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CHAPTER 1 

Introduction 

1.1. Summary 

This thesis discusses the application of LCF (Logic for Computable 

Functions) to the problem "Given a programming language, define precisely the 

semantics and develop a mathematical theory which is suitable for reasoning about 

programs of the language". It is primarily concerned with building an axiomatic 

theory of Pure LISP which can be used in the extraction of meanings of LISP 

functions. Particular functions discussed, in terms of correctness, are ones which 

perform interpretation and compilation of subsets of LISP. A principal aim of the 

investigation was an evaluation of both the expressive and the deductive power of 

LCF. 

'i j 

1.2. History of the XCP Project' 

The starting point was an underground paper by Dana Scott [1] In 1969 

describing a typed combinatory logic which was suitable for recursive function 

•ir.VjH-AK\-Jli\J.^:^-'„l<:3.'--^-.-  .<■■ "".o^-.''^!'>.Ä=>U'-v';'. i.t:^ 
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theory. Robin Milner, in 1971, replaced the combinators with typed lambda calculus 

and that logic will be referred to as Pure LCF. He also implemented a proof checker 

for this version of the logic and this program (later improved upon) is called the LCF 

System, or simply LCF. Milner desoribed Pure LCF and the LCF System in [2] 

(including come examples of the use of the program), [3] is a user's manual for the 

system and [4] contains the only available technical discussion of the model theory 

of the logic. For the sake of self-containment, a short tutorial on Pure LCF is 

included in this report as Chapter 2 and because improvements to the LCF System 

are a major concern of this study. Chapter 3 is a brief description of the LCF 

System as it now exists (in fact an improvement on the version described in [3]). 

Milner saw LCF as an excellent tool for the Mathematical Theory of 

Computation ( MTC ) and it is in this capacity that LCF has attracted some attention 

(within the field of computer science). The first chapters in the application of this 

tool to MTC problems were written by Milner and Weyhrauch (1972) with two 

documented experiments involving proofs of program properties. [5] discusses the 

proof of the correctness and termination of a simple program (for the factorial 

function) in a simple algebraic language defined by means of its abstract syntax. [6] 

reports on the development in the LCF System of a proof of the correctness of a 

simple compiling algorithm. That algorithm dealt with the abstract analytic syntax of 

the source language which featured the constructs of arithmetic expression (with 

"■■'^"•■•-     - ..^■■--■■-■■■.■■-^■'■^^-■--■■■■-•■'■■>^^-^1-^      .■■■^-■.-^. --^,- -. .^..L.^tivLiuiUaiaguaialUmmmmai msi 
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binary operators and variables) with assignment, conditional, compound and 'while' 

statements. The target language was for a machine with an accumulator, a memory 

and a stack; it contained conditional and absolute jumps, load and fetch commands, 

label-j and an instruction to apply arbitrary binary operators. Much of this 

experiment was concerned with the application of algebraic techniques to give 

structure to the proof. 

Although the proofs in the Weyhrauch-Milner experiments were machine 

checked, it was expedient to assume many theorems from areas such as arithmetic 

and finite set theory rather than prove them in axiomatically based subtheories. 

The results in question were all considered 'intuitively obvious' but the practice 

allows errors to creep in. What was needed for succeeding experiments was a 

mathemotical environment based on axiomatic treatments of the usual 

backcround nrcao such as arithmetic. A step in this direction was taken by Newey 

[7] who gave suitable developments of a basic prepositional logic, natural numbers, 

arithmetic over the integers, lists and finite sets. The library of results obtained in 

that venture amounted to some 1000 theorems and was more comprehensive than 

our present needs require. We give, therefore. Chapter 4 as summary of of the 

parts of [7] that are relevant to giving the semantics cf LISP. 

Viewed in the light of this history, the formalisation of LISP semantics (in 

LCF) appears as another step in the application of LCF to the problems of MTC. In 

■■■'' ■■■■■—^'■■■-'-■■-■'.V^.^-.A^ 
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fact one of the main concerns in the experimental work is that it should inspire 

criticir-m of the current LCF system that can be translated into improvements to be 

realised in the next version. 

1.3. Past Work in Formal Semantics 

A survey on semantics of programming languages was given by J.W. de 

Bakkcr in [18]. Although it is getting old, we shall simply update it with pointers in 

the bibliography to more recent work by Burstall, Gordon, Hoare, Lauer, Manna, 

Waldinger and the Oxford school as well as the Milner-Weyhrauch work cited above. 

Of particular relevance is a short survey in [6] on compiler correctness. 

There have not yet been any critical comparisons with previous formalisms 

but certain properties of LCF must be conceded to be big advantages. First it is 

based in logic and so it has deductive as well as expressive power (i.e. we can use 

it to reason about programs as well as define the semantics of languages). Second, 

it deals with functions (possibly partial) and functionals conveniently because of the 

lambda calculus base. Last, there are very good chances that automatic deduction 

will be moderately successful. 

In terms of foundations for the present work, we follow the constructive 

approach that  McCarthy has used but do it axiomatically in a logic as Burstall 

I 
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proposed. When we develop mathematical theories of a language we get theorems 

about the local effect of language features that rather resemble Hoare's rules. We 

also depend heavily on McCarthy's notion of abstract syntax as presented in [25] 

and [261 

Chapter 5 shows how we are able to factor syntax and semantics for LISP. 

The technique makes use of abstract syntax and functions for mapping between 

concrete text and abstract representations of programs and data. That chapter 

discusses the concepts of 'notation' and 'denotation' in relation to LISP.     1. 

1.4. A Treatment of Pure LXSP 

McCarthy presented Pure LISP in [15] but we take [12] to be the 

authorative reference since it is later (1962) and a touch smoother. Following his 

example we specify the language by means of an 'interpretive semantics' which uses 

association lists to bind values to variables. More precisely, taking both LISP data 

and functions to be S-expressions over a suitable set of names, a function is defined 

in LCF in such a way that it interprets source LISP expressions appropriately. 

Moreover, that function makes use of 'eval' and 'apply' functions which behave as 

the McCarthy Pure LISP functions of the same names. The LCF definitions of these 

functions  together  with the  axioms which  specify  the  notions  of  'name'  and 
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'S-expression' form a basis for a mathematical theory of Pure LISP. Chapter 6 

presents the axioms and describes a rudimentary theory (a body of theorems) which 

will greatly ease the task of proving things about Pure LISP functions. 

This semantics (or theory) was then used to prove that certain sample Pure 

LISP expressions denote the appropriate mappings on S-expressions, The particular 

functions were NULL, EQUAL and ASSOC. Chapter 7 discusses the proofs which 

were generated and checked using the LCF system since they illustrate some 

general techniques. 

The examples culminate in a discussion of the correctness of the S- 

expression version of McCarthy's interpreter for Pure LISP which is written in Pure 

LISP itself. Actually, we will seek to establish the correctness of the S-expression 

form of 'eval' which we will call Seval. The property we want to prove is Tor any 

A-liot al, the function denoted by Seval via int&rpretation is 'eval' itself", 

i.e. Ve a. apply(Sevall(e a),al) = eval(e,a) 

Chapter 8 addresses this problem and presents lemmas (proved with 

assistance of the LCF system) which show, in particular, that the functions 'eval' and 

[\e a. apply(Seyal,(e a),al)] satisfy almost identical recursive equations. These 

lemmas enable us to conclude in the metatheory of LCF that the functions are 

indeed the same. Reasoning within the logic it was possible to prove a sort of weak 

correctness: 
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Ve a. evaKe.a) E apply(Seval1(e a),al) 

but the attempts to prove the other half of the above equality led to an 

Identification of a deficiency in the LCF system. More specifically the other part of 

the proof would have required more space and time for computation than feasible. 

1.5. Correctness of a Compiler 

London in [13] gave a rather informal proof of the correctness of a certain 

compiler for a subset of LISP; LAP (a variety of PDP10 machine code) was the 

target language. This compiler, which is called LComO, was written by McCarthy as 

a pedasoßic device for a course at Stanford. Also, as mentioned before, Milner and 

Weyhrauch gave a formal proof of a minimal compiling algorithm using LCF. It was 

therefore clear that LCF was an appropriate vehicle for attempting the rigorous 

verification of compilers like LComO. 

Two chapters are devoted to a detailed study of the feasibility cf 

establishing the correctness of LComO within the LCF system. The total task factors 

evenly to four subproblems. The first two are the axiomatisations of the two 

languages involved. The third is the extraction, from the S-expression version of 

the compiler, of its meaning function - 'the compiling algorithm'. The last is the 

establishment of the correctness of this compiling algorithm. 



n 
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The treatment of the LISP subset parallels the work on Pure LISP in that 

axioms defining the language are expanded into a usable theory for the language by 

deriving theorems. 

The meanings of those instructions that are generated by LComO are given 

in an abstract formalism which interprets the action of assembly code programs on 

machine states. The formalism is an abstraction in that no account is taken of store 

size, word size, the actual representation of S-expressions or garbage collection. As 

in the case of Pure LISP, certain handy lemmas are proved and described. This 

material takes us through Chapter 9. 

Chapter 10 starts with the discussion of the extraction of the compiling 

algorithm from the S-expressions for LComO. The same techniques illustrated in 

Chapter 7 are used although the larger S-expressions lead to correspondingly longer 

proofs. 

The normal use of the compiler is to translate a 'program' of LISP functions 

into a program of LAP functions. We then say that a statement of compiler 

correctness is "in all such situations the the answer obtained by executing any LAP 

function must agree with the result of calling the corresponding LISP function with 

the same arguments". 

Whereas our study of the other parts of the problem showed that attacks 

using LCF are quite feasible with the current LCF system, the proof of correctness 
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of the compiling algorithm is much too long. In retrospect, this is not surprising since 

the compiler is an order of magnitude larger than the one Milner and Weyhrauch 

worked with and the languages are also more complicated. 

Although the proof was not carried out we do discuss its structure and 

suggest in which directions the deductive power of the LCF system must be 

improved before the proof becomes feasible. 

1.6. Second Generation LCF 

Chapter 11 presents suggestions for the design of a new LCF system. The 

main design change is that the system should be two separate programs - a simple 

proof checker for a restricted form of LCF and an interactive proof generating 

program. There are also suggestions for making the input language to the system 

more 'high level'. A mechanism is presented for having a resticted class of derived 

deduction rules provable within LCF. Some attention is given to further extensions 

of simplification and some suggestions for new deduction mechanisms are examined. 

1.7. The Problem of Side-Effects 

Both subsets of LISP mentioned above contain just a few of the interesting 

features of 'practical' varieties of LISP.   The most notable missing features are 

t 
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SETQ:s and PROGrs. The second appendix 2ives another LCF interpretive semantics 

which can handle certain sids-effect features of LISP - SETQs and the regular 

GEkCYM device. It also deals with the PROG construct but still does not handle 

arrays or property lists and certainly not the distinction between the LISP 1.5 

functions EQ and EQUAL. Again we deal with an idealisation of LISP which Is not 

subject to recursion depth limits, finite arithmetic or boundea memory capacity. 
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CHAPTER 2 

Pure LCF 

In this short exposition of Scott's logic no justification of the semantics is 

given; the curious reader should consult [4]. 

2.1. Terms, Types and Domains: 

T 

2.1.1. Syntax 

The terms of LCF are those cf a typed \-calculus with the addition of a 

least fixed point operator and certain constants; the two base types are called Hr' 

(for truth values) and 'ind' (for individuals). All types other than 'tr' or 'ind' are 

derived from these two by a finite number of applications of the rule "If « and /? 

denote types then so does (a-*/?)". With every term of the logic there is an 

associated type and we may postfix terms with their types so that, for example, 

t:/? indicates that term t has type /?. The syntax of LCF terms is then given by the 

productions: 

<lerm;/i> = <identifier:^> | <application:/?> j 
<conditional:/tf> | <\-exprn:/?> | <fi-exprn:/?> 

where        <application:/?2> = <term:(/U->/?2)> ( <term:/?l> ) 

11 
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•'conditional:/?> = <term:tr> - •:term:/?> , <term;/?> 

<x-exprn:(/?l-*/?2)> = [x <identifier:/?l> . <term:/?2> ] 

<M-exprn:/t?> = [/* <identifier:/?> . <term:/?> ] 

and where identifiers are defined in the usual way. 

2.1.2. Semantics 

Terms of type /? denote objects in a domain Dfi which is to be a partially 

ordered set (ordering relation E ) with every ascending chain having a least upper 

bound in D^. Moreover, each D^ contains a minimum element denoted by the logical 

constant 1^; that is, 1A s x for all x < D^. 

The interpretation intended for the relation 's' in the various domains is 

that of relative definedneso. That is, xsy is to be interpreted as saying y is at least 

as defined as (and consistent with) x. Hence we see that for a domain D^, the 

interpretation of i^ is that of the completely undefined element. 

The base domain D,r (the domain of truth values) contains precisely three 

elements ( l,r, T, F ) in the fixed order given by the diagram: 

T F 

W 
i.r 

Ul 

0 

u 

o 

G 

12 
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The other base domain D,nd (the domain of individuals) is normally 

constrained by the addition of some non-logical axioms to characterise the non- 

functional data in a universe of discourse. 

Finally, D^.,^ is the domain of continuous functions from D^ to D^. A 

continuous function is one which preserves the least upper bounds of ascending 

chains. However, we shall never be using this notion explicitly so simply take it as 

fact that functions and functionals formed by all the term constructing mechanisms 

(presented above) are continuous. A property of these functions is that they are 

monotonic; i.e., if F is in D(e,wi) and x:a E y:c< then F(x) E F(y). 

The interpretations of application and x-abstraction are the usual ones. 

The term S:tr -♦ Tl:/<, T2:/< denotes 1^ or one of the two objects in D^ denoted by 

Tl and 12, according to whether S denotes itr, T or F respectively. 

Of.S] should be interpreted as denoting the minimal fixed point of the 

function [xf.S]. G is a fixed point of [>f.g(f)] if G denotes the same function as g(G); 

minimality is taken with respect to 'E' . 

2.1.3. Strictness and Discreteness 

A function F,^, is termed strict if the value of F{lJ is 1^.   A domain 

D,v is termed tliöcrelc or flat if for any x,, and y^, x^ - v^ implies x^sy^ or 

x^^l... 
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2.1.4. An Example 

To illustrate these notions let us construct the factorial function in terms of 

arithmetic primitives. We imagine that we are given non-logical axioms which 

constrain the domain of individuals to contain a structure which looks like the natural 

numbers. So Dind contains an individual which we call 0 and there is a successor 

function which generates all natural numbers by repeated application to 0 (1 is the 

successor of 0). We suppose Z is a predicate which is T on 0 and F on all other 

natural numbers. It is an easy exercise to use monotonicity to show Z(JL) must be 1. 

(Note we are beginning to omit the mention of types when the information can be 

recovered from context.) We also make use of a predecessor function 'pred' and a 

two argument multiply function V. 

OF.[>x. Z{x) -» 1, *(x)(F(pred(x)))]], which we call 'fact', is an example of 

a term and contains instances of application, conditional expression, x-abstractlon 

and the minimal fixed point operation. It also involves bound variables (V and T'). 

This term denotes the least defined function which satisfies the recursive definition 

F(x)  <- if x=0 then  1   else x*F(x-l)   . 

The types of the various atoms are as follows:- '0', '1' and V all have type 

ind;  7'   has   type  (ind-tr);  'pred' and  T  have  type  (ind-Hnd);  '*'  has   type 

(ind-(ind-Mnd)).    To  illustrate  why we  are  interested  in  least   fixed   points   of 

functions note that the above recursive definition is satisfied by another function 

u 
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'fact2' which agrees with 'fact' but gives zero on all negative numbers (assuming 

these are also in Dind).  It will be provable that fact E fact2 . 

2.2. Formulae, Sentences and Proofs: 

m 
An Atomic Well Formed Formula ( AWFF ) has (for arbitrary 

type ß ) the form <term:/?> E <term:/?> . The symbol 'E' is of course identified 

with the ordering relation on D^ and so the interpretation of AWFFs is obvious. 

A Well Formed Formula (WFF) is a set of (zero or more) AWFFs. 

WFFs are written as lists using comma as a separator. It follows from this definition 

that "asb, ccd" is the same WFF as "csd, asb, aEb" . A WFF is intended to denote 

the conjunction of its constituent AWFFs. Hence, the comma should be also 

interpreted as conjunction. We abbreviate "sEt, tss" as "ssf . 

An LCF sentence has the form P |- Q where P and Q are WFFs. The 

'turnstile' symbol should be interpreted as implication. If P is empty we omit it 

entirely. 

Finally, a proof is a sequence of sentences with the property that each is 

either an instance of an axiom schema of Pure LCF or a deduction from previous 

sentences in the sequence using a rule of inference. 
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2.3. The Axioms- and Rules of Inference. 

We write P{s/x} or t{s/x] to mean the result of substituting s for all free 

occurrences of x in P or t, after first systematically changing bound identifiers in P 

or t so that no identifier free in s becomes bound by the substitution. Only \ and M 

bind identifiers. 

P I- Q Inclusion axiom 

Axioms for = 

Axioms for 1 

Conditional axioms 

Conversion axioms 

Fixed-point axiom 

Conjunction Rule 

Cut Rule 

Abstraction Rule 

H    SES 
S1ES2  h  t(sl)Et(s2) 
S1ES2,S2ES3  h  S1ES3 

|-    iES 
H Kshl 

H   i-S.tni 
I- T-*s,t=s 
I- F-»s,t=t 

}• [\x.s](t)3s{t/x} 
I- [xx.y{x)]=y 

h [Mx.s]=s{[/ix.s]/x} 

PI I-01 PI \-Q2 

PI U P2 f- Ql U Q2 

PI |- P2        P2 |- P3 

PI |-P3 

P  h  sst 

P   h    [XX.S]E[XX.t] 
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(Q a subset of P) 

(Application) 
(Transitivity) 

(y distinct from x) 

(x not free in P) 

.. 

.; 

0 

u 

.■—.«■■^•i.v-.:..'...^.../.-^.^.^.....r-.-i.-.J.: .-/..-....: ■■■->.■ ■:.'■-.■- ..-.:...-..AJ,.-..,JJ;J.:.... .^..^^..^.^v...,. -.^.u.. ... -.  ..,.•..—IAJ.A.J.., .^—^^t^j^»^ ^M 



Cases Rule 

Induction Rule 

P,s=T H Q    P,s^l \- Q    P,8sF H Q 

P  h Q 

P h Q{l/X}      P,Q H Q{t/X} 

P h Q{[M>'v.t3/x} (x not free in P) 

2.4. Some Examples'. 

: s 

2.4.1.   A^B, BnC I- A=C. 

In this proof of an instance of the transitivity of 's', note that the rules of 

Pure LCF are quite low level. The actual 'proof is just the centre column of 

sentences and the justifications are for the benefit of the reader. 

■> 

(a) A^B h AEB 
(b) B=C h BEC 
(c) A=B, B=C h AsB, BEC 
(d) AEB, BEC h AEC 
(e) AsB, BSC f- AEC 

(f) AsB H BEA 
(R) B=C H CEB 
(h) ArB.Br-C h CEB, BEA 

(1) CEB, BEA h CEA 
(k) AnB, BsC h CEA 

(1) A^B.BHC h A^C 

by Inclusion Axiom; 
by Inclusion Axiom; 
by Conjunction,(a),(b); 
by Transitivity Axiom; 
by Cut,(c),(d); 

by Inclusion Axiom; 
by Inclusion Axiom; 
by Conjunction,(g),(f); 
by Transitivity Axiom; 
by Cut,(h),(j); 

by Conjunction,(e),(k); 

t 
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2.4.2.   FrG, AEB h F(A)EG{B) . 

Although this example is a trivial theorem of monotonicity it can be applied 

iteratively to get more complex theorems. Again the proof is quite tedious: 

(a) A-B  h  F(A)EF(B) by Application Axiom; 
(b) FEG  f-  [xf.f(B)](F)E[\f.f(B)](G) by Application Axiom; 
(c) H  [xf.f(B)](F)=F(B) by a Conversion Axiom; 
(d) [xf.f(B)](F)-F(B)   f-  F(B)E[xf.f(B)](F)       by Inclusion Axiom; 
(e) H   F(B)E[\f.f(B)](F) by Cut,(c),(d); 
(f) FEG  H  F(B)E[xf.f<B)](F), [xf.f(B)](F)E[xf.f(B)](G) 

by Conjunction,(e),(b); 
(g) F(B>E[xf.f(B)](F), [xf.KB)](F)E[xf.f(B)](G)   \-   F(B)E[xf.f(e)](G) 

by Transitivity Axiom; 
(h)      FEG  h  F(B)E[xf.f(B)](G) by Cut,(f),(g); 

(j) h  [xf.f(B)](G)^G(B) by a Conversion Axiom; 
(k)      [xf.f(B)](G>nG(B)   f-  [xf.f(B)](G)EG(E>     by Inclusion Axiom; 
(I) H  [xf.f(B)](G)EG(B) by Cut,(j),(k); 
(m)     FEG  |-  F{B)E[xf.f(B)](G), [xf.f(B)](G)EG(B) 

Conjunction^W.d); 
(n)      F(B)E[xf.f(B)](G), [xf.f(B)](G)EG(B)   f-  F(B)EG(B) 

by Transitivity Axiom; 
(p)      FEG  h  F(B)EG{B) by Cut,(m)t(n); 

(q)      AEB.FEG  H  F(A)EF(B), F(B)EG(B) by Conjunction^)^); 
(r)       F(A)EF(B)!F(B)EG(B)   h  F{A)EG(B) by Transitivity Axiom; 
(s)       AEB. FEG  H  F(A)EG(B) by Cut,(q),(r); 
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CHAPTER 3 

The LCF Proof Checking System 

In this section we describe the computer program which aids in the 

generation of validated proofs in an enhanced version of LCF. Both the program and 

) the enhanced logic are called simply "LCF" and ambiguities will be resolved by 

context. When we refer to the logic of Chapter 2 we shall always refer to it as 

Pure LCF. 

* 

3.1. Proofs: 

I A Pure LCF proof is a sequence of sentences subject to the condition that 

each of the sentences is an instance of one of the logical axiom Schemas of Pure 

LCF or follows from previous sentences (in the sequence) by a rule of inference.  A 

?; proof in the LCF implementation is a sequence of 'steps' and a step is a four 

element list (n, W, D, J) where n is the step-number (an integer), W is an LCF 

WFF, D is a list of the dependencies of the step and J is the justification. Steps 

are numbered sequentially as they are generated and added to the end of the 

parlinl proof. The dependencies of a step are the step numbers of 'assumptions' 

on which the current step depends.  The justification of a step indicates how 

19 
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the step was generated; it will include the name of the rule of inference employed 

and the previous steps that were used. 

An assumption is a special step of the form (n, W, (n), (ASSUME W)). 

Note that the only dependency of an assumption is itself. Another special type of 

step is an axiom which has the form (n, W, (), (AXIOM A)) where A is the axiom 

name; note that axioms have no dependecies. 

Wc now define the sentence denoted by a step (n, W, (d„d2,...dm), J) to 

be Wd|, W^, .... Wdm h W where Wd, is the WFF part of the line d, (which will be 

an  assumption).   Thus,  the  step (n, W, (), (AXIOM  A))  denotes  the  sentence 

}-   W      and  the  sentence denoted by the step (n, W, (n), (ASSUME W))  is 

clearly    W   |-  W . 

3.2. Formulae and Terms: 

Not only do we have somewhat different notions of 'proof in the pure logic 

and in implomcntod LCF (albeit there is a correspondence between them), but there 

aro '..lifjht chcinges to the meanings of WFFs and terms. 

First of oll 's' is not regarded as simply an abbreviation, but has a similar 

status to 's'. Thus, 5=t is regarded as an AWFF (as opposed to a WFF in Pure LCF) 

and there are deduction rules which deal with these 'equalities' (so called) rather 

20 
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than 'inequalities'. This change in approach is justifiable via the observation that '»' 

is the much commoner relation and much easier to reason with. On the other hand, 

extra deduction rules are necessitated for conversion among the formulae   s»t , 

( set, Us )   and tss .  The rules provided in the implementation are 

HALF Ü 

55t 

SYM     sat 

tHS 

EQUIV      sEt.tEs 

s^t 

It should be noted that experience has (so far) indicated that these rules 

are rarely invoked (due in large measure to the rarity of the 's' relation). 

Next, also contrary to the definitions in Chapter 2, the WFFs are often 

regarded by the program more as lists than as sets. For example, s^t is not the 

same WFF as s-t.s-t . This is necessary to some extent since it is convenient to be 

able to talk about the n-th AWFF of a WFF but there is also oome ugliness about 

the implementation in this respect. 

In the current implementation there is no provision for talking about type 

information. (Henci there can be no type checking.) 

Finally there are oome very important abbreviations which are used by the 

program to make proofs more readable. These apply to both terms and AWFFS. 

The following relate to terms: 

i) [\a b, t]  abbreviates [xa. [xb. t]], 

[xa b c. t]  abbreviates [xa. [xb. [xc. t]]]  etc. 
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ii) 5(11,12)  abbreviates  s(tl)(t2), 

5(11,12,13)  abbreviates s(tl)(t2)(t3) etc. 

iii) if F is a function which normally takes 2 arguments then we 

may declare it infix and then we write s F t   for F(8,t). 

The following relate to AWFFS: 

i) Vx. s E t   abbreviates  [xx.s] E [xx.t]  and 

Vx. s s t   abbreviate5  [xx.s] = [xx.t]; 

The notation  so introduced is very suggestive of its normal 

application: if we have Vx. s(x)=t(x)  then for all terms x 

we can deduce  s(x)=t(x). 

ii) R* s s t   abbreviates R-»s,i E R-»t,i  and 

R* s K t  abbreviates R->s,i s R-*t,i ; 

The structure abbreviated is an instance of a rather common 

device for relativising AWFFS.    Noting that the sentence, 

W  H  R*  set 

is equivalent to the other sentence, 

W, R=T  h  sEt, 

we see that the   V   connective corresponds to material 

implication. 
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3.3. Using the LCP System*. 

• ; 

I 

t 

t 

The LCF Implementation has really outgrown the name of 'proof checker'. 

Apart from the fact that a user rarely types a WFF (the information he gives is 

generally a cequence of commands that tell the machine HOW to generate the 

required sequence of stepc), there are various mechanisms to help him interactively 

prove theorems in LCF. On the other hand, one couldn't be so bold to call it even 

an 'interactive' theorem prover, although this is a direction of future developments. 

One of ti^e most important aids to proof generation is the machinery that 

allows (even encourages) goal directed proving. A user may state target steps and 

att? ;k them by indicating one of many tactics whereupon the program deduces 

appropriate subgoals and perhaps some relevant assumptions. Most of the tactics 

are the Inverses of rules of inference since appropriate subgoals are ones which, if 

achieved, lead to the establishment of the goal by some rule of inference. 

The inference rules of Pure LCF are rather basic and, in applications to 

MTC, too low level to be workable. However, the LCF system has five very 

important derived deduction mechanisms: substitution, contradiction, theorem use, 

simplification and prefix stripping. 
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3.3.1. Substitution: 

Substitution is the implementation of three derived deduction rules of Pure 

LCF. The first two rules (following only from the CONV and ABSTR rules) are: 

P|-tUt2 

P}-SEs|t2/tl] 

P\-UM2 

P>sSs{t2/tl} 

and the third follows from these together with the TRANS rule (expanded to include 

the '=' relation,, of course): 

PM1M2  ,     Qf-W 

P,Q|-  W|t2/tl} 

There are the usual cautions about capture of bound variabl es. 

3.3.2. Contradictions: 

There is an inference rule which enables proofs by contradiction. We take 

it that the logic is consistent and so assuming that one's non-logical axioms are too, 

one can never prove sentences such as h T^F . Hence, given a step containing a 

'contradictory' WFF ( such as ' T~L '), we should conclude that the dependencies 

are inconsistent. Now, given such a step with a 'contradictory' WFF (and 

dependencies D> in an LCF proof we could proceed to prove any other WFF with 

Ö 
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the same dependencies ( D ). (It is a nice exercise to show this.) The program 

recognizes the following four inequalities in D,, as contradictions: 

TEI FEI        TEIP F^T 

as well as the six equalities between distinct members of Dtr (such as T^F) and 

allows the user to prove any goal (i.e. make it a step) by claiming it follows from a 

contradiction. The resulting step will have the dependencies of the contradiction. 

3.3.3. Theorems: 

In the pure logic, a proof of a sentence, say |- P-»T,F=P , in no way 

constitutes a proof of any similar sentence ( such as |- Q-»T,FsQ ) which differs 

from the former only in the naming of free variables (which are not free in the 

axioms). However, it is clear that the ability to perform some renaming is absolutely 

necessary for a smooth system. In the LCF system such inferences are performed 

via the theorem mechanism. 

At any point in a proof, a step may be given theorem status and the 

sentence that the step denotes acquires a name and is tagged with the names of the 

axioms that have been already introduced in the proof. There are, of course, two 

parts to a theorem: an antecedent WFF and a consequent WFF. The antecedent is 

the WFF denoting all dependencies and the consequent is the WFF part of the step. 

When  the  user desires  to use  a theorem, he may  have the system change 
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(throughout   the  theorem)   any  free  variable (that  is  not   free  in  any   of  the ;  o 

appropriate  axioms)  to  any  term (a process called instantiation),   and  by 

providinß steps which when conjoined match the antecedent of the theorem, he may 

infer the consequent of the theorem.  The dependencies part of the new step is the ^ 

union of the dependencies of the steps used to match the antecedent. It should be 

noted that the user does not have to type any instantiations that the machine can 

deduce from the list of steps which must match the antecedent. '' 
I 

rloHiiro   (mm  Mio  \lfi   r\t  r.>*.f>«  ...Ul.U ..I i-L  ii-_ i . 
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3.3.4. Simplification: 

As an introduction to simplification, imagine we have three steps of a proof: 

<nl) Va. F(a) ^ a (dl)  , 

(n2) Vb. G(b)3H(b) (d2)  , 

(ri3) M a F(G(F(N))) (d3)  . 

It should be clear that we can proceed (using only features that have been 

discussed   already)   to   a   step   which   contains   the   WFF   M = H(N)   and   has • u 

dependencies dl U d2 U d3. We might easily proceed through intermediate steps 

which state M - F(G(N)) and M ^ F(H(N)) . None of the proofs will be very short and 

the steps involved will projshly help to obscure perhaps more interesting parts of ^ 

the total proof. 

In the LCF system sets of equalities (called 'simpsets') are maintained (by 

M.Jf 
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the user with help from the machine) to help in the automation of such sequences of 

simplifying substitutions. When the simplification mechanism is invoked, the Item 

(which may be a goal, a step or a term) to be 'simplified' is scanned recursively (top 

down, left to right) for a subterm which 'matches' the left hand side of an equality in 

the current simpset. When such a match is found the right hand side of the equality 

is used to generate a replacement for the subterm. This simplification process 

continues until no subterms in the item can be matched to anything in the simpset. 

When an AWFF from a step is 'put in' a simpset and it has the form 

VX| x2 .... xn. A s B , the 'universally quantified' variables (x„ xz, .. xn) are replaced 

in A n B by 'metavariables' (a,, c<2, ... an) and the new AWFF Al a Bl is added to 

the simpset. The raison d'etre for metavariables is that they will match any term. 

Thus, if the equality Va. F(a)=a is put in, 'a' becomes a metavariable and, for any 

term T, occurences of T(t)' will be 'matched' and replaced by 't'. 

Adding a step to the SIMPSET amounts to adding each of the equalities 

(AWFFs) that constitute the WFF. Steps in the simpset carry indication of their 

dependencies; and as a simplification proceeds a cumulative union is kept to which 

the dependencies of steps used are added; this union will be contained in the 

dependencies of any step generated as a result of the simplification. 

Theorems with no antecedents go into simpsets just as steps do except 

that there are no dependencies and any free variables (that are not free in the 

appropriate axioms) are also made into metavariables. 
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Theorems with antecedents may be put in a simpset,   and when they are 

used   by  the  cimplifier  the  phenomenon is  known  as  conditional   simplification. 

Suppose the theorem     F(aKG(b)  (-  H(a,b)=T    (where variables V.V are not 

free in the axioms) is put in the simpset.  The 'a' and the V become metavariables 

and the theorem is considered when a subterm (of a term being simplified) is of the 

form " H(*,*) ".   Suppose the term matched is   hKs.t) . What the simplifer does, 

instead of simply replacing the term by T (as it would in the absence of an 

antecedent), is to attempt to verify the antecedents of the theorem by simplification. 

If the simplifier succeeds in checking the conditions of the theorem it performs the 

replacement called for by the consequent. There are depth bounds on the recursion 

in connection with this conditional simplification device. 

Steps of the proof may also be conditional simplification rules. A WFF in a 

step such as Vx. p(x)=> F(x) - G(x) , when added to the SIMPSET, is inserted in 

two ways - both using one metavariable '/?'. First way: the left hand side is 

"p</0-F(/?),i" and the right hand side is "p(/?)-.G(/?)(i" . Second way: the left and 

right sides are T(/0" and "G(/0" respectively but there is also a condition to be 

checked -   "p(/?)-T". 

Q 
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3.3.5. Prefix Stripping: 

When a GOAL is an AWFF with several prefixes ( Vx. a(x)* Vy z. A=B has 

four prefixes) the natural way to attack it is by a series of abstractions (to remove 

outside universal quantifiers) and cases arguments (to remove relatlvisations) where 

two cases are trivial. This action can be performed in.a single step by means of the 

PREF tactic. Abstractions are done automatically and a step is generated which 

corresponds to the nontrivial case of each relativisation. If the goal is actually 

achieved by the method then the cases steps are deleted. 

For example, if the goal were Vx. A(x)* Vy. B(y)* F(x,y)=G(x)y) then the 

assumption steps generated and put in the simpset would be A(x)sT and B(y)=T ; 

the subgoal would be F(x,y)--G(xly) . 

3.4. Examples of LCF System Proofs*. 

Before considering a significant example note that example 1 of Chapter 2 

is a one step proof - namely, invocation of the 'Equivalence rule1. 

3.4.1.  AsB.FsG  h  F(A)EG(B) . 

This is the other example of Chapter 2 and is much less painful using the 

LCF system. The text below is a conversation with the program. Each command to 

the system (the user's contribution to the interaction) follows a prompt of 5 stars 

and terminates with a semicolon.  The integers are step numbers. 
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***** ASSUME AEB.FEG; 
1 A E B  (1) 
2 F E G  (2) 

***** APPL F,!; 
3 F(A) '■ F(B)  (1) 

***** APPL 2,B; 
4 F(B) s G(B)  (2) 

***** TRANS 3,4; 
5 F(A) 5G(B)  (1 2) 

***** THEOREM MONOl: -; 

THEOREM MONOl: F(A) s G(B) 
ASSUME 
A EB, 

F nG 

3 

w 

U 

3.4.2.  (P-M.n-F h P-F 

Thio particular proof would already be something like fifty steps in Pure 

LCF. The material shown, this time, is not the whole record of the interaction but 

just the commands typed by the user and the proof that LCF constructs. •M 

ASSUME  P-»i,F-Fi 
GOAL P:-F; 
TRY CASES P; 
TRY 1;SIMPL 1 BY-; QED; 
TRY 2; 5IMPL 1 BY -; QED; 
TRY 3 SIMPL; 
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0 

1    P-U,F ^ F  (I) — ASSUME. 

|TRY«1    P =3 F      CASES P. 

| [TRY «In 1    P = F:SASSUME    P = T 
| |2    P = T  (2) — SASSUME. 
| |3   1 ^F  (1 2) — SIMPL 1 BY 2. 

||TRY«1«2    P-3 F: SASSUME    P^i 
| |4    P n i   (4) — SASSUME. 
| |5   i^F  (1 4) — SIMPL 1 BY 4. 

I 
|TRY«1«3    P = F:SASSUME   P = F 
|6    P = F  (6) — SASSUME. 

I 
|7    P^F  (1) — CASESP3 5 6. 

Notes: 

;. 

r- 

i)       The goel structure is reflected by the boxes. 
The coal is printed at the top of the box. 
The last line of the box is the established goal or 
a contradictory WFF. 

ii)     The command "TRY CASES P" caused the  "PsF"  goal to 
split to 3 subßoals: 

PHF SASSUME P=T 
P-F SASSUME P=i 
P^F  SASSUME   P=F 

iii)     A QED command, when the current step is a contradiction, 
renders the goal under trial established. 

iv)     A SASSUME(W) command causes WFF W to be added 
to the simpset after it is ASSUMEd. 

ii 

f. 
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3.5. Concrete Representation: 

It is unusual for computer Input character sets to contain many of the 

logical symbols that we need and, although the machine at the Stanford A.I. Project 

is exceptional in this respect, it is missing some symbols we have used. On that 

machine (where the LCF system lives) the following representations are used for 

characters which do not appear on the keyboard: 

.- 

*M 
■i 

v is represented by « 
1 is represented by UU 
c is represented by c 
* is represented by :: 

T is represented by TT 
F is represented by FF 

The point of mentioning this mat' - is that the concrete representations of 

these characters have appeared in published works where publication language 

snould have been used. 
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CHAPTER 4 

The Mathematical Environment 

W- 

% 

I 
■ 

?. 

We present here a brief account of those parts of [7] which are relevent 

to the LI5P semantics experiments. That paper discusses the rigorous development 

of theories of propositional logic, integer arithmetic, lists and finite sets. It provides 

the axiomatic basis for a library of standard theorems from those various theories 

as well as a collection of results (not depending on axioms) which are useful when 

working with the LCF system. 

In proving theorems about the meanings (and other properties) of various 

LISP functions, it is necessary to make use of a substantial number of results from 

arithmetic. Also, of course, the theory of lists is fundamental to the representation 

of LISP functions and the data they manipulate. The set theory of [7] was not 

required as background mathematics. Moreover, it was convenient to avoid using 

the treatment of propositional logic (thus space was saved since the theorems were 

not required). 

We proceed, in this summary, by giving the axiomatic bases for each of the 

various aspects of the environment together with some indication of the scope and 

depth of the corresponding sections of the library of theorems. As an indication of 
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the numbers of theorems involved, we note that the number given in [7] Is about 

1000 and about 400 of these were selected for use in the LISP experiments. As 

was anticipated, this body of theorems needed to be extended by the addition of 

some other useful lemmas. About 40 such extra results were added to the 

environment (all having very short proofs). 

The domain of individuals (DJ is thought of as partitioned into subdomains 

which correspond to data types. These subdomains are characterised by type- 

predicates (functions of LCF type (ind-»tr) ). For example the predicate 'isint' 

(axiomatised below) gives T on individuals which are supposed to be integers and 1 

or F on all else in Dind. 

U 

4.1. Axiom Free Theorems in LCP: 

The theorems (or classes of theorems) in the following list depend on no 

(nonlogical) axioms.  None is very deep but they find frequent use. 

i) 
ii) 
iii) 

H   [xx.i] S i 
h   Vp. pVT.Fsp 
h  Yp. p-i,i = i 

V. i 

iv) 
v) 
vi) 

vii) 

x EX H x^i 
F(X)B1   |-   F(JL)*i 
P(i) -^ T  h P 3 [xx.T] 
P(i) = F  h P s [xx.F] 
P(X)r:T, P(Y)r:F    f.    P(l)si 
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viii) 

ix) 

xi) 

FUF2,A1EA2  I-  F1(A1) s F2(A2) 
F1EF2(AUA2,BUB2 |- F1(A1,B1) E F2(A2(B2) 
and so on. 
P-T,i s T I- P a T 

etc. 
P->T,QsF I- P = F 
P^Q.T ^ F I- Q s F 
etc. 
G 3 F(G)  h  [/ig.F(g)] E G 

xii) 

(. / 

U 

P-iT,T s F |- T * F 
P-»F,1 = T H T = F 
etc. 

Note that (i), (ii), (iii) are suitable for permanent SIMPSET residence and 

that (xii) is good for deriving contradictions. 

4.2. Equality and Definedness: 

We are easily able to axiomatise a sensible equality predicate ( = ) and a 

definedness predicate ( a ). We want to call all individuals except 1 defined; that 

is, if x is in Dind then we want Üx)*J if and only if x is not 1. The desired 

equality predicate must be T or F on all pairs of defined elements of Djnd, must be 

reflexive on defined elements and must be such that (x=y)ET indicates x«y. In 

postulating such a two place predicate we make a commitment that Djnd should be 

discrete (flat). 

We axiomatioe '=' and define 'ü' in terms of it as follows: 

.i I 

i 
A 

t 
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AXIOM EQ 
Vx. (x=x)-*x,i s x 
Vx y. (x=y)* x^y, 
Vx y. (x=x)-»((y=y)-*T,i),i = (x=y)^T,i 
(1=1) s i 

cl a [XX. X=X ] 

We use the vertical bars ( || ) down the left hand edge of the page to 

indicate axioms. 

As a technical aside to the critical reader, note that the fourth of these 

axioms is not necessary if we can talk about some element of Dind other than i; in 

that case we can deduce  '(l=l)-i' by monotonicity. 

Although (X-Y) T h X^Y is the fundamental property of the equality 

predicate, '=' should not be confused with "-'; the latter is not a computable 

function. 

Both of these functions (definedness and computable equality) have proved 

extremely useful and the following are the theorems (or groups of theorems) that 

are to be found in the environment (with comments):- 

i) |- ci(l) H i 
ii) h Vx. x=l a 1 

H Vx. l=x 3 i 
iii) h Vx. (x=x) a ä{x) 

iv) a(X)si  H  X H 1 
v) X=Ysil cl(X)3T   h   Yai 

X=YnF  h ci(X)=T 
etc. 
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(Strictness of 3) 
(Strictness of '=') 

(Reflexivity of '=') 

(Totality of 'a') 
(Totality of '=') 
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(Conversion to '«') 
(Conversion from '■') 
(Reflexivlty again) 
(Commutativity of '=') 
(Discreteness of Djnd) 

vi) X=YsT   h X^Y 
vii)        X=Y, ci(X)aT  h X=YBT 
viii)        r:i(X)BT  h X=XBT 
ix) (X=Y)-=Tr  |.(Y(=X)=Tr 
x) r:i(X)ST, XEY  (- X=Y 
xi) RX)=F(Y)-F  h X=YnF 

F(X)=F(Y)«F  h F(l)sl 
P(X)aT, P(Y)SF  h X=YriF 

xii) ci(X)-F  h T=F 
xiii) (X=X)rSF   f- T^F 
xiv) (X=Y)-i^(X)HT) £i(Y)=T  HT^F 
xv) (X=Y)SF, XEY I- T=F 

Note that the theorems suitable for permanent simpset residence form the 

firct group (i-lii) and those which are contradiction oriented have also been grouped 

together (as xii-xv;. 

4.3. Natural Numbers: 

Although the natural numbers are not used, as such, in the LISP 

experiments, and although the theorems concerning these objects have been 

removed from the environment as described in [7], the foundations for the 

construction of the integers is the axiomatisation of natural numbers. The 

interpretations intended for the constants (0, 1, Z, isnat, succ, pred) are the natural 

ones. Note that 'isnat' is a type predicate which gives T on natural numbers and 1 

on everything else. 
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AXIOM N(M: 
Z " [xx. x=0] 
2(0) * T 
isnat =- [^iF. [\x. Z{x)-*J,F(pred{x)) ]] 
Vx. isnaUx)* Z(x)-*0,5ucc(precl(x)) = x 
Vx. isnoKx)* Z(succ(x)) a p 
Vx. isnat(x)* pred(succ(x)) s x 
1 = GUCC(O) 

2 s succ(l) 

Although this set of axioms is simply a building block (in the current 

context), we give a set of derivable theorems which correspond to the traditional 

Peano Postulates. This indicates that one should expect all the usual results of 

basic number theory to be provable. 

isnat(0) •- T 

isnaUX)~T  h  isnat(succ(X))=T 

isnat(X)nT |- (succ(X)=0)nF 

isnaUXbTT, isnat(Y)=T, succ(X)-succ(Y)   \-  X^Y 

g{0) =1, Vx. isnat(x)* g(x)* g(succ(x))=T 
h   Vx. isnat(x)* g(x)sT 

4.4. The Integers: 

The  following  axioms  specify more completely the  functions 'pred'  and 

'succ: (see above) and introduce the functions Vnns', 'pos' and 'isint'. 
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: AXIOM INT: 
Vx. isnat(x)* pos(x) s Z{x)->F,T 
Vx. pos(x)* Isnat(x) = J 
Vx. pos(mns(x)) = pos(x)-+F, Z(x)-»F,T 
Vx. pos(x)-»T,T = isint(x)-*T,i 
Vx. isint(x)-»mns(mns(x)),mns(x) s i8int(x)->x,i 
Vx. succ(x) s mns(pred(mns(x))) 
Vx. pred(x) B mns(8ucc(mn8(x))) 
[xx. Islnt(x)-»T,T] ■ ö 

iV 

| 

We first show the results of applying the various functions to the small 

integers (0,1,2) and to the undefined element of Dind. 

i) iGint(0)=T,   isint(l)=T,    isint(2)aT,   isintd)^! 

ii) pos(0)^F,   pos(l)sT,    po5(2)=T,   pos{i)=i 

iii) 2(0)^1,   Z(ll)-F,   Z(2)-F,   Z(i)Hi 

iv) a(0)HT,   d{\)*J,   £1(2)^1,   3(1)^1 

v) succ(0)=I,   succ(l)=2,    succ(i)si 

vi) pred(l)sO,   pred(2)=l,    pred(i)al 

vii)        mns(0)=0,   mns(i)si 

The derived theorems ere too numerous to list but we now give some 

examples selected to give a flavor of them. 

i) isint(XhF    h    pos(X)Hi 
isinUXhF    h   succ{X)si 

ii) |-  Vx. iGint(Gucc(x)) = isint(x)-*T,i 
h  Vx. Z(mns(x)) = isint(x)-*Z(x),i 
h  Vx. mns(pred(x)) - succ(mns(x)) 
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iii) pos(X)=T  f- isint(X)-T 
isint(X)«T  h ci(X).-T 
a(succ(X))n=T  \- isint(X)sT 

iv) ismt(X)=HT, pos(X)3l   h T^F 
isint(X)nT, Z(X)31      f. T^F 

4.5. Integer Arithmetic: 

LCF is such that once we have axiomatised a structure then many of the 

functions we may be interested in can be written as terms of the logic. We give 

below definitions of the various operations of arithmetic that were appropriate to 

proving things about the LISP subsets that we are Interested In. 

AXIOM ARITH 
+ - [nG. [xx y. Z(y) -* (isint(x)-x,l), 

pos(y) - G(succ{x),pred{y)), G(pred(x),succ(y))]] 

- ■- [xx y. x+mno{y)] 

* - t>G. [xx y. Z(y) -» (i5lnt(x)^0,i), 
pos(y) -* G(x,pred(y))+x, G{x,succ(y))-x ]] 

> s [xx y. pos(x-y)] 
> -- [xx y. Z(x-y) -» T, pos(x-y)] 

Many other useful and traditional arithmetic functions are defined In [7] 

inclüdinß division, remainder-on-dlvlsion and bounded-existential and bounded- 

universal quantifiers for integer predicates. 
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It is readily proved that all these functions are total over the integers but 

defined only on the integers; these facts find expression in many theorems in the 

environment. Apart from all the well-known basic propertie« of these functions (such 

as commutatlvity of V and V or the transitivity of V and V) being given, a large 

number of simple relations between 2 or 3 of the constants (i, 0, 1, succ, +, pred, -, 

*, >, >, mns) are given as theorems. In fact, the environment contains over 150 such 

theorems and there seems no way of categorising them so we can even list 

representative theorems. However, it has turned out that this library has been 

adequate to handle the modest requirements of the LISP project. 

4.6. A Theory of Lists: 

In [7] there is an extensive treatment of lists based on the axioms below. 

The treatment was substantially LISP-inspired and developed via a treatment of 

certain abstract objects that are similar to S-expressions. In that report they were 

called S-expressions but that has turned out to be a bad mistake for the current 

work so we will call them PONs (since a PON is either a Pair Or NIL). There is a 

pairing function v (like CONS) and two selector functions ('hd' and 'tl' - like CAR and 

CDR) for analysing pairs. As in LISP an atom is anything that is not a pair and 

repeated selection in a PON eventually yields an atom. 
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AXIOM LIST 
iopond) - l 
iGpon(NIL) s T 
null   - [xx. x-ML] 
atom -. |xx. ispon(x)-^null(x),T] 
Vx. atom(x)* IKJ(X) « i 
V'x. atom(x)* ll(x) = 1 
Vx y. Iid{x-y) - r:i(y)->x,i 
Vx y. tl(x-y) s a{xHy,i 
Vx. hd(x)'tl(x) s atom(x)-i,x 
a - rMG.[xx.atonn(x)-T,G(hd(x))^G(fl(x))1i]] 
Islist ^ [/iG.[xx. null(x)-T,atom(x)^F,G(tl(x))]] 

O 

We first mention tliat all of the functions mentioned in the axioms are strict 

and that 'ispon', 'atom" & 'null' are total. We give just a few simple results of the 

theory (remembering that most of the theorems in the environment are quite 

simple): 

i) CI(Y)HT   I-  Vx. hdix-YNx 

ii) mnj   |-  Vy. tl(X'y)^y 

iii) .:j(hd(X))-T  f-  atom(X)-:F 

iv) atom(X)«F  H  a(hd(X))=T 

v) H  Vx. ci(tl(x))Br:i(hd(x)) 

vi) nulKX'Y)-T  H  T-F 

vii) hd(X)-:X   |-   Xni y 

viii) |-  Vx y. isli5t(x7)-Ji(x)-islist(y),l 
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ix) G(NIL)sT, Vx y. a{x)* islist(y)* G(y)* G(x.y)sT 
I- Vx. islist(x)* G(x)sT 

x) Vx. atom(x)* G(x)^T,  Vx y. G(x)=> G(y)* G(X'y)=T 
f-  Vx. £i(x)* G(x)sT 

..   .. 

. 

We now come to present a selection of the various list operations that 

were defined in [7]; we define here only those operations that we require for the 

experiments in this thesis. 

AXIOM LOP 
K ^ [/iG.[xx y. nulKx^y, hd(x)'G(tl(x),y)]] 

mem = [xx y, 1;'(x)^ORmap(y,[\z.x=z]),l] 
ORmap = [/iG.[xx p. islist(x)-» 

(null(x)HF, p(hd(x))-*T, G(tl(x),p)),i]] 

assoc s |>G.[xx a. a(x)-» islist(y)-» null(y)-»NIL) 

(x=hd(hd(y)))^hd(y)> G(x,tKy)), i,i]] 

length s OG.[xx. null(x)^0, succ(G(tl(x)))]] 

W is the append function for lists and 'mem' is membership in a list; 'assoc' 

and length' need no introduction. We do not give any properties of these functions 

but simply say that most of the results (about the functions) which were needed, 

were already available when required in the LISP experiments. 
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CHAPTER 5 

Notation, Denotation and the Nature of LISP Expressions 

C 

5.1. Notation and Denotation! 

Wc recoil, here, the ciistinction between numbers and numerals. Numbers 

arc obclrad (mathernatlcol) objects while numerals are expressions in certain 

lansuagcs; Numerals are used to denote numbers while numbers provide the 

interpretations for numerals. The common number/numeral confusion arises because 

of the usual identification of numbers with the numerals of the positional-notation 

decimal number system (actually a numeral system). Remember, every numeral 

denotes- some number and is consequently notation for the number! 

Chapter 4 described an environment within which the current experiments 

on a LISP semantics can be performed. Some very important classes of abstract 

objects are therein developed: - integers, lists and ordered pairs. A treatment of 

LISP mutt contain some discussion of notations for these abstract entities but we 

find our vocabulary is not rich enough: clearly 'list' corresponds to 'number' but we 

need a word to correspond to 'numeral'. We shall adopt the convention that when 

we have a name for a class of abstract objects we shall write it predominantly 
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lower case and when we wish to discuss the class of expressions that represent the 

abstract objects we will use all capitals. For example an S-EXPRESSION will be an 

expression in a language that denotes a certain S-expression (an abstract object). 

If we have a class Pqr of abstract objects and a class PQR of 

representations for elements of Pqr, then there is a semantic function, (call it Den) 

which maps expressions into the objects they denote. We will refer to Den as a 

denotation function. There are also functions which map each abstract object 

into an expression of the language we are using to discuss elements of Pqr; we call 

these functions notation functions. 

Just as "02", "0002" and "2" are different notations for the same number, 

the LISP S-EXPRESSIOIMs "(A B)", "(A . (B))", "(A . (B . NIL))" and "(A . (B . ( )))" 

denote the same S-expression. The fact that systems of notation are often 

redundant in this way means that denotation functions are in general many to one. It 

is a fundamental property that if N is any notation function for Pqr then for all X in 

Pqr, Den( N( X )) = X . Also, the function [\x. N(Den( x ))] selects canonical 

representations. 

5.2. Abstract Syntax 

The term syntax usually refers to rules (perhaps phrased in BNF) which 
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LJ , 

specify which strings of symbols are legal in some language and what the structures 

of the language are. McCarthy calls this 'concrete' syntax. 'Abstract' syntax also 

describe:; the structures of the language but without saying how the structures are 

represented by strings of symbols. 

Abstract syntax comes in two flavours:- 'analytic' and 'synthetic'. Analytic 

abstract syntax makes use of discriminators such as 'issum' and 'Isassignment' 

and aloo selector functions to access components of syntactic entities. Synthetic 

abstract syntax deals in constructor functions such as 'mksum' and 

'mkassignrnent'. 

Abstract syntax is no stranger to the LCF project - [5] and [6] depend on 

it.   We now make the claim that defining denotation and notation functions (in LCF) la 

terms of McCarthy's notion of abstract syntax is quite straightforward.   In the next 

section this assertion will be illustrated with definitions of such functions for S- 

expressions. 
■ 

5.3. S-expressionsI 

As mentioned in Chapter 4, the notion of S-expression developed in [7] is 

unsatisfactory for our purposes. It is, therefore, part of the task of axiomatising 

subsets of LISP to define precisely what constitutes an S-expression. At this point, 
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^ we can outline what makes one: a certain subset of the atoms of Dind will  be 

S-expressions and if we know X and Y are S-expressions then X'Y is one too.  We 

cannot be specific about what the subset is, at this point, but it certainly will contain 

^ NIL and certain names or identifiers. Thus we are going to identify the LISP 'cons' 

function with the pairing function '-' that we know so much about.   Similarly, we 

identify 'car and 'cdr with 'hd' and 'tl' respectively. 

We are now in a position to exhibit denotation and notation functions for 

S-expressions.    We   use  abstract   syntax  (both  analytic  and  synthetic)   in   the 

definition.   We suppose, for the sake of the example, that S-expressions are those 

individuals that satisfy the type-predicate: 

isSexprn 3 [ßG. [\x. isint(x)-»T, isname(x)-»T, null(x) -»T, 
atom(x)-»F, G(hd(x)HG(tl(x)), F]]. 

ft 

£ 

We call  the denotation function for S-EXPRESSIONS 'Sexprnof and the 

notation function for S-expressions 'mkSEXPRN': 

Sexprnof = [MG,[xX.iGlNTEGER(X) - integerof(X), 
isNAME(X) -* nameof(X), 
isNlUX) -♦ NIL, 
iGPAIR(X) ^ G(lcftof(X))'G{rightof(X)), 
isLIST(X) -» G(firstof(X))'G(rostof(X)), 
i]] 

mkSEXPRN = [^G.[xx.iGint(x) - mklNTEGER(x), 
isnarncix) -♦ mkNAME(x), 
(x-NIL) -» mkNIL, 
isSexprn(x) -♦ mkPAIR(G(hd(x)),G(tl(x))), 
i]] 
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The functions 'islNTEGER'. «isNAME'. 'isNIL', 'isPAIR' and 'isLIST' are analytic 

syntax discriminators; 'leftof, Vightof, 'firstof and 'lastof are analytic syntax 

selector functions; 'mkPAIR' and 'mkNIL' are synthetic syntax constructor functions. 

Of course, we have just passed the buck since 'integerof and 'nameof are also 

denotation functions and 'mklNTEGER' and VnkNAME' are notation functions. 

If in this example we have appropriate results about  the lower level 

functions such as 

Vx. isname(x)*  nameof( mkNAME(x)) = x , 
Vx. islNTEGER(x)*  isint(integerof(x)) = T , 
Vx. isname(x)*  islNTEGER( mkNAME(x)) = F 

then we are easily able to prove 

Vx. isSexprn(x)*   Sexprnof(mkSEXPRN(x)) s x . 

5.4. LISP Expressions: 

Since this thesis is conceded with the semantics of the programming 

lancuage LISP, we must inevitably describe what sort of mathematical object a LISP 

pronram" (or a LISP 'function' ) is. We must conclude that, because of the 

indistinguk-habtlity of program and data in LISP, all expressions in the language 

(whether they are intended for 'execution' or not) must have the same typej they 

must be members of Dind . In fact all LISP functions, arguments and results will be 

S-EXPRESSIONs. 
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What we are looking for when we seek a semantics for LISP is a function 

(call it LISP) which maps S-EXPRESSIONS onto S-EXPRESSIONS in the same way as 

a LISP interpreter actually running in a machine. For example, LISP should map 

the S-EXPRESSION 

"(CDR (CONS NIL (QUOTE X)))" 

onto the S-EXPRESSION  "X". 

^ 'LISP(Y)' must be the same. 

We now point out a method of defining LISP indirectly which is very 

important to our work. What we do is to define an interpreting function 'lisp' which 

maps S-expressions onto S-expressions in the appropriate manner. Then by using 

denotation and notation functions (D and N) we can define LISP as a composition 

of functions: 

LISP « [xX. N(lisp(D(X)))]. 

Note that the function we get depends on the particular choice of 'N' but 

this is as it should be. Because of the way we have defined LISP we have the 

following commutative diagram: 
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A necessary property of such a LISP function is that if S-EXPRESSIONS 

'X' and T denote the same S-expression then the S-EXPRESSIONS 'LISP(X)' and 

I 
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■*    S-EXPRESSIONS 

Now, if Nj is any (other) notation function for S-expressions then we should 

be able to prove 

lisp B [xx. D(LISP(Nl(x)))] 

using   the   basic   relationship   between  denotation   and   notation   functions.   This 

Immediately suggests that the function 'lisp' is more fundamental than any particular 

LISP function we might have. 

From this point on. therefore, we shall not be concerned with notation In 

general or S-EXPRESSIONs In particular; all discussion will centre round 

S-expressions. 

5.4.1. List Notation. 

We mention one point of notational convenience. In the LISP we all know 

and love, (ABC) can be thought of as an abbreviation of (A . (B . (C . NIL))). Just 

for the purposes of this document we shall use a similar abbreviation for lists but 

we use the distinctive brackets '(' and ')'. For example (A B C) is an abbreviation 

[ 

Q 

U 

' 

o 
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for A-(B'(ONIL)) (i.e. denotes the list containing A, B, C). Note that (A B C) is not a 

term of LCF since the LCF system does not have a capability which allows 

introduction of abbreviations. 

5.4.2. LISP Functions: 

We have taken the position that LISP expressions, in general, and what are 

usually termed 'LISP Functions', in particular, are simply individuals. This raises the 

question "Do HSP Functions', such as 

(LAMBDA (X) (CAR (CDR (CDR X)))) 

have any functional character whatsoever?" . 

Answer: 'LISP Functions', although simply LISP data, induce functions under 

interpretation. Hence we may sometimes identify an S-expresslon with the LCF 

function that it induces under interpretation. For example, we will Identify with the 

'LISP Function' above, the LCF function; 

[\y.lisp(((LAMBDA (X) (CAR (CDR (CDR X)))) y))]. 

which will turn out to be simply the function  [\y. hd(tl(tl(y)))], 
0 

. 

» 
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CHAPTER 6 

An Axiomatic Theory of Pure LISP 

6.1. Extending the Environment for Names: 

Both data and programs in Pure LISP are S-expressions built from NIL and 

those atoms which are simply names (identifiers). The environment of Chapter 4 

gives us some power to manipulate such S-expressions because of their structure 

but we need to augment these results so we can we can (logically) talk about the 

atoms in S-expressions. In fact, we must present axioms which further specify Dind 

to contain names as well as integers etc. Not only do we want to talk about names 

in general but we want to introduce certain specific names such as T', 'LAMBDA' 

and 'CAR' . 

The first four axioms for Pure LISP are then: 

**AXIOM PL1: 
11 isSexprn s [>F.|>x. null(x)->T, isname(x)-*T, 
II atom(x)-»F,G(hd(x))-»G(tl(x))1F]] 

**AXIOM PL2: 
| Vx. isname(x) -> isint(x) -* l, atom(x) -» x, i, 
I isint(x) -» atom(x) -» x, i, x s x 

**AXIOM PL3: 
II Vx. ci(discr(x))* isname(x)3T 
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PL1 simply expresses in LCF the definition of S-expressiom) for Pure LISP 

which was given in plain language above. Then PL2 further specifies the structure of 

the domain of individuals (D,nd) as being partioned by the name and integer type- 

predicates.  Looking at the consequences of these two axioms we see 

|-   isname(i) = i 
sname(X)=i  h X - i 
snameM^T  h  atomM^T 
sint(X)aT   h atomiX)^! 

as well as the fact that names, integers and pairs (non-atoms) are all distinct. Finally, 

PL3 introduces 'discr' which maps names onto integers and is the basis of a compact 

way of introducing specific names; we will use it is a discriminating function to give 

a total ordering for names (although this fact is not contained in the axiom).   To 

illustrate its use we just proceed with the axioms for Pure LISP, giving the one 

which introduces the 'reserved words'. 

**AXIOM PL4: 
discr(LAMBDA) > discr(LABEL) = T, 
discr(LABEL) > discr(QUOTE) = T, 
discr(QUOTE) > discr(ATOM) = T, 
discr(ATOM) > discr(COND) = T, 
discr(COND) > discr(CONS) ■* T, 
discr(CONS) > discr(CAR) = T, 
di5cr(CAR) > discr(CDR) ^ T, 
discr(CDR) > discr(EQ) a X, 
discr(EQ) > discr(F) E Jt 

discr(F) > discr(T) a T 

When using the LCF system to do the proofs discussed, we decorated the 
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specific names (QUOTE, CAR etc.) with a leading underbar. Underbar in an identifier 

indicates that the atom is a constant name in Djnd and mentioned in the axioms. 

However in this report we will simply write _CAR as CAR . 

It is a trivial exercise to show that each of these reserved words is a name 

(satisfies the 'isname' type-predicate).  Furthermore, using the transitivity of V we 

can easily show that distinct names are unequal. For example, we can derive 

diGcr(CAR)>discr(T) s J     and hence      CAR=T--F . 

■& I 

Jl 

6.2. Axioms for Interpreting Pure LISP: 

As has already been inferred, we will be defining in this section, a function 

'lisp' which 'interprets' S-expressions in the appropriate manner. For example, we 

wish the function to satisfy the equations 

lisp/(QUOTE T)) s T 

lisp(((LAMBDA (X) (CONS X (QUOTE F))) (QUOTE T))) ^  T • F 

where, of course, X is a name. 

[12] contains, in order to be precise about the meaning of the language, an 

interpreter for Pure LISP. That interpreter, which is written in Pure LISP, and which 

we reproduce in Figure 6.1 (next page), is a collection of mutually recursive 

functions, the most important of which are 'eval' and 'apply',  'eval' is a function of 
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;; 

apply[fn;x)a] = 
[atom[fn] -» [eq[fniCAR] -♦ caar[x]; 

eq[fn;CDR] -♦ cdar[x]i 
eq[fn;CONS] -+ cons[car[x];cadr[x]]i 
eq[fn;ATOM] -> atom[car[x]]) 
eq[fn;EQ] -» eq[car[x];cadr[x]]i 
T -> apply[eval[fnja];x;a]]i 

eq[car[fn];LAMBDA] -> 
eval[caddr[fn]ipairlis[cadr[fn];x;a]]; 

eq[car[fn];LABEL] -> apply[caddr[fn];x; 
cons[cons[cadr[fn]icacldr[fn]];a]]J 

i s 

«*■ 

eval[e;a] = 
[atom[e] -^ cdr[assoc[e;a]]; 
atom[car[e]] -» [eq[car[e];QUOTE] -» cadr[e]; 

eq[car[e]iCOND] -» evcon[cdr[e]ia]j 
T -» apply[car[e];evlis[cdr[e]ja];a]]; 

T -> apply[car[e]iev|is[cdr[e]!a];a]] 

evcon[c;a] = [eval[caar[c];a] -» eval[cadar[e];a]; 
T -» evcon[cdr[c]ia]] 

evlis[m,a] = [null[m] -* NIL; 
T -* cons[eval[car[m];a];evlis[cdr[m]ja]]] 

pairlis[x;y;a] = [null[xl -» a; 
T -* cons[cons[car[x]icar[y]]; 

pai rl i s[cdr[x]icdr[y]i8]]] 

assoc[xia] = [equal[caar[a];x] -» car[a]i 
T -+ assoc[xicdr[a]]] 

Figure 6.1 - The Pure LISP Interpreter of McCarthy. 

-: 
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two arguments:- a LISP expression and an association list which is used to hold the 

bindings of variables. 'eval(E, A)' gives the LISP interpretation (the evaluation) of 

the expression E using A to get the values of variables. Similarly, 'apply(P, L, A)' 

applies the LISP function F to the list L of arguments again using A to bind values 

to variables. 

Now in developing a new definition of Pure LISP, we do it in a way that 

corresponds as closely as possible to the McCarthy interpreter. In particular we will 

have LCF functions 'eval', 'apply', 'evils', 'evcon' etc, each with almost the same 

structure as the LISP function <.: the same name. 

'eval' is the most basic of the various functions we propose since we are 

able to define all the others in terms of it: 

**AXIOM PL5: 
II lisp - [xe. eval(e,NIL) ] 

**AXIOM PL6: 
apply :-• |>G. [xfn x a. ci(x)^ islist(a)-» 

(fn-CAR)- hd(hd(x))l 
(fn=CDR)-> tl(hd(x)), 

(fn=C0NS)-* hd(x).hd(tl(x)), 
(fn=AT0MH atom(hd(x)) -* T, F, 

(fn=E0)-» [xx y.atom(x)-*atom(yMx-y),i,i] 
.    „ v   „, (hd(x),hd(tl{x)))-*T,F, 

atom(fn)- G(eval(fn,a),x)a), 
(hd(fn)-LAMBDA)-» eval(hd(tl(tl(fn)))( palrll8(hd(tl(fn)),xla)). 

(hd(fn)=LABEL)-G(hd(tl(tl(fn))),x(((hd(tl(fn)).hd(tl(tl(fn))».a))l 
1,1,1 ]] 

& 

..• 

%J 

O 
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**AXIOM PL7: 
evcon " [/iG.[xc a. 

(eval(hd(hd(c)),a)=T) -> eval(hd(tl(hd(c))),a), 
(eval(hd(hd(c)),a)=F) - G(tl(c),a) ,  1]] 

**AXIOM PL8: 
|| evlis H [MG.[xm a.null(m)^NIUeval(hd(m)Ia)»G(tl(m),a)]] 

**AXI0M PL9: 
pairlis s [/iG.[xx y a. null(x)-»a) 

(hd(x)My)) • G(tl(x),tl(y)(a)]] 

■ 

I*' 

It remains only to define 'evai'.  Inspired by the interpreter we want 'eval' 

to satisfy the equation 

eval = [xe a. atom(e)  -» tKassocie.a)), 
hd(e)=QU0TE) -* h^tKe)), 
(hd(e)=C0ND)  - evcondKe^a), 

apply(hd(e),evlis(tl(e),a),a)]. 

Now  this  equation  is  not  satisfactory  as  a definition  since  it  contains 

references on the right to functions which depend on 'eval';   if we adopted this we 

would not have a set of definitions but a set of mutually recursive equations. Worse 

yet, this set of simultaneous equations, although consistent, does not specify the 

functions adequately. An example will show this: Consider the computation of 

eval( (G), (G»(LAMBDA NIL (G)))) 

through apply( G, NIL, (G«(LAMBDA ...))) 

and apply( (LAMBDA NIL (G)),NIL,(G'(LAMBDA...)) ) 

back to eval( (G), (G'(LAMBDA NIL (G))))      !!! 
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It   io   not   inconGistent   with  the  above  equation,  then,  to  assert,   for   example 

revol((G), (GdAMBDA  NIL  (G)))  =  T'. We actually want our definition of 'eval' 

to f-pccify the rccultc of all computations. 

The oolulion is clear, we take the definitions of 'evcon', 'apply' and 'evlis' 

and substitute them in the above equation for 'eval'; we then take the fixed point of 

the right hand side; lastly we add a leading condition to ensure strictness. We 

present the resulting axiom ( PL10 ) as Figure 6.2 (next page). With this definition 

of 'eval' we get as a theorem 

eval 3 [xe a. islist(a)-» 
(atom(e) -» tl(assoc(e,a))), 
((hd(e)=QU0TE) ^ hd(tl(e)), 
(hd(e)-COND) -* evcon(tl(e),a), 

apply( hd(e), evlis(tl(e),a), a)), i] 

A noteworthy technique for working in LCF was just used but the following 

abstract example will illustrate it better since it has less irrelevant detail; we 

suppose two functions (L,M) satisfy the equations: 

L * P(L,M)     and      M ^ Q(L,M) 

The MUTUAL least fixed points for L and M are given by the definitions: 

L ^ [MF. P(F([MG.Q(F,G)])]   and   M n [MG. Q(L,G)]. 

Similarly, supposing three functions (L,M,N) satisfy the equations: 

L * P(L,M,N)        M n Q(L,M,N)        N * R(L,M,N) 

the MUTUAL least fixed points for L,M,IM are given by the quite lengthy definitions: 
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»♦AXIOM PL 10: 

eval "- [>B.[\e a. 
islist(a)-» 

<atom(e) -* tKassode.a)), 
hd(e)=QU0TE -^ hd(tl(e)), 
hd(e)=C0ND -» 

[MG.[XC a. (B(hd(hd(c)),a)=T) -> B(hd(tl(hd(c))),a), 
(B(hd(hd(c)),a)=F) -* G(tl(c)la),i]](tl(e),a), 

[/iG.[xfn x a. ciix)-* islist{a)-* 
(fn=CAR) -* hd(hd(x)), 
(fn=CDR) ■* tl(hd(x)), 

(fn=C0NS) -♦ hd(x)'hd(tl(x)), 
(fn-ATOM) -* atom(hd(x)) ■* T, F, 

(fn=EQ) -* [xx y.atom(x)-»atom(y)-»(x=y), 
i(i](hd(x),hd(tl(x)))- T.F, 

atomdn) -• G(B(fn,a),x,a>, 
(hd(fn)=LAMBDA) - B(hd(tl(tKfn))), pairlis(hd(tl(fn)),x,a)), 

(hd(fn)=LABEL) - GdiddKtKfn)))^, 
((hd(tl(fn))-hd(tl(tKfn))))'a))(i,i,J.]] 

(hd(e), 
[/iG.[xm a. null(m)-»NIL, 

B(hd(m)Ia)-G(tl(m)(a)]](tl(e),a), 
a)), 1] 

Figure 6.2  -  The Definition of 'Eval'. 
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L - [MF. PIF, [MG. Q(F,GI[MH.R(FIG,H)]],[/ZH. ^F.^G^F.G.HJ.H)] 
M - 1/iG. Qd.G^H.Rd.G.H)]] 
N n [pH. Rd.M.H)] 

6.3. Discussion of the Axioms: 
c 

6.3.1. A Different 'evcon'. 

Because we have modelled the above definitions on McCarthy's interpreter, 

an actual difference in the semantics is accented - a difference in the actions of the 

two functions 'evcon'.  That there is discrepancy is illustrated by the example: 

evaK (COND ( (QUOTE X) (QUOTE X) ) 
( (QUOTE T) (QUOTE T) ) ), NIL) 

In our semantics this term is i whereas the old interpreter will yield the 

answer T. We feel justified in making this small change since it seems that the 

action  of  McCarthy's interpreter (in this case)  is at  variance with the  natural 

language description of Pure LISP.  We quote from [12] the definition of conditional 

expression: 

" A conditional expression  has the following form: 
[Pi-^e,; P2->e2j...;pn-»en], 

where each p, is an expression whose value may be 
truth or falsity,  and each  e; is an expression.  " 

U 

O 
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6.3.2. 'lisp' is not 'evalquote'. 

[12]  presents the top level  of  the Pure LISP Interpreter  to  be  the 

'evalquote' function which corresponds to 

[\fn x. apply(fn,x,NIL)]. 

We could also have defined 'lisp' to be that term, but have chosen instead 

to follow the example of the usual LISP systems which use 'eval' as the 'top level'. 

6.3.3. Strictness of 'eval' and 'apply'. 

Next  note that the definitions of 'eval' and 'apply' have the following 

structure: 

eval - OF.Oe a. islist(a)-»(atom(eH(..),(..)),i]] 
apply -■ I>G.[\fn x a. ct(xHslist(a)-» 

((fn^CARHJ.UUi]]. 

The main point of the 'islist(a)' and W conditions is to ensure that each 

of these two functions is strict in each argument position. Of course, '3(a)' would 

have guaranteed strictness equally well as 'islist(a)' but the latter was chosen for 

imagined technical convenience: we are only interested in the function when the last 

argument is an association list so it might as well be undefined if that argument is 

not even a list. In retrospect it would be preferable to replace ,:islist(a)' by '3(a)' in 

both definitions since some theorems are more compactly stated and many proofs 

become easier. 
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Actually, strictness in the last argument position for 'apply' is not essential 

but strictness in the second argument positions of both 'eval' and 'apply' Is required 

to prevent counter-intuitive results.  The following examples illustrate this fact: 

i)        lisp( (LAMBDA (X) (QUOTE T))-ML ) . 

This term computes to 

applyi (LAMBDA (X) (QUOTE T)),NIL,IMIL) 

and then to 

eval( (QUOTE T),!) . 

Depending on whether we have the 'islist(a)' condition in the 

definition of 'eval' or not this further computes to 1 or T 

respectively. Now i is the appropriate answer since a 

disaster occured during the computation. We would expect 

mechanical computation ( a? with an interpreter ) of this 

example to FAIL at the point where 'hdiNIL)' is required. 

ii) isp( ((LAMBDA NIL (QUOTE T)) 
f < (LABEL N (LAMBDA NIL (N))) NIL))) 

Noting that 

eval( ((LABEL N (LAMBDA NIL (N))) NIL),NIL) * 1 

This term computes to 

apply( (LAMBDA NIL (QUOTE T)), 1, NIL) . 

-.   i 

0 

n 

u 

ü 
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Then, depending on whether the 'ii(x)' condition is in the 

definition of 'apply' or not, we get, as the answer, either 1 or 

T . Again the latter answer is counter-intuitive since 

mechanical interpretation (using McCarthy's model) of 

eval( ((LABEL N (LAMBDA NIL (N))) NIL),NIL) 

would go on forever. 

t 

I 

S.pA Total Formality. 

Since the meaning of Pure LISP is embodied in the function 'lisp' in the 

axiomatic setting we have provided, we have succeeded in giving a completely 

formal specification of the language. Contrast this with the method of [12] where 

Pure LISP is first described in plain language and then this definition is 'tightened up' 

by the presentation of an interpreter. Note that this interpreter is not a definition of 

the language since it is only meaningful in the context of the accompanying natural 

language description. 

6.4. Theorems of Pure LISF: 

Having the definitions frr 'lisp' and the auxiliary functions is barely half the 

job of constructing a 'theory of Pure LISP' that can be applied to proofs of 

correctness of programs. We now need to develop a body of theorems which we 

U 

■ 
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can expect will facilitate such applications. Presented in this section is such a 

collection of lemmas giving properties of the functions 'eval' etc. and giving the 

reaults of these functions in special cases. Most of the theorems are suitable for 

inclusion in a SIMPSET. 

We start by presenting some lemmas for the functions 'eval', 'evils' and 

'pairlis' . These functions are strict in almost all argument positions. Where 

appropriate the strictness results such as f- Vx.evlisU.x) s 1 were proved 

although we do not list them.  More interesting are the following: 

i) I- Vx y a. evcon(((QUOTE T) x>y,a) ^(yHevaKx.a),! 

ii) 

iii) 

iv) 

c"(XhT, ci(Y)nT h Vw a. evcon( (w XJ-Y, a) 

= (eval(w,a)=THeval{X,a), 
(eval(w,a)=F)-*evcon(Y,a),i 

f-  Va. evlis(ML,a) - NIL 
I-  Vx a. evlis((x))a) - (eval(x,a)) 
I-  Vx y a. evlis((x y),a) E (eval(x(a) evaKy.a)) 
etc. 
f-  Vx y a. pairllsiCx^yXa) - (x«y)«a 
I-   Vxl x2 yl y2 a. pairlis( (xl x2), (yl y2), a) 

s(xl«yl) .((x2-y2)-a) 
etc. 

/ 

u 

Building on these results, we are able to derive more easily basic lemmas 

describing the effects of 'eval' and 'apply' on come common constructs. (Again we do 

not concern ourselves with strictness results but just report on their existence.) 

We start with three special cases of 'eval' on expressions which do not involve 

function calls: 
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I 

v) |-  Vx a. eval( COND^x, a) a evcon(x,a) 

vi) f-  Vx a. eval( (QUOTE x), a) 3 islist(a)-»x,i. 

vii) atom(X)=T  \-  Vy a. eval(X,(X'y)»a) = islist(a)-»y,l 

viii) atom(X)aT, X=XleF 
h  Vy yl a. eval(X,(Xl'yl)»{(X'y)«a)) 

s islist(a) -* ä(yl)-*y,l, 1 

There is some taste involved in how one states many of these theorems. 

This last theorem, for instance, could have been written as 

atom(XhT, X=X1^F, islisUA^T, a(Yl)aT 
H  Vy. eval(X,(Xl'Yl)»((X7)"A)) ^y 

The next group of theorems concerns the application of the five standard 

functions: 

ix) H   Vx a. apply{CAR,(x))a) - islist(a) -* hdlx), 1 
f-   Vx a. apply (AT0M,(x),a) - islist(a)-* (atom(x)^T,F), 1 

and similar results for  CDR, CONS and EQ 

x) H   Vx a. eval( (CDR x), a) -- tl(eval(x,a)) 
|-  Vx y a. eval((C0NS x y), a) ** eval(x,a)'eval(y,a) 

and similar results for  CAR, ATOM and EQ. 

Finally there are theorems (or families of theorems) for the cases of 'aval' 

and 'apply" which involve functions which are given explicitly as LABELed 

expressions or as LAMBDA expressions: 

xi) h   Vn f x a. apply((LAcEL n f),x,a) = applyO.x/n'O-a) 
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xii) 

xiii) 

H  Vr, f x a. eval(((LABEL n f) x^a) ^ apply(f,6yiis(x,a),(rvf)oa) 

I-   Vb a. apply((LAMBDA NIL b),N\l,a) * evaKb.a) 
h  Vx y b a. apply((LAMBDA (x) b),(y),a) = eval(b((x.y).a) 

etc. for higher arities of the function. 

xiv) |.  Vb a. eval(((LAMBDA NIL b)),a) = eval(b,a) 
I-  Vx y b a. eval(((LAMBDA (x) b) y),a) a eval(b,(x.eval(y,a)).a) 
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CHAPTER 7 

Applications of the Theory of Pure LISP 

k* 

g! 

:• 

li 

We shall discuss ir this brief chapter the application of the semantics of 

Pure LISP (developed in Chapter 6) to the correciness of several simple LISP 

functions. The purpose of working these examples is to illustrate some simple 

techniques that may help in converting LISP functions to the the LCF functionals that 

they yield via interpretation. The three functions we use need to be defined and 

discussed anyway because they are used in the LISP interpreter that we discuss in 

the next chapter. The functions are 

i)      The NULL function of one argument X; It returns T if X is NIL else 

returns F; There is no recursion involved, 

ii) The EQUAL function of two arguments X.Y; It returns T if X is the 

same individual as Y; It is recursive but calls no other recursive 

function internally, 

iii) An ASSOC function of two arguments X.A; It returns the first pair in 

list A whose head is X although if there is no such pair it gives 

NIL; It is recursive and it makes a call on another recursive 

function ( EQUAL ). 

.i 

1 
I 
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Before we discuss the examples in iurn, some more axioms must be given 

(added to the environment axioms of Chapter 4 and the Pure LISP axioms of Chapter 

6). We must say that EQUAL, X, A, ASSOC etc. are all names (of functions or 

parameters) and distinct from each other and from the names LAMBDA, CAR etc. 

Also it is convenient to have names for the S-expressions which are the bodies of 

the functions NULL, EQUAL, ASSOC.  So: 

**AXIOM PL! 
discr(ASSOC) > discr(T) s Jl 

diGcr(EQUAL) > discrlASSOC) = J, 
discr(NULL) > discr(EQUAL) = T, 
discr(A) > discr(NULL) = T, 
discr(X) > discr(A) = T, 
diGcr(Y) > discKX) m J 

u 

**AXIOM PL 12: 
Snull s (LAMBDA (X) (COND 

((ATOM X) (EQ X (QUOTE NIL))) 
((QUOTE T) (QUOTE F)))) 

ü 

**AXIOM PL 13: 
Sequal ^ (LABEL EQUAL SequalB), 
SequalB ^ (LAMBDA (X Y) fCOND 

((ATOM X) (COND 
((ATOM Y) (EQ X Y)) 
((QUOTE T) (QUOTE F)))) 

((ATOM Y) (QUOTE F)) 
((EQUAL (CAR X) (CAR Y)) 

(EQUAL (CDR X) (CDR Y))) 
((QUOTE T) (QUOTE F)))) 

D 

;. 
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**AXIOM PL 14: 
Sassoc s (LABEL ASSOC SassocB), 
SassocB s (LAMBDA (X A) (COND 

((NULL A) (QUOTE NIL)) 
((EQUAL (CAR (CAR A)) X) (CAR A)) 
((QUOTE T) (ASSOC X (CDR A))))) 

:' 

! 

f 

i 

v 

7.1. The NULL Function: 

The correctness of the NULL function, given by an S-expression above, is 

succinctly captured in the theorem: 

f-  Ve. Iisp( (Snull e)) a null(evai(e)) -» T, F  . 

However, two theorems which are much more useful are: 

f-  Ve a. apply(Snull,(e)Ia) a islist(aHnull(e)->T,F),i 

and 

f-  Ve a.evol{(Snuil e),a) 3 null(eval(e,a))-»T,F . 

Actually, these theorems cover only the important and usual case where 

the function is applied to precisely one argument.  A more general result is: 

h  Vx a. apply(Snull,x,a) = isliGt(aMnull(hd(x))->T,F),i   . 

In fact, all of these theorems are trivial to prove in the LCF system and it 

suffices to consider just the second of the four.   The appropriate attack is with 

ABSTRaction followed by CASES on 'islist(a)' and 'ci(e)'. The only subcase with any 
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interest is the one in which we have 'islist^T, 5{e)<r. We use SIMPLification on 

this and the subgoal we get is 

atorTi(e) -» (alom(eHe=NIL),lHT,F, 
atom(e) -> 1, F   =    null(e)-»T,F . 

This subgoal happens to be easily provable by CASES on 'atom{e)' but the 

important thing about it is that it contains no mention of 'eval', 'apply' etc.; It is 

simply a proposition in LCF involving the equality of two terms which denote 

individuals and proving this subgoal has nothing whatever to do with the semantics 

of LISP, The number of substitutions which were ordered by the simplification 

routine is quite large and so we see we are reaping benefits from having a SIMPSET 

which was rich in special cases of the LISP primitives. 

The NULL function is a good example of the simple (but common) case of a 

function F which is just a LAMBDA term and which contains no nested LABEL 

conotructs and uses no unbound variables. As a statement of correctness of P, we 

will be seeking to prove a theorem that looks like 

Va x y.... apply(P,(x y ...),a) s islist(a)-»G(x,y,...),i 

It is proposed that in proving such a result one attacks with ABSTRaction, 

does CASES on 'isllsUa)' and CASES on the definedness of each of the arguments 

(x.y,...). If we are lucky all but one of the subgoals are trivial and the nontrivial one 

SIMPLifies to a subgoal which is quite free of 'eval', 'apply' etc. 

. / 

J 

U 

. 
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7.2. The EQUAL Function: 

;: 

■. 

c 

c 

EQUAL is an example of a function which is recursive but does not call any 

other recursive function internally (i.e. it does not contain any LABEL constructs). 

Again the statement of correctness is simple and comes in a variety of forms such 

as: 

Vx y a. apply(Sequal,(x y),a) e islist(a) -» (x=y)-»T,F, i . 

Recalling that Sequal and SequalB are the S-expressions that are the whole 

LISP function and its body respectively, we tackle the above theorem via the lemma: 

Vx y a. a(x)* a(y)* a550c(EQUALla)=(EQUAL'SequalB)* 
apply(SequalB, (x y), a) = (x=y)-»T,F . 

This lemma is appropriately attacked by induction on the structure of either 

of the arguments of EQUAL since the recursion of this function takes both apart. 

More specifically we do induction on some occurences of V using an equation that 

was introduced as an axiom in the Theory of Lists in Chapter 4 

a a [/iG.[xx. atom(x)->T,G(hd(x))-»G(tl(x)),i]] 

The base case is trivial and the other case reduces to a subgoal where we 

have 

G(hd(x))-T,     G(tKx)hT,     ct(y)*T, 
a5soc(EQUAL,a)-(EQUAL'SequalB), 
Vx y a.G(x)*   ci(y)*  assoc(EQUAL,a)=(EQUAL-SequalB)* 

apply(SequalB, (x y), a)   s    (x=y)-+T,F 

71 

,^N^>,.:„.,,--.v.^,^.,.;.,^.^^ 



SS^ggS^WR ^^r^r^^^r^'^T-'^S^   .^^^^^^^..^^^^jwa^y^^p^i^By^^^^ 'rr'Tv^^-1.'«.^,.,™ 

(^ 

and we must prove 

apply(SequalB, (x y), a) = (x=y)-T,F  . 

The next attack on the problem is by using the definition of SequalB and 

the SIMPSET which is primed with the nice lemmas that we described in Chapter 6. 

Simplification does not simplify it to something which is free of 'apply' and 'eval'; the 

subterms which are the recursive calls on EQUAL are almost intact. However, by 

doinc the CASES arguments that suggest themselves and applying the induction 

hypothesis we complete the proof of the lemma and then the proof nf the main 

result for EQUAL quickly follows. 

The important technique illustrated is that when one has a LISP function F 

which is an S-expression (LABEL F B) (where B is the body), and we want to 

establish a theorem that looks like 

Vx y .... apply(F,(x y ...),a) S istist(aHG(x,y,...),i 

then we try to prove a lemma that looks like 

Vx y ... a. a(x)* c)(y)* ....* assoc(F1a)=(F'B)* 
apply(B,(x y ...),a) B G(x,y,...) 

".. 

i.J 

., 

0 

:.■ 

■ 

and we attack the problem using an induction that reflects the computation that 

function G performs; perhaps we use the definition of G and perhaps we use 

induction on the structure of an argument of G that it tears apart. 
0 
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7.3. The ASSOC Function: 

We refer back to the start of the chapter for the S-expression form of 

ASSOC (the S-expression is named Sassoc). We also give here a corresponding Pure 

LISP function in M-notation 

assoc[xia] = [null[a]-»NILi 
equal[car[a]ix]->car[x]; 
T-»a5soc[x;cdr[a]]] 

■ 

. 

As shown by its definition, the ASSOC function chosen is recursive and also 

makes internal use of another recursive function; that is, it has a nested LABEL 

construct. The correctness results for ASSOC are typified by: 

Vx y a. apply(Sassoc,(x y),a) s islisUaH associx.y), i . 

The recursion aspect is handled in the same manner as it was in the proof 

of correctness of EQUAL; we prove the lemma 

Vx y a. a(x)* a(y)* assoc(ASSOC,a)=(ASSOC«SassocB)* 
apply(Sassoc,(x y),a) ■ assoc(x,y) 

doing it by induction on the second argument of ASSOC. The internal call on the 

recursive function EQUAL is no problem because we already have the result (last 

section); 

Vx y a. apply(Sequal,(x y),a) = islist(aMx=y)-»T,F,i 

which is great as a simplification rule. 

i 
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In general when a function contains a call on a recursive function, we prove 

a correctness result for the sub-function first. 

7.4. Remarks: 

The extraction of meaning functions for LISP functions from their S- 

expression forms, provided mutual recursion is not involved, seems rather slraight- 

forward and the prognosis for automation of the process is good. The simplification 

mechanism already docs a huge amount of the work and it is the author's belief that 

more effort .pent on the scope of the Theory of Pure LISP and further development 

of the LCF system would make the proofs even easier to generate and comprehend 

Although we have not worked any simple examples of correctness of 

mutually recursive functions the LISP Interpreter proof in the next chapter involves 

several case of mutual recursion (and is rather complicated). 

m 

\j 

:> 
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CHAPTER 8 

The Correctness of an Interpreter 

* 

: 

When McCarthy presented an interpreter for Pure LISP he did so in 

'm-expression- notation but the report also contained an algorithm for translating 

m-expressions to S-expressions. Following his prescription (and making the change 

to 'evcon' recommended in Chapter 6), we present in Figure 8.1 (next two pages) 

the various functions (that constitute this interpreter) as S-expressions; we also 

give names to these terms so they are given as an extra axiom (PL15). Note that 

we still need all the axioms of Chapter 7 (as well as those for Pure LISP and the 

environment) since EVAL, APPLY etc. make use of NULL, EQUAL and ASSOC. 

Note that these functions are oriented towards EVAL being the function 

called at the top level. In Pure LISP one does not declare the various functions one 

uses but writes them down in every place they are called except inside of 

themselves. Hence, as PL 15 is written, Sapply must just be considered a 

subexpression of Seval; 'lisp((Sapply x))' will be undefined for all S-expressions x 

that require a call of EVAL. Similar remarks hold for Sevlis and Sevcon. If it was 

desired that APPLY be the main function (as in the 'evalquote' model of the top 

level) then one could change (in PL15) the 'EVAL's in 'SapplyB' to 'Seval' and the 

'Sapply' in 'Seval' to 'APPLY' . 
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**AXIOM PL 15: 

Seval n (LABEL EVAL SevalB) 
SevalB -   (LAMBDA (E A) (COND 

((ATOM E) (CDR (Sassoc E A))) 
((ATOM   (CAR E)) (COND 

((EQ (CAR E) (QUOTE QUOTE)) (CAR (CDR E))) 
((EQ (CAR E) (QUOTE COND)) (Sevcon (CDR E) A)) 
((QUOTE T) (Sapply (CAR E) (Sevlis (CDR E) A) A)))) 

((QUOTE T) (Sapply (CAR E) (Sevli. (CDR E) A) A)))) 

Sapply -: (LABEL APPLY SapplyB) 
SapplyB : (LAMBDA (FN X A) (COND 

((ATOM FN) (COND 
((EQ FN (QUOTE CAR)) (CAR (CAR X))) 
((EQ FN (QUOTE CDR)) (CDR (CAR X))) 
((EQ FN (QUOTE CONS)) 

(CONS (CAR X) (CAR (CDR X)))) 
((EQ FN (QUOTE ATOM)) (ATOM (CAR X))) 
((EQ FN (QUOTE EQ)) 

(EQ (CAR X) (CAR (CDR X)))) 
((QUOTE T) (APPLY (EVAL FN A) X A)))) 

((EQ (CAR FN) (QUOTE LAMBDA)) 
(EVAL (CAR (CDR (CDR FN))) 

(Spairlis (CAR (CDR FN)) X A))) 
((EQ (CAR FN) (QUOTE LABEL)) 

(APPLY (CAR (CDR (CDR FN))) X 
(CONS (CONS (CAR (CDR FN)) 

(CAR (CDR (CDR FN)))) A))))) 

'I 
I I 

S 

& " 

Figure 8.1a   -   S-expression Form of the Interpreter. 
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Sevcon - (LABEL EVCON SevconB) 
SevconB n (LAMBDA (C A) (COND 

((EVAL (CAR (CAR 0)5 A) 
(EVAL (CAR (CDR (CAR C))) A)) 

((EQ (EVAL (CAR (CAR C)) A) (QUOTE F)) 
(EVCON (CDR C) A)))) 

Sevlis = (LABEL EVLIS SevlisB) 
SevlicB r. (LAMBDA (M A) (COND 

((Snull M) (QUOTE NIL)) 
((QUOTE T) (CONS (EVAL (CAR M) A) 

(EVLIS (CDR M) A))))) 

Spalrlis » (LABEL PAIRLIS SpairlisB) 
SpairllsB = (LAMBDA (X Y A) (COND 

"Snull X% A^ 
((QUOTE V)'(CONS (CONS (CAR X) (CAR Y)) 

(PAIRLIS (CDR X) (CDR Y) A))))) 

I 

Figure 8.1b  -   S-expression Form of the Interpreter (ctd). 
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Before we discuss the correctness of these functions we must give yet one 

more axiom to introduce the various function names and formal parameter names for 

the functions; 

PAIRLIS, APPLY, ASSOC, EVCON, EVLIS, EVAL, FN, C, E, M  . 

Wa do this in the same way as we introduced particular names in Chapters 2 and 3j 

that is: 

**AXIOM PL 16: 
diGcr(PAIRLIS) > discr(Y) = T, 
discKAPPLY) > discr(PAIRLIS) = T, 
etc. 

8.1. Meaning of PAIRLIS: 

The PAIRLIS function is similar in structure to the ASSOC function (see 

previous chapter) in that it is recursive and has an internal call to another function. 

It is not involved in the mutual recursion that is exhibited by EVAL etc. so we are 

able to ilve a meaning function for it just as we did with ASSOC. It should come as 

no surprise to learn that the function induced by PAIRLIS under interpretation is the 

'poirlis' function which is part of the axioms for Pure LISP. 

A convenient statement of correctness for the PAIRLIS function is the 

following: 

Vx y a al. apply(Spairlis, (x y a), al) 
= islist(al)-» a(y)-» pairMx.y.a), 1, ' . 
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I Care should be ucsd to avoid confusion (here and in the rest of the 

chapter) when two A-lists appear in a theorem; one will be used in the LCF 

interpretation of the interpreter functions (such as EVAL and EVLIS) and the other is 

a parameter of these functions. In the case we have here, PAIRLIS needs an A-list 

as a parameter and 'apply' need an A-list to interpret the Interpreter function 

PAIRLIS. 

8.2. Important Lemmas: 

I The big problem with EVAL, APPLY, EVCON and EVLIS is that they are 

mutually recursive; each of APPLY, EVCON and EVLIS call EVAL and EVAL calls the 

other three. Although it is rather comolicated as an example, it Is hoped that the 

proof of correctness of EVAL will give some insight to the rather common 

phenomenon of mutual recursion. 

We now present the main correctness theorom for the S-expression form 

of the Pure LISP interpreter: 

Ve a al. apply(Seval,(e a),al) = islist(al)-* eval(e,a),l 

and we will also seek the auxiliary results: 

**1 assoc(EVAL,alNEVAL'SevalB) 
h  Ve a. apply(SevalB,(e a),al) 3 eval(e,a) 

**2        assoc(EVAL,alHEVAL«SevalB) 
H Vc a. 8pply(Sevcon)(c a^al) ■ evcon(c,a) 
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**3 assoc(E\/ALIal)-(EVAL'SevalB) 
\-  Vm a. apply(Sev!is,(m a),al) = evlis(m,a) 

**4 asGoc(E\/AL,al)--(EVAL'SevalB) 
I-  Vfn x a .  apply(Sapply,(fn x a),al) ^ appiy(fnlx,a) 

(Note that by a property of 'assoc' we can deduce from ,£)(assoc(Xfa))>aT' 

the 'act    !islist{al)~T'). 

Without seeking prior motivation, consider just the 'evils' function (because 

it is the simplest) and the following proposition: 

**5   islisUa) T, 
associEVLIS.al): (EVUS-SevlisB), 
assoc(EVAL)al)-(EVÄL»SevalB)l 

f-  Vm. apply(Sevlis, (m a),al) 
^ [xall. null(m) -^ NIL, 

apply(SevalB,(hd(m) a),all) • apply(SevllsB,(tl(m) a),all)] 
(M'mH<A'a)»aI)   . 

One cannot help but notice a strong resemblance between the consequent 

of this equation and the recursive equation that 'evils' is the least fixed point of: 

evlis ::• [\m a. null(m) -* NlL,eval(hd(m),a) - evlis(tl(m) a) ] 

This lernma (**5) is aptly characterised as a statement of 'relative 

correctness' of EVLIS since if the function EVAL were correct (i.e. obeys result **1) 

then a simple induction will transform it into the correctness statement **3. 

The proof of the lemtia (**5) is conceptually very simple involving only the 
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^ multiple application of the definition of 'apply' (and the other interpreting functions) 

and is generable interactively very easily: it involves less than 30 steps (mainly 

CASES  and  SIMPUfications)  although there are hundreds of  behind-the-scenes 

i substitutions performed by the simplification algorithm. 

Similar lemmas are provable for the ether 3 functions (eval, apply and 

evcon) and we state all four results as Figure 8.2 (next two pages). These 

theorems should be compared closely with those of Figure 8.3 to note the 

correspondence of structure. The four proofs are almost mechanical since they 

involve primarily obvious CASES arguments and SIMPUfications. The proof of the 

lemma involving APPLY is the longest being about 60 steps. 

8.3. Informal Proof of Interpreter Correctness: 

Now, speaking quite informally, and omitting any discussion of the 

definedness (or listness) of arguments of EVAL, APPLY etc. it is readily seen that 

these four lemmas can serve as a basis for computing values of the function 

[x,e a al. apply(Seval,(e a^al)] 

just as the equations of Fig 8.3 can serve as a basis for computing values of 'eval'. 

For example, 

eval((AT0M (QUOTE X)), NIL) 
computes through 

apply(AT0M,evlis(((QU0TE X)),NIL),NIL) 
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islist(a) ■ T  h 
Vm al . assoc(E\/US,alHEVLIS'SevlisB)* 

assoc(EVAL,al)={EVAL'SevalB) * 
apply(SevlisB(m'(a^NIL),al) = null(m)-»NIL, 

(apply(SevalB,hd(m)«(a«NIL),(M'm)«((A»a)«al)) 
•apply(SevlisB,tl(mHa»NIL)l(M'mH(A'a)«al))) 

islist(a) ■-■ T  \- 
Vfn x al . assoc(APPLY1al)=(APPLY'SapplyB) * 

assoc(EVAL,al)=(EVAL'SevalB) * 
apply(SapplyB,fn"(x"(a-NIL)),al) = (fn=CAR)-»hd(hcl(x)), 

{(fn-CDR)-tl(hd(x)), 
((fn-CONS)-(hd(x)'hd(tl(x))), 
((fn-ATOM)-*(atorn(hd(x))-* r,F), 
((fn-EQM[\x y .atom(x)-(atom(y)-^(x=y),l),i] 

(hd(x)(hd(tl(x)))->T,F), 
(atom(fn)-apply(GapplyB,apply(SevalB,fn<(a'NIL), 

(FN'fn)^((X-x)'((A'a)»al)))'(x-(aNIL)), 
(FN«fn)»((X'x)K(A«a)«al))), 

((hd(fn)=LAMBDA)-apply(SevalBl 

hd(tl(tl(fn)))'(pairlis(hd(tl(fn)),x>a)-NIL), 
(FN'fn)'((X'x)«((A'a)'ai))), 

((hd(fn)=LABELHapply(SapplyB, 
hd(tl(tKfn)))«(x'(((hd(tl(fn))'hd(tl(tl(fn))))«a)«ML))l 

(FN'fn)'((X-x)-((A«a)^l))),i))))))) 

Figure 8.2a  -  Some Lemmas about  SevlisB  and  SappiyB. 
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' 

s 

islist(a) " T  h 
Vc al . assoc(EVCON,alHEVCON-SevconB) * 

assoc{EVAL,al)=(EVAL'SevalB) * 
apply(SevconBlC'(a°NIL),al) = 

(apply(SevalB,hd(hd(c))'(a'NIL),(C-c)'((A.a)-al))=T)-4 
apply(SevalB,hd(tl(hd(c))).(a»NIL),(C.c).((A.a)«al)), 

((apply(SevalB,hd(hd{c)).(a«NIL),(C.c)'((A.8)«al))=F)-* 
apply(SevconBltl(c).(a'NIL),(C.c).((A«a)'al)>,l) 

islist(a)  - T  H 
I Vx al. assoc(EVAL,al)=(EVAL-SevalB) * 

apply(SevalB,X"(a'NIL),al) - (atom(x)-ktl(assoc(x,a)), 
((hd(x)=0UOTE)-hd(tl(x)), 
((hd(x)-COND)^apply(SevconB,tl(x).(a«NIL), 

(EVCON»SevconB)'((E»x).((A«a)'al))), 
apply(SapplyB,hd(xHapply(SevlisB,tl{xHa'NIL), 

S (EVUS'SevlisB)«((E»x)'((A.a)'al»)'(a»NIL)), 
(APPLY.SapplyB).((E-x).((A-a)'al)))))),i 

Figure 8.2b  -  Some Lemmas about  SevconB  and  SevalB. 
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h   eval :•■ [xe a. 
islist(a)-* 

(atom(e) -> tl(assoc(e,a)), 
hd(e)=QUOTE -* hd(tl(e)), 
hd(e)-COND -» evcon(tl(e),a), 
applyihdle), evlis(tl(e),a), a)), i] 

}-   evcon = [\c a. (eval(hd(hd{c)),a)=T) -» eval(hd(tKhd(c))),a), 
(eval(hd(hd(c)),a)=F) -♦ evcon(tl(c),a) , i] 

|-   apply  - [xfn x a. <:i(x)-> islist(a)- 
(fn-CAR) - hd(hd(x)), 
(fn-CDR) ^ tl(hd(x)), 

(fn-CONS) - hd(x)"hd(tl(x)), 
(fn-ATOM) - atom(hd(x)) ^ T, F, 

(fn-EQ) -» [\x y. atom{x)-»atom(y)-»(x=y), 1,1] 
(hd(x),hd(tKx))H T, F, 

alom(fn) -> apply(eval(fn,a),x,a), 
(hd(fn)=LAMBDA) -» eval(hd(tl(tl{fn))), 

pairlis(hd(tl(fn)),xla)), 
(hd(fn)-LABEL) -» apply(hd(tl(tl(fn))), x, 

((hd(tl(fn))«hd(tl(tl(fn)))).a)), 
i, i, i ] 

}-   evlis = [xm a. nulKmHNIL, eval(hd(m),a) • evlis(tl(m),a)] 

Figure 8.3  -   Some Lemmas about   eval, apply, evils & evcon. 
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and 

and 

to 

apply(ATOMl(eval((QUOTEX),NIL)),NIL) 

apply(ATOM,(X),NIL) 

T. 

Similarly, 

apply(SevalB,((ATOM (QUOTE X)) NIL), ML) 
computes through 

apply(SapplyB,(ATOM 
apply(SevlisB,(((QUOTE X)) NID.all) NiL),all) 

and 
apply(SapplyB,(ATOM 

(apply(SevalB,((QUOTE X) NIL),al2)) NIL)fall) 
and 

apply(SapplyB,(ATOM (X) NIL),AL1) 
to 

T. 

In all such examples, the computation terminates when there Is no 

applicable lemma; this will be just when there is no more Instances of the 

interpreting functions {'apply' etc.) and if the computation does not terminate then 

the result will be 1. 

It should be apparent that if we do the computations for 'eval(e,a)' and 

'apply(SevalB)(e a),al)' then because of the structural similarity between the two 

sets of computation rules, those two computations will proceed in parallel just as 

they did in the above example. Moreover, if one of these computations terminates 
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with a certain result then so will the other and if one never halts then neither will 

the other.   That completes the informal proof. 

8.4. Intorprotcr Correctness in LCP! 

The above informal proof suggests an attack on the desired main results 

(**!   to  **4)  using the results of Figure 8.2 and computation induction.    It  is 

appropriate to do induction on the definition of 'eval' but we notice that in terms of 

recursion on the computation of 'eval' (and 'apply' etc.) the left hand sides of the 

desired results compute much slower than the right hand sides.  This is because the 

interpretation  of each expression is done directly on the right   hand  side but 

indirectly (via interpretation of EVAL, APPLY, EVLIS or EVCON) on the left.   Thus in 

doing the proof we are forced to break each of the four equivalences into two 

'inequivalences": 

as5oc(EVAL,ALHEVAL'SevalB) 
h  Vx a. apply(SevalB, (x a), AL) E eval(x,a)  , 

a3Goc(EVAL,AL) iEVAL-SevalB) 
H  Vx a. evaKx.a) s apply(SevalB, (x a), AD  , 

acsoc(EVAL,AL) -(EVAL-SevalB) 
f-  Vc a. apply(Sevcon, (c a), AL) E evcon(c,a) 

etc. 
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8.5. Partial Correctness: 

■' 

**6 

We first report on the proof of the inequality 

h  Vx a al. assoc(EVAL(alHEVAbSevalB)* 
eval(x,a) s apply(SevalB, (x a), al) 

or, using the predicate   Q=[\al.assoc(E\/AL,al)=(E\/AL«SevalB)], 

h Vx a al. Q(al)* evaKx.a) E applylSevalB^x a),al) . 

We consider this proof in greater detail than any previous one because it is 

quite complex involving several nested inductions. The outermost induction uses the 

definition of 'eval' and the inner ones correspond to the definitions of 'apply', 'evils' 

and 'evcon'. 

First   we  rewrite  the  definition  of 'eval'  from  Fig   6.1   in  the   form 

'aval  : OB.P(B)]'       thus defining functional 'P' which is free of B.   Then we 

attack the goal with an induction that uses this equation, to give the subgoals: 

i)    Vx a al. Q(al)* l(x,a) s apply(SevalB,(x a),al) , 

ii) Vx a al. Q(al)* Blx.a) s apply(SevalB,(x a),al) 
h Vx a al. Q(al)=>  P(Blx,a) E apply(SevalB,(x a),al) . 

Now subgoal (i) is trivial by SIMPLification. We attack the second by 

ASSUMing the antecedent, doing PREFix removal in the consequent, CASES on 

'atom(x)' and SIMPLification. We therefore have an induction hypothesis assumed 

and one (complex) subgoal corresponding to the interesting case where 
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' islist(a) T, 
assoc(EVAL,al)^(EVAL'SevalB), 

atorn(x)-F '  . 

We further attack this subgoal by CASES on 'hd(x)=QUOTE' and CASES on 

'hdix) -COND' and by using some monotonicity theorems we get four subgoals which 

are shown in Figure 8.4 (next page), 

The key to proving each of these is an initial induction; in the last we use 

the structure of the first argument of EVLIS; in the first three we do induction on 

the fixed point term that appears on the left hand side. Each proof then proceeds 

by CASES, SIMPLification and USEs of monotonicity theorems (extensive use is also 

made of the lemmas of Fig 8.2). 

Having established **6, it is easy to prove the complementary results. 

h   Vx a al. Q(al)*  evlis(x,a) E app!y(9evlisB,(x a),al) , 

}-  Vx a al. Q(al)*  evcon(x,a) E apply(SevconB,(x a),al) , 

I-  Vx a al. Q(al)*  apply(xla) s apply(SapplyB,(x a),al) 

and also 

**7    iGliGt(AL)-T, ri(eval(X,A))^T  h  eval(x,a)-apply(Seval,(x,a),AL) 

which is a statement of Partial Correctness for EVAL, since it says that for 

any expression which can be evaluated in the context of a certain association list 
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GOAL VX A AL  islist(A)* assoc(EVAL,AL)=(EVAL'SevalB)* 
cKX)* as3oc(EVC0N,AL)-(EVC0N-SevconB)* 

[nG.[\c a. (B(hd(hd(c)),a)=THB(hd(tl(hd(c))),a), 
^ (B{hd(hd(c)>,a)=F)-*G(tl(c),a),i]](X,A) 

E apply(SevconB,X-(A-NIL),AL)i 

GOAL VX A AL.  islist(A)* assoc{EVAL,AL)=(EVAL'SevalB)* 
a(X)* assoc(EVLIS,AL)=(EVLIS-SevlisB)* 

% [/iG.[xm a. null(m)-NIL,B(hd(m),a)-G(tl(m),a)]](X,A) 
s apply(SevlisB,X-{A.NIL),AL)i 

GOAL VFN X A AL  islist(A)* as8oc(EVAL,AL)=(EVAL»SevalB)* 
ci(X)* assoc(APPLY,AL) =(APPLY-SapplyB)* 

[/iG.[xfn x a. rix) -* islisKa) -» 
S (fn-CAR) - hd(hd{x)), 

(fn-CDR) -* tl(hd(x)), 
(fn=C0NS) - hd(x)-hd(tl(x)), 

(fn=AT0M) ^ atom(hd(x)) -* T, F, 
(fn=EQ) -> [\x y. atom(x)->atom<y)-»(x=y), i, i] 

(hd(x),hd(tl(x)))-> T, F, 
$ atom(fn) -* G{B(fn,a),x,a), 

(hd(fn)=LAMBDA) -* B(hd(tl(tl(fn))), pairlislh^tlfn)),^)), 
(hd(fn)=LABEL) - Glh^tKtKfn)))^, 

((hd(tl(fn))-hd(tl(tlfn)))).a))f 
i, i, i ]](FN,X,A) 

s E apply(SapplyB,FN«(X'(A-NIL)),AL)j 

GOAL VX A AL.  islist(A)*  as5oc(EVAL,AL)=(EVAL»SevalB)* 
ci(X)* assoc(EVLIS,AL)=(EVLIS'SevlisB)* 

islist(app!y(SevlisB,X.(A.NIL),AL)) E Ti 

Figure 8.4 - The Important Partial Correctness Subgoals. 
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(of  variable  bindings), the function induced by Seval  (under interpretation)  will 

corredly evaluate it. 

It remains only to comment that the total amount of proof generated so far 

in thir- proof of correctness of the interpreter is quite large and has pushed the LCF 

system to its limits. The proofs of the lemmas of Fig. 8.2 each required a seperate 

core image and the proof mentioned in this section required the largest core image 

possible (128K of which 50K is the LCF system). The main reason for the gross size 

of the proofs was the magnitude of the formulae involved but there were over a 

thousand steps involved too. Moreover the CPU time involved was rather large (just 

over a hundred minutes) reflecting a huge amount of work done by simplification - 

many thouoando of substitutions automatically performed. It must be stressed that 

were it not for the partial automation afforded by the simplification mechanism of 

LCF, juch a formal proof would not have been possible. 

8.6. Total Correctness: 

We know from our informal reasoning that the 'cKevaKX.A))^!' condition of 

(*+7) can be dropped to give 

islist(AL) HT  h  Vx a.eval(x,a) s apply(Seval,(x a),AL) 

but to establish this formally we need yet to prove the other half of (**1), namely: 

Vx a al.   assoc(EVAL,al)-(EVAL-SevalB>* 
apply(SevalB, (x a), al) E eval(x,a) . 
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This goal is naturally tackled by first expanding the left hand side a little so 

that the 'apply' vaniohes and we have an 'eval' there instead.   Remembering that 

SevalB is a LAMBDA term we actually get the subgoal 

Vx a al.  as$oc(EVAL,alHEVAL'SevalB)=> 
eval(hd(tl(tl(SevalB))),(X-xH(A.a)'al)) E eval(x,a) 

which is appropriately attacked by induction on the definition of 'eval'. 

Once the induction is initiated, we are then faced with the work of breaking 

down the structure of the S-expressions SevalB, SapplyB etc.  that appear in the 

left hand side before we can hope to apply the inductive hypothesis. However, in 

the subgoal to be proved there is NO occurrences of 'eval', 'apply' etc. There Is 

thus little chance to use SIMPLification since 

(a) the theorems we have found so useful (so far) have 'apply', 

'eval' etc. on the left hand side. 

(b) we are forced to deal with inequalities since the results we 

must use to break down the left hand side are lemmas such as 

' B s eval  H Vx a. B((CAR x),a) E hd(B(x,a))' 

instead of using theorems of the form 

' h Vx a. eval((CAR x),a) = hd(eval(x,a)) ' . 

At this point, it appears that to pursue the current objective will demand 

repeating all the work which preceded the proof of the first half of (**1) in a 

♦ 
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slightly more general form (as illustrated by the last 2 theorems). Furthermore to 

complete the proof we are faced with an approximately parallel proof (to that 

described in the last section) but where SIMPLification was used before we will 

need to use rnonotonicity results. Now since the current LCF system Is so biased 

towards equalities, the second half of the proof would be extremely tedious using 

the present system. 

Because of this argument, the formal proof of the total correctness of the 

EVAL function was not carried out. It can again be given consideration when a 

version of the LCF system is available which can give as much assistance with 

rnonotonicity arguments as the current system gives with substitutions. 
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CHAPTER 9 

Compiler Correctness (I)   -  Language Definitions 

In this chapter, we describe axiomatically based theories of the source and 

target languages of the simple compiler LComO. We cannot apply the Theory of 

Pure LISP (except by way of example); instead we must build an alternative (albeit 

similar) set of axioms and theorems for LComO LISP (so-called). For each of the 

languages, the formal definition will be preceded by an informal description. 

9.1. Extensions to the Environment: 

As in Chapter  6, we precede  axiomatisation of languages  with  some 

extensions to the environment described in Chapter 4.   We identify the axioms 

introduced in this section by names of the form EEn. 

**AXIOM EE1: 

Vx. isname(x)-> isint(x)->l, atom(x)-*x,i,' 
isint(x)-» atom(x)-»x,i, x a x 

Vx. ci(discr(x))*  isname(x) s J 

Vx. isname(x)* discr(gensym(x))>discr(x) = T 

isSexprn = [/iG.[xx. null(x)-»T, isname(x)->T, 
isint(x)-*TI atom(x)-»F, 

G(hd(x))-»G(tl(x)),F]] 
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These axioms introduce names (in general), define S-expressions and 

provide the appropriate properties of the functions 'discr' and 'gensym'. 'discr' is 

the oame function that was described in Chapter 6 but is specified more completely 

by these axioms. The important property of 'gensym' is that it maps names onto 

names in such a way that if we build sequences of names by successive application 

of the function then no item appears more than once. 

We also have many specific names to introduce and the technique for doing 

this has been illustrated several times so we will just point out the effects of 

several axioms: 

♦:*AXIOM EE2      Introduces the reserved words of the source language 
I of the compiler (a subset of LISP): 
I LAMBDA, QUOTE, COND, AND, OR, T . 

**AXIOM EE3      Introduces the built-in function of the LISP subset- 
GRE/.TERP, NUMBERP, GENSYM, EQUAL, MINUS, TIMES." 

I ATOM, CONS, PLUS, CAR. CDR, NOT . 

**AXIOM EE4 Introduces the names of some basic LISP functions- 
DIFFERENCE, APPEND, LENGTH, ISLIST, APPN2, ASSOC.* 
LESSP, LIST, NULL . ' 

**AXI0M EE5      Introduces the special words of the target lanpuase- 
11 JUMPE, JUMPN, MOVEI, CALL, JRST, MOVE, POPJ, 
II PUSH, SUB, C, E, P . 

**AXIOM EE6       Introduces names of the compiler functions- 
COMPANDOR, C0MB00L, COMCOMD, COMPEXP, COMPLIS 
LOADAC, MKPUSH, COMP, PRUP . 

♦:*AXIOM EE7      Introduces names that are used as formal parameters- 
VARS, EXP, FLG. VPR, FN, LI, 12, NL, K, L, 
M, N, U, X, Y, Z. 

94 

% 

^ 

Z 

9 

1UU  -     - -■-   -      -     ---■ -' ■  — - ■—-.—■^ --.^.i-:.-^..    ■  ^— uäZSS&ä&k 



S5SP»P!l!WW»«np»?^7'"™,^!w™'^^ 

9.2. LComO LISP: 

It was mentioned that LComO (McCarthy's compiler discussed by London in 

[13]) compiles a certain subset of LISP which we will call LComO LISP. It should be 

noted that LComO is also written in LComO LISP. 

9.2.1. Informal Description 

The language (LComO LISP) is rather similar in scope to Pure LISP but the 

few differences are rather important; in LComO LISP: 

i)      the AND and OR constructions of LISP 1.5 are available; 

ii)      falsehood is represented as NIL (as opposed to F in Pure LISP) and 

(although most predicates will return either T or NIL) tests for 

truth are tests of inequality with NIL; 

iii)     NIL evaluates to NIL; 

iv)    there is no LABEL construction and no functional arguments; 

v)      functions are introduced by fiat at the top level (and there will be 

a global A-list for function definitions); 

vi)     S-expressions are based on integers as well as NIL and names; 

vii)    the built-in functions are CAR, CDR, CONS, ATOM, EQUAL, LIST, NOT, 
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PLUS TIMES, MINUS, NUMBERP, GREATERP and GENSYM; (These 

functions are the same as in regular LISP except that 'GENSYM' 

takes a name as input rather than remembering the last name it 

generated.) 

9.2.2. Formal Description 

Figure 9.1 gives an axiom ( SL1 ) in which the main functions of an 

intciprotive r<cnnonticG for LComO LISP are defined and Figure 9.2 completes the 

axiomatir.cition of LComO LISP (with axiom SL2 ) by giving the meanings of the built- 

in functions (CAR, CDR etc.). (We identify the axioms related to the LISP subset by 

names of the form 'SLn' where 'SL' denotes 'Source Language'.) This formal 

description of the language parallels the definition of Pure LISP semantics so we will 

avoid lengthy discussion. However, we will emphasize that there are two A-llst 

parameters for 'eval' etc.; the first is used to store variable bindings and the second 

(constant through the levels of recursion) gives function definitions. If the equations 

(of Figure 9.1) are a little hard to follow then a glance at Figure 9.3 might help since 

it shows the recursive equations of which 'eval', 'apply' etc. are the mutually least 

fixed points. 

Z i 
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**AXIOM SL1: 
eval a |>B. evalF(B)], 
evalF a [xB x vb fl. £i(vb) -> 3(fl) -♦ 

null(x) -» NIL, 
isint(x) -» x, 
Isname(x) -»tl(assoc(x,vb)), 
atom(x) -» i, 
hd(x)=0UOTE - hd(tl(x)), 
hd(x)=COND -»[MG.evconF(B,G)](tl{x),vblfl), 
hd(x)=AND   -»[MG.evandF(B,G)] (tl(x),vb,fl), 
hd(x)=OR    -♦ [MG.evorF(B,G>] (tl(x),vb,fl), 
[MG.applyF(B,G)] 

( hd(x), [MG.evlJsF(B,G)](tl(x),vb,fl),vb>fl)l 

J-. J-]. 
evcon s [MG. evconF(eval,G)], 
evconF = [xF G x vb fl. null(F(hd(hd{x)),vb,fl))-»G(tl(x),vb,fl), 

F(hd(tl(hd(x))),vb,fl)]f 
evand a [>G. evandF(eval,G)], 

evandF ^ [xF G x vb fl. null(x)-»T, nulKRh^x^vb.fl^-^NIL.GdK^.vb.fl)], 

evor  s [MG. evorFleval.G)], 

evorF = [xF G x vb fl. null(x)-NIL, null{F(hd(x),vb,fl))-+G(tl(x)lvb,fl),T], 

apply a [MG. applyF(eval,G)], 
applyF a [xF G fn x vb fl. 8(x) -> ii(vb) -> a^fl) -♦ 

isBF(fn) ^ applyBF(fn,x), 
isname(fn) -» G(tl(assoc(fn,fl)),xINIL,fl), 

(hd(fn)=LAMBDA)-»F(hd(tl(tKfn))),pairlis(hd(tl(fn)),x,vb),fl), 
i, 1,1,1], 

evlis n [/iG. evllsF{evallG)], 
evIisF n [xF G m vb fl. null(m)-»NIL, F(hd(m),vb,fl).G(tl(m),vb,fl)], 

pairlis s [/iG.[xx y vb. null(x) -♦ vb, (hd(x).hd(y)).G(tl(x),tl(y),vb)]] 

Figure 9.1   - Axioms for LComO LISP. 
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♦.♦AXIOM SL2: 
isBF - [\x. (x=CAR)-*T,    (x=CONS)-T, (x=MINUS)^T, 

(x=CDR)-T,    (x=PLUS)-*T, (x-GENSYM)-»T, 
(x-NOT)-T,    (x=EQUAL)-T, (x=NUMBERP)^T, 
(x-ATOMHT, (x=TIMES)-»T, (x^GREATERPHT, 
(x=LIST)], 

applyBF(CAR) ^ [xx. hd(hd(x))], 

applyBF(CDR)   : [xx. tl(hd(x))], 

applyBRNOT) = [xx. null(hd(x))^T,NIL], 

opplyBF(ATOM) - [xx. atom(hd(x))-»T,NIL], 

applyBF(CONS) ^ [xx. hd(x)Mtl(x))], 

applyBF(LIST) = [xx. x], 

applyBF(PLUS/ = [xx. hd(x)+hd(tl(x))], 

applyBF(EQUAL) = [xx. hd(x)=hd(tl(x))-»T,NIL], 

applyBFvTIMES) = [xx. hd(x)*hd(tl(x))]l 

applyBF(MINUS) - [xx. mns(hd(x))], 

applyBF(GENSYM) - [xx. gensym(hd(x))], 

appIyBF(NUMBERP)  ■ [xx. islnt(hd{x))-T,NIL], 

applyBF(GREATERP)     [xx. (hd(x)>hd{t|(x)))->T,NIL] 

Figure 9.2  -  The Built-in Functions of LComO LISP. 
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eval ■ [\ x vb fl. a(vb) -> 8(fl) -* 
null(x) -» MIL, 

I isinKx) -> x, 
isn9,me(x) -♦ tl(assoc(x,vb)), 
3iom<x) •* i, 
hd(x)=QUOTE -♦ hd(tl(x)), 
hd(x)=COND -» evconFdK^.vb.fl), 
hd(x)=AND   -» evandF(tl(x),vb,fl), 

^ hd(x)=0R    ■♦ evorF(tl(x),vb,fl), 
applyR hcHx), evlisF(tl(x),vb,fl), vb, fl), 1,1], 

evcon = [xx vb fl. nuli(eval(hd(hd(x)),vb,fl))-*evcon(tl(x),vb,fl), 
eval(hd(tKhd<x))),vb,fl)], 

evand = [\x vb fl. null(x)-»T, null(eval(hd(x),vb,fl))-»NIL, 
evand(tl(x),vb,fl)], 

evor   a  [xx vb fl. null(x)-»NIL, 
null(eval(hd(x),vb,fl))-evor(tl(x)fvb,fl),T], 

apply a [xfn x vb fl. a(x) -> a(vb) -»<D(fl) -» 
IsBF(fn) -* applyBF(fn,x), 
isname(fn) ■* apply(tl(assoc(fn,fl)),x,NIL,fl), 
(hd(fn)=LAMBDA)-»evaKhd(tl(tl(fn))),pairlis(hd(tl(fn)),x,vb),fl)l 

1,1, i, 1 ]. 

evlis = [xm vb fl. null(m)-»NIL, eval(hd(m),vb,fl)«evlls(tl(m)(vb,fl)]. 

^ 

Figure 9.3 - Relationships Between 'eval', 'apply' etc. 
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9.2.3. Theory of LComO LISP 

As we did with Pure LISP, we prepare for applications by developing a 

'theory based on the axioms. We do two things in this regard. First, we define some 

basic LISP functions (actually the ones we need for the compiler proof) such ac- 

DIFFERENCE and LENGTH. Next we assemble a collection of theorems (mainly 

oriented towards SIMPSET inclusion); we exhibit these as an Appendix. 

The definitions of the basic LISP functions that we want are given in Figure 

9.4 and are sivc-n as the actual entries of the function definition A-list (namely: 

function-ncimo/function-body pairs). 

9.2.4. T^D' - Basic Functions Defined 

We will never actually construct a function list but we require a predicate 

which says that all the basic functions are declared in some given function list. 

( 'BFD" is mnemonic for 'Basic Function Defined'): 

*:f AXIOM SL3: 
BFD - [xfl. tl(assoc(NULL,fl))=Snull - 

tKassodDIFFERENCE.fDHSdifference-» 
tl(as5oc(ISLIST,fl))=Sislist -♦ 
tl(as5oc(/\SS0C,fi))«Sassoc -► 
tl(assoc(LENGtH,fl))=Slength -* 
tl(a5Goc(APPEND,fl))=Sappend,F,F,F,F,F] 

.; 

:. 
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««AXIOM SL4: 
Snull a   (LAMBDA (X) (EQUAL X NIL)), 

Sdifference ^ (LAMBDA (X Y) (PLUS X (MINUS Y))), 

Sisiist a   (LAMBDA (X) (COND 
((NULL X) (QUOTE T)) 
((ATOM X) NIL) 
((QUOTE T) (ISLIST (CDR X))))), 

Sassoc ^   (LAMBDA (X Y) (COND 
((NULL Y) ML) 
((EQUAL X (CAR (CAR Y))) (COND 

((ISLIST Y) (CAR Y)))) 
((QUOTE T) (ASSOC X (CDR Y))))), 

Slength S   (LAMBDA (X) (COND 
((NULL X) 0) 
((QUOTE T) (PLUS 1 (LENGTH (CDR X)))))), 

Sappend =   (LAMBDA (X Y) (COND 
((NULL X) Y) 
ft (QUOTE T) (CONS (CAR X) 

(APPEND (CDR X) Y))))), 

Figure 9.4 - Some Basic LISP Functions. 
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9.2.5. Wnll-ForrnecinesG Predicate 

We give as Figure 9.5 the definition of a predicate "iswfe' (IS Well Formed 

Expression) which tells whether an S-expression is structurally good LISP code. It 

is important because it will be seen later that LComO will be total on inputs that 

satisfy ■iswfe'. Note that one of the things checked is that functions are not called . 

with morn than a certain number mna of arguments. Note also that all variables 

referred to inside a well formed expression must be bound by occurring in the 

formal parameter list of a LAMBDA term. 

9.3. LComO  LAP - Informal Description! 

McCarthy's compiler translates the subset of LISP that we call LComO LISP 

into LAP - a special version of PDP10 assembly code which is oriented toward LISP 

compilation (LAP is an acronym for LISP Assembly Program). Of course, only a 

subset of the PDP10 instruction set is generable by the compiler and so we will be 

concerned only with certain variants of nine instructions (given below) although 

our formal description will allow later and/or more complete specification of the 

lancut'ige. Apart from simply considering a subset of LAP we make some simplifying 

assumptions about the behaviour of the PDP10; we point out these idealisations 

below. 
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**AXIOM SL4: 

iswfe s [xe. iswfKe.NIL)], 

iswfle s [xe. iswf4(iswfe,e,NIL)], 

iswfl s [>G.Oe vl. 
null(e)-»T, 
(e=T)-*T, 
isint(e)-T, 
alom(e)-*mem(e,vl), 
(hd(e)=QUOTE)^isSexprn(tl(e)), 
(hd(e)=AND)-»iswf2(G,tl(e),vl), 
(hd(e)=0R)-»iswf2{G,tl(e),vl), 
(hd(e)=C0ND)->iswf3(G,tl(e),vl), 
atom{hd(e))-» (length(tl(e))>mna)->F, 

iswf2(G,tl(e),vl), 
iswf4(G,e,vl)]], 

iswf2 = [nH.[xG x vl. null(x)-»T, 
G(hd(x),vlHH(G,tl(x),vl),F]], 

iswf3 = [MH.[XG x v|. null(x)-*T, 
G(hd(hd(x)),vl)-» G(hd(tl(x)),vl)-» H(G,tl(x),vl),F,F]], 

iswf4 s [xG x vl. (hd(x)=LAMBDA)- iswf5(hd{tl(x)))-> 
length(hd{tl(x)))>mna -* G(hd(ll(tl(x))),vl&hd(tl(x))),F,F]], 

iswf5 s [ßH.[\x. nuli{x)-T, lsname(hd(x))-*H(tl(x)),F]] 

Figure 9.5  -  Well-Formednes«; of LISP expressions. 
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In our simplified view of the architecture of the PDP10, we take it to be 

simply a Central Processing Unit and a Memory. The CPU executes lists of 

instructions and each instruction executed can affect the flow of control in certain 

ways and/or affect the state of the memory. The memory is an infinite array of 

words such that every word has an address which is a positive integer. Also the 

first sixteen words can be used as accumulators or index registers. 

We do not want to become involved in the processes of assembling or 

loading of LAP. Also, we do not admit the possibility that LAP instructions will be 

overwritten during the execution of a program. Hence we make the further 

assumption that LAP code is interpreted directly (symbolically) and not resident in 

memory in any way. 

The contents of words of the PDP10 are usually treated as integers but we 

also want to represent S-expressions in memory. We do not want to get involved 

in questions of representation so we just say that there exists a coding of S- 

expressions into integers. The only thing we specify about the coding is that it is 

one-to-one and that the coding of NIL is 0. This assumption enables us to avoid any 

questions related to free-storage management. Further note that there is no bound 

to the integers that words may contain. Moreover, we assume that the contents of 

any word is only defined if a value has been written in alrt :dy. 

Now just as an LComO LISP program is a collection of LISP functions, we 

104 

*i.^.^ ^.:v.-   .■„.,/-....■■..r^—:.^.^..^ i. *6ää , ^_ ^         .    _       „_..  .   ..        -.,. ^■^.■^^..^W-^ ^-....-.M:.^.,..^..^.^.^ l^^*i>s**M**läläiUi&M&i&M^ 



9 

e 

x 

take a LAP program to be a collection of LAP functions; we define a LAP function to 

be triple (FN.NA.FB) where 'FN' is the function name, 'NA' is the number of 

arguments of the function and 'Fö' is the function body. Functions expect their n 

arguments loaded in the accumulators 1 to n; a function body is a list of S- 

expressions which are either labels (if atomic) or instructions. 

We now come to describe the nine instructions that LComO makes use of 

(we use C[n] to stand for "contents of accumulator n"): 

(JRST 0 L) 

(JUMPE n L) 

(JUMPN n L) 

is an unconditional jump to label L in the 
current function; 

causes a jump to L in the current function if 
contents of accumulator n is zero; 

causes a jump to L in the current function if 
contents of accumulator n is nonzero; 

(MOVEI n (QUOTE x))  contents of accumulator n ( C[n] )\Q set to 
the coding of S-expression x; 

(MOVE n m P) C[n] is set to C[ C[!P] + m] 

(PUSH P n) 

(SUB P (C 0 0 n n))    decrements the stack pointer (ace !P) by n; 

increments the stack pointer (ace !P) by one 
and puts C[n] on the stack; 

ii 

(CALL n FN) current routine is suspended and control 
passes to function in program with name FN 
(which presumably has n parameters) after 
incrementing stack pointer by one; If FN is a 
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(POPJ P) 

standard function it will restore the value of 
stack pointer before entry and leave its 
result in accumulator 1; 

return from current function to instruction 
after the one that CALLed the current fun. 
(stack pointer is decremented by 1); 

The particular accumulator numbered !P (referred to by the name 'P' in the 

above instructions) is used as a stack pointer. Not. that we do not worry about 

stack overflow since we are noi assuming finiteness of memory. Also note that, 

since the arguments of a function are passed in the low accumulators, the maximum 

number of arguments for a function is less than !P. 

9.4. LComO LAP - Formal DeKcription: 

9.4.1. States and functions on states: 

The notion of 'state', in the following semantics, is intended to reflect the 

correspondence between word addresses and contents - not as a function but as an 

association list. More specifically, a state will be an A-list of pairs (n»x) where n is 

an address and x is the coding (by function 'code") of an S-expression; a property of 

these A-lists is that the pairs are in order of increasing address. 

The following axiom gives functions for changing and interrogating states 

and also other properties of the memory: 
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** AXIOM TL1: 

get a [\x si. tl(assoc(x,st))], 

set a [MG.[XX y st. null(st)-* ^,,y).NIL, (hd(hd(st))=x)-> (x.y).tK8t), 
(hd(hd(st))>x)-» (x.y)«st, hd(st)«G(x,y,tl(st))]], 

putargs a [xa st. Iength(a)>mna-»i,putargx{length(a),rev(a),st)], 
putargx a OG.[xn x st. 2(n)-* st, set(n,code{hd(x)),G(n-l,tKx),st))]], 

argsin = [\a st. length(a)>mna-»F,argsinx(length(a)>rev(a),8t)]l 

argsinx = [MG.[xn x st. Z(n)-» T, (get{nlst)=hd(x))-»G(n-l,tl(x),8t),F]], 

PDL > !P 3 T, 
!P > mna a T, 
mna > 2 = T, 

code(NIL)=0, 
Vx. dec(code(x))sx 

11 

I 

The function 'get' is for interrogating the memory and takes one argument - 

an address; the function 'set' is used for putting information in the memory and its 

arguments are an address and a value, 'putargs' puts a list of arguments (values) 

into the accumulators starting at number Ij 'argsin' testifies that a list of arguments 

is already contained in the accumulators (starting at 1). The constant 'mna' denotes 

the maximum number of arguments for functions while MR' is the address of the 

stack pointer (an index register). 
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9.4.2. LAP Functions and operations on them: 

We have characterised a LAP program as a collection of LAP functions and 

so a program is a sort of environment in which to execute function calls.   Actually in 

the axiomatisation a program will be an A-list from which we can extract function 

bodies and check numbers of parameters. The function 'body' does just this: 

**AXI0M TL2: 

I        body =- [xfn P n. (n>hd(tl(assoc(fn,P))))^tl(tl(assoc(fnlP))), 1] 

Now when we are dealing with a LAP function we want to consider it 

simply a sequence of instructions and labels. Hence the LCF functions we define in 

the axiom below are applicable to all groups of instructions and labels: 

♦ »AXIOM TL3: 

INST n 1>H. [xg n. atom(hd(g))-*H(tl(g)ln),Z(n)-»hd(g),H(tl(g),n-l)]], 

loc - IßH. [xx g. atom(hd{g))-* (hd(g)=x)-»0,H(x,tKg)), H(x,tl(g))+1]], 

GL    OH. [xg. null(g)-»0, atom(hd(g))-» H(tl(g)), H(tl(g))+1]], 

complete n [xg exe. comp2(g,labs(g)Äexc)], 

comp2 - [/iH.[xg labs. null(g)-T, atom(hd(g))-»H(tl(g),labs), 
isJUMP(hd(hd(g))) -* 

mem(hd(tl(tl{hd(g))))1labs)^H(tl(g)1labs),F) 
H(tl(g),labs)]], 

labs r5 [/»H.fxg. null(g)-NIL,atom(hd(g)) -* hd(g)«H(tl(g)), H(tl(g))]] 
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If X is a group of instructions and labels then 'INSTXX, n)' will pick out the 

n-th instruction, 'GUX)' will compute the number of Instructions in X, 'lab^X)' will 

list all the labels in X and 'loc(L, X)' will compute the number of Instructions that 

precede label L in X. 

The predicate 'complete' is used to indicate whether all labels referred to 

by 'JUMP instructions' (in a group of instructions and labels) are also in the group or 

in a list (of labels) which is the other parameter. 

9.4.3. Interpreting LAP. 

The highest level function of the semantics of LAP will be called 'lap' and 

will take three arguments; 'lap(F, L, P)' is to be the result of executing, inside 

program P, the function P with actual parameter list Ti (of S-expressions). 

The next level of interpreting-function must manage the 'flow of control' 

within function bodies - or, more generally, within arbitrary sequences of labels and 

instructions. Defined below is a function 'exec' which gives the effect (on a state) 

of executing a group of orders (from some point onwards) in the context of some 

program. More particularly, 'exec(G, P, o, st)' will be the (possibly flagged) state 

produced by executing G (a group of instructions) from P (a program) starting at 

the c-th instruction of G and wi'h initial state st. States are flagged while 

executing a group of orders to indicate that an 'exit' instruction such as '(POPJ  P5' 
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has been encountered. This flagging (accomplished by pairing T with the state) is 

undone when control gels back to the instruction that 'called' the function being 

executed. 

Naturally, the function 'exec' is written in terms of the meanings of 

individual orders. Now, since no instruction may do more than affect the memory 

and cause a transfer of control to its label, we are able to specify the semantics of 

individual orders by means of two LCF functions - "NST' (New STate) and 'TOC 

(Transfer Of Control). To define these explicitly would be to give the semantics of 

the entire instruction set so we just axiomatise it for the particular cases we are 

intetested in. 

'TOC is an LCF function of type (Dind-(Dind^Dtr)) and 'TOC(I, st)' indicates 

whether I (a jump instruction/ should cause a transfer of control if executed in st 

(an unflagged state). Since it is only applicable for jump instructions, there is a 

predicate 'isJUMP' whose value is axiomatised for each of the nine instructions we 

consider. 

'NST(I, e, P, st)' gives the new state after executing instruction I in state 

st and in the context of program P; V has the same type as 'exec' and is used to 

interpret a function if one is called by I. This 'extraneous' parameter is required 

because we want to define 'exec' in such a way that it is not mutually recursive 

with 'NST" which will only be partially specified. 

Here then are the definitions for 'lap' and 'exec': 
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**AXIOM TL4: 

lap 3 [xfn args P. dec (get(l,tl{exec(body{fn,P,length(args)), P, 0, 
putargs(arg9,set(!PlPDL,NIL))))))], 

exec a [^iH. [xg P c st. 
(c=GL{g)) -* st, 
(hd(st)=T) * st, 

[«. H(g, P, 
isJUMP(hd(z)) ■* T0C(z,9t)-»loc(hd(tl(tKz))),g),(c-H), 

(c+1), 
NST(z,H,P,st))] (INST(g,c))]], 

isJUMP(JRST)sT,     isJUMPIJUMPE)^!     isJUMP(JUMPN)aT, 
isJUMP(M0VE)^F,    isJUMP(MOVEI)HF,    i8JUMP(SUB)-F, 
isJUMP(PUSH)=F,     isJUMP(P0PJ)=F,       isJUMP(CALL)"F . 

Refer to Figures 9.6 and 9.7 for the specification of the functions 'NST' and 

'TOC, as appropriate, for each of the nine instructions that we consider in our* 

treatment of LAP. 

9.5. Towards a Theory of LAP. 

The aim of this part of the thesis is to prove the correctness of LComO and 

we do not have time to consider developing even an elementary theory of the 

language LAP. However, we have given an axiomatic framework for defining most 

aspects of the language, we have been forced to prove some basic lemmas and so 

we actually have the beginnings of a theory. 
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^AXIOM TL5: 

Vx. isname(x)*   T0C((JRST 0 x)) ^ [xst. T], 
Vx. isname(x)*   NST((JRST 0 x)) 

^ [xe fl st. si], 

Vx. isnarnelx)*   TOC{(JUMPE 1 x)) - [xst. Z(get(l,st))], 
Vx. isname(x)*   NST((JUMPE 1 x)) 

- [xe fl st. st], 

Vx. isname(x)*   TOC((JUMPN 1 x)) s [xst. Z(get(l,st))->F,T], 
Vx. isname(x)*   NST((JUMPN 1 x)) 

- [xe fl st. st], 

Vx. NSTKMOVEI 1 (QUOTE x))) 
= [xefl st. Nlb5et(l,code(x),st)], 

Vx y. isint(y)*   NST((MOVE x y P)) 
s [xe fl st. (0>xHi, (x>mna)->i,set(x,(set(P,st)+y),st)], 

Vx. NST((SUB P (C 0 0 x x))) ^ [xe fl st. set(R,get(P,st)-x,st)], 

Vx. (x>0)*  NST((PUSH P x)) 
s [xe fl 5t.[xz. set(P,z+l,5et(z,get(x1st),st)](get(P,st))], 

NST((POPJ P))  ä [xe fl st. T-st] 

Figure 9.6   -   Partial Semantics of 8 Lap Instructions, 
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**AXIOM TL6: 

t 

Vx y. NST((CALL x y)) 
3 [xe fl st. (x>mna) -> 1, 

isBF(y)->set(l)callBF(y,x,st),st), 
tl(e(body(y,f!,x),fl10,NIL.st))], 

callBF(CAR) ^ [xn st. (n>l)-»hd(get(l,st)),l ], 

callBRCDR) n [xn st. (n>l)-»tKget(l,st)),i ], 

callBF(CONS) * [xn st. (n>2)-» get(l,st).get(2,st), 1], 

callBF(LIST) * [xn st. [ßi.[\l i>n -► NIL, get(i,st).f(i+l)]](l)], 

, callBF(ATOM) - [xn st. (n>l)-»atom(get(l,st))->code(T),code(NIL),i ], 

callBF(EQUAL) = [xn st. (nä2)-» ((get(l,st)=get(2,st))->code(T),code(NIL)), 1], 

callBF(PLUS) a [xn st. (n>2)-> code(dec(get(l,st))+dec(get(2,st)))f i], 

callBF(TIMES) B [xn st. (n;>2)-» code(dec(get(l,st))*dec(get(2,st))), 1], 

callBF(MINUS) = [xn st. (n>l)-»code(mns(dec(gel(l,st)))),l], 

callBF(GENSYM) = [xn st. (n>l)-»code(gensym(dec{get(l,st)))),l ], 

callBF(NUMBERP) = [xn st. (n>l)->isint(dec(get{l,st)))-»code(T),code(NIL)fl ], 

callBF{GREATERP) = [xn st. (n>2H 
((dec(get(l,st))>dec(get(2>st)))-»code(T),code(NIL))fl ] 

Figure 9.7 -  Partial Semantics of the CALL Instruction. 

113 



.HV'iw-w-^i^i,«y im^ wfimw* (•^«■w..* w 'u,"«w.; WM jCTTf^«viuwr;/jrf^».wp^^-r^ '-^^^^«-«w7»r^T^*^w*^''j^^-.^^^r-^v1-^^-^-»^^ 

There are quite obvious strictness results for the various functions and we 

point out that thoy are proved, but the important aspect of the behaviour of the 

various functions we have introduced is relative to their effects on groups 

appended together.  We give some of these 

f-   Vx y. labs(xÄy) s labs(x)Älabs(y) 

h   Vx y. GUx^y) a GL(x) + GL(y) 

H   Vx y c. INSKxKy.c) ^ (c>GL(x)) - INSKy, c-GL(x)), 
a(y) - INSKx.c), i 

completelX.D-T, complete(Y,L)"T  |- complete(XÄY,L)-T 

t-   VL x y. loc(L,xÄy) 3 mem(x,lab5{x)) ■> cilyl-^locd.x),!, 
loc{L,y)+GL{x) 

By far the most important result that was proved for LAP itself gave the 

effect of executing two groups of instructions joined together in terms of executing 

them sequentially. 

Vx. mem(x,lab5(Gl))*   mem{x,labs(G2))-F, 
complete(Gl,NII>T, complete(G2,NILHT 

}•   VP c st. exec(Gl«G2,P,c,st) 
= (c>GL(Gl))-» exec(G2,P,c-GL(Gl),st), 

exec( G2,P,0,exec(G 1 ,P,c,st)) 

which has the most important corollary that under certain suitable conditions on Gl 

and 02: 
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exec(GlÄG2,P,0,st) ^ execiG^P.O.exe^Gl.PAst) 

We note that the proof of this result required about 300 steps of LCF 

proof. That is, of course, after certain simple and general theorems are proved 

about 'complete', 'labs' etc. 

■ 

t 

I    f 
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CHAPTER 10 

Compiler Correctness  ( II ) - Outline of a Proof 

116 

-; 

Having axiomatioed the Gource and target languages of the compiler, we 

turn to the compiler itself. 

10.1. The Compiler: 

We start by exhibiting the compiler itself; Figure 10.1 (next three pages) 5 

gives the m-expression form of this 'LISP Function' which (via interpretation) maps 

S-exprcssions which are LISP Functions into other S-expressions which are LAP 

Functions. ^ 

In order to talk about the S-expression form of the compiler we must 

introduce axioms to give the names to the bodies of the various functions, 

f*AXIOM C01 

Sappn2 n   (LAMBDA (X Y) (CONS (CAR Y) (APPEND X (CDR Y)))) 

etc. 

The  S-expressions yo introduced are  Sappn2, Scomp,  Sprup,  Smkpush, 

Sloadac, Scomplis, Scompexp, Scomcond, Scombool and Scompandor, 

0 

0 
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appn2[x;y] = cons[car[y]iappend[x;cdr[y]]] 

comp[fn;var5iexp] = 
x[[n]i append[append[mkpush[njl ]; 

compexp[exp;minus[n];prup[vars;l]; 
gensym[fn]]]i 

list[list[SUB;Pjlist[CiO;0;n;n;]]i 
list[POPJ;P]jNIL]] 

[length[vars]] 

prup[var5;n] - 
[null[vars] - NIL; 
T - cons[con5[car[vars];nji prup[cdr[vars];plus[nil]]]] 

mkpuGh[njm] - 
[greatcrp[m,n] -> NIL; 
T -» cons[list[PUSH;P;m]i mkpush[n;plus[m;l]]]] 

loadac[n;k] = 
[greaterp[n;0] -> NIL; 
T -* cons[list[MOVE;k;n;P]; loadac[plus[n;l];plus[k;l]]]] 

complis[u;m;vpr;nl] = 
[null[u] -* cons[nl;NIL]; 
T -» x[[x];appn2[cdr[x]; 

appn2[ ((PUSH P 1)); 
complis[cdr[u];difference[m;l ]; 

vpr;car[x]]]]] 
[compexp[car[u];m;vpr;nl]] 

Figure 10.1a - The LISP Functions that Make up LComO 
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compexp[exp;rn;vpr;nl] = 

Lor[null[exp];equal[exp;T]]-listfnlilist[MOVEI;l;list[QUOTE:expin; 
atomLexp] ^ li5trnl;lisl(MOVE;l;plus[m;cdr[assoc[expjvprni:Pll 
orlequal[car[exp]!AND];equal[car[exp]iOR];equal[car[exp];NOT]]-» 

append[combool[exp;m;nl;ML;vpr;gensymrgensymrnim: 
list[ (MOVEI 1 (QUOTE T)); JJ 

list[JRST; gensym[nl]]; 
nli (MOVEI 1 (QUOTE NIL)); gensym[nl]l]; 

equa carfexpKOND] - comcond[cdr[exp]iminlivprigensym[nl]li 
equalCca^expJ-.QUOTEJ-listCnljIistCMOVEIjljexpll: 
atom[car[exp]] -* 

x[[n]; append[complJs[cdr[exp]im;vpr;nl]; 
append[loadac[dlfference[ 1 ;n]; 1 ]j 

list[llst[SUBjPilist[CiO;Ojn;n]]j 

\ [lengthNrtexp]]]; list[CA^;.ist[E;car[exp]]]]]]] 

equal[car[car[exp]];LAMBDA] -♦ 
x[[n;x];append[appn2[cdr[x]i 

compexp[car[cdr[cdr[car[exp]]]]i 
difference[m;n]; 
append[prup[car[cdr[car[exp]]]i 

difference[l;m]]i 
vpr]; 

car[x]]]; 
listfli5t[SUB;P;list[CiO;0;n;n]]]]] 

tlength[cdr[exp]]i complls[cdr[exp];mjvprin|]] 

Figure 10.1b  -  The LISP Functions that Make up LComO (ctd.) 
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s 

comcond[uimil;vprinl] = 
[null[u] -» list[ni;l]; 
T 3 x[[x]; x[[y]; appn2[cdr[x]j 

appn2[cclr[y]i 
appn2[list[list[JRST;l];nl]; 

comcond[cdr[u]im;ljvpr}car[y]]]]]] 
[compexp[car[cdr[car[u]]]im;vpricai/[x]]] 

[combool[car[car[u]];m;nliNILivpr;gensym[nl]]]] 

combool[p;m;l;flg;vpr;nl] = 
[atom[p] -» append[compexp[pimivpr;nl]; 

list[list[ [fig ^ JUMPN; T -* .JUMPE];1;I'J]]; 
equa![car[p];AND] -» [not[flg] -» compandor[cdr[p];m;liNIL;vpr;nl]; 

T -» append[compandor[cdr[p]im;nliNIUvprigensym[nl]]; 
list[list[JRSTjl];nll]]i 

equal[car[p];OR] •* [fig -* compandor[cdr[p];m;ljT;vprjnl]; 
T -* append[compandor[cdr[p]iminl;T;vprigensym[nl]]i 

llst[lisl[JRSTil];nl]]]; 
equal[car[pliNOT] -» combool[car[cdr[p]];not[flg];vpr;nl]i 
T -» append[compexp[p;mjvpr;nl]; 

list[list[[flg - JUMPN; T -» JUMPE];!;!]]]] 

compandor[uim;liflgivprinl] = 
[null[u] - list[nl]i 
T -* x[[x]; appn2[cdr[x]icompandor[cdr[u];miliflgivpr;car[x]]]] 

[combool[:ar[u]imil;flg;vpr;nl]]] 

Figure 10.1c - The LISP Functions that Make up LComO (ctd.) 
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10.1.1. Some Slight Changes 

Close comparison of this compiler with the original will reveal that there 

are small differences. We have already indicated that, in LComO LISP, the function 

GENSYM takes one argument (usually the name it generated last time it was 

invoked) instead of no arguments (as in LISP 1.5). This change in the language was 

compensated by a suitable change in the compiler: each function that could generate 

labels internally acquired an extra parameter - namely, the next label to be used; 

also each of these functions gave as result a pair of next-label-to-be-generated 

and a list-of-instruciions. 

Finally, there is some slight saving in the number of subsidiary functions 

required. For example, LESSP is avoided by changing the program to use GREATERP. 

10.1.2. Predicate 'CFD' - Compiler Functions Defined 

Having available the S-expression forms of all the compiler functions, we 

now introduce an axiom to define a predicate (on lists) which can testify to all the 

LISP Functions used (directly or indirectly) by LComO being in a function list: 

**AXIOM C02: 
CFD = [xfl. BFD(fl) - 

tl(asGoc(PRUPIfl))-Sprup -* 
tl(assoc(MKPUSH,fl))=Smkpush ■* 
tl(assoc(LOADAC)fl))=Sloadac -» 
tl(assoc(APPIM2,fl))=Sappn2 -* 
tl(assoc(COMP,fl))=Scomp -* 
tl(assoc(COMPEXP,fl))=Scompexp -> 
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tl(assoc(COMPL!S,fl))=Scomplis -> 
tl(aj;soc{COMCOND,fl))=Scomcond-» 
tKassoc(COMBOOL,fl))=Scombool -» 
tl{assoc(COMPAMDOR,fl))=Scompandor, 

F.F.F.F.F, F,F,F,F,F] 

10.2. Meaning of the Compiler: 

Figure 10.2 (next three pages) gives the meaning functions that the 

compiler LISP Functions induce under interpretation. Figure 10.3 contains theorems 

which explicate the definitions of 'compexp' and 'combool' which are the hardest to 

follow. We shall therefore consider the LCF function 'comp' to be the compiling 

algorithm o? LComO. The purpose of introducing the meaning functions is to factor 

the whole proof of correctness of the compiler into two substantial but independent 

parts: 

i) the correctness of the S-expression form of LComO relative to the 

compiling algorithm; 

ii) the correctness of the compiling algorithm. 

The technical statement of the first subproblem \r. simply: 

CFD(FI>T  h  Vf v e. apply(C0MP,(f v e),NIL,FL) = compif.v.e) 

which we arrive at via the family of lemmas: 

CFD(Fl>T h Ve m vpr nl vb. apply(COMPEXP,(e m vpr nl),vb,FL) 
3  islist(vb) -> compexp(u,m,vpr,nl), 1 
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**AXIOM C03: 

^ 

comp - [\f v e.[xn.(mkpush{n,l) 

ÄtJ(compexp(e,mns(n),prup(v,l),gensym(f)))) 
Ä/ ( (SUB P (C 0 0 n n)) (POPJ F) NIL)]length{v)], 

compexp 3 [/iG.[xexp m vpr nl. 
(null(exp)-»T,{exp=T)-»T,isir)t(exp)) -» 

(nl (MOVEI I (QUOTE exp))). 
atom(exp) - (nl (MOVE 1 m+tKassoctexp.vpr)  P)) 

((Mexp)=AND)-*T,(hd(exp)=OR)^T,(hd(exp)=NOT)M 
comboolF(G)(exp)m,nl1ML,vpr,gensym(gensym(nl))) 

& ( (MOVEI 1 (QUOTE T)) (JRST 0 gensym(nl)) 

^(ex^XOND)"'  (M0VE,1(QU0TEN,L))8enS^ 

(hd(e^Ätffii?^r'V^^^^^ 
atom(hd(exp)) -* complisRG)(tl(exp),m,vpr,nl) 

ä [xn.loadacd-n,!) Ä ( (SUB P (C 0 0 n n)) 

(hd(hd(exp)).LAMiDCAA) ^ (E ^^»^'-^(tKexp))). 
rXn X T-cfffS^^^^^'l^^^P^^^^P^.h^x))) 

Ä ((SUB P (C 0 0 n nJJ^IenglhdKexp)), 
complisF(G)(ll(exp),m,vpr,nl), 

^ W & PrupdiddKhdlexp))),!^», 

complisF s [\ce. [nH.[\u m vpr nl. null(u)- (nl), 
[xx. appn2(tl(x), appn2( ( (PUSH P 1)) 

H(tl(u),m-l,vprIhd(x))))](ce{hd(u)(m,vpr,nl))]]], 

Figure 10.2a     'comp' - the meaning of 'COMP. 
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fc 

^ 

% 

% 

<> 

comboolF a [xce. [>H.[>p m I fig vpr nl. 
atom(p) -♦ ce(p,m,vpr,nl) 

& ( ((null(flg)-*JUMPE,JUMPN) 1 I)), 
(hd(p)=AND) -> 

null(flg) -» compandorF(H>(tl(p),m,liNIUvpf,nl), 
compandorF(H)(tl(p),m,nl,NIL,vpr,gensym(nl)) 

& ( (JRST 0 I) nl), 
(hd(p)=OR) -> 

null(flg) -» compandorF(H)(tl(p),m,nl,T,vpr,gensym(nl)) 
& ( (JRST 0 I) nl), 

compandorF(H)(tl(p),m,l,T,vpr,nl), 
(hd(p)=NOT) -» H(hd(tl(p)),m,l,(null(flg)-»T,NIL),vpr,nl), 

ce(p,m,vpr,nl) & ( ((null(flg)-JUMPE,JUMPN) 1 I))]]], 

compandorF ^ [xcb. [MF.[XU m I fig vpr nl. null(u)-» (nl), 
[xx. appn2'(tl(x),F(tl(u),m,l,flg,vpr,hd(x)))] 

(cb(hd(u),m,l,flg,vpr,nl))]]], 

comcondF = [xce cb. [/iH.[xu m I vpr nl. null(u) -»(nl I), 
[xx. [xy. appn2(tl{x), 

appn2(tl(y), 
appn2( ( (JRST 0 I) nl), 

H(tl(u),m,l,vpr,hd(y)))))] 
(ce(hd(ll(hd(u))),m,vpr,hd(x)))] 

(cb(hd(hd(u)),m,nl,NIL,vpr,gensym(nl)))]]], 

% 

f: 

Figure 10.2b  -  Auxiliary Functions for 'comp'. 
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complis s complisFlcompexp), 

combool - comboolF(compexp), 

compandor s compandorFlcombool), 

comcond  = comcondF(compexpl combool) 

appn2    [xx y. hd(y) - (x & ll(y)) ], 

prup a |>G.[xv n. null(v)-NIL, (hd(v).n) • G(tl(v),n+1)]], 

mkpush - [/iG.[xn m. (m>n)^NIL, (PUSH P m) • G(n,m+1)]], 

loadac ^ [nG.[\r\ k. (n>0)^NIL, (MOVE k n P) • G(n+l,k+l)]] 

Figure 10.2c  -  Auxiliary Functions for'comp', 
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compexp s [fiG.[xexp m vpr nl. 
(null(exp)-»T,(exp^T)->T,isint(exp)) -» 

(nl (MOVEI 1 (QUOTE exp))), 
atom(exp) -> (nl (MOVE 1 m+tl(assoc(exp,vpr)) P)), 
((hd(exp)=AND)-»T,(hd(exp)=OR)->T,(hd(exp)=NOT))-» 

(ft combool(exp,m,nl,NIL,vpr,gensym{gensym(nl))) 
& ( (MOVEI 1 (QUOTE T)) (JRST 0 gensym(nl)) 

nl (MOVEI 1 (QUOTE NIL)) gensym(nl)), 
(hd(exp)=COND) -♦ 

comcond(tl(exp),m,nl,vpr,gensym(nl)), 
(hd(exp)-QUOTE) -* (nl (MOVEI 1 exp)), 

• atom(hd(exp)) -» complis(tl(exp)lm,vpr,nl) 
Ä [\n.loadac(l-n,l) Ä ( (SUB P (C 0 0 n n)) 

(CALL n (E hd(exp))))](length(tl(exp)))I 
(hd(hd(exp))=LAMBDA) -* 

[\n x vpr2. appn2(tl(x),G(hd(tl(tl(hd(exp)))),m-n,vpr2,hd(x))) 
t Ä ((SUB P (C 0 0 n n)))](length(ll(exp)), 

compli s( 11( exp) ,m,vpr,nl), 
vpr & prup(hd(tl(hd(exp))),l-m)), 

i]]. 

$ combool s [fiH.[xp m I fig vpr nl. 
atom(p) -> compexp(p,m,vpr,nl) 

Ä ( ((null(flg)-»JUMPE,JUMPN) 1 I)), 
(hd(p)=AND) -* 

null(flg) -» compandor(tl(p),m,l,NIL,vpr,nl), 
compandor! 11( p),m,nl,NIL,vpr,gensym( nl)) 

* & ( (JRST 0 I) nl), 
(hd(p)=OR) -» 

null(flg) - compandor(tl(p),m,nl,(T,vpr,gensym(nl)) 
Ä ( (JRST 0 I) nl), 

compandor(tl(p),mll,T,vpr,nl), 
(hd{p)=NOT) -* H(hd(tl(p)),m,l,(null(flg)-T,NIL),vpr,nl), 
compexp(p,m,vpr,nl)Ä ( ((null(flg)-»JUMPE,JUMPN) 1 I))]]], 

Figure 10.3  -  Theorems Explicating 'compexp' and 'combool'. 
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CFD(FL)^T   I-  Vu m I vpr nl vb. apply(COMCOND,(u m I vpr nl),vb,FL) 
a  islist(vb) -♦ comcond(u,m,l,vpr,nl), 1 

etc. 

The appropriate attack on these subproblems is by means of the techniques 

described in the context of Pure LISP (see Chapter 7). We must prove the family 

of lemmas simultaneously using induction on the the structure of the expression 

being compiled. The proof will clearly be long and for this reason alone we would 

find difficulty in establishing the results. We estimate that it would be comparable 

in size to that half of the interpreter proof that was done on the machine. 

10.3. Properties of the Compiler Functions. 

Having extracted meanings for the various compiler functions as terms of 

LCF, we rnuct proceed to prove various theorems about their behaviour. The most 

important one is treated in the next section: that the compiling functions produce 

'correct LAP code. In this section we present some useful but much simpler lemmas 

about the LCF functions 'comp', 'compandor' etc. 

Attached to some of the lemmas there are provisos that the arguments 

given to a function are well formed. We refer the reader to chapter 9 for the 

discussion of well-formedness of LISP expressions. 
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s Several of the functions take a parameter which will call a variable 

position record (vpr).   A vpr is an A-list which associates variables with 

integers used in the computation of stack positions for variables.   The predicate 

'isvpr{v,n)' checks that v is a vpr, that the integers are in descending order and are 

positive but less than n.   The function 'vprvars' builds a list of all the variables 

mentioned in a vpr. 

isvpr = [MG.[XV n. null(v) -♦ (n>l), 
tl(hd(v))>n -* F, 
isname(hd(hd(v))) -> G(tl(v),tl(hd(v))), F ]] 

vprvars ^ [MG. [XX. null(x) -» NIL, hd(hd(x)) . G(tl(x))]] 

We observe that 'compexp', 'complis', 'combool', 'compandor', 'comcond' are 

all strict in their first and last arguments and that 'compexp' is strict in all its 

arguments. 

V 

10.3.1. Totality 

The result we suggest in this subsection is that each of the compiler 

functions terminates with a list (of instructions) provided only that its arguments is 

well-formed.  Formal statements of two instances of this result are:- 

iswfe(e,vprvars(vpr)) = T, 
isvpr(vpr,mns(m)) s T, 
isname(nl) s T 

H  islist(compexp{e,m,vpr,nl)) s j 

and 
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iswfl(p,vprvars(vpr)) s T, 
isvpr(vpr,mns(m)) 3 X, 
isname(l) = X, 
(flg-NIL) -^ T, (flg=T) « T, 
isname(nl) - T 

h  islisticombooKp.mJ.flg.vpr.nl)) - T 

By instantiating the first of these two lemmas appropriately we get: 

iswfe( (LAMBDA v e), ML) a T, 
isname{f) 3 J 

f-  islist(comp(f,v,e)) a T 

10.3.2. Completeness 

We next suggest some results which say that the bodies of code produced ' 

by compiler functions are complete in the sense that they contain no jumps to 

'undefined' labels.   Take, for example, 'coi>   ool': 

a 
iswfl(p,vprvar5{vpr)) s T, 
i5vpr(vpr,mn5(m)) s J, 
(flg-NIL) - T, (flg=T) = T, 
di5cr(nl) > discr(l) s T 

h  complete(tl(cümbool(p,m,l,flglvpr,nl)), (I)) a T    . 

• I I The corresponding theorem for 'comp' Is: 

iswfe( (LAMBDA v e)) s T, 
isname(f) a T 

h  complete(comp(f)v,e), NIL) = T    . • 1 
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10.3.3. Distribution of Labels 

When we come to prove correctness of the compiler functions we will need 

lemmas which declare that in bodies of code produced by the compiler functions, 

labels are declared only once.  This requirement is fulfilled by some theorems which 

describe the orderly placing of labels. For example, we state the one for 'comcond': 

iswfl(u,vprvars(vpr)) 3 T, 
isvpr(vpr,mns(m)) 3 j, 
discr(nl) > discr(l) 3 T, 
X 3 comcond(u,m,l,vpr,nl), 
mem{y, !äbs(tl(X))) a T 

}• discr(y) > discr(l) = T, 
discr(hd(X)) > discr(y) « T    . 

10.4. Statement of Correctness. 

Let us now state what our final goal is. We first do so informally as follows: 

IP we have a certain function list FL1 of well-formed LISP 
Functions 

AND we have a function list FL2 of the compiled forms of 
those LISP Functions (where compilation is done by running 
the LISP compiler (LComü)), 

THEN the effect of applying some function F to some list A of 
arguments (not too long) is the same whether we use LISP 
'apply* in the context of FL1 or LAP in the context of FL2. 
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That is, we must establish the theorem, 

Vx. aChcKassocte.FLl)))* iswfeitKasso^x.FLl)))^^ 
Vx. £i(hd(assoc(x,FLl)))!» hd(tl(assoc(x,FLl)))HLAMBDA. 
CFD(FL)^T, 
Vx. ci(hd(assoc(x,FL2)))* 

tl(tl(assoc(x,FL2)))5 apply(COMP, (x hd(tl(tl(assoc(x,FLl)))) 

,   ut hd(ll(tl(tl(as80c(x,FLl))))) ), NIL, FL) 
H  Vfn args. Iength(args)<mna* 

apply(fn,args1NIL,FLl) a lap(fn(args,FL2) 

10.4.1. Correctness of the Compiling Algorithm 

In Section 2 we exhibited the function 'comp' which is the one induced 

under interpretation by the LISP function 'COMP'. We are thus entitled to simplify 

the compiler correctness problem by rewriting some of the hypotheses of the above 

theorem. We will now assume thoca modified hypotheses for the rest of the 

chapter, effectively creating constants FL1 and FL2:- 

and 

Vx. ci(hd(assoc(x,FLl)))* iswfedKassoclx.FLl)))^, 
Vx. fi(hd(assoc(x,FLl)))* hd(tl(assoc(x,FLl)))HLAMBDA 

Vx. ci(hd(assoc(x,FL2)))* 
tl(tl(assoc(x,FL2)))s comp(x, hd(tl(tl(assoc(x,FLl)))), 

hd(tl(tl{tl(assoc(x,FLl)))))) 

The correctness of the compiling algorithm is then just: 

(- Vfn args. Iength(args)<mna* apply(fn,args,NIL,FLl) ^ lap(fn,args,FL2) 

130 

'— - ------ ■ ■— ^- - 
^»..^^^a..^.i-,..U,^.4^...:-^..^..^,,.^^ ' • ■>—■■-.......-.^ ,, -iri iTiiiiiMliiMiiMMiiiMiliMI MIÜ 



r 

^ 10.4.2. The Principal Lemma 

Taking the result of the last subsection as our goal, we see that the 

appropriate principal subgoal is: 

5 Vvb st args fn. a(vb)* lenglh(args)<mna* get(!P,st)>PDL* 
dec(get(l,exec(body(fn,FL2,length(args)), FL2, 0, putarg9(args,st)))) 

- apply(fn,args,vb,FLl) 

The main correctness result follows from this one by taking W to be 'NIL' 

and 'st' to be 'setdP.PDL.NID'. 

10.4.3. Environment Correspondence 

At   the  next   level  of  goals, we will  have  equations  where  the  LAP 

interpretation   of   some   expression   appears  on   the   left   hand   side   and   LISP 

interpretation of a corresponding expression appears on the right.  However, both of 

these interpreting functions take an environment as a parameter and so we will 

sometimes  need  preconditions to  the  effect  that   a  pair  of  environments  are 

consistent.   We thus define a correspondence function between LISP A-Lists and 

LAP run-time stacks as follows: 

stkscorr s I>G.[xvb st vpr m. 
null(vpr) ■* (geU!P,st)+m > PDL), 

v (hd(hd(vb))=hd(hd(vpr))) 
-►(tl(hd(vb))=get(get(!P,st)+m+tl(hd(vpr)),9t) 

-» G(tl(vb),st,tKvpr)lm), F), 
F]] 
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One sees that if stkscorr(vb,st,vpr,iu) T then the value of any variable 

extractable from the run-time stack by means of the function 

[\x. get(get(!Pl.st)+m+tl(assoc{x,vpr)),st)] is the same as the value which would 

be extracted from the A-list vb by means of the usual function 

[xx. tl(assoc(x,vb))]. Note that this correspondence function is very much tailored 

to our present purposes of proving LComO. A more general such predicate might 

not require that variables appear in exactly the same order In the A-list and the 

stack; on the other hand, it could require that all of the stack in st should 

correspond to all of vb instead of just those variables that are mentioned in vpr. 

ii) How the otack pointer is affected; 

iii) How the stack contents are affected. 
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10.4.4. Second Level Subgoals 

The secondary lemmas which we must prove and which we list in figures 

10.4 to 10.8 relate LISP interpretation in some environment (an A-list) to LAP 

execution of corresponding code in a corresponding environment (a stack). More 

particularly, we wish to describe the effects of executing code produced by 

'compexp', 'complis', 'comcond', 'combool' and 'compandor' in terms of how the LISP 

functions 'eval', 'evils' and 'evcon' operate on the source S-expressions. Note that 

there are just three effects we wish to capture in lemmas about code execution: 

? 

9 

i) What the answer is (usually what register 1 contains); 

:; 
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i)   Answer: 

Vexp vb st vpr m lab. 
stkscorr(vb,st,vpr,m)* 

f» iswfl(exp,vprvars(vpr))* 
isnamedab)» 

dec(get(l,exec(ll(compexp(exp,m,vpr,lab)),FL2,0,st))) 
s eval(exp,vb,FLl) 

ii) invariance of Stack Pointer: 

Vexp st vpr m lab. 
Iswf 1 (exp,vprvars( vpr))* 
Isname(lab)* 
gel(!P,st)>PDL* 

Vst2. 
st2=exoc(tl(compexp(exp,m,vprllab)),FL2,0,st)* 

t- 

get(!P,st2) B getdP.st) 

Hi) Invariance of Stack Contents: 

Vexp st vpr m lab. 
iswf l(exp,vprvars( vpr))* 
isname(lab)* 
Eet(!P,st)>PDL* 

Vst2 n. 
st2=exec(tl(compexp(exp,m,vpr,lab)),FL2,0,st)* 
n>PDL* 
gel(!P,st)>n* 
get{n)st2) 3 get(n,st) 

Figure 10.4 -  Subgoals Describing Effects of 'compexp'. 
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i)   Answer (additions to stack): 

Vx vb st vpr m lab. 
stkccorr(vb,st,vpr,m)* 
iswf 2(iswfl ,x,vprvars( vpr))* 
isname(lab)* 
[xstl. |>G. [xn. n>length(x) -* ML, 

get(get(!P,stl)-n,stl).G(n+l)]](l)] 
{exec(tl(complis(x,m,vpr,lab)),FL2,0,st)) 

= evlis(x,vb,FLl) 

9 

ii)   Effect on Stack Pointer: 

Vx st vpr m lab. 
iswf 2(iswfllx,vprvars( vpr))* 
isname(lab)* 
get(!P,st)>PDL* 

Vst2. 

st2-exec(tl(complis(x,mlvpr,lab)),FL2,0,st)* 
get(!P,st2) S get{!P,st)+length(x) 

iii) Invariance of Slack Contents: 

Vx st vpr m lab. 
iswf 2(iswfl,x,vprvars( vpr))* 
isnamc(lab)* 
Eet(!P,st)>PDL* 

VGt2 n. 

5t2-exec(tl(complis(x,m,vpr,lab)),FL2,0,st)* 
n>PDL* 
get{!P,st)>n* 
get(n,st2) a get{n,st) 

Figure 10.5 - Subgoals Describing Effects of 'complls'. 
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i)   Answer: 

Vx vb st vpr m yl y2. 
stkscorr(vb,st,vpr,m)* 
iswf3(iswfl,x,vprvars(vpr))* 
discr(y2)>discr(yl)* 
dec(get(l,exec(tl(comcond(x,mlyl,vpr,y2)),FL2,0,st))) 

3 evcon(x,vblFLl) 

ii) Invariance of Stack Pointer: 

Vx st vpr m yl y2. 
iswf ?(iswf 1 ,x,vprvars( vpr))* 
discr(y2)>discr(yl)* 
get(!P,st)>PDL=> 

Vst2. 
st2:=exec(tl(comcond(xlm,yl,vpr,y2)),FL2,0,st)* 
get(!P,st2) s get(!P,st) 

iii) Invariance of Stack Contents: 

Vx st vpr m yl y2. 
iswf 3(iswf 1 ,x,vprvars( vpr))* 
discr(y2)>discr(yl)* 
get(!P,st)>PDL* 

Vst2 n. 
st2=exec(tl(comcond(x,m,yl,vpr,y2)),FL2,0,st)* 
n>PDL* 
get(!Plst)>n* 
get(n,st2) s get(n,st) 

Figure 10.6   -  Subgoals Describing Effects of'comcond'. 
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Vn.  Vx vb st vpr m yl y2 fig. 
stk5corr(vb,st,vpr,m)* 
iswf 1 (x,vprvars( vpr))* 
discr(y2)>discr(yl)* 
(flg=T) - T, (flg=NIL)* 

VxL seql seq2. 
xL=tKcombool(x,m,yl,f(glvpr,y2))* 
hd(seq2>=yl* 
disjoint(labs(seq2),labs(seql))* 
disjoint(labs(seqlÄseq2),labs(xL))* 
get(!P,st)>n* 
(n>PDL)-*T,(n=l)-»T,(n=!P)* 

get(n,exec(xLÄseqlÄseq2(FL2,0,st)) 
= [xC. get(n,exec(C,FL2Ast))] 

(null(eval(xivb,FLl))->(null(flg)->seq2,seqlÄseq2), 
(null(flg)-»seql&seq2,seq2)) 

Notes 

i) This lemma can be specialised to tell about answer, stack 
pointer or old stack contents by taking 'n' to be 1, !P or some 
stack address (an integer between PDL and get(!P,st)). 

ii) The predicate 'disjoint' searches for common elements of 
two lists; It yields F if it finds one. 

disjoint ^ [(uG. [xx y. null(x) -* T, 
mem(hd(x),y) -» F, G(tl(x),y)]] 

Figure 10.7  -  Subgoal Describing Effects of 'combool'. 
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Vn.  Vx vb st vpr m yl y2 fig. 
stkscorr(vb,st,vpr,m)* 
iswfl(x,vprvars(vpr))* 
discr(y2)>discr(yl)* 
(flg=T) -* T, (flg=NIL)* 

VxL seql seq2. 
xL=tl(compandor(x,m,yl,flg,vprIy2))* 
hd(seq2)=yl* 
disjoint(labs(seq2),labs(seql))* 
di5Joint(labs(seqlÄseq2),labs(xL))* 
get{!P,st)>n* 
(n>PDL)-*T,(n=l)->T,(n=!P)* 

get(n,exec(xLÄseqlÄseq2,FL2,0lst)) 
~ [xC.get(n,exec(C,FL2,0,st))] 

([MG.[\y.null(y)-»seqlÄseq2, 
null(eval(hd(y),vb,FLl))-»(null(flg)-»seq2fG(tl(y))), 

(null(flg)-+G(tl(y)),seq2)]](x)) 

Note: 

This lemma can be specialised to tell about answer, stack 
pointer or old stack contents by taking V to be 1, !P or some 
stack address (an integer between PDL and get(!P,st)). 

Figure 10.8  -   Subgoal Describing Effects of 'compandor' 
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10.4.5. Attacking the Subgoals. 

Because 'compexp'. 'complis' etc. are all mutually recursive, the subgoals of 

figures 10.4 to 10.8 are all interdependent. It is thus necessary (but natural) to 

attack all these subgoals simultaneously. The appropriate tactic will clearly be 

induction on the structure of all S-exPressions being compiled We do this by using 

Scott induction on the definition of 'iswfl' which occurs in the relatlvisations of all 

the subgoals. 

The reader who is unfamiliar with LCF should not be perturbed at the large 

size of the conjunction of all these formulae; Immediately after the induction tactic is 

performed the new principal subgoal generated may be split back into manageable 

pieces. 

The reader may also wonder whether the limit on size of core image 

imposed on the LCF System presents a barrier which can make some proofs 

effectively impossible to do. The answer to this question is that, in practice, proofs 

in the system tend to be reasonably well-structured and we can factor such proofs 

into their main parts and subsidiary parts and then prove subsidiary results in 

separate core images. More particularly, if a subsidiary part of a proof has N steps, 

mak.s reference to J previous steps (hypotheses H,. H2,.. H> ) and contains K steps 
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for future use (results R,, R2l .. RK ) then as a separate task we may attack 

H|,..,Hj I- R|,..,RK.  Now if this proof (at most N+J steps long) fits in core and J+K is 

much less than N (as is usual) we win. 

t 

10.5. Feasibility of a Pull Compiler Proof 

To sum up, we have split the LComO correctness problem into four parts. 

The first two were the developments of axiomatic theories for LISP and LAP and 

chapter 9 reported on the machine assisted generation of these theories. 

The third part of the total problem was the proof that 'compexp' etc. are 

the functions denoted by the S-expressions COMPEXP etc. This part of the 

compiler problem was not worked up to a machine checked proof but, for reasons 

cited above, it was expected to be quite feasible involving two or three man/weeks 

of effort. 

The fourth part was the correctness of the compiling algorithm and we have 

just presented a natural high level goal structure for achieving the result. It is not 

thought there would be any conceptual difficulties in forging this plan into a 

completely formal proof but the time taken to do it must be considerably more than 

was required for the simple half of the interpreter proof. We estimate that it 

would be at the very least six man/weeks of effort using the current LCF system. 
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Thus with upwards of eight man/weeks of effort requirod it is appropriate 

to suspend this problem until a more automatic LCF is available. 
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5 CHAPTER 11 

Second generation LCF System 

6 

Since we assert that LCF is a useful (even important) tool for the theory of 

computation, a major aim in these LISP experiments has been to push the current 

system to its limits. In many directions the limitations severely handicap the user's 

ability to specify a proof at a natural level and in a compact way. We present, 

therefore, in this chapter many suggestions for improvements to the system. These 

improvements will probably be realised in a second generation system. It must be 

acknowledged that several of the ideas were developed in conjunction with Richard 

Weyhrauch and Robin Milner. 

11.1. Prior Accomplishments 

Although the notion of conditional simplification arose out of earlier work on 

LCF by Weyhrauch, Milner and Newey, it was implemented for this work. Without 

that facility the proofs would have been much longer. 

The 'PREF tactic' mentioned in Chapter 3 was implemented after the bulk of 

the Pure LISP proofs were done we credit the current work for its development. 
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11.2. Proof Generation vs. Proof Checking 

The LCF system was conceived as a proof checker which had some ability 

to help the user generate proofs but the implementation has undergone various 

mutations which were all intended to make the task of generating easier. Although 

it still claims to be able to check proofs, the considerable complexity of the more 

advanced derived deduction rules inevitably diminish confidence in the checking 

process. In fact, the notions of checking and generating are confused in the system 

design and inextricably entwined in the actual code. For example, if the user calls 

for a substitution then LCF generates an appropriate step but the only sense in 

which anything is checked is that the system checks that the user's prescriptions do 

indeed generate a step. 

Simplification is particularly worrisome in this regard. It is a very complex 

deduction rule and can change steps so drastically that the user is simply forced to 

believe that the machine did it ail correctly as long as the answer 'looks good'. 

What is suggested is that the tasks of generation and checking be realised 

in completely separate programs. We propose a program which will just check 

proofs where steps are given in full in a restricted version of the logic and an 

interactive program which will translate the user's high level notions into a proof 

that the base checker (the first program) can validate. 
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It will be most Important for the base checker to be simple because we will 

wish to have confidence in it. As soon as practicable we would want it proved 

correct. Of course, it would be nice if the interactive program were correct too, but 

that concern is secondary to its power to produce proofs with a minimum of effort 

from the user. Since the integrity of the generator is not of great importance, the 

user should be permitted to supply actual code which can help the system find a 

proof. 

It is clear that we expect the proof generator of the new LCF system 

(LCF2) to grow up to be an interactive theorem prover for LCF, so more emphasis 

will be placed on partial decision procedures and automatic selection of deduction 

rules. 

11.3. High Level Command Language 

Using the current system is rather reminiscent of using assembly language; 

the deduction rules correspond to the instructions in that when each command is 

typed in, one deduction rule is applied It is clear that, in LCF2, the input language 

for the bapo checker wili persist in being low level but the language with which we 

talk to the interactive proof generator should have various features of high level 

programming languages. 
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11.3.1. Data Types and Expressions 

We propose that there be at least four types - term, wff, step and 

simpset. It should be possible to have variables of each of these types as well as 

constants. The 'LABEL' facility of the current system is actually a simple use of 

variables which have values which are steps. Of course, for convenience of 

programming, integers should be another data type provided. 

There will be many operations on data of the different types, including 

operators which correspond to many of the deduction rules of the current system. 

For example, 'abstraction', 'application', 'symmetry', 'transitivity', 'fixed-point', 

'substitution' are operators which transform one (or more) items of data into a step. 

The notions of expression and assignment follow naturally from these ideas 

of data types, variables, constants and operators. 

% 

1 1.3.2. Control Structures 

It is a trivial consequence of our analogy between LCF command language 

and conventional programming language that we should incorporate control 

structures ^uch as procedures, functions, conditional statements, iterative 

statements, compound statements and blocks. The application of procedures in proof 

generation is in the binding together as a body many commands that can be then 

thought of as constituting a recipe for producing proof for some step.   The formal 

:.. 

. 
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parameters of procedures and functions may be of any data type or possibly 

functions over them. Similarly, an iterative statement would allow some command 

(or sequence of commands) to be repeatedly executed until some appropriate 

condition is satisfied.  Blocks are useful for delimiting scope of variables. 

11.4. Revised Axiom Structure 

In the current system one can only present nonlogical axioms to the machine 

if they have the form of WFFs. Hence, for example, one is prevented from having 

such notions as Vx. F(x)=t\ \- A^B as an axiom (in that form, at least). This is 

opposed to the logical axioms of LCF (which are built into the system) such as 

GUS2 H t(sl)Et(s2) and to theorems which are allowed to take the form of a 

sentence. This fact has led many users to adopt the rather unfortunate practice of 

expressing axiomatic material as unproved theorems (in fact unprovable theorems). 

It would appear that the only reason that axioms are not allowed to be 

sentences is that they are, unlike theorems, made numbered steps in the proof. As 

such they have a WFF part and a dependency part which must be a list of 

assumptions. It is proposed that axioms be made to behave more like theorems than 

regular steps and some of the differences between theorems and steps reduced. In 

particular, whenever a step expression can appear as an argument to a rule, an 

axiom or theorem should be permissible. 
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11.5. Extending the Pure Logic 

The two ways of expressing implication in LCF are really rather restrictive. 

The split arrow (*) abbreviation allows relativisation of equations by truth-valued 

ter'ms only. Also the turnstile ( f- ), as used in theorems, can only appear once in a 

theorem. It was argued in the last section that this turnstile facility, which is also 

used to express the logical axioms of LCF, should be made available for axiom 

writing. However, perhaps a more general attack on these expressive weaknesses 

of the current logic would be more rewarding. 

There   have   been   occasional   instances   where   it   has   proven   quite 

inconvenient to have just the rather simple formula structure we have.   A good 

example is course-of-values induction over the natural numbers, which can best be 

written for the current system as: 

Vy. [nH. [xw. Z(w) - T, 
g(pred(w)) -» H(pred(w)),JL]](y)*   g(y)=T  . 

Now   if   we   extended   our  weak   notions   of   implication   and   universal 

abclraction we could write 

y(0) T, Vy. (Vx. y>x-T = g(x)nT) = g(y)=T ) 
h Vy. g(yNT 

Inspired by such instances as we have in figures 10.4 to 10.6, we note that 
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in   normal   situations  we  can  have  wffs with  identical   sequences   of   prefixes 

containing rumbersome relativisatlons.  When we conjoin such wffs we would like to 

only write the prefix sequence once.  For example, we would much rather write the 

goal Vx. A=>(B|,B2)   instead of the goal  (Vx. A* B|),(Vx. A* B2) . 

The proposal of this section is to have a syntax for Well-Formed Formulae 

which goes like: 

':WFF> ::= <equivaiänce> | <mequivalence> 
I  V<varlist> . <WFF> 
I  <WFF> = <WFF> 
I  <WFF>,<WFF>     . 

This proposal has the nasty effect that the induction rule of LCF has to 

restricted in scope. There would have to be some syntactic check made on wffs to 

determine whether they admit induction, Igarashi has studied this problem in [11]. 

11.5.1. Derived Deductioi Rules 

With a high level command language as we proposed and with the richer 

implicalive structure that we are now discussing, one is able to write in the logic, 

rules of the form below which would have to be built into the system: 

Al-E      CHD 

EK 
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11.6. Concrete Syntax 

The question of how LCF should deal with syntax of programming languages 

is rather important since we hope to apply the system to many languages. The 

problem is that we want to be able to specify the concrete syntax of a language so 

we c n simply refer to a program by its text and have the system deduce its 

structure. We don't have a solid solution to the problem; in this thesis we have 

discussed some questions of denotation and syntax in relation to LISP and LAP but 

much more work is needed. 

11.7. Extending Simplification 

11.7.1. inequalities 

In chapter 8 we were unable to complete a proof because simplification, 

which is the workhorse of the system, only deals with equalities. It is a little more 

arkward lo handle inequalities but the extent of the technical problems is the fact 

that applicability depends on which side of an AWFF is being simplified and whether 

the user is doing forward or backward reasoning. For example, A s B can be used 

to simplify a step g(B) E C to a step g(A) E C but not used to simplify a goal 

F E H(A) . An important consideration is that one would like to simplify by 

equulities before inequalities which leads us to: 

S 

$ 

i 
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11.7.2. Split Level Simplification 

There are many reasons why users want some simplification rules tried 

before others. The most notable is recursive function definitions which should 

usually be considered last-resort rules. One approach which at least deserves trial- 

by-experience is the idea of having two or more levels of simpset. The highest 

level will contain rules which have complicated conditions to check before they may 

be applied or which may lead to excessive expansion of the formula if applied 

several times without lower level rules intervening 

11.7.3. n-time Simplification 

Another facility which is an old idea (Weyhrauch) is that of having a counter 

on simplification rules which enable a user to specify that a certain rule (perhaps 

recursive) should only be used a limited number of times. 

11.7.4. Subgoals from Conditional Simplification 

When simplification is used as a tactic (i.e. to attack a goal), the user should 

be able to nominate certain conditional simplification rules which are always applied 

when the left hand side matches; conditions are still attacked by simplification but 

those that are not reduced to trivialities are made into subgoals. It is necessary to 

specifically nominate rules to have this property (globally or locally) to avoid 

generation of large numbers of false subgoals. 
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11.7.5. Case Analysis in Simplification 

Suppose  we  are  given terms  A, F  and G   where P  and  G   contain 

occurrences of A.   We propose that simplification should normally mutate the term 

A - F,G   through A -* P-IT/AJ.GfF/A}  to perhaps something simpler,  (recall that 

T{s/x} denotes the result of substituting s for x in T.) 

11.7.6. Simplifying Procedures 

In the current system members of the simpset have the form C h A^B 

and if A matches some subterm and C is satisfied (by recursive call on simplification) 

then B (appropriately modified) replaces the matched subterm. We propose a more 

general scheme where items in the simpset are triples (A.C.F)- As before the term 

A must match a subterm before any consideration is given to the item; following a 

match, condition C is checked (by some procedure) and if it is OK then function F 

(given in some language) is executed with the matched subterm as a parameter. 

11.8. Types 

In his original sugeestion and formulation of the pure logic in [1], Scott 

chose a typed version since he despaired of finding a model for the x-calculus and 

concluded, on this basis, that 'the theory of types is here to stay'. Since that time, 

Scott has produced models for the \-calculus in [8], has repudiated the 'OWHY 
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paper' and has formulated a type-free logic ([9]). This development inevitably 

raises the question as to whether a new LCF system should be typed or not. 

Now, if we make the new LCF typed, we can apply some lessons learnt 

from the old system. Foremost, the system should be made to check types of terms, 

More precisely, the system should check that a proof is consistently typable; the 

user should rarely have to actually specify the types explicitly. The fact that the 

old system did not do this can be justified on the grounds that it was the prototype 

but this argument does no* apply now. Next lesson is that the pure logic should be 

changed to allow an arbitrary number of base domains, instead of just Dind and Dtr . 

In using the current system, where D,nd must be partitioned into various notional data 

types (such as integers and lists), one's theorems tend to be cluttered up with 

relativisationci Also, many theorems only exist because the data domains are only 

notional. Then, if we have many base types, we must also think about a richer type 

structure: namely, if a and fl are types then «-♦/? (as before), ct+ß (disjoint union) 

and a*/< (cartesian product) should be too. 

If, on the other hand, the new LCF implements Scott's type-free logic, one 

must provide syntactic sugar with which the user may restrict terms to certain 

subdomains (by means of hidden retractions) to achieve notional data-types. It must 

be noted that the provision of this facility corresponds approximately, in difficulty, 

to building type-checking into a typed system. 
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The debate continues as to which of these options is best. It cannot be 

denied that the type-free logic is mathematically more elegant. Also, some people 

say that one can more easily axionr.atise programming languages with functional data 

types using it. On the other hand, some people say that the objects we deal with in 

computation are really well-typed and that when one is proving properties of 

computable objects one should be forced to recognise the type structure. 

11.9. Miscellaneous   Improvements 

11.9.1. Solving Equations 

We found it convenient in doing the LISP experiments to have various 

theorems available with the flavor of 

P -< F,q - T  |-  P ^ F,  q - T 
and 

P -^ T,i - T   |-  P = T . 

With a couple of dozen such theorems one can break down sonruj quite 

complex equations to give specific truth-values for some of the subterms of the 

original equation.  For example 

p -^ T, (q ^ 1, (r -» T,s)) = F 

may be solved for p,q,r,5 (in this case each is F). 

This process, which we call 'solving equations' is clearly one one which 

should be automated. 
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11.9.2. Definitional Facilities 

In the current system, if one wants to name (with identifier n, say) some 

complicated term T that is used often in the proof of some step S but does not 

actually appear in the step, then one can either make the WFF n»T an axiom or an 

assumption. In one case one gets to complicate the axioms unecessarily and in the 

other case n^T becomes a dependency of S. This deficiency must be removed In 

the next system. 

11.9.3. Automatic Forward Reasoning 

We propose to have a set of sentences, called an FR-set, and a mechanism 

called 'Consequences'. When Consequences is invoked with a set of steps, 

antecedents of sentences in the FR-set are checked for satisfiability by the 

nominated steps. If all antecedents of a sentence check out, then the consequent 

(with appropriate instantiation) is made into a new step in the proof and perhaps 

added to the simpset. It should be clear that if a step so generated happens to be 

a standard contradiction then the current goal will be established. 

11.9.4. More Abbreviations 

The universal quantifier and relativisation (split arrow) abbreviations of LCF 

have been very successful. It seems that abbreviating the term P -* F,T as ^P 

would also be extremely useful. 
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We propose also that empirical study be devoted to having P A Q as an 

abbreviation for one of the terms  P -> Q,F  and  P -* Q,Q -» F,F .   Similarly,  P v Q 

could be a abbreviation for one of the terms P -* T,Q  and  P -♦ (Q -> T,T),Q  . 
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CHAPTER 12 

Conclusion 

This thesis has been an extensive exercise in the application of LCF to the 

definition of some programming languages - a subset of a machine-language and 

some subsets of LISP. In each of the several cases, we have defined the 

language axiomatically but have also illustrated how a 'theory' for the language 

should be constructed using the axioms as a base. The theory of a language then 

becomes a framework in which programs of the language can be proved correct. 

[23] classifies methods of definition of semantics as being either 

:conr,tructive' and suited to the needs of the implementor or 'implicit' and suited to 

the needs of the user. It then argues that a language should be defined both ways 

and the definitions proved consistent. In the present work, the definition of Pure 

LISP, for example, is clearly constructive but many of the theorems of the Theory of 

Pure LISP have the flavour of rules in Hoare's method ([20]). It would be 

interesting to investigate whether some subset of theorems of the Theory of Pure 

LISP could be used as a satisfactory implicit definition. 

We note that the recent independent work of M. Gordon [16] also gives a 

semantics of Pure LISP leading to a proof of correctness of 'eval' etc.  We observe 
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several significant differences of approach which make his work and this thesis 

somewhat complementary. Gordon ascribes denotations directly to Pure LISP 

M-expressions using Scott/Strachey style semantic equations (as in [29]) whereas 

we have it that S-expressions denote functions under interpretation of a particular 

'eval' function written in LCF. Gordon's approach makes use of much more logical 

machinery than is available in LCF and so his proofs are not checkable mechanically 

(as yet). Machine checkability was a prime requirement in this thesis since 

automation is the ultimate goal of the project. 

The way we were able to separate syntax from semantics by means of 

notation and denotation considerations is a technique that hopefully could be applieü 

with benefit to other languages; certainly, it solved the problem completely in the 

cases we studied. 

As an experiment in the application of LCF to the specification of 

programming language semantics, the work was very encouraging. The logic has 

distinguished itself as regards expressive power; the actual definitions of the 

various languages are concise and elegant. It is true that in the case of Pure LISP 

the language being defined and the formalism are similar in structure but LAP is 

certainly different in structure to LCF and current work on an axiomatisation of 

PASCAL by Aielk et al ([10]) is proceeding well. 

It is worth noting that we were able, in the case of LAP, to give a partial 
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specification of a language and also, as in the case of Pure LISP, give a complete 

description of a language. 

Although LCF is yet in its infancy of development, it has already proved 

very suitable for discussion of Pure LISP programs. We would like to claim this is 

some evidence that LCF has a bright future in the area of program correctness. 

There are many aspects of the LCF system which have helped substantially in proof 

generation but the proofs cry out for more mechanisation and more powerful 

deduction rules. 

We claim that this point in *ime is the end of the first cyle of development 

for LCF. Clearly the time is ripe fc developing a brand new LCF system which 

incorporates the suggestions we have presented. Effort spent in this direction 

should generate the most payoff. After that is done, a revamping of the work on 

integers, lists and finite sets would be profitable since the axiomati sat ions could be 

polished somewhat. Also it would give a good measure of the improvement in 

deductive power between the two generations. 

Redoing the Pure LISP proofs and completing the proof of correctness of 

the Pure LISP interpreter on the machine is a must and another look at the 

correctness of LComO would be appropriate. An option to be kept in mind at that 

time would be the reduction of the subset of LISP that LComO is written in and 

compiles.  The AND, OR, and NOT features could be removed and that would simplify 
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the compiler üubotantially but not to the point of no interest. However if the 

increace in power in new LCF lives up to hopes, this will not be necessary. In fact, 

we would expect to be able to attack the LComA compiler mentioned in [13], 

although our present treatment of LAP would then be inadequate. 

The compiler proof has a number of disadvantages as an experiment using 

LCF. Most important of these is that it encourages work on a rather artificial subset 

of LISP and gross simplifications of PDP10 code. It would seem more fruitful to pick 

an experiment which would encourage, instead, more sophisticated theories of a low 

level language or a high level language. 
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APPENDIX 1 

Theorems of LComO LISP 

In this appendix we report on the Theory of LComO LISP that was 

developed as background for the compiler proof. The axioms on which this collection 

of theorems is based are given in the first 2 sections of Chapter 9. Note that 

practically all the results are suitable for direct inclusion In a SIMPSET. 

The Interpreting Functions: 

In this section we present theorems to do with the LCF functions of the 

Interpretive semantics for LComO LISP - namely, 'eval', 'evcon', 'evand', 'evor', 

'apply', 'eviis' and 'pairlis' (in that order): 

f-  Vx y. eval(l,x y) s l 
h  Vx y. eval(x,i,y) s i 
f-  Vx y. eval(x,y,l) s i 

ci(eval(x,v,f)) H T  |-  d(x) ~ J 
ci(eval(x,v,f)) - T   h  a(v) s j 
ci(eval(x,v,f)) = T  h  5(f) ^ T 
|-  Vv f. evaKNIL.v.f) * a(vMi(f)-»NIL,i),i 

isint(x) s T   [.   Vv f. eval(x,v,f) = £i(v)-»(ci(f)^x,i),i 
iGname(x) s T, isljst(vb) s Jt ci(FL) a T 

h  Vy. eval(x,(x«y)»vb,fl) 3 y 
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isname(xhT, iiyl)*Tt x--=xl=F, islist(vb)=T, m=T 
h   Vy. eval(x,(xl«yl).((x'y).vb),fl) = y 

isnamdx)-!, c'fylhT, c'(y2HT, x=xl=Fl 
x-x2nF, islist(vb)HT, dU^J 

\- Vy. eval(x,(xl«ylH(x2'y2)'((x»y).vb))lfl) a y 
/'(vb) -T, ci(fl)-T  f-  Vx . eval(QUOTE.(x'ML),vb,fl) = x 

1-   Vx vb fl. eval(COND«x,vb,fl) E evconix.vb.fl) 
f-  Vx vb fl. eval(AND'X,vb,fl) s a(vbHa(fl)-»evand(x,vb,fl),l),i 
I-  Vx vb fl. eval(OR-x,vb,fl)  ^ a(vb)-»(a(fl)^evor(x,vb,fl),l),i 

h Vx y. evcon(i,x,y) s 1 
h Vx y, evcon(x,i,y) s i 
f- Vx y. evcon(x,y,l) s i 
}- Vvb fl. evconfNIL.vb.fl) = i 
I- Vx y vb fl. evcon(({QUOTE"(T'l\ilL)Hx'NIL))7,vb,fl) = a(y)-*eval(x,vbffl) 1 
I- Vx y w vb fl. evcon((w'(x«NIL))'y,vb,fl) 3 £)(x)-*(ci(y)-» 

(null(eval(w,vblfl))-»evcon(y,vb,fl),eval(x,vb,fl)),i),i 9 
i 1 

f-   Vx y. evand(l,x,y) H 1 
f-   Vvb fl. evand(NIILIvb>fl) s T 
}-   Vx y vb fl. evand(x'y,vb,fl) 

= ci(y)-*(null(eval(x,vb,fl))-*NIIL,evand(y,vb,fl)),l 
h   Vx y. evor(i,x,y) s i 
I-   Vvb fl. evor(NIL,vb,fl) = NIL 
|-   Vx y vb fl. evor(x»y,vb,fl) 

s a(y)-»(null(eval(x,vb,fl))->evor(y,vbffl),T),l 

11 

9 

I- Vx vb fl. apply{l,x,vb,fl) 3 i 
I- Vfn vb fl. appl^fn.i.vb.fl) 3 1 
h Vfn x fl. apply(fn,x,l,fl) - i 
f- Vfn x vb. apply(fn,x,vb,i) -- i 

£i(apply(fn,x,vb,fl)) -- T h 
^(applyifn^.vb.fl))  -• T \- 
ci(apply(fn,x,vb,fl)) - T |- 
tKapplydn.x.vb.fl» * J \- 

ci(fri> « T 
a(x) H j 
ri(vb) = T 
3(fl) s T 
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. __i  

f-   Vvb fl. evlis(l,vb,fl) s i 
islist(x) = ]K   |.  Vvb fl. evlis(x,vb,fl) s i 

H  Vvb fl. evlls(NIL,vb,fl) = NIL 
}-  Vx vb fl. evlis(x'NIL,vblfl) s eval(x,vb,fl).NIL 
I-  Vxl x2 vb fl. evlis(xHx2«NIL),vb,fl) 

= eval(xl,vb,fl).(evaKx2,vb,fl).ML) 
}•  Vxl x2 x3 vb fl. evlis(xHx2'(x3'NIL)),vb,fl) 

3 evaKx 1 ,vb,fl).(eval(x2,vb,fl).(eval(x3,vb,fl)'NIL)) 

f-  Vx a. pairllsd.x.a) - 1 
I-  Vx y. paiHi5(x,y,i) n i 
h  Vx a. palrlisiNIL.x.a) 3 a 
f-   Vx y a. pairlis(x'NIL,y'NIL,a) = (x'y)«a 
t-   Vxl x2yl y2 a. palrlls(xlKx2'NIL)(yl'(y2^IL),a) 

= (xl-ylH(x2'y2)'a) 
h  Vxl x2 x3 yl y2 y3 a . palrlis(xl-(x2»(x3'NIL)),yl.(y2«(y3»NIL)),a) 

s (xl-yl).((x2'y2)-((x3'y3)'a)) 

The Built-in Functions: 

Prepented here are the effects of applying 'eval' to expressions of the 

form  F X  (where F is a built-in function) and applying 'apply' to built in functions 

and suitable argument lists. 

I-  Vx vb fl. apply(CAR)X'NIL,vb,fl) = a(vbH5(fl)-+hd(x)IJ.)(l 
h   Vx vb fl. apply(CDR,X'NIL,vblfl) s ci(vbM£i(flMI(x),i),i 
I-  Vx vb fl. apply(N01>NIIL,vb,fl) 3 a(vb)-»(a{fl)^(nulKx)-»T,NIL),i),l 
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wwiBii Hnmi 

Vx vb fl. 
Vx y vb 
Vx vb fl. 
Vx y vb 
Vx y vb 
Vx y vb 
Vx vb fl. 
Vx vb fl 
Vx vb fl 
Vx y vb 

Vx vb fl. 
Vx vb fl. 
Vx vb fl. 
Vx vb fl. 
Vx y vb 
Vx vb fl. 
Vx y vb 

Vx y vb 

Vx y vb 

Vx vb fl. 
Vx vb fl. 
Vx vb fl. 
Vx y vb 

apply(ATOM,X'NILivb,fl) s ci(vbHa(flHatom(xHT,NIL),.L),l 
fl. apply(CONS,X'(y"NIL),vb,fl) a a(vbHa(flHx-y),l),l 
apply(LIST,x,vb,fl) = 3(vbH3(fl)-»xrl),i 

fl. apply(EQUAL,x-(yNIL),vb,fl) ^ a(vb)^(a(fl)->((x=y)-»T,ML),l)Ii 
fl. apply(PLUS1X'(y.lSIIL)1vblfl) = ^vbHa^Hx+yU),! 
fl. apply(TIMES,X'(y'ML),vb,fl) a a(vbHa(flHx*y),l),i 
apply(MlNUS,X'NIL,vb,fl) ~ a(vb)-*(a(fl)-»mns(x),l),l 
apply(GENSYM1x-NIL,vb,fl) s a(vb)-(a(fl)-»gensym{x),l),l 
apply(N'UMBERP(x-NIL>vb,fl) = a(vb)-*(a(fl)-»(i8int(x)->T,NIL),i),i 

fl. apply(GREATERP(x-(yNIL),vb,fl) 
= a(vb)-»0(fl)-»((x>y)-»T,NIL),i)1i 

eval(CAR'(x'NIL),vb,fl) s hd(eval(x,vb,fl)) 
eval(CDR-(x»NIL),vb,fl) = tl(eval(x,vb,fl)) 
eval(NOT'(x»NIL),vb,fl) = null(x)-»T,NIL 
evaKATOM'(X'NIL),vb,fl) =- atom(eval(x,vb,fl))-»T,NIL 

fl. evai(CONS^X"(y'NIL)),vb,fl) = eval(x,vb,fl)«eval(y,vb,fl) 
eval(LIST'X,vb,fl) = evlls{x,vb,fl) 

fl. eval(EQUAUx«(y'NIL)),vb,fl) 
= (eval(x,vb,fl)=eval(y,vb,fl))->T,NIL 

fl. eval(PLUS«(x'(y»NIL)),vb,fl) 
= eval(x,vb,fl)+eval(y,vb,fl) 

fl. eval(TIMES'(x^y.NIL)),vb,fl) 
3 fival(x,vb,fl)*eval(y,vb,fl) 

eval(MINUS<(x'NIL),vb,fl) ^ mns{eval(x,vb,fl)) 
eval(GENSYM'(x»NIL),vb,fl) = geriGym(eval(x,vb,fl)) 
evaKNUMBERNx'MD.vb.fi) = isint(eval(x,vb,fi))-»T,NiL 

fl. eval(GREATERP'(x'{yNIL)),vb,fl) 
=(eval(x,vb,fl)>eval(y,vb,fl)) -» T, NIL 

vp? 

LAMBDA Expressions: 

Hero we give the effect of 'evai'ing and 'apply'ing LAMBDA expressions. 

h  Vb vb fl. apply((LAMBDA ML bJ.NIL.vb.fl) ^ eval(b,vb,fl) 
h  Vx y b vb fl. apply((LAMBDA (x) b^y)^^^) 

3 evallb^X'yhvb.fl) 
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h  Vxl x2 yl y2 b vb fl. apply! (LAMBDA (xl x2) bUy! y2).vbfl) 
- eval(b,(xl.yl).((x2»y2).vbMI) y   '   ' ' 

H  Vxl x2 x3 yl y2 y3 b vb fl. apply( (LAMBDA (xl x2 x3) b) 
.(yl y2 y3),vb,fl) 

= eval(b,(x 1 «y I H(x2«y2H(x3.y3)«vb)),fl) 

h  Vb vb fl. eval((L/^BDA NIL b>NIL(vb)fl) = eval(b,vb.fl) 
f-   Vx y b vb fl. e\   .(LAMBDA (x) b)'(y).vb,fl) 

= evaKb, (x-eval(y,vb,fl)).vb, fl) 
H   Vxl x2 yl y2 b vb fl. eval((LAMBDA (xl x2) b).(yl y2)vbfl) 

t-   Vxl x2x^%X|« 

eval((LAMBDA (xl x2 x3) bMyl y2 y3).vbfl) 
s evaKb, (xl.eval(yllvb,fl))c((x2-eval(y2>vblfl)) 

•((x3'eval(y3,vb,fl))'vb)), fl) 

The Basic Functions: 

Here  we   give   the  meanings  (under  interpretation)   of  the   basic   LISP 

functions defined in Fig. 5.4: 

BFD(FL) 3 T   H   assoc(NULL,FL) = Snull, 
assoc(DtFFERENCE,FL) ^ SdiFFerence, 
assocdSLIST.FL) = Sislist, 
associASSOC.FL) = Sassoc, 
asGoc(LENGTH,FL) = Slength, 
assoc(APPEND,FL) s Sappend 

BFD(FL) = T   |-  islist(FL) - T 

BFD(FL) ^ T   }-  Ve vb. apply(NULL,e.NIL,vb,FL) 
= islist(vb) »(nuIKe)-»!^^),! 
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BFD(FL) = T h Ve vb. eval(NULL'(e»NIL),vb,FL) 
^ null(eval(e,vb,FL))^T,NiL 

BFD(FL) 3 T  h Vx y vb. apply(DIFFERENCE,x-(yNIL)ivb,FL) 
s islistlv^^x-y),! 

BFD(FL) ^ T  H  Vx y vb. eval(DIFFERENCE'(x«(y.NIL)),vblFL) 
= eval(x,vb,FL)-eval(y,vb,FL) 

BFD(FL) n T }- Ve vb. apply(ISLIS1>NIL,vb,FL) 
s islist(vbHislist(e)-*T,ML),i 

BFD(FL) r. T H Ve vb. eval{ISLIST-(e-NIL),vb,FL) 
- islist(eval(e(vb,FL))->T,NIL 

BFD(FL) s X   J-  Vx y vb. apply(ASSOC,x«(yNIL),vb,FL) 
2 islist(vb)-»asGoc(x,y),i 

BFD(FL) = T  H  Vx y vb. eval(ASSOO(X'(y«r>;iL)),vb,FL) 
s assoc(eval(x,vb,FL),eväl(y,vb,FL)) 

BFD(FL) s T > Ve vb. appiydENGTH.e-NIL.vb.FL) 
3 islist(7b)-»!ength(e),l 

BFD(FL) 3 T   |-  Ve vb. eval(LENGTH'(e'NIL),vb,FL) 
s length(eval(e,vb,FL)) 

BFD(FL) H T  |.  Vx y vb. apply(APPEND,X'(y'NIL),vb,FL) 
^ islist(vb)-*(xÄy),i 

BFD(FL) =1  I-  Vx y vb. eval(APPEND»(x'(yNIL)),vb,FL) 
= eval(x,vb,FL)&eval(y1vb,FL) 
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f APPENDIX  2 

Yet Another LISP Subset 

? 

In Figure A2.1 (next three pages) we give an interpretive semantics for yet 

cmother subnet of LISP - a superset of Pure LISP which has SETs, SETGls. 

PROGG, GENSYMS and property lists as well as the AND, OR, NOT and 

LIST operations introduced in LComO LISP. This semantics Includes all the 

techniques that we discussed while developing the other versions of LISP. 

The 'eval' and 'apply' functions in the definition of Pure LISP had a 

parameter which was an A-list for holding the values of bound variables. The 

corresponding functions in this treatment have a 'state' parameter instead, A state Is 

a triple of A-list (for bound variable values), list of property lists of variables and 

memory for the gensym function. To allow for side-effects, each of the functions 

Ceval', 'apply-, etc.) returns as a pair, the regular answer and a new state. 
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AS# 

**AXIOM NL1: 

lisp -= [xe. hd(eval(e,ML'(NIL'G0001)))] 

eval - [MB. evalF(B)], 
evalF -■ [\B x st. ci(st) -» 

null(x) -♦ NIL-st, 
islnt(x) -» X'st, 
isname(x)-»[\y. null(y)-*tl(assoc(VALUE,tl(assoc(x,tl(hd(st))))))«st, 

tl(y)'st] (Qssoc(x,hd{hd{st)))), 
atom(x) -» 1, 
hd(x)=QU0TE -* hd(tl(x)Ht, 

hd(x)=C0ND -* [MG.evconF(B,G)](tl(x),st), 
hd(x)=AND   -* [MG.evandF(B,G)] (tl(x),st), 
hd(x)=OR     - [MG.evorF(BrG)] (tl(x),st), 
hd(x)=PROG -♦ [MG-evprogiB.G)] 

(tl(tl(x)), inltvars{hd(tl(x)),hd(st)), tl(st)), 

hd(x)=GENSYM-* [xz. z • (hd(st)»(hd(tl(st»«z))] 
(Bensym(tl(tl(st))))( 

hd(x)=SETQ -»[xvst. 
[war val sll. 

[xal pi gm. 
[xy. null(y) -> 

val'(al'(put(val,var,VALUE,pl)«gm)), 
val«{sei(var,val,al)»(pl»gm))] 

(assoc(var,al))] 
(hd(stl),hd(tl(stl)),tl(tl(stl)))] 

(hd(ll(x)),hd(vst),tl(vst))] 
(B(hd(tl(tl{x))),st)), 

[xz. [MG.applyF(B,G)](hd(x),hd(z),tl(z))] 
([/iG.evlisF(BIG)](tl(x)Ist)),i]) 

; 

Figure A2.1a  -   Axioms for Yet Another LISP. 
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& 
evcon 3 [^G. evconF(eval,G)], 
evconF 3 [xF G x st. [xz. null(hd(z))-»F(il(x),tl(z)), 

G(hd(tl((hd(x))),tl(z))](F(hd(hd(x)),st))], 

evand == [nG. evandF(eval,G)], 
evandF s [xf G x st. null(x)-»T, [xz. null(hd(z))-»NIL,G(tl(x),tl(z))] 

(Rhdix),^))], 
evor   =- [^G. evorF(eval,G)], 
evorF - [xF G x st. null{x)-»NlL, [xz. null(hd(z))-»G{tl(x),tl(z)),T] 

(F(hd(x),st))], 
evlis s [MG. evIisFieval.G)], 
evIisF ^ [xF G m vb fl. null(m)->NIL»st, 

[xx.[xy. (hd(x)'hd(y)) • tl(y)] (G(tl(m),tl(x))] 
(F(hd(m)(st))]], 

evprog - [ßG. evprogF(eval,G)], 
evprogF ^ [xF G m vb fl. null(m)-»NIL«st, [xx. G(tl(m),tKx)](Rhd(m),st))], 

apply -- [nG. applyF(evalIG)], 
applyF - [xF G fn x st. c"i(x) -♦ a(st) -» 

(fn=LIST) -♦ x-st, 
(fn=SET) -» hd(tl(x))-set(hd(x),hd(tl(x)),st), 
(fn=GET) -» get(hd(x)lhd{tl(x)),hd(ti(st)).st, 
(fn=PUT) -* hd(x).(hd(st)- 

(put(hd(x>,hd(tl(x)),hd(tl(tl(x)))Mtl(st))).tl(tl(8t)))), 
IsBF(fn) -» applyBF(fn,x)'stl 
isname(fn) -» G(hd(F(x,st)),x,st), 
(hd(fn)=LAMBDA)- [xz. hd{z) • 

(prune(hd(tl(z)))hd(st))»tl(tl(z)))] 
(F(hd(tl(tl(fn))),pairlis(hd(tl(fn)),x,hd(st))«tl(st))), 

(hd(fn)-LABEL)^ [xz. hd(z)« (tl(hd(tl(z))4l(tl(z)))l 
(G(hd(tl(tl(fn))), x, 

((hd(tl(fn))^d(tl(tl(fn))))-hd(st)).tl(st))), 
1. i, 1 ], 

Figure A2.1b  -  Axioms for Yet Another LISP (ctd). 
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pairlis - [MG.[XX y st. null(x) -* (nu!l(y) -> st, i), 
[xz. ((hd(x)»hd(y))-hd(z)) • tKz)](G(tl(x),tl(y),8t))]] 

prune - [ßG.[\x y. Iength(x)=length(y) -» x, G(tl(x),y)], 

set - |>G.[xx y a. (hd(hd{a))=x) -» (x'y)«tl(a), hd(a)«G(x,y,tl(a))]], 

put ;- [MG. [war val pn pi. 
null(pl) -» (var-((pn-val)'NIL))«pl, 
(hd{hd(pl))=var) -> (var«set(pn)val,tl(hd(pl)))).tl(pl)l 

hd(pl)-G(var,val,pn,tl(pl))]], 

initvars = [^G.[xvl al.null(vl) -> al,(hd(vl).NIL).G(tl(vl),al)]], 

get s [ßQ. [war pn pi. null(pl) -* NIL, 
(hd(hd(pl))=var) -* [xz. null(z) -* NIL,tl(z)] 

(assoc(ph,tl(hd(pl))))l 
Gfvar.pn.tKpl))]], 

IsBF =   [xx. (x=CAR)-T,     (x=COISIS)-*T,     (x=MINUS)-^T, 
(x-CDR)-T,     (x=PLUS)->T,     (x=GENSYM)-»T, 
(x=NOT)^T,     (x=EQUAL)->T, (x=NUMBERP)^T, 
(x=ATOM)-T,  (x=TIMES)-»T,   (x=GREATERP)] 

applyBF(CAR) « [xx. hd(hd(x))], 
applyBF(CDR) = [xx. tl{hd(x))], 
applyBF(NOT) - [xx. null{hd(x)/-T,NIL]I 
applyBF(ATOM) = [xx. atom(hd(x))->TINIL], 
applyBF(CONS) - [xx. hd(x)^d(tl(x))], 
applyBF(PLUS) - [xx. hd(x)+hd(tl(x))], 
äpplyBF(EQUAL) ^ [xx. hd(x)=hd(tl(x))->T,NIL], 
applyBF(TIMES) - [xx. hd(x)*hd(tl(x))], 
applyBF(MINUS) = [xx. mns(hd(x))], 
applyBF(GENSYM) s [xx. gensym(hd(x))], 
applyBF(NUMBERP) - [xx. isint(hd(x))-»T,NIL], 
applyBF(GREATERP) = [xx. (hd(x)>hd(tl(x)))-*T,NIL] 

1 

f 

I 

i 

% 

$ 

Figure A2.1c  -  Axioms for Yet Another LISP (ctd). 
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