. hd(y) - (x & tiy)],

prup = [#G.[av n. null(v)=NIL, (hd(v)n) « G(ti(v),n+1)]],
mkpush == [#G.[xn m. (m>n)=NIL, {PUSH P m} - G(nm+1)]],
loadac = [uG.[An k. (n>0)-NIL, {MOVE k n P} - G(n+1,k+1)]]

124

Figure 10.2c - Auxiliary Functions for ‘comp’.

P 370 g S R

a

- ey O A A L T R

compexp = [uG.[xexp m vpr nl.
(null(exp)-T (exp=T)-T,isint(exp)) =
{nl {MOVEI 1 {QUOTE exp}}),
atom(exp) = {nl {MOVE 1 m+tl(assoc(exp,vpr)) P},
((hd(exp)=AND)-T (hd(exp)=0R)-> T ,(hd(exp)=NOT)) =
coinbool(exp,m,nl,NIL,vpr,gensym(gensym(nl)))
& ((MOVEI 1 {QUOTE T)} {(JRST O gensym(nl)}
nl {MOVEI 1 {QUOTE NIL}} gensym(nl)},
(hd(exp)=COND) -
comcond(tl{exp),m,nl,vpr,gensym(nl)),
(hd(exp)=QUOTE) = {nl {MOVEI 1 exp}},
atom(hd(exp)) = complis(ti(exp),m,vpr,nl)
& [anloadac(1-n,1) & { {SUB P {C 0 O n n}}
(CALL n (E hd(exp)}}})length(ti{exp))),
(hd(hd(exp))=LAMBDA) -
[An x vpr2. appn2(tl(x),G(hd(ti(ti(hd(exp)))),m-n,vpr2,hd(x)))
& {{SUB P {C 0 0 n n}}})length(ti(exp)),
complis(tl(exp),m,vpr,nl),
i vpr & prup(hd(ti(hd(exp))),1-m)),
Li)

combool = [uH.[xp m | flg vpr nl.
atom(p) = compexp(p,m,vpr,nl)
& { {(null{flg)»JUMPE,JUMPN) 1 13},
(hd(p)=AND) =
null(flg) » compandor(ti(p),m,|,NIL,vpr,nl),
compandor(ti(p),m,nl,NIL,vpr,gensym(nl))
& { (JRST O I} nl),
(hd(p)=0R) -
null(flg) = compandor(tl(p),m,nl,{T,vpr,gensym(nl))
& {{JRST O I} nl),
compandor(ti(p),m,|,T,vpr,nl),
(hd(p)=NOT) = H(hd(tl(p)),m,l(null(flg)=T,NIL},vpr,nl),
compexp(p,mvpr,nl)& { {(null(flg)>JUMPE,JUMPN) 1 133]1],

Figure 10.3 - Theorems Explicating ‘compexp’ and ‘comucal’.

125

SIS AT RN

o
JECRRC

AR R AT IS i A S S
R g et R e e S

Rk ARG AL R TR BRAL T v

Y e e oy

L E ek e T

CFD(FL)=T F Yum | vpr nl vb. apply(COMCOND,{u m | vpr ni},vb,FL)
= islist(vb) = comcond(u,m,l,vpr,nl), L

etc.

The appropriate attack on these subproblems is by means of the techniques
described in the context of Pure LISP (see Chapter 7). We must prove the family
of lemmas simultaneously using induction on the the structure of the expression
being compiled. The proof will clearly be long and for this reason alone we would
find difficulty in establishing the results. We estimate that it would be comparable

in size to that half of the interpreter proof that was done on the machine.

10.3. Properties of the Compiler Functions.

Having extracted meanings for the various compiler functions as terms of
LCF, we must proceed to prove various theorems about their behaviour. The most
important one is treated in the next section: that the compiling functions produce
‘correct LAP code. In this section we present some useful but much simpler lemmas
about the LCF functions ‘comp’, ‘compandor’ etc.

Attached to some of the lemmas there are provisos that the arguments
given to a function are well formed. We refer the reader to chapter 9 for the

discussion of well-formedness of LISP expressions.

126

Several of the functions take a parametcr which will call a variable
position record (vpr). A vpr is an A-list which associates variables with
integers used in the computation of stack positions for variables. The predicate
‘isvpr(v,n)’ checks that v is a vpr, that the integers are in descending order and are

positive but less than n. The function ‘vprvars’ builds a list of all the variables

mentioned in a vpr.
isvpr = [uG.[xv n. null(v) = (n21), 4
tihd(v))zn = F, E
isname(hd(hd(v))) = G(tI(v),ti(hd(v))), F]] '

vprvars = [uG. [Ax. null(x) = NIL, hd(hd(x)) « G(tl(x))]]

We observe that ‘compexp’, ‘complis’, ‘combool’, ‘compandoi’, ‘comcond’ are
all strict in their first and last arguments and that ‘compexp’ is strict in all its

arguments.

10.3.1. Totality

The result we suggest in this subsection is that each of the compiler
functions terminates with a list (of instructions) provided only that its arguments is qq

well-formed. Formal statements of two instances of this result are:-

iswfe(e,vprvars(vpr)) = T, }
isvpr{vpr,mns(m)) = T,
isname(nl) = T

F islist(compexp(e,myvprnl)) = T

and

127

oty i e e S S

R ST Ay R LR T A Pl WG it

]
}..

ey T B T ML WL, R T S e s A -

iswfl(p,vprvars(vpr)) = T,
isvpr(vpr,mns(m)) = T,
isname(l) = T,
(flg=NIL) » T, (flg=T) = T,
isname(nl) = T
I islist(combool(p,m,,flg,vpr,nl)) = T

By instantiating the first of these two lemmas appropriately we get:
iswfe({LAMBDA v e}, NIL) = T,

isname(f) s T
F islist(comp(f,v,e)) = T

10.3.2. Completeness
We r;ext suggest some results which say that the bodies of code produced
vy compiler functions are complete in the sense that they contain no jumps to
‘undefined’ labels. Take, for example, ‘ce:. 20!’
iswfl(p,vprvars(vpr)) = T,
isvprivpr,mns(m}) = T,
(fig=NIL) - T, (flg=T) = T,
discr(nl) > discr(l) = T
F complete(ti(cumbool(p,m,fig,vpr,nl)), {13) = T
The corresponding theorem for ‘comp’ is:
iswfe({LAMBDA ve}) =T,

isname(f) = T
F complete(comp(f,v,e), NIL) = T

128

TR

g o

s

bR

R e

ok e S S iy 2l B

A R A P L B
as & o =

10.3.3. Distribution of Labels

When we come to prove correctness of the compiler functions we will need
lemmas which declare that in bodies of code produced by the compiler functions,
labazls are declared only once. This requirement is fulfilled by some theorems which

dascribe the orderly placing of labels. For example, we state the one for ‘comcond’:

iswf1(u,vprvars(vpr)) = T,
isvpr(vpr,mns(m)) = T,
discr(nl) > discr(l) = T,
X = comcond(u,m,l,vpr,ni), ;
mem(y, labs(ti(X))) = T
[discr(y) = discr(l) = T,
discr(hd(X)) > diser(y) = T

Lo 10.4. Statement of Correctness. 14

Let us now state what our final goal is. We first do so informally as follows:

IF we have a certain function list FL1 of well-formed LISP
Functions

e

AND we have a function list FL2 of the conpiied forms of
those LISP Functions (where compilation is done by running
the LISP compiler {LComy)),

THEN the effect of applying some function F' to some list A of
arguments (not too long) is the same whether we use LISP '
‘apply’ in the context of FL1 or LAP in the context of FL2. e

g Y

129

ST P s e s T

St g s e T

That is, we must establish the theorem,

Vx. a(hd(assoc(x,FL1)))3 iswfe(tl(assoc(x,FL1)))=T,
Yx. a(hd(assoc(x,FL1)))> hd(tl(assoc(x,FL1)))=LAMBDA,
CFD(FL)=T,
Yx. d(hd(assoc(x,FL2)))
ti(ti(assoc(x,FL2)))= apply(COMP, {x hd(tl(ti(assoc(x,FL1))))
hd(ti(ti(ti(assoc(x,FL1)))) 3, NIL, FL)
I Vin args. length(args)<mnas
apply(fn,args,NILFL1) = lap(fn,args,FL2)

10.4.1. Correctness of the Compiling Algorithm

In Section 2 we exhibited the function ‘comp’ which is the one induced

under interpretation by the LISP function ‘COMP’. We are thus entitled to simplify

the compiler correctness problem by rewriting some of the hypotheses of the above

theorem. We will now assume thoc: modified hypotheses for the rest of the

chapter, effectively creating constants FL1 and FL2:-

and

Yx. d(hd(assoc(x,FL1)))> iswfe(tl(assoc(x,FL1))) =T,
Yx. a(hd(assoc(x,FL1)))» hd(tl(assoc(x,FL1)))=L AMBDA

Yx. d(hd(assoc(x,FL2)))»

ti(ti(assoc(x,FL2)))= comp(x, hd(tl(ti(assoc(x,FL1)))),
hd(ti(ti(ti(assoc(x,FL1))))))

The correctness of the compiling algorithm is then just:

I Yfn args. length(args)<mnas apply(fn,args,NIL,FL1) = lap(fn,args,FL2)

130

L et harem? Ganp B it SRR

ST

i e b Tyl e

e i b

e b b 4 il B o

e

&t

10.4.2. The Principal Lemma
Taking the result of the last subsection as our goal, we see that the
appropriate principal subgoal is:
Yvb st args fn. a(vb)> length(args)zmna> get(!P,st)>PDL»
dec(get(1,exec(body(fn,FL2length(args)), FL2, O, putargs(args,st))))
= apply(fn,args,vb,FL1)
The main correctness result follows from this one by taking ‘vb’ to be *NIL’

and ‘st’ to be ‘set(!P,PDL,NIL)’ .

10.4.3. Environment Correspondence
At the next level of goals, we will have equations where the LAP
interpretation of some expression appears on the left hand side and LISP
interpretation of a corresponding expression appears on the right. However, both of
these interpreting functions take an environment as a parameter and so we will
sometimes need preconditions to the effect that a pair of environments are
consistent. We thus define a correspondence function between LISP A-Lists and
LAP run-time stacks as follows:
stkscorr = [uG.[avb st vpr m,
null(vpr) = (get(!P,st)+m > PDL),
(hd(hd(vb))=hd(hd(vpr)))

= (tI(hd(vb))=get(get(!P,st)+m+ti(hd(vpr)),st)
= G(tl(vb),st,tivpr),m), F),
Fl]

131

ke s i

o L

One sees that if stkscorr(vb,st,vpr,m)=T then the value of any variable
extractable from the run-time stack by means of the function
[xx. get(get(!Pst)+m+ti(assoc(x,vpr)),st)] is the same as the value which would
be extracted from the A-list vb by means of the usual function
[xx. ti(assoc(x,vb))]. Note that this correspondence function is very much tailored
to our present purposes of proving LCom0. A more general such predicate might
not require that variables appear in exactly the same order in the A-list and the

stack; on the other hand, it could require that all of the stack in st should

correspond to all of vb instead of just those variables that are mentioned in vpr.

10.4.4. Second Level Subgoals

The secondary lemmas which we must prove and which we list in figures
10.4 to 10.8 relate LISP interpretation in some environment (an A-list) to LAP
execution of corresponding code in a corresponding environment (a stack). More
particularly, we wish to describe the effects of executing code produced by
‘compexp’, ‘complis’, ‘comcond’, ‘combool’ and ‘compandor’ in terms of how the LISP
functions ‘eval’, ‘evlis’ and ‘evcon’ operate on the source S-expressions. Note that

there are just three effects we wish to capture in lemmas about code execution:

i) What the answer is (usually what register 1 contains);
i) How the stack pointer is affected;
iii) How the stack contents are affected.

132

3

3

?

K T i R R - R

: i) Answer:
* Yexp vb st vpr m lab.
3 stkscorr(vb,st,vpr,m)»
2 iswfl(exp,vprvars(vpr))»
isname(lab)» | 1
dec(get(1,exec(tl{compexp(exp,m,vpr,lab)),FL2,0,st))) ']
= eval(exp,vb,FL1)
& | 3
ii) invariance of Stack Pointer: l:f.
| &
Yexp st vpr m lab. P
iswf1(exp,vprvars(vpr))s '
e isname(lab)=> ’
i get(!P,st)2PDL>]
Vst2. | 4
: st2=exec(tl(compexp(exp,m,vpr,iab)),FL2,0,st)» (4
3 get(!P,st2) = get(!P,st) l
iii) Invariance of Stack Contents: |
Yexp st vpr m lab. § §
- iswfl(exp,vprvars(vpr))s i
P = isnameflab)» 14
3 get(!P,st):PDL=» r
Yst2 n. :
3 st2=exec(tl(compexp(exp,m,vpr,lab)),FL2,0,st)2 3
nzPDL>
% get(!P,st)>n» 4
3 -, get(n,st2) = get(n,st) -

Figure 10.4 - Subgoals Describing Effects of ‘compexp’.

133

N e S Y Y e e

i) Answer (additions to stack):

Yx vb st vpr m lab.
stkscorr(vb,st,vpr,m)»
iswf2(iswfl,x,vprvars(vpr)):
isname(lab)=»
[xst]. [uG. [xn. nzlength(x) - NIL,
get(get(!P,st1)-n,st1) - Gin+1)1)(1)]
(exec(tl(complis(x,m,vpr,lab}),FL2,0,st))
= evlis(x,vb,FL1)

ii) Effect on Stack Pointer:

¥x st vpr m lab.
iswf2(iswfl,x,vprvars(vpr))s
isname(lab)»
get(!P,st)>PDL»

Yst2.
st2=exec(tI(complis(x,m,vpr,lab)),FL2,0,st):>
get(!P,st2) = get(!P,st)+length(x)

iii) Invariance of Stack Contents:

Yx st vpr m lab.
iswf2(iswt],x,vprvars(vpr))s
isname(lab)»
get(!P,st)>PDL>

Yst2 n.
st2=exec(tl(complis(x,m,vpr,lab)),FL2,0,st)»
n=PDL>
get(!P,st)>n>
get(n,st2) = get(n,st)

Figure 10.5 - Subgoals Describing Effects of ‘complis’.

134

~ b

S

i} Answer:

¥x vb st vpr m yl y2.
stkscorr(vb,st,vpr,m)=
iswf3(iswfl,x,vprvars(vpr))»
discr(y2)>discr(yl)=
dec(get(1,exec(ti(comcond(x,my1,vpr,y2)),FL2,0,5t)))
= evecon(x,vb,FL1)

i) Invariance of Stack Pointer:

¥Yx st vpr myl y2.
iswflliswfl,x,vprvars(vpr))s
discr(y2)>discr(yl)=
get(!P,st):PDL»

Yst2.
st2=exec(ti(comcond(x,m,y1,vpr,y2)),FL2,0,st)=
get(!P,st2) = get(!P,st)

H

iii) Invariance of Stack Contents:

Yx st vpr myl y2.
iswf3(iswfl,x,vprvars(vpr))>
discr(y2)>discr(yl)»
get(!P,st)=PDL=>

Yst2 n.
st2=exec(tl(comcond(x,m,y1,vpr,y2)),FL2,0,st)=
n:PDL>»
get(!P,st)>n=
get(n,st2) = get(n,st)

Figure 10.6 - Subgoals Describing Effects of ‘comcond’.

135

o [

e T Bl Ao

& 2t PR 5

N S B e TR 1 e £

2

TR

gl e ok T L el B o L S h R SR L S e i

AR TR g st i et 1

Notes:

Yn. Vx vb st vpr m yl v2 flg.
stkscorr(vb,st,vpr,m)>
iswfl(x,vprvars(vpr))>
discr(y2)>discr(yl)s
(flg=T) » T, (fig=NIL)>»

VYxL seql seq2.
xL=tl(combool(x,m,y 1,flg,vpr,y2))s
hd(seq2)=y1»
disjoint(labs(seq2),labs(seql))=»
disjoint(labs(seql & seq?),labs(xL))=
get('P,st)>n»
(nzPDL)>T,(n=1)>T,(n=IP)>

get(nexec(xL&seql&seq2,FL2,0,st))
= [AC. get(n,exec(C,FL2,0,st))]
(nuli{eval(x,vb,FL1))=(null(fig)»seq2,seql &seq?2),
(null(flg)~»seql &seq2,seq2))

it This lemma can be specialised to tell about answer, stack
pointer or old stack contents by taking ‘n’ to be 1, !P or some
stack address (an integer between PDL and get(!P,st)).

ii) The predicate ‘disjoint’ searches for common elements of
two lists; It yields F if it finds one.

disjoint = [uG. [Ax y. null(x) » T,
mem(hd(x),y) = I, G(ti(x),y)]]

Figure 10.7 - Subgoal Describing Effects of ‘combool’.

136

a_.f

ARSI SRR R T R

’

+

S A By
g £ e St e g % i e BT el gy Sy

GG L e Yl T g b

B B S

et ST e el et

225t A I S e T

SIS T O e

el b e e i

Vn. VYx vb st vpr m yl y2 fig.
stkscorr(vb,st,vpr,m)=
iswt1(x,vprvars(vpr))s
discr(y2)>discr(yl)»

(flg=T) = T, (fig=NIL)>

VxL seql seq2.
xL=tl(compandor(x,my1,flg,vpr,y2))s
hd(seq2)=y1»
disjoint(labs(seq?2),labs(seql))s
disjoint(labs(seql & seq?2),labs(xL))»
get(!P,st)>ns
(nxPDL)>T,(n=1)>T(n=!P)

get(nexcc(xL&seql&seq2,FL2,0,st))
= [AC.get(n,exec(C,FL2,0,st))]
([1G.[xy.null(y)»seql&seq2,
null{eval(hd(y),vb,FL1 N-(null(flg)-seq2,Glti(y))),
(null{fig)-G(ti(y)),seq2)1)(x))

Note:

This lemma can be specialised to tell about answer, stack
pointer or old stack contents by taking ‘n’ to be 1, P or some
stack address (an integer between PDL and get(!P,st)).

Figure 10.8 - Subgoal Describing Effects of ‘compandor’.

137

g ih A M. bt ek Sl bt b s b el o s ed bt v Ly
(L) e A ol d L S bR ta il Bk sy i g S Sie el pidas Tt s
b S AR Sttt b Bt S A B R v el SR 2 e i e i s Rt e i i fhoificac e

Sl sk
. o) g R B iy s, TR gt s R B 2

PG

;

2 o
WhleRabg i

10.4.5. Attacking the Subgoals.

Because ‘compexp’, ‘complis’ etc. are | mutually recursive, the subgoals of

p figures 10.4 to 10.8 are all interdependent. !t is thus necessary (but natural) to

attack all these subgoals simultaneously. The appropriate tactic will clearly be
induction on the structure of all S-expressions being compiled. We do this by using
Scott induction on the definition of ‘iswf1’ which occurs in the relativisations of all

the subgoals.

The reader who is unfamiliar with LCF should not be perturbed at the large
size of the conjunction of all these formulae; Immediately after the induction tactic is

performed the new principal subgoal generated may be split back into manageable

.
p
1
-
M
b
i
i
4
B
B
é

pieces.

The reader may also wonder whether the limit on size of core image
imposed on the LCF System presents a barrier which can make some proofs
effectively impossible to do. The answer to this question is that, in practice, proofs 1

in the system tend to be reasonably well-structured and we can factor such proofs

into their main parts and subsidiary parts and then prove subsidiary results in j

separate core images. More particularly, if a subsidiary part of a proof has N steps,

makes reference to J previous steps (hypotheses H,, H,, .. H,) and contains K steps

SRR [T 5

138

A il et il i EL) - R T LA e T RO e
L) et ey i o B e g v A o o T i ey Liv s ey AR, A
4 prt S g i e s e e s T et sl fad et

WL e =)

(=]

S

ARt A

TR R A

for future use (resulls R, R, .. R) then as a separate task we may attack
Hy.sHj b Ry,R . Now if this proof (at most N+J steps long) fits in core and J+K is

much less than N (as is ustial) we win.

L]

10.5. Feasibility of a Full Compiler Proof

To sum up, we have split the LComO correctness problem into four parts.
The first two were the developments of axiomatic theories for LISP and LAP and
chapter 9 reported on the machine assisted generation of these theories.

The third part of the total problem was the proof that ‘compexp’ etc. are
the functions denoted by the S-expressions COMPEXP etc. This part of the
compiler problem was not worked up to a machine checked proof but, for reasons
cited above, it was expected to be quite feasible involving two or three man/weeks
¢’ effort.

The fourth part was the correctness of the compiling algorithm and we have
just presented a natural high level goal structure for achieving the result. It is not
thought there would be any conceptual difficulties in forging this plan into a
completely formal proof but the time taken to do it must be considerably more than
was required for the simple half of the interpreter proof. We estimate that it

would be at the very least six man/weeks of effort using the current LCF system.

139

el

T o
L ol 150
oSl

S W T ST
it S T b

T o

A3 i
% T PL ST AR PR Qg P e

Tk BT A

SR ez

R
Y,

2
v

RAGSS A L S e S s SR i

e ot e PR O e

Thus with upwards of eight man/weeks of effort required it is appropriate

, to suspend this problem until a more automatic LCF is available.

d
ws
i

-

=

140

B T A e

N elyte

Bl 10 A e S i e g eI S aoal PTTY G e NP T APE S ey s e s a1 i L s

e 1 B k2 A e et i om R o A it B i s s St e, AR

s

CHAPTER 11

Second generation LCF System

Since we assert that LCF is a useful (even important) tool for the theory of
computation, a major aim in these LISP experiments has been to push the current
system to its limits. In many directiors the limitations severely handicap the user’s
ability to specify a proof at a natural level and in a compact way. We present,
therefore, in this chapter many suggestions for improvements to the system. These
improvements will probably be realised in a second generation system. It must be
acknowledged that several of the ideas were developed in conjunction with Richard

Weyhrauch and Robin Milner.

11.1. Prior Accomplishments

Although the notion of conditional simplification arose out of earlier work on
LCF by Weyhrauch, Milner and Newey, it was implemented for this work. Without
that facility the proofs would have been much longer.

The "PREF tactic’ mentioned in Chapter 3 was implemented after the bulk of

the Pure LISP proofs were done we credit the current work for its development.

41

’ o i ey)
R T st s n AR Lo ol

i i T e

i
5
3
i
%
i

Lol ot e iy S L

¥ R U I L R RN S TR i, T PR

11.2. Proof Generation vs. Proof Checking

The LCF system was conceived as a proof checker which had some ability
to help the user generate proofs but the implementation has undergone various
mutations which were all intended to make the task of generating easier. Although
it still claims to be able to check proofs, the considerable complexity of the more
advanced derived deduction rules inevitably diminish confidence in the checking
process. In fact, the notions of checking and generating are confused in the system
design and inextricably entwined in the actual code. For example, if the user calls
for a substitution then LCF generates an appropriate step but the only sense in
which anything is checked is that the system checks that the user’s prescriptions do
indeed generate a step.

Simplification is particularly worrisome in this regard. It is a very complex
deduction rule and can change steps so drastically that the usar is simply forced to
believe that the machine did it all correctly as long as the answer ‘looks good’.

What is suggested is that the tasks of generation and checking be realised
in completely separate programs. We propose a program which will just check
proofs where steps are given in full in a restricted version of the logic and an
interactive program which will translate the user's high level notions into a proof

that the base checker (the first program) can validate.

142

E ‘ T R g o e, (PRSPt COrg
e U Rl I Ot e p it Ui MOHCRY i e il Sl e 55 Sl _ac sty Bhs o MR SRS RS ¥ ", Rt Trer

(e

g - . o kel - Ul U R L LA L U S e e
b A 0 o B Uik e T raied Shat bttty e e n N e bRl o B entlt e L bt e o p T i A P 5
o R e S ML el M R e e R oY ke ol L - 5

It will be most important for the base checker to be simple because we will
wish to have confidence in it. As soon as practicable we would want it proved
correct. Of course, it would be nice if the interactive program were correct too, but
that concern is secondary to its power to produce proofs with a minimum of effort
from the user. Since the integrity of the generator is not Bf great importance, the
user should be permitted to supply actual code which can help the system find a
proof.

It is clear that we expect the proof generator of the new LCF system
(LCF2) to grow up to be an interactive theorem prover for LCF, so more emphasis

will be placed on partial decision procedures and automatic selection of deduction

rules.

11.3. High Level Command Language

Using the current system is ruther reminiscent of using assembly language;
the deduction rules correspond to the instructicns in that when each command is
typed in, one deduction rule is applied. It is clear that, in LCF2, the input language
for the base checker wili persist in being low level but the language with which we

talk to the interactive proof generator should have various features of high level

programming languages.

143

Lt st

Aah i (b SR Ll Jis e oh g i e, T
N s ** L L Ll S it A e S i it L il S A e LA e il e Rt Rn L .
Lo T e e i A DR bl St b SR e L e e A S J . ;

11.3.1. Data Types and Expressions

We propose that there be at least four types - term, wff, step and
simpset. It should be possible to have variables of each of these types as well as
constants. The ‘LABEL’ facility of the current system is actually a simple use of
variables which have values which are steps. Of course, for convenience of
programming, integers should be another data type provided.

There will be many operations on data of the different types, including @
operators which correspond to many of the deduction rules of the current system.
For example, ‘abstraction’, ‘application’, ‘symmetry’, ‘transitivity’, ‘fixed-point’,
‘substitution” are operators which transform one (or more) items of data into a step. !

The notions of expression and assignment follow naturally from these ideas

of data types, variables, constants and operators.

11.3.2. Control Structures

It is a trivial consequence of our analogy between LCF command language "
and conventional programming language that we should incorporate control ; g
structures such as procedures, functions, conditional statements, iterative 1
statements, compound statements and blocks. The application of procedures in proof ;
gencration is in the binding together as a bady many commands that can be then

thought of as constituting a recipe for producing proof for some step. The formal
144

3

parameters of procedures and functions may be of any data type or possibly
functions over them. Similarly, an iterative statement would allow some command
(or sequence of commands) to be repeatedly executed until some appropriate

condition is satisfied. Blocks are useful for delimiting scope of variables.

11.4. Revised Axiom Structure

In the current system one can only present nonlogical axioms to the machine
it they have the form of WFFs. Hence, for example, one is prevented from having
such notions as VYx. F(x)=A | A=B as an axiom (in that form, at least). This is
opposed to the logical axioms of LCF (which are built into the system) such as
sles2 | t(sl)ct(s2) and to theorems which are allowed to take the ferm of a
sentence. This fact has led many users to adopt the rather unfortunate practice of
expressing axiomatic material as unproved theorems (in fact unprovable theorems).

It would appear that the only reason that axioms are not allowed to be
sentences is that they are, unlike theorems, made numbered steps in the proof. As
such they have a WFF part and a dependency part which must be a list of
assumptions. It is proposed that axioms be made to behave more like thecrems than
regular steps and some of the differences between theorems and steps reduced. In
particular, whenever a step expression can appear as an argument to a rule, an

axiom or theorem should be permissible.

145

e T N (TC o T T - i e AT

T iy TS0 DR e SR T

11.5. Extending the Pure Logic

The two ways of expressing implication in LCF are really rather restrictive.
The split arrow () abbreviation allows relativisation of equations by truth-valued
terms only. Also the turnstile (|), as used in theorems, can only appear once in a
theorem. It was argued in the last section that this turnstile facility, which is also
used to express the logical axioms of LCF, should be made available for axiom
writing. However, perhaps a more general attack on these expressive weaknesses
of the current logic would be more rewarding.

There have been occasional instances where it has proven quite
inconvenient to have just the rather simple formula structure we have. A goed
example is course-of-values induction over the natural numbers, which can best be
written for the current system as:

Vy. [uH. [Aw. 2(w) = T,
glpred(w)) = H(prediw)),L]}y)* gly)=T .
Now if we extended our weak notions of implication and universal

abstraction we could write
§(0) T, Yy. (Yx. y>x=T 2 g(x)=T) > gly)=T)
F Yy. gly)=T

Inspired by such instances as we have in figures 10.4 to 10.6, we note that

146

1 g Mt i o Tl L A s O SR R e e dh I3 Lo O R i R e ol s AR e il i oo b b R i b g it PR Ly i ol e kR R OSBRI e L e b A i L S L 3

E '

»
é P in normal situations we can have wffs with identical sequences of prefixes '
containing cumbersome relativisations. When we conjoin such wifs we would like to
’: only write the prefix sequence once. For example, we would much rather write the

:ﬁ, p goal ¥x. A3(B,,B,) instead of the goal (Vx. A» B,)(¥x. As B,) .

r The proposal of this section is to have a syntax for Well-Formed Formulae

3
y which goes like:

¢ <WFF> 1= <equivaience> | <inequivalence> o
| Vevarlist> . <WFF>

| <WFF> > <WFF>

| <WFF>, <WFF>

2 This proposal has the nasty effect that the induction rule of LCF has to

restricted in scope. There wouid have to be some syntactic check made on wffs to

:’é determine whether they admit induction. lgarashi has studied this problem in [11]. {4
C .1 1
11.5.1. Derived Deduction Rules

‘ With a high level command language as we proposed and with the richer

¥ implicative structure that we are now discussing, one is able to write in the logic,

. rules of the form below which would have to be built into the system:

AFB CFED

;)

; EFF

147
’]
3 §
-»

11.6. Concrete Syntax

The question of how LCF should deal with syntax of programming languages
is rather important since we hope to apply the system to many languages. The
problem is that we want to be able to specify the concrete syntax of a language so
we ¢ n simply refer to a program by its text and have the system deduce its
structure. We dont have a solid solution to the problem; in this thesis we have
discussed some questions of denotation and syntax in relation to LISP and LAP but

much more work is needed.

11.7. BExtending Simplification

11.7.1. Inequalities

In chapter 8 we were unable to complete a proof because simplification,
which is the workhorse of the systerm, only deals with equalities. It is a little more
arkward to handle inequalities but the extent of the teciinical problems is the fact
that applicability depends on which side of an AWFF is being simplified and whether
the user is doing forward or backward reasoning. For example, A =B can be used
to simplify a step g(B) = C to a step g(A) = C but not used to simplify a goal
F = H(A) . An important consideration is that one would like to simplify by

equulities before inequalities which leads us to:

148

SRl S DR g

&

A R R P L AR LT

T e T L T N e Y

D

11.7.2. Split Level Simplification

There are many reasons why users wanl some simplification rules tried
before others. The most notable is recursive funation definitions which should
usually be considered last-resort rules. One approach which at least deserves trial-
by-experience is the idea of having two or more levels of simpset. The highest
level will contain rules which have complicated conditions to check before they may
be applied or which may lead to excessive expansion of the formula if applied

several times without lower level rules intervening

11.7.3. n-time Simplification

Another facility which is an old idea (Weyhrauch) is that of having a counter
on simplification rules which enable a user to specify that a certain rule (perhaps

recursive) should only be used a limited number of times.

11.7.4. Subgoals from Conditional Sirplification

When simpiification is used as a tactic (i.e. to attack a goal), the user should
be able to nominate certain conditional simplification rules which are always applied
when the left hand side matches; conditions are still attacked by simplification but
those that are not reduced to trivialities are made into subgoals. It is necessary to

specifically nominate rules to have this property (globally or locally) to avoid

generation of large numbers of false subgoals.

149

ke =S A s Y 2 L) L e ey o e il et

11.7.5. Case Analysis in Simplification

Suppose we are given terms A, F and G where F and G contain
accurrences of A. We propose that simplification should normally mutate the term
A - F,G through A - Fi{T/ALG{F/A} to perhaps something simpler. (recall that

T{s/x} denotes the result of substituting s for x in T.)

11.7.6. Simplifying Procedures

In the current system members of the simpset have the form C F A=B
and if A matches some subterm and C is satisfied (by recursive call on simplification)
then B (appropriately modified) replaces the matched subterm. We propose a more
general scheme where items in the simpset are triples (A,CF). As before the term
A must match a subterm before any consideration is given to the item; following a
match, condition C is checked (by some procedure) and if it is OK then function F

(given in some language) is executed with the matched subterm as a parameter.

11.8. Types

In his original suggestion and formulation of the pure logic in [1], Scott
chose a typed version since he despaired of finding a model for the A-calculus and
concluded, on this basis, that ‘the theory of types is here to stay’. Since that time,

Scott has produced models for the A-calculus in [8),-has repudiated the ‘OWHY

150

o
s 7 4

5

P T S A
"

RPN

SR e e i e

e

paper’ and has formulated a type-free logic ([9]). This development inevitably
raises the question as to whether a new LCF system should be typed or not.

Now, if we make the new LCF typed, we can apply some lessons learnt
from the old system. Foremost, the system should be made to check types of terms.
More precisely, the system should check that a proof is consistently typable; the
user should rarely have to actually specify the types explicitly. The fact that the
old system did not do this can be justified on the grounds that it was the prototype
but this argument does not apply now. Next lesson is that the pure logic should be
changed to allow an arbitrary number of base domains, instead of just D, and D,, .
In using the current system, where D, must be partitioned into various notional data
types (such as integers and lists), one’s theorems tend to be cluttered up with
relativisations; Also, many theorems only exist because the data doméins are only
notional. Then, if we have many base types, we must also think about a richer type
structure: namely, if « and g are types then «=a (as before), u+g (disjoint union)
and xR (cartesian product) should be too.

If, on the other hand, the new LCF implements Scott’s type-free logic, one
must provide syntactic sugar with which the user may restrict terms to certain
subdomains (by means of hidden retractions) to achieve notional data-tvpes. it must
be noted that the provision of this facility corresponds approximately, In difficulty,

to building type-checking into a typed system.

151

G S AT e S

R e M S e v Py |

e oSl i Sa i S S Sl Sl

The debate continues as to which of these options is best. It cannot be
denied that the type-free logic is mathematically more elegant. Also, some people
say that one can more casily axiomatise programming languages with functional data
types using it. On the other hand, some people say that the objects we deal with in
computation are really well-typed and that when one is proving properties of

computable objects one should be forced to recognise the type structure.

11.9. Miscellancou~ Improvements

11.9.1. Solving Equations
We found it convenient in doing the LISP experiments to have various
theorems available with the flavor of
P-Faq=T F P=F, q=T
P>T.l=T f P=T.

and

With a couple of dozen such theorems one can break down some guite
complex equations to give specific truth-values for some of the subterms of the
original equation. For example

p-T (gL (r>Ts)=F
may be solved for p,q,r,s (in this case each is F).

This process, which we call ‘solving equations’ is clearly one one which

should be automated.

152

R T W A Kk e |

Tl Py e o LR

B o SRErA RS LBt

3

11.9.2. Definitional Facilities

In the current system, if one wants to name (with identifier n, say) some
complicated term T that is used often in the proof of some step S but does not
actually appear in the step, then one can either make the WFF n=T an axiom or an
assumption. In one case one gets to complicate the axioms unecessarily and in the
other case n=T becomes a dependency of S. This deficiency must be removed in

the next system.

11.9.3. Automatic Forward Reasoning

We propose to have a set of sentences, called an FR-set, and a mechanism
called ‘Consequences’. When Consequences is invoked with a set of steps,
antecedents of sentences in the FR-set are checked for satisfiability by the
nominated steps. If all antecedents of a sentence check out, then the consequent
(with appropriate instantiation) is made into a new step in the proof and perhaps
added to the simpset. It should be clear that if a step so generated happens to be

-

a standard contradiction then the current goal will be established.

11.9.4. More Abbreviations
The universal quantifier and relativisation (split arrow) abbreviations of LCF
have been very successful. It seems that abbreviating the term P - F,T as -P

would also be extremely useful.

163

TR TS

i, T T A B it i bose TR i e el A et teat i Rt om0 R e i b s i T
il)

We propose also that empirical study be devoted to having P A Q as an
abbreviation for one of the terms P QJF and P - QQ - F,F . Similarly, Pv Q
could be a abbreviation for one of the terms P> T,Q and P> (Q - T,T)Q .

154

a2 e g M Y,

R e

e e

i R A e i T il o S i b e s

CHAPTER 12

Conclusion

This thesis has been an extensive exercise in the application of LCF to the
definition of some programming languages - a subset of a machine-language and
some subsets of LISP. In each of the several cases, we have defined the
language axiomatically but have also illustrated how g ‘theory’ for the language
should be constructed using the axioms as a base. The theory of a language then
becomes a framework in which programs of the language can be proved correct.

[23] classities methods of definition of semantics as being either
‘constructive’ and suited to the needs of the implementor or ‘implicit’ and suited to
the needs of the user. It then argues that a language should be defined both ways
and the definitions proved consistent. In the present work, the definition of Pure
LISP, for example, is clearly constructive but many of the theorems of the Theory of
Pure LISP have the flavour of rules in Hoare’s method ([20]). It would be
interesting to investigate whether some subset of theorems of the Theory of Pure
LISP could be used as a satisfactory implicit definition.

We note that the recent independent work of M. Gordon [16] also gives a

semantics of Pure LISP leading to a proof of correctness of ‘eval’ etc. We observe

155

e P o P O AL

i
f
3
3§

several significant differences of approach which make his work and this thesis
somewhat complementary. Gordon ascribes denotations directly to Pure LISP
M-expressions using Scott/Strachey style semantic equations (as in [29)) whereas
we have it that S-expressions denote functions under interpretation of a particular
‘eval’ function written in LCF. Gordon’s approach makes use of much more logical
machinery thap is available in LCF and so his proofs are not checkable mechanically
(as yet). Machine checkability was a rrime requirement in this thesis since
automation is the ultimate goal of the project.

The way we were able to separate syntax from semantics by means of
notation and denotation considerations is a technique that hopefully could be applied
with benclit to other languages; certainly, it solved the problem completely in the
cases we studied.

As an experiment in the application of LCF to the specification of
programming language semantics, the work was very encouraging. The logic has
distinguished itself as regards expressive power; the actual definitions of the
various languages are concise and elegant. It is true that in the case of Pure LISP
the language being defined and the formalism are similar in structure but LAP is
certainly different in structure to LCF and current work on an axiomatisation of
PASCAL by Aiellc et al ([10]) is proceeding well.

It is worth noting that we were able, in the case of LAP, to give a partial

156

-r

;*3,

SR e D e s L oy e

DS i s Bl g

sl Ko Bl e i et o

specification of a language and also, as in the case of Pure LISP, give a complete
description of a language.

Alihough LCF is yet in its infancy of development, it has already proved
very suitable for discussion of Pure LISP programs. We would like to claim this is
some evidence that LCF has a bright future in the area of program correctness.
There are many aspects of the LCF system which have helped substantially in proof
generation but the proofs cry out for more mechanisation and more powerful
deduction rules.

We claim that this point in time is the end of the first cyle of development
for LCF. Clearly the time is ripe fis developing a brand new LCF system which
incorporates the suggestions we have presented. Effort spent in this direction
should generate the most payoff. After that is done, a revamping of the work on
integers, lists and finite sets would be profitable since the axiomatisations could be
polished somewhat. Aiso it would give a good measure of the improvement in
deductive power between the two generations.

Redoing the Pure LISP proofs and completing the proof of correctness of
the Pure LISP interpreter on the machine is a must and another look at the
correctness of LComO would be appropriate. An option to be kept in mind at that
time would be the reduction of the subset of LISP that LComO is written in and

compiles. The AND, OR, and NOT features could be removed and that would simplify

157

e TR

TP X N IR

the compiler substantially but not to the point of no interest. However if the
increase in power in new LCF lives up to hopes, this will not be necessary. In fact,
we would expect to be able to aitack the LCom4 compiler mentioned in [13],
although our present treatment cf LAP would then be inadequate.

The compiler proof has a number of disadvantages as an experiment using
LCF. Most important of these is that it encourages work on a rather artificial subset
of LISP and gross simplifications of PDP10 code. It would seem more fruitful to pick

an expetiment which would encourage, instead, more sophisticated theories of a low

level language or a high level language.

158

> gt}

el et DN L

:]
T P

r
+ APPENDIX 1
] Theorems of LCom(LISP
z“.‘
In this appendix we report on the Theory of LComO LISP that was
i developed as background for the compiler proof. The axioms on which this collection
of theorems is based are given in the first 2 sections of Chapter 9. Note that
1 practically all the results are suitable for direct inclusion in a SIMPSET.
P The Interpreting Functions:
In this section we present theorems to do with the LCF functions of the
interpretive semantics for LComO LISP - namely, ‘eval’, ‘eveon’, ‘evand’, ‘evor’,
e @ ‘apply’, ‘evlis’ and ‘pairlis’ (in that vrder):
.f%é' F VYxy. eval(Lxy) =1L
3 F Yxy. eval(x,l,y) =1
F VYxy. eval(xyl) = L
_ dlevaixv,f)) =T b ax) =T
? deval(x,vf) =T b av) =T
devallx,v,f)) =T | of)y =T
F Vv f eval(NILv,f) = a(v)=(a(f)=NIL,L),L
isint(x) = T | Yv f. eval(x,v,f) = a(v)=(a(f)=x,1),L
isname(x) = T, islist(vb) = T, «FL) = T
' F VYy. eval(x,(x-y)svb)fl) = y
159
)

I o S S o g s G R e e e I T i, ey 1 # o oy i SR SRR T B S e s s W %

BT

R e T
TR,

isname(x)::T, «(y1)=T, x=x1=F, islist(vb)=T, &(fl)=T
F Yy. eval(x,(x1ey1)«((x-y)evb),{l) = y
isnamc(x)--’]]", f'(yl)'»‘--'ﬂ", r:'(YZ)'*ET, x=x1=JF,
x=x27F, islist(vb)=T, a(f)=T -
F Yy. eval(x(x1oy1)(x2-y2)((x-y)-vb)),fl) = y
avo)-T, Af)-T f ¥x. eval(QUOTE~(x-NIL),vb,fl) = x
F ¥x vb fl. eval(COND-x,vb,fl) = evcon(x,vb,fl)

F Vx vb fl. eval(AND:x,vb,fl) = a(vb)-»(a(fI)-*evand(x,vb,fI),.L),

F Vx vb fl. eval(OR-x,vb,fl) = a(vb)(alfl)-evor(x,vb,fl),1),L

Yx y. eveon(l,xy) = L
Yx y. eveonix,ly) = L
Vx y. evcon(x,y,L) = 1L
Yvb fl. evcon(NIL,vb,fl) = 1

TTTTTT

Vx y w vb fl. evcon((ws(x:NIL))+y,vb,fl) = Ax)=(a(y)-
(null(eval(w,vb,fl))-evcon(y,vb,fl),eval(x,vb,fl)),.l.),l

Vx y. evand(L,xy) = 1
Yvb fl. evand(NIL,vb,fl) = T
Yx y vb fl. evand(x-y,vb,fl)
= ;’l(y)-*(null(evaI(x,vb,fl))-»NIL,evand(y,vb,fI)),.L
Yx y. evor(L,x,y) = L
Yvb fl. evor(NIL,vb,fl) = NIL
Yx y vb fl. evor(x-y,vb,fl)
= dy)-=(null(eval(x,vb,fl))»evorly,vb,fl),T),L

STt ente s wleaTr s

F Vx vb fl. apply(L,x,vb,fl) = 1

F Yin vb fl. apply(fn,L,vb,fl) = L

F Vin x fl. apply(fnx,L,fl) = 1

F ¥in x vb. apply(fn,x,vb,L) = L
Happly(fnx,vb,f)) = T b ofr) = T
Aapply(fnx,vb,fl)) =T bk ax) =T
Mapply(fnx,vb,fl)) = T | avb) =T
dapply(fnx,vb,fl)) = T | afl) =T

160

dio s s e s Ut s s e o e e et e e i By i e st s

1l

¥x y vb fl. eveon(((QUOTE(T-NIL))«(x-NIL))-y,vb,fl) = ay)=eval(x,vb,fl),L

o L T

e . W R U S e i L S T

i
E,,
E
5
E.
i
.
i
\

}
]

3

-
3
v,
.
¥
A
:

3
3
3
i
r

3

F Yvb fl. eviis(L,vb,fl) = 1

isli

ST T ST TS

s arous st

st(x) = I F VYvb fl. evlis(x,vb,fl) = L

Yvb fl. eviis(NIL,vb,fl) = NIL
Vx vb fl. evlis(x-NiL,vb,fl) = eval(x,vb,fl)-NiL
Yx1 x2 vb fl. evlis(x1+(x2-NIL),vb,fl)
= eval(x1,vb,fl)«(eval(x2,vb,fl)-NIL)
Vx1 x2 x3 vb fi. evlis(x1+(x2:(x3:NIL)),vb,fl)
= eval(x1,vb,fl)«(eval(x2,vb,fl)«(eval(x3,vb,fl)-NIL))

Yx a. pairlis(L,x,a) = L

Vx y. pairlis(x,y,L) = L

Yx a. pairlis(NIL,x,a) = a

Yx y a. pairlis(x-NIL,y-NIL,a) = (x-y)-a

¥x1 x2 yl y2 a. pairlis(x1+(x2:NIL),y1-(y2:NIL),a)
= (x1ey1)e((x2:y2)a)

Yx] x2 x3yl y2y3a. pairlis(x1+(x2:(x3:NIL)),y 1:(y 2:(y3-NIL)),a)
= (X1oy 1)o((x2:y2)+((x3y3)+a))

The Built-In Functions:

Presented here are the effects of applying ‘eval’ to expressions of the

form X (where F is a built-in function) and applying ‘apply’ to built in functions
and suitable argument lists.
F ¥x vb fl. apply(CAR,x:NIL,vb,fl) = a(vb)=(a(fl)=hd(x),).),L

F Yx vb fl. apply(CDR,x-NIL,vb,fl) = a(vb)=(a(f)-ti(x),L1),L
F Vx vb fl. apply(NOT,x:NIL,vt,fl) = a(vb)=(a(fl)~(nuli(x)>T,NIL),L),L

161

- S T T s e

5 -

3
o .

e o= chc Y -

Yx vb fl. apply(ATOM,x:NIL,vb,fl) = a(vb)=(a(fl)~(atom(x)->T,NIL),L),L p
Yx y vb fl. apply(CONS,x:(y-NIL),vb,{l) = a(vb)-(a(fl)=(x-y),1),L "
¥x vb fl. apply(LIST,x,vb,fl) = a(vb)-=(a(fl)»x,L),L "
Yx y vb fl. apply(EQUAL,x(y-NIL),vb,fl) = a(vb)-(a(fl)=((x=y)->T,NIL),L),L
Yx y vb fl. apply(PLUS,x<(y-NIL),vb,fl) = a(vb)-(a(fl}=(x+y),L),L
Yx y vb fl. apply(TIMES,x=(y-NIL),vb,fl) = a(vb)-(a(fl)=(xxy),L),L
Yx vb fl. apply(MINUS,x:NIL,vb,fl) = a(vb)-(a(fl)»mns(x),L),L «t ¥
Yx vb fl. apply(GENSYM,x:NIL,vb,fl) = a(vb)=(a(fl)~gensym(x),L),L
Yx vb fl. apply(NUMBERP,x-NIL,vb,fl) = a(vb)-(a(fl)=(isint(x)-T,NIL),L),L
Yx y vb fl. apply(GREATERP,x«(y-NIL),vb,fl)

= A vb)= (A fl)=((x>y)>T,NIL),L),L

T e AR R TR T TR
Gt saa tob L= Loy T el

TTTTT TS T TT

¥x vb fl. eval(CAR(x-NIL),vb,fl) = hd(eval(x,vb,fl)) C B
¥x vb . eval(COR~(x-NIL),vb,fl) = ti(eval(x,vb,fl))
¥x vb fl. eval(NOT(x-NIL),vb,fl) = null(x)~T,NIL
¥x vb fl. eval(ATOM-(x-NIL),vb,fl) = atom(eval(x,vb,fl))=T,NIL
¥x y vb fl. evai{CONS«{x-(y-NIL)),vb,fl) = eval(x,vb,fl)-eval(y,vb,fl)
Yx vb fl. eval(LIST-x,vb,fl) = evlis(x,vb,fl)
¥x y vb fl. eval(EQUAL:(x-(y-NIL)),vb,fl) L
= (eval(x,vb,fl)=eval(y,vb,fl))»T,NIL
¥x y vb fl. eval(PLUS«(x-(y-NIL)),vb,fl)
= eval(x,vb,fl)+evally,vb,fl)
Yx y vb fl. eval(TIMES-(x-(y-NIL)),vb,fl)
= aval(x,vb,fl)xeval(y,vb,fl) 'y
Yx vb fl. eval(MINUS(x:NIL),vb,fl) = mns(eval(x,vb,il}) 3
Yx vb fl. eval(GENSYM«(x:NIL),vb,fl) = gerisym(eval(x,vb,fl))
¥x vb fl. eval(NUMBERP:(x:NIL),vb,fl) = isint(eval(x,vb,fl})=>T,NIL
¥Yx y vb fl. eval(GREATERP:(x~{y-NIL)}),vb,fl)
=(eval(x,vb,fl)>eval(y,wb,fl)) » T, NIL

TTTT T T TTTTTTT

LAMBDA Expressions:

Here we give the effect of 'aval’ing and ‘apply’ing LAMBDA expressions.

i I Yb vb fl. apply({LAMBDA NIL b}NIL,vb,fl) = eval(b,vb,fl)
F Vxyb vb fl. apply({LAMBDA {x} b}\y}.vb,fl)
= eval(b,(x-y)-vb,fl) s i

162

2 ...v‘
R ot TP NN e € [0 Sohh s 4 it o

. AR M et

B Yx1 %2yl y2 b vb fl. apply({LAMBDA {1 x2} b}{y! y2),vb,H)
= eval(b(x1ey1)((x2-y2)-vb),fl)
F V¥x1 x2x3yl y2y3b vb fl. apply({LAMBDA {x1 x2 x3) b}
wyl y2 y3},vb,f)
= eval(b,(xisy1)«((x2:y2)«((x3-y3)evb)),fl)

F Vb vb fl. eval({LABDA NIL bJeNIL,vb,fl) = eval(b,vb,f)
F ¥xybvbfl.ew (LAMBDA {x} bl:{y},vb,fl)
= eval(b, (x-eval(y,vb,fl))svb, fl)
F VYxl x2yl y2 b vb fl. eval({(LAMBDA {x1 x2} b){y1 y23,vb,fl)
= eval(b, (xl«eval(yl,vb,{!))o((x20eval(y2,vb,fl))°vb), fl)
F V¥xI x2x3yl y2y3 b vbfl.
eval({LAMBDA {x] x2 x3) b)-{yl y2 y3},vb,fl)
= eval(b, (xleeval(yl,vb,fl))»((x2°eval(y2,vb,fl))
“((x3-eval(y3,vh,fl))-vb)), fl)

The Basic Functions:

Here we give the meanings (under interpretation) of the basic LISP

functions defined in Fig. 5.4;

BFD(FL) = T | assoc(NULLFL) = Snull,
assoc(DIFFERENCEFL) = SdiFFerence,
assoc(ISLIST,FL) = Sislist,
assoc(ASSOC/FL) = Sassoc,
assoc(LENGTH,FL) = Slength,
assoc(APPENDFL) = Sappend

BFD(-L) = T | islist(FL) = T

BFD(FL) = T | Ve vb. apply(NULL,e-NIL,vb,FL)
= islist(vb) >(null(e)~T,NIL),L

163

TV R T R

e g A

BFD(FL) = T

BFO(FL) =T
BFD(FL) = T

BFD(FL) = T

BFD(FL) = T

BFD(FL) = T
BFD(FL) = T

BFD(FL) = T
BFD(FL) = T

BFO(FL) = T
BFD(FL) =T

Ye vb. eval(NULL«(e:NIL),vb,FL)
= null(eval(e,vb,FL))->T.NIL

Yx y vb. apply(DIFFERENCE,x-(y-NIL),vb,FL)
= islist(vb)(x-y),L

Yx y vb. eval(DIFFERENCE-«(x-(y-NIL})),vb,FL)
= eval(x,vb,FL)-eval(y,vb,FL)

Ye vb. apply(ISLIST,e-NIL,vb,FL)
= islist(vb)=(islist(e)-TNIL),L

Ye vb. eval(ISLIST«(e-NIL),vb,FL)
= islist(eval(e,vb,FL))=T,NIL

Yx y vb. apply(ASSOC,x«(y-NIL),vb,FL)
= jslist(vb)-=assoc(x,y),L

Yx y vb. eval(ASSOC+(x-(y-NIL)),vb,FL)
= assoc(eval(x,vb,FL),eval(y,vb,FL))

Ye vb. appiy(LENGTH,e-NIL,vb,FL)
= islist(.vb)-=length(e),1

Ye vb. eval(LENGTH:(e-NIL),vb,FL)
= |length(eval(e,vb,FL))

Yx y vb. apply(APPEND,x«(y-NIL),vb,FL)
= islist(vb)=(x&y),L

Vx y vb. eval(APPEND:(x«(y-NIL)),vb,FL)
= eval(x,vb,FL)&eval(y,vb,FL)

164

25

He:

K B

N

AR s A

ey Ty —

A B T e MRS A T SR s et Rt r MR N S S b s St - e S e

}

[

APPENDIX 2
Yet Another LISP Subset

In Figure A2.1 (next three pages) we give an interpretive semantics for yet

another subset of LISP - 3 superset of Pure LISP which has SETs, SETQs,

PROGs, GENSYMs and property lists as well as the AND, OR, NOT and

LIST operations introduced in LComO LISP. This semantics includes all the
techniques that we discussed while developing the other versions of LISP.

The ‘eval’ and ‘apply’ functions in the definition of Pure LISP had a

parameter which was an A-list for holding the values of bound variables. The

corresponding functions in this treatment have a ‘state’ parameter instead; A state is

a triple of A-list (for bound variable values), list of property lists of variables and

memory for the gensym function. To allow for side-effects, each of the functions

(‘eval’, ‘apply’, etc.) returns as a pait, the regular answer and a new state,

s xAXIOM NL1:

lisp = [xe. hd(eval(e,NIL(NIL-GO001)))]

eval = [uB. evalF(B)],

evalF = [AB x st. a(st) -

null(x) = NIL-st,

; isint(x) = x-st,

‘ isname(x)=[xy. null(y)-tl(assoc(VALUE,tI(assoc(x,tI(hd(st))))))st,
ti(y)-st] (assoc(x,hd(hd(st)))),

atom(x) = 1,

hd(x)=QUOTE = hd(tl(x))-st,

hd(x)=COND - [uG.evconF(B,G)(tl(x),st),

hd(x)=AND = [uG.evandF(B,G)] (tl(x),st),

hd(x)=0R - [uG.evorF(B,G)] (tI(x),st),

hd(x)=PROG - [uG.evprog(B,G)]

(t1(t1(x)), initvars(hd(ti(x)),hd(st)), ti(st)),

hd(x)=GENSYM- [x2. z » (hd(st)(hd(ti(st))-2))]
’ (gensym(ti(ti(st)))),

hd(x)=SETQ = [avst.
[xvar val stl.
[xal pl gm.

[Ay. nuli(y) -
val-(al+(put(val,var,VALUE,pl) .gm)),
val+(set{var,val,al)«(pl-gm))]

(assoc(var,al))]

: (hd(st1),hd(ti(st 1)) tit (st 1)))]
(hd(ti(x)),hd(vst),ti(vst))]
(B(hd(ti(tl(x))),st)),

[xz. [1G.applyF(B,G)J(hd(x),hd(2),tI(2))]
3 ([uG.evlisF(B,G)](tI(x),st)),L],

Figure A2.1a - Axioms for Yet Another LISP.

(166

Y

el A TONNETE s Lot o

L P

ooty it S iR U AR E S st el b 1S i

fon’ A
sy

evcon = [uG. evconF(eval,G)],
eveonF = [AF G x st. [xz. null(hd(2))-F(il(x),I(2)),
G(hd(tI((hd{x))),tI(2)) J(F(hd(hd(x)),st))],

evand = [uG. evandF(eval,G)),

evandF = [AF G x st. null(x)=T, [xz. null(hd(2))-NIL,G(tI(x),t!(2))}
(F(hd(x),st))],

evor = [uG. evorF(eval,G)],

evorF = [AF G x st. null(x)=NIL, [xz. nullthd(2))-G(tI(x),tI(2)),T]
(F(hd(x),st))],

evlis = [uG. evlisF(eval,G)],

evlisF = [AF G m vb fl. null(m)-NILest,

[(Ax.[xy. (hd(x)-hd(y)) = tl{y)] (G(tI(m),tI(x))]

(F(hd(m),st))]],

evprog = [uG. evprogF(eval,G)],

evprogF = [AF G m vb fl. null(m)-NiIL-st, [xx. G(tI(m),tI(x) JF(hd(m),st))],

apply = [uG. applyF{eval,G)],
applyF = [AF G fn x st. a(x) - a(st) =
(fn=LIST) = x-st,
(fn=SET) = hd(tl(x))-set(hd(x),hd(tl(x)),st),
(fn=GET) =~ get(hd(x),hd(tl(x)),hd(t!(st))-st,
(fn=PUT) - hd(x)<(hd(st)-
(put(hd(x),hd(tI(x)),hd(tI(tI(x))),hd(tI(st)))-tI(tI(st)))),
isBF(fn) = applyBF(fn,x)est,
isname(fn) = G(hd(F(x,st)),x,st),
(hd(fn)=LAMBDA)- [xz. hd(2) -
(prune(hd(ti(2)),hd(st))-tl(ti(2)))]
(F(hd(tI(tI(fn)),pairlis(hd(ti(fn)),x,hd(st))tI(st))),
(hd(fn)=LABEL)~ [xz. hd(2)- (tI(hd(tI(2))-tI(tI(z)))]
(G(hd(tI(tI(fn))), x,
((hd(tl(fn))-hd(tI(tI(fn))))ohd(st))t](st))),
i -L’ 11]v

Figure A2.1b - Axioms for Yet Another LISP (ctd).

167

pairlis = [uG.[xx y st. null(x) = (nu!i(y) - st, L),
[xz. ((hd(x)shd(y))-hd(2)) * tI(2)(G(tI(x),tH(y),st))]]

prune = [uG.[xx y. length(x)=Iength(y) - x, G(tl(x),y)],
set = [pG[xx y a. (hd(hd(a))=x) = (xey)eti(a), hd(a)°G(X.Y.t|(a))]].

put == [uG. [avar val pn pl.
null(pl) = (var-((pn-val)-NIL}))-pl,
(hd(hd(pl))=var) = (vareset(pn,val,ti(hd(pl))))-ti(pl),
hd(pl)-G(var,val,pnti{p!))]),

initvars = [uG.[xvl al.null(vl) - al,(hd(vI):NIL)G(tI(vl),al)]],

get = [uG. [xvar pn pl. null(pl) = NIL,
(hd(hd(pl))=var) = [xz. null(z) » NILti(z)]
(assoc{pn,ti(hd(p!)))),
G(var,pn,tl(pl))]},

isBF = [xx. (x=CAR)-T, (x=CONS)-T, (x=MINUS)-T,
(x=CDR)-T, (x=PLUS)»T, (x=GENSYM)-T,
(x=NOT)»T, (x=EQUAL)>T, (x=NUMBERP)-T,
(x=ATOM)=T, (x=TIMES)»T, (x=GREATERP)]

applyBF(CAR) = [xx. hd(hd(x))], i

applyBF(CDR) = [ax. ti(hd(x))],

applyBF(NOT) = [ax. null(hc{x))=T,NIL],

applyBF(ATOM) = [xx. atom(hd(x))-TNIL],

applyBF(CONS) = [xx. hd(x):hd(tl(x)}],

applyBF(PLUS) = [ax. hd(x)+hd(tl(x)}],

applyBF(EQUAL) = [xx. hd(x)=hd(tl(x))=T,NIL],

applyBF(TIMES) = [ax. hd(x)}xhd(tl(x))],

applyBF(MINUS) = [xx. mns(hd(x))],

applyBF(GENSYM) = [xx. gensym(hd(x))],

applyBF(NUMBERP) = [xx. isint(hd(x))-T,NIL],

applyBF(GREATERP) = [xx. (hd(x)>hd(tl(x)))>T,NIL]

Figure A2.1c - Axioms for Yet Another LISP (ctd).

168

*

X

p
L,

¥
Iy
k'
S
]
%
X
i
ki

el

R
¥
i

REFERENCES

LCF

[1] Scott, D. "A Type-theoretical Alternative to CUCH, ISWIM,
OWHY?", - (unpublished - now uncirculated) Oxford (1969).
(2] Milner, R. "Implementation and Applications of Scott’s Logic

for Computable Functions", Proc. ACM. Conference on Proving

Assertions about Programs, New Mexico State University, Las Cruces,

New Mexico, Jan. 1972.

[3] Milner, R. "Logic for Computable Functions - Description of
a Machine Implementation"”, Artificial Intelligence Memo 169,
Computer Science Dept., Stanford University, May 1972.

[4] Milner, R. "Models of LCF", Attificial Intelligence Memo 188, Computer

Science Dept., Stanford University, Jan. 1973.

[5] Weyhrauch, R, & Milner, R. "Program Semanties and Correctness

in a mechanised Logic", Proc. USA-Japan Computer Conference,

Tokyo, Oct. 1972.

GG s el ik a bR A

i iy

[6] Milner, R. & Weyhrauch, R. "Proving Compiler Correctness in a
Mechanised Logic", Machine Intelligence 7, ed. D. Michie, Edinburgh
University Press, 1972,

(7] Newey, M. "Axioms and Theorems for Integers, Lists and
Finite Sets in LCF", Artificial Intelligence Memo 184, Computer
Science Dept., Stanford University, March 1973,

[8] Scott, D, "Lattice Theoretic Models for Various Type-Free
Calculi®, Proc. 4th International Congress in Logic, Methodology and the
Philosophy of Science, Bucharest, 1972.

(9] Scott, D, "Data Types as Lattices", Lecture Notes, Amsterdam, June

1972.

[10] Aiello, L., Aiello, M. & Weyhrauch, RW, "The Semantics of PASCAL
in LCI', Forthcoming A..Memo, Computer Science Dept., Stanford
University. |

[11] lgarashi, S, "The Admissability of Fixed-Point Induction in
First Order Logic of Typed Theories", Artificial Intelligence

Memo 168, Computer Science Dept., Stanford University, May 1872

170

-~

wy

¥

IR,
e s A

Sl A e

I o O TR U L UM T S e

LISP
[12] McCarthy, J., Abrahams, P., Edwards, D, Hart, T. & Levin, M. "LISP 1.5
Programmer’s Manual", MI.T. Press, 1962.
[13] London, R. "Correctness of a Compiler for a LISP Subset",

Proc. ACM. Conference on Proving Assertions about Programs, New

Mexico State University, Las Cruces, New Mexico, Jan 1972,

[14] London, R. "Correctness of Two Compilers for a LISP
Subset”, Artificial Intelligence Memo 151, Computer Science Dept,
Stanford University, Oct. 1971.

[15] McCarthy, J. “Recursive Functions of Symbolic Expressions

and Their Computation by Machine", Comm. of A.CM, Vol.

3, No. 4, (Apr 1960), pp 184-195.

[16] Gordon, MJ.C, "Evaluation and Denotation of Pure LISP

Programs; a Worked Example in Semantics", Ph.D. Thesis,
School of Artificial Intelligence, Edinburgh University, 1974.
[17] Gordon, MJC, "An Extended Abstract of "Models of Pure

LISP" ", Research Memo SAI-RM-7, School of Artificial Intelligence,
Edinburgh University, Dec. 1973.

Semantics of Programming Languages
[18] de Bakker, JW, "Semantics of Programming Languages",
Advances in Information Systems Science, Vol. 2, pp 173-227.
[19] Burstall, RM, "Formal Description of Program Structure
and Semantics in First Order Logic", Machine Intelligence 5,
Edinburgh University Press (1970), pp 79-98.

[20] Hoare, C.AR, "An Axiomatic Approach to Computer

Programming", Comm. of ACM, Vol. 12, No. 10 (Oct 1969),
pp 576-580, 583.

[21] Hoare, CAR, "Procedures and Parameters: an Axiomatic
Approach", Symposium on Semantics of Algorithmic Languages, Lecture

Notes in Mathematics, Vol. 188, Springer-Verlag, Berlin, pp 102-118.

[22] Hecare, C.AR, '"Parallel Programming: an Axiomatic

Approach”, Artificial Intelligence Memo 219, Computer Science Dept.,

Stanford University, October 1973,

[23] Hoare, CAR. & Lauer, PE, "Consistent and Compleinentary
Formal Theories of the Semantics of Programming

Languages", Technical Report 44, Computing Laboratory, University of

Newcastle upon Tyne, April 1973.

172

ik

Ll

&

L]

’ﬁ‘

i
8 P
3
A
I:.
3
3
o
[
N
“
1.'.
b
A
i
] ¢
v
i
i
X

[24] Manng 2, "The Correctness of Programs, J. Computer and Systam

Sciences, 3 (1969), pp 119-127.

[25] McCarthy, J, "Towards a WMathematical Science of
Computation”, Proc. IFIP Congress, pp21-28, Amsterdam, North
Holland (1962).

[26] McCarthy, J, "A Formal Description of a Subset of Algol",

Proc. IFIP Working Conf. on "Formal Language Descriplion Languages",

North Holland, Amsterdam (1966).
[27] Mosses, P, "The Mathematical Semantics of ALGOL 80"

Technical Monograph PRG-12, Oxford University Programming Research
Group, Oxford (1974).

(28] Reynolds, J.C, "On the Reclation between Direct and

Continuation Semantics”, Second Colloquium on Automata,
Languages and Programming, Saarbrucken, (July 1974),

[29] Scott, D, and Strachey, C.,, "Towards a Mathematical Semantics

for Computer Languages", Proceedings of the Symposium on

Compters and automata, Microwave Research Institute Symposium Series,

Vol 21, Vol 21.
[30] Waldinger, R. & Levitt, KN, "Reasoning about Programs", Proc.

ACM Sigact/Sigplan Symposium on Principles of Programming Language
Design, Boston (1973).

173

e 2 B N e S RO,

Bl ot

AR RS RS e stk Ea

CRNE A
S h A e i

s

ok

4
;
e

