
l-i-yi-.T... ,4 .r^

W***!me**Q***Vll!W!&^^

WJSiS&sim$im

H

AD/A-005 413

FORMAL SEMATICS OF LISP WITH APPLI-
CATIONS TO PROGRAM CORRECTNESS

Malcolm C. Newey

Stanford University

;?

Prepare d for :

Advanced Research Projects Agency

January 1975

DISTRIBUTED BY:

mi]
National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

::..v,-;vVv^-> >.■■-:,:;■-■■ . ._...... ..._... ..._.... __..._. _..__........_ ^^-A'i.y^.^i^li;: ...^...^ iü^tiMZr'. tfÜU-li^i - J-V>..*..-^V.':-^A^'-{"'---^:A^f"l''ax'^''A;'-£;

ipappy

UNCLASSIFIED <■ n

SECURITY CLASSIFICATION OF THIS PAGE ftWion Dal« Entered)

REPORT DOCUMENTATION PAGE
1. REPORT NUMBER

STAN-CS-75-V75
2. GOVT ACCESSION NO

4. TITLE fand Subfile;

FORMAL SEMANTICS OF LISP WITH APPLICATIONS TO
PROGRAM CORRECTNESS.

7. AUTHORfsJ

Malcolm C. Newey

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Stanford University
Computer Science Department
Stanford, California 9^305

II. CONTROLLING OFFICE NAME AND ADDRESS
ARPA/IPT Attn: S. D. Crocker
1400 Wilson Blvd., Arlington, Va. 22209

1'.. MONITORING AGENCY NAME & ADDRESSf//di«erenf Irow Conirolline Oftice)

ONR Representative : Philip Surra
Durand Aeronautics Bldg., Rra. 165
Stanford University
Stanford, California 9430.5

READ INSTRUCTIONS
BEFORE COMPLETING FORM

3. RECIPIENT'S CATALOG NUMBER

5. TYPE OF REPORT ft PERIOD COVERED

technical, Jan. 1975
6. PERFORMING ORG. REPORT NUMBER

STAN-CS-75-475
8. CONTRACT OR GRANT NUMBERfs;

DAHC 15-73-0-0435

10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

12. REPORT DATE

Jan. 1975
13. NUMBER OF PAGES

185
15. SECURITY CLASS, (ol this report)

Unclassified
15«. DECLASSIFI CATION/DOWNGRADING

SCHEDULE

16. DISTRIBUTION ST ATEMEN T fo/(/Ws Report;

Releasable without limitations on dissemination.

17. DISTRIBUTION STATEMENT (ol the abstract entered In Block 20, il dttlerent from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side H necessary and Identify by block number)

Reproducnd by

NATIONAL TECHNICAL
INFORMATION SERVICE

US Doparimcnt of Commoico
Springfield, VA. 22151

20. ABSTRACT (Continue on reverse side II necessary and Identify by block number)

Described are some experiments in the formalisation of the LISP
programming language using LCF (Logic for Computable Functions.). The
bulk of each experiment was concerned with app^iug -ehe formalisation
to proofs of correctness of some interesting LISP functions using
Milner's mechanised version of LCF.

A definition of Pure LISP is given in an environment which includes
an axiomatisation of LISP S-expressions. A primitive theory (a body
of theorems in LCF) of Pure LISP is derived and is applied to (continued)

DD FORM
1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

IIICliBSJEEEIl
SECURITY CLASSIFICATION OF THIS PAGE (Wien Dara Enlered)

ii^.JM .. ■■ .:......^v-..-.■■;..-^^J.w^^.j,^.-.^^.,.,.- ..,:.v.„.w!-...-,.:..w.. , ., .^ . ..w.^t^^l-,,^.,. ' ■....■■. ■ .. vq^^iu^äiaMgiaiiMI

ij^iiiiiinii.M ii .Him IJIII..I|IN»!>(IWWJ,JWIUI^^^ 'jmvrr !r^??^^?mww?^w*^7mfv?v*^^

fi <
UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGEfWiwi Dmla Enftmd)

proving the correctness of some simple LISP functions using the LCF
proof checking system. A proof of correctness of McCarthy's interpreter
is described and a machine checked proof of the partial correctness
is outlined.

A more substantial subset of LISP and a subset of LAP (a LISP-
oriented assembly language for the PDP-10 computer) were io;malised
and simple theories for the two languages were developed with computer
assistance. This was done with a view to proving the correctness of
a compiler, written the LISP subset, which translates LISP functions
to LAP subroutines. The coarse structure of such a compiler correctness
proof is displayed. n

JJL

'}

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGEOWion Data Entered)

^,^:,^-^..'roi.:? ;.--'■...., ..-■■0'^.it-„v,!'-*.v .i<teÄÄÄsMtäs«.»-»««-V''■■' i ' =^■^■'l-I^^:fM.T[a^li^iJ^aat'S:n'ilj,'M;a

mmv^v^r?* T- "■ ■ »m*~, "" - ^^ ■ ■ ■H-nT---:-i—-.■.i-a'^w.-?-"^-^w-ry.rriK^- ^"i['---—T-T

»

CO

o
c

Stanford Artificial Intelligence Laboratory
Memo AIM-257

Computer Science Department
Report No. STAN-CS-75-475

Formal Semantics of LISP
With Applications to Program Correctness

by

Malcolm C Newey

z

■t Research sponsored by

Advanced Research Projects Agency
ARPA Order No. 2494

COMPUTER SCIENCE DEPARTMENT
Stanford University

Ruproducod by

NATIONAL TECHNICAL
INFORMATION SERVICE

US Dopartmonl of Commorco
Springfield, VA. 22151

E

iM

■ l '.: \:^,\-KAir--:Jr^-::.^'lV-i~^ü*^J-'si:y-!Jii'n.'.-.i . ■■.......,.,..■.^.-.ri.-:*.Ju..^^^^i^te&ä&

?,'!J*^f/^r^^^:5^f»^-?^-^'v-^-^f-^^^^f^T^^'^CT^TT^■ Jj-^■'*;^:^'r- "-^■ v ,.^"'"vra*^^TOK^W^

Stanford Artificial Intelligence Laboratory
Memo AIM-257

JANUARY 1975

Computer Science Department
Report No. STAN-CS-75-475

Formal Semantics of LISP
With Applications to Program Correctness

by

Malcolm C. Newey

^■■ip.

r-Sf-"),—,-;, '•-'
in 1 s n i1.-; n nr-Tfr"-,

y< FT, 9 |Q7r I

ABSTRACT

Dcsci-ibrd run srinir (•xprriiiK'nts in the toi'mnlisation of the LISP programming language using
LCF (l.iip.ic for Cbmpiitnlilc Functions). The bulk of each experiment was concerned with
applying; the formalisation to proofs of correctnes of some interesting LISP functions using
M ilnn's mechamsoci version of LCI'.

A dciiiiitioii of Pure LISP is given in an environment which'includes an axiom.;tisation of LISP
S-expressions. A primitive theory (H body of theorems in LCF) of Pure LISP is derived and is
applied to proving the coiTixiiiess of Mime simple LISP functions using the LCF proof checking
system. A proof of correctness of McCarthy's interpreter is described and a machine checked
proof of the partial correctness is outlined.

A more substantial subset of LISP and a subset of LAP (a LISP-oriented assembly language for
the PDP-IO computer) were loimalised and simple theories for the two languages were developed
with computer assistance. This was done with a view to proving the correctness of a compiler,
written the LISP subset, which translates LISP functions to LA? subroutines. The coarse
structure of such a compile! correctness proof is displayed.

77)/; rfsi'arc/i wns supported by the Advanced Resanch Projects Agency of the Department of
Defense under Contrnct DAIIC /5-'/?-C-0-/55 . The views and conclusions contained in this
document are those of H.c nuthor(s) and should not be interpreted as necessarily representing the
official policies, eithet expressed or implied, of Stanford University, ARPA, or the U. S.
Government.

Reproduced in the U.S.A.
Virginia 22l'>l.

Available pom the National Technical Information Service, Springfield,

d . produced from
belt available copy.

LLb

^ ■■-- - .^ „ ^..J,,- _., , -. , ._; ■■...... :..,..,.l,...^..- ^.,.:..;..^>l^JlUtttBttl^aialLil

wmm mwm\ww**mv*.*f.wv^-r T„^.ü. UIUP^JH^W nMuifu-u« r^ .,. ...,.,.. ■.,■■. ■,, , . ■, ,,-, ■.....■■:. ,.■ ■■, ■■ ■..-..■; , ■ ,. ■ r,

Particular attciuion is paid, in describing the expeiiments, to deficiencies revealed in the
expip^ivf pownr nf I..CF a; a logical language and to limitations on the derlnrtivr power of the
machine implementation of the lugic.

A ilissvrlntion submittftl to the Üejmtment of Computer Science and the Committee on Graduate
Studies of Stanford University in fmrtial fulfillment of the requirements for the degree of Doctor of
Philosophy.

Reproduced from
best available copy.

tit

- ■-■ - ■ .—- nnrinM-r — - .-■■■^-^w^ ■ , ,-. ,..^. ^i.-..-^»...,.;..!.^^^...^-.^;. ^^^^M^M

.- -i STK^; ".-rv .''"V ■«f-',V!Vi'''^!>";^ A; ,"!"<■

t ü

ACKNOWLEDGEMENTS

I feel a great debt to John McCarthy, Robin Milner and Richard Weyhrauch

who kindled my interest in the 'ogical aspects of Computer Science. These people

were also the main source of background and principal agents of stimulation for my

re-üeätcl). In particular Robin Milner deserves a lot of credit for his vision in

originating the LCF project.

Special thanks are due to Tony Hoare for his very helpful and detailed

criticism of the first draft of this thesis.

I would also like to thank David Barstow for the help which made it

possible for me to edit the dissertation and produce hard copy at Stanford while

living in Edinburgh.

Finally, I would like to express my deep gratitude to my wife, Marie, for

lots of assistance, patience and encouragement.

.-;:'.;i.^.,^A:j..^.UjJ..^ii^;^Li^':'i..^^ -•■ -- iM-'r -n-.r .r- --i .Vii-wtv^j^nii^iii^Ht^Btoiyihaaiaaiiiiii

^MM^MVlil wui.ilMliRH. u Hi i.i ,l HJiiMii«»! i pimtR. pw.iiiiaiiiiuu. ...»».,.. M'--™ii».!l!^^»«».TJWM'VA'JM.«^il..|i,v-.|W.!äw^ , ,:,,.,.,.T,,,J,

TABLE OP CONTENTS

SECTION or CHAPTER
PAGE

Introduction

1.1 Summary

1.2 History of the'LCF Project'

1.3 Past Work in Formal Semantics

1.4 A Treatment of Pure LISP

1.5 Correctness of a Compiler

1.6 Second Generation LCF

1.7 The Problem of Side-Effects

Pure LCF

2.1 Terms, Types and Domains:

2.1.1 Syntax

2.1.2 Semantics

2.1.3 Strictness and Discreteness

2.1.4 An Example

2.2 Formulae, Sentences and Proofs:

2.3 The Axioms and Rules of Inference.

iv

1

1

1

4

5

7

9

9

11

11

11

12

13

14

15

16

i

lk^...vv.,.i »...'. .,..,...; ,■,..;-...,. J.,,..jl...,-f.:„„„ ■■■■.,. v,..„. ,,;.l.,^. :,..L:.., J->,a^a^,.^.^. ■: :-.'av..A-riA.i..^.M.a ,.;^„..;;..;,fafci..^.. ^.„.. .; , L-^tnAt.-^tHnitlZti/JuiMäi

r,. ?yß^fy^,^F^^^PßSri^

.::,':.: ;■■■■.;.■■>■■■-■■■■■:i-'--r;.v ..r■-v-^-i-'-i-^^.^■.x^--'-^-^.--^:.

2.4 Some Examples:

2.4.1 A^B, B^C |- A=C .

2.4.2 FEG, AEB h F(A)5G(B) .

The LCF Proof Checking System

3.1 Proofs:

3.2 Formulae and Terms:

3.3 Using the LCF System:

3.3.1 Substitution:

3.3.2 Contradictions:

3.3.3 Theorems:

3.3.4 Simplification:

3.3.5 Prefix Stripping:

3.4 Examples of LCF System Proofs:

3.4.1 AEB, FEG I- F(A)EG(B)

3.4.2 (P-l.F^F h P=F

3.5 Concrete Representation:

The Mathematical Environment

4.1 Axiom Free Theorems in LCF:

4.2 Equality and Definedness:

4.3 Natural Numbers:

17

17

18

19

19

20

23

24

24

25

26

29

29

29

30

32

33

34

35

37

iK. ■■ ., .-..-■.^ ■■J.-..J.v..-..aL..^r,.fV...,.,..,.-...^->..- .-- ^--^ —-. -■-: ^■-:. -...^■:.-.—:,:-.^ -^. ^t-^^J^^ajm^MlMMiriM^

r-'^r(^^r;^T"^r ^ " c " —i "^ r^rr-x-n,—r^ -T -.^ ^ —T-F--w ^i r "- - ' -^ - - ^ ' - » -f™ ^vj ■n,^^" ft ^c'i'^.v^^Ts

S.Ji

4.4 The Integers:

4.5 Integer Arithmetic;

4.6 A Theory of Lists:

Notation, Denotation and the Nature of LISP Expressions

5.1 Notation and Denotation:

5.2 Abstract Syntax

5.3 S-expressions:

5.4 LISP Expressions:

5.4.1 List Notation.

5.4.2 LISP Functions:

An Axiomatic Theory of Pure LISP

6.1 Extending the Environment for Names:

6.2 Axioms for Interpreting Pure LISP:

6.3 Discussion of the Axioms:

6.3.1 A Different 'evcon'.

6.3.2 'lisp' is not 'evalquote'.

6.3.3 Strictness of 'eval' and 'apply'.

6.3.4 Total Formality.

6.4 Theorems of Pure LISP:

38

40

41

44

44

45

46

48

50

51

52

52

54

60

60

61

Gl

63

63

VI

Ü

, ■v.^i;Vi^^V^:...:i^ s*i..i^^ .'„v^i^-^-,.^^^^^ A... .y.^ f-iu j..Y^.ii.y i'fi ITtiitiirtnfrflriitofifri-^r 'Mm

fWTIfP5W!!fPWW*WWT'»rJ ,'-!',l■■ "'•' ■■l ■ ' "Tl •".» it ia.ii-.ii"-"M'i!.ii".■F.'."'"',:'i«..",......»F-, -,..-.».....>...."..,--—=--» Ti

7 Applications of the Theory of Pure LISP

7.1 The NULL Function:

7.2 The EQUAL Function:

7.3 The ASSOC Function:

7.4 Remarks:

8 The Correctness of an Interpreter

8.1 Meaning of PAIRLIS:

8.2 Important Lemmas:

8.3 Informal Proof of Interpreter Correctness:

8.4 Interpreter Correctness in LCF:

8.5 Partial Correctness:

8.6 Total Correctness:

67

69

71

73

74

75

78

79

81

86

87

90

1 J

Compiler Correctness (I) - Language Definitions

9.1 Extensions to the Environment:

9.2 LComO LISP:

9.2.1 Informal Description

9.2.2 Formal Description

9.2.3 Theory of LComO LISP

9.2.4 'BFD? - Basic Functions Defined

9.2.5 Well-Formedneso Predicate

vii

93

93

95

95

96

100

100

102

filL,,,'.'.'<.. ..,*.-'. ...V...V,; i;-":.-L--JJ^X^^^.v:jL!i*^U^J«^-i^..i'*^Ii«.^JUt.C ■■ ..^i--... ■• .,-.;.-■■■.„.,,.■ :-..^^^_.>._. ^-^ ■ . „■■.-^.. .■■..■■....^ . .^-. ..^^r. ■.- .^ ■-....; .^ -^ft-^-aJL^

■jgygp^PPffP^wy^iTO ■-^

9.3 LComO LAP - Informal Description:

9.4 LComO LAP - Formal Description:

9.4.1 States and functions on states:

9.4.2 LAP Functions and operations on them:

9.4.3 Interpreting LAP.

9.5 Towards a Theory of LAP.

102

106

106

108

109

111

©.

10 Compiler Correctness (II) - Outline of a Proof

10.1 The Compiler:

10.1.1 Some Slight Changes

10.1.2 Predicate "CFD' - Compiler Functions Defined

10.2 Meaning of the Compiler:

10.3 Properties of the Compiler Functions.

10.3.1 Totality

10.3.2 Completeness

10.3.3 Distribution of Labels

10.4 Statement of Correctness.

10.4.1 Correctness of the Compiling Algorithm

10.4.2 The Principal Lemma

10.43 Environment Correspondence

10.4.4 Second Level Subgoals

116

116

120

120

121

126

127

128

129

129

130

131

131

132

0

VIII

01

- — ■■ - — ■ • ■ - ■ , ^ „.i, „ ' • .-,•.. •- ; . u , . , j i t^i^^ , , ■-.-.■ ■.>.. .^.^^-^-^"^

pp5gBpipipP!pf^pi|[?«»wpp*T»»^^

10.4.5 Attacking the Subgoals.

10.5 Feasibility of a Full Compiler Proof

11 Second generation LCF System

11.1 Prior Accomplishments

11.2 Proof Generation vs. Proof Checking

11.3 High Level Command Language

11.3.1 Data Types and Expressions

11.3.2Conirol Structures

11.4 Revised Axiom Structure

11.5 Extending the Pure Logic

11.5.1 Derived Deduction Rules

11.6 Concrete Syntax

11.7 Extending Simplification

11.7.1 Inequalities

11.7.2 Split Level Simplification

11.7.3 n-time Simplification

11.7.4Subgoals from Conditional Simplification

11.7.5 Case Analysis in Simplification

11.7.6 Simplifying Procedures

11.8 Types

138

139

141

141

142

143

144

144

145

146

147

148

148

148

149

149

149

150

150

150

IX

■^>':'?-':^i,t''^U'*^-li\iiii^ ■■-&+■,*
::-^i-?k^^i.. .____._._. _. ._..... _ ihi ^A^fc^t^'^^j^-'^'^^^»

11.9 Miscellaneous Improvements

11.9.1 Solving Equations

II.9.2Definitional Facilities

11.9.3 Automatic Forward Reasoning

i 1.9.4 More Abbreviations

12 Conclusion

APPENDIX 1 - Theorems of LComO LISP

APPENDIX 2 - Yet Another LISP Subset

REFERENCES

152

152

153

153

153

155

153

165

169

€)!

»i^^tM..^^..,;.^;.-^...^- ... -...;,- ig, iv. „, i . ■■ .- .^.^u.^..^-^>i.v...:.- :...^...'..i,.^..^,.. . ^..,,..B...,. „j,.^.,:.; . ,..,. . .., ^^-.»^.^tj^^iaMti

- l-qp»ri^ FräV^^n, JtZ^Pn&W'?^?^^^'™?-.'^'?-'"'™^ ■ ,>.;. ^'•"■w^'j'f« . • m
Kff •ss 6Wf? iS#fi|'- i

■.ij

i

LIST OP FIGURES

TITLE

The Pure LISP Interpreter of McCarthy

The Definition of 'Eyal'.

S-expression Form of the Interpreter.

S-expresslon Form (ctd).

Some Lemmas about SevllsB and SapplyB.

Some Lemmas about SevconB and SevalB.

Some Lemmas about eval, apply, evlis & evcon.

The Important Partial Correctness Subgoals.

Axioms for LComO LISP.

The Built-in Functions of LComO LISP.

Relationships Between 'eval', 'apply' etc.

Some Basic LISP Functions.

Wcll-Formednoss of LISP expressions.

Partial Semantics of 8 Lap Instructions.

Partial Semantics of Ihe CALL Instruction.

The LISP Functions that Make up LComO.

LComO LISP Functions (ctd).

LComO LISP Functions (ctd).

xi

PAGE

55

59

76

77

82

83

84

89

97

98

99

101

103

112

113

117

118

119

^.vte.lWÜÄ,::..^:^
. ■..■-. _...■ ,■■■■_. ■..■•. ■^...■..- ..■■■... ^.-■^.-^..^■-*.-i^^--' ^■•.-.■:w^.-...^...- „^.^^...:..-voJ^.^,:v^^-,.J:....-.>^........^.. . - ..y^,^^^!!!!^!,!^!^^!!

"* - -^ -"- j -1 • ' T 4 -1 .• "— rt- -x" -<- - - ^ .. sy - '- "~"'-^ ' -~ - ■ fT'Twp^.r.*/^^: = ' ^ ^ ,.„■

Ö

'comp' - the meaning of 'COMP'.

Auxiliary Functions for 'comp'.

Auxiliary Functions for 'comp'.

Theorems Explicating "compexp' and 'combool'

Subßoals Describing Effects of 'compexp'.

Subgoals Describing Effects of 'complis'.

Subgoals Describing Effects of 'comcond'.

Subgoal Describing Effects of 'combool'.

Subgoal Describing Effects of 'compandor'.

Axioms for Yet Another LISP.

Axioms for LISP (ctd).

Axioms for LISP (ctd).

122

123

124

125

133

134

135

136

137

166

167

168

XII

tJ

■*..;.. -:..r,^.-.:_.;.■.,--.^.AS.^A,,;^^^. ■ ■- i.--.^ /■'.-.. ■v;:.:v^--.-.:^; ■■•,■.■-.■■..-. ^-v'^;::..-.^.^.

HEHataMptani

.. ; ,,,■■ ; ,,;..;■.., ■,■ ■ ,. ..■ ■ > ... >, .

■ "i.-:. '■ ■■:.:-■. -^■■■^■..r ■-■'-■■:-:-■ :■■::-■-'

CHAPTER 1

Introduction

1.1. Summary

This thesis discusses the application of LCF (Logic for Computable

Functions) to the problem "Given a programming language, define precisely the

semantics and develop a mathematical theory which is suitable for reasoning about

programs of the language". It is primarily concerned with building an axiomatic

theory of Pure LISP which can be used in the extraction of meanings of LISP

functions. Particular functions discussed, in terms of correctness, are ones which

perform interpretation and compilation of subsets of LISP. A principal aim of the

investigation was an evaluation of both the expressive and the deductive power of

LCF.

'i j

1.2. History of the XCP Project'

The starting point was an underground paper by Dana Scott [1] In 1969

describing a typed combinatory logic which was suitable for recursive function

•ir.VjH-AK\-Jli\J.^:^-'„l<:3.'--^-.- .<■■ "".o^-.''^!'>.Ä=>U'-v';'. i.t:^

^, „ r ^ , nt-,1 - - .■^;.nf-„vr-„-i-,,t-,-.,.:^ -.y, ..;~^. ^..^y.^^.^*,,^^^

theory. Robin Milner, in 1971, replaced the combinators with typed lambda calculus

and that logic will be referred to as Pure LCF. He also implemented a proof checker

for this version of the logic and this program (later improved upon) is called the LCF

System, or simply LCF. Milner desoribed Pure LCF and the LCF System in [2]

(including come examples of the use of the program), [3] is a user's manual for the

system and [4] contains the only available technical discussion of the model theory

of the logic. For the sake of self-containment, a short tutorial on Pure LCF is

included in this report as Chapter 2 and because improvements to the LCF System

are a major concern of this study. Chapter 3 is a brief description of the LCF

System as it now exists (in fact an improvement on the version described in [3]).

Milner saw LCF as an excellent tool for the Mathematical Theory of

Computation (MTC) and it is in this capacity that LCF has attracted some attention

(within the field of computer science). The first chapters in the application of this

tool to MTC problems were written by Milner and Weyhrauch (1972) with two

documented experiments involving proofs of program properties. [5] discusses the

proof of the correctness and termination of a simple program (for the factorial

function) in a simple algebraic language defined by means of its abstract syntax. [6]

reports on the development in the LCF System of a proof of the correctness of a

simple compiling algorithm. That algorithm dealt with the abstract analytic syntax of

the source language which featured the constructs of arithmetic expression (with

"■■'^"•■•- - ..^■■--■■-■■■.■■-^■'■^^-■--■■■■-•■'■■>^^-^1-^ .■■■^-■.-^. --^,- -. .^..L.^tivLiuiUaiaguaialUmmmmai msi

TiV^ *'*,^-'w ■!'w-f ■' ■ "■■

binary operators and variables) with assignment, conditional, compound and 'while'

statements. The target language was for a machine with an accumulator, a memory

and a stack; it contained conditional and absolute jumps, load and fetch commands,

label-j and an instruction to apply arbitrary binary operators. Much of this

experiment was concerned with the application of algebraic techniques to give

structure to the proof.

Although the proofs in the Weyhrauch-Milner experiments were machine

checked, it was expedient to assume many theorems from areas such as arithmetic

and finite set theory rather than prove them in axiomatically based subtheories.

The results in question were all considered 'intuitively obvious' but the practice

allows errors to creep in. What was needed for succeeding experiments was a

mathemotical environment based on axiomatic treatments of the usual

backcround nrcao such as arithmetic. A step in this direction was taken by Newey

[7] who gave suitable developments of a basic prepositional logic, natural numbers,

arithmetic over the integers, lists and finite sets. The library of results obtained in

that venture amounted to some 1000 theorems and was more comprehensive than

our present needs require. We give, therefore. Chapter 4 as summary of of the

parts of [7] that are relevant to giving the semantics cf LISP.

Viewed in the light of this history, the formalisation of LISP semantics (in

LCF) appears as another step in the application of LCF to the problems of MTC. In

■■■'' ■■■■■—^'■■■-'-■■-■'.V^.^-.A^

-.-TV-r-7Ty~i-.„-"--TT- ~T-T-.- iiiii^. ■ .■wiijwi^;A^^>w^^)!'OT:'^v^:""V-rv;TV'^,-,".,»''^T-',7'A"-J"u''''" ■" —r-,—T.~ -...i,r.— "■'>< .-,.. „-„^„,-- ™^ TT"n ^-,~>^

fact one of the main concerns in the experimental work is that it should inspire

criticir-m of the current LCF system that can be translated into improvements to be

realised in the next version.

1.3. Past Work in Formal Semantics

A survey on semantics of programming languages was given by J.W. de

Bakkcr in [18]. Although it is getting old, we shall simply update it with pointers in

the bibliography to more recent work by Burstall, Gordon, Hoare, Lauer, Manna,

Waldinger and the Oxford school as well as the Milner-Weyhrauch work cited above.

Of particular relevance is a short survey in [6] on compiler correctness.

There have not yet been any critical comparisons with previous formalisms

but certain properties of LCF must be conceded to be big advantages. First it is

based in logic and so it has deductive as well as expressive power (i.e. we can use

it to reason about programs as well as define the semantics of languages). Second,

it deals with functions (possibly partial) and functionals conveniently because of the

lambda calculus base. Last, there are very good chances that automatic deduction

will be moderately successful.

In terms of foundations for the present work, we follow the constructive

approach that McCarthy has used but do it axiomatically in a logic as Burstall

I
 -■■■->■ -■■■■--■-■■■ .■■■ I-..- ■ ..-^-.VW.,.;.^...LV.^:^'.,W^V^^^ . ^..ML. ..^tätiiMmmääliiiiMMlääM

• :■■■,■.■-■.■vi:'.-. .,;>■ ■ ■.-■-^-■■■■.■: ;-;,-■:■■-■'■ v;" ■■r-.,;..:.-:.-- ^v:^;^'|

I

proposed. When we develop mathematical theories of a language we get theorems

about the local effect of language features that rather resemble Hoare's rules. We

also depend heavily on McCarthy's notion of abstract syntax as presented in [25]

and [261

Chapter 5 shows how we are able to factor syntax and semantics for LISP.

The technique makes use of abstract syntax and functions for mapping between

concrete text and abstract representations of programs and data. That chapter

discusses the concepts of 'notation' and 'denotation' in relation to LISP. 1.

1.4. A Treatment of Pure LXSP

McCarthy presented Pure LISP in [15] but we take [12] to be the

authorative reference since it is later (1962) and a touch smoother. Following his

example we specify the language by means of an 'interpretive semantics' which uses

association lists to bind values to variables. More precisely, taking both LISP data

and functions to be S-expressions over a suitable set of names, a function is defined

in LCF in such a way that it interprets source LISP expressions appropriately.

Moreover, that function makes use of 'eval' and 'apply' functions which behave as

the McCarthy Pure LISP functions of the same names. The LCF definitions of these

functions together with the axioms which specify the notions of 'name' and

s.,.',.~,,.,..:,:i*Miji~.;:u^ul ■ ..t.^.-u.^.^.^.J^^^M..^...^..^- .^^^^^.^■■■.^;^j....^.LW^^^^..^.^..^. .^^y...»;,,,,...^...»^..... ...,. . „>—^^»y^

"■-Ij"r—" -^^^^7.v:7■^""T^^;■■'■rI'^*'?^T-^^j^^.^.',. ^i'-?'

'S-expression' form a basis for a mathematical theory of Pure LISP. Chapter 6

presents the axioms and describes a rudimentary theory (a body of theorems) which

will greatly ease the task of proving things about Pure LISP functions.

This semantics (or theory) was then used to prove that certain sample Pure

LISP expressions denote the appropriate mappings on S-expressions, The particular

functions were NULL, EQUAL and ASSOC. Chapter 7 discusses the proofs which

were generated and checked using the LCF system since they illustrate some

general techniques.

The examples culminate in a discussion of the correctness of the S-

expression version of McCarthy's interpreter for Pure LISP which is written in Pure

LISP itself. Actually, we will seek to establish the correctness of the S-expression

form of 'eval' which we will call Seval. The property we want to prove is Tor any

A-liot al, the function denoted by Seval via int&rpretation is 'eval' itself",

i.e. Ve a. apply(Sevall(e a),al) = eval(e,a)

Chapter 8 addresses this problem and presents lemmas (proved with

assistance of the LCF system) which show, in particular, that the functions 'eval' and

[\e a. apply(Seyal,(e a),al)] satisfy almost identical recursive equations. These

lemmas enable us to conclude in the metatheory of LCF that the functions are

indeed the same. Reasoning within the logic it was possible to prove a sort of weak

correctness:

I J.t.M^^.^.;!:^^.^^.-..^...^.-.. ..■.;.,• ■■-■■:.■ -..■. ^l:--.,-^-.. , ■.■...:. ■■.■.-:;.. ■-;-. - .. .-^ --. ■■ ,..■.. V.-o ■..,...■ J. ^J.-^... . .-,-. :■ ■ ■ . .--■ - r.-. ■ . .-■■^ v Z-.-■■ V .'.:--,-. V.... ::....,■. ^ ,, i >.■.- ■ .::■.•. ^ .,i'-. . __ __._ _ _"___^

"Tvy;"^r'7r;vnP.?r^*pT^'VVMiTi

...;.;,■• ■;;-^.-.'.;^ v.,;-v-^^;r- ■■■ 'M;-. ■;■.;-'^

Ve a. evaKe.a) E apply(Seval1(e a),al)

but the attempts to prove the other half of the above equality led to an

Identification of a deficiency in the LCF system. More specifically the other part of

the proof would have required more space and time for computation than feasible.

1.5. Correctness of a Compiler

London in [13] gave a rather informal proof of the correctness of a certain

compiler for a subset of LISP; LAP (a variety of PDP10 machine code) was the

target language. This compiler, which is called LComO, was written by McCarthy as

a pedasoßic device for a course at Stanford. Also, as mentioned before, Milner and

Weyhrauch gave a formal proof of a minimal compiling algorithm using LCF. It was

therefore clear that LCF was an appropriate vehicle for attempting the rigorous

verification of compilers like LComO.

Two chapters are devoted to a detailed study of the feasibility cf

establishing the correctness of LComO within the LCF system. The total task factors

evenly to four subproblems. The first two are the axiomatisations of the two

languages involved. The third is the extraction, from the S-expression version of

the compiler, of its meaning function - 'the compiling algorithm'. The last is the

establishment of the correctness of this compiling algorithm.

n
^^BjlQjlljlQIfgllQIBfpf^gXfff^^

The treatment of the LISP subset parallels the work on Pure LISP in that

axioms defining the language are expanded into a usable theory for the language by

deriving theorems.

The meanings of those instructions that are generated by LComO are given

in an abstract formalism which interprets the action of assembly code programs on

machine states. The formalism is an abstraction in that no account is taken of store

size, word size, the actual representation of S-expressions or garbage collection. As

in the case of Pure LISP, certain handy lemmas are proved and described. This

material takes us through Chapter 9.

Chapter 10 starts with the discussion of the extraction of the compiling

algorithm from the S-expressions for LComO. The same techniques illustrated in

Chapter 7 are used although the larger S-expressions lead to correspondingly longer

proofs.

The normal use of the compiler is to translate a 'program' of LISP functions

into a program of LAP functions. We then say that a statement of compiler

correctness is "in all such situations the the answer obtained by executing any LAP

function must agree with the result of calling the corresponding LISP function with

the same arguments".

Whereas our study of the other parts of the problem showed that attacks

using LCF are quite feasible with the current LCF system, the proof of correctness

. ■ - ■ ■ ■ -,..,J-..t.a;...J...- -...^^■■^^■■•■i.t...-.-. >.,. .^J.J........„„.w^.^^,-.^......,' *-....,^.liA-^ii^aii±d**iUiUtUmiä*miul*mt*m

i ..«iMk
i*m '.' ^.■™'. BT

V
*",''^rny.~w'''f7' l'^- 1. I | "T" ■T1,«■»■.-■;•■(—,;'>!.','"^,"."^1 IT 'JiVTV"1^^ ^--iniiw--. -.!—;-■- ^.v-q^l'-^^T^>^^|^'^T;:^ r^T^f s^^;f ^-.'fj:" ' ■

of the compiling algorithm is much too long. In retrospect, this is not surprising since

the compiler is an order of magnitude larger than the one Milner and Weyhrauch

worked with and the languages are also more complicated.

Although the proof was not carried out we do discuss its structure and

suggest in which directions the deductive power of the LCF system must be

improved before the proof becomes feasible.

1.6. Second Generation LCF

Chapter 11 presents suggestions for the design of a new LCF system. The

main design change is that the system should be two separate programs - a simple

proof checker for a restricted form of LCF and an interactive proof generating

program. There are also suggestions for making the input language to the system

more 'high level'. A mechanism is presented for having a resticted class of derived

deduction rules provable within LCF. Some attention is given to further extensions

of simplification and some suggestions for new deduction mechanisms are examined.

1.7. The Problem of Side-Effects

Both subsets of LISP mentioned above contain just a few of the interesting

features of 'practical' varieties of LISP. The most notable missing features are

t

>**■ ■ w,^..,...-«.;^-"/'^^-''^ ---^^ ■ ■ ^^aüatea^aaMMMi

PITv'i" ~ ^T - J -> 1r fJ[1. T n - ^ -r *, -E ■v^f!

SETQ:s and PROGrs. The second appendix 2ives another LCF interpretive semantics

which can handle certain sids-effect features of LISP - SETQs and the regular

GEkCYM device. It also deals with the PROG construct but still does not handle

arrays or property lists and certainly not the distinction between the LISP 1.5

functions EQ and EQUAL. Again we deal with an idealisation of LISP which Is not

subject to recursion depth limits, finite arithmetic or boundea memory capacity.

V

o

o

10

0

kxl i u , ; .ii. i ^ ■ - ■ i ! ^^. ■ •■■ ^^j-j - ■ - ■ ■ ^ I . ■ ,■■;..,i-....^.v..,;.-.,..;-.:.. ■. : -.. ^..^J^—^-»«»n

>:-■; ^■■i^.-;.;":-?;^.'''-!..";-a;".. - ■: p ■■■■■■7r-rr.y-ii^;^j^^^n:^ ■>;-; v^'C' r? ■-■ ■(:■ -i-^:.^ n - v Y^;- ■".7 V- E'-,"■, 77.. ; /: .^P^";"^ .><'«r,'

ä?S.9«B?s®B!s;•' ' - i" ■'"■'■''". •;v".-*:-- ,-■.' -■/■: ^->;1-:;,■■.-■

CHAPTER 2

Pure LCF

In this short exposition of Scott's logic no justification of the semantics is

given; the curious reader should consult [4].

2.1. Terms, Types and Domains:

T

2.1.1. Syntax

The terms of LCF are those cf a typed \-calculus with the addition of a

least fixed point operator and certain constants; the two base types are called Hr'

(for truth values) and 'ind' (for individuals). All types other than 'tr' or 'ind' are

derived from these two by a finite number of applications of the rule "If « and /?

denote types then so does (a-*/?)". With every term of the logic there is an

associated type and we may postfix terms with their types so that, for example,

t:/? indicates that term t has type /?. The syntax of LCF terms is then given by the

productions:

<lerm;/i> = <identifier:^> | <application:/?> j
<conditional:/tf> | <\-exprn:/?> | <fi-exprn:/?>

where <application:/?2> = <term:(/U->/?2)> (<term:/?l>)

11

aliü«i»ii.. - ■ - ■■ - ■ --- '-■ ■-■- -iil.ajlliini 1 r 1 ■■ ■-' - ' -^-^.^.^ia^mMmttiaM!^

- r ------ T- n-! ^ -r '' T'- t- -> r - «,-,,--, ^v, ^ F ^, .,..;. . ,-.. ,o. ^ r-^ . .,,^,T, ,.,.-, ^..^

•'conditional:/?> = <term:tr> - •:term:/?> , <term;/?>

<x-exprn:(/?l-*/?2)> = [x <identifier:/?l> . <term:/?2>]

<M-exprn:/t?> = [/* <identifier:/?> . <term:/?>]

and where identifiers are defined in the usual way.

2.1.2. Semantics

Terms of type /? denote objects in a domain Dfi which is to be a partially

ordered set (ordering relation E) with every ascending chain having a least upper

bound in D^. Moreover, each D^ contains a minimum element denoted by the logical

constant 1^; that is, 1A s x for all x < D^.

The interpretation intended for the relation 's' in the various domains is

that of relative definedneso. That is, xsy is to be interpreted as saying y is at least

as defined as (and consistent with) x. Hence we see that for a domain D^, the

interpretation of i^ is that of the completely undefined element.

The base domain D,r (the domain of truth values) contains precisely three

elements (l,r, T, F) in the fixed order given by the diagram:

T F

W
i.r

Ul

0

u

o

G

12

-•ÄW^;;:i:Äv^.i;h _ _ _ _ _ ■■.J..,-. .-..,..■■.-.... ..^■,.. ■■■■■-■;,. ."...::■.:-:;/_■ ■ ■-.■■■. I'.J.:':...'.^.'■:.;£.: 1V - rrtlnfr liTtoli^" ^""^Afil-Üü

Jv:-n■^^l--!S^.^,oft^■;.:3K:l:.^^.:.v.1^,»K-ju-3,5:>,:..^::.l^■^.;-r-:=^:^ /■^"^'W'^'.'^;^"'^: ■■■■'::■;

r-

The other base domain D,nd (the domain of individuals) is normally

constrained by the addition of some non-logical axioms to characterise the non-

functional data in a universe of discourse.

Finally, D^.,^ is the domain of continuous functions from D^ to D^. A

continuous function is one which preserves the least upper bounds of ascending

chains. However, we shall never be using this notion explicitly so simply take it as

fact that functions and functionals formed by all the term constructing mechanisms

(presented above) are continuous. A property of these functions is that they are

monotonic; i.e., if F is in D(e,wi) and x:a E y:c< then F(x) E F(y).

The interpretations of application and x-abstraction are the usual ones.

The term S:tr -♦ Tl:/<, T2:/< denotes 1^ or one of the two objects in D^ denoted by

Tl and 12, according to whether S denotes itr, T or F respectively.

Of.S] should be interpreted as denoting the minimal fixed point of the

function [xf.S]. G is a fixed point of [>f.g(f)] if G denotes the same function as g(G);

minimality is taken with respect to 'E' .

2.1.3. Strictness and Discreteness

A function F,^, is termed strict if the value of F{lJ is 1^. A domain

D,v is termed tliöcrelc or flat if for any x,, and y^, x^ - v^ implies x^sy^ or

x^^l...

13

^^'■^'.'■-•'■^-■■X?^ ^__._ _ _ _ _ _... _._....,.„>!.,(.-, ..r ,. ;^:i-'J-.^;>,^A-..-'viV,^^.i^^:>1:^,;..;^;^,|;.v>'>/-,.- _._ ,_ - ^'^^^^^fü^J-Jtit'^täSili^i

PUII W^LfflWp.WWpilWJiH« W-W^

2.1.4. An Example

To illustrate these notions let us construct the factorial function in terms of

arithmetic primitives. We imagine that we are given non-logical axioms which

constrain the domain of individuals to contain a structure which looks like the natural

numbers. So Dind contains an individual which we call 0 and there is a successor

function which generates all natural numbers by repeated application to 0 (1 is the

successor of 0). We suppose Z is a predicate which is T on 0 and F on all other

natural numbers. It is an easy exercise to use monotonicity to show Z(JL) must be 1.

(Note we are beginning to omit the mention of types when the information can be

recovered from context.) We also make use of a predecessor function 'pred' and a

two argument multiply function V.

OF.[>x. Z{x) -» 1, *(x)(F(pred(x)))]], which we call 'fact', is an example of

a term and contains instances of application, conditional expression, x-abstractlon

and the minimal fixed point operation. It also involves bound variables (V and T').

This term denotes the least defined function which satisfies the recursive definition

F(x) <- if x=0 then 1 else x*F(x-l) .

The types of the various atoms are as follows:- '0', '1' and V all have type

ind; 7' has type (ind-tr); 'pred' and T have type (ind-Hnd); '*' has type

(ind-(ind-Mnd)). To illustrate why we are interested in least fixed points of

functions note that the above recursive definition is satisfied by another function

u

14

.:^:i--;-B.i.^,;Xv.^ .;:".;4/v.^ .: ^.-^ ^..^ ;^...^.^.;^^^..i«.^^^^.....f^.^.^.^.^tl^lf.-.:^.-...^^ X ..■■■.^^■■.. ..^..-..^K.X^^

wjjy^j^^Tv^.Ki ■;.-, ^:;-^-™^^y^^«(ij^ii^ WBHj^jitj jFn"if"

'fact2' which agrees with 'fact' but gives zero on all negative numbers (assuming

these are also in Dind). It will be provable that fact E fact2 .

2.2. Formulae, Sentences and Proofs:

m
An Atomic Well Formed Formula (AWFF) has (for arbitrary

type ß) the form <term:/?> E <term:/?> . The symbol 'E' is of course identified

with the ordering relation on D^ and so the interpretation of AWFFs is obvious.

A Well Formed Formula (WFF) is a set of (zero or more) AWFFs.

WFFs are written as lists using comma as a separator. It follows from this definition

that "asb, ccd" is the same WFF as "csd, asb, aEb" . A WFF is intended to denote

the conjunction of its constituent AWFFs. Hence, the comma should be also

interpreted as conjunction. We abbreviate "sEt, tss" as "ssf .

An LCF sentence has the form P |- Q where P and Q are WFFs. The

'turnstile' symbol should be interpreted as implication. If P is empty we omit it

entirely.

Finally, a proof is a sequence of sentences with the property that each is

either an instance of an axiom schema of Pure LCF or a deduction from previous

sentences in the sequence using a rule of inference.

15

. ..

it^.-..i^.3i'jiL.'-..i- -. ■■- ■>^:.^v»i*'tiü*aMLi S/SSJlii&ifUinA&iZ i ,■ ^ .ixitu. ! •••Vi T- ! -i i ' 11 n ii.nhiMüMJiafaüiAiami^atoifcHi

«S V^P..! I UJ _lll.»,l». ., ;<—^-11^ „.„,,.,_,.,,,„,,,.,1^^.,.,.,.-..,,,, ,u... ,.:...., ,..,_.„„..,,„„.,,.,i,,-:—r— ,.„,, ,.„„...„,.,„..,..,, ^^T_^-, ..„, .,^r_,^-_,r, ™-.^7-r • «J

2.3. The Axioms- and Rules of Inference.

We write P{s/x} or t{s/x] to mean the result of substituting s for all free

occurrences of x in P or t, after first systematically changing bound identifiers in P

or t so that no identifier free in s becomes bound by the substitution. Only \ and M

bind identifiers.

P I- Q Inclusion axiom

Axioms for =

Axioms for 1

Conditional axioms

Conversion axioms

Fixed-point axiom

Conjunction Rule

Cut Rule

Abstraction Rule

H SES
S1ES2 h t(sl)Et(s2)
S1ES2,S2ES3 h S1ES3

|- iES
H Kshl

H i-S.tni
I- T-*s,t=s
I- F-»s,t=t

}• [\x.s](t)3s{t/x}
I- [xx.y{x)]=y

h [Mx.s]=s{[/ix.s]/x}

PI I-01 PI \-Q2

PI U P2 f- Ql U Q2

PI |- P2 P2 |- P3

PI |-P3

P h sst

P h [XX.S]E[XX.t]

16

(Q a subset of P)

(Application)
(Transitivity)

(y distinct from x)

(x not free in P)

..

.;

0

u

.■—.«■■^•i.v-.:..'...^.../.-^.^.^.....r-.-i.-.J.: .-/..-....: ■■■->.■ ■:.'■-.■- ..-.:...-..AJ,.-..,JJ;J.:.... .^..^^..^.^v...,. -.^.u.. ... -. ..,.•..—IAJ.A.J.., .^—^^t^j^»^ ^M

Cases Rule

Induction Rule

P,s=T H Q P,s^l \- Q P,8sF H Q

P h Q

P h Q{l/X} P,Q H Q{t/X}

P h Q{[M>'v.t3/x} (x not free in P)

2.4. Some Examples'.

: s

2.4.1. A^B, BnC I- A=C.

In this proof of an instance of the transitivity of 's', note that the rules of

Pure LCF are quite low level. The actual 'proof is just the centre column of

sentences and the justifications are for the benefit of the reader.

■>

(a) A^B h AEB
(b) B=C h BEC
(c) A=B, B=C h AsB, BEC
(d) AEB, BEC h AEC
(e) AsB, BSC f- AEC

(f) AsB H BEA
(R) B=C H CEB
(h) ArB.Br-C h CEB, BEA

(1) CEB, BEA h CEA
(k) AnB, BsC h CEA

(1) A^B.BHC h A^C

by Inclusion Axiom;
by Inclusion Axiom;
by Conjunction,(a),(b);
by Transitivity Axiom;
by Cut,(c),(d);

by Inclusion Axiom;
by Inclusion Axiom;
by Conjunction,(g),(f);
by Transitivity Axiom;
by Cut,(h),(j);

by Conjunction,(e),(k);

t

17

,,. ..

^Jif^e-A-Ui,**.^^ Ultt^^,.-- *i.^Lf. ^..^.^.^^ .^L:^ ^ -,,^ ^J,^ ^r^^^.* v!ii-^*i^^ ..^.W^^ , ^■.. ..^...... „^iv^.!.^,^^^^^. ■ i., ^ ^.„^ _v,^ ^ ■-■-. iU^ A^^.

 r , j-^-.u.,^-^,-,^^-^^!^,,^---,;^.! . .^-^j^.^,,—^^^ :Tn,1_I..r,_,.;,.;.7F, v:_^,, v.y.r;..~^7-...„^,.^,..yr;.y^-,t.r.^.y.^.1.,r.-^y^^.^.~ frpiy— v ; ■-^ r u T-v-; ^IT- n T-äT-"!- v^" T^f •VT^Tr?^^'^^^*™^ " TJ^f7 ?" /"7 ?

2.4.2. FrG, AEB h F(A)EG{B) .

Although this example is a trivial theorem of monotonicity it can be applied

iteratively to get more complex theorems. Again the proof is quite tedious:

(a) A-B h F(A)EF(B) by Application Axiom;
(b) FEG f- [xf.f(B)](F)E[\f.f(B)](G) by Application Axiom;
(c) H [xf.f(B)](F)=F(B) by a Conversion Axiom;
(d) [xf.f(B)](F)-F(B) f- F(B)E[xf.f(B)](F) by Inclusion Axiom;
(e) H F(B)E[\f.f(B)](F) by Cut,(c),(d);
(f) FEG H F(B)E[xf.f<B)](F), [xf.f(B)](F)E[xf.f(B)](G)

by Conjunction,(e),(b);
(g) F(B>E[xf.f(B)](F), [xf.KB)](F)E[xf.f(B)](G) \- F(B)E[xf.f(e)](G)

by Transitivity Axiom;
(h) FEG h F(B)E[xf.f(B)](G) by Cut,(f),(g);

(j) h [xf.f(B)](G)^G(B) by a Conversion Axiom;
(k) [xf.f(B)](G>nG(B) f- [xf.f(B)](G)EG(E> by Inclusion Axiom;
(I) H [xf.f(B)](G)EG(B) by Cut,(j),(k);
(m) FEG |- F{B)E[xf.f(B)](G), [xf.f(B)](G)EG(B)

Conjunction^W.d);
(n) F(B)E[xf.f(B)](G), [xf.f(B)](G)EG(B) f- F(B)EG(B)

by Transitivity Axiom;
(p) FEG h F(B)EG{B) by Cut,(m)t(n);

(q) AEB.FEG H F(A)EF(B), F(B)EG(B) by Conjunction^)^);
(r) F(A)EF(B)!F(B)EG(B) h F{A)EG(B) by Transitivity Axiom;
(s) AEB. FEG H F(A)EG(B) by Cut,(q),(r);

18

 -'"~ ,..-.■ ., t.urJ^..*-^*,.^..... : -.: ..■^-.■.. , - ^..^^<*^<^,.^^.r*Ll,:....^,.....-,...-^--.',.^.^^

«-«^i^ww^ffim^Sia^^öSS^ ""■■■■■ .■-'■""";■■

^V!-.^:

-■; ..-- , - .. , ■,. -,V ■...,,■ ,■

CHAPTER 3

The LCF Proof Checking System

In this section we describe the computer program which aids in the

generation of validated proofs in an enhanced version of LCF. Both the program and

) the enhanced logic are called simply "LCF" and ambiguities will be resolved by

context. When we refer to the logic of Chapter 2 we shall always refer to it as

Pure LCF.

*

3.1. Proofs:

I A Pure LCF proof is a sequence of sentences subject to the condition that

each of the sentences is an instance of one of the logical axiom Schemas of Pure

LCF or follows from previous sentences (in the sequence) by a rule of inference. A

?; proof in the LCF implementation is a sequence of 'steps' and a step is a four

element list (n, W, D, J) where n is the step-number (an integer), W is an LCF

WFF, D is a list of the dependencies of the step and J is the justification. Steps

are numbered sequentially as they are generated and added to the end of the

parlinl proof. The dependencies of a step are the step numbers of 'assumptions'

on which the current step depends. The justification of a step indicates how

19

 . ^ - .■.. .>. — •-■■■.■■■-•■•--■*■■<-■—.--—.-. --. ~ —...- -..— . .. - - - ...t...,^.. ^.-LJ.-^^. :.. ■.■ . ^-^ -■---HI inrtntiftiii

.~7v^w^^FW^^MF"fW-F^v^Twrf™«*rF<-r'T'-r~T~^"*^ ^,-..-^

the step was generated; it will include the name of the rule of inference employed

and the previous steps that were used.

An assumption is a special step of the form (n, W, (n), (ASSUME W)).

Note that the only dependency of an assumption is itself. Another special type of

step is an axiom which has the form (n, W, (), (AXIOM A)) where A is the axiom

name; note that axioms have no dependecies.

Wc now define the sentence denoted by a step (n, W, (d„d2,...dm), J) to

be Wd|, W^, Wdm h W where Wd, is the WFF part of the line d, (which will be

an assumption). Thus, the step (n, W, (), (AXIOM A)) denotes the sentence

}- W and the sentence denoted by the step (n, W, (n), (ASSUME W)) is

clearly W |- W .

3.2. Formulae and Terms:

Not only do we have somewhat different notions of 'proof in the pure logic

and in implomcntod LCF (albeit there is a correspondence between them), but there

aro '..lifjht chcinges to the meanings of WFFs and terms.

First of oll 's' is not regarded as simply an abbreviation, but has a similar

status to 's'. Thus, 5=t is regarded as an AWFF (as opposed to a WFF in Pure LCF)

and there are deduction rules which deal with these 'equalities' (so called) rather

20

^■Xv*R^f-V^JVto-t...^-w>;. .A■;,.:,;..■;■ -v,.......-^:.:.,^^.■.:..,...,w......>■■;■..-..,■■!■■.-:..,-■ ^i-■ ■:.:.;-^■.■■^■^■.^/.^^„u^.tA:-^^^^JU^^;-;fjWii^i^:.,-^L^J,-^^.;i;jii-^u.^.ti.---^:!.^-.^.v.'..^.v■ ■.^.^.■c^^^^ü <''■'■ ^i^^U&AUeaMA^^

•M^tf (-il» •»PI' ji I; '.'ÄTTtflT.' 'T ^-'-'T-

s

s

than 'inequalities'. This change in approach is justifiable via the observation that '»'

is the much commoner relation and much easier to reason with. On the other hand,

extra deduction rules are necessitated for conversion among the formulae s»t ,

(set, Us) and tss . The rules provided in the implementation are

HALF Ü

55t

SYM sat

tHS

EQUIV sEt.tEs

s^t

It should be noted that experience has (so far) indicated that these rules

are rarely invoked (due in large measure to the rarity of the 's' relation).

Next, also contrary to the definitions in Chapter 2, the WFFs are often

regarded by the program more as lists than as sets. For example, s^t is not the

same WFF as s-t.s-t . This is necessary to some extent since it is convenient to be

able to talk about the n-th AWFF of a WFF but there is also oome ugliness about

the implementation in this respect.

In the current implementation there is no provision for talking about type

information. (Henci there can be no type checking.)

Finally there are oome very important abbreviations which are used by the

program to make proofs more readable. These apply to both terms and AWFFS.

The following relate to terms:

i) [\a b, t] abbreviates [xa. [xb. t]],

[xa b c. t] abbreviates [xa. [xb. [xc. t]]] etc.

21

^.JatWi^^.--.. ■■■.■■--■■ .■■—..■■V.^:U^.L..^..X^..V, ■ ^^^^totaia^tiit^^^^uMtouL*^.. . _ ..._ ■■■-—,

vlll'W^l'^f!WW^w.,f*I"-VJ J '*I^^^TJ:,V^1J^''^W"K^" >-'.•,^^7^,^,;Tn^f.»»f-,.*^*,"-7-ri'- —v—— •— j^rwt^pm ,i^^r^^.\™^.,?j^-^:rr^.~ -^^r-'-y?^^^^^

ii) 5(11,12) abbreviates s(tl)(t2),

5(11,12,13) abbreviates s(tl)(t2)(t3) etc.

iii) if F is a function which normally takes 2 arguments then we

may declare it infix and then we write s F t for F(8,t).

The following relate to AWFFS:

i) Vx. s E t abbreviates [xx.s] E [xx.t] and

Vx. s s t abbreviate5 [xx.s] = [xx.t];

The notation so introduced is very suggestive of its normal

application: if we have Vx. s(x)=t(x) then for all terms x

we can deduce s(x)=t(x).

ii) R* s s t abbreviates R-»s,i E R-»t,i and

R* s K t abbreviates R->s,i s R-*t,i ;

The structure abbreviated is an instance of a rather common

device for relativising AWFFS. Noting that the sentence,

W H R* set

is equivalent to the other sentence,

W, R=T h sEt,

we see that the V connective corresponds to material

implication.

22

■.'!,-'.,V^Mi^/**-:i^?i. t^. SSiiVliStov^^iüVM ^ai/WLiOi;..*;«..'; Vi...--.(-.-. • .J.^,Ul.«.-i.i.y..>-v...u<.4a

^^^V^a^^^.;^;^, ■' ■■■■■'-■.•:r'.-.'. - .. ■-■ ■ -]_ .--■- -r; .'■;■.-,,

3.3. Using the LCP System*.

• ;

I

t

t

The LCF Implementation has really outgrown the name of 'proof checker'.

Apart from the fact that a user rarely types a WFF (the information he gives is

generally a cequence of commands that tell the machine HOW to generate the

required sequence of stepc), there are various mechanisms to help him interactively

prove theorems in LCF. On the other hand, one couldn't be so bold to call it even

an 'interactive' theorem prover, although this is a direction of future developments.

One of ti^e most important aids to proof generation is the machinery that

allows (even encourages) goal directed proving. A user may state target steps and

att? ;k them by indicating one of many tactics whereupon the program deduces

appropriate subgoals and perhaps some relevant assumptions. Most of the tactics

are the Inverses of rules of inference since appropriate subgoals are ones which, if

achieved, lead to the establishment of the goal by some rule of inference.

The inference rules of Pure LCF are rather basic and, in applications to

MTC, too low level to be workable. However, the LCF system has five very

important derived deduction mechanisms: substitution, contradiction, theorem use,

simplification and prefix stripping.

23

m
m

I

 ■ ■ ■

-■>;. ^■.«i>iJii'ii
,..:.;*-j'.r{i,i:-.:; ^.^..i^^^^i^^w^^ :;■■-=■/-,.-.üi-^-^^i^ liii iM,f;'i j ^ W': iia.ii'ri kr

■ ■■'-■■■: ■ ■ '■■-'''■■■:yr.'t.K%i^iiX^Ü?i£

mmm. IQgQfll^lQI^Ximpf^^ ' ■ ^"41

3.3.1. Substitution:

Substitution is the implementation of three derived deduction rules of Pure

LCF. The first two rules (following only from the CONV and ABSTR rules) are:

P|-tUt2

P}-SEs|t2/tl]

P\-UM2

P>sSs{t2/tl}

and the third follows from these together with the TRANS rule (expanded to include

the '=' relation,, of course):

PM1M2 , Qf-W

P,Q|- W|t2/tl}

There are the usual cautions about capture of bound variabl es.

3.3.2. Contradictions:

There is an inference rule which enables proofs by contradiction. We take

it that the logic is consistent and so assuming that one's non-logical axioms are too,

one can never prove sentences such as h T^F . Hence, given a step containing a

'contradictory' WFF (such as ' T~L '), we should conclude that the dependencies

are inconsistent. Now, given such a step with a 'contradictory' WFF (and

dependencies D> in an LCF proof we could proceed to prove any other WFF with

Ö

24

^-...■^^^--^---•"■»■^'^^-^^-'^^^'■■'-■-"^■-■'^^J'^-^"''^-'- ■,J.!.,..1....,.;J.^.,I.^.^^^J:-;.^-.-O...-,:■■. „w: :..^^^1.^^i^—^^^:^—i.

^TT

the same dependencies (D). (It is a nice exercise to show this.) The program

recognizes the following four inequalities in D,, as contradictions:

TEI FEI TEIP F^T

as well as the six equalities between distinct members of Dtr (such as T^F) and

allows the user to prove any goal (i.e. make it a step) by claiming it follows from a

contradiction. The resulting step will have the dependencies of the contradiction.

3.3.3. Theorems:

In the pure logic, a proof of a sentence, say |- P-»T,F=P , in no way

constitutes a proof of any similar sentence (such as |- Q-»T,FsQ) which differs

from the former only in the naming of free variables (which are not free in the

axioms). However, it is clear that the ability to perform some renaming is absolutely

necessary for a smooth system. In the LCF system such inferences are performed

via the theorem mechanism.

At any point in a proof, a step may be given theorem status and the

sentence that the step denotes acquires a name and is tagged with the names of the

axioms that have been already introduced in the proof. There are, of course, two

parts to a theorem: an antecedent WFF and a consequent WFF. The antecedent is

the WFF denoting all dependencies and the consequent is the WFF part of the step.

When the user desires to use a theorem, he may have the system change

25

t

. .

Mfi. ^ | -J.-.^,..:^.. -.^..^-.^.^^^AV^...^.,:: m ■_..V^^.:;^.W^.^.„-;^^^^

^g^gjIlfQBQ^mmf^^

■•J

(throughout the theorem) any free variable (that is not free in any of the ; o

appropriate axioms) to any term (a process called instantiation), and by

providinß steps which when conjoined match the antecedent of the theorem, he may

infer the consequent of the theorem. The dependencies part of the new step is the ^

union of the dependencies of the steps used to match the antecedent. It should be

noted that the user does not have to type any instantiations that the machine can

deduce from the list of steps which must match the antecedent. ''
I

rloHiiro (mm Mio \lfi r\t r.>*.f>« ...Ul.U ..I i-L ii-_ i .

26

3.3.4. Simplification:

As an introduction to simplification, imagine we have three steps of a proof:

<nl) Va. F(a) ^ a (dl) ,

(n2) Vb. G(b)3H(b) (d2) ,

(ri3) M a F(G(F(N))) (d3) .

It should be clear that we can proceed (using only features that have been

discussed already) to a step which contains the WFF M = H(N) and has • u

dependencies dl U d2 U d3. We might easily proceed through intermediate steps

which state M - F(G(N)) and M ^ F(H(N)) . None of the proofs will be very short and

the steps involved will projshly help to obscure perhaps more interesting parts of ^

the total proof.

In the LCF system sets of equalities (called 'simpsets') are maintained (by

M.Jf

..:-.-.-^':::~:^/^::-/-./.v-/^:.--:.,-^^ -..^, ___..., _.,. _._ _ _ _.,-_- .. .^-L ^;>->^.--... ^■^^:^^%..;/..:.■..^^^i,.^:^.^^ ^:.:-..: . _ _.._ _ _._._ - - — -—*

-r.+Mirni.Hfll.l r.,'V".-!l '• VV-t-"""" •-•'^■^TV™'inf...!].. . ,•-...., ..w.J- .1. , r-^^-^T—~~^ ,

•At-.vvr^w, „•.. ■,■ V, ■-•■:■..■.. ■:-,. •>..■:.:. ;...,...; .;...;..• ^f^.V^.;-v...Sfc,v,......r^J.^f.V;...,..,v^,,-j:.;_;iv...^;:V.;i^."-^ -".

U

•.

-

the user with help from the machine) to help in the automation of such sequences of

simplifying substitutions. When the simplification mechanism is invoked, the Item

(which may be a goal, a step or a term) to be 'simplified' is scanned recursively (top

down, left to right) for a subterm which 'matches' the left hand side of an equality in

the current simpset. When such a match is found the right hand side of the equality

is used to generate a replacement for the subterm. This simplification process

continues until no subterms in the item can be matched to anything in the simpset.

When an AWFF from a step is 'put in' a simpset and it has the form

VX| x2 xn. A s B , the 'universally quantified' variables (x„ xz, .. xn) are replaced

in A n B by 'metavariables' (a,, c<2, ... an) and the new AWFF Al a Bl is added to

the simpset. The raison d'etre for metavariables is that they will match any term.

Thus, if the equality Va. F(a)=a is put in, 'a' becomes a metavariable and, for any

term T, occurences of T(t)' will be 'matched' and replaced by 't'.

Adding a step to the SIMPSET amounts to adding each of the equalities

(AWFFs) that constitute the WFF. Steps in the simpset carry indication of their

dependencies; and as a simplification proceeds a cumulative union is kept to which

the dependencies of steps used are added; this union will be contained in the

dependencies of any step generated as a result of the simplification.

Theorems with no antecedents go into simpsets just as steps do except

that there are no dependencies and any free variables (that are not free in the

appropriate axioms) are also made into metavariables.

27

^v^l^vjia..:.... ...-.•... .vv^V. V..,...u;,;^.;...*1;..,^;;^-^^ iii^i;^iü.:*v..^.<,j.iüi;^;«^^jiji>viti i... .v..»-, i iviiii-i^irrdii

-. ,-l J.UWIWJ J- I II iJ«IJP-<i-U«i»i-|i'".l"-". \- rWTÜTITWE^ ".l-- ""'^""l" F-l-«-«iP-«-^,«"J.'fl-.T"—,^-:. -^■-•.«J' ■ J. WCTTW ^'-'^^^^^•^■••r.^f:^m^^^m,»^m^V^.imMM. S^P^HJ^f*

U

Theorems with antecedents may be put in a simpset, and when they are

used by the cimplifier the phenomenon is known as conditional simplification.

Suppose the theorem F(aKG(b) (- H(a,b)=T (where variables V.V are not

free in the axioms) is put in the simpset. The 'a' and the V become metavariables

and the theorem is considered when a subterm (of a term being simplified) is of the

form " H(*,*) ". Suppose the term matched is hKs.t) . What the simplifer does,

instead of simply replacing the term by T (as it would in the absence of an

antecedent), is to attempt to verify the antecedents of the theorem by simplification.

If the simplifier succeeds in checking the conditions of the theorem it performs the

replacement called for by the consequent. There are depth bounds on the recursion

in connection with this conditional simplification device.

Steps of the proof may also be conditional simplification rules. A WFF in a

step such as Vx. p(x)=> F(x) - G(x) , when added to the SIMPSET, is inserted in

two ways - both using one metavariable '/?'. First way: the left hand side is

"p</0-F(/?),i" and the right hand side is "p(/?)-.G(/?)(i" . Second way: the left and

right sides are T(/0" and "G(/0" respectively but there is also a condition to be

checked - "p(/?)-T".

Q

y

28

t)

O

!■■■ tun ■ ■ -- .-■^-.■^■-•^-■'.>..j-...-,;..,«t..,:,^i..,i..> .■..-■■v-J-^:..^^.^v^.^>.v/.^.u.'^^-^-^^^r.^|.[...i|| ■■ :.„^.^.t..,.,......,^,.,...i.........■.L,-^,..,.,.^.u^li^K*±Uilililliil*la*ti*

Iff !:Vyw»,i,^^"?P(wP5l .•''■" ^ *' ■nv ii-.1 ^MAHrT77"'"vriT«i'-.',.,,»^^»^r-i^" ra^y^^v^ ^T?,,"*,?-T«,«T'WT?r?'^r*7rr'TT ^.-^^.^..■^-^^^r-^r^y^:,^-.^^^;,-^

f4fep; ..y^vj^r^1

.:

.

3.3.5. Prefix Stripping:

When a GOAL is an AWFF with several prefixes (Vx. a(x)* Vy z. A=B has

four prefixes) the natural way to attack it is by a series of abstractions (to remove

outside universal quantifiers) and cases arguments (to remove relatlvisations) where

two cases are trivial. This action can be performed in.a single step by means of the

PREF tactic. Abstractions are done automatically and a step is generated which

corresponds to the nontrivial case of each relativisation. If the goal is actually

achieved by the method then the cases steps are deleted.

For example, if the goal were Vx. A(x)* Vy. B(y)* F(x,y)=G(x)y) then the

assumption steps generated and put in the simpset would be A(x)sT and B(y)=T ;

the subgoal would be F(x,y)--G(xly) .

3.4. Examples of LCF System Proofs*.

Before considering a significant example note that example 1 of Chapter 2

is a one step proof - namely, invocation of the 'Equivalence rule1.

3.4.1. AsB.FsG h F(A)EG(B) .

This is the other example of Chapter 2 and is much less painful using the

LCF system. The text below is a conversation with the program. Each command to

the system (the user's contribution to the interaction) follows a prompt of 5 stars

and terminates with a semicolon. The integers are step numbers.

29

■- ■■■-■■^■■.■-■.-■^,-:...;.;;-'.-AVi.

..■■..^^ ...■..■J.-.S^.r.^..»,r.. O. ^.-ti.-L.:.i ^-^V^-V^„.^■^..,^i.v/:■-^■jUA.Afc.ri.-i^.^v.^-liv-^ ^..n^.^.,.i-.;..^.i.-l^-.^^.^M^..,..)..;^... ,.- .■^..^V:;..,r■,,,>...,v,.i....^ ,;:^t^^^^■-i-i..n- ,-:.:^jv,...^.■- ^i^-S^■ ■"':M*-wii**JiV*£iä}^

|PpH£>ppp!!pp!||55!f!WPS!SWS!^ - .■■iJWWJawji.iwwv.iui^»,.i,,«;lw«wwCTKK>'J^,ii , JIIJIJ.™

***** ASSUME AEB.FEG;
1 A E B (1)
2 F E G (2)

***** APPL F,!;
3 F(A) '■ F(B) (1)

***** APPL 2,B;
4 F(B) s G(B) (2)

***** TRANS 3,4;
5 F(A) 5G(B) (1 2)

***** THEOREM MONOl: -;

THEOREM MONOl: F(A) s G(B)
ASSUME
A EB,

F nG

3

w

U

3.4.2. (P-M.n-F h P-F

Thio particular proof would already be something like fifty steps in Pure

LCF. The material shown, this time, is not the whole record of the interaction but

just the commands typed by the user and the proof that LCF constructs. •M

ASSUME P-»i,F-Fi
GOAL P:-F;
TRY CASES P;
TRY 1;SIMPL 1 BY-; QED;
TRY 2; 5IMPL 1 BY -; QED;
TRY 3 SIMPL;

30

.:■

u

tei! .i.-:^^ ■;:,-:■: X^ :.'.:> :^^i^i^kl^itJ^LJ£^k -■■■'~±^- ■■■------ -^ ■■■ ^- ■-■•..-■■ - .-■-.■ ■^..■. --.i ... - |lfatiji^M|ag^<rM|||

mmttm^Fmfm'f^^i^r^f

'■■: ,"'■,,

tyftOpiQfjiq^lQIIIIQggQ^^ *"< ^-T-^^-V^^rr^r^ T^^r.^ ^--^-TE^p^^;—

iras«»- ■ ;■:■'■ ■■■««SKMSas^8SÄfflß!sg®«sss^MSMiOTer^Eg»^f.u-T.'r^
 ■ ■ ■■

0

1 P-U,F ^ F (I) — ASSUME.

|TRY«1 P =3 F CASES P.

| [TRY «In 1 P = F:SASSUME P = T
| |2 P = T (2) — SASSUME.
| |3 1 ^F (1 2) — SIMPL 1 BY 2.

||TRY«1«2 P-3 F: SASSUME P^i
| |4 P n i (4) — SASSUME.
| |5 i^F (1 4) — SIMPL 1 BY 4.

I
|TRY«1«3 P = F:SASSUME P = F
|6 P = F (6) — SASSUME.

I
|7 P^F (1) — CASESP3 5 6.

Notes:

;.

r-

i) The goel structure is reflected by the boxes.
The coal is printed at the top of the box.
The last line of the box is the established goal or
a contradictory WFF.

ii) The command "TRY CASES P" caused the "PsF" goal to
split to 3 subßoals:

PHF SASSUME P=T
P-F SASSUME P=i
P^F SASSUME P=F

iii) A QED command, when the current step is a contradiction,
renders the goal under trial established.

iv) A SASSUME(W) command causes WFF W to be added
to the simpset after it is ASSUMEd.

ii

f.
31

■ ■ ■ ■- ■ - - ■ - - . - . .^ . , .1.- ■ .,-..:■■.. ■.■.^.^>^^>.«>Juait>imt^^vjjJt

■-■TT^r^PfT^r^v^.^^ "-T!—■.'O-.f.'iT- - - -r 1^- .,, ^-

3.5. Concrete Representation:

It is unusual for computer Input character sets to contain many of the

logical symbols that we need and, although the machine at the Stanford A.I. Project

is exceptional in this respect, it is missing some symbols we have used. On that

machine (where the LCF system lives) the following representations are used for

characters which do not appear on the keyboard:

.-

*M
■i

v is represented by «
1 is represented by UU
c is represented by c
* is represented by ::

T is represented by TT
F is represented by FF

The point of mentioning this mat' - is that the concrete representations of

these characters have appeared in published works where publication language

snould have been used.

32

n

■ ■■ - ■.^■..,.^.^^..^.-^ ^.,.^....-LJ.. . - i nuni—^M^dJuu^a^i^m^atm

-T.T-« w^puu^" i y~~ «irr .-...-r-.,-.TT«—:

i

■

|
..:■.

CHAPTER 4

The Mathematical Environment

W-

%

I
■

?.

We present here a brief account of those parts of [7] which are relevent

to the LI5P semantics experiments. That paper discusses the rigorous development

of theories of propositional logic, integer arithmetic, lists and finite sets. It provides

the axiomatic basis for a library of standard theorems from those various theories

as well as a collection of results (not depending on axioms) which are useful when

working with the LCF system.

In proving theorems about the meanings (and other properties) of various

LISP functions, it is necessary to make use of a substantial number of results from

arithmetic. Also, of course, the theory of lists is fundamental to the representation

of LISP functions and the data they manipulate. The set theory of [7] was not

required as background mathematics. Moreover, it was convenient to avoid using

the treatment of propositional logic (thus space was saved since the theorems were

not required).

We proceed, in this summary, by giving the axiomatic bases for each of the

various aspects of the environment together with some indication of the scope and

depth of the corresponding sections of the library of theorems. As an indication of

33

^^^iVfr^»-^d-:d^;rf.^.;ML^.,.:J/:.
i,-".->-'-v, . . ._ _ ^ iiaiiUiL

■ ■^■;'l^v^i^,L-^:v:i-.J.;,vi.
 - ■-..i--:.iu;„

üaüiiA^^io:i^;>t../Ä^iaiü1öi^ii^^^i^<^^ W^ir^Kjji..«^^,^

P^j]((jjj!^lpjIHj(f^.i^um«io«^i"^ . MIJ vT—r.TO.-.M..^iji.u...^ i .11 |i<i^W)^

the numbers of theorems involved, we note that the number given in [7] Is about

1000 and about 400 of these were selected for use in the LISP experiments. As

was anticipated, this body of theorems needed to be extended by the addition of

some other useful lemmas. About 40 such extra results were added to the

environment (all having very short proofs).

The domain of individuals (DJ is thought of as partitioned into subdomains

which correspond to data types. These subdomains are characterised by type-

predicates (functions of LCF type (ind-»tr)). For example the predicate 'isint'

(axiomatised below) gives T on individuals which are supposed to be integers and 1

or F on all else in Dind.

U

4.1. Axiom Free Theorems in LCP:

The theorems (or classes of theorems) in the following list depend on no

(nonlogical) axioms. None is very deep but they find frequent use.

i)
ii)
iii)

H [xx.i] S i
h Vp. pVT.Fsp
h Yp. p-i,i = i

V. i

iv)
v)
vi)

vii)

x EX H x^i
F(X)B1 |- F(JL)*i
P(i) -^ T h P 3 [xx.T]
P(i) = F h P s [xx.F]
P(X)r:T, P(Y)r:F f. P(l)si

34

,;

0

-»■■;.■;.■.-.-.,..... -i ^.....i-,.. ■-■».. ■.■-;■:■»..■-.■»..■, -,.; .i..-, - ■- .. „. „ „ „.:. ,.,■■■-,. -■.■-■. ^-^./-rii'i [llii Miittt|lttf»yt>|>igifltriMt

^^^P^IBBpBp^^Jl.lHlllftJ.'..lUJlU■' in 11 J i^1 ''MFI^JPJJ «■Wll.||ii5J||MISi
lIWW^|.»i.'»IP \PH<^i.«MW^fyKW^'W^") luv^i^i-. '»■ ■■• ■■.-.■. ---.-tJn > ^üI■-J.i—i -n i.-- v .i^»«.-^-r.,-n-n,'y**-■■ -i-,;,, n.p.»...!.».^

i^*#^^^'S^:^j^^Mffl«^5j^is-W'^s WBn»wWB^^«^«waw«>»«w«JS^

I
iV;.: I

r

i;

I
o

viii)

ix)

xi)

FUF2,A1EA2 I- F1(A1) s F2(A2)
F1EF2(AUA2,BUB2 |- F1(A1,B1) E F2(A2(B2)
and so on.
P-T,i s T I- P a T

etc.
P->T,QsF I- P = F
P^Q.T ^ F I- Q s F
etc.
G 3 F(G) h [/ig.F(g)] E G

xii)

(. /

U

P-iT,T s F |- T * F
P-»F,1 = T H T = F
etc.

Note that (i), (ii), (iii) are suitable for permanent SIMPSET residence and

that (xii) is good for deriving contradictions.

4.2. Equality and Definedness:

We are easily able to axiomatise a sensible equality predicate (=) and a

definedness predicate (a). We want to call all individuals except 1 defined; that

is, if x is in Dind then we want Üx)*J if and only if x is not 1. The desired

equality predicate must be T or F on all pairs of defined elements of Djnd, must be

reflexive on defined elements and must be such that (x=y)ET indicates x«y. In

postulating such a two place predicate we make a commitment that Djnd should be

discrete (flat).

We axiomatioe '=' and define 'ü' in terms of it as follows:

.i I

i
A

t

35

^Jvu.:^.-..,.,.-....,.^..,.,.. .. ,. ^^.^....^„..-.lo^^^al^^^ ■■

■'^"" . ^ - - , ^ - _r „,^,._;^^7™r^j„^T:^^|_77^

AXIOM EQ
Vx. (x=x)-*x,i s x
Vx y. (x=y)* x^y,
Vx y. (x=x)-»((y=y)-*T,i),i = (x=y)^T,i
(1=1) s i

cl a [XX. X=X]

We use the vertical bars (||) down the left hand edge of the page to

indicate axioms.

As a technical aside to the critical reader, note that the fourth of these

axioms is not necessary if we can talk about some element of Dind other than i; in

that case we can deduce '(l=l)-i' by monotonicity.

Although (X-Y) T h X^Y is the fundamental property of the equality

predicate, '=' should not be confused with "-'; the latter is not a computable

function.

Both of these functions (definedness and computable equality) have proved

extremely useful and the following are the theorems (or groups of theorems) that

are to be found in the environment (with comments):-

i) |- ci(l) H i
ii) h Vx. x=l a 1

H Vx. l=x 3 i
iii) h Vx. (x=x) a ä{x)

iv) a(X)si H X H 1
v) X=Ysil cl(X)3T h Yai

X=YnF h ci(X)=T
etc.

36

(Strictness of 3)
(Strictness of '=')

(Reflexivity of '=')

(Totality of 'a')
(Totality of '=')

U

tsi

I)

u

.i.„,^,^..,^:*,.,^.M„....u.^.J^^^^ J.v.^.--».-.-. ±...^,r.L,.i*ljr±imi*lJiai

^^^^m^^T^m1- }t»ViA^!*1'^?5^ ■-i-r^:-'-'.-'—^-"'' ■—f-^i

•''.v.-K-i*:^ ^■■^^■■.■■■^^^v^:.■.^•^,vv':-:r'■^^-^^ :'■

:

|

I'

%

(Conversion to '«')
(Conversion from '■')
(Reflexivlty again)
(Commutativity of '=')
(Discreteness of Djnd)

vi) X=YsT h X^Y
vii) X=Y, ci(X)aT h X=YBT
viii) r:i(X)BT h X=XBT
ix) (X=Y)-=Tr |.(Y(=X)=Tr
x) r:i(X)ST, XEY (- X=Y
xi) RX)=F(Y)-F h X=YnF

F(X)=F(Y)«F h F(l)sl
P(X)aT, P(Y)SF h X=YriF

xii) ci(X)-F h T=F
xiii) (X=X)rSF f- T^F
xiv) (X=Y)-i^(X)HT) £i(Y)=T HT^F
xv) (X=Y)SF, XEY I- T=F

Note that the theorems suitable for permanent simpset residence form the

firct group (i-lii) and those which are contradiction oriented have also been grouped

together (as xii-xv;.

4.3. Natural Numbers:

Although the natural numbers are not used, as such, in the LISP

experiments, and although the theorems concerning these objects have been

removed from the environment as described in [7], the foundations for the

construction of the integers is the axiomatisation of natural numbers. The

interpretations intended for the constants (0, 1, Z, isnat, succ, pred) are the natural

ones. Note that 'isnat' is a type predicate which gives T on natural numbers and 1

on everything else.

37

U. .-.:•.-■■• '^ ■■■!■ l^i„ ■ IZ-^VW^:.'--.:.^-.!' -.;'.. ■,- ..rV-i.... ,. .■■ ■:■■> ..- ■■ --.. :^.l-M^w^^**^.fo&Miite&

-^-vriT^iyiwiTTT"^^^^'^«'^"'^-' '^'•T

AXIOM N(M:
Z " [xx. x=0]
2(0) * T
isnat =- [^iF. [\x. Z{x)-*J,F(pred{x))]]
Vx. isnaUx)* Z(x)-*0,5ucc(precl(x)) = x
Vx. isnoKx)* Z(succ(x)) a p
Vx. isnat(x)* pred(succ(x)) s x
1 = GUCC(O)

2 s succ(l)

Although this set of axioms is simply a building block (in the current

context), we give a set of derivable theorems which correspond to the traditional

Peano Postulates. This indicates that one should expect all the usual results of

basic number theory to be provable.

isnat(0) •- T

isnaUX)~T h isnat(succ(X))=T

isnat(X)nT |- (succ(X)=0)nF

isnaUXbTT, isnat(Y)=T, succ(X)-succ(Y) \- X^Y

g{0) =1, Vx. isnat(x)* g(x)* g(succ(x))=T
h Vx. isnat(x)* g(x)sT

4.4. The Integers:

The following axioms specify more completely the functions 'pred' and

'succ: (see above) and introduce the functions Vnns', 'pos' and 'isint'.

38

n ip

..:

r\

--.^.v;,.;.;.. ^,:^'.-..i;„^...;:;......:; : :?..■_:■;:..:..: .^.-^.j.,. ..:.:T .:.^ .,:.:,: i >:.:- :....-: r-.,.,... ..' ..■■-..■■■ / . , ■,.-. ■ ,, / ■■'■■:,) :.:1 ■.....'■,.■:..:...;..:■..;.... _...■ ,^:> ■::. _ ^■.u..v>-.-^.-.^-f-il.,--.V.^ ■..-.. ^iUi^Si^ ^■t^...^.. : ^^_ A_ I i- .a.t^t^.'^^^'^.':^^-^i^ii

r -.-■..r- ■^•mm-ty^j .-^...>-,-._—,^ --■.. ,-.

1

8

: AXIOM INT:
Vx. isnat(x)* pos(x) s Z{x)->F,T
Vx. pos(x)* Isnat(x) = J
Vx. pos(mns(x)) = pos(x)-+F, Z(x)-»F,T
Vx. pos(x)-»T,T = isint(x)-*T,i
Vx. isint(x)-»mns(mns(x)),mns(x) s i8int(x)->x,i
Vx. succ(x) s mns(pred(mns(x)))
Vx. pred(x) B mns(8ucc(mn8(x)))
[xx. Islnt(x)-»T,T] ■ ö

iV

|

We first show the results of applying the various functions to the small

integers (0,1,2) and to the undefined element of Dind.

i) iGint(0)=T, isint(l)=T, isint(2)aT, isintd)^!

ii) pos(0)^F, pos(l)sT, po5(2)=T, pos{i)=i

iii) 2(0)^1, Z(ll)-F, Z(2)-F, Z(i)Hi

iv) a(0)HT, d{\)*J, £1(2)^1, 3(1)^1

v) succ(0)=I, succ(l)=2, succ(i)si

vi) pred(l)sO, pred(2)=l, pred(i)al

vii) mns(0)=0, mns(i)si

The derived theorems ere too numerous to list but we now give some

examples selected to give a flavor of them.

i) isint(XhF h pos(X)Hi
isinUXhF h succ{X)si

ii) |- Vx. iGint(Gucc(x)) = isint(x)-*T,i
h Vx. Z(mns(x)) = isint(x)-*Z(x),i
h Vx. mns(pred(x)) - succ(mns(x))

39

1

^..JtJJi.,^.g„>j.,lai.,.^m,....1<i..m^5-a;.!^-.:.,j., ii» ;■-&;::)..

^>—.^•p^'T'Tr.^v^T'^r^ivf-^T^.'^'vT^ ■ .,,..,,,.,,.,.,....;....,.,...;..........,..,.,, . . , ■■..,■■,.

Ul

E

iii) pos(X)=T f- isint(X)-T
isint(X)«T h ci(X).-T
a(succ(X))n=T \- isint(X)sT

iv) ismt(X)=HT, pos(X)3l h T^F
isint(X)nT, Z(X)31 f. T^F

4.5. Integer Arithmetic:

LCF is such that once we have axiomatised a structure then many of the

functions we may be interested in can be written as terms of the logic. We give

below definitions of the various operations of arithmetic that were appropriate to

proving things about the LISP subsets that we are Interested In.

AXIOM ARITH
+ - [nG. [xx y. Z(y) -* (isint(x)-x,l),

pos(y) - G(succ{x),pred{y)), G(pred(x),succ(y))]]

- ■- [xx y. x+mno{y)]

* - t>G. [xx y. Z(y) -» (i5lnt(x)^0,i),
pos(y) -* G(x,pred(y))+x, G{x,succ(y))-x]]

> s [xx y. pos(x-y)]
> -- [xx y. Z(x-y) -» T, pos(x-y)]

Many other useful and traditional arithmetic functions are defined In [7]

inclüdinß division, remainder-on-dlvlsion and bounded-existential and bounded-

universal quantifiers for integer predicates.

40

9

Hi

0|

u

..;

J

', ^^idjj;.-.i^.:;^.i.^.:^...---;.i.a.^.lJl

I

It is readily proved that all these functions are total over the integers but

defined only on the integers; these facts find expression in many theorems in the

environment. Apart from all the well-known basic propertie« of these functions (such

as commutatlvity of V and V or the transitivity of V and V) being given, a large

number of simple relations between 2 or 3 of the constants (i, 0, 1, succ, +, pred, -,

*, >, >, mns) are given as theorems. In fact, the environment contains over 150 such

theorems and there seems no way of categorising them so we can even list

representative theorems. However, it has turned out that this library has been

adequate to handle the modest requirements of the LISP project.

4.6. A Theory of Lists:

In [7] there is an extensive treatment of lists based on the axioms below.

The treatment was substantially LISP-inspired and developed via a treatment of

certain abstract objects that are similar to S-expressions. In that report they were

called S-expressions but that has turned out to be a bad mistake for the current

work so we will call them PONs (since a PON is either a Pair Or NIL). There is a

pairing function v (like CONS) and two selector functions ('hd' and 'tl' - like CAR and

CDR) for analysing pairs. As in LISP an atom is anything that is not a pair and

repeated selection in a PON eventually yields an atom.

41

II

....■, ...i;..i•..■ ..■■-- :'.■.,■'■ ■ • _ti.;;.J._j^^^^m.^-J.,'-:-.-.'-1_ ^-. :."i ■,..:..--■' ..*....'.. ^' ■:.-■

"^^"v ^ " ^vvw^-^r".^^ ^■■-~. ■ * ■ . -. ■ — .--■■ -—,..v-- ■' r-•;-■.■■'.■!. ■!-." ■? =7^^-^ /-^^'Fv^■•'

u.>

AXIOM LIST
iopond) - l
iGpon(NIL) s T
null - [xx. x-ML]
atom -. |xx. ispon(x)-^null(x),T]
Vx. atom(x)* IKJ(X) « i
V'x. atom(x)* ll(x) = 1
Vx y. Iid{x-y) - r:i(y)->x,i
Vx y. tl(x-y) s a{xHy,i
Vx. hd(x)'tl(x) s atom(x)-i,x
a - rMG.[xx.atonn(x)-T,G(hd(x))^G(fl(x))1i]]
Islist ^ [/iG.[xx. null(x)-T,atom(x)^F,G(tl(x))]]

O

We first mention tliat all of the functions mentioned in the axioms are strict

and that 'ispon', 'atom" & 'null' are total. We give just a few simple results of the

theory (remembering that most of the theorems in the environment are quite

simple):

i) CI(Y)HT I- Vx. hdix-YNx

ii) mnj |- Vy. tl(X'y)^y

iii) .:j(hd(X))-T f- atom(X)-:F

iv) atom(X)«F H a(hd(X))=T

v) H Vx. ci(tl(x))Br:i(hd(x))

vi) nulKX'Y)-T H T-F

vii) hd(X)-:X |- Xni y

viii) |- Vx y. isli5t(x7)-Ji(x)-islist(y),l

42

0

 I ■ \; .-■. .^.•■—.■.■>J..4-J..w... ■,-.tV. - .. ■ ■ ■■ ^ ' - ■--•■- -^^ ' - - ■- ■■ ~ .-.^ -... -■. ■ , M^ . .^^^ ^ ^^-J.^_,■ ;„j^ U-M.l^^aU ia ,'irtnl'l. iitfA'JMttiti^t^^^Ja^JI

Wfl^ilfWpuijpjHUMl.lJM^

: ■,■. ■ ■ . . , ..- i ,.... ... , . , . . .- ■ . .

ix) G(NIL)sT, Vx y. a{x)* islist(y)* G(y)* G(x.y)sT
I- Vx. islist(x)* G(x)sT

x) Vx. atom(x)* G(x)^T, Vx y. G(x)=> G(y)* G(X'y)=T
f- Vx. £i(x)* G(x)sT

.. ..

.

We now come to present a selection of the various list operations that

were defined in [7]; we define here only those operations that we require for the

experiments in this thesis.

AXIOM LOP
K ^ [/iG.[xx y. nulKx^y, hd(x)'G(tl(x),y)]]

mem = [xx y, 1;'(x)^ORmap(y,[\z.x=z]),l]
ORmap = [/iG.[xx p. islist(x)-»

(null(x)HF, p(hd(x))-*T, G(tl(x),p)),i]]

assoc s |>G.[xx a. a(x)-» islist(y)-» null(y)-»NIL)

(x=hd(hd(y)))^hd(y)> G(x,tKy)), i,i]]

length s OG.[xx. null(x)^0, succ(G(tl(x)))]]

W is the append function for lists and 'mem' is membership in a list; 'assoc'

and length' need no introduction. We do not give any properties of these functions

but simply say that most of the results (about the functions) which were needed,

were already available when required in the LISP experiments.

43

■ ;

^^.^■■^.....^->Kag-..i....^^ ^^■--' ^■-^.^^^^—.^^..■.■^■^ ..^■^.^^^^u^i-L^^.^^M

CHAPTER 5

Notation, Denotation and the Nature of LISP Expressions

C

5.1. Notation and Denotation!

Wc recoil, here, the ciistinction between numbers and numerals. Numbers

arc obclrad (mathernatlcol) objects while numerals are expressions in certain

lansuagcs; Numerals are used to denote numbers while numbers provide the

interpretations for numerals. The common number/numeral confusion arises because

of the usual identification of numbers with the numerals of the positional-notation

decimal number system (actually a numeral system). Remember, every numeral

denotes- some number and is consequently notation for the number!

Chapter 4 described an environment within which the current experiments

on a LISP semantics can be performed. Some very important classes of abstract

objects are therein developed: - integers, lists and ordered pairs. A treatment of

LISP mutt contain some discussion of notations for these abstract entities but we

find our vocabulary is not rich enough: clearly 'list' corresponds to 'number' but we

need a word to correspond to 'numeral'. We shall adopt the convention that when

we have a name for a class of abstract objects we shall write it predominantly

44

0

.

w

:J:»;l.^r^*^...^- ;r ■.^■■■. V;^v-:.^:../ ..W..',\: .:.^..,-.-:i^ ^^ ■...■-...,-; ,„■ .v......:... ,:>-...,-.■■.-;■,.: ..; ■.>.-.>■ J..J.,,1j^iiia<,fJ-J.i..»a}.j«al

TTir -— —
^''^^^■^-V.V^.:..

: !V:~7 ' ■' TF7T.T VC;, VT r/^r

■.,*»(»^^ "f!

'

■.

;.'

.

,

f

t

r

lower case and when we wish to discuss the class of expressions that represent the

abstract objects we will use all capitals. For example an S-EXPRESSION will be an

expression in a language that denotes a certain S-expression (an abstract object).

If we have a class Pqr of abstract objects and a class PQR of

representations for elements of Pqr, then there is a semantic function, (call it Den)

which maps expressions into the objects they denote. We will refer to Den as a

denotation function. There are also functions which map each abstract object

into an expression of the language we are using to discuss elements of Pqr; we call

these functions notation functions.

Just as "02", "0002" and "2" are different notations for the same number,

the LISP S-EXPRESSIOIMs "(A B)", "(A . (B))", "(A . (B . NIL))" and "(A . (B . ()))"

denote the same S-expression. The fact that systems of notation are often

redundant in this way means that denotation functions are in general many to one. It

is a fundamental property that if N is any notation function for Pqr then for all X in

Pqr, Den(N(X)) = X . Also, the function [\x. N(Den(x))] selects canonical

representations.

5.2. Abstract Syntax

The term syntax usually refers to rules (perhaps phrased in BNF) which

45

■ ■- ..,■:■■ ,;T,i ,■ ,■", :•■■ .,■■. ■ , ' ■ ' , ■ ■?■ »7t-«- > r T?V-I ■».;;; »71 ^—rr-r- y V ^p-_,-. —r-™ii-p;'>-'^.-^7T fv r"^v:-- -^""^ -rTT ■ r-:'' '"■'■VT*. -f' .~.r.~T—

46

LJ ,

specify which strings of symbols are legal in some language and what the structures

of the language are. McCarthy calls this 'concrete' syntax. 'Abstract' syntax also

describe:; the structures of the language but without saying how the structures are

represented by strings of symbols.

Abstract syntax comes in two flavours:- 'analytic' and 'synthetic'. Analytic

abstract syntax makes use of discriminators such as 'issum' and 'Isassignment'

and aloo selector functions to access components of syntactic entities. Synthetic

abstract syntax deals in constructor functions such as 'mksum' and

'mkassignrnent'.

Abstract syntax is no stranger to the LCF project - [5] and [6] depend on

it. We now make the claim that defining denotation and notation functions (in LCF) la

terms of McCarthy's notion of abstract syntax is quite straightforward. In the next

section this assertion will be illustrated with definitions of such functions for S-

expressions.
■

5.3. S-expressionsI

As mentioned in Chapter 4, the notion of S-expression developed in [7] is

unsatisfactory for our purposes. It is, therefore, part of the task of axiomatising

subsets of LISP to define precisely what constitutes an S-expression. At this point,

..-

O

y

13

"

*.W-,-.-.,i.W ,V-.,:iJ',...v,.,r..>:i,-..,.< . ■ U-J. ; r^-^^.-Aw':.>A\J>-W-:n^jjJw!.^-.r „:f. -„■ v^Vi<-.ri.fit.^tiii^iMl^iii'iiä

^^■^Äss^s^swTO^ .. ■ ■<■ ?«^r^»«^^*W?-,ffS^^
i

?

1

^ we can outline what makes one: a certain subset of the atoms of Dind will be

S-expressions and if we know X and Y are S-expressions then X'Y is one too. We

cannot be specific about what the subset is, at this point, but it certainly will contain

^ NIL and certain names or identifiers. Thus we are going to identify the LISP 'cons'

function with the pairing function '-' that we know so much about. Similarly, we

identify 'car and 'cdr with 'hd' and 'tl' respectively.

We are now in a position to exhibit denotation and notation functions for

S-expressions. We use abstract syntax (both analytic and synthetic) in the

definition. We suppose, for the sake of the example, that S-expressions are those

individuals that satisfy the type-predicate:

isSexprn 3 [ßG. [\x. isint(x)-»T, isname(x)-»T, null(x) -»T,
atom(x)-»F, G(hd(x)HG(tl(x)), F]].

ft

£

We call the denotation function for S-EXPRESSIONS 'Sexprnof and the

notation function for S-expressions 'mkSEXPRN':

Sexprnof = [MG,[xX.iGlNTEGER(X) - integerof(X),
isNAME(X) -* nameof(X),
isNlUX) -♦ NIL,
iGPAIR(X) ^ G(lcftof(X))'G{rightof(X)),
isLIST(X) -» G(firstof(X))'G(rostof(X)),
i]]

mkSEXPRN = [^G.[xx.iGint(x) - mklNTEGER(x),
isnarncix) -♦ mkNAME(x),
(x-NIL) -» mkNIL,
isSexprn(x) -♦ mkPAIR(G(hd(x)),G(tl(x))),
i]]

47

pil .ill.ipailllll.ll.l II u J| , .11 u iji:.i»._.,..-....!..,.»,.... ..,■-. ."-■•I-"-"^.'.*"!'11 .,„.,„,,,,,,.„..., p . -»-. ■■. ■»....L uiu,.,l.,...»ui1|..,;^.^),,.|i|Wjf,..wJl.w;w.|y,l,1..».ilJi»i.TW>-' ^^^■".'V!'"'"" IWl-.J)WTI7.

The functions 'islNTEGER'. «isNAME'. 'isNIL', 'isPAIR' and 'isLIST' are analytic

syntax discriminators; 'leftof, Vightof, 'firstof and 'lastof are analytic syntax

selector functions; 'mkPAIR' and 'mkNIL' are synthetic syntax constructor functions.

Of course, we have just passed the buck since 'integerof and 'nameof are also

denotation functions and 'mklNTEGER' and VnkNAME' are notation functions.

If in this example we have appropriate results about the lower level

functions such as

Vx. isname(x)* nameof(mkNAME(x)) = x ,
Vx. islNTEGER(x)* isint(integerof(x)) = T ,
Vx. isname(x)* islNTEGER(mkNAME(x)) = F

then we are easily able to prove

Vx. isSexprn(x)* Sexprnof(mkSEXPRN(x)) s x .

5.4. LISP Expressions:

Since this thesis is conceded with the semantics of the programming

lancuage LISP, we must inevitably describe what sort of mathematical object a LISP

pronram" (or a LISP 'function') is. We must conclude that, because of the

indistinguk-habtlity of program and data in LISP, all expressions in the language

(whether they are intended for 'execution' or not) must have the same typej they

must be members of Dind . In fact all LISP functions, arguments and results will be

S-EXPRESSIONs.

48

U

■ .■■■.■ -;':;.;^;;^:H-^;;^^;...^ '&iLi*hi!zti*iKXi-j v^-j.:^L^-.*u.v-2*z:M&<*^iii±^^ri ■ --'■■--■ a

*

-■

■

What we are looking for when we seek a semantics for LISP is a function

(call it LISP) which maps S-EXPRESSIONS onto S-EXPRESSIONS in the same way as

a LISP interpreter actually running in a machine. For example, LISP should map

the S-EXPRESSION

"(CDR (CONS NIL (QUOTE X)))"

onto the S-EXPRESSION "X".

^ 'LISP(Y)' must be the same.

We now point out a method of defining LISP indirectly which is very

important to our work. What we do is to define an interpreting function 'lisp' which

maps S-expressions onto S-expressions in the appropriate manner. Then by using

denotation and notation functions (D and N) we can define LISP as a composition

of functions:

LISP « [xX. N(lisp(D(X)))].

Note that the function we get depends on the particular choice of 'N' but

this is as it should be. Because of the way we have defined LISP we have the

following commutative diagram:

49

■■..-.■

A necessary property of such a LISP function is that if S-EXPRESSIONS

'X' and T denote the same S-expression then the S-EXPRESSIONS 'LISP(X)' and

I
i

i^M^^.U^ä^^ ^..!..:^.,Li:-k::;.^iW^ .. . -^ . - -,J..J.t^..^...--.■..-.,-- ■ - • -.-•^■^.•.^t^w--^^^^^.--^..^^^^:^..^^.. ..■■-. ,,. ^.^r ..^v^-:.^.-^ ^ ■---■. ^ ^v-^-ki^^u^Äatottih^^

^1 i.--....Ml.^.l.-.l ..JI—H. ,. -r-^....-»■. T; i-^r..—,r7'T*-T-\'*.'-r?:'~i- ■r-s'":'^ ■"';'■■ ••vTT'«iT»*;s^'j-^'Wi"4',
s^f; «y^;

I

S-expressions

D

S-EXPRESSIGNS

sp

LISP

•*• S-expressions

N w

■* S-EXPRESSIONS

Now, if Nj is any (other) notation function for S-expressions then we should

be able to prove

lisp B [xx. D(LISP(Nl(x)))]

using the basic relationship between denotation and notation functions. This

Immediately suggests that the function 'lisp' is more fundamental than any particular

LISP function we might have.

From this point on. therefore, we shall not be concerned with notation In

general or S-EXPRESSIONs In particular; all discussion will centre round

S-expressions.

5.4.1. List Notation.

We mention one point of notational convenience. In the LISP we all know

and love, (ABC) can be thought of as an abbreviation of (A . (B . (C . NIL))). Just

for the purposes of this document we shall use a similar abbreviation for lists but

we use the distinctive brackets '(' and ')'. For example (A B C) is an abbreviation

[

Q

U

'

o

50

(:■

LMtO^.t.,.:..^.., ■.■.,^.^.;,j.^.^. ^■^,. ..^■■f...-^...;^.. .>;WA.i.. ..■■ ^ -■ ■""—'—'■'■'^-'•Yl Vi llililhlrl !.::• ^^~,^'^' ... ' ito^»;.v..i,.^.f..v-».--;.v .^.,:...*. .*...:*.—...<■.■,.^..UJ-:.... >:~.-.«~.l^j.i.-,^^±iL

(. i

for A-(B'(ONIL)) (i.e. denotes the list containing A, B, C). Note that (A B C) is not a

term of LCF since the LCF system does not have a capability which allows

introduction of abbreviations.

5.4.2. LISP Functions:

We have taken the position that LISP expressions, in general, and what are

usually termed 'LISP Functions', in particular, are simply individuals. This raises the

question "Do HSP Functions', such as

(LAMBDA (X) (CAR (CDR (CDR X))))

have any functional character whatsoever?" .

Answer: 'LISP Functions', although simply LISP data, induce functions under

interpretation. Hence we may sometimes identify an S-expresslon with the LCF

function that it induces under interpretation. For example, we will Identify with the

'LISP Function' above, the LCF function;

[\y.lisp(((LAMBDA (X) (CAR (CDR (CDR X)))) y))].

which will turn out to be simply the function [\y. hd(tl(tl(y)))],
0

.

»

51

!

I

■ ■■■■:....■-■■■,:■,.-..■ ■■■..-vv^.;---:^:- V.,,-,-.;-,

.,-■.,, .-:,; .. -.■.:, .:- -..- . -. , j ...■,..,. ,. ■-■■■■ - ' I ■■.■■'-: ■■J..^^--- ..-.-■■ .J'-:- ..w..>.-./.i;...- .v..:.... Vv^-vJ-.O,:: ■.■,■;:■,■. ^.Lr.--..^^^^^ ■ s :.^.i.-.i .,.■-: f:.; _..._ ■-. j. ^^.W^^iU^l

rjwaswewasJSSB

fesv m

CHAPTER 6

An Axiomatic Theory of Pure LISP

6.1. Extending the Environment for Names:

Both data and programs in Pure LISP are S-expressions built from NIL and

those atoms which are simply names (identifiers). The environment of Chapter 4

gives us some power to manipulate such S-expressions because of their structure

but we need to augment these results so we can we can (logically) talk about the

atoms in S-expressions. In fact, we must present axioms which further specify Dind

to contain names as well as integers etc. Not only do we want to talk about names

in general but we want to introduce certain specific names such as T', 'LAMBDA'

and 'CAR' .

The first four axioms for Pure LISP are then:

**AXIOM PL1:
11 isSexprn s [>F.|>x. null(x)->T, isname(x)-*T,
II atom(x)-»F,G(hd(x))-»G(tl(x))1F]]

**AXIOM PL2:
| Vx. isname(x) -> isint(x) -* l, atom(x) -» x, i,
I isint(x) -» atom(x) -» x, i, x s x

**AXIOM PL3:
II Vx. ci(discr(x))* isname(x)3T

52

1

S|

t

f

S

.■... ..-../r-^-:.!--^^-'--..--->^.-^^--...,.f^-..i. ^.: ■^.^:J;. ;.■,.:;.., ..i.^:;-v.. ^.v.^;^ :.■■/:-.'.^ ,.,.■■■,■ ...v. ...,..,

w

-TTTjr«! mmnnmiuvuMluu *V*w*!w&$&??*W**v^

z

m

PL1 simply expresses in LCF the definition of S-expressiom) for Pure LISP

which was given in plain language above. Then PL2 further specifies the structure of

the domain of individuals (D,nd) as being partioned by the name and integer type-

predicates. Looking at the consequences of these two axioms we see

|- isname(i) = i
sname(X)=i h X - i
snameM^T h atomM^T
sint(X)aT h atomiX)^!

as well as the fact that names, integers and pairs (non-atoms) are all distinct. Finally,

PL3 introduces 'discr' which maps names onto integers and is the basis of a compact

way of introducing specific names; we will use it is a discriminating function to give

a total ordering for names (although this fact is not contained in the axiom). To

illustrate its use we just proceed with the axioms for Pure LISP, giving the one

which introduces the 'reserved words'.

**AXIOM PL4:
discr(LAMBDA) > discr(LABEL) = T,
discr(LABEL) > discr(QUOTE) = T,
discr(QUOTE) > discr(ATOM) = T,
discr(ATOM) > discr(COND) = T,
discr(COND) > discr(CONS) ■* T,
discr(CONS) > discr(CAR) = T,
di5cr(CAR) > discr(CDR) ^ T,
discr(CDR) > discr(EQ) a X,
discr(EQ) > discr(F) E Jt

discr(F) > discr(T) a T

When using the LCF system to do the proofs discussed, we decorated the

53

■ : ■ ■ ■ .-...■
.;■■;■;.■■.■-■■..-^■■,.-,;,..;■;;._;,

.;,■:..■■..- .,j,',,.> ,.:.'_; -.. -. ■„.. irk,---1 Mi^iaMh v

......!;^,.,it-....-.,..,.-..,..:,...._... 'i uii trii.^ii]wiffrt»w>iiwiiwfiiiwiiiiiiitiii(ifWitiii

specific names (QUOTE, CAR etc.) with a leading underbar. Underbar in an identifier

indicates that the atom is a constant name in Djnd and mentioned in the axioms.

However in this report we will simply write _CAR as CAR .

It is a trivial exercise to show that each of these reserved words is a name

(satisfies the 'isname' type-predicate). Furthermore, using the transitivity of V we

can easily show that distinct names are unequal. For example, we can derive

diGcr(CAR)>discr(T) s J and hence CAR=T--F .

■& I

Jl

6.2. Axioms for Interpreting Pure LISP:

As has already been inferred, we will be defining in this section, a function

'lisp' which 'interprets' S-expressions in the appropriate manner. For example, we

wish the function to satisfy the equations

lisp/(QUOTE T)) s T

lisp(((LAMBDA (X) (CONS X (QUOTE F))) (QUOTE T))) ^ T • F

where, of course, X is a name.

[12] contains, in order to be precise about the meaning of the language, an

interpreter for Pure LISP. That interpreter, which is written in Pure LISP, and which

we reproduce in Figure 6.1 (next page), is a collection of mutually recursive

functions, the most important of which are 'eval' and 'apply', 'eval' is a function of

54

■

..

;

01

.-. .. / ■ ■ .■■■■■■-

.'
'■■■.v■>l^'■.l:^■I•i^

te^^-^--V.v.:v..L..j;..;'-.^..... . ___ _ _^_ _ ^ . . ,..w„-^-.....i.../^L-,;.:.^^vfe.L^/J.:^... „ _i _., _ _ _ i- _.L_ ,,._._^^.w:^ ;i ^^.L^^i^ _ _

, . . j..,,^,,,., v, ., , „■■„-——u.. ,.,,.. ..,..,,..,...,. ..I.. .. .^ «■TT-T '"v - ^. - ,.T---»i-..^ .»L-.».. ...i. ...-TT^.-—.—, ..' .1 |.OMiv;.»!iii|iKiV!!mK-W'vr"'-TrT^""*'-•■,,J,'u'*;^''l|J',l''T»

1'-""'-'■ ■■■ymmmm mmmmmmmmm mmmmm .■-^r-:■■■:■■--.- - ■ ■',-.■-. •■■;^i^|g^:

:;::'

;;

apply[fn;x)a] =
[atom[fn] -» [eq[fniCAR] -♦ caar[x];

eq[fn;CDR] -♦ cdar[x]i
eq[fn;CONS] -+ cons[car[x];cadr[x]]i
eq[fn;ATOM] -> atom[car[x]])
eq[fn;EQ] -» eq[car[x];cadr[x]]i
T -> apply[eval[fnja];x;a]]i

eq[car[fn];LAMBDA] ->
eval[caddr[fn]ipairlis[cadr[fn];x;a]];

eq[car[fn];LABEL] -> apply[caddr[fn];x;
cons[cons[cadr[fn]icacldr[fn]];a]]J

i s

«*■

eval[e;a] =
[atom[e] -^ cdr[assoc[e;a]];
atom[car[e]] -» [eq[car[e];QUOTE] -» cadr[e];

eq[car[e]iCOND] -» evcon[cdr[e]ia]j
T -» apply[car[e];evlis[cdr[e]ja];a]];

T -> apply[car[e]iev|is[cdr[e]!a];a]]

evcon[c;a] = [eval[caar[c];a] -» eval[cadar[e];a];
T -» evcon[cdr[c]ia]]

evlis[m,a] = [null[m] -* NIL;
T -* cons[eval[car[m];a];evlis[cdr[m]ja]]]

pairlis[x;y;a] = [null[xl -» a;
T -* cons[cons[car[x]icar[y]];

pai rl i s[cdr[x]icdr[y]i8]]]

assoc[xia] = [equal[caar[a];x] -» car[a]i
T -+ assoc[xicdr[a]]]

Figure 6.1 - The Pure LISP Interpreter of McCarthy.

-:
55

fe-il» . .- . • ...i,..;,.. ,~/*Vw^..ii];ä*.W„iÄ.--^,.,. ^-:,-\y^,^k^ii^^^,^si-^iJ^m -^,.,.. .,,......-.,. .„jA,, .„ ,. ,; . ,. ., ._■ __ _M^.^hc^^

"'^^«WI«IWWlB»'W,W'!«!"^W«WWPw^»TiF»w!^wr«l?pwi»^^

two arguments:- a LISP expression and an association list which is used to hold the

bindings of variables. 'eval(E, A)' gives the LISP interpretation (the evaluation) of

the expression E using A to get the values of variables. Similarly, 'apply(P, L, A)'

applies the LISP function F to the list L of arguments again using A to bind values

to variables.

Now in developing a new definition of Pure LISP, we do it in a way that

corresponds as closely as possible to the McCarthy interpreter. In particular we will

have LCF functions 'eval', 'apply', 'evils', 'evcon' etc, each with almost the same

structure as the LISP function <.: the same name.

'eval' is the most basic of the various functions we propose since we are

able to define all the others in terms of it:

**AXIOM PL5:
II lisp - [xe. eval(e,NIL)]

**AXIOM PL6:
apply :-• |>G. [xfn x a. ci(x)^ islist(a)-»

(fn-CAR)- hd(hd(x))l
(fn=CDR)-> tl(hd(x)),

(fn=C0NS)-* hd(x).hd(tl(x)),
(fn=AT0MH atom(hd(x)) -* T, F,

(fn=E0)-» [xx y.atom(x)-*atom(yMx-y),i,i]
. „ v „, (hd(x),hd(tl{x)))-*T,F,

atom(fn)- G(eval(fn,a),x)a),
(hd(fn)-LAMBDA)-» eval(hd(tl(tl(fn)))(palrll8(hd(tl(fn)),xla)).

(hd(fn)=LABEL)-G(hd(tl(tl(fn))),x(((hd(tl(fn)).hd(tl(tl(fn))».a))l
1,1,1]]

&

..•

%J

O

56

U.i

^„fal.o.J.f.^^^.-W..... ^ ; ^ ■ ■ ■ i ^ - • ■ - - - ■■' • u i ^ iji ^—..■.,^.■■,■■.. ,>■■ ^ ;.....'■. r.;^^».-^^ ,,.,.■. ...^■a.^afffeK JJ^a^a

:$§&m-mrp -•..■.

I'

■::■■■

**AXIOM PL7:
evcon " [/iG.[xc a.

(eval(hd(hd(c)),a)=T) -> eval(hd(tl(hd(c))),a),
(eval(hd(hd(c)),a)=F) - G(tl(c),a) , 1]]

**AXIOM PL8:
|| evlis H [MG.[xm a.null(m)^NIUeval(hd(m)Ia)»G(tl(m),a)]]

**AXI0M PL9:
pairlis s [/iG.[xx y a. null(x)-»a)

(hd(x)My)) • G(tl(x),tl(y)(a)]]

■

I*'

It remains only to define 'evai'. Inspired by the interpreter we want 'eval'

to satisfy the equation

eval = [xe a. atom(e) -» tKassocie.a)),
hd(e)=QU0TE) -* h^tKe)),
(hd(e)=C0ND) - evcondKe^a),

apply(hd(e),evlis(tl(e),a),a)].

Now this equation is not satisfactory as a definition since it contains

references on the right to functions which depend on 'eval'; if we adopted this we

would not have a set of definitions but a set of mutually recursive equations. Worse

yet, this set of simultaneous equations, although consistent, does not specify the

functions adequately. An example will show this: Consider the computation of

eval((G), (G»(LAMBDA NIL (G))))

through apply(G, NIL, (G«(LAMBDA ...)))

and apply((LAMBDA NIL (G)),NIL,(G'(LAMBDA...)))

back to eval((G), (G'(LAMBDA NIL (G)))) !!!

57

 : .. ■ .

 -...-■- -,..;,-..^!.^.4;^.:o.i:..^,.. „■■.: ; : ^^,^,^^:^'iiiM^M,-^.\,M-il-.i:.^U.-.,.-.. w -....^ _. g

WT -'-■" '■..■"/»•V'ilV"'r ""•'»- ^I •.',-. ".--••^'"^ -"y-r^^ r, ■— -^r^iw^.^-^TrvT-r^-^"^^-'':rrV-,'^'.*WW-y.--J-. ::,«.-~l.lö;l-r... f..,,.,., ^v^rr^r^^^-^y^syn^rt 1T7^rTT?:r^"™"v ■'■■'■■^■-''■ ■■:-.-^^^'M~-^^:

It io not inconGistent with the above equation, then, to assert, for example

revol((G), (GdAMBDA NIL (G))) = T'. We actually want our definition of 'eval'

to f-pccify the rccultc of all computations.

The oolulion is clear, we take the definitions of 'evcon', 'apply' and 'evlis'

and substitute them in the above equation for 'eval'; we then take the fixed point of

the right hand side; lastly we add a leading condition to ensure strictness. We

present the resulting axiom (PL10) as Figure 6.2 (next page). With this definition

of 'eval' we get as a theorem

eval 3 [xe a. islist(a)-»
(atom(e) -» tl(assoc(e,a))),
((hd(e)=QU0TE) ^ hd(tl(e)),
(hd(e)-COND) -* evcon(tl(e),a),

apply(hd(e), evlis(tl(e),a), a)), i]

A noteworthy technique for working in LCF was just used but the following

abstract example will illustrate it better since it has less irrelevant detail; we

suppose two functions (L,M) satisfy the equations:

L * P(L,M) and M ^ Q(L,M)

The MUTUAL least fixed points for L and M are given by the definitions:

L ^ [MF. P(F([MG.Q(F,G)])] and M n [MG. Q(L,G)].

Similarly, supposing three functions (L,M,N) satisfy the equations:

L * P(L,M,N) M n Q(L,M,N) N * R(L,M,N)

the MUTUAL least fixed points for L,M,IM are given by the quite lengthy definitions:

58

G,

u

G

(

'**—■ -•'•--)WVrliMiili.i'- ■■'- ^^■' ■ --- ■"--■ .:;^a^«;.;i'!,Av..i^^..^:.^i-'^--.«^-^.^.^^-^.-.-i-^ ■ -^■i--^---^»-- -■t:.^..J....^i.w....^.^..v._.,.:J.i.:,.: ,..,...■■,. ,■■-..-.. ^..^^.^^mi/^

~ ■ v'f ^>ft^';'^^^™'';: ?. w^t^^f/T'" ^;v :^^n ^^^»^ ^nr^,-1 ^^/v^T^.y^ ~^^;™7;i'r>^r^ ^j;-7-;^.rr^: w--^ ;^:?li';^yl^iT'^";"-ifJ,;ö-^?f':.'i^"S^-i^>':--5-'^.>i-

l"'TO*"

»♦AXIOM PL 10:

eval "- [>B.[\e a.
islist(a)-»

<atom(e) -* tKassode.a)),
hd(e)=QU0TE -^ hd(tl(e)),
hd(e)=C0ND -»

[MG.[XC a. (B(hd(hd(c)),a)=T) -> B(hd(tl(hd(c))),a),
(B(hd(hd(c)),a)=F) -* G(tl(c)la),i]](tl(e),a),

[/iG.[xfn x a. ciix)-* islist{a)-*
(fn=CAR) -* hd(hd(x)),
(fn=CDR) ■* tl(hd(x)),

(fn=C0NS) -♦ hd(x)'hd(tl(x)),
(fn-ATOM) -* atom(hd(x)) ■* T, F,

(fn=EQ) -* [xx y.atom(x)-»atom(y)-»(x=y),
i(i](hd(x),hd(tl(x)))- T.F,

atomdn) -• G(B(fn,a),x,a>,
(hd(fn)=LAMBDA) - B(hd(tl(tKfn))), pairlis(hd(tl(fn)),x,a)),

(hd(fn)=LABEL) - GdiddKtKfn)))^,
((hd(tl(fn))-hd(tl(tKfn))))'a))(i,i,J.]]

(hd(e),
[/iG.[xm a. null(m)-»NIL,

B(hd(m)Ia)-G(tl(m)(a)]](tl(e),a),
a)), 1]

Figure 6.2 - The Definition of 'Eval'.

59

■

■

■• ',■;■■,:-;.';::.■■.■.;..■, .,-; ..;:;

k^^-W.iii'.'üiirt.'.!-^-^^ - ■ - - ■■•■• -— - - ■ i ' -' .. ■ ■ - - ■ - :-v ■-—■ ■ • ■■

^ —'■■ '■*r?y&Tr*wrfF??™^^

L - [MF. PIF, [MG. Q(F,GI[MH.R(FIG,H)]],[/ZH. ^F.^G^F.G.HJ.H)]
M - 1/iG. Qd.G^H.Rd.G.H)]]
N n [pH. Rd.M.H)]

6.3. Discussion of the Axioms:
c

6.3.1. A Different 'evcon'.

Because we have modelled the above definitions on McCarthy's interpreter,

an actual difference in the semantics is accented - a difference in the actions of the

two functions 'evcon'. That there is discrepancy is illustrated by the example:

evaK (COND ((QUOTE X) (QUOTE X))
((QUOTE T) (QUOTE T))), NIL)

In our semantics this term is i whereas the old interpreter will yield the

answer T. We feel justified in making this small change since it seems that the

action of McCarthy's interpreter (in this case) is at variance with the natural

language description of Pure LISP. We quote from [12] the definition of conditional

expression:

" A conditional expression has the following form:
[Pi-^e,; P2->e2j...;pn-»en],

where each p, is an expression whose value may be
truth or falsity, and each e; is an expression. "

U

O

60

o

»■•-'"■I- -'■■ ■--;-.->■r..^..;/..J.j.^..; i,...-^-^.....;-^,,J.J....v..-v,,.t.^v..,^La<^>«Aai^^^^1i.Ajl^^..J^ X ^1 ■■„v.;^v/.--.'....Wv , j.,.;..,. ■^.■.^l^.-.'^jLMliiidaiäläl,

i

-

6.3.2. 'lisp' is not 'evalquote'.

[12] presents the top level of the Pure LISP Interpreter to be the

'evalquote' function which corresponds to

[\fn x. apply(fn,x,NIL)].

We could also have defined 'lisp' to be that term, but have chosen instead

to follow the example of the usual LISP systems which use 'eval' as the 'top level'.

6.3.3. Strictness of 'eval' and 'apply'.

Next note that the definitions of 'eval' and 'apply' have the following

structure:

eval - OF.Oe a. islist(a)-»(atom(eH(..),(..)),i]]
apply -■ I>G.[\fn x a. ct(xHslist(a)-»

((fn^CARHJ.UUi]].

The main point of the 'islist(a)' and W conditions is to ensure that each

of these two functions is strict in each argument position. Of course, '3(a)' would

have guaranteed strictness equally well as 'islist(a)' but the latter was chosen for

imagined technical convenience: we are only interested in the function when the last

argument is an association list so it might as well be undefined if that argument is

not even a list. In retrospect it would be preferable to replace ,:islist(a)' by '3(a)' in

both definitions since some theorems are more compactly stated and many proofs

become easier.

61

v ,■..-■ - ■-■■■ '■ ■■•■'■-;r'v,. • •;[■ ., ■■...„Vf'.V;,;;

^■:.^J«:^f..J....^V^L^:^^^^-..^.^^ ■^-^.^-..x- -.^■:......^-. ... ■- ^^t^iSt^^r^^.*^.^.^^^*^.-^ ■• - ,...a:.... „:.,..;■ ^^:.J..„..^...^.^w,^-^ ^->^.--^.■.■■ v. • • •*. ^ MV.. , ^

■ . . . (' ■,'- -y^r^yF.r~-- p . - '--^.^^rsr^r^^*^^ __,,-„_ ™tv- |_^ , .,,_ t^rtVjyVT1 TJ^ST".

Actually, strictness in the last argument position for 'apply' is not essential

but strictness in the second argument positions of both 'eval' and 'apply' Is required

to prevent counter-intuitive results. The following examples illustrate this fact:

i) lisp((LAMBDA (X) (QUOTE T))-ML) .

This term computes to

applyi (LAMBDA (X) (QUOTE T)),NIL,IMIL)

and then to

eval((QUOTE T),!) .

Depending on whether we have the 'islist(a)' condition in the

definition of 'eval' or not this further computes to 1 or T

respectively. Now i is the appropriate answer since a

disaster occured during the computation. We would expect

mechanical computation (a? with an interpreter) of this

example to FAIL at the point where 'hdiNIL)' is required.

ii) isp(((LAMBDA NIL (QUOTE T))
f < (LABEL N (LAMBDA NIL (N))) NIL)))

Noting that

eval(((LABEL N (LAMBDA NIL (N))) NIL),NIL) * 1

This term computes to

apply((LAMBDA NIL (QUOTE T)), 1, NIL) .

-. i

0

n

u

ü

62

? ' i

■ ■-■-- --^ u ...w. .i.,...:^...;.!«...^^..--:.-. .-^. ■■■-J-.- ■- ■.--■.—.■^■^- - ..., , , . 1 ■ .- -. y ■■-.■■;-*-

7'^^r;TTp^:'I^iTT^'~. .^'f*rZrT-~\VTrr^:77<l'rr?r:7?7:->rr?**WT^T?'}f7^l"^JirTyir^r^Tv^r"-^"W.T!-r'^TT;TT'.!V7r'^TTTt">^yr-fWT^rrTi'Wyv\"7rv^A=F-c^v*« 1 V^Tf'TtT^

^ '

;•;■;

Then, depending on whether the 'ii(x)' condition is in the

definition of 'apply' or not, we get, as the answer, either 1 or

T . Again the latter answer is counter-intuitive since

mechanical interpretation (using McCarthy's model) of

eval(((LABEL N (LAMBDA NIL (N))) NIL),NIL)

would go on forever.

t

I

S.pA Total Formality.

Since the meaning of Pure LISP is embodied in the function 'lisp' in the

axiomatic setting we have provided, we have succeeded in giving a completely

formal specification of the language. Contrast this with the method of [12] where

Pure LISP is first described in plain language and then this definition is 'tightened up'

by the presentation of an interpreter. Note that this interpreter is not a definition of

the language since it is only meaningful in the context of the accompanying natural

language description.

6.4. Theorems of Pure LISF:

Having the definitions frr 'lisp' and the auxiliary functions is barely half the

job of constructing a 'theory of Pure LISP' that can be applied to proofs of

correctness of programs. We now need to develop a body of theorems which we

U

■

63

•■■■•■ '■■■ ■ ■.■~f.';,««aääs.M

i..^.- —■■ ■--- ...■>■..-..^ L. .;^;,-tv...^....L.:^.^eAl^^.1.j..-^u»,^:.^iiJ^^...^... .■■■.... ^■..^^.^^^»^■■.^.i.^^,>,-, .. ^^^^^ggggyy^i^-ggiiil

T■:7TJ7^,^*TVv^,'■ r-rsnn-^T^fEy"''.'i^^^1^r> -T:T.'^T'■^T-TV.'^Tj-sr^r-,T^s^t•^^■.JT^-H-^T;'-.^■'Tl'?'^^"i"■l»D^7'^'.■ ■»•ZT^TT-^-^i-«.f■ -■-"-.->vs'.;'--.';,'■..■■,•■;.^:•-•^jv.yr.^-.T.■:"-;■■ ■ r..f"-■ ■;"-;----^17-7^^y■.Tt^-■--■,".T ••777Fr3'^-i^T^q^7-y^^^^7i-r^-v^: ■'-.-^.r.s;-^

ü i

can expect will facilitate such applications. Presented in this section is such a

collection of lemmas giving properties of the functions 'eval' etc. and giving the

reaults of these functions in special cases. Most of the theorems are suitable for

inclusion in a SIMPSET.

We start by presenting some lemmas for the functions 'eval', 'evils' and

'pairlis' . These functions are strict in almost all argument positions. Where

appropriate the strictness results such as f- Vx.evlisU.x) s 1 were proved

although we do not list them. More interesting are the following:

i) I- Vx y a. evcon(((QUOTE T) x>y,a) ^(yHevaKx.a),!

ii)

iii)

iv)

c"(XhT, ci(Y)nT h Vw a. evcon((w XJ-Y, a)

= (eval(w,a)=THeval{X,a),
(eval(w,a)=F)-*evcon(Y,a),i

f- Va. evlis(ML,a) - NIL
I- Vx a. evlis((x))a) - (eval(x,a))
I- Vx y a. evlis((x y),a) E (eval(x(a) evaKy.a))
etc.
f- Vx y a. pairllsiCx^yXa) - (x«y)«a
I- Vxl x2 yl y2 a. pairlis((xl x2), (yl y2), a)

s(xl«yl) .((x2-y2)-a)
etc.

/

u

Building on these results, we are able to derive more easily basic lemmas

describing the effects of 'eval' and 'apply' on come common constructs. (Again we do

not concern ourselves with strictness results but just report on their existence.)

We start with three special cases of 'eval' on expressions which do not involve

function calls:

64

.

(

"■-■■• ■■■-■■ v. . ■..,^.J.1T^^ ■;...■-J...-....,^. ■..-.■■> - - ...■,.,..L.,.,..J.^—■..-■..-.■..■.,,,........,,,...,,., ■....:,,^-.J,.^..^^^J.-.„v,iJ.^-ijj^aaafläaM«iaai£'«

'. ~ ,'r'- ■" v^. >" --■'"r't^arjTV'TnTifrwiTT'f rr^i*»', *• >T,r7"17"r'Miri'f •iwrwtivj~rr^y

D

I

v) |- Vx a. eval(COND^x, a) a evcon(x,a)

vi) f- Vx a. eval((QUOTE x), a) 3 islist(a)-»x,i.

vii) atom(X)=T \- Vy a. eval(X,(X'y)»a) = islist(a)-»y,l

viii) atom(X)aT, X=XleF
h Vy yl a. eval(X,(Xl'yl)»{(X'y)«a))

s islist(a) -* ä(yl)-*y,l, 1

There is some taste involved in how one states many of these theorems.

This last theorem, for instance, could have been written as

atom(XhT, X=X1^F, islisUA^T, a(Yl)aT
H Vy. eval(X,(Xl'Yl)»((X7)"A)) ^y

The next group of theorems concerns the application of the five standard

functions:

ix) H Vx a. apply{CAR,(x))a) - islist(a) -* hdlx), 1
f- Vx a. apply (AT0M,(x),a) - islist(a)-* (atom(x)^T,F), 1

and similar results for CDR, CONS and EQ

x) H Vx a. eval((CDR x), a) -- tl(eval(x,a))
|- Vx y a. eval((C0NS x y), a) ** eval(x,a)'eval(y,a)

and similar results for CAR, ATOM and EQ.

Finally there are theorems (or families of theorems) for the cases of 'aval'

and 'apply" which involve functions which are given explicitly as LABELed

expressions or as LAMBDA expressions:

xi) h Vn f x a. apply((LAcEL n f),x,a) = applyO.x/n'O-a)

65

I ■■; ■■■■■/r^-:i.y^^ii&^&i&yf£j':?-'f

Mji^^^^.^.^^i^A^^

WW«TOWMW!Wi|!lW^ u.iji.im.m i .>■>■.» JI.I.. -Hi-' -...MI. ..IU, .11.,... .U.»>II»<»|IUIII.. nni T^_T^T:^,„„„....^,, „

3.

xii)

xiii)

H Vr, f x a. eval(((LABEL n f) x^a) ^ apply(f,6yiis(x,a),(rvf)oa)

I- Vb a. apply((LAMBDA NIL b),N\l,a) * evaKb.a)
h Vx y b a. apply((LAMBDA (x) b),(y),a) = eval(b((x.y).a)

etc. for higher arities of the function.

xiv) |. Vb a. eval(((LAMBDA NIL b)),a) = eval(b,a)
I- Vx y b a. eval(((LAMBDA (x) b) y),a) a eval(b,(x.eval(y,a)).a)

66

u

O

^

01

^;v^.-;-v^.■^^:■:■:-^^-^'^*>0.':;■^;i>.K.k■r■^;--■ Äs-ÄUv^-^o^'.."^..^^/,.:- r^^^^;v;,i^e^-w^'^^4^fe(äk!;^i^

* ^ IKTTJ I ■'.>-'.■.'.■ : >- f. ,,.«.,wi,>u,«i,^..l....,.,WIJ,JJ,,P,,,,I^WI,?^,I.UJU#W,.U.(IU!IL uu.ii l^JHUl•»,Pl^^lw^^lw?*^^^|!|^1'J.•-u>J•|^l^ll|«^Kl^^*^B!9SW
7 f^ ti-nf&fQptfftr.-

---■-■•---- . . .-,- -.-•. -■- '■•^t' ;-l-;:<^-;vv^-''M^! ^■' ^^ ■

f>

;

':'.

CHAPTER 7

Applications of the Theory of Pure LISP

k*

g!

:•

li

We shall discuss ir this brief chapter the application of the semantics of

Pure LISP (developed in Chapter 6) to the correciness of several simple LISP

functions. The purpose of working these examples is to illustrate some simple

techniques that may help in converting LISP functions to the the LCF functionals that

they yield via interpretation. The three functions we use need to be defined and

discussed anyway because they are used in the LISP interpreter that we discuss in

the next chapter. The functions are

i) The NULL function of one argument X; It returns T if X is NIL else

returns F; There is no recursion involved,

ii) The EQUAL function of two arguments X.Y; It returns T if X is the

same individual as Y; It is recursive but calls no other recursive

function internally,

iii) An ASSOC function of two arguments X.A; It returns the first pair in

list A whose head is X although if there is no such pair it gives

NIL; It is recursive and it makes a call on another recursive

function (EQUAL).

.i

1
I

67

|

^.r^^^ .^..^-.■-..;.,-,...■.,

w« -■.'/■v.. ,■:■- jyj

lippiliUJlLIUlU !IW«W:l.HWI<lVil<AU.UUl"lLÄl«U,II.IU llipilll^pi . I IIJI,l..l|l I ... I.IIM i i.u, I ^l.......»«.^."-..-.!....!.,.. ,i,,p.F. ,i i!. p«,,-,..-,,,,.-. ...i..l,»..,,PJ''uu.. |—-,■—— 1^

Before we discuss the examples in iurn, some more axioms must be given

(added to the environment axioms of Chapter 4 and the Pure LISP axioms of Chapter

6). We must say that EQUAL, X, A, ASSOC etc. are all names (of functions or

parameters) and distinct from each other and from the names LAMBDA, CAR etc.

Also it is convenient to have names for the S-expressions which are the bodies of

the functions NULL, EQUAL, ASSOC. So:

**AXIOM PL!
discr(ASSOC) > discr(T) s Jl

diGcr(EQUAL) > discrlASSOC) = J,
discr(NULL) > discr(EQUAL) = T,
discr(A) > discr(NULL) = T,
discr(X) > discr(A) = T,
diGcr(Y) > discKX) m J

u

**AXIOM PL 12:
Snull s (LAMBDA (X) (COND

((ATOM X) (EQ X (QUOTE NIL)))
((QUOTE T) (QUOTE F))))

ü

**AXIOM PL 13:
Sequal ^ (LABEL EQUAL SequalB),
SequalB ^ (LAMBDA (X Y) fCOND

((ATOM X) (COND
((ATOM Y) (EQ X Y))
((QUOTE T) (QUOTE F))))

((ATOM Y) (QUOTE F))
((EQUAL (CAR X) (CAR Y))

(EQUAL (CDR X) (CDR Y)))
((QUOTE T) (QUOTE F))))

D

;.

68

ieaafeKiäXi^^-.:^^^^...: ^>^.^^^^*^^i^^;^^t^^^^

.,_Ä.

I
■I;

**AXIOM PL 14:
Sassoc s (LABEL ASSOC SassocB),
SassocB s (LAMBDA (X A) (COND

((NULL A) (QUOTE NIL))
((EQUAL (CAR (CAR A)) X) (CAR A))
((QUOTE T) (ASSOC X (CDR A)))))

:'

!

f

i

v

7.1. The NULL Function:

The correctness of the NULL function, given by an S-expression above, is

succinctly captured in the theorem:

f- Ve. Iisp((Snull e)) a null(evai(e)) -» T, F .

However, two theorems which are much more useful are:

f- Ve a. apply(Snull,(e)Ia) a islist(aHnull(e)->T,F),i

and

f- Ve a.evol{(Snuil e),a) 3 null(eval(e,a))-»T,F .

Actually, these theorems cover only the important and usual case where

the function is applied to precisely one argument. A more general result is:

h Vx a. apply(Snull,x,a) = isliGt(aMnull(hd(x))->T,F),i .

In fact, all of these theorems are trivial to prove in the LCF system and it

suffices to consider just the second of the four. The appropriate attack is with

ABSTRaction followed by CASES on 'islist(a)' and 'ci(e)'. The only subcase with any

69

■•■■-' ■■■■■-■■ .-. ..,-,..■,.::■■■.

i'WWWWWi—«—~ — - ■t^ ^^r^r i^sTf I-r™.1? "^.^^ . ■ "■ ■ t' ;■■'.; . ' ■ > '.■■...■' .■ ■ '■ .■■■. -■■. ■■ .' ■ --! ■,, . ■ ■■■.,■.■■,.:■■

interest is the one in which we have 'islist^T, 5{e)<r. We use SIMPLification on

this and the subgoal we get is

atorTi(e) -» (alom(eHe=NIL),lHT,F,
atom(e) -> 1, F = null(e)-»T,F .

This subgoal happens to be easily provable by CASES on 'atom{e)' but the

important thing about it is that it contains no mention of 'eval', 'apply' etc.; It is

simply a proposition in LCF involving the equality of two terms which denote

individuals and proving this subgoal has nothing whatever to do with the semantics

of LISP, The number of substitutions which were ordered by the simplification

routine is quite large and so we see we are reaping benefits from having a SIMPSET

which was rich in special cases of the LISP primitives.

The NULL function is a good example of the simple (but common) case of a

function F which is just a LAMBDA term and which contains no nested LABEL

conotructs and uses no unbound variables. As a statement of correctness of P, we

will be seeking to prove a theorem that looks like

Va x y.... apply(P,(x y ...),a) s islist(a)-»G(x,y,...),i

It is proposed that in proving such a result one attacks with ABSTRaction,

does CASES on 'isllsUa)' and CASES on the definedness of each of the arguments

(x.y,...). If we are lucky all but one of the subgoals are trivial and the nontrivial one

SIMPLifies to a subgoal which is quite free of 'eval', 'apply' etc.

. /

J

U

.

70

V-y^.te^^.A».^.^^.^^.^.,;!.^ dmia&iuii^iiaiiiiiti

p iiviaiiia IIIILI. i.i»i. »ii..iit,ji.i|..i., i.-,.-..-i.---.u ..i .■ {....ii. vi..iiUi.<i».iU->«ii>i>~—•■-.i> •>vM<.><<<.i»"-m JII«-.» ■«IU«<.II^I«W-'. ■.in.a ..i. ..pp». i I.«I..,.J .jif" ,^"lV.^i'W.»,!"l.,.'-"li^M';Fl1ilu.iu" PH

'■■;:'V':'; ■■::■■?;■:■;■;■;.■ ^ • ;,-^^ . ■
«»Wi«*»!; S»faSSMBKMBBKSSIglSBMSW«p«Bä«9»iMli!^ ■ ■'■-- ■"-

7.2. The EQUAL Function:

;:

■.

c

c

EQUAL is an example of a function which is recursive but does not call any

other recursive function internally (i.e. it does not contain any LABEL constructs).

Again the statement of correctness is simple and comes in a variety of forms such

as:

Vx y a. apply(Sequal,(x y),a) e islist(a) -» (x=y)-»T,F, i .

Recalling that Sequal and SequalB are the S-expressions that are the whole

LISP function and its body respectively, we tackle the above theorem via the lemma:

Vx y a. a(x)* a(y)* a550c(EQUALla)=(EQUAL'SequalB)*
apply(SequalB, (x y), a) = (x=y)-»T,F .

This lemma is appropriately attacked by induction on the structure of either

of the arguments of EQUAL since the recursion of this function takes both apart.

More specifically we do induction on some occurences of V using an equation that

was introduced as an axiom in the Theory of Lists in Chapter 4

a a [/iG.[xx. atom(x)->T,G(hd(x))-»G(tl(x)),i]]

The base case is trivial and the other case reduces to a subgoal where we

have

G(hd(x))-T, G(tKx)hT, ct(y)*T,
a5soc(EQUAL,a)-(EQUAL'SequalB),
Vx y a.G(x)* ci(y)* assoc(EQUAL,a)=(EQUAL-SequalB)*

apply(SequalB, (x y), a) s (x=y)-+T,F

71

,^N^>,.:„.,,--.v.^,^.,.;.,^.^^

SS^ggS^WR ^^r^r^^^r^'^T-'^S^ .^^^^^^^..^^^^jwa^y^^p^i^By^^^^ 'rr'Tv^^-1.'«.^,.,™

(^

and we must prove

apply(SequalB, (x y), a) = (x=y)-T,F .

The next attack on the problem is by using the definition of SequalB and

the SIMPSET which is primed with the nice lemmas that we described in Chapter 6.

Simplification does not simplify it to something which is free of 'apply' and 'eval'; the

subterms which are the recursive calls on EQUAL are almost intact. However, by

doinc the CASES arguments that suggest themselves and applying the induction

hypothesis we complete the proof of the lemma and then the proof nf the main

result for EQUAL quickly follows.

The important technique illustrated is that when one has a LISP function F

which is an S-expression (LABEL F B) (where B is the body), and we want to

establish a theorem that looks like

Vx y apply(F,(x y ...),a) S istist(aHG(x,y,...),i

then we try to prove a lemma that looks like

Vx y ... a. a(x)* c)(y)** assoc(F1a)=(F'B)*
apply(B,(x y ...),a) B G(x,y,...)

"..

i.J

.,

0

:.■

■

and we attack the problem using an induction that reflects the computation that

function G performs; perhaps we use the definition of G and perhaps we use

induction on the structure of an argument of G that it tears apart.
0

72

^r-^i-.i.i'^^-^.^i.l,! ^^i^lk^^^y-v^^^iviiL*^ ^^^tw^tj.:^^^:^.^;^«^^ . _ _..._ _ _ _ _ ■■

p^-'r^^^^^^^*7^. "■"■"■™ • ^>™---^

.

"i'r- * . Y}-iy'r~y.,vr^Tfi

i :

■■

C

7.3. The ASSOC Function:

We refer back to the start of the chapter for the S-expression form of

ASSOC (the S-expression is named Sassoc). We also give here a corresponding Pure

LISP function in M-notation

assoc[xia] = [null[a]-»NILi
equal[car[a]ix]->car[x];
T-»a5soc[x;cdr[a]]]

■

.

As shown by its definition, the ASSOC function chosen is recursive and also

makes internal use of another recursive function; that is, it has a nested LABEL

construct. The correctness results for ASSOC are typified by:

Vx y a. apply(Sassoc,(x y),a) s islisUaH associx.y), i .

The recursion aspect is handled in the same manner as it was in the proof

of correctness of EQUAL; we prove the lemma

Vx y a. a(x)* a(y)* assoc(ASSOC,a)=(ASSOC«SassocB)*
apply(Sassoc,(x y),a) ■ assoc(x,y)

doing it by induction on the second argument of ASSOC. The internal call on the

recursive function EQUAL is no problem because we already have the result (last

section);

Vx y a. apply(Sequal,(x y),a) = islist(aMx=y)-»T,F,i

which is great as a simplification rule.

i

73

J:,;.^.,..:.a^J:.,»vM^.w^^^ ^,.-,.,■^,..^.1, i.i.^i^taiiM^^t^^

'^!4?****fc*

In general when a function contains a call on a recursive function, we prove

a correctness result for the sub-function first.

7.4. Remarks:

The extraction of meaning functions for LISP functions from their S-

expression forms, provided mutual recursion is not involved, seems rather slraight-

forward and the prognosis for automation of the process is good. The simplification

mechanism already docs a huge amount of the work and it is the author's belief that

more effort .pent on the scope of the Theory of Pure LISP and further development

of the LCF system would make the proofs even easier to generate and comprehend

Although we have not worked any simple examples of correctness of

mutually recursive functions the LISP Interpreter proof in the next chapter involves

several case of mutual recursion (and is rather complicated).

m

\j

:>

74

',.'

u

.&.. ;, .;.;s;«»:i»ii»ij. ■ .:......J.J„...^Wr.,^l..->,:^;;,--;..^., J:-.■!.,-..■■ ^ A | -..■- ■■ ., . , , . , ... - ■■ J..,.. .,.-..„..-^.. ^

CHAPTER 8

The Correctness of an Interpreter

*

:

When McCarthy presented an interpreter for Pure LISP he did so in

'm-expression- notation but the report also contained an algorithm for translating

m-expressions to S-expressions. Following his prescription (and making the change

to 'evcon' recommended in Chapter 6), we present in Figure 8.1 (next two pages)

the various functions (that constitute this interpreter) as S-expressions; we also

give names to these terms so they are given as an extra axiom (PL15). Note that

we still need all the axioms of Chapter 7 (as well as those for Pure LISP and the

environment) since EVAL, APPLY etc. make use of NULL, EQUAL and ASSOC.

Note that these functions are oriented towards EVAL being the function

called at the top level. In Pure LISP one does not declare the various functions one

uses but writes them down in every place they are called except inside of

themselves. Hence, as PL 15 is written, Sapply must just be considered a

subexpression of Seval; 'lisp((Sapply x))' will be undefined for all S-expressions x

that require a call of EVAL. Similar remarks hold for Sevlis and Sevcon. If it was

desired that APPLY be the main function (as in the 'evalquote' model of the top

level) then one could change (in PL15) the 'EVAL's in 'SapplyB' to 'Seval' and the

'Sapply' in 'Seval' to 'APPLY' .

75

a

; . '

^...-.■.V,...^.;^^^^.^.,^^^ ^.w;,.......,,,.,,^.^!.^

'"'■ ' ■■ " ' ■■■ ■■■'^■■■'■■-'■'^'-;-t';''^'"'-'^V!-iL^M^'

....,.;... -.^^...^„^.i...^:.

'w^pii-r^-v--. ^,,..^.^.,...v^..^^^„.,,r:^,..s...:.f,...^,:,^-.^^

fr. ■

:

h
■

■

'&■

:

**AXIOM PL 15:

Seval n (LABEL EVAL SevalB)
SevalB - (LAMBDA (E A) (COND

((ATOM E) (CDR (Sassoc E A)))
((ATOM (CAR E)) (COND

((EQ (CAR E) (QUOTE QUOTE)) (CAR (CDR E)))
((EQ (CAR E) (QUOTE COND)) (Sevcon (CDR E) A))
((QUOTE T) (Sapply (CAR E) (Sevlis (CDR E) A) A))))

((QUOTE T) (Sapply (CAR E) (Sevli. (CDR E) A) A))))

Sapply -: (LABEL APPLY SapplyB)
SapplyB : (LAMBDA (FN X A) (COND

((ATOM FN) (COND
((EQ FN (QUOTE CAR)) (CAR (CAR X)))
((EQ FN (QUOTE CDR)) (CDR (CAR X)))
((EQ FN (QUOTE CONS))

(CONS (CAR X) (CAR (CDR X))))
((EQ FN (QUOTE ATOM)) (ATOM (CAR X)))
((EQ FN (QUOTE EQ))

(EQ (CAR X) (CAR (CDR X))))
((QUOTE T) (APPLY (EVAL FN A) X A))))

((EQ (CAR FN) (QUOTE LAMBDA))
(EVAL (CAR (CDR (CDR FN)))

(Spairlis (CAR (CDR FN)) X A)))
((EQ (CAR FN) (QUOTE LABEL))

(APPLY (CAR (CDR (CDR FN))) X
(CONS (CONS (CAR (CDR FN))

(CAR (CDR (CDR FN)))) A)))))

'I
I I

S

& "

Figure 8.1a - S-expression Form of the Interpreter.

76

Reproduced from
besf available copy.

^1

 :...,..^. .^ ^^..:.>:./....^w.»-....^.--.^^-^i.^^.^..:-v.---.-..: -..^.^■:.«..t^U>....-.-^^.,1:i.^,.-^n.^^„.^,:u,.^.-.,. I UN II^MiM ■lll^jM-'i

n^y**^-**".'-'.*^-- -■--—"■ ■—' T •T^TW^y^vru.^-^^--- ■ •■-:-■•■■..■-:■.--: ■:■:-.-- *■ > • -

--.., v-, .

zmfw^n^vP^StZ*

t

Sevcon - (LABEL EVCON SevconB)
SevconB n (LAMBDA (C A) (COND

((EVAL (CAR (CAR 0)5 A)
(EVAL (CAR (CDR (CAR C))) A))

((EQ (EVAL (CAR (CAR C)) A) (QUOTE F))
(EVCON (CDR C) A))))

Sevlis = (LABEL EVLIS SevlisB)
SevlicB r. (LAMBDA (M A) (COND

((Snull M) (QUOTE NIL))
((QUOTE T) (CONS (EVAL (CAR M) A)

(EVLIS (CDR M) A)))))

Spalrlis » (LABEL PAIRLIS SpairlisB)
SpairllsB = (LAMBDA (X Y A) (COND

"Snull X% A^
((QUOTE V)'(CONS (CONS (CAR X) (CAR Y))

(PAIRLIS (CDR X) (CDR Y) A)))))

I

Figure 8.1b - S-expression Form of the Interpreter (ctd).

77

..■..,,.. . . : ■ .■

■ •^v _^. ...-.^ -iä^-iJ^k^iu^l ^-c*^* - - im, ■ -~- -.■w.:..-^^»-v;1.^n..-w .- .. -^. ..^^u^, ..^^...^^.^

- «, 1^. ■- - <™-- ■ Yf^^rtyr™^^^>?i-:-^'«>^^^iir;^?^?:-^

ij

Before we discuss the correctness of these functions we must give yet one

more axiom to introduce the various function names and formal parameter names for

the functions;

PAIRLIS, APPLY, ASSOC, EVCON, EVLIS, EVAL, FN, C, E, M .

Wa do this in the same way as we introduced particular names in Chapters 2 and 3j

that is:

**AXIOM PL 16:
diGcr(PAIRLIS) > discr(Y) = T,
discKAPPLY) > discr(PAIRLIS) = T,
etc.

8.1. Meaning of PAIRLIS:

The PAIRLIS function is similar in structure to the ASSOC function (see

previous chapter) in that it is recursive and has an internal call to another function.

It is not involved in the mutual recursion that is exhibited by EVAL etc. so we are

able to ilve a meaning function for it just as we did with ASSOC. It should come as

no surprise to learn that the function induced by PAIRLIS under interpretation is the

'poirlis' function which is part of the axioms for Pure LISP.

A convenient statement of correctness for the PAIRLIS function is the

following:

Vx y a al. apply(Spairlis, (x y a), al)
= islist(al)-» a(y)-» pairMx.y.a), 1, ' .

78

i)

.

:.

:.::-: ■.\.i.,-..r.^^.-^i.r.>.-1. *■ a^u^i ,.^.*.^:^:..^..^.i .,..^^«^-:^^-^.^.^.^ ^-^x.^^^^^^..^;^^;..^.^^^ .*..^.^-w.;...^^^ ^-. gj

^m^-^mnmmmm

K-

jn'trr--^—^*T»"-'T-r".»'TT»',T"ii"'.'"-^,-. ---TI-'ITS-»"^»" '-.;■. v^l-'.r'-'i'^T'-^'-J.TT-" ■ '■■ .-■■■.;■■ ■■;■■. ■■.':-, ■ "•■.■■■; Kit " ' V T ,■;..■■■ i /■i '■ ■

I Care should be ucsd to avoid confusion (here and in the rest of the

chapter) when two A-lists appear in a theorem; one will be used in the LCF

interpretation of the interpreter functions (such as EVAL and EVLIS) and the other is

a parameter of these functions. In the case we have here, PAIRLIS needs an A-list

as a parameter and 'apply' need an A-list to interpret the Interpreter function

PAIRLIS.

8.2. Important Lemmas:

I The big problem with EVAL, APPLY, EVCON and EVLIS is that they are

mutually recursive; each of APPLY, EVCON and EVLIS call EVAL and EVAL calls the

other three. Although it is rather comolicated as an example, it Is hoped that the

proof of correctness of EVAL will give some insight to the rather common

phenomenon of mutual recursion.

We now present the main correctness theorom for the S-expression form

of the Pure LISP interpreter:

Ve a al. apply(Seval,(e a),al) = islist(al)-* eval(e,a),l

and we will also seek the auxiliary results:

**1 assoc(EVAL,alNEVAL'SevalB)
h Ve a. apply(SevalB,(e a),al) 3 eval(e,a)

**2 assoc(EVAL,alHEVAL«SevalB)
H Vc a. 8pply(Sevcon)(c a^al) ■ evcon(c,a)

79

..■ ■ .

^..^^■rS^jl^.^i-,:-^^

^Wr£-«vi^ÄWifi»,'41^lÄi^:

 ^.- v.-.-.-^;.>^^Ä^>^.-Jlw^^^J-*.^^^M^^.^^J-^^aU^i

psppifPRWiifPiwpi^

80

**3 assoc(E\/ALIal)-(EVAL'SevalB)
\- Vm a. apply(Sev!is,(m a),al) = evlis(m,a)

**4 asGoc(E\/AL,al)--(EVAL'SevalB)
I- Vfn x a . apply(Sapply,(fn x a),al) ^ appiy(fnlx,a)

(Note that by a property of 'assoc' we can deduce from ,£)(assoc(Xfa))>aT'

the 'act !islist{al)~T').

Without seeking prior motivation, consider just the 'evils' function (because

it is the simplest) and the following proposition:

**5 islisUa) T,
associEVLIS.al): (EVUS-SevlisB),
assoc(EVAL)al)-(EVÄL»SevalB)l

f- Vm. apply(Sevlis, (m a),al)
^ [xall. null(m) -^ NIL,

apply(SevalB,(hd(m) a),all) • apply(SevllsB,(tl(m) a),all)]
(M'mH<A'a)»aI) .

One cannot help but notice a strong resemblance between the consequent

of this equation and the recursive equation that 'evils' is the least fixed point of:

evlis ::• [\m a. null(m) -* NlL,eval(hd(m),a) - evlis(tl(m) a)]

This lernma (**5) is aptly characterised as a statement of 'relative

correctness' of EVLIS since if the function EVAL were correct (i.e. obeys result **1)

then a simple induction will transform it into the correctness statement **3.

The proof of the lemtia (**5) is conceptually very simple involving only the

^- ■ ^..■.■...J-..-^:.,..,.......,.........,- ^,^^^,^^... ,....»,,..^^^^^,^;.^^^..a^

T—-i-iw.*»l i ,i n^qM.M^.pMMv-.«' -..i.iii, » -T... ,-.,,. ..„.up., ., aj V(,illv,m...TrP.nfv,H,1lr^,.prfT,rw.mTni., ^>«r^<"<r 'T^--1. «.-.■«Fr.w-^P... - r...vjp.«...—^^ .<,.l..„w..pj...J».-r.-w, ,.^ j-v^wr^-^m,, ^ t.,w,^T,,ln_^. LI^IIUIJII JUIM

"■■.:■: '■■■'->:,:;:'; ■■■■:-■ '.

s

^ multiple application of the definition of 'apply' (and the other interpreting functions)

and is generable interactively very easily: it involves less than 30 steps (mainly

CASES and SIMPUfications) although there are hundreds of behind-the-scenes

i substitutions performed by the simplification algorithm.

Similar lemmas are provable for the ether 3 functions (eval, apply and

evcon) and we state all four results as Figure 8.2 (next two pages). These

theorems should be compared closely with those of Figure 8.3 to note the

correspondence of structure. The four proofs are almost mechanical since they

involve primarily obvious CASES arguments and SIMPUfications. The proof of the

lemma involving APPLY is the longest being about 60 steps.

8.3. Informal Proof of Interpreter Correctness:

Now, speaking quite informally, and omitting any discussion of the

definedness (or listness) of arguments of EVAL, APPLY etc. it is readily seen that

these four lemmas can serve as a basis for computing values of the function

[x,e a al. apply(Seval,(e a^al)]

just as the equations of Fig 8.3 can serve as a basis for computing values of 'eval'.

For example,

eval((AT0M (QUOTE X)), NIL)
computes through

apply(AT0M,evlis(((QU0TE X)),NIL),NIL)

81

f i i ^M!^llW^l(W,l.^!l|■*llMli|^llgJ,!««^l^"•,,•, ' ' ' ■ ' •■■■■'■■■«■'-.., in 1.1.11 iu v .-.-.-" ■■;.-.,.,.,....p ,......«,,„,. .,> . i „ mi.. «unMinij ..,1 ui. .1. j .,„„,,.,... „.^^^ T^-,,.,_,„.,

islist(a) ■ T h
Vm al . assoc(E\/US,alHEVLIS'SevlisB)*

assoc(EVAL,al)={EVAL'SevalB) *
apply(SevlisB(m'(a^NIL),al) = null(m)-»NIL,

(apply(SevalB,hd(m)«(a«NIL),(M'm)«((A»a)«al))
•apply(SevlisB,tl(mHa»NIL)l(M'mH(A'a)«al)))

islist(a) ■-■ T \-
Vfn x al . assoc(APPLY1al)=(APPLY'SapplyB) *

assoc(EVAL,al)=(EVAL'SevalB) *
apply(SapplyB,fn"(x"(a-NIL)),al) = (fn=CAR)-»hd(hcl(x)),

{(fn-CDR)-tl(hd(x)),
((fn-CONS)-(hd(x)'hd(tl(x))),
((fn-ATOM)-*(atorn(hd(x))-* r,F),
((fn-EQM[\x y .atom(x)-(atom(y)-^(x=y),l),i]

(hd(x)(hd(tl(x)))->T,F),
(atom(fn)-apply(GapplyB,apply(SevalB,fn<(a'NIL),

(FN'fn)^((X-x)'((A'a)»al)))'(x-(aNIL)),
(FN«fn)»((X'x)K(A«a)«al))),

((hd(fn)=LAMBDA)-apply(SevalBl

hd(tl(tl(fn)))'(pairlis(hd(tl(fn)),x>a)-NIL),
(FN'fn)'((X'x)«((A'a)'ai))),

((hd(fn)=LABELHapply(SapplyB,
hd(tl(tKfn)))«(x'(((hd(tl(fn))'hd(tl(tl(fn))))«a)«ML))l

(FN'fn)'((X-x)-((A«a)^l))),i)))))))

Figure 8.2a - Some Lemmas about SevlisB and SappiyB.

82

..,. ■„^■■^■J. ^.,..J^-^.^,^,-J,..JW...-...--. ^..„i..,-.^—.■^J,....——,. -.„-.■■..■^...■■.^.„■.■.„■. ■ ., .._, ._.„.,.. ^ gl

i-T.T.-T^fi:;;--::^-'"^.-■-,v:y-^.i.«-^.j: if---v . ■■. ->■■(=■-..;": ■ -;■>-: ■ . — -■■7 . . ■ . ■ '-.^.^vv;i-.'-"'^.^rii:'^;-vi-r.^-.j-.^:rv-i-.■.'^■,:rv'ivvr-->-^^r7^i^ ■iii-::.-'^-;-'/]■■:,'■'.-■ :-,'v -r n ■—-■■■■ -.T -■ ■ ■~~;-; r. .-.■!--1 rf

'

s

islist(a) " T h
Vc al . assoc(EVCON,alHEVCON-SevconB) *

assoc{EVAL,al)=(EVAL'SevalB) *
apply(SevconBlC'(a°NIL),al) =

(apply(SevalB,hd(hd(c))'(a'NIL),(C-c)'((A.a)-al))=T)-4
apply(SevalB,hd(tl(hd(c))).(a»NIL),(C.c).((A.a)«al)),

((apply(SevalB,hd(hd{c)).(a«NIL),(C.c)'((A.8)«al))=F)-*
apply(SevconBltl(c).(a'NIL),(C.c).((A«a)'al)>,l)

islist(a) - T H
I Vx al. assoc(EVAL,al)=(EVAL-SevalB) *

apply(SevalB,X"(a'NIL),al) - (atom(x)-ktl(assoc(x,a)),
((hd(x)=0UOTE)-hd(tl(x)),
((hd(x)-COND)^apply(SevconB,tl(x).(a«NIL),

(EVCON»SevconB)'((E»x).((A«a)'al))),
apply(SapplyB,hd(xHapply(SevlisB,tl{xHa'NIL),

S (EVUS'SevlisB)«((E»x)'((A.a)'al»)'(a»NIL)),
(APPLY.SapplyB).((E-x).((A-a)'al)))))),i

Figure 8.2b - Some Lemmas about SevconB and SevalB.

83

fffflggf^M \. i^**iJ'W'tz'r't*7yy?: ^?^'*^T^fTrw^,jjwTC^¥ffTw^«

h eval :•■ [xe a.
islist(a)-*

(atom(e) -> tl(assoc(e,a)),
hd(e)=QUOTE -* hd(tl(e)),
hd(e)-COND -» evcon(tl(e),a),
applyihdle), evlis(tl(e),a), a)), i]

}- evcon = [\c a. (eval(hd(hd{c)),a)=T) -» eval(hd(tKhd(c))),a),
(eval(hd(hd(c)),a)=F) -♦ evcon(tl(c),a) , i]

|- apply - [xfn x a. <:i(x)-> islist(a)-
(fn-CAR) - hd(hd(x)),
(fn-CDR) ^ tl(hd(x)),

(fn-CONS) - hd(x)"hd(tl(x)),
(fn-ATOM) - atom(hd(x)) ^ T, F,

(fn-EQ) -» [\x y. atom{x)-»atom(y)-»(x=y), 1,1]
(hd(x),hd(tKx))H T, F,

alom(fn) -> apply(eval(fn,a),x,a),
(hd(fn)=LAMBDA) -» eval(hd(tl(tl{fn))),

pairlis(hd(tl(fn)),xla)),
(hd(fn)-LABEL) -» apply(hd(tl(tl(fn))), x,

((hd(tl(fn))«hd(tl(tl(fn)))).a)),
i, i, i]

}- evlis = [xm a. nulKmHNIL, eval(hd(m),a) • evlis(tl(m),a)]

Figure 8.3 - Some Lemmas about eval, apply, evils & evcon.

84

.■. i is*,«'K,,.<«>:.«4i..!, ..VI—^J...^...^.^.^,. . ■

and

and

to

apply(ATOMl(eval((QUOTEX),NIL)),NIL)

apply(ATOM,(X),NIL)

T.

Similarly,

apply(SevalB,((ATOM (QUOTE X)) NIL), ML)
computes through

apply(SapplyB,(ATOM
apply(SevlisB,(((QUOTE X)) NID.all) NiL),all)

and
apply(SapplyB,(ATOM

(apply(SevalB,((QUOTE X) NIL),al2)) NIL)fall)
and

apply(SapplyB,(ATOM (X) NIL),AL1)
to

T.

In all such examples, the computation terminates when there Is no

applicable lemma; this will be just when there is no more Instances of the

interpreting functions {'apply' etc.) and if the computation does not terminate then

the result will be 1.

It should be apparent that if we do the computations for 'eval(e,a)' and

'apply(SevalB)(e a),al)' then because of the structural similarity between the two

sets of computation rules, those two computations will proceed in parallel just as

they did in the above example. Moreover, if one of these computations terminates

85

-- - -- - " - - - -^ — —- -— -- I I I aartamüriMMMi^MiM d

PfM^HW^^WW^wwwww^

with a certain result then so will the other and if one never halts then neither will

the other. That completes the informal proof.

8.4. Intorprotcr Correctness in LCP!

The above informal proof suggests an attack on the desired main results

(**! to **4) using the results of Figure 8.2 and computation induction. It is

appropriate to do induction on the definition of 'eval' but we notice that in terms of

recursion on the computation of 'eval' (and 'apply' etc.) the left hand sides of the

desired results compute much slower than the right hand sides. This is because the

interpretation of each expression is done directly on the right hand side but

indirectly (via interpretation of EVAL, APPLY, EVLIS or EVCON) on the left. Thus in

doing the proof we are forced to break each of the four equivalences into two

'inequivalences":

as5oc(EVAL,ALHEVAL'SevalB)
h Vx a. apply(SevalB, (x a), AL) E eval(x,a) ,

a3Goc(EVAL,AL) iEVAL-SevalB)
H Vx a. evaKx.a) s apply(SevalB, (x a), AD ,

acsoc(EVAL,AL) -(EVAL-SevalB)
f- Vc a. apply(Sevcon, (c a), AL) E evcon(c,a)

etc.

86

. ;.,..,.,.,.■. .. , . ..■^,J-**2,^, :,.■'. ...^ ,....^..„J..-.J..^^.-.,1.aJ..:,...J-;,..^....J:-..,^J.^,t.J...,„.,.„^^ „i .. ,.,.;,.I,.... ..- , .-/..,^-~,^,^..t..lkt.iAi'tu.;..M,ut

8.5. Partial Correctness:

■'

**6

We first report on the proof of the inequality

h Vx a al. assoc(EVAL(alHEVAbSevalB)*
eval(x,a) s apply(SevalB, (x a), al)

or, using the predicate Q=[\al.assoc(E\/AL,al)=(E\/AL«SevalB)],

h Vx a al. Q(al)* evaKx.a) E applylSevalB^x a),al) .

We consider this proof in greater detail than any previous one because it is

quite complex involving several nested inductions. The outermost induction uses the

definition of 'eval' and the inner ones correspond to the definitions of 'apply', 'evils'

and 'evcon'.

First we rewrite the definition of 'eval' from Fig 6.1 in the form

'aval : OB.P(B)]' thus defining functional 'P' which is free of B. Then we

attack the goal with an induction that uses this equation, to give the subgoals:

i) Vx a al. Q(al)* l(x,a) s apply(SevalB,(x a),al) ,

ii) Vx a al. Q(al)* Blx.a) s apply(SevalB,(x a),al)
h Vx a al. Q(al)=> P(Blx,a) E apply(SevalB,(x a),al) .

Now subgoal (i) is trivial by SIMPLification. We attack the second by

ASSUMing the antecedent, doing PREFix removal in the consequent, CASES on

'atom(x)' and SIMPLification. We therefore have an induction hypothesis assumed

and one (complex) subgoal corresponding to the interesting case where

87

'

 ■-■ ■■ ' - ■■- ^~^ 1^^. i^-^-.^.a^.tt^.^ ,.— . ..,■.■ .^-^-^^^-^

juupsiwswfwwwMwwmwM^

' islist(a) T,
assoc(EVAL,al)^(EVAL'SevalB),

atorn(x)-F ' .

We further attack this subgoal by CASES on 'hd(x)=QUOTE' and CASES on

'hdix) -COND' and by using some monotonicity theorems we get four subgoals which

are shown in Figure 8.4 (next page),

The key to proving each of these is an initial induction; in the last we use

the structure of the first argument of EVLIS; in the first three we do induction on

the fixed point term that appears on the left hand side. Each proof then proceeds

by CASES, SIMPLification and USEs of monotonicity theorems (extensive use is also

made of the lemmas of Fig 8.2).

Having established **6, it is easy to prove the complementary results.

h Vx a al. Q(al)* evlis(x,a) E app!y(9evlisB,(x a),al) ,

}- Vx a al. Q(al)* evcon(x,a) E apply(SevconB,(x a),al) ,

I- Vx a al. Q(al)* apply(xla) s apply(SapplyB,(x a),al)

and also

**7 iGliGt(AL)-T, ri(eval(X,A))^T h eval(x,a)-apply(Seval,(x,a),AL)

which is a statement of Partial Correctness for EVAL, since it says that for

any expression which can be evaluated in the context of a certain association list

88

uiu.v^.rMMUiouii:!,*.,^.. . ,.,..,.:,.,..■..,w...!..v.-.,..^.-||'HVII•■iritriiiiiiiiiii

"" ■ UmiHllVM. mu . J ^ y}^gr*wy^yr> ^^wnf^T^ ^rz^r&.^^^-'vv^v^rsr??^^ ^ :^^r7^^rr^r*^:i.-r^7Wrcr^

GOAL VX A AL islist(A)* assoc(EVAL,AL)=(EVAL'SevalB)*
cKX)* as3oc(EVC0N,AL)-(EVC0N-SevconB)*

[nG.[\c a. (B(hd(hd(c)),a)=THB(hd(tl(hd(c))),a),
^ (B{hd(hd(c)>,a)=F)-*G(tl(c),a),i]](X,A)

E apply(SevconB,X-(A-NIL),AL)i

GOAL VX A AL. islist(A)* assoc{EVAL,AL)=(EVAL'SevalB)*
a(X)* assoc(EVLIS,AL)=(EVLIS-SevlisB)*

% [/iG.[xm a. null(m)-NIL,B(hd(m),a)-G(tl(m),a)]](X,A)
s apply(SevlisB,X-{A.NIL),AL)i

GOAL VFN X A AL islist(A)* as8oc(EVAL,AL)=(EVAL»SevalB)*
ci(X)* assoc(APPLY,AL) =(APPLY-SapplyB)*

[/iG.[xfn x a. rix) -* islisKa) -»
S (fn-CAR) - hd(hd{x)),

(fn-CDR) -* tl(hd(x)),
(fn=C0NS) - hd(x)-hd(tl(x)),

(fn=AT0M) ^ atom(hd(x)) -* T, F,
(fn=EQ) -> [\x y. atom(x)->atom<y)-»(x=y), i, i]

(hd(x),hd(tl(x)))-> T, F,
$ atom(fn) -* G{B(fn,a),x,a),

(hd(fn)=LAMBDA) -* B(hd(tl(tl(fn))), pairlislh^tlfn)),^)),
(hd(fn)=LABEL) - Glh^tKtKfn)))^,

((hd(tl(fn))-hd(tl(tlfn)))).a))f
i, i, i]](FN,X,A)

s E apply(SapplyB,FN«(X'(A-NIL)),AL)j

GOAL VX A AL. islist(A)* as5oc(EVAL,AL)=(EVAL»SevalB)*
ci(X)* assoc(EVLIS,AL)=(EVLIS'SevlisB)*

islist(app!y(SevlisB,X.(A.NIL),AL)) E Ti

Figure 8.4 - The Important Partial Correctness Subgoals.

89

. ■- - ■- -— --■-..^.-.■-.^ —.^■.^^.-.^.^^..■-«,»^i.^^,»......^>--^--v-....., ...,. :..,...„,.. :., ,... -■-■ ..U^..-.—^.^

WSiPWRliPJIPWIIBni^WWW^'W^»"^^

(of variable bindings), the function induced by Seval (under interpretation) will

corredly evaluate it.

It remains only to comment that the total amount of proof generated so far

in thir- proof of correctness of the interpreter is quite large and has pushed the LCF

system to its limits. The proofs of the lemmas of Fig. 8.2 each required a seperate

core image and the proof mentioned in this section required the largest core image

possible (128K of which 50K is the LCF system). The main reason for the gross size

of the proofs was the magnitude of the formulae involved but there were over a

thousand steps involved too. Moreover the CPU time involved was rather large (just

over a hundred minutes) reflecting a huge amount of work done by simplification -

many thouoando of substitutions automatically performed. It must be stressed that

were it not for the partial automation afforded by the simplification mechanism of

LCF, juch a formal proof would not have been possible.

8.6. Total Correctness:

We know from our informal reasoning that the 'cKevaKX.A))^!' condition of

(*+7) can be dropped to give

islist(AL) HT h Vx a.eval(x,a) s apply(Seval,(x a),AL)

but to establish this formally we need yet to prove the other half of (**1), namely:

Vx a al. assoc(EVAL,al)-(EVAL-SevalB>*
apply(SevalB, (x a), al) E eval(x,a) .

90

^- «-. . - ■- - ■ ^— -*--—^ — ■■— - ■•..--■■ - ——..-, , ■ - --—■—--—-—^

S

s

This goal is naturally tackled by first expanding the left hand side a little so

that the 'apply' vaniohes and we have an 'eval' there instead. Remembering that

SevalB is a LAMBDA term we actually get the subgoal

Vx a al. as$oc(EVAL,alHEVAL'SevalB)=>
eval(hd(tl(tl(SevalB))),(X-xH(A.a)'al)) E eval(x,a)

which is appropriately attacked by induction on the definition of 'eval'.

Once the induction is initiated, we are then faced with the work of breaking

down the structure of the S-expressions SevalB, SapplyB etc. that appear in the

left hand side before we can hope to apply the inductive hypothesis. However, in

the subgoal to be proved there is NO occurrences of 'eval', 'apply' etc. There Is

thus little chance to use SIMPLification since

(a) the theorems we have found so useful (so far) have 'apply',

'eval' etc. on the left hand side.

(b) we are forced to deal with inequalities since the results we

must use to break down the left hand side are lemmas such as

' B s eval H Vx a. B((CAR x),a) E hd(B(x,a))'

instead of using theorems of the form

' h Vx a. eval((CAR x),a) = hd(eval(x,a)) ' .

At this point, it appears that to pursue the current objective will demand

repeating all the work which preceded the proof of the first half of (**1) in a

♦

91

c*.*a^u^t.^*i*LAt ^^^^h**i**^***^ ,. M^tl....,.,.,J...„^. .^„^ .,...- .. . , -r1 riiririlirri'riMr"'"""-'"-'

V llllUI^»W»»^P"i. iwiimhliupuwum JISIIU.ll!«», .■III.I.IIUIIW,».PPIIWIWW«^JV.IJI!<IUI1,W>-| l|PUIlU«W)pU»l«r.JU!III.W'"r«mWJIM.fll,l»WlW« •>«t»a"»!H'««i|«J«llf«H.lJWR,!«lW Wmi WJ wi ■'■ " IUUV'TO^W mwmm>uiM*

slightly more general form (as illustrated by the last 2 theorems). Furthermore to

complete the proof we are faced with an approximately parallel proof (to that

described in the last section) but where SIMPLification was used before we will

need to use rnonotonicity results. Now since the current LCF system Is so biased

towards equalities, the second half of the proof would be extremely tedious using

the present system.

Because of this argument, the formal proof of the total correctness of the

EVAL function was not carried out. It can again be given consideration when a

version of the LCF system is available which can give as much assistance with

rnonotonicity arguments as the current system gives with substitutions.

92

..■j.**^..:^......... ^...,—■.,■..>........■■■..- .,. . ~..^....^ ..,...,^.J..:.^...-^^..^.v.^.,^.^^..—..^-^~.^-^.-.^.-..: .. .- ■...■.^..^>^~******iiaxiAJA4Unjiim

.r^.-T^T^^i^^w^.^^^CTi^^ ^'r r-^-^-f^nrrir

CHAPTER 9

Compiler Correctness (I) - Language Definitions

In this chapter, we describe axiomatically based theories of the source and

target languages of the simple compiler LComO. We cannot apply the Theory of

Pure LISP (except by way of example); instead we must build an alternative (albeit

similar) set of axioms and theorems for LComO LISP (so-called). For each of the

languages, the formal definition will be preceded by an informal description.

9.1. Extensions to the Environment:

As in Chapter 6, we precede axiomatisation of languages with some

extensions to the environment described in Chapter 4. We identify the axioms

introduced in this section by names of the form EEn.

**AXIOM EE1:

Vx. isname(x)-> isint(x)->l, atom(x)-*x,i,'
isint(x)-» atom(x)-»x,i, x a x

Vx. ci(discr(x))* isname(x) s J

Vx. isname(x)* discr(gensym(x))>discr(x) = T

isSexprn = [/iG.[xx. null(x)-»T, isname(x)->T,
isint(x)-*TI atom(x)-»F,

G(hd(x))-»G(tl(x)),F]]

93

^.^V^UA^;.^^^.^:;^^^/^^^.;-^^.^^^^ '-r.-. VX,..^^.;.^;../:;^^:^...-^.^^ .■„...■:■■,::-■->.■;..■■.■....-.. .-;-l.M^^K.^-ii.;v.ir^.;.,.v... ...[.vv..i...^.^^.._::-v.j^,^.-

FBW7W^«iW»™«™?wlWOTiw*l^^^

'"■^'■v-' Vmiy
■: -:, vm^m

These axioms introduce names (in general), define S-expressions and

provide the appropriate properties of the functions 'discr' and 'gensym'. 'discr' is

the oame function that was described in Chapter 6 but is specified more completely

by these axioms. The important property of 'gensym' is that it maps names onto

names in such a way that if we build sequences of names by successive application

of the function then no item appears more than once.

We also have many specific names to introduce and the technique for doing

this has been illustrated several times so we will just point out the effects of

several axioms:

♦:*AXIOM EE2 Introduces the reserved words of the source language
I of the compiler (a subset of LISP):
I LAMBDA, QUOTE, COND, AND, OR, T .

**AXIOM EE3 Introduces the built-in function of the LISP subset-
GRE/.TERP, NUMBERP, GENSYM, EQUAL, MINUS, TIMES."

I ATOM, CONS, PLUS, CAR. CDR, NOT .

**AXIOM EE4 Introduces the names of some basic LISP functions-
DIFFERENCE, APPEND, LENGTH, ISLIST, APPN2, ASSOC.*
LESSP, LIST, NULL . '

**AXI0M EE5 Introduces the special words of the target lanpuase-
11 JUMPE, JUMPN, MOVEI, CALL, JRST, MOVE, POPJ,
II PUSH, SUB, C, E, P .

**AXIOM EE6 Introduces names of the compiler functions-
COMPANDOR, C0MB00L, COMCOMD, COMPEXP, COMPLIS
LOADAC, MKPUSH, COMP, PRUP .

♦:*AXIOM EE7 Introduces names that are used as formal parameters-
VARS, EXP, FLG. VPR, FN, LI, 12, NL, K, L,
M, N, U, X, Y, Z.

94

%

^

Z

9

1UU - - -■- - - ---■ -' ■ — - ■—-.—■^ --.^.i-:.-^.. ■ ^— uäZSS&ä&k

S5SP»P!l!WW»«np»?^7'"™,^!w™'^^

9.2. LComO LISP:

It was mentioned that LComO (McCarthy's compiler discussed by London in

[13]) compiles a certain subset of LISP which we will call LComO LISP. It should be

noted that LComO is also written in LComO LISP.

9.2.1. Informal Description

The language (LComO LISP) is rather similar in scope to Pure LISP but the

few differences are rather important; in LComO LISP:

i) the AND and OR constructions of LISP 1.5 are available;

ii) falsehood is represented as NIL (as opposed to F in Pure LISP) and

(although most predicates will return either T or NIL) tests for

truth are tests of inequality with NIL;

iii) NIL evaluates to NIL;

iv) there is no LABEL construction and no functional arguments;

v) functions are introduced by fiat at the top level (and there will be

a global A-list for function definitions);

vi) S-expressions are based on integers as well as NIL and names;

vii) the built-in functions are CAR, CDR, CONS, ATOM, EQUAL, LIST, NOT,

95

tft^^^.....,.„^w^^^^...^^^ säiim -' ■ -■ • *..<~.^^~**~*..^-^*..*:.^:^.~ ■.■..-^- (i

PLUS TIMES, MINUS, NUMBERP, GREATERP and GENSYM; (These

functions are the same as in regular LISP except that 'GENSYM'

takes a name as input rather than remembering the last name it

generated.)

9.2.2. Formal Description

Figure 9.1 gives an axiom (SL1) in which the main functions of an

intciprotive r<cnnonticG for LComO LISP are defined and Figure 9.2 completes the

axiomatir.cition of LComO LISP (with axiom SL2) by giving the meanings of the built-

in functions (CAR, CDR etc.). (We identify the axioms related to the LISP subset by

names of the form 'SLn' where 'SL' denotes 'Source Language'.) This formal

description of the language parallels the definition of Pure LISP semantics so we will

avoid lengthy discussion. However, we will emphasize that there are two A-llst

parameters for 'eval' etc.; the first is used to store variable bindings and the second

(constant through the levels of recursion) gives function definitions. If the equations

(of Figure 9.1) are a little hard to follow then a glance at Figure 9.3 might help since

it shows the recursive equations of which 'eval', 'apply' etc. are the mutually least

fixed points.

Z i

96

$ |

MJÄlli^^^i^i^äaiÄiiittÄi - -"-■'-"' ■-.■^.^-^.■■i-^Jl

.■;■-■-. -

TTTT^7?^T.T5'^--^|l!^!-.'l-'-.9^|

i

8

S

**AXIOM SL1:
eval a |>B. evalF(B)],
evalF a [xB x vb fl. £i(vb) -> 3(fl) -♦

null(x) -» NIL,
isint(x) -» x,
Isname(x) -»tl(assoc(x,vb)),
atom(x) -» i,
hd(x)=0UOTE - hd(tl(x)),
hd(x)=COND -»[MG.evconF(B,G)](tl{x),vblfl),
hd(x)=AND -»[MG.evandF(B,G)] (tl(x),vb,fl),
hd(x)=OR -♦ [MG.evorF(B,G>] (tl(x),vb,fl),
[MG.applyF(B,G)]

(hd(x), [MG.evlJsF(B,G)](tl(x),vb,fl),vb>fl)l

J-. J-].
evcon s [MG. evconF(eval,G)],
evconF = [xF G x vb fl. null(F(hd(hd{x)),vb,fl))-»G(tl(x),vb,fl),

F(hd(tl(hd(x))),vb,fl)]f
evand a [>G. evandF(eval,G)],

evandF ^ [xF G x vb fl. null(x)-»T, nulKRh^x^vb.fl^-^NIL.GdK^.vb.fl)],

evor s [MG. evorFleval.G)],

evorF = [xF G x vb fl. null(x)-NIL, null{F(hd(x),vb,fl))-+G(tl(x)lvb,fl),T],

apply a [MG. applyF(eval,G)],
applyF a [xF G fn x vb fl. 8(x) -> ii(vb) -> a^fl) -♦

isBF(fn) ^ applyBF(fn,x),
isname(fn) -» G(tl(assoc(fn,fl)),xINIL,fl),

(hd(fn)=LAMBDA)-»F(hd(tl(tKfn))),pairlis(hd(tl(fn)),x,vb),fl),
i, 1,1,1],

evlis n [/iG. evllsF{evallG)],
evIisF n [xF G m vb fl. null(m)-»NIL, F(hd(m),vb,fl).G(tl(m),vb,fl)],

pairlis s [/iG.[xx y vb. null(x) -♦ vb, (hd(x).hd(y)).G(tl(x),tl(y),vb)]]

Figure 9.1 - Axioms for LComO LISP.

97

■ ■■ -. — .■..■.■.. - ^_^^^_^ , , L^, - ' ..-^..^l— ■ ^.J-^J»^,-,,!.^ , ^iüiaS - - - ^.■- ■ ■ ,....^.^.-J..^-.--,^:l..'1.:.-.,J..^AtVijJJ-^V.-i-'.!^^-.-'iA>jl

ppi I I |.WIIU^BvM^iWWHWWWJi^.PW^^

♦.♦AXIOM SL2:
isBF - [\x. (x=CAR)-*T, (x=CONS)-T, (x=MINUS)^T,

(x=CDR)-T, (x=PLUS)-*T, (x-GENSYM)-»T,
(x-NOT)-T, (x=EQUAL)-T, (x=NUMBERP)^T,
(x-ATOMHT, (x=TIMES)-»T, (x^GREATERPHT,
(x=LIST)],

applyBF(CAR) ^ [xx. hd(hd(x))],

applyBF(CDR) : [xx. tl(hd(x))],

applyBRNOT) = [xx. null(hd(x))^T,NIL],

opplyBF(ATOM) - [xx. atom(hd(x))-»T,NIL],

applyBF(CONS) ^ [xx. hd(x)Mtl(x))],

applyBF(LIST) = [xx. x],

applyBF(PLUS/ = [xx. hd(x)+hd(tl(x))],

applyBF(EQUAL) = [xx. hd(x)=hd(tl(x))-»T,NIL],

applyBFvTIMES) = [xx. hd(x)*hd(tl(x))]l

applyBF(MINUS) - [xx. mns(hd(x))],

applyBF(GENSYM) - [xx. gensym(hd(x))],

appIyBF(NUMBERP) ■ [xx. islnt(hd{x))-T,NIL],

applyBF(GREATERP) [xx. (hd(x)>hd{t|(x)))->T,NIL]

Figure 9.2 - The Built-in Functions of LComO LISP.

98

_— Lii-X C* ■■- , „. . ^ u. 1 -■-

1

.
•

eval ■ [\ x vb fl. a(vb) -> 8(fl) -*
null(x) -» MIL,

I isinKx) -> x,
isn9,me(x) -♦ tl(assoc(x,vb)),
3iom<x) •* i,
hd(x)=QUOTE -♦ hd(tl(x)),
hd(x)=COND -» evconFdK^.vb.fl),
hd(x)=AND -» evandF(tl(x),vb,fl),

^ hd(x)=0R ■♦ evorF(tl(x),vb,fl),
applyR hcHx), evlisF(tl(x),vb,fl), vb, fl), 1,1],

evcon = [xx vb fl. nuli(eval(hd(hd(x)),vb,fl))-*evcon(tl(x),vb,fl),
eval(hd(tKhd<x))),vb,fl)],

evand = [\x vb fl. null(x)-»T, null(eval(hd(x),vb,fl))-»NIL,
evand(tl(x),vb,fl)],

evor a [xx vb fl. null(x)-»NIL,
null(eval(hd(x),vb,fl))-evor(tl(x)fvb,fl),T],

apply a [xfn x vb fl. a(x) -> a(vb) -»<D(fl) -»
IsBF(fn) -* applyBF(fn,x),
isname(fn) ■* apply(tl(assoc(fn,fl)),x,NIL,fl),
(hd(fn)=LAMBDA)-»evaKhd(tl(tl(fn))),pairlis(hd(tl(fn)),x,vb),fl)l

1,1, i, 1].

evlis = [xm vb fl. null(m)-»NIL, eval(hd(m),vb,fl)«evlls(tl(m)(vb,fl)].

^

Figure 9.3 - Relationships Between 'eval', 'apply' etc.

99

;

>■■■.■ -■■■■■ ■■■■' ■■■ -■ -■
...... ^ . ■■...i . -. --■■-- ~-~ ^■■■^- ^ ..-^-. .^- ^ .. ^ _...^:..-.--. . -■.-.^..■^.--.w-.--..^-. ■■.. | I, . t ,mt\iiiilkiHlätltMIMlS»MmmmMäl^Wä

|^l^il»'jl?l-yf-g-^^l-^j|^^yj?|^TjT^ ' . . , . .—■..-. ■,.-—,-.--..i-..y---■■■,-. ^.~lT^n^r_r^,~-w^-r.rfl^^Tf*l%^:*j^ t^t^^JTI^^SfT^^^n^T^^l^

9.2.3. Theory of LComO LISP

As we did with Pure LISP, we prepare for applications by developing a

'theory based on the axioms. We do two things in this regard. First, we define some

basic LISP functions (actually the ones we need for the compiler proof) such ac-

DIFFERENCE and LENGTH. Next we assemble a collection of theorems (mainly

oriented towards SIMPSET inclusion); we exhibit these as an Appendix.

The definitions of the basic LISP functions that we want are given in Figure

9.4 and are sivc-n as the actual entries of the function definition A-list (namely:

function-ncimo/function-body pairs).

9.2.4. T^D' - Basic Functions Defined

We will never actually construct a function list but we require a predicate

which says that all the basic functions are declared in some given function list.

('BFD" is mnemonic for 'Basic Function Defined'):

*:f AXIOM SL3:
BFD - [xfl. tl(assoc(NULL,fl))=Snull -

tKassodDIFFERENCE.fDHSdifference-»
tl(as5oc(ISLIST,fl))=Sislist -♦
tl(as5oc(/\SS0C,fi))«Sassoc -►
tl(assoc(LENGtH,fl))=Slength -*
tl(a5Goc(APPEND,fl))=Sappend,F,F,F,F,F]

.;

:.

100

ii

-^-.v.,. ^>.,. -■..■.. .. v -.-^.K^^.I.^ .ti-^.^.-rJ.^^vA-^-jj.^^^^^,,.-^^;,.^^^^.., -- >-^.^-.^.i^-^^.^—^..■■/..■,.I-HJ^.„:^...I....^.^.J.^.-.K,„...... .- ^i^^t-J.'_..,»>..ww.Jt-:.i;^,^^,..J.,.,^,-J^>.;:JJf;^),,^^^

H HA MMM -: - - W«^Sj*<wHtSee».*!*S«-

f

I

I

««AXIOM SL4:
Snull a (LAMBDA (X) (EQUAL X NIL)),

Sdifference ^ (LAMBDA (X Y) (PLUS X (MINUS Y))),

Sisiist a (LAMBDA (X) (COND
((NULL X) (QUOTE T))
((ATOM X) NIL)
((QUOTE T) (ISLIST (CDR X))))),

Sassoc ^ (LAMBDA (X Y) (COND
((NULL Y) ML)
((EQUAL X (CAR (CAR Y))) (COND

((ISLIST Y) (CAR Y))))
((QUOTE T) (ASSOC X (CDR Y))))),

Slength S (LAMBDA (X) (COND
((NULL X) 0)
((QUOTE T) (PLUS 1 (LENGTH (CDR X)))))),

Sappend = (LAMBDA (X Y) (COND
((NULL X) Y)
ft (QUOTE T) (CONS (CAR X)

(APPEND (CDR X) Y))))),

Figure 9.4 - Some Basic LISP Functions.

101

' J' - ■ MMW UM Ml

^.-j „- ^^ tiftiümf^ ■^■■■^^ ■..,■... ;...:..,......y^t^f.^^^^.^^^^ a - - ^^^ j üaii , ^^_ „_ ^^.v^ , ■ .ii Ktiu ifr-*^-*-*--*'*] n'frt 1'iitfi

TflW^^MWU^W ^.fciPWWWJ^^^

9.2.5. Wnll-ForrnecinesG Predicate

We give as Figure 9.5 the definition of a predicate "iswfe' (IS Well Formed

Expression) which tells whether an S-expression is structurally good LISP code. It

is important because it will be seen later that LComO will be total on inputs that

satisfy ■iswfe'. Note that one of the things checked is that functions are not called .

with morn than a certain number mna of arguments. Note also that all variables

referred to inside a well formed expression must be bound by occurring in the

formal parameter list of a LAMBDA term.

9.3. LComO LAP - Informal Description!

McCarthy's compiler translates the subset of LISP that we call LComO LISP

into LAP - a special version of PDP10 assembly code which is oriented toward LISP

compilation (LAP is an acronym for LISP Assembly Program). Of course, only a

subset of the PDP10 instruction set is generable by the compiler and so we will be

concerned only with certain variants of nine instructions (given below) although

our formal description will allow later and/or more complete specification of the

lancut'ige. Apart from simply considering a subset of LAP we make some simplifying

assumptions about the behaviour of the PDP10; we point out these idealisations

below.

102

v

u

U

uu ^_ -•■* ±k * i ■■:■ ■ ..-■^■v-^.:-... ..-..^■-^^^- ..,„.._.....,.■. ...^ ^-.J:.^,.^. Hi i . . .■-:■- -^ ■ .. ■ .i.^.,-^..,...^^-^... ■■■-■■^'t.miaai

* .'•i'H »i^ft wjff wv.ic.a' Ji ■■r»»" ^Ä* ^-w :r^w«»*«T?»^-r^-u rtr»!'**^" -."• v wv^*'" •»•T ■WI«'^'." > • ^.(JMS-wfrrugRaMrp w^»! 5 ^ J »w !■ pwi-iii". *? w« »". ■wfT4f«>w??» i'«? ^,? ''V^.'.^-'-WJI-M* ^T-V^T, rr*>*'rT-m*'**r. r -."i^ v -f ^v «wr ww- ^-^ w.Myts

»

?

«

?

'

**AXIOM SL4:

iswfe s [xe. iswfKe.NIL)],

iswfle s [xe. iswf4(iswfe,e,NIL)],

iswfl s [>G.Oe vl.
null(e)-»T,
(e=T)-*T,
isint(e)-T,
alom(e)-*mem(e,vl),
(hd(e)=QUOTE)^isSexprn(tl(e)),
(hd(e)=AND)-»iswf2(G,tl(e),vl),
(hd(e)=0R)-»iswf2{G,tl(e),vl),
(hd(e)=C0ND)->iswf3(G,tl(e),vl),
atom{hd(e))-» (length(tl(e))>mna)->F,

iswf2(G,tl(e),vl),
iswf4(G,e,vl)]],

iswf2 = [nH.[xG x vl. null(x)-»T,
G(hd(x),vlHH(G,tl(x),vl),F]],

iswf3 = [MH.[XG x v|. null(x)-*T,
G(hd(hd(x)),vl)-» G(hd(tl(x)),vl)-» H(G,tl(x),vl),F,F]],

iswf4 s [xG x vl. (hd(x)=LAMBDA)- iswf5(hd{tl(x)))->
length(hd{tl(x)))>mna -* G(hd(ll(tl(x))),vl&hd(tl(x))),F,F]],

iswf5 s [ßH.[\x. nuli{x)-T, lsname(hd(x))-*H(tl(x)),F]]

Figure 9.5 - Well-Formednes«; of LISP expressions.

103

■ ■ ' ■ ■■ ■■■■,■. ■ .. . v. . .,_. ■

■-<- ■■.■■■- ^_^^ - - --- - - . . . , „ , -^ —. „-.-^■.^.«^»i^ilaOuaiiAaaMkMia

i MI IIaimp i ■i.i iu»i 111. .11 mi i M ii .IIJ mivHiwvwmiwiWWnviiMWHnwwiiWUMW. piiw^^

In our simplified view of the architecture of the PDP10, we take it to be

simply a Central Processing Unit and a Memory. The CPU executes lists of

instructions and each instruction executed can affect the flow of control in certain

ways and/or affect the state of the memory. The memory is an infinite array of

words such that every word has an address which is a positive integer. Also the

first sixteen words can be used as accumulators or index registers.

We do not want to become involved in the processes of assembling or

loading of LAP. Also, we do not admit the possibility that LAP instructions will be

overwritten during the execution of a program. Hence we make the further

assumption that LAP code is interpreted directly (symbolically) and not resident in

memory in any way.

The contents of words of the PDP10 are usually treated as integers but we

also want to represent S-expressions in memory. We do not want to get involved

in questions of representation so we just say that there exists a coding of S-

expressions into integers. The only thing we specify about the coding is that it is

one-to-one and that the coding of NIL is 0. This assumption enables us to avoid any

questions related to free-storage management. Further note that there is no bound

to the integers that words may contain. Moreover, we assume that the contents of

any word is only defined if a value has been written in alrt :dy.

Now just as an LComO LISP program is a collection of LISP functions, we

104

*i.^.^ ^.:v.- .■„.,/-....■■..r^—:.^.^..^ i. *6ää , ^_ ^ . _ „_.. . .. -.,. ^■^.■^^..^W-^ ^-....-.M:.^.,..^..^.^.^ l^^*i>s**M**läläiUi&M&i&M^

9

e

x

take a LAP program to be a collection of LAP functions; we define a LAP function to

be triple (FN.NA.FB) where 'FN' is the function name, 'NA' is the number of

arguments of the function and 'Fö' is the function body. Functions expect their n

arguments loaded in the accumulators 1 to n; a function body is a list of S-

expressions which are either labels (if atomic) or instructions.

We now come to describe the nine instructions that LComO makes use of

(we use C[n] to stand for "contents of accumulator n"):

(JRST 0 L)

(JUMPE n L)

(JUMPN n L)

is an unconditional jump to label L in the
current function;

causes a jump to L in the current function if
contents of accumulator n is zero;

causes a jump to L in the current function if
contents of accumulator n is nonzero;

(MOVEI n (QUOTE x)) contents of accumulator n (C[n])\Q set to
the coding of S-expression x;

(MOVE n m P) C[n] is set to C[C[!P] + m]

(PUSH P n)

(SUB P (C 0 0 n n)) decrements the stack pointer (ace !P) by n;

increments the stack pointer (ace !P) by one
and puts C[n] on the stack;

ii

(CALL n FN) current routine is suspended and control
passes to function in program with name FN
(which presumably has n parameters) after
incrementing stack pointer by one; If FN is a

105

,-. -:.^Ju^<.i^1i^4J^UH^^MUÄ^^^^v„--.^. ^.^ tAJvÄMMtäiä .. .,- ■. ■■■■-.-. ■! -.- ■■ .-. --.'.il ■-* iv.i::-.;ai.vji*i*i

^™^y!i^ro??5i*r^.«™^1^^vr^^^

(POPJ P)

standard function it will restore the value of
stack pointer before entry and leave its
result in accumulator 1;

return from current function to instruction
after the one that CALLed the current fun.
(stack pointer is decremented by 1);

The particular accumulator numbered !P (referred to by the name 'P' in the

above instructions) is used as a stack pointer. Not. that we do not worry about

stack overflow since we are noi assuming finiteness of memory. Also note that,

since the arguments of a function are passed in the low accumulators, the maximum

number of arguments for a function is less than !P.

9.4. LComO LAP - Formal DeKcription:

9.4.1. States and functions on states:

The notion of 'state', in the following semantics, is intended to reflect the

correspondence between word addresses and contents - not as a function but as an

association list. More specifically, a state will be an A-list of pairs (n»x) where n is

an address and x is the coding (by function 'code") of an S-expression; a property of

these A-lists is that the pairs are in order of increasing address.

The following axiom gives functions for changing and interrogating states

and also other properties of the memory:

106

^- , , . -. ... , , „_ .. - , , - . ■■ - - —. - -■...:-..-.; ■—■ - -: -- ^-'

f

" ' ■ ■■■■.■■■. .■■•■■' -■■ '■:

- ■ ■--^.-;..-.JT?, ? r'--!';-. ■,! .'TV M T..^,, V"; - i "■'

■.■....-,,.„. . ^...,„,._...,.._

&*-•:*?•&*?'.T,'vi i>r'-'. - •T^r^TT" ■ TvTIiy

** AXIOM TL1:

get a [\x si. tl(assoc(x,st))],

set a [MG.[XX y st. null(st)-* ^,,y).NIL, (hd(hd(st))=x)-> (x.y).tK8t),
(hd(hd(st))>x)-» (x.y)«st, hd(st)«G(x,y,tl(st))]],

putargs a [xa st. Iength(a)>mna-»i,putargx{length(a),rev(a),st)],
putargx a OG.[xn x st. 2(n)-* st, set(n,code{hd(x)),G(n-l,tKx),st))]],

argsin = [\a st. length(a)>mna-»F,argsinx(length(a)>rev(a),8t)]l

argsinx = [MG.[xn x st. Z(n)-» T, (get{nlst)=hd(x))-»G(n-l,tl(x),8t),F]],

PDL > !P 3 T,
!P > mna a T,
mna > 2 = T,

code(NIL)=0,
Vx. dec(code(x))sx

11

I

The function 'get' is for interrogating the memory and takes one argument -

an address; the function 'set' is used for putting information in the memory and its

arguments are an address and a value, 'putargs' puts a list of arguments (values)

into the accumulators starting at number Ij 'argsin' testifies that a list of arguments

is already contained in the accumulators (starting at 1). The constant 'mna' denotes

the maximum number of arguments for functions while MR' is the address of the

stack pointer (an index register).

107

rwr^jj^^TT^wF^^^:^^

9.4.2. LAP Functions and operations on them:

We have characterised a LAP program as a collection of LAP functions and

so a program is a sort of environment in which to execute function calls. Actually in

the axiomatisation a program will be an A-list from which we can extract function

bodies and check numbers of parameters. The function 'body' does just this:

**AXI0M TL2:

I body =- [xfn P n. (n>hd(tl(assoc(fn,P))))^tl(tl(assoc(fnlP))), 1]

Now when we are dealing with a LAP function we want to consider it

simply a sequence of instructions and labels. Hence the LCF functions we define in

the axiom below are applicable to all groups of instructions and labels:

♦ »AXIOM TL3:

INST n 1>H. [xg n. atom(hd(g))-*H(tl(g)ln),Z(n)-»hd(g),H(tl(g),n-l)]],

loc - IßH. [xx g. atom(hd{g))-* (hd(g)=x)-»0,H(x,tKg)), H(x,tl(g))+1]],

GL OH. [xg. null(g)-»0, atom(hd(g))-» H(tl(g)), H(tl(g))+1]],

complete n [xg exe. comp2(g,labs(g)Äexc)],

comp2 - [/iH.[xg labs. null(g)-T, atom(hd(g))-»H(tl(g),labs),
isJUMP(hd(hd(g))) -*

mem(hd(tl(tl{hd(g))))1labs)^H(tl(g)1labs),F)
H(tl(g),labs)]],

labs r5 [/»H.fxg. null(g)-NIL,atom(hd(g)) -* hd(g)«H(tl(g)), H(tl(g))]]

108

■^-■- —- - -■■-- >.,..^^.^..1-,.._..<, „.^.„.^ ^ -^... ... ■ -■J...- ^^tui^^Matiimjj*****

- I H.HPIIIWy^- I I . ij;,MWIW»>l!«TN'I^W.WMJUWIWIWWT'WfflW^'WWW"1^^ ' ■■■■■■■«.i. i| iai|iHi.l-'i.t|l.l|JiT.^ll.iJ,»!,IMWIII<MIIIIIL^»l»w»UJiuyiw. UJl».nw>iM»|Pf

If X is a group of instructions and labels then 'INSTXX, n)' will pick out the

n-th instruction, 'GUX)' will compute the number of Instructions in X, 'lab^X)' will

list all the labels in X and 'loc(L, X)' will compute the number of Instructions that

precede label L in X.

The predicate 'complete' is used to indicate whether all labels referred to

by 'JUMP instructions' (in a group of instructions and labels) are also in the group or

in a list (of labels) which is the other parameter.

9.4.3. Interpreting LAP.

The highest level function of the semantics of LAP will be called 'lap' and

will take three arguments; 'lap(F, L, P)' is to be the result of executing, inside

program P, the function P with actual parameter list Ti (of S-expressions).

The next level of interpreting-function must manage the 'flow of control'

within function bodies - or, more generally, within arbitrary sequences of labels and

instructions. Defined below is a function 'exec' which gives the effect (on a state)

of executing a group of orders (from some point onwards) in the context of some

program. More particularly, 'exec(G, P, o, st)' will be the (possibly flagged) state

produced by executing G (a group of instructions) from P (a program) starting at

the c-th instruction of G and wi'h initial state st. States are flagged while

executing a group of orders to indicate that an 'exit' instruction such as '(POPJ P5'

109

| i

I
|

1
: ■

^^.■„i,..^.-:..^^,^.;^^......^.,^.,..-,.:...--,..-. ---..^ ■,...,..,;,.^^...1,^.-^^^i,^,..^„.M.....i^^;„.v1.^,....;.. ..^.-,-.^.,,..M.^^^;..^,.„:. .:...,.......„..;.^.,...^,,i!;.a

III^TO,P|^MWWPIWP1W^^^

has been encountered. This flagging (accomplished by pairing T with the state) is

undone when control gels back to the instruction that 'called' the function being

executed.

Naturally, the function 'exec' is written in terms of the meanings of

individual orders. Now, since no instruction may do more than affect the memory

and cause a transfer of control to its label, we are able to specify the semantics of

individual orders by means of two LCF functions - "NST' (New STate) and 'TOC

(Transfer Of Control). To define these explicitly would be to give the semantics of

the entire instruction set so we just axiomatise it for the particular cases we are

intetested in.

'TOC is an LCF function of type (Dind-(Dind^Dtr)) and 'TOC(I, st)' indicates

whether I (a jump instruction/ should cause a transfer of control if executed in st

(an unflagged state). Since it is only applicable for jump instructions, there is a

predicate 'isJUMP' whose value is axiomatised for each of the nine instructions we

consider.

'NST(I, e, P, st)' gives the new state after executing instruction I in state

st and in the context of program P; V has the same type as 'exec' and is used to

interpret a function if one is called by I. This 'extraneous' parameter is required

because we want to define 'exec' in such a way that it is not mutually recursive

with 'NST" which will only be partially specified.

Here then are the definitions for 'lap' and 'exec':

110

M^mmäeämmmäOäemk^&äiääiiäUitmt^M», — .«-... ,«■„.,-,.,..._-,.,,..^-a^ji

IHH.WIIII1'«!"!." IP' I' I»»L,III m ii'i ..ii niivi—r. ...m.*J.. i>un. iii>yiiiii.>P!>i—'.-i .»»■ i j. .■!■ -.. ,.i 1.1^n i . - .._..,..«. _,., .^...»^..p^i.,.,.. , m ...,.,,.• ..r^uju i 1 I " mil Jiuj^li

**AXIOM TL4:

lap 3 [xfn args P. dec (get(l,tl{exec(body{fn,P,length(args)), P, 0,
putargs(arg9,set(!PlPDL,NIL))))))],

exec a [^iH. [xg P c st.
(c=GL{g)) -* st,
(hd(st)=T) * st,

[«. H(g, P,
isJUMP(hd(z)) ■* T0C(z,9t)-»loc(hd(tl(tKz))),g),(c-H),

(c+1),
NST(z,H,P,st))] (INST(g,c))]],

isJUMP(JRST)sT, isJUMPIJUMPE)^! isJUMP(JUMPN)aT,
isJUMP(M0VE)^F, isJUMP(MOVEI)HF, i8JUMP(SUB)-F,
isJUMP(PUSH)=F, isJUMP(P0PJ)=F, isJUMP(CALL)"F .

Refer to Figures 9.6 and 9.7 for the specification of the functions 'NST' and

'TOC, as appropriate, for each of the nine instructions that we consider in our*

treatment of LAP.

9.5. Towards a Theory of LAP.

The aim of this part of the thesis is to prove the correctness of LComO and

we do not have time to consider developing even an elementary theory of the

language LAP. However, we have given an axiomatic framework for defining most

aspects of the language, we have been forced to prove some basic lemmas and so

we actually have the beginnings of a theory.

Ill

*^ . __ .. - ...a^^^^tMfcüMl^^^..,^.-..,.....,,..;- . , , ^^

l«wwi(«g^pppw«iBC«lMMi«iuiui.!iw«.»»,K|i"'j™H!i»l"ii"<"i™i mi ■! jiuiH>»(«|wnw,j*jp»<«wi)^W!i^wi"»,«".^-"i">l|i|ww!*Si!iiMiiiu.yiiii".^«." MII.I» iimiiwfc.iBiiWPi^PtlWWi^W'WfwwwiÄn^iwwÄBiiiH.iiiafn!»»^»^

^AXIOM TL5:

Vx. isname(x)* T0C((JRST 0 x)) ^ [xst. T],
Vx. isname(x)* NST((JRST 0 x))

^ [xe fl st. si],

Vx. isnarnelx)* TOC{(JUMPE 1 x)) - [xst. Z(get(l,st))],
Vx. isname(x)* NST((JUMPE 1 x))

- [xe fl st. st],

Vx. isname(x)* TOC((JUMPN 1 x)) s [xst. Z(get(l,st))->F,T],
Vx. isname(x)* NST((JUMPN 1 x))

- [xe fl st. st],

Vx. NSTKMOVEI 1 (QUOTE x)))
= [xefl st. Nlb5et(l,code(x),st)],

Vx y. isint(y)* NST((MOVE x y P))
s [xe fl st. (0>xHi, (x>mna)->i,set(x,(set(P,st)+y),st)],

Vx. NST((SUB P (C 0 0 x x))) ^ [xe fl st. set(R,get(P,st)-x,st)],

Vx. (x>0)* NST((PUSH P x))
s [xe fl 5t.[xz. set(P,z+l,5et(z,get(x1st),st)](get(P,st))],

NST((POPJ P)) ä [xe fl st. T-st]

Figure 9.6 - Partial Semantics of 8 Lap Instructions,

112

'.<' : , . . ,!"L -■..-.-.„-.-... ,-. ■ , .■•vt-'-i'.H.Vi.ii'.'ir^il.-rii-. »■ii—.- ^.^tUHmm.**^.****

r^T" -sv^rni«

**AXIOM TL6:

t

Vx y. NST((CALL x y))
3 [xe fl st. (x>mna) -> 1,

isBF(y)->set(l)callBF(y,x,st),st),
tl(e(body(y,f!,x),fl10,NIL.st))],

callBF(CAR) ^ [xn st. (n>l)-»hd(get(l,st)),l],

callBRCDR) n [xn st. (n>l)-»tKget(l,st)),i],

callBF(CONS) * [xn st. (n>2)-» get(l,st).get(2,st), 1],

callBF(LIST) * [xn st. [ßi.[\l i>n -► NIL, get(i,st).f(i+l)]](l)],

, callBF(ATOM) - [xn st. (n>l)-»atom(get(l,st))->code(T),code(NIL),i],

callBF(EQUAL) = [xn st. (nä2)-» ((get(l,st)=get(2,st))->code(T),code(NIL)), 1],

callBF(PLUS) a [xn st. (n>2)-> code(dec(get(l,st))+dec(get(2,st)))f i],

callBF(TIMES) B [xn st. (n;>2)-» code(dec(get(l,st))*dec(get(2,st))), 1],

callBF(MINUS) = [xn st. (n>l)-»code(mns(dec(gel(l,st)))),l],

callBF(GENSYM) = [xn st. (n>l)-»code(gensym(dec{get(l,st)))),l],

callBF(NUMBERP) = [xn st. (n>l)->isint(dec(get{l,st)))-»code(T),code(NIL)fl],

callBF{GREATERP) = [xn st. (n>2H
((dec(get(l,st))>dec(get(2>st)))-»code(T),code(NIL))fl]

Figure 9.7 - Partial Semantics of the CALL Instruction.

113

.HV'iw-w-^i^i,«y im^ wfimw* (•^«■w..* w 'u,"«w.; WM jCTTf^«viuwr;/jrf^».wp^^-r^ '-^^^^«-«w7»r^T^*^w*^''j^^-.^^^r-^v1-^^-^-»^^

There are quite obvious strictness results for the various functions and we

point out that thoy are proved, but the important aspect of the behaviour of the

various functions we have introduced is relative to their effects on groups

appended together. We give some of these

f- Vx y. labs(xÄy) s labs(x)Älabs(y)

h Vx y. GUx^y) a GL(x) + GL(y)

H Vx y c. INSKxKy.c) ^ (c>GL(x)) - INSKy, c-GL(x)),
a(y) - INSKx.c), i

completelX.D-T, complete(Y,L)"T |- complete(XÄY,L)-T

t- VL x y. loc(L,xÄy) 3 mem(x,lab5{x)) ■> cilyl-^locd.x),!,
loc{L,y)+GL{x)

By far the most important result that was proved for LAP itself gave the

effect of executing two groups of instructions joined together in terms of executing

them sequentially.

Vx. mem(x,lab5(Gl))* mem{x,labs(G2))-F,
complete(Gl,NII>T, complete(G2,NILHT

}• VP c st. exec(Gl«G2,P,c,st)
= (c>GL(Gl))-» exec(G2,P,c-GL(Gl),st),

exec(G2,P,0,exec(G 1 ,P,c,st))

which has the most important corollary that under certain suitable conditions on Gl

and 02:

114

9

^.^-■.'■^ -■ -■ t. .:..'.-.. --■ ■■■ .-.-...■ .■■--.^. --■■ - - ■ ■ ..-^■1- .^-■■-■■...-..^V^.J^-^i.-:^-.^.^ ■■■ -■^.^■.■^.^-1J....-; .:.:.. ■ .. . ■ .. ■■ ■. .■■„^ .i.-^..^^,^.........'......^:,^.g.

TT^TCW.^^^9

exec(GlÄG2,P,0,st) ^ execiG^P.O.exe^Gl.PAst)

We note that the proof of this result required about 300 steps of LCF

proof. That is, of course, after certain simple and general theorems are proved

about 'complete', 'labs' etc.

■

t

I f

115

- .■.-...i.^,-,--,-. ^ ...-.J..^.^—.....— -..— .-^ ..■.^.■^.^.^^■^>^ ^■.■■-■, —^ .

CHAPTER 10

Compiler Correctness (II) - Outline of a Proof

116

-;

Having axiomatioed the Gource and target languages of the compiler, we

turn to the compiler itself.

10.1. The Compiler:

We start by exhibiting the compiler itself; Figure 10.1 (next three pages) 5

gives the m-expression form of this 'LISP Function' which (via interpretation) maps

S-exprcssions which are LISP Functions into other S-expressions which are LAP

Functions. ^

In order to talk about the S-expression form of the compiler we must

introduce axioms to give the names to the bodies of the various functions,

f*AXIOM C01

Sappn2 n (LAMBDA (X Y) (CONS (CAR Y) (APPEND X (CDR Y))))

etc.

The S-expressions yo introduced are Sappn2, Scomp, Sprup, Smkpush,

Sloadac, Scomplis, Scompexp, Scomcond, Scombool and Scompandor,

0

0

—---- — ■•"■'----■-- --—^—~-v---n ,1 rn n i ■ ■ ,f -i■niiirniiilfr""-"-''"-'"-' -"■" —' -- -'.->■..■ -■-..■ ■J..1...^...t ,,„„ I,,, „„ | „ t ^^^.^-g^-fr^^fc,,,^

'"■ ■' r" -"■ •' ■ ■'- - . Of .- .,....,,., ,

appn2[x;y] = cons[car[y]iappend[x;cdr[y]]]

comp[fn;var5iexp] =
x[[n]i append[append[mkpush[njl];

compexp[exp;minus[n];prup[vars;l];
gensym[fn]]]i

list[list[SUB;Pjlist[CiO;0;n;n;]]i
list[POPJ;P]jNIL]]

[length[vars]]

prup[var5;n] -
[null[vars] - NIL;
T - cons[con5[car[vars];nji prup[cdr[vars];plus[nil]]]]

mkpuGh[njm] -
[greatcrp[m,n] -> NIL;
T -» cons[list[PUSH;P;m]i mkpush[n;plus[m;l]]]]

loadac[n;k] =
[greaterp[n;0] -> NIL;
T -* cons[list[MOVE;k;n;P]; loadac[plus[n;l];plus[k;l]]]]

complis[u;m;vpr;nl] =
[null[u] -* cons[nl;NIL];
T -» x[[x];appn2[cdr[x];

appn2[((PUSH P 1));
complis[cdr[u];difference[m;l];

vpr;car[x]]]]]
[compexp[car[u];m;vpr;nl]]

Figure 10.1a - The LISP Functions that Make up LComO

117

i—^^V^fc-ifei^-^..«.^-,... ^ ^.^...jt«^^-... .■;-J:.,.u. ^..-.■vi.-:-. ...r.- ..., ,...- i. >,.. -..--.«—n...., . . - < *. ^.c-.^vtuU;-» .CUIM!E

™T,WjWJ.i!i^..™.i.iW«',l.ul-*«.i.MW,Wl.lP^^

compexp[exp;rn;vpr;nl] =

Lor[null[exp];equal[exp;T]]-listfnlilist[MOVEI;l;list[QUOTE:expin;
atomLexp] ^ li5trnl;lisl(MOVE;l;plus[m;cdr[assoc[expjvprni:Pll
orlequal[car[exp]!AND];equal[car[exp]iOR];equal[car[exp];NOT]]-»

append[combool[exp;m;nl;ML;vpr;gensymrgensymrnim:
list[(MOVEI 1 (QUOTE T)); JJ

list[JRST; gensym[nl]];
nli (MOVEI 1 (QUOTE NIL)); gensym[nl]l];

equa carfexpKOND] - comcond[cdr[exp]iminlivprigensym[nl]li
equalCca^expJ-.QUOTEJ-listCnljIistCMOVEIjljexpll:
atom[car[exp]] -*

x[[n]; append[complJs[cdr[exp]im;vpr;nl];
append[loadac[dlfference[1 ;n]; 1]j

list[llst[SUBjPilist[CiO;Ojn;n]]j

\ [lengthNrtexp]]]; list[CA^;.ist[E;car[exp]]]]]]]

equal[car[car[exp]];LAMBDA] -♦
x[[n;x];append[appn2[cdr[x]i

compexp[car[cdr[cdr[car[exp]]]]i
difference[m;n];
append[prup[car[cdr[car[exp]]]i

difference[l;m]]i
vpr];

car[x]]];
listfli5t[SUB;P;list[CiO;0;n;n]]]]]

tlength[cdr[exp]]i complls[cdr[exp];mjvprin|]]

Figure 10.1b - The LISP Functions that Make up LComO (ctd.)

118

5

:)

fc^l.»...^..-.^.;....^.,.- ■■■;■. ■■< ^' -..!.^^.:.-^^^^i^M^i^U-m^^:^^ -■^^.. .■.■■. ^V.^.^ii^..^v^ ■^t^^.U-.J.i.^± .^-t. ■. ^:J-.. ■U.,-^^Ua.^.i,^ .^■^.■1. ■ ■.:il>^: ^.^-'^^ ^^L-^ ..■...■... ,,.....^^

■^.r-*7:-'-T^-VT=-7Tr?fr;r.rrrxs>wipj^f^75 i^T^^.T^^vf-feyr^-nr -r^ v.-—ytnnrrTv f" I'Ai(Wl*JM't,",.,i>V7Tl^V~7r-X'--TT^r--.*:"^>J"^"r-V

s

comcond[uimil;vprinl] =
[null[u] -» list[ni;l];
T 3 x[[x]; x[[y]; appn2[cdr[x]j

appn2[cclr[y]i
appn2[list[list[JRST;l];nl];

comcond[cdr[u]im;ljvpr}car[y]]]]]]
[compexp[car[cdr[car[u]]]im;vpricai/[x]]]

[combool[car[car[u]];m;nliNILivpr;gensym[nl]]]]

combool[p;m;l;flg;vpr;nl] =
[atom[p] -» append[compexp[pimivpr;nl];

list[list[[fig ^ JUMPN; T -* .JUMPE];1;I'J]];
equa![car[p];AND] -» [not[flg] -» compandor[cdr[p];m;liNIL;vpr;nl];

T -» append[compandor[cdr[p]im;nliNIUvprigensym[nl]];
list[list[JRSTjl];nll]]i

equal[car[p];OR] •* [fig -* compandor[cdr[p];m;ljT;vprjnl];
T -* append[compandor[cdr[p]iminl;T;vprigensym[nl]]i

llst[lisl[JRSTil];nl]]];
equal[car[pliNOT] -» combool[car[cdr[p]];not[flg];vpr;nl]i
T -» append[compexp[p;mjvpr;nl];

list[list[[flg - JUMPN; T -» JUMPE];!;!]]]]

compandor[uim;liflgivprinl] =
[null[u] - list[nl]i
T -* x[[x]; appn2[cdr[x]icompandor[cdr[u];miliflgivpr;car[x]]]]

[combool[:ar[u]imil;flg;vpr;nl]]]

Figure 10.1c - The LISP Functions that Make up LComO (ctd.)

119

Bk k. _~ ■ —"-— - '■— ' -- "• ■ ... ■ „-^.JJM..-. ■ —r-^^. ^

pv^^iWMiiijw.iiJUpijmj^

10.1.1. Some Slight Changes

Close comparison of this compiler with the original will reveal that there

are small differences. We have already indicated that, in LComO LISP, the function

GENSYM takes one argument (usually the name it generated last time it was

invoked) instead of no arguments (as in LISP 1.5). This change in the language was

compensated by a suitable change in the compiler: each function that could generate

labels internally acquired an extra parameter - namely, the next label to be used;

also each of these functions gave as result a pair of next-label-to-be-generated

and a list-of-instruciions.

Finally, there is some slight saving in the number of subsidiary functions

required. For example, LESSP is avoided by changing the program to use GREATERP.

10.1.2. Predicate 'CFD' - Compiler Functions Defined

Having available the S-expression forms of all the compiler functions, we

now introduce an axiom to define a predicate (on lists) which can testify to all the

LISP Functions used (directly or indirectly) by LComO being in a function list:

**AXIOM C02:
CFD = [xfl. BFD(fl) -

tl(asGoc(PRUPIfl))-Sprup -*
tl(assoc(MKPUSH,fl))=Smkpush ■*
tl(assoc(LOADAC)fl))=Sloadac -»
tl(assoc(APPIM2,fl))=Sappn2 -*
tl(assoc(COMP,fl))=Scomp -*
tl(assoc(COMPEXP,fl))=Scompexp ->

120

,^.,.. ■-■.,.— ■■■. J..Jl..^..^..,^^...,^.^^..^.^,l^-.„ — - ------ -...„■■.....■■,:....^v.......,.,.,.^ ~...... , -.^.^1

tl(assoc(COMPL!S,fl))=Scomplis ->
tl(aj;soc{COMCOND,fl))=Scomcond-»
tKassoc(COMBOOL,fl))=Scombool -»
tl{assoc(COMPAMDOR,fl))=Scompandor,

F.F.F.F.F, F,F,F,F,F]

10.2. Meaning of the Compiler:

Figure 10.2 (next three pages) gives the meaning functions that the

compiler LISP Functions induce under interpretation. Figure 10.3 contains theorems

which explicate the definitions of 'compexp' and 'combool' which are the hardest to

follow. We shall therefore consider the LCF function 'comp' to be the compiling

algorithm o? LComO. The purpose of introducing the meaning functions is to factor

the whole proof of correctness of the compiler into two substantial but independent

parts:

i) the correctness of the S-expression form of LComO relative to the

compiling algorithm;

ii) the correctness of the compiling algorithm.

The technical statement of the first subproblem \r. simply:

CFD(FI>T h Vf v e. apply(C0MP,(f v e),NIL,FL) = compif.v.e)

which we arrive at via the family of lemmas:

CFD(Fl>T h Ve m vpr nl vb. apply(COMPEXP,(e m vpr nl),vb,FL)
3 islist(vb) -> compexp(u,m,vpr,nl), 1

121

^^..tj.:.i - - ■ ;:. .l..-n...m n^i.^.;.■:........,:.:.^.■..:..,■. a ■ ., ,.:...-...;■ .±: ■„.^.•~., ^.t :■.,., i.,.--..-:.:.!.'..^.....,;.—,.;,^ : ■ ..-.:■.:■ , . *. ,.: ■ i . .., . : ■■ ,..»^..iaJia)>.;KiJ.i...^^^a.^.1

**AXIOM C03:

^

comp - [\f v e.[xn.(mkpush{n,l)

ÄtJ(compexp(e,mns(n),prup(v,l),gensym(f))))
Ä/ ((SUB P (C 0 0 n n)) (POPJ F) NIL)]length{v)],

compexp 3 [/iG.[xexp m vpr nl.
(null(exp)-»T,{exp=T)-»T,isir)t(exp)) -»

(nl (MOVEI I (QUOTE exp))).
atom(exp) - (nl (MOVE 1 m+tKassoctexp.vpr) P))

((Mexp)=AND)-*T,(hd(exp)=OR)^T,(hd(exp)=NOT)M
comboolF(G)(exp)m,nl1ML,vpr,gensym(gensym(nl)))

& ((MOVEI 1 (QUOTE T)) (JRST 0 gensym(nl))

^(ex^XOND)"' (M0VE,1(QU0TEN,L))8enS^

(hd(e^Ätffii?^r'V^^^^^
atom(hd(exp)) -* complisRG)(tl(exp),m,vpr,nl)

ä [xn.loadacd-n,!) Ä ((SUB P (C 0 0 n n))

(hd(hd(exp)).LAMiDCAA) ^ (E ^^»^'-^(tKexp))).
rXn X T-cfffS^^^^^'l^^^P^^^^P^.h^x)))

Ä ((SUB P (C 0 0 n nJJ^IenglhdKexp)),
complisF(G)(ll(exp),m,vpr,nl),

^ W & PrupdiddKhdlexp))),!^»,

complisF s [\ce. [nH.[\u m vpr nl. null(u)- (nl),
[xx. appn2(tl(x), appn2(((PUSH P 1))

H(tl(u),m-l,vprIhd(x))))](ce{hd(u)(m,vpr,nl))]]],

Figure 10.2a 'comp' - the meaning of 'COMP.

122
t

»,■,^..1 '—^ >...,M.-.^.,J. ,u...M:,-...^.^.J...^^..^,^^^WVaj^...^.^-^,.
■ i 11 imiJltfiiMiliiiüriiBitlüi

fc

^

%

%

<>

comboolF a [xce. [>H.[>p m I fig vpr nl.
atom(p) -♦ ce(p,m,vpr,nl)

& (((null(flg)-*JUMPE,JUMPN) 1 I)),
(hd(p)=AND) ->

null(flg) -» compandorF(H>(tl(p),m,liNIUvpf,nl),
compandorF(H)(tl(p),m,nl,NIL,vpr,gensym(nl))

& ((JRST 0 I) nl),
(hd(p)=OR) ->

null(flg) -» compandorF(H)(tl(p),m,nl,T,vpr,gensym(nl))
& ((JRST 0 I) nl),

compandorF(H)(tl(p),m,l,T,vpr,nl),
(hd(p)=NOT) -» H(hd(tl(p)),m,l,(null(flg)-»T,NIL),vpr,nl),

ce(p,m,vpr,nl) & (((null(flg)-JUMPE,JUMPN) 1 I))]]],

compandorF ^ [xcb. [MF.[XU m I fig vpr nl. null(u)-» (nl),
[xx. appn2'(tl(x),F(tl(u),m,l,flg,vpr,hd(x)))]

(cb(hd(u),m,l,flg,vpr,nl))]]],

comcondF = [xce cb. [/iH.[xu m I vpr nl. null(u) -»(nl I),
[xx. [xy. appn2(tl{x),

appn2(tl(y),
appn2(((JRST 0 I) nl),

H(tl(u),m,l,vpr,hd(y)))))]
(ce(hd(ll(hd(u))),m,vpr,hd(x)))]

(cb(hd(hd(u)),m,nl,NIL,vpr,gensym(nl)))]]],

%

f:

Figure 10.2b - Auxiliary Functions for 'comp'.

123

g^ii^iMi^:,;,■■-;....-,:,».^I.^^.^^M.I-..^^^ ■■--"■ -.-•„.„■^^■^«.■^Ji«^.i«i.va^a„.;ia,.j.., y. ~^~'- IMril

1

complis s complisFlcompexp),

combool - comboolF(compexp),

compandor s compandorFlcombool),

comcond = comcondF(compexpl combool)

appn2 [xx y. hd(y) - (x & ll(y))],

prup a |>G.[xv n. null(v)-NIL, (hd(v).n) • G(tl(v),n+1)]],

mkpush - [/iG.[xn m. (m>n)^NIL, (PUSH P m) • G(n,m+1)]],

loadac ^ [nG.[\r\ k. (n>0)^NIL, (MOVE k n P) • G(n+l,k+l)]]

Figure 10.2c - Auxiliary Functions for'comp',

124

I^JiUU^i^:^,.v^.~t*t,is.S^^-iili^.l^,^^.t,^i.,^i.^.^...... - ... , ..-.1.^.:, :.„...i... -.,..i,i,.^...i '..- ;.:■■■ - » .!..,: ■■..■■ - ■.■■ - ...,.,,.■.,.■■...,"■ ^-■^-- •■•^■Ji^--■'■-■■-■'■■-^i-

g

compexp s [fiG.[xexp m vpr nl.
(null(exp)-»T,(exp^T)->T,isint(exp)) -»

(nl (MOVEI 1 (QUOTE exp))),
atom(exp) -> (nl (MOVE 1 m+tl(assoc(exp,vpr)) P)),
((hd(exp)=AND)-»T,(hd(exp)=OR)->T,(hd(exp)=NOT))-»

(ft combool(exp,m,nl,NIL,vpr,gensym{gensym(nl)))
& ((MOVEI 1 (QUOTE T)) (JRST 0 gensym(nl))

nl (MOVEI 1 (QUOTE NIL)) gensym(nl)),
(hd(exp)=COND) -♦

comcond(tl(exp),m,nl,vpr,gensym(nl)),
(hd(exp)-QUOTE) -* (nl (MOVEI 1 exp)),

• atom(hd(exp)) -» complis(tl(exp)lm,vpr,nl)
Ä [\n.loadac(l-n,l) Ä ((SUB P (C 0 0 n n))

(CALL n (E hd(exp))))](length(tl(exp)))I
(hd(hd(exp))=LAMBDA) -*

[\n x vpr2. appn2(tl(x),G(hd(tl(tl(hd(exp)))),m-n,vpr2,hd(x)))
t Ä ((SUB P (C 0 0 n n)))](length(ll(exp)),

compli s(11(exp) ,m,vpr,nl),
vpr & prup(hd(tl(hd(exp))),l-m)),

i]].

$ combool s [fiH.[xp m I fig vpr nl.
atom(p) -> compexp(p,m,vpr,nl)

Ä (((null(flg)-»JUMPE,JUMPN) 1 I)),
(hd(p)=AND) -*

null(flg) -» compandor(tl(p),m,l,NIL,vpr,nl),
compandor! 11(p),m,nl,NIL,vpr,gensym(nl))

* & ((JRST 0 I) nl),
(hd(p)=OR) -»

null(flg) - compandor(tl(p),m,nl,(T,vpr,gensym(nl))
Ä ((JRST 0 I) nl),

compandor(tl(p),mll,T,vpr,nl),
(hd{p)=NOT) -* H(hd(tl(p)),m,l,(null(flg)-T,NIL),vpr,nl),
compexp(p,m,vpr,nl)Ä (((null(flg)-»JUMPE,JUMPN) 1 I))]]],

Figure 10.3 - Theorems Explicating 'compexp' and 'combool'.

125

K

i

 ■■ I - - ■■'■ •■■ ■- ■ - ■ ■■ I M '-■■■■■ ..-:,..,:.„^.■J^^..J-.Jia.^.,wi.,;.,^.,:.a,^,i.„_J.-...,-tL,o^..-..,^,.^.;,., .,,,. .v... .: . . , . ,: .:.■: . ,.^... . ,,_,..,..;.»,.„... 'i ..V.....»-^. .■--.-^Jlul^.^^a.^^U

CFD(FL)^T I- Vu m I vpr nl vb. apply(COMCOND,(u m I vpr nl),vb,FL)
a islist(vb) -♦ comcond(u,m,l,vpr,nl), 1

etc.

The appropriate attack on these subproblems is by means of the techniques

described in the context of Pure LISP (see Chapter 7). We must prove the family

of lemmas simultaneously using induction on the the structure of the expression

being compiled. The proof will clearly be long and for this reason alone we would

find difficulty in establishing the results. We estimate that it would be comparable

in size to that half of the interpreter proof that was done on the machine.

10.3. Properties of the Compiler Functions.

Having extracted meanings for the various compiler functions as terms of

LCF, we rnuct proceed to prove various theorems about their behaviour. The most

important one is treated in the next section: that the compiling functions produce

'correct LAP code. In this section we present some useful but much simpler lemmas

about the LCF functions 'comp', 'compandor' etc.

Attached to some of the lemmas there are provisos that the arguments

given to a function are well formed. We refer the reader to chapter 9 for the

discussion of well-formedness of LISP expressions.

126

U

. W~ I 1 -■- - •- ,1.,.-^--^-^-^.—..■^•--i -- _ ... _ . ,, .. ^^,^~***iU*£ä-L***ätiHUM

t

s Several of the functions take a parameter which will call a variable

position record (vpr). A vpr is an A-list which associates variables with

integers used in the computation of stack positions for variables. The predicate

'isvpr{v,n)' checks that v is a vpr, that the integers are in descending order and are

positive but less than n. The function 'vprvars' builds a list of all the variables

mentioned in a vpr.

isvpr = [MG.[XV n. null(v) -♦ (n>l),
tl(hd(v))>n -* F,
isname(hd(hd(v))) -> G(tl(v),tl(hd(v))), F]]

vprvars ^ [MG. [XX. null(x) -» NIL, hd(hd(x)) . G(tl(x))]]

We observe that 'compexp', 'complis', 'combool', 'compandor', 'comcond' are

all strict in their first and last arguments and that 'compexp' is strict in all its

arguments.

V

10.3.1. Totality

The result we suggest in this subsection is that each of the compiler

functions terminates with a list (of instructions) provided only that its arguments is

well-formed. Formal statements of two instances of this result are:-

iswfe(e,vprvars(vpr)) = T,
isvpr(vpr,mns(m)) s T,
isname(nl) s T

H islist(compexp{e,m,vpr,nl)) s j

and

127

■ -'■■■■ -■■ ; ■ ■- — ' ..-...^■.-- a I - ■■ ,-. i ... ■ .. ■■■.. . ..^J^..-.^..U^-„>-.....JJL-.^.J.O^.J..^- .^!^■..^■■^^-..--M-mu.

S i

iswfl(p,vprvars(vpr)) s T,
isvpr(vpr,mns(m)) 3 X,
isname(l) = X,
(flg-NIL) -^ T, (flg=T) « T,
isname(nl) - T

h islisticombooKp.mJ.flg.vpr.nl)) - T

By instantiating the first of these two lemmas appropriately we get:

iswfe((LAMBDA v e), ML) a T,
isname{f) 3 J

f- islist(comp(f,v,e)) a T

10.3.2. Completeness

We next suggest some results which say that the bodies of code produced '

by compiler functions are complete in the sense that they contain no jumps to

'undefined' labels. Take, for example, 'coi> ool':

a
iswfl(p,vprvar5{vpr)) s T,
i5vpr(vpr,mn5(m)) s J,
(flg-NIL) - T, (flg=T) = T,
di5cr(nl) > discr(l) s T

h complete(tl(cümbool(p,m,l,flglvpr,nl)), (I)) a T .

• I I The corresponding theorem for 'comp' Is:

iswfe((LAMBDA v e)) s T,
isname(f) a T

h complete(comp(f)v,e), NIL) = T . • 1

128

^i ■ ' - ■ -.-^.' :- ■ . . ^^ -■■ .■ • - ' ■ ^».^ - - , _^ ■ -.-: :,.i...,.T,-i^.J»,

B

10.3.3. Distribution of Labels

When we come to prove correctness of the compiler functions we will need

lemmas which declare that in bodies of code produced by the compiler functions,

labels are declared only once. This requirement is fulfilled by some theorems which

describe the orderly placing of labels. For example, we state the one for 'comcond':

iswfl(u,vprvars(vpr)) 3 T,
isvpr(vpr,mns(m)) 3 j,
discr(nl) > discr(l) 3 T,
X 3 comcond(u,m,l,vpr,nl),
mem{y, !äbs(tl(X))) a T

}• discr(y) > discr(l) = T,
discr(hd(X)) > discr(y) « T .

10.4. Statement of Correctness.

Let us now state what our final goal is. We first do so informally as follows:

IP we have a certain function list FL1 of well-formed LISP
Functions

AND we have a function list FL2 of the compiled forms of
those LISP Functions (where compilation is done by running
the LISP compiler (LComü)),

THEN the effect of applying some function F to some list A of
arguments (not too long) is the same whether we use LISP
'apply* in the context of FL1 or LAP in the context of FL2.

129

*^**..r ' ■■. HOLM & A i^i.^»., ■■ ■■■ ■ - ■ - Uli I ^ -. > ■ ■ ■■ . <— ■'■■- ..--1....^.—.^i^M-^lfei^^

That is, we must establish the theorem,

Vx. aChcKassocte.FLl)))* iswfeitKasso^x.FLl)))^^
Vx. £i(hd(assoc(x,FLl)))!» hd(tl(assoc(x,FLl)))HLAMBDA.
CFD(FL)^T,
Vx. ci(hd(assoc(x,FL2)))*

tl(tl(assoc(x,FL2)))5 apply(COMP, (x hd(tl(tl(assoc(x,FLl))))

, ut hd(ll(tl(tl(as80c(x,FLl)))))), NIL, FL)
H Vfn args. Iength(args)<mna*

apply(fn,args1NIL,FLl) a lap(fn(args,FL2)

10.4.1. Correctness of the Compiling Algorithm

In Section 2 we exhibited the function 'comp' which is the one induced

under interpretation by the LISP function 'COMP'. We are thus entitled to simplify

the compiler correctness problem by rewriting some of the hypotheses of the above

theorem. We will now assume thoca modified hypotheses for the rest of the

chapter, effectively creating constants FL1 and FL2:-

and

Vx. ci(hd(assoc(x,FLl)))* iswfedKassoclx.FLl)))^,
Vx. fi(hd(assoc(x,FLl)))* hd(tl(assoc(x,FLl)))HLAMBDA

Vx. ci(hd(assoc(x,FL2)))*
tl(tl(assoc(x,FL2)))s comp(x, hd(tl(tl(assoc(x,FLl)))),

hd(tl(tl{tl(assoc(x,FLl))))))

The correctness of the compiling algorithm is then just:

(- Vfn args. Iength(args)<mna* apply(fn,args,NIL,FLl) ^ lap(fn,args,FL2)

130

'— - ------ ■ ■— ^- -
^»..^^^a..^.i-,..U,^.4^...:-^..^..^,,.^^ ' • ■>—■■-.......-.^ ,, -iri iTiiiiiMliiMiiMMiiiMiliMI MIÜ

r

^ 10.4.2. The Principal Lemma

Taking the result of the last subsection as our goal, we see that the

appropriate principal subgoal is:

5 Vvb st args fn. a(vb)* lenglh(args)<mna* get(!P,st)>PDL*
dec(get(l,exec(body(fn,FL2,length(args)), FL2, 0, putarg9(args,st))))

- apply(fn,args,vb,FLl)

The main correctness result follows from this one by taking W to be 'NIL'

and 'st' to be 'setdP.PDL.NID'.

10.4.3. Environment Correspondence

At the next level of goals, we will have equations where the LAP

interpretation of some expression appears on the left hand side and LISP

interpretation of a corresponding expression appears on the right. However, both of

these interpreting functions take an environment as a parameter and so we will

sometimes need preconditions to the effect that a pair of environments are

consistent. We thus define a correspondence function between LISP A-Lists and

LAP run-time stacks as follows:

stkscorr s I>G.[xvb st vpr m.
null(vpr) ■* (geU!P,st)+m > PDL),

v (hd(hd(vb))=hd(hd(vpr)))
-►(tl(hd(vb))=get(get(!P,st)+m+tl(hd(vpr)),9t)

-» G(tl(vb),st,tKvpr)lm), F),
F]]

131

... .■■ . - ■^.■_ ,. „., . ..^^^.~-.*...~.^*~..—.^^...- ^..■.,...

One sees that if stkscorr(vb,st,vpr,iu) T then the value of any variable

extractable from the run-time stack by means of the function

[\x. get(get(!Pl.st)+m+tl(assoc{x,vpr)),st)] is the same as the value which would

be extracted from the A-list vb by means of the usual function

[xx. tl(assoc(x,vb))]. Note that this correspondence function is very much tailored

to our present purposes of proving LComO. A more general such predicate might

not require that variables appear in exactly the same order In the A-list and the

stack; on the other hand, it could require that all of the stack in st should

correspond to all of vb instead of just those variables that are mentioned in vpr.

ii) How the otack pointer is affected;

iii) How the stack contents are affected.

132

i

■

3

10.4.4. Second Level Subgoals

The secondary lemmas which we must prove and which we list in figures

10.4 to 10.8 relate LISP interpretation in some environment (an A-list) to LAP

execution of corresponding code in a corresponding environment (a stack). More

particularly, we wish to describe the effects of executing code produced by

'compexp', 'complis', 'comcond', 'combool' and 'compandor' in terms of how the LISP

functions 'eval', 'evils' and 'evcon' operate on the source S-expressions. Note that

there are just three effects we wish to capture in lemmas about code execution:

?

9

i) What the answer is (usually what register 1 contains);

:;

.... .■^^J^..—.iL-^^^»,^^^..,. ^.v,a,„|.-i,|hf,- -^^>—...^^.J-.^^u-,-^-.» J^^a-^^A..w. t.u-.....^..,.. . .. „. ■ .,_._^.^.^..._ . . -■ — ̂ ^

i) Answer:

Vexp vb st vpr m lab.
stkscorr(vb,st,vpr,m)*

f» iswfl(exp,vprvars(vpr))*
isnamedab)»

dec(get(l,exec(ll(compexp(exp,m,vpr,lab)),FL2,0,st)))
s eval(exp,vb,FLl)

ii) invariance of Stack Pointer:

Vexp st vpr m lab.
Iswf 1 (exp,vprvars(vpr))*
Isname(lab)*
gel(!P,st)>PDL*

Vst2.
st2=exoc(tl(compexp(exp,m,vprllab)),FL2,0,st)*

t-

get(!P,st2) B getdP.st)

Hi) Invariance of Stack Contents:

Vexp st vpr m lab.
iswf l(exp,vprvars(vpr))*
isname(lab)*
Eet(!P,st)>PDL*

Vst2 n.
st2=exec(tl(compexp(exp,m,vpr,lab)),FL2,0,st)*
n>PDL*
gel(!P,st)>n*
get{n)st2) 3 get(n,st)

Figure 10.4 - Subgoals Describing Effects of 'compexp'.

133

■ ■ .-■

. . ■ ■ ..-.-..■'■:'.....^...J-^..w.-.^ ..■^■..■. ...-■. ., ■-.■...-■ if-t.W.^...L. .-^A^.- • -"•-■- -—'

f

i) Answer (additions to stack):

Vx vb st vpr m lab.
stkccorr(vb,st,vpr,m)*
iswf 2(iswfl ,x,vprvars(vpr))*
isname(lab)*
[xstl. |>G. [xn. n>length(x) -* ML,

get(get(!P,stl)-n,stl).G(n+l)]](l)]
{exec(tl(complis(x,m,vpr,lab)),FL2,0,st))

= evlis(x,vb,FLl)

9

ii) Effect on Stack Pointer:

Vx st vpr m lab.
iswf 2(iswfllx,vprvars(vpr))*
isname(lab)*
get(!P,st)>PDL*

Vst2.

st2-exec(tl(complis(x,mlvpr,lab)),FL2,0,st)*
get(!P,st2) S get{!P,st)+length(x)

iii) Invariance of Slack Contents:

Vx st vpr m lab.
iswf 2(iswfl,x,vprvars(vpr))*
isnamc(lab)*
Eet(!P,st)>PDL*

VGt2 n.

5t2-exec(tl(complis(x,m,vpr,lab)),FL2,0,st)*
n>PDL*
get{!P,st)>n*
get(n,st2) a get{n,st)

Figure 10.5 - Subgoals Describing Effects of 'complls'.

134

f

■:..^„^.;...ll-.;:.-^^.w..^ ...;;.-..^^^V-^,^..A..,.'...'^' ^-■.-:^.^v.',;-J.-^;vi;...-v!...:-t^i^-..-..J.....-..vc v. .- L. ■:.,.. ■ :■ ,=, .■.vJ,i^^Ci^J.,L-i.-,.HWJ~--^'V»m. i,.*.***Ui^U

I^.r.^y/Tvrvwt^?*;^^

i) Answer:

Vx vb st vpr m yl y2.
stkscorr(vb,st,vpr,m)*
iswf3(iswfl,x,vprvars(vpr))*
discr(y2)>discr(yl)*
dec(get(l,exec(tl(comcond(x,mlyl,vpr,y2)),FL2,0,st)))

3 evcon(x,vblFLl)

ii) Invariance of Stack Pointer:

Vx st vpr m yl y2.
iswf ?(iswf 1 ,x,vprvars(vpr))*
discr(y2)>discr(yl)*
get(!P,st)>PDL=>

Vst2.
st2:=exec(tl(comcond(xlm,yl,vpr,y2)),FL2,0,st)*
get(!P,st2) s get(!P,st)

iii) Invariance of Stack Contents:

Vx st vpr m yl y2.
iswf 3(iswf 1 ,x,vprvars(vpr))*
discr(y2)>discr(yl)*
get(!P,st)>PDL*

Vst2 n.
st2=exec(tl(comcond(x,m,yl,vpr,y2)),FL2,0,st)*
n>PDL*
get(!Plst)>n*
get(n,st2) s get(n,st)

Figure 10.6 - Subgoals Describing Effects of'comcond'.

135

-to.,.-..,^... .,.■..„.... : .,.J..,,^.^^.t«tj..^^L^^,:^„1..^^.^.J. .^„u^.,^,-^.~...^.,<^,^..^ a&Zjläaajia tta .,....„,,y^^^ata.,^... -.: g. jaa

t^r^-rr.ir-n'i yAT^f"

Vn. Vx vb st vpr m yl y2 fig.
stk5corr(vb,st,vpr,m)*
iswf 1 (x,vprvars(vpr))*
discr(y2)>discr(yl)*
(flg=T) - T, (flg=NIL)*

VxL seql seq2.
xL=tKcombool(x,m,yl,f(glvpr,y2))*
hd(seq2>=yl*
disjoint(labs(seq2),labs(seql))*
disjoint(labs(seqlÄseq2),labs(xL))*
get(!P,st)>n*
(n>PDL)-*T,(n=l)-»T,(n=!P)*

get(n,exec(xLÄseqlÄseq2(FL2,0,st))
= [xC. get(n,exec(C,FL2Ast))]

(null(eval(xivb,FLl))->(null(flg)->seq2,seqlÄseq2),
(null(flg)-»seql&seq2,seq2))

Notes

i) This lemma can be specialised to tell about answer, stack
pointer or old stack contents by taking 'n' to be 1, !P or some
stack address (an integer between PDL and get(!P,st)).

ii) The predicate 'disjoint' searches for common elements of
two lists; It yields F if it finds one.

disjoint ^ [(uG. [xx y. null(x) -* T,
mem(hd(x),y) -» F, G(tl(x),y)]]

Figure 10.7 - Subgoal Describing Effects of 'combool'.

136

iatj^.i.-.!/...■..<..■:.. ■...f... ■ . j ,.■■..■,/...; ..,..,;i-.^...'.:,,.1.,..,.^^..fl~-,»^.t>v>fc;^,;iJi^^,.-.^...i-.:......,;....,-r,..^....^,,.^^^ <;■:... r:^.^at>...^-:>.tJ^JJ.J..^.-fa.. — Jia

Vn. Vx vb st vpr m yl y2 fig.
stkscorr(vb,st,vpr,m)*
iswfl(x,vprvars(vpr))*
discr(y2)>discr(yl)*
(flg=T) -* T, (flg=NIL)*

VxL seql seq2.
xL=tl(compandor(x,m,yl,flg,vprIy2))*
hd(seq2)=yl*
disjoint(labs(seq2),labs(seql))*
di5Joint(labs(seqlÄseq2),labs(xL))*
get{!P,st)>n*
(n>PDL)-*T,(n=l)->T,(n=!P)*

get(n,exec(xLÄseqlÄseq2,FL2,0lst))
~ [xC.get(n,exec(C,FL2,0,st))]

([MG.[\y.null(y)-»seqlÄseq2,
null(eval(hd(y),vb,FLl))-»(null(flg)-»seq2fG(tl(y))),

(null(flg)-+G(tl(y)),seq2)]](x))

Note:

This lemma can be specialised to tell about answer, stack
pointer or old stack contents by taking V to be 1, !P or some
stack address (an integer between PDL and get(!P,st)).

Figure 10.8 - Subgoal Describing Effects of 'compandor'

137

^.^.^.^.^.>^^. :..:..„.,.*. ^^^^n.^.*.- ..i..:.>.;.-.,.,^^...^,.J.....U.^..^^..^.t..J^.:.I..W^..,.......iJ„ ... ^.i,<^,i^^^^^l^^,..^^„J..,„„^.^.. - ...v^,.^.Muaa

7 ' ' «""' >■ »"M.il I'"- P,-.-,-.».. M...-.,.,.„,.„WW,„P,u.U .1H" 1..I«. .in-. i ■ -UM .III ■ill..™..,l..l..J.w.-l..,.— . ' WLMIPMllH. ■■I JilliaiKll.il. ..Ulli:. | i in 1,^

10.4.5. Attacking the Subgoals.

Because 'compexp'. 'complis' etc. are all mutually recursive, the subgoals of

figures 10.4 to 10.8 are all interdependent. It is thus necessary (but natural) to

attack all these subgoals simultaneously. The appropriate tactic will clearly be

induction on the structure of all S-exPressions being compiled We do this by using

Scott induction on the definition of 'iswfl' which occurs in the relatlvisations of all

the subgoals.

The reader who is unfamiliar with LCF should not be perturbed at the large

size of the conjunction of all these formulae; Immediately after the induction tactic is

performed the new principal subgoal generated may be split back into manageable

pieces.

The reader may also wonder whether the limit on size of core image

imposed on the LCF System presents a barrier which can make some proofs

effectively impossible to do. The answer to this question is that, in practice, proofs

in the system tend to be reasonably well-structured and we can factor such proofs

into their main parts and subsidiary parts and then prove subsidiary results in

separate core images. More particularly, if a subsidiary part of a proof has N steps,

mak.s reference to J previous steps (hypotheses H,. H2,.. H>) and contains K steps

138

.- ^/:'.i;j.i.j^ .„..-■.■.^...^^^^^.^a...!.,,^^......,..,,,,^,.,^..,.,.^,.............^..,. ^, ■■. ..,..J,,„I^^.^.riv^^.^.^i,ffl

B

for future use (results R,, R2l .. RK) then as a separate task we may attack

H|,..,Hj I- R|,..,RK. Now if this proof (at most N+J steps long) fits in core and J+K is

much less than N (as is usual) we win.

t

10.5. Feasibility of a Pull Compiler Proof

To sum up, we have split the LComO correctness problem into four parts.

The first two were the developments of axiomatic theories for LISP and LAP and

chapter 9 reported on the machine assisted generation of these theories.

The third part of the total problem was the proof that 'compexp' etc. are

the functions denoted by the S-expressions COMPEXP etc. This part of the

compiler problem was not worked up to a machine checked proof but, for reasons

cited above, it was expected to be quite feasible involving two or three man/weeks

of effort.

The fourth part was the correctness of the compiling algorithm and we have

just presented a natural high level goal structure for achieving the result. It is not

thought there would be any conceptual difficulties in forging this plan into a

completely formal proof but the time taken to do it must be considerably more than

was required for the simple half of the interpreter proof. We estimate that it

would be at the very least six man/weeks of effort using the current LCF system.

139

MM mmmwrnmarjaamfmn I

 ~-^-^-^~'~-'^~"^"'*""-~~< ^-.^...^ ____ ^■■._ I^J._^......,^..^.„.^r^ ..,_ _,.- - - -^-^^^^^^—

JfWmp«W»PIWlWlBIll9JlM|l,,WW"W»W"!("»W.,-ul.ln il ■.il^WWW^PH»PPIBIIW^^"W™W"«l^l»IIPP<I^W'PW^Wl|»"»)""IW^^W«W^»P,W'"^,'",w'»' 'WPWf^ll^WWIJIPlBpjpiPI^S^WIWIIIWIIIPIWWfP^iWIWfitl

Thus with upwards of eight man/weeks of effort requirod it is appropriate

to suspend this problem until a more automatic LCF is available.

140

^

X

■■■-■V-'.-«-.^-..-! EüöAat&üttU'di&iiäriKUiki ■..^,.—-.^..■.^^X^^^ii

F
:■'

5 CHAPTER 11

Second generation LCF System

6

Since we assert that LCF is a useful (even important) tool for the theory of

computation, a major aim in these LISP experiments has been to push the current

system to its limits. In many directions the limitations severely handicap the user's

ability to specify a proof at a natural level and in a compact way. We present,

therefore, in this chapter many suggestions for improvements to the system. These

improvements will probably be realised in a second generation system. It must be

acknowledged that several of the ideas were developed in conjunction with Richard

Weyhrauch and Robin Milner.

11.1. Prior Accomplishments

Although the notion of conditional simplification arose out of earlier work on

LCF by Weyhrauch, Milner and Newey, it was implemented for this work. Without

that facility the proofs would have been much longer.

The 'PREF tactic' mentioned in Chapter 3 was implemented after the bulk of

the Pure LISP proofs were done we credit the current work for its development.

141

iteniaaaaa, ^-.-^ ..■-.. .wiw^....^.....^.,..,,; -,,...^.,.i—,.v .■^^^,.;„^.,_^o;,...J.,.^...,.J_„.— „.^..^

Sl^^PiPP^WT^Pff^r^wi»!^«^^^

11.2. Proof Generation vs. Proof Checking

The LCF system was conceived as a proof checker which had some ability

to help the user generate proofs but the implementation has undergone various

mutations which were all intended to make the task of generating easier. Although

it still claims to be able to check proofs, the considerable complexity of the more

advanced derived deduction rules inevitably diminish confidence in the checking

process. In fact, the notions of checking and generating are confused in the system

design and inextricably entwined in the actual code. For example, if the user calls

for a substitution then LCF generates an appropriate step but the only sense in

which anything is checked is that the system checks that the user's prescriptions do

indeed generate a step.

Simplification is particularly worrisome in this regard. It is a very complex

deduction rule and can change steps so drastically that the user is simply forced to

believe that the machine did it ail correctly as long as the answer 'looks good'.

What is suggested is that the tasks of generation and checking be realised

in completely separate programs. We propose a program which will just check

proofs where steps are given in full in a restricted version of the logic and an

interactive program which will translate the user's high level notions into a proof

that the base checker (the first program) can validate.

142

 ■'-•■■^ 1.—.^-...,...-,.. ^..,-..- -..: i.-;...;...^...Jt.^.....,„J^......^^. „.,-..:.,...^ ■

^-".„r^^''™. ■^rtJTT*^
-.. llt,.M,.r,.TO»,MWJ..,,.-'^5!PV-WW.!WWW^I«..ll.i.l.l..'l. ^

0

i

It will be most Important for the base checker to be simple because we will

wish to have confidence in it. As soon as practicable we would want it proved

correct. Of course, it would be nice if the interactive program were correct too, but

that concern is secondary to its power to produce proofs with a minimum of effort

from the user. Since the integrity of the generator is not of great importance, the

user should be permitted to supply actual code which can help the system find a

proof.

It is clear that we expect the proof generator of the new LCF system

(LCF2) to grow up to be an interactive theorem prover for LCF, so more emphasis

will be placed on partial decision procedures and automatic selection of deduction

rules.

11.3. High Level Command Language

Using the current system is rather reminiscent of using assembly language;

the deduction rules correspond to the instructions in that when each command is

typed in, one deduction rule is applied It is clear that, in LCF2, the input language

for the bapo checker wili persist in being low level but the language with which we

talk to the interactive proof generator should have various features of high level

programming languages.

143

-H.- .^^-V-:,..,.■■.■ ■... ^—■../■....^■■.:-,...^:-.-^...- ..^....^v-.-^-^.....^. ^.-i ■.,..,. ■■ -■V^..v...^r.;t^^:...J..^^.j.^ ^^..^...^.^.^iw^...^.^,-.....^. ■....-. -...■■...■ ..;. . ■ ■ ,. ^ i .-A.^^iJ.

nTy^^^^^^w-w-^—,^^.—Tv^.",„TC,^--^

.-......-.,,.

11.3.1. Data Types and Expressions

We propose that there be at least four types - term, wff, step and

simpset. It should be possible to have variables of each of these types as well as

constants. The 'LABEL' facility of the current system is actually a simple use of

variables which have values which are steps. Of course, for convenience of

programming, integers should be another data type provided.

There will be many operations on data of the different types, including

operators which correspond to many of the deduction rules of the current system.

For example, 'abstraction', 'application', 'symmetry', 'transitivity', 'fixed-point',

'substitution' are operators which transform one (or more) items of data into a step.

The notions of expression and assignment follow naturally from these ideas

of data types, variables, constants and operators.

%

1 1.3.2. Control Structures

It is a trivial consequence of our analogy between LCF command language

and conventional programming language that we should incorporate control

structures ^uch as procedures, functions, conditional statements, iterative

statements, compound statements and blocks. The application of procedures in proof

generation is in the binding together as a body many commands that can be then

thought of as constituting a recipe for producing proof for some step. The formal

:..

.

144

^— ■■■■ - J.,..-..,.^.^-,-.. ...,■. ^....■- .,...,...-. j .,;.......... I -. ..,; .-. ... ,,..„.., ..^-„..^ ,...., f —iii nuliilli^l

MMMM^MM^*—-11-^JLIL-| nf. I'ni-inn1" ir'i'itTmnwiiiniiiiiiitBBfiMBiiOTiiawi>wnr»iiiiiiiiiiiiiiihniiiB»iuiiiitiMrtitiftawnii^^

parameters of procedures and functions may be of any data type or possibly

functions over them. Similarly, an iterative statement would allow some command

(or sequence of commands) to be repeatedly executed until some appropriate

condition is satisfied. Blocks are useful for delimiting scope of variables.

11.4. Revised Axiom Structure

In the current system one can only present nonlogical axioms to the machine

if they have the form of WFFs. Hence, for example, one is prevented from having

such notions as Vx. F(x)=t\ \- A^B as an axiom (in that form, at least). This is

opposed to the logical axioms of LCF (which are built into the system) such as

GUS2 H t(sl)Et(s2) and to theorems which are allowed to take the form of a

sentence. This fact has led many users to adopt the rather unfortunate practice of

expressing axiomatic material as unproved theorems (in fact unprovable theorems).

It would appear that the only reason that axioms are not allowed to be

sentences is that they are, unlike theorems, made numbered steps in the proof. As

such they have a WFF part and a dependency part which must be a list of

assumptions. It is proposed that axioms be made to behave more like theorems than

regular steps and some of the differences between theorems and steps reduced. In

particular, whenever a step expression can appear as an argument to a rule, an

axiom or theorem should be permissible.

145

-■«.■ v ■■■■-. „....,..,:—■■■■....^.'.-..^--...^.■■^■....^■■■■»..^....>....,■......, ^.^■.^,^,~^..;..J^^..-^.-,.^.,..A;^..^..,^^^^^

'"'"

11.5. Extending the Pure Logic

The two ways of expressing implication in LCF are really rather restrictive.

The split arrow (*) abbreviation allows relativisation of equations by truth-valued

ter'ms only. Also the turnstile (f-), as used in theorems, can only appear once in a

theorem. It was argued in the last section that this turnstile facility, which is also

used to express the logical axioms of LCF, should be made available for axiom

writing. However, perhaps a more general attack on these expressive weaknesses

of the current logic would be more rewarding.

There have been occasional instances where it has proven quite

inconvenient to have just the rather simple formula structure we have. A good

example is course-of-values induction over the natural numbers, which can best be

written for the current system as:

Vy. [nH. [xw. Z(w) - T,
g(pred(w)) -» H(pred(w)),JL]](y)* g(y)=T .

Now if we extended our weak notions of implication and universal

abclraction we could write

y(0) T, Vy. (Vx. y>x-T = g(x)nT) = g(y)=T)
h Vy. g(yNT

Inspired by such instances as we have in figures 10.4 to 10.6, we note that

146

f

. . . .■■,.■ l.-.i:-^. ,:..^>-\,:^.::;.\ ^■.:,. ^^^^w^ ■mükü&itei*ä> .v- .. .-:-:.. . v.^.:,.,... - .-.-^^■..^....-i..^..,-^

^H^.*»^-lS^^*r*<v,^viisniiT»,i-'ff^
|.-s^(ftT,^fij.Vv

■BBrasrawr^HOTfr??™^^

in normal situations we can have wffs with identical sequences of prefixes

containing rumbersome relativisatlons. When we conjoin such wffs we would like to

only write the prefix sequence once. For example, we would much rather write the

goal Vx. A=>(B|,B2) instead of the goal (Vx. A* B|),(Vx. A* B2) .

The proposal of this section is to have a syntax for Well-Formed Formulae

which goes like:

':WFF> ::= <equivaiänce> | <mequivalence>
I V<varlist> . <WFF>
I <WFF> = <WFF>
I <WFF>,<WFF> .

This proposal has the nasty effect that the induction rule of LCF has to

restricted in scope. There would have to be some syntactic check made on wffs to

determine whether they admit induction, Igarashi has studied this problem in [11].

11.5.1. Derived Deductioi Rules

With a high level command language as we proposed and with the richer

implicalive structure that we are now discussing, one is able to write in the logic,

rules of the form below which would have to be built into the system:

Al-E CHD

EK

147

■^---"-'-"— ---■' '— ■■-"- - ■- -■- - -..^»v.^.. - — ,umum»^^m^imtim^ä

i-, '' '' ■■■■' ; ''■ '■ ■■•'■-.-■ ' ■■ ■ - . - --■■;-. - •■ ■■■•' '.-.y -:.,:--■■■■■■::. :-r.

;:■.

11.6. Concrete Syntax

The question of how LCF should deal with syntax of programming languages

is rather important since we hope to apply the system to many languages. The

problem is that we want to be able to specify the concrete syntax of a language so

we c n simply refer to a program by its text and have the system deduce its

structure. We don't have a solid solution to the problem; in this thesis we have

discussed some questions of denotation and syntax in relation to LISP and LAP but

much more work is needed.

11.7. Extending Simplification

11.7.1. inequalities

In chapter 8 we were unable to complete a proof because simplification,

which is the workhorse of the system, only deals with equalities. It is a little more

arkward lo handle inequalities but the extent of the technical problems is the fact

that applicability depends on which side of an AWFF is being simplified and whether

the user is doing forward or backward reasoning. For example, A s B can be used

to simplify a step g(B) E C to a step g(A) E C but not used to simplify a goal

F E H(A) . An important consideration is that one would like to simplify by

equulities before inequalities which leads us to:

S

$

i

148

I :i

.

"

Jtemiiiirii^---"^^^^ -"tWiitliiimrrtim

11.7.2. Split Level Simplification

There are many reasons why users want some simplification rules tried

before others. The most notable is recursive function definitions which should

usually be considered last-resort rules. One approach which at least deserves trial-

by-experience is the idea of having two or more levels of simpset. The highest

level will contain rules which have complicated conditions to check before they may

be applied or which may lead to excessive expansion of the formula if applied

several times without lower level rules intervening

11.7.3. n-time Simplification

Another facility which is an old idea (Weyhrauch) is that of having a counter

on simplification rules which enable a user to specify that a certain rule (perhaps

recursive) should only be used a limited number of times.

11.7.4. Subgoals from Conditional Simplification

When simplification is used as a tactic (i.e. to attack a goal), the user should

be able to nominate certain conditional simplification rules which are always applied

when the left hand side matches; conditions are still attacked by simplification but

those that are not reduced to trivialities are made into subgoals. It is necessary to

specifically nominate rules to have this property (globally or locally) to avoid

generation of large numbers of false subgoals.

149

--^,...^.....^.-^-^.-^^J^...^.-..^..-..... ■■.,.■„ -. .■ .. . ■■....■...,. .„...■.„ ^■'■"""^IMI iiiiriimiiililtiiillthliiiMiiil

11.7.5. Case Analysis in Simplification

Suppose we are given terms A, F and G where P and G contain

occurrences of A. We propose that simplification should normally mutate the term

A - F,G through A -* P-IT/AJ.GfF/A} to perhaps something simpler, (recall that

T{s/x} denotes the result of substituting s for x in T.)

11.7.6. Simplifying Procedures

In the current system members of the simpset have the form C h A^B

and if A matches some subterm and C is satisfied (by recursive call on simplification)

then B (appropriately modified) replaces the matched subterm. We propose a more

general scheme where items in the simpset are triples (A.C.F)- As before the term

A must match a subterm before any consideration is given to the item; following a

match, condition C is checked (by some procedure) and if it is OK then function F

(given in some language) is executed with the matched subterm as a parameter.

11.8. Types

In his original sugeestion and formulation of the pure logic in [1], Scott

chose a typed version since he despaired of finding a model for the x-calculus and

concluded, on this basis, that 'the theory of types is here to stay'. Since that time,

Scott has produced models for the \-calculus in [8], has repudiated the 'OWHY

150

*

9

^^■ü-J:,,a.^..V.l.i...Ji^....-..^....^.l.:.-..i.^-^.^,.,.^.,......v....■„.;..-!■■ ^::a....i.-.^-^.J-^-1;.1-.;-.„.,J^..;i.-.,.^,........V;..^.^,....,.,.„■..,...,.;.;. ...^ ._..■„ . ■.,.....;.„.-.; ^.....y. ; ;.,,-.■...■..■■... ; ■ , .w^^ ^„ ^-., ^ ..'^..--Jli

paper' and has formulated a type-free logic ([9]). This development inevitably

raises the question as to whether a new LCF system should be typed or not.

Now, if we make the new LCF typed, we can apply some lessons learnt

from the old system. Foremost, the system should be made to check types of terms,

More precisely, the system should check that a proof is consistently typable; the

user should rarely have to actually specify the types explicitly. The fact that the

old system did not do this can be justified on the grounds that it was the prototype

but this argument does no* apply now. Next lesson is that the pure logic should be

changed to allow an arbitrary number of base domains, instead of just Dind and Dtr .

In using the current system, where D,nd must be partitioned into various notional data

types (such as integers and lists), one's theorems tend to be cluttered up with

relativisationci Also, many theorems only exist because the data domains are only

notional. Then, if we have many base types, we must also think about a richer type

structure: namely, if a and fl are types then «-♦/? (as before), ct+ß (disjoint union)

and a*/< (cartesian product) should be too.

If, on the other hand, the new LCF implements Scott's type-free logic, one

must provide syntactic sugar with which the user may restrict terms to certain

subdomains (by means of hidden retractions) to achieve notional data-types. It must

be noted that the provision of this facility corresponds approximately, in difficulty,

to building type-checking into a typed system.

151

i..,;i.j...-.;..v,....:v f,;.,;^Jj:-^...^i^^^>.J.^^.J^J.At^;.i.>^._....^;S_,i.l.,.^.:-.,, ..^.„n^.»...^..^ „- ,■.-^.-,.■■„■■.: „.-^ ^ ■..,.,., ...■,.. ■ , ■ . . ü, ...,. ..;..1»., .^^.-v.,^, ..■■.:~...^y*tk<m

The debate continues as to which of these options is best. It cannot be

denied that the type-free logic is mathematically more elegant. Also, some people

say that one can more easily axionr.atise programming languages with functional data

types using it. On the other hand, some people say that the objects we deal with in

computation are really well-typed and that when one is proving properties of

computable objects one should be forced to recognise the type structure.

11.9. Miscellaneous Improvements

11.9.1. Solving Equations

We found it convenient in doing the LISP experiments to have various

theorems available with the flavor of

P -< F,q - T |- P ^ F, q - T
and

P -^ T,i - T |- P = T .

With a couple of dozen such theorems one can break down sonruj quite

complex equations to give specific truth-values for some of the subterms of the

original equation. For example

p -^ T, (q ^ 1, (r -» T,s)) = F

may be solved for p,q,r,5 (in this case each is F).

This process, which we call 'solving equations' is clearly one one which

should be automated.

152

$

1

■^..,^.^^.L«-,„ia^,|.iW.^^--i:.,.^A..J.,.;.~-.^^^ ,,.i.....<■.,. .■,:...,„.^J.t..',...J-,..^i.,:....-....,>.v.J-J,.i. .^■J.i.a^lJ^ai^uiXi^i^^^SMdl

■

t

11.9.2. Definitional Facilities

In the current system, if one wants to name (with identifier n, say) some

complicated term T that is used often in the proof of some step S but does not

actually appear in the step, then one can either make the WFF n»T an axiom or an

assumption. In one case one gets to complicate the axioms unecessarily and in the

other case n^T becomes a dependency of S. This deficiency must be removed In

the next system.

11.9.3. Automatic Forward Reasoning

We propose to have a set of sentences, called an FR-set, and a mechanism

called 'Consequences'. When Consequences is invoked with a set of steps,

antecedents of sentences in the FR-set are checked for satisfiability by the

nominated steps. If all antecedents of a sentence check out, then the consequent

(with appropriate instantiation) is made into a new step in the proof and perhaps

added to the simpset. It should be clear that if a step so generated happens to be

a standard contradiction then the current goal will be established.

11.9.4. More Abbreviations

The universal quantifier and relativisation (split arrow) abbreviations of LCF

have been very successful. It seems that abbreviating the term P -* F,T as ^P

would also be extremely useful.

153

^—-- ^..~^.^^^ a^^^^..,..^:..^ ^^...^^^^.^.w^

We propose also that empirical study be devoted to having P A Q as an

abbreviation for one of the terms P -> Q,F and P -* Q,Q -» F,F . Similarly, P v Q

could be a abbreviation for one of the terms P -* T,Q and P -♦ (Q -> T,T),Q .

154

■- - '■■■■■■■ '■-■■■ ■■■-■■■■■ ■'■
■ -.. .:>.-r^».J^^it^fiL:.~-'^ ^.■.^^i^

CHAPTER 12

Conclusion

This thesis has been an extensive exercise in the application of LCF to the

definition of some programming languages - a subset of a machine-language and

some subsets of LISP. In each of the several cases, we have defined the

language axiomatically but have also illustrated how a 'theory' for the language

should be constructed using the axioms as a base. The theory of a language then

becomes a framework in which programs of the language can be proved correct.

[23] classifies methods of definition of semantics as being either

:conr,tructive' and suited to the needs of the implementor or 'implicit' and suited to

the needs of the user. It then argues that a language should be defined both ways

and the definitions proved consistent. In the present work, the definition of Pure

LISP, for example, is clearly constructive but many of the theorems of the Theory of

Pure LISP have the flavour of rules in Hoare's method ([20]). It would be

interesting to investigate whether some subset of theorems of the Theory of Pure

LISP could be used as a satisfactory implicit definition.

We note that the recent independent work of M. Gordon [16] also gives a

semantics of Pure LISP leading to a proof of correctness of 'eval' etc. We observe

155

iiri' rm li11(^-^^■■'• '■>--■-■ H--^.■i-/:.■ j",-- w^..^ u.^:r-:;...j.~ ..^^1-^^t^.L:j.......•...-„^,ki^^^^L^J^^»^^^.^.].^^^^.^^■^Bv ■ .i^^a,.^ tjr^i^^.^^^i^ir^.^.^ ^^..^^i,^.^.^^^t^'„■..^.i..^.^r:^.-.^. i.-..!:■....,..v. ^■^^.■J,*.^^ rf[fi^fliifiiiil![

several significant differences of approach which make his work and this thesis

somewhat complementary. Gordon ascribes denotations directly to Pure LISP

M-expressions using Scott/Strachey style semantic equations (as in [29]) whereas

we have it that S-expressions denote functions under interpretation of a particular

'eval' function written in LCF. Gordon's approach makes use of much more logical

machinery than is available in LCF and so his proofs are not checkable mechanically

(as yet). Machine checkability was a prime requirement in this thesis since

automation is the ultimate goal of the project.

The way we were able to separate syntax from semantics by means of

notation and denotation considerations is a technique that hopefully could be applieü

with benefit to other languages; certainly, it solved the problem completely in the

cases we studied.

As an experiment in the application of LCF to the specification of

programming language semantics, the work was very encouraging. The logic has

distinguished itself as regards expressive power; the actual definitions of the

various languages are concise and elegant. It is true that in the case of Pure LISP

the language being defined and the formalism are similar in structure but LAP is

certainly different in structure to LCF and current work on an axiomatisation of

PASCAL by Aielk et al ([10]) is proceeding well.

It is worth noting that we were able, in the case of LAP, to give a partial

156

^'■^ ■■ :■■■ • ■■- .; ■■- -■■■■■■■ .■^■. ■■-■:■.-■■.-■ -■■--- ^ ■' -■ ■ ■ ■ - ■ .■ ^„„^ ^^-v , . . ■■---■ ...-. ■■-■ -^ ■■■-■■ ■■ ■ ■■ ■■■■ ^-■■ v ■■ . ^ ■ .. ■■ - ^ ■ ■- -■ ; : ■-■ ■ : '...,.. ■.-;.^-■'^^^^■i^^.:^.J^".. ■ -■■■-^■^■u.^

■■■'WRWlWSWimwWBäwaw«!«»»^ -..«».«aawMSM^SMfflSlaäHBHBH!

ml

specification of a language and also, as in the case of Pure LISP, give a complete

description of a language.

Although LCF is yet in its infancy of development, it has already proved

very suitable for discussion of Pure LISP programs. We would like to claim this is

some evidence that LCF has a bright future in the area of program correctness.

There are many aspects of the LCF system which have helped substantially in proof

generation but the proofs cry out for more mechanisation and more powerful

deduction rules.

We claim that this point in *ime is the end of the first cyle of development

for LCF. Clearly the time is ripe fc developing a brand new LCF system which

incorporates the suggestions we have presented. Effort spent in this direction

should generate the most payoff. After that is done, a revamping of the work on

integers, lists and finite sets would be profitable since the axiomati sat ions could be

polished somewhat. Also it would give a good measure of the improvement in

deductive power between the two generations.

Redoing the Pure LISP proofs and completing the proof of correctness of

the Pure LISP interpreter on the machine is a must and another look at the

correctness of LComO would be appropriate. An option to be kept in mind at that

time would be the reduction of the subset of LISP that LComO is written in and

compiles. The AND, OR, and NOT features could be removed and that would simplify

157

i

■

-iJ!,.» ^.-^■..^;...,.-.^,r-.-.v .i^.^.,.^*t.»rr^a^ua„.iJi.^,^,,,3^^ „■....„.....„ ,..,:^1.JJv...,. ■■.,;.■.. ■.■.,■ „..^i,....:-.... ..-.w.-^J.^iiUJMJ^^.a&ilhiail

the compiler üubotantially but not to the point of no interest. However if the

increace in power in new LCF lives up to hopes, this will not be necessary. In fact,

we would expect to be able to attack the LComA compiler mentioned in [13],

although our present treatment of LAP would then be inadequate.

The compiler proof has a number of disadvantages as an experiment using

LCF. Most important of these is that it encourages work on a rather artificial subset

of LISP and gross simplifications of PDP10 code. It would seem more fruitful to pick

an experiment which would encourage, instead, more sophisticated theories of a low

level language or a high level language.

158

i«a.4---': ■■•■■■ - ■ - --'• - ^..J.—... ..;-:t>.-^..^.. ■;.,.ij-;-'. ,.-.... ..*,«,,:.-;.. „y. ...:-.;.^.ig:.j..-.;. vi.a,^L-^M. i.UM..,. ■L,...j.»,.-t.l-^-j.-..., .■,. .. :, ; ^. i .„ ^ :..i..:....■...;.:■,: i,.^..a^^^^.ai»jii.jvi.;:..uja

.

s

APPENDIX 1

Theorems of LComO LISP

In this appendix we report on the Theory of LComO LISP that was

developed as background for the compiler proof. The axioms on which this collection

of theorems is based are given in the first 2 sections of Chapter 9. Note that

practically all the results are suitable for direct inclusion In a SIMPSET.

The Interpreting Functions:

In this section we present theorems to do with the LCF functions of the

Interpretive semantics for LComO LISP - namely, 'eval', 'evcon', 'evand', 'evor',

'apply', 'eviis' and 'pairlis' (in that order):

f- Vx y. eval(l,x y) s l
h Vx y. eval(x,i,y) s i
f- Vx y. eval(x,y,l) s i

ci(eval(x,v,f)) H T |- d(x) ~ J
ci(eval(x,v,f)) - T h a(v) s j
ci(eval(x,v,f)) = T h 5(f) ^ T
|- Vv f. evaKNIL.v.f) * a(vMi(f)-»NIL,i),i

isint(x) s T [. Vv f. eval(x,v,f) = £i(v)-»(ci(f)^x,i),i
iGname(x) s T, isljst(vb) s Jt ci(FL) a T

h Vy. eval(x,(x«y)»vb,fl) 3 y

159

^,—'•■"•■ •--—•■- ' ^-..-^-:.i^.,U,-..J^.^_^j ^.,.i.....^-. ^j****^**..., —-^„^^/■,^^- _-, ... ■ ■ —- HHHti«-a>« —tit

isname(xhT, iiyl)*Tt x--=xl=F, islist(vb)=T, m=T
h Vy. eval(x,(xl«yl).((x'y).vb),fl) = y

isnamdx)-!, c'fylhT, c'(y2HT, x=xl=Fl
x-x2nF, islist(vb)HT, dU^J

\- Vy. eval(x,(xl«ylH(x2'y2)'((x»y).vb))lfl) a y
/'(vb) -T, ci(fl)-T f- Vx . eval(QUOTE.(x'ML),vb,fl) = x

1- Vx vb fl. eval(COND«x,vb,fl) E evconix.vb.fl)
f- Vx vb fl. eval(AND'X,vb,fl) s a(vbHa(fl)-»evand(x,vb,fl),l),i
I- Vx vb fl. eval(OR-x,vb,fl) ^ a(vb)-»(a(fl)^evor(x,vb,fl),l),i

h Vx y. evcon(i,x,y) s 1
h Vx y, evcon(x,i,y) s i
f- Vx y. evcon(x,y,l) s i
}- Vvb fl. evconfNIL.vb.fl) = i
I- Vx y vb fl. evcon(({QUOTE"(T'l\ilL)Hx'NIL))7,vb,fl) = a(y)-*eval(x,vbffl) 1
I- Vx y w vb fl. evcon((w'(x«NIL))'y,vb,fl) 3 £)(x)-*(ci(y)-»

(null(eval(w,vblfl))-»evcon(y,vb,fl),eval(x,vb,fl)),i),i 9
i 1

f- Vx y. evand(l,x,y) H 1
f- Vvb fl. evand(NIILIvb>fl) s T
}- Vx y vb fl. evand(x'y,vb,fl)

= ci(y)-*(null(eval(x,vb,fl))-*NIIL,evand(y,vb,fl)),l
h Vx y. evor(i,x,y) s i
I- Vvb fl. evor(NIL,vb,fl) = NIL
|- Vx y vb fl. evor(x»y,vb,fl)

s a(y)-»(null(eval(x,vb,fl))->evor(y,vbffl),T),l

11

9

I- Vx vb fl. apply{l,x,vb,fl) 3 i
I- Vfn vb fl. appl^fn.i.vb.fl) 3 1
h Vfn x fl. apply(fn,x,l,fl) - i
f- Vfn x vb. apply(fn,x,vb,i) -- i

£i(apply(fn,x,vb,fl)) -- T h
^(applyifn^.vb.fl)) -• T \-
ci(apply(fn,x,vb,fl)) - T |-
tKapplydn.x.vb.fl» * J \-

ci(fri> « T
a(x) H j
ri(vb) = T
3(fl) s T

160

&

*1

j.-_^^^h^.i. ^. „..; ,;t:.^.. :.:^ ■_.. .-^.i. v.^ J. ^M^-W.^-...^^,-.^.^^ -i ...■^ ■„■ i t: ..^ v,.-.^.^.. ^r ■,, iu.,. „ ...-^—.-v- ^... ...^ ■■ ^^^ai^M^. M^..-.-i^-">-.^. .-^.^.■....v.W^^.......:,....,.^.,...^,,:..,-..■■:-.. ■.■_...f.^.;--:..;.^-.^. .^y^t^.v ^■^.1L,-^^..^.nJt.^J^iff-'^-^^- ■

. __i

f- Vvb fl. evlis(l,vb,fl) s i
islist(x) =]K |. Vvb fl. evlis(x,vb,fl) s i

H Vvb fl. evlls(NIL,vb,fl) = NIL
}- Vx vb fl. evlis(x'NIL,vblfl) s eval(x,vb,fl).NIL
I- Vxl x2 vb fl. evlis(xHx2«NIL),vb,fl)

= eval(xl,vb,fl).(evaKx2,vb,fl).ML)
}• Vxl x2 x3 vb fl. evlis(xHx2'(x3'NIL)),vb,fl)

3 evaKx 1 ,vb,fl).(eval(x2,vb,fl).(eval(x3,vb,fl)'NIL))

f- Vx a. pairllsd.x.a) - 1
I- Vx y. paiHi5(x,y,i) n i
h Vx a. palrlisiNIL.x.a) 3 a
f- Vx y a. pairlis(x'NIL,y'NIL,a) = (x'y)«a
t- Vxl x2yl y2 a. palrlls(xlKx2'NIL)(yl'(y2^IL),a)

= (xl-ylH(x2'y2)'a)
h Vxl x2 x3 yl y2 y3 a . palrlis(xl-(x2»(x3'NIL)),yl.(y2«(y3»NIL)),a)

s (xl-yl).((x2'y2)-((x3'y3)'a))

The Built-in Functions:

Prepented here are the effects of applying 'eval' to expressions of the

form F X (where F is a built-in function) and applying 'apply' to built in functions

and suitable argument lists.

I- Vx vb fl. apply(CAR)X'NIL,vb,fl) = a(vbH5(fl)-+hd(x)IJ.)(l
h Vx vb fl. apply(CDR,X'NIL,vblfl) s ci(vbM£i(flMI(x),i),i
I- Vx vb fl. apply(N01>NIIL,vb,fl) 3 a(vb)-»(a{fl)^(nulKx)-»T,NIL),i),l

161

 -- - —^^.^..■- —-^ U^H^L^-l „^■it..^.^ <M^^~~*,.^..,*...*...... , ■ . ^„^... . / ■J^.Jw.^^.JatoJMk;tm^

.. v .i^tiV^WSV.-W^W^M,-. ri-.-JJ,,- . ■..- ■.-■-■■ . •- ■■ ■'■ ■' .-.,..!.rv.d^-JTi.^-JU'.:^^...;-.'U- ,,.,...,.1 »,),„-,......,.,-..-.., I^.L,:,,-. i... ., .,-.,,... .-,„,,.,,. i-. , , ,. ,-,..- -.. : .^h.,^IA^^.Ml^[^i.^...l..,...,.h^7i.->,..,... _ ,.,..., , ,J;,^HU^I-IJ

wwiBii Hnmi

Vx vb fl.
Vx y vb
Vx vb fl.
Vx y vb
Vx y vb
Vx y vb
Vx vb fl.
Vx vb fl
Vx vb fl
Vx y vb

Vx vb fl.
Vx vb fl.
Vx vb fl.
Vx vb fl.
Vx y vb
Vx vb fl.
Vx y vb

Vx y vb

Vx y vb

Vx vb fl.
Vx vb fl.
Vx vb fl.
Vx y vb

apply(ATOM,X'NILivb,fl) s ci(vbHa(flHatom(xHT,NIL),.L),l
fl. apply(CONS,X'(y"NIL),vb,fl) a a(vbHa(flHx-y),l),l
apply(LIST,x,vb,fl) = 3(vbH3(fl)-»xrl),i

fl. apply(EQUAL,x-(yNIL),vb,fl) ^ a(vb)^(a(fl)->((x=y)-»T,ML),l)Ii
fl. apply(PLUS1X'(y.lSIIL)1vblfl) = ^vbHa^Hx+yU),!
fl. apply(TIMES,X'(y'ML),vb,fl) a a(vbHa(flHx*y),l),i
apply(MlNUS,X'NIL,vb,fl) ~ a(vb)-*(a(fl)-»mns(x),l),l
apply(GENSYM1x-NIL,vb,fl) s a(vb)-(a(fl)-»gensym{x),l),l
apply(N'UMBERP(x-NIL>vb,fl) = a(vb)-*(a(fl)-»(i8int(x)->T,NIL),i),i

fl. apply(GREATERP(x-(yNIL),vb,fl)
= a(vb)-»0(fl)-»((x>y)-»T,NIL),i)1i

eval(CAR'(x'NIL),vb,fl) s hd(eval(x,vb,fl))
eval(CDR-(x»NIL),vb,fl) = tl(eval(x,vb,fl))
eval(NOT'(x»NIL),vb,fl) = null(x)-»T,NIL
evaKATOM'(X'NIL),vb,fl) =- atom(eval(x,vb,fl))-»T,NIL

fl. evai(CONS^X"(y'NIL)),vb,fl) = eval(x,vb,fl)«eval(y,vb,fl)
eval(LIST'X,vb,fl) = evlls{x,vb,fl)

fl. eval(EQUAUx«(y'NIL)),vb,fl)
= (eval(x,vb,fl)=eval(y,vb,fl))->T,NIL

fl. eval(PLUS«(x'(y»NIL)),vb,fl)
= eval(x,vb,fl)+eval(y,vb,fl)

fl. eval(TIMES'(x^y.NIL)),vb,fl)
3 fival(x,vb,fl)*eval(y,vb,fl)

eval(MINUS<(x'NIL),vb,fl) ^ mns{eval(x,vb,fl))
eval(GENSYM'(x»NIL),vb,fl) = geriGym(eval(x,vb,fl))
evaKNUMBERNx'MD.vb.fi) = isint(eval(x,vb,fi))-»T,NiL

fl. eval(GREATERP'(x'{yNIL)),vb,fl)
=(eval(x,vb,fl)>eval(y,vb,fl)) -» T, NIL

vp?

LAMBDA Expressions:

Hero we give the effect of 'evai'ing and 'apply'ing LAMBDA expressions.

h Vb vb fl. apply((LAMBDA ML bJ.NIL.vb.fl) ^ eval(b,vb,fl)
h Vx y b vb fl. apply((LAMBDA (x) b^y)^^^)

3 evallb^X'yhvb.fl)

162

«

9

n

B£^«1liii^i^aia^lliUiiiiM^Si^!,^i,,iMJM^^

h Vxl x2 yl y2 b vb fl. apply! (LAMBDA (xl x2) bUy! y2).vbfl)
- eval(b,(xl.yl).((x2»y2).vbMI) y ' ' '

H Vxl x2 x3 yl y2 y3 b vb fl. apply((LAMBDA (xl x2 x3) b)
.(yl y2 y3),vb,fl)

= eval(b,(x 1 «y I H(x2«y2H(x3.y3)«vb)),fl)

h Vb vb fl. eval((L/^BDA NIL b>NIL(vb)fl) = eval(b,vb.fl)
f- Vx y b vb fl. e\ .(LAMBDA (x) b)'(y).vb,fl)

= evaKb, (x-eval(y,vb,fl)).vb, fl)
H Vxl x2 yl y2 b vb fl. eval((LAMBDA (xl x2) b).(yl y2)vbfl)

t- Vxl x2x^%X|«

eval((LAMBDA (xl x2 x3) bMyl y2 y3).vbfl)
s evaKb, (xl.eval(yllvb,fl))c((x2-eval(y2>vblfl))

•((x3'eval(y3,vb,fl))'vb)), fl)

The Basic Functions:

Here we give the meanings (under interpretation) of the basic LISP

functions defined in Fig. 5.4:

BFD(FL) 3 T H assoc(NULL,FL) = Snull,
assoc(DtFFERENCE,FL) ^ SdiFFerence,
assocdSLIST.FL) = Sislist,
associASSOC.FL) = Sassoc,
asGoc(LENGTH,FL) = Slength,
assoc(APPEND,FL) s Sappend

BFD(FL) = T |- islist(FL) - T

BFD(FL) ^ T }- Ve vb. apply(NULL,e.NIL,vb,FL)
= islist(vb) »(nuIKe)-»!^^),!

163

■■■■■'■ 'tjM — — ^..-^^ ..■^^.. ...^^-^^^.^^—^^»■^_^.,._„J . - ...^..^in-rfimrriiiiTiriliiiiMifAiifiiMfi^^

■p5 WWII»UI.L>xtiJiiiijji»iiuwmiMiiifadWi»ii<»«<«iiiii»iiu..i.ii.iii.«»«CT-^^^^_^....i.„ —^„^,„,„....- ^^^o^MMnn^ismnMyll^ .1

BFD(FL) = T h Ve vb. eval(NULL'(e»NIL),vb,FL)
^ null(eval(e,vb,FL))^T,NiL

BFD(FL) 3 T h Vx y vb. apply(DIFFERENCE,x-(yNIL)ivb,FL)
s islistlv^^x-y),!

BFD(FL) ^ T H Vx y vb. eval(DIFFERENCE'(x«(y.NIL)),vblFL)
= eval(x,vb,FL)-eval(y,vb,FL)

BFD(FL) n T }- Ve vb. apply(ISLIS1>NIL,vb,FL)
s islist(vbHislist(e)-*T,ML),i

BFD(FL) r. T H Ve vb. eval{ISLIST-(e-NIL),vb,FL)
- islist(eval(e(vb,FL))->T,NIL

BFD(FL) s X J- Vx y vb. apply(ASSOC,x«(yNIL),vb,FL)
2 islist(vb)-»asGoc(x,y),i

BFD(FL) = T H Vx y vb. eval(ASSOO(X'(y«r>;iL)),vb,FL)
s assoc(eval(x,vb,FL),eväl(y,vb,FL))

BFD(FL) s T > Ve vb. appiydENGTH.e-NIL.vb.FL)
3 islist(7b)-»!ength(e),l

BFD(FL) 3 T |- Ve vb. eval(LENGTH'(e'NIL),vb,FL)
s length(eval(e,vb,FL))

BFD(FL) H T |. Vx y vb. apply(APPEND,X'(y'NIL),vb,FL)
^ islist(vb)-*(xÄy),i

BFD(FL) =1 I- Vx y vb. eval(APPEND»(x'(yNIL)),vb,FL)
= eval(x,vb,FL)&eval(y1vb,FL)

164

f

^

t

iaÜ jfiflaM^■■,-..^......^,..-....,..,-.,,.., ,.,...■„...;,v ..„.^.^.^...a.^.:»..,^^ - liMsi^i.iaiiifc.i ..:,.;i.,\.i..\,, ■-■■..^.1->,..■. ^..- -...;,.■ ..■■■.....,■■ aÄiS«i*«

r

TT^rw^ai^'r^mr.nr: ■■ ■— »^»^.^..TOj^wfÄS^nOTj^ij!^ ^^^rrw-T^iiT*?!1^ fy ...»Ml

f APPENDIX 2

Yet Another LISP Subset

?

In Figure A2.1 (next three pages) we give an interpretive semantics for yet

cmother subnet of LISP - a superset of Pure LISP which has SETs, SETGls.

PROGG, GENSYMS and property lists as well as the AND, OR, NOT and

LIST operations introduced in LComO LISP. This semantics Includes all the

techniques that we discussed while developing the other versions of LISP.

The 'eval' and 'apply' functions in the definition of Pure LISP had a

parameter which was an A-list for holding the values of bound variables. The

corresponding functions in this treatment have a 'state' parameter instead, A state Is

a triple of A-list (for bound variable values), list of property lists of variables and

memory for the gensym function. To allow for side-effects, each of the functions

Ceval', 'apply-, etc.) returns as a pair, the regular answer and a new state.

165

.,.,^.^::...t.:.,.:,......,...,,.,.^^^ .:..._. ..,_„„:....,..,.■.■,-,.,.,rJ,.^^; -»w^..^

pnnpiffipvnnn^cimip^w i.iw ^-^f^migmmmfmm^mmimmmmmim
AS#

**AXIOM NL1:

lisp -= [xe. hd(eval(e,ML'(NIL'G0001)))]

eval - [MB. evalF(B)],
evalF -■ [\B x st. ci(st) -»

null(x) -♦ NIL-st,
islnt(x) -» X'st,
isname(x)-»[\y. null(y)-*tl(assoc(VALUE,tl(assoc(x,tl(hd(st))))))«st,

tl(y)'st] (Qssoc(x,hd{hd{st)))),
atom(x) -» 1,
hd(x)=QU0TE -* hd(tl(x)Ht,

hd(x)=C0ND -* [MG.evconF(B,G)](tl(x),st),
hd(x)=AND -* [MG.evandF(B,G)] (tl(x),st),
hd(x)=OR - [MG.evorF(BrG)] (tl(x),st),
hd(x)=PROG -♦ [MG-evprogiB.G)]

(tl(tl(x)), inltvars{hd(tl(x)),hd(st)), tl(st)),

hd(x)=GENSYM-* [xz. z • (hd(st)»(hd(tl(st»«z))]
(Bensym(tl(tl(st))))(

hd(x)=SETQ -»[xvst.
[war val sll.

[xal pi gm.
[xy. null(y) ->

val'(al'(put(val,var,VALUE,pl)«gm)),
val«{sei(var,val,al)»(pl»gm))]

(assoc(var,al))]
(hd(stl),hd(tl(stl)),tl(tl(stl)))]

(hd(ll(x)),hd(vst),tl(vst))]
(B(hd(tl(tl{x))),st)),

[xz. [MG.applyF(B,G)](hd(x),hd(z),tl(z))]
([/iG.evlisF(BIG)](tl(x)Ist)),i])

;

Figure A2.1a - Axioms for Yet Another LISP.

166

fc^fcy^ ■ ^ ^^;^....o ,.-..„ .■■■■. ,....,^-.^..^.. ...^■t^.. - ...^.^-■■u.^-_.^,--. ^.^JM.^,, -....^-.^^^^ ■■-.^-tf-'/

''-''■™WPWW«WfW»"«W«!>»«™»57W,T!™™^^

&
evcon 3 [^G. evconF(eval,G)],
evconF 3 [xF G x st. [xz. null(hd(z))-»F(il(x),tl(z)),

G(hd(tl((hd(x))),tl(z))](F(hd(hd(x)),st))],

evand == [nG. evandF(eval,G)],
evandF s [xf G x st. null(x)-»T, [xz. null(hd(z))-»NIL,G(tl(x),tl(z))]

(Rhdix),^))],
evor =- [^G. evorF(eval,G)],
evorF - [xF G x st. null{x)-»NlL, [xz. null(hd(z))-»G{tl(x),tl(z)),T]

(F(hd(x),st))],
evlis s [MG. evIisFieval.G)],
evIisF ^ [xF G m vb fl. null(m)->NIL»st,

[xx.[xy. (hd(x)'hd(y)) • tl(y)] (G(tl(m),tl(x))]
(F(hd(m)(st))]],

evprog - [ßG. evprogF(eval,G)],
evprogF ^ [xF G m vb fl. null(m)-»NIL«st, [xx. G(tl(m),tKx)](Rhd(m),st))],

apply -- [nG. applyF(evalIG)],
applyF - [xF G fn x st. c"i(x) -♦ a(st) -»

(fn=LIST) -♦ x-st,
(fn=SET) -» hd(tl(x))-set(hd(x),hd(tl(x)),st),
(fn=GET) -» get(hd(x)lhd{tl(x)),hd(ti(st)).st,
(fn=PUT) -* hd(x).(hd(st)-

(put(hd(x>,hd(tl(x)),hd(tl(tl(x)))Mtl(st))).tl(tl(8t)))),
IsBF(fn) -» applyBF(fn,x)'stl
isname(fn) -» G(hd(F(x,st)),x,st),
(hd(fn)=LAMBDA)- [xz. hd{z) •

(prune(hd(tl(z)))hd(st))»tl(tl(z)))]
(F(hd(tl(tl(fn))),pairlis(hd(tl(fn)),x,hd(st))«tl(st))),

(hd(fn)-LABEL)^ [xz. hd(z)« (tl(hd(tl(z))4l(tl(z)))l
(G(hd(tl(tl(fn))), x,

((hd(tl(fn))^d(tl(tl(fn))))-hd(st)).tl(st))),
1. i, 1],

Figure A2.1b - Axioms for Yet Another LISP (ctd).

167

■-- - " ^'■-'- -.-■^—- .■■■■■-' ^^^^■^■^^-^■.^^.■^■«.—^.■- .-....-„-—.^.,^.,J..J, - . ^^M^a^^^^iM

W''f
r-''--w»w»"w<PFFW»™mp7W»mwT^^

pairlis - [MG.[XX y st. null(x) -* (nu!l(y) -> st, i),
[xz. ((hd(x)»hd(y))-hd(z)) • tKz)](G(tl(x),tl(y),8t))]]

prune - [ßG.[\x y. Iength(x)=length(y) -» x, G(tl(x),y)],

set - |>G.[xx y a. (hd(hd{a))=x) -» (x'y)«tl(a), hd(a)«G(x,y,tl(a))]],

put ;- [MG. [war val pn pi.
null(pl) -» (var-((pn-val)'NIL))«pl,
(hd{hd(pl))=var) -> (var«set(pn)val,tl(hd(pl)))).tl(pl)l

hd(pl)-G(var,val,pn,tl(pl))]],

initvars = [^G.[xvl al.null(vl) -> al,(hd(vl).NIL).G(tl(vl),al)]],

get s [ßQ. [war pn pi. null(pl) -* NIL,
(hd(hd(pl))=var) -* [xz. null(z) -* NIL,tl(z)]

(assoc(ph,tl(hd(pl))))l
Gfvar.pn.tKpl))]],

IsBF = [xx. (x=CAR)-T, (x=COISIS)-*T, (x=MINUS)-^T,
(x-CDR)-T, (x=PLUS)->T, (x=GENSYM)-»T,
(x=NOT)^T, (x=EQUAL)->T, (x=NUMBERP)^T,
(x=ATOM)-T, (x=TIMES)-»T, (x=GREATERP)]

applyBF(CAR) « [xx. hd(hd(x))],
applyBF(CDR) = [xx. tl{hd(x))],
applyBF(NOT) - [xx. null{hd(x)/-T,NIL]I
applyBF(ATOM) = [xx. atom(hd(x))->TINIL],
applyBF(CONS) - [xx. hd(x)^d(tl(x))],
applyBF(PLUS) - [xx. hd(x)+hd(tl(x))],
äpplyBF(EQUAL) ^ [xx. hd(x)=hd(tl(x))->T,NIL],
applyBF(TIMES) - [xx. hd(x)*hd(tl(x))],
applyBF(MINUS) = [xx. mns(hd(x))],
applyBF(GENSYM) s [xx. gensym(hd(x))],
applyBF(NUMBERP) - [xx. isint(hd(x))-»T,NIL],
applyBF(GREATERP) = [xx. (hd(x)>hd(tl(x)))-*T,NIL]

1

f

I

i

%

$

Figure A2.1c - Axioms for Yet Another LISP (ctd).

168

n

■

...... ,.........,; :,-^....- ,u,... ,. ,„-.,......■...,■.■.■.-.-,... ■,.....;.. „..-....^.„.w^ ..—^-.^...... :.,...,t.^....;..:..:^-^^'^^l

-.r,,^™^« .«.— :w*1ivmi~l*.vmi' ymr^^„^mwwrm'^W^''>:-.V ^*- "i-"" .■^" -« -. u—» -f—«i.-. .^-.%.n. , . . . npw. r*^ . u . . n.«..|^ . .|I»^.W,M> V • >« U <>IJt,>»pi> ip HH.M^.iniOH ^>« U'PXP. IJBW L»<V^

REFERENCES

LCF

[1] Scott, D. "A Type-theoretical Alternative to CUCH, ISWIM,

OWHY", - (unpublished - now uncirculated) Oxford (1969).

[2] Milner, R. "Implementation and Applications of Scott's Logic

for Computable Functions", Proc. A.C.M. Conference on Proving

Assertions about Programs, New Mexico State University, Las Cruces,

New Mexico, Jan. 1972.

[3] Milner, R. "Logic for Computable Functions - Description of

a Machine Implementation", Artificial Intelligence Memo 169,

Computer Science Dept., Stanford University, May 1972.

[4J Milner, R. "Models of LCF", Artificial Intelligence Memo 186, Computer

Science Dept., Stanford University, Jan. 1973.

[5] Weyhrauch, R. Ä Milner, R. "Program Semantics and Correctness

in a mechanised Logic", Proc. USA-Japan Computer Conference,

Tokyo, Oct. 1972.

169

"'-■-'-^ ■'■-:■'• --.:I>.^:.^.^>.....J.^......t.u..^..,.....„.. ,/ ^.I.-,....:-..,,--^..,-.-,^...^^^,.::.......,^ .--,.....■..:...:., ...J.^<.,,1,.J„^,.i,.j.,..,,.L,„, -^^^„^i, .^^..,. ^iiiiL»,» ^>,.... r «:,^Ü4

[6] Milner, R. Ä Weyhrauch, R. "Proving Compiler Correctness in a

Mechanised Logic", Machine Intelligence 7, ed. D. Michie, Edinburgh

University Press, 1972.

[7J Newey, M. "Axioms and Theorems for Integers, Lists and

Finite Sets in LCP", Artificial Intelligence Memo 184, Computer

Science Dept., Stanford University, March 1973.

[8] Scott, D., "Lattice Theoretic Models for Various Type-Free

Calculi", Proc. 4th International Congress in Logic, Methodology and the

Philosophy of Science, Bucharest, 1972.

[9] Scott, D., "Data Types as Lattices", Lecture Notes, Amsterdam, June

1972.

[10] Aiello, L, Aiello, M. & Weyhrauch, R.W., "The Semantics of PASCAL

in LCF", Forthcoming A.I.Memo, Computer Science Dept., Stanford

University.

[11] Igarashi, S., "The Admissability of Fixed-Point Induction in

First Order Logic of Typed Theories", Artificial Intelligence

Memo 168, Computer Science Dept., Stanford University, May 1972.

170

.

iito.,i.n,ilil.r ■ - ,,,..^^^.^^-1^*^ itiiiimittiTtitiiiiiiiMiiafr ^"^^■«.^^-^■.J.« ^^u^:^^^^^^i.^.,^^M.-i^M».^

S

LISP

[12] McCarthy, J., Abrahams, P., Edwards, D., Hart, T. & Levin, M. "LISP 1.5

Programmer'« Manual", M.I.T. Press, 1962.

[13] London, R. "Correctness of a Compiler for a LISP Subset",

Proc. A.C.M. Conference on Proving Assertions about Programs, New

Mexico State University, Las Cruces, New Mexico, Jan 1972.

[14] London, R. "Correctness of Two Compilers for a LISP

Subset", Artificial Intelligence Memo 151, Computer Science Dept.,

Stanford University, Oct. 1971.

[15] McCarthy, J. "Recursive Functions of Symbolic Expressions

and Their Computation by Machine", Comm. of A.C.M., Vol.

3, No. 4, (Apr 1960), pp 184-195.

[16] Gordon, M.J.C., "Evaluation and Denotation of Pure LISP

Programs; a Worked Example in Semantics", Ph.D. Thesis,

School of Artificial Intelligence, Edinburgh University, 1974.

[17] Gordon, M.J.C., "An Extended Abstract of "Models of Pure

LISP" ", Research Memo SAI-RM-7, School of Artificial Intelligence,

Edinburgh University, Dec. 1973.

171

^■^^.■„......r..,..,.. V..^ -^^...,.,^0.^^..:....,, ,.:. ^,,,^...^^-^^,^.i.v.^.^.;.:^.^,-^,^ „...v..^.,^^

, ■ ;.. v-v--

Semantics of Programming Languages

[18] de Bakker, J.W., "Semantics of Programming Languages",

Advances in Information Systems Science, Vol. 2, pp 173-227.

[19] Burotall, R.M, "Formal Description of Program Structure

and Semantics in First Order Logic", Machine Intelligence 5.

Edinburgh University Press (1970), pp 79-98.

[20] Hoare, CAR., "An Axiomatic Approach to Computer

Programming", Comm, of A.C.M., Vol. 12, No. 10 (Oct 1969),

pp 576-580, 583.

[21] Hoare, CAR., "Procedures and Parameters! an Axiomatic

Approach", Symposium on Semantics of Algorithmic Languages, Lecture

Notes in Malhcmalics, Vol. 188, Springer-Verlag, Berlin, pp 102-116.

[22] Hoaro, CAR., "Parallel Programming: an Axiomatic

Approach", Artificial Intelligence Memo 219, Computer Science Dept.,

Stanford University, October 1973.

[23] Hoare, CAR. Ä Lauer, P.E., "Consistent and Complementary

Formal Theories of the Semantics of Programming

Languages", Technical Report 44, Computing Laboratory, University of

Newcastle upon Tyne, April 1973.

8

9!

':■■

*

3t

172

 '-:-■■- - --" ' - .-...-.- .^,......... .-.■r^^^.^^.^aMtaaa

^t^^BBKmmtmamamuamummm .«Mt^anaMMj^jia^iii«»««^^^ rmiTTngrnriiiniii mi imw.iwiOTii.i..inLu_.uuiuiMnjjuL..LimM»uii:ffinn

[24] Manna, Z., "The Correctness of Programs, J. Computer and Systam

Sciences, 3 (1969), pp 119-127.

[25] McCarthy, J., "Towards a Mathematical Science of

Computation", Proc. IFIP Congress, pp21-28, Amsterdam, North

Holland (1962).

[26] McCarthy, J., "A Formal Description of a Subset of Algol",

Proc. IFIP Working Conf. on "Formal Language Description Languages",

North Holland, Amsterdam (1966).

[27] Mosses, P., "The Mathematical Semantics of ALGOL 60",

Technical Monograph PRG-12, Oxford University Programming Research

Group, Oxford (1974).

[28] Reynolds, J.C., "On the Relation between Direct and

Continuation Semantics", Second Colloquium on Automata,

Languages and Programming, Saarbrücken, (July 1974).

[29] Scott, D., and Strachey, C, "Towards a Mathematical Semantics

for Computer Languages", Proceedings of the Symposium on

Compters and automata. Microwave Research Institute Symposium Series,

Vol 21, Vol 21.

[30] Waldinger, R. & Levitt, K.M., "Reasoning abo«t Programs", Proc.

ACM Sigact/Sigplan Symposium on Principles of Programming Language

Design, Boston (1973).

173

^,.,-^U..^aj....-^f.U..„i.^L...,l...^:..l.^.^-.^.:,-^.aK,.J. ^- ..■ : ...^,J.^-...,,.,a..w..^^...!.'..-^.ja,..,.J.^...,Ljii^^.^;<.s.„.,,.u^^^,^,

