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FOREWORD

Abstract

Mathematical Programm~i.ng Language (MPL) is intended as a
highly readable, user oriented, programming tool for use in the
writing and testing of mathematical algorithms, in particular
experimental algorithms for solving large-scale linear programs.
It combines the simplicity of standard mathematical notation
with the power of complex data structures. Variables may be

implicitly introduced into a program by their use in the state-

ment in which they first appear. No formal def ining statement

is necessary. Statements of the "let" and “where” type are part
of the language. Included within the allowable data structures
of MPL are matrices, partitioned matrices, and multidimensional
arrays. Ordered sets are included as vectors with their con-
structs closely paralleling those found in set theory. Al location
of storage is dynamic, thereby eliminating the need for a data
manipulating subset of the language, as is characteristic of

most high level scientific programming languages.

This report summarizes the progress that has been made to
date in developing MPL. It contains a specification manual,
examples of the application of the language, and the future
directions and goals of the project.

A version of MPL, called MPL/70, has been implemented using
PL/1 as a translator. This will be reported separately. Until
fully implemented, MPL is expected to serve primarily as a highly

readable communication language for mathematical algorithms.
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THE NEED FOR MPL

The purpose of MPL (Mathematical Programming Language)
is to provide a language for writing mathematical
algorithms, expecially mathematical programming algorithms,
that will be easier to write, to read, and to modify than
those written in currently available languages (e.g.
FORTRAN, ALGOL, PL/1, APL).

The need for a highly readable mathematically based
computer language has been apparent for some time
Generally speaking, standard mathematical notation in a
suitable algorithmic structure appears best for this
purpose. The reason is that most researchers are famil ier
with the “language” of mathematics having spent years going
to school and taking many courses on this subject. For the
mathematical programming application, the availability of
such a tool is deemed essential.

Mathematical programming codes tend to be complex.
(Some commercial codes have over a hundred thousand
instructions.) They are developed by persons formally
trained in mathematics using, for the most part, standard
matrix and set notations. Recently, research has been
directed toward structured large-scale systems. These
systems have great practical potential especially for
planning the growth of developing nations, the national

economy, or industry.



To date many methods have been proposed for solving
large-scale systems, but few have been experimentally tested
and compared because of the high cost and the long time it
takes to program them, and because it is difficult to debug
and to modify them quickly after they are written. It is
believed that highly readable programs would greatly
facilitate experimentation with these proposed methods and
would speed up the time when they can be used for finding
optimal growth patterns of developing nations and
industries. Moreover, experimentation is a valuable way to

develop ones Intuition and test conjectures prior to

developing theoretical proofs.



GENERAL FEATURES OF MPL

Research on MPL to date has been directed towards

developing a highly readable language adhering as closely as

possible to standard mathematical notation. Considerable

attention has been given to keeping the definition structure
of MPL as general as possible.

Matrix notation is required for the mathematical

programming applications and this has been given special

emphasis-~in MPL including partitioned matrices and matrices

with special structure.

Set notation is universally used in mathematical

proofs. However in statements of algorithms, as found in
theoretical papers, one finds what appears to be set
notation, but which turns out to be, on closer examination,

an ordered set concept i.e. there is an assumed underlying

ordering of the elements of a set. A convenient set-like
notation is part of MPL. Typically it is used with the
such-that construct which allows one to restrict or extend

the definition of a set through logical expressions.

Other important features of mathematical notation are
the “let” and “where” concepts. As commonly used, they
serve as either a symbol substituter (macro) or as a short
subroutine whose parameters are evaluated and the results

substituted for the symbol. LET and WHERE constructs are

also part of MPL..



Generally speaking, the literature of mathematics has
been devoted to proofs of theorems. Algorithms as such,
when they do appear, are often part of a constuctive proof
and have an ad-hoc. organizational structure. MPL has
adopted instead the formal block stucture of ALGOL with
minor variatlons. Alternatives are provided for those who
prefer not to see the words BEGIN and END used as
-punctuation marks for blocks throughout a program. The user
can optionally use less obtrusive special bracket symbols to
conveniently group several statements forming a block or to
group statements which follow and are subject to IF and FOR
clauses. It is also possible in MPL to conveniently
identify by labels parentheses pairs, complex statements and
algebraic expressions and thereby greatly increase
readabi 1 i ty.

In mathematics it is often desirable to change the
meaning of symbols (e.g. variable names). In computer

- languages a formal structure for **declaring” (defining)
symbols is used and also for stating the “scope” (the set of
instructions) where these definitions are to be applied.

Fdr example, In ALGOL names of variables defined within a
block cannot be used outside the block without redefinltton.
In MPL, definition of a symbol can be made anywhere inside
the block up to its first appearance in a statement;
moreover, it can also be implicitly defined by the statement

itself. Implicit definition is an important feature of MPL.
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Provision Is made for conveniently specifing the scope of a

>

variable if it extends outside the block. Finally, it is
possible to release the storage space assigned for the
values of a symbol when no longer needed.

In defining a language it is natural to worry about
whether or not it is possible to reasonably implement it.
For example, the present form of MPL uses linear character
strings for exponents, superscripts or summations in place

of two dimensional notation like:

m

Z Ai Bk

j=1
Thus, a;is written a(i). However, one of the members of
our task force group (V. Nicholson) has recently completed
a Ph.D. dissertation on this subject and we plan to
incorporate features of his already implemented two
dimensional notation into MPL.

Except for special functions like sin(X),
mathematicians avoid the use of multiple character variable
names. The reason for this historically appears to b e
two-fold: First, it is easier to visualize algebraic
manipulation of symhols when they appear as single
characters. Second, it avoids possible confusion with
implicitmultiplicatione.g. sin(x) meaning s-i-n-(x).
However, by requiring in MPL the explicit use of the

multiplication symbol, multiple character names are allowed

X



as in most computer languages.

Overal 1 status:

A draft of the MPL specifications in Backus Naur Form
has recent 1 y been prepared under the general guidance of
George B. Dantzig by our work group with Miss Riedl
serving as general coordinator. This draft is now being
readied for general review by a committee probably
consisting of R\Ljdolf Bayer, Paul Davis, David Gries, Robert
Floyd, Donald Knuth, and Christoph Witzgall.

A preliminary test version of MPL, referred to as
"MPL-McGra th, " was at the suggestion of Paul Davis
implemented in 1969 by Michael McGrath using PL/1 as a
translator into PL/1 instructions. This version included
those features of MPL that were easiest to translate into

available PL/T constructions.



DETAILED SPECIFICATION REVIEW

The first goal of the project was to specify the
language in implementable form. The language outlined in
the preliminary proposal to NSF as of May 1968 was
systematically developed; the syntax was more closely
aligned with standard mathematical notation and kept as
general as possible. Many of the earlier constructs were

extended and improved, for example:

The vector construct was extended to Include set

notation in the form of ordered sets with logical
qual if iers.

- More complex data structures were introduced, including
mul tidimensional arrays, partttioned matrices and

reference arrays.

- The domain of_ numeric constants was made the extended
G—O'IE“,‘
real numbers 3

= In response to user requests, blocks were introduced as
a primary means of defining scope of variables.

= The principle of dynamic allocation of storage was
adopted for all non-scalar quantities.

= Both dynamic and static symbol substitution were
introduced into the language.

- Subscripting was generalized to include subscripting of -

expressions.



- Function Variables which allow a general function name
to be replaced by a specific name were introduced.

- Parameter passing for procedures was greatly extended
by developing several different types of procedures. In
particular, a function procedure was introduced which
acts exactly as a function in mathematics, (i.e. without

any side effects),

- This phase of the project is nearing completion.
Concurrent with the submission of this ‘proposal, the
language specification will be given to the review
committee. During the fall quarter the language will b e
used as a teaching tool to obtain feedback from potential
users. By the end of calendar year 1970 it is hoped that
the specifications can be frozen, so that implementation and
use as a communication language can begin in earnest.

The second goal of the project was to implement these
specifications. This involved development of a PL/1
translator and made possible evaluation of the language by
Operations Research graduate students and researchers from
bdth the academic and industrial communities.

Originally it was hoped that the compiler-compiler
system under development by David Gries could be used to
implement MPL on any installation on which his system was
made available. Unfortunately, the compiler-compiler was

never completed. Therefore, in order to produce an
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environment free compiler, a translator written in PL/1 was
developed. It was felt that this would provide the widest
possible circulation for MPL, since any installation with a
PL/1 compiler could then be used.

The current version of the MPL/PL1 translator
encompasses many of the unique constructs available within
MPL. The translator was successfully used in a large scale
systems optimization seminar with enthusiastic student
response. Much valuable information was obtained from this
exchange, and it is hoped that this practice can be
continue& Of particular note, is that many students found
the language easier to use and less tricky than either
FORTRAN or ALGOL.

The MPL language was presented to the industrial
community through the Stanford “Computer Forum” by M.
McGrath in 1969 and C. Riedl in 1970; to the academic
community through lectures by the proposer; and to the
professional community by R. Bayer and C. Witzgall in talks
on their matrix calculus which is expected to play a role in
the generation and manipulation of special matrix
structures. Some work was also done On using MPL as a tool
in developing new algorithms and in presenting some of the
existing algorithms in the field of Operations Research. It
is hoped that this will become one area of future
concentration in the further development of the MPL
language. This has particular importance in gaining wider

acceptance for the language.
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RESEARCH PROGRAM

MPL as a Communication and Programming Language

To date the primary objective of the MPL project has
been the formal language definition. The result of this
effort is the Language Specification Manual written in
Backus Naur Form which should function as a basis for an
implementation. Since this manual is intended for computer
specialists, it is not very suitable for an applied
mathematician not trained in computer science. Accordingly,
a next step for the project (and its proposed continuation)
is the development of an MPL user’s manual. This document
would serve in two capacities:

(i) by giving an introduction to MPL for a wide spectrum
of possible users, and

(i1) by expanding and interpreting the more involved
features of the language found in the MPL
specification manual,

To accommodate both of these objectives, the user’s
manual would endeavor to present MPL in a simplified form
and at a level in which most of its constructs are
explained. In this manner, the reader at the beginning or
intermediate level, knowing only a subset of the language,
would nevertheless be able to write MPL programs compatible -

with the full language.



With a user’s manual available, the project would
proceed into a testing and evaluation phase. An important
contribution to this phase would-be feedback from potential
users. From this feedback we would be able to ascertain
what modifications, if any, are required to give us the
“best” language for the user. It is probable that MPL will
be equally useful for statistical and numerical analysis
appl ications, particularly in conjunction with special
sub-routines useful in these fields. Though we would
encourage investigation of MPL's use in other areas, we
propose to concentrate primarily upon applications to
Mathematical Programming.

Testing MPL as a language for Mathematical Programming
would proceed along two fronts. First, standard algorithms,
such as Generalized Upper Bounding (see attached), would be
programmed using MPL. This would allow us not only to
evaluate MPL as a programming tool but also to assemble a
library of algorithms for use in further research. Second,
MPL would be used to write and test new algorithms,
c&sequent 1y, evaluating its potential as a research tool.
We believe that the language could have a great impact in
this area = especially in academic research where the time
and expense in programming for large scale systems has been
prohibitive in other languages.

As a user’s tool, MPL has been developed to parallel

much of standard mathematical notation. Thus most

-13-



algorithms written in mathematics could almost as easily be
written and read in MPL. This aspect of the language makes
it attractive as a standard. communication language for
algorithms. As one further phase of this proposal, we hope
to explore this in greater depth. In particular, we would
investigate whether it would be plausible to use MPL as a
standard vehicle for presenting algorithms in journals
especially for the newly proposed Mathematical Programming
Journal. Not only would this have the beneficial effect of
standardization, but it would also mean that published
algorithms could be easily tested or implemented via MPL,
Some of the objectives outlined above can be partially
met with the current version of the MPL translator. in
order to fully test the language and implement it as a
user's tool, however, the translator will have to be
expanded or a compiler written. An investigation of these
possibilities constitutes the next major task of the

continuing project.

Implementation Considerations

A complete, “machine-independent” implementation seems
essential in gaining broad acceptance of MPL as a
mathematical programming language. Such an implementation
could take two directions:

(i) Extending the current translator to encompass those
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MPL concepts NOt presently handled (e.g. subscripting
as an operator, partitioned data structures,
concatenation, and set generators).

(i1) Writing a full-scale compiler into some ideal machine
language (e.g. three address code or reverse Polish).

The translator would be less work but the more
efficient code produced by a compiler would make the
solution of large scale problems more practical. However,
of -equal, if not greater, importance is a “How to Implement**
manua l, a compendium of suggestions on implementing some of
the more powerful MPL constructs as well as techniques for
handling large scale data structures and codes involving
many thousands of instructions on a computer.

For the most part, the technigues would be machine
independent, i.e., the method of implementation outlined in
the manual should be of help in implementing any large-scale
mathematical programming system.

Part of the manual would be concerned with the analysis
of an MPL program. Items included would be parsing
techniques, symbol table organization, a precedence grammar
if possible, suggestions for the internal representation of
the program after analysis, and an outline of code emitted
for advanced features of MPL (e.g. function variables,
indexing sets, dynamic LET statements).

Runtime organization which is essentially MPL

independent would require a study of data structures

- 15 =



necessary for large scale systems, dope vectors, algorithms
for handling the non-first-in-first-out data structures of
MPL.

If an easily modifiable translator were written,
experiments could be made with different runtime data
structures, data handling algorithms, and computational

algorithms (such as matrix expression evaluation).
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SECTION 0.  NOTATI ON

In the follow ng | anguage specification, we useanodification of
BACKUS-NAUR FORM (BNF) t 0 describe the syntactic structure of wneL.

A syntactic rule or production consists of a LEFT PART %symmmc
class nane), followed by a ::= (read "is defined as"), foll owed by a .
right part (a string of synbols-which define the leftpart). Syntactic
cLass Panes are enclosed in angular brackets <,>; MPL synbols stand by
t hensel ves.

Notes:

(ry If a syntactic class is defined to be oneof several strings of
synbol's, the alternates are separated by a i (read "orm.

Exanple:  <character> ::= <letter> | <digit> j <special character> reads
Akcharacter Is defined to bea letter, a digit, or a specia
character.

(x1y |If part of the right side of a production may be omtted, it is
enclesed in square brackets {denoted by $,% in this document).

Exanpl e:  <number> ::= <nunber base> $<exponent>$ s equivalent to
<number> ::= <nunber base> § <nunber base><exponent>

(xxr) A list of one or nore synbols all belon%jng to the same
syntactic class x is denoted by <<x> LIST>.

Exanple:  <digit string> ::= <<aigit> LI ST> stands for
<digit string> 2:= <digit> | <digit string><digit>

1f the symbols in the list nust be seParated b{ a delimter
then the delimter directly precedes the word LIST.

Exanple: <variable LIST> ::= <<variable> LIST> s equivalent to
<variable LIST> ::= <variable> | <variable LIST> <variable>

(xv) The syntactic class <enpty> represents the null string of
synbol's.

(vv The right side of a production nmay be Partly described bya
conment enclosed in guotes. The comment gives semantic
restrictions on the right part.

Exanple: <vAexpression> ::= <Vector valued" arithnetic expression>

(vi) Certain delimters and reserved words may be substituted for
other delimters or reserved words. |If 'y may besubstituted
for x, this is indicated by x <-- y at the first occurrence of
x in the language definition. If x «<=- y and y <=- x, this is
indicated by x <==>y.

Exanple: := <-- = neans that = is an alternate assignment synbol
IN <--> means that IN and are interchangeable

oct. 70, P. 3



sectron 1. BASI C CONCEPTS
1.1.  The Character Set of #neL

The set ofcharacters available in mpL vill depend on the particul ar
implementation. As this |anguage specification is independent ofany
implementation, we here define a bhasic character set which will Dbe used
throughout this manual and suggest possible extensions to it.

<character> s

<letter> | <digit> 1 <special character>

<letter> ::= A|BIC|DIE|F|G|H|T|JIKILIN|N|O{P|QIRISITIUIVIWIX|YIZ]
albicidlelfigihiiljikilininjolpigizisitivivivixiylz

<digit> ::= 0)1]213141516)71819

<special character> zs= ¢j=1%]/1%*|<bar>1#1<I<=1=|~=1>={>] 2= () |00} ~}
el ds o "IKLIDD>) L 1 <blank> €| €]
<orening rector bracket>|
<cl osing vector bracket>

<bar> 2::= | =

<blank> ::= "one bl ank space"

<opening vector bracket> ::= ¢

<cl osing vector bracket> ::= >

Notes: _ _
(I) An inplementation may allow the use of any other synbols (e.g.

the Russian or Geek alphabet) in addition to the letters
defined above.
Iy () <> , 00 <==> INPINITY
1.2. Basic Elenents of The Language
1.2.1. ldentifiers and reserve words
<identifier> ::= <letter> $<<idchar> LIS?>$ | <identifier>*
<idchar® ::= <letter> | <digit> _

. ldentifiers bare no Inherent neaning, but are used to represent |,
simple vari abl es (see 3.1.2), expressions (see &.8), | abels (see u.u.1%,
and procedures (see S.%. The scope of identifiers is controlled by the
bl ock structure of the 'program (see 4.1).

. ddantifiers must start with a letter, followed byanyconbination of
letters, digits, andunderscores: they ray end in oneor nore single ,

primes (apostrophes). Identifiers may not contain blanks. There is no
restriction on the length of identifiers.

Cct. 70, p. 4



The follow ng reserved words have speci al
be used as identifiers:

meani ng and aay not

AND ELSE LET RETURN
ANSWER EMPTY LOG CAL ROW
ARITHNETIC END LOWER SCALAR
ARRAY EXECUTE MATRIX SPARSE
BEG N EXTERNAL NMULT THEN
BLOCK FALSE NAME TRI ANGULAR
BY FOR NOT TRUE
CHARACTER FUNCTI ON OR UNDEFI NED
COLUMN G VEN OTHERNISE UPPER
DEPENDENT G TO PARTI T1 ON VALUE
DEFI NE | F PROCEDURE VECTOR
DIAGONAL N PROGRAM WHERE
DO | NDEPENDENT RECTANGULAR W TH
DOMAIN INLINE RELEASE
DIMENSIONAL | S RESULT

Exanpl es:  €SA, BASIC_VARIABLES, X, X', X'

1.2.2. Digit strings
<digit string> ::= <<digit> LIST>

Digit strings are used to formarithmetic constants (see 3.1.1.1)
and (enclosed in patentheses) to represent |abels (see #&.4.1).
1.2.3. Deliaiters

The follow ng special characters are used as operators,
brackets, and separators:

<del imiterd> 3= +|=|*|/1**|<bar> | #|<I<= =|~=D>=|>1:=](]) |~]

o131 21"1<<I>>1<blank> i€ (€]
<openi ng vector bracket>j<closing vector bracket>

1.2.4.
<character string> :3= <<character> LIST>

Character strings

Character 'strings are used in character constants (see 3.1.1.3).
Bl anks

_ A blank space is required after anidentifier or reserved word which
iS followed by an identifier, reserved word, or nunber. Blanks are not
permtted within identifers. Blank spaces are ignored, except within
character strings.

1.2.5.

1.2.6. Comments _ .

Ay sequence of characters (excluding a quote (")) enclosed in
quotes (»,™ is treated as a blank space except wthin character
strings. Such comments ray be used to insert remarks into the program

oct. 70, p.5



1.3.  The Structure O A Program
1.3.1. Tnsertionsand insert. statenents

A program submitted by a user consists of programtext modified hy
insertions which yield the actual ®pL program  The insertions and
insert statenents (which specify where insertions aretobe made) are
editing features and are therefore-; strictly speaking, not part of the
| anguage.

An insertion
$INSERTION <identifier>
"arhitrary text"®

$=ND <"same" identifier>

W || be Aeleted from the program text and the "arbitrary text" will
replace the insert statement.

$INSERT <ident if ier>

wherever it appears in the programtext. After eachreplacenent, the
resulting programtext is searched for further insertions.
Exanpl e: PROGRAM SHORTIE;

$TNSERTTON ALPHA

ANSVER rESULT; GO TO

$END ALPHA

DEFINE RESULT == 0;
LnoP: | F RESULT>20 THEN BEGTN

$INSERT ALPHA FXIT FEND;

RESULT := RESULTe¢1;

$INSERT ALPHA LOOP;
EXIT: END

wll be transforned into

PROGRAM SHORTIFE;
DEFI NE RESULT := 0;
LOCP: | F RESULT>20 THEN BEGIN
ANSWER RESULT:; GO TO EXIT END;
RESULT == RESULT+1;
ANSVER RESULT; @0 TO LOOP;
EXIT: END

1.3.2. Prograns

<progrant ::= PROGRAM $<"program" label>;$
<KE)I’ ogram uni t>; LIST>
END $<"same" label>$

<program unit> ::= <statenment> { <procedure definition>

Cct. 70, p. 6



A program consists of a sequence of statenments and procedure
definitions. A program acts as a block (see 4.1) and the program | abel
may be used in a detining statenent to delimt scope (see 4.2.1). &
transfer of control to the program | abel causes reexecution of the
program

act. 70, p. 7



SFCTION 2. ATTRI BUTES and VALUES

The quantities on which the program operates are each characterized
by a set of attributes and a (set of) value(s). A scalar (SCALAR
quantity represents a sinyle value; a non-scalar (VECTOR, MATRI X, ARRAY)
quantity represents a set of values, a single value corresPonding +o
each elenent of an underlying ordered domain. The range of possible
values is s%eC|f|ed by the type attribute, the underlying donain by the
domainattri but e,

Attributes are associated with variable names in defining statenents
(see 4.2.1). Values are assigned to variables (see 3.1.2) in defining
statements and assignment statements (see 4.3). The attributes and
val ue(s) associated with expressions {see 3) are determ ne? by the rules
for operators (see 3.2).

<attribute> : := <type attribute> | <dimensionality attribute> |
- <domai n attribute) { <shape attribute>

<rype attribute> ::= ARITHVETIC { LOG CAL | CHARACTER |
<reference variable attribute> |
<procedure variable attribute>

-

<reference variable attribute> ::= (<<attribute> LIST) i
t<type attribute>$ (PARTITION $< (<<span>,LIST>) BY LIST>3)

<procedure vari abl e attribute> ::= (<procedure head>)

<dimensionality attribute> ::= SCALAR| VECTOR | <mmtrix attribute> |
$<digit string>-DIMENSIONALS ARRAY

<matrix attribute> : := MATRI X § ROV VECTOR { COLUMN VECTOR
<domain attribute> ::= §WITH DOMAINS$ <<span> BY LI ST>

<span> ::= EMPTY | <sSA expression> | <VA expression> | _
DOMAIN (<expression>) | <"{VECTOR) VECTOR" expression>

" <shape attribute> ::= DI AGONAL § RECTANGULAR | npPER TRI ANGULAR |
LOAER TRI ANGULAR | SPARSE

2.1 The Type Attribute

- The type attribute specifies the range of possible values. The
value UNDEFI NED used in initialization is of universal type

2.1.1. Sinple types (ARTTHMETIC, LOGd CAL, CHARACTER)

TYPE VALUE CAN BE

ARI THVETI C nuneric, +00, -00

LOGICAL TRU®, FALSE (truth val ues) _ _
CHARACTER any character provided by an inplenentation
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2.1.2. Reference types

The reference variable attribute specifies the ran%e of possible
values as the collection of all quantities whose attributes are
consistent with the attributes specified (or defaulted (see u.2.1))
inthe attribute |ist.

2.1.3. Procedure types

The procedure variable attribute specifies the range of possible
val ues as the collection of all procedure definitions (see 5.1) with
procedure head compatible with the specified procedure head. wo
procedure heads are conpatible if their formal input (return)
parameter(s) agree in nunber and specified attributes.

-2.2.  The pimensionality Attri bute

The dinensionality attribute specifies the dimension (nunmber of
component donai ns) of the associated domain for non-scalar quantities.

An ARRAY may have a'% nunber of 'dinensions. A VECTOR is a
1-DIMENSIONAL ARRAY; a MATRI X |'S A 2-pIsessroNAL ARRAY. A row (COLUWN)
VECTOR is treated as a special kind of marrrx. For conpleteness, ve
define a SCALAR as a 0-DIMENSIONAL ARRAY.

The conponents of a REFERENCE arrAY are thenselves arrays. Al
conponents of a reference array nust have the same type an
dinensionality but they can differ in size. In ordei to access the
scal ar elements of the components of a reference array two sets of
subscripts nust be used (see 3.1.2.1).

APARTITIONED MATRIX i S a two-di nensional reference array whose
conponents are matrices. Al components in a row of a partitioned
matrix nust have the sanme nunber of rows and all conponents in a colum
nust have the same number of colums, so that a 2 by 3 partitioned
matrix can be represented by a diagram

P(1,1) P(1,2) | P(1,3)

1 P(2,1) I P(2,2) | P(2,3) |

2.3, The Dommin Attribute

The domain attribute specifies the associated domain for non-scalar
quantities, Domains are restricted to Cartesian products of conponent
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domains. A conponent domain may he any finite (possibly enpty)

strictly increasing sequence of integers. A component lomain 0f the
form<y1, .o 0> IS said to be canonical. A domain is canonical if each
conponent domain is canonical

The span emprTY specifies the enpty conponent domain. The span <sa
expressi on> specifies the component_domain <|1,. ..,<SA expression>|>,
The span <VA expressi on> spacifies the conponent domain <VA expression>.
The span poMAaTIN (<expression>) specifies a sequence of conponent
domai ns, nanely the conponent donmmins associated with the expression
The span <m(vEcTor) VECTOR™ expression> specifies a sequence of
conponent Romains, nanely the vector-val ued conponents of the <" (VECTOR)
VECTOR"™ expressi on>.

2.4. The Shape Attribute
- The shape attribute is used to econom ze on the space required to

shore | arge data structures and to produce nore efficient code to handle
t hen. -
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SECTION 3. EXPRESSI ONS

An expression is a rule for conputing a (set of) valueés) by
executing the indicated operations on the values represented by the
operands ofthe expression. In this section, we shall describe the
basi ¢ operands of expressions, the allowable operations on them and
finally the syntax and manner of eval uation of expressions.

W shall wuse the follow ng abbreviations to denote special classes
of expressions:

for arithnetic

for |ogical

for character

for reference type
for procedure type
for "scalar val ued"
for "vector valuedv

<»w OO r >

Thus, the symbol <sA expression> used in the preceding section
abbreviates <"scalar valued” arithnmetic expression>.

3. 1. Operauds%

3.1.1. Constants

3.1.1.1. Arithmetic constants
<nuaber> ::= <nunber base> $<exponent>$

<nunber base> ::= <digit string> t <digit string>.| .<digit String> i
<di git string>.<digit String>

<exponent> ::= E WAddi ng operator>$ <digit string>
<addi ng operator> ::= #-
Examples: 1970, 3.1415926536, 6.02878+23, 6.6254E-27
3.1.1.2. Logical constants
<logical val ue> ::= TRUE | FALSE
3.1.1.3. Character constants
<character constant> ::= <opening character quote>
<character string>
<cl osing character quote>
<opening character quote> ::= «
<cl osing character gquote> ::= >

Exanpl e: <<wow | S THE TInE PoR ALL PARTIES TO come TO THE arp OF MAN>>
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A character constant is a CHARACTER VECTOR (with canoni cal domai n)
whose comgonentvaluesare the characters in the string. The character
sﬁrlng may not contain the sequences << or >, Blank spaces are valid
characters.

3.1.2. Variables
<variabl e> ::= <sinple variable> [ <subscripted variabl e>
<sinple variable> ::= <identifier>y <variabl e synonynm
<subscripted variable> : := <variable> (<<range> LIS
<range> ::= <SA expression> | <VA expression> | *
Exanpl es: A13_B, subvector (*), X (3-2),
. SUBMAT (*,<|3,4,5]>),ARRAY_EL (6,B/5,u%*X,8),
SUBARRAY (*,*,%,3), REFARR (3) (*,5,6)
PART- MATRI X (5,6) (*,<12,8,9,1>)
~ Variables represent storage |ocations where values are stored
whi ch may change during execution of the program At any given tine
the value {or the ordered set of values) associated with the var-
iable is the last value(s) assigned to the variable.
Note that a variable may be a scalar, vector, matrix, or array.
3.1.3. \Vector generators
<vector generator> ::= <N-tuplet> | <index range> | <set generator>
<N-tuplet> ::= <opening vector bracket>

<<expression> LIST>
<cl osing vector bracket>

<index range> ::= <opening vector bracket> _
) <SA expression> $<SA expression>,5...,<SA expressi on>
<cl osing vector Dbracket>

<set generator> :: = <opening vector bracket>
<expression><FOR phrase>
<closing vector bracket.>

3.1. 3-1. N-tllplets

The expressions listed must be scalars or vectors all of the sanme
type. The n-tuplet is a vector (with canonical domain) of that type
mﬁose set of values is the concatenation of the values of the scalars
inthe list and the sets of values of the vectors in the list.

Examples:

<JTRUE, A OR B, =D, X<Y|>
<] <KIOE>>, <KKIND>D>, <KAGE20>> >
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<11,a-b,-3.5,<1.67E~3,e,12.5|>|> is the sane as
<|<{1,a-b,~3.51>,.678=-3 ,e,12.5¢> Which i s the sane as
<' 1,a"b,-305'0673"3'e' 12.5')

3.1.3.2. 1Index ranges

An index 'range is an arithnetic vector (wth canonical domain).
The set of values generated by the index range

<] VPIRST, VSECOND, ..., VLAST >
I's the sequence
VPIRST, VPIRST+ 1#VSTEP, VPIRST+2*YSTEP, ..., VFIRST#N*VSTEP

where VvSTEP = VSECOND-VPIRST (if VSECOWD is omtted, then vsTEP is taken
. to be one) and

N = SUP { N { n>=0 and (VPIRST+n*VSTEP-VLAST)*VSTEP <= 0 {.
If (YFIRST-VLAST) *VSTEP > 0, then the set of values generated is enpty.

Exanpl es: <i71,¢4.,751> = <171,72,73,74,75}>
<l0.1.0.3,...,0.81> = <‘0Q1.00~3,0¢5,0071>
<'70500-00'2]> = <17,5,3,1,=-11>
€} 3400e,01> | S EMPTY.

3.1.3.3. Set generators

A set generator yields a vector having as many components as are
determ ned by the <For phrase> (see 4.7). The values of the conponents
are given by the value of the <sa expression> as nodified by the
successive” val ues ofthe controlled variable of the <FOR phrase>. The
identifier denoting this controlled variable is local to the set
generator.

Example: K| 1%%2 POR i=<{1,.0,61> 2 | == 4 >
gives <} 1,4,9,25,36 {> With domain ¢|1,2,3,5,61>

3.1.4. Procedure calls

A procedure call (see S.2) may be used as an operand in an
expression provi ded that the procedure has preci seI?/ one formal return
paranmeter. The attributes and value(s) are taken fromthe actual return
parameter,

3.1.5. Relations

<relation> ::= <A expression><relational operator><& expression> |
<C expression><equality operator><C expression> |
<S expressi on> IN <v expression> |
<S expression> NOT IN <V expression> |-
<v expression> | S espTY |
- <variable> |'S uNDEFINED
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<relational operator> ::= <equality operator> | < |<=]>=|>
<equal ity operator> ::= -~=1 =
*) IN, NOT IN <-->€ ¢

Exanpl es:  3.5< A¢F(B+C), <<HUGD>> -~= <<HURO >>,
2 TN <18,6,3,-1,21>, x s UNDEFI NED,
<1 10,...,41> | S EMPTY

“Relations are operands of |ogical expressions.
Their values are determ ned as follows:

(1) The two operands op1,0p2 of an equality operator may
differ in kind and size. _ _ _ _
op1=0P2 is TRUE if op1 and op2 have the sane dinensionality and size
and every pair of corresponding conponents of themis equal, and
FALSE ot herw se. , _ _
oP1~=0P2 iS TRUE if and only if oprP1=or2 i s false.

Note that this inplies for character tests that in the exanple
above, thevalue of <<HU@D>> -~= <<HUGRO >> i s FALSE because of the
unequal |ength of the character strings.

(1) If the relational operator is not an equality operator, then
the two operands nust havethe same dimensionality and size. The result
s TrRuE if the relation holds for every pair of corresponding conmponent-s
and FALSE ot herw se.

(ITT) <s expression> TN <v expression> is TRUE if the value of thes
expression i s the value of at |east one of the conponents of the V
expression, otherwise it is FALSE. o

Note that the result is FALSE if the V expression is EMPTY.

(“1V) <v expression> |S EMPTY is TRUE if the result of the V
expression is a vector with no conponents (i.e, it has the domain

_attribute EMPTY (see 2.3)) and FALSE ot herw se.

(V) <variable> IS uNDEFINED iS TRUE if and only if not all of the
conponents of the variabl e have been assigned a value yet,

3.1.6. Synonyns
<synonynmp ::= <identifier> $(<<argument>, LIST>) $
<argument> =::= <expression>

<vari abl e synonym ::= <synonym> “"defined by a let statenent to stand
for a variabl e"

<expression synonynp ::= <synonynp "defined by a | et statement to stand

for an expression which is not a
vari abl e"
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A synonym nust be defined by a sgn’ool suhstitutar in a LET
statement or WHERE phrase (see 4.8) Dbefore it can be used, and is not
defined outside the block containing the LET statement (see also 4.1).

The synonym is replaced by the corresponding expression (enclosed in
parentheses). = Variabl e synonyms,® i.e., synonyns that stand for a
variable may also be used on the left side of an assignment statenent
(see 4.3). 1In this case they are not enclosed in parentheses when
the substitution is made.

|f the synonym depends on arguments, they Wi || be substituted
T(encl osed in parentheses) for the dunmes occuring in the expression.
he nodified expression will then replace the synonym

The result of this replacenment nmust be an allowabl e operand for the
expression containing the synonym.

Exanples = .

LET A(J) 2= 2*j+loop(j) ; C = D - a(ied) ;
is the sane as C = D - (2% (i+3)+loop(i+3)) ;

LET s := <) f(j) FOR | INT ¢ ==2p;

C = <12*%i¢3 FOR 1 IN sI> ;

IS the same as _ _

C=<12¢i¢3 FOR I 1IN < f(]) FOR ] 1IN T : j~=2 1>1> ;

3.2. Operators
3.2.1. Arithnetic operators
<arithnmetic operator> ::= +)-%]/|**

The basic arithnetic operators (+,-,*,/,**) are defined for
arITANETIC SCALAR operands and have the conventional meaning (addition,
subtract i on, nultiplication, division, and exponentiation).” The
arithnetic operators defined for non-scalar arithnetic operands may be
described in terms ofthese basic arithmetic operators.
3.2.1.1. Unary operators (+ and -)

~ The unary operators + and - are defined for all non-scalar
arithmetic operands and are perforned componentw se, |eaving the
di mensionality and domain of the operand unchanged.
3.2.1.2. Rinary operators
3.2.1.2.1. Addition (# and Subtraction (=)

~ The binary operators ¢ and - are defined for all pairs of non-scalar
arithmetic operands with the same dinmensionality and domain. The.

indi cated operation is perfornmed componentw se, |eaving dinensionality
and domai n unchanged.
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3.2.1.2.,2. Scalar nultiplication(*) and division(/)

One operand (the first for division) may be any arithnetic
operand, whereas the other nmust be a scalar and in the case of
division not zero.

The dinensionality and domain 04 the result are taken fromthe
idinensioned) operand and the value(s) obtained by multiplying

dividing) each of its elenents by the scalar.

3.2.1.2.3. Exponentiation (¥%)

|f opt1 and opr2 are scalars, then opri1**0p2 is defined if

1) op1> 0
2) op1 = 0 and OP2 > 0
3) or1 < 0 and or2 is an integer.

_Tf 'op1is a square matrix, then op1**0p2 is defined if op2is a
positive integer ¥ and denotes the result of ~nnultiplications of opr1by
Itself; opr1**0 denotes the identity matrix with the same number rows anti
colunns.,

3.2.1.2.4, ZInner product (*)

The inner product of two non-scalar operands is algebraically a
generalization of matrix nultiplication an? the vector inner product.
Let

A p=DIMENSTONAL ARRAY M (1) BY ... RY M(p)
B gq-pIMENSIONAL ARRAY ¥ (1) BY ... BY N(Q)

denote the two operands. Then the result ¢ = a*B is defined if and only

if Mp) = N1):

C (p+q-2)-DIMENSTIONAL ARRAY

C(I(N) geeesI(p=1),3(2)seee,I{q))
= SUM (A(I{1),ee.,I(p~1,k)*B{k,J (2) ye..,Jd(3)) FOR k IN M (p))

for all I(i) INMI), i =1yeeesp-1
J(j) IN N(3) . J = 2400449

In -particular, the inner product of two vectors (matrices) reduces to
the vector inner product (matrix multiplication). The inner product of
a matrix and a vector or a vector and a matrix is a vector.

3.2.2. Concatenation

<concatenating operator> ::= <horizontal concatenating operator> {
<vertical concatenating operator>

<horizontal concatenating operator> s:= |

<vertical concatenating operator> z::= #
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Concatenation is defined for operands of all three types. Both
operands of a concatenating operator musthave the Sane type which wll
be the type of the result.
~ The operands of horizontal and vertical concatenation can be scalars
(interpreted as 1byl matrices) or nmatrices (including row and colum
vectors). The result is the matrix (wth canonical donain) obtained by
appending the elenments of the secend Operand at the right side (or in
thecase of vertical concatenation at the bottom) of the first operand.
The tvo operands of jmusthave the same nunber of rows, the tvo
operands of # nust have the same nunber of col ums.

Exanples: Let A be the 2 by 3 matrix |g 3 4y
16 -2 uy

B the 2 by 4 mtrix 579 11

186 4 2|

Cthe rov vector (0 1 0 1)

then aAyB IS the 2 by 7 matrix 11 34579 11}
- (6 2 4 86 4 2
B&C is the 3 by 4 matrix 15 7 9 114
18 6 4 24
10 1.0 1y

6{ci8 is the rov vector 60 1 0 1 8)

3.2.3. Logical operators

The basic logical operators (~, AND, OR) are defined for LOG CAL
SCALAR operands and have the conventional meaning (negation,
con junction, and disjunction). The |ogical operators defined for
non-scal ar |ogical operands nmay be described in terms of thesebasic
| ogi cal operators.

3.2.3.1. Negation (~)

The unary operator NOT is defined for all non-scalar |ogical
operands and is perfornmed conponentvise, |eaving the dinensionality and
domain of the operand unchanged.

*) = <==> NOT
3.2.3.2. Binary logical operators
<l ogical operator> z:= AND | OR § MULT
3.2.3.2.1. AND and OR
The binary operators AND and OR are defined for all pairs of

non-scal ar |ogical operands with the sane dinensionality and domain.
The indicated operation is perforned conponentw se, |eaving the
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dimensionality and domain unchanged.

EFxample:
(TRUE, A OR B) AND (PALSE,TRUE)
results TN (FALSE, A or )

X2.3.2.2. tlogical inner product (MULT)

~The logical inner product of two non-scalar |ogical operands is
defined anal ogously to the (arithmetic) inner product except that
multiplication is replaced by anpand summation is replaced by OR

Exanpl es: Suppose Ais |TrRuE TRUE |
JFALSE FALSE]

and B 1s (FALSE,TRUE)

then A MurLT B is the vector (TRUE,FALSE)

and B MoLT A is the vector (PALSE,FALSE).
3.2.8. Subscripting

Subscripting as an operator is defined for all non-scalar operands
(a scalar operand with a non-scalar reference value is treated as a
non-scal ar operand with the attributes and set of values associated
with the non-scalar reference value). The nunber of subscripts nust
agree with the diaensionality of the operand. A <sa expression>
subscript specifies one elenment of the corresponding conponent donain
A <VA rxpressIoN> subscript specifies a subdomain of the corresponding
conponent domain. A % subscript specifies the entire corresponding
conponent donmain. The type of the result is the type of the operand.
The domain of the result is the Cartesian product of the domains of the
vector subscripts and the conponent domains corresponding to *
subscripts (if all subscripts are scalar, then the domain is
&inmensional and the resul't is scalar). The (set of) value(s)
associated with the result is the specified (subset of) conponent(s)
of the operand.

3. 3. Expressions

<expression> ::= <arithnetic expression> j <logical expression> i
<character expression> | <reference expression> |
<procedure expression>

<arithmetic expression> ::= $<adding operator>$<A oper and> |
<A expression><arithmetic operator><A operand> |
<A expression><concatenating operator><A oper and>
<a operand> =::= <nunber> | <sinple variable> | <procedure call>
<vector generator> | <expression synonynp {
(<A expression>) | <A operand> (<<range>, LIST>)

L]
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<l ogi cal expression> ::= <L operand> i
<L expression><logical operator><L operand) |
<L expression><concatenating operator><L operand>

<L operand> ::= <l ogical val ue> | <simple variabl e> { <procedure call>
<vector generator> § <relation> | ~<L operand> i
<expression synonynd j {<L expression>) j
<L operand> (<<range>,LIST>)

<character expression> ::= <c operand> |
<C expression><{concatenating operator><cC operzn1d>

<c operand> ::= <character constant> | <sinple variable>
<procedure call> y <vector generator> |
<expressi on synonyne | ﬁ<character expressi on>) |
CC operand> (<<range>, LIST>)

<reference expression> ::= Waddi ng operator>3 <r operand> |
<R expression><arithmetic operator><R operand> |
<R expression><logical operator><R operand> |
<R expressiond><concatenating operator><R oper and>

<R operand> ::= <simple variabl e> | <procedure call> |
<vector generator> y <relation> | ~<r operand> |
<expressi on synonyn | (<R operand>) |
<R operand> (<<range>, LIST>)

<procedure expression> ::= <P operand> | _
<P expression><{concatenating operator><P operand>

<p operand> ::= <procedure identifier> | <simple variabl e> |
<procedure call> { < vector generator> |
<exXpressi on synonym> | (<P expreSS|on>) {
<P operand>(<<range>, LI ST>)

Exanpl es: (<13,-7,51>#<|6,8,41>) **(F0{a,b) ~3)
~YAR IS UNDEFINED AND ¢>0 OR D -
<] <<3 LITTLE BEARS>>,<<KIN>>,<LTHE>>,<KLKWOODS>> (>

Any sinple variable, procedure call, vector generator, or expression
synonym used as an

i L operand i t logical type |
1 C operand 1 ! character type _ |
{Aoperand | must have | arithnetic or logical type .
{ R operand 1t | reference type !
{ P operand { { procedure type l

If alogical quantity is used as an arithnetic operand, then TROE iS
interpretted as 1 and FALSE aso.

The sequence of operations within an expression is generally

executed from |eft to right, but the order of evaluation is nodified by
the fol [ owing precedence “rul es:
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~ Each operator has an associated precedence nunber indicating its
binding power. Operators with | ow precedence nunbers take priority over
operators with high precedence nunbers:

Oper at or Precedence
subscri pting | first
$,1 second
% third
*x,/ fourth
+,- fifth
€e&=,=,~=,>=,>,IN,NOT IN,IS Sixth
MOLT sevent h
~ ei ghth
AND ni nt h
R tent h

The expression between matching | eft and right parentheses is
eval uated and the value(s) used in subsequent operations. Thus any
order of execution of operations wthin an expression can be specified
by appropri ate parenthesizing.
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SECTION 4. STATEMENTS

The units of operation in mpL are called statements. Statenents are
executed in sequence, as written, except when this sequence is nodified
by sequence control statenments or conditional statenments.

<statement> ::= <empty> | <l abel >: <statenent> i
<bl ock> | <conpound statement> |
<variable control statenent> |
<assi gnment statenent) |
<sequence control statenent) |
<procedure statenent> $<WHERE phrase>$ |
<condi tional statement> |
<Iteratlon stateament> |
<static let statenent) |
<dynam c let statenent) |
<input statement> $<WHERE phrase>$ |
<out put statenent> $<WHERE phrase>$

<variable control statement> ::= <DEFINE Statenent> |
<defining assignnent statement> |
- <RELEASE statement>

<sequence control statement> ::= <GO TO statenment> | <RETURN statement>
4,1. Blocks and the Scope of Identifiers

<block> ::= BLOCK $<label>;$
<<program unit>; LIST>
END $<"same" label>$

<conpound statenent> ::= BEG N $<label>;s$
<<program unit>; LIST>
END $<"same"™ labeld>$

*)  BLOCK,END <--> L,] : BEGIN,END <--> L,J
BLOCK <l abel >; <==> <label>: BLOCK
BEGIN <| abel >; <--> <l abel >; BEGIN
END <l abel > <--> ;<label> END

~ Blocks control the scope of identifiers by introducing new |evels of
nomenclature: an identifier declared in (local to) a block represents a
uni que ent|tg within that block but does not represent that entity _
outside the block., An identifier declared in an enbracing block is said
to be global to the block. If an identifier is both local and global to
a block, the global neaning can not be used within the bl ock.

Identifiers may be declared explicitly by defining statenents (see
4.2.1) or let statements (see 4.8); or inplicitly bf hei r appearance as
| abel's (see 4.4.1) or procedure identifiers (see 5. 2 Certain other
syntactic units also inplicitly delimt the scope of some or all of the
identifiers declared within thémin the sanme way as bl ocks:
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(1) The conditioned (alternative) staement of a conditi onal
statenent acts as a block with respect to labels (see 4.4.1).

(2) An iteration statement acts as a block W th respect to the
control variable (see 4.7) and | abels (see 4.4.1).

{3) A procedure definition acts as a block with respect to
identifiers used as (part of) formal paraneters in the procedure
head (see 5.1).

4) The identifier Aenoting the control variable in a set generator
see 3.1.3.3) or a serial actual parameter (see 5.2) is local to the
set generator or serial actual paraneter.

() ldentifiers denoting dummy argunents in a synbol substituter
are local to the symbol substituter (see 4.8).

(6) ldentifiers denoting synonym names in a WHERE phrase are
local to the statenment qualified hy the where phrase.

1f a block is labelled, then the block 1ahel may optionally follow
the closing END and may be used in defining statements to delimt
scope (see 4.2.1).

A conpound statement is used to group together a sequence of
statenents and procedure definitions. 1f the conpound statenent is
| abel | ed, then that |abel may optionally follow the closing END.
4,2. Variable Control Statenents
4.2.1. DEFINE statenents

<DEFI NE statement> ::= <DEFINF phrase><<defining phrase! >, LIST>
<DEFINE phrase><{defining phrase>{qualifier>

<DEFINE phrase> ::= DEFI NE $IN <"block" label>$
“<defi ni ng phrase> ::= <<variable name> wLIST> <<attribute> rism
<variable name> ::= <identifier> y <reference variable nane>
<reference vari abl e name> ::= <vari abl e nane>
$<{<subset specification>)<blank> LIST>S$
(<simple Ssubscript>)

<subset specification> ::= <subspan> | <Si NPl € subscript>,<subspand> |
<subset specification>,<range>

<subspan> ::= <VA expression> { *
<sinple subscript> ::= <<sa expression>, LIST>

Exanpl es: pEFINE A LOd CAL 3 BY 5, B SCALAR
DEPINE C(1,6) 8 BY 8 DIAGONAL
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DEFINE Statenents, defining assignment statenents (see 4.2.2), and
GIVEN statements (see 4.9) are all defining statements in the sense that
they delimt the scope of identifiers, assign attributes to identifiers
and reference variable names, and allocate st ora?e. Defining statenents
are executable; an identifier nust be defined before it is referenced.

The scope of an identifier is either the innermost block containing
the defining statement or the enbracing block whose block |abel appears
in the defining statement.

A variable name is either an identifier or a reference variable nane
(a single conponent of a reference variable; e.g., a submatrix of a
partitioned matrix). The attributes to be assoCiated with the variable
nane nay be listed in any order in the defining phrase. The type and
dinensionality attributes nust be consistently defined throughout the
scope; the domain and shape may change. Hissing attributes are
_defaulted in the following manner:

type: unchanged, if specified in another defining statement
ARITHNETIC, Ot herw se

dinensional ity: _ o _ o
unchanged, if specified in another defining statenment
SCALAR if a domain is not specified
ARRAY (V\nth appropri ate nunber of dimensions),otherwise

donai n: euPTY BY ... BY EmprY, fOr arrays
unspecified, otherw se

shape: ROY (corLum§), f Or ROW (COLUMN) VECTCRs
RECTANGULAR, ot herw se

when a variable name(s) is defined, all expressions in the defining
phrase are evaluated, the variable name(s) is released (thus the
associ ated value(s) are lost) (see #.2.3), and storage Is allocated.
Scalars are initialized with value UNDEFINED;, arrays are initialized
conponentui se with the val ue UNDEPINED.

When program control |eaves a block, all identifiers defined |ocal
to the block are released (see 4.2.3) and "un-defined" (| ose
definition).

©  DEPINE STATEMENTS BAY BE qouaLIPIED BY FOR phrases, |F phrases, and
WHERE phrases (see 4.3).

8.2.2. Defining assignment staterents
<defining assignnment statement> ::= _
<DEFINE phrase><<simple defining assignnent statement>, LI ST> |
<DEPINE phrase><siample defining assignnent statement><qualifier>
<sinple defining assignment statenent> ::=

<variable nane> := <expressi on> $<domain specification>$ |
(<<l eft side elenent name>, LIST>) := <procedure call>
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<left side elenent. name> ::= <variable name> } _

Defining assignment statenents serve as def ining statenents
(see 4.2.1) as well as assignment statenents (see 4.3)

The first. formof the (si rrﬁl e) defining assignnent statenent causes
eval uation of an expression. The variable nane is defined with the
attributes associated with the exptession and assigned the val ue(s) of
the expression. The domain of the expression may be redefined in a
domai n specification (see 4.3).

The second formof the (sinple) defining assignnent statenent causes
execution of a procedure. he l'eft side element nane(s) is defined with
the attributes associated with the corresponding formal return
paraneter(s) and assigned the value(s) of the corresponding actual

return paraneter(s). An underscore appearing on the left side neans
that. the corresponding definition and assiqgnnent should be omtted.

Defining assi gnnent statements may be qual i fied by FOR phrases, IF
phrases, and WHERE phrases (see 4.3).

4.2.3. Release statement
<RELEASE statenment> ::= RELEASE <<variabl e nanme>, LIs™
Fxample: RELEASE MAT , A, B(3,6,7)
'RELEASE statenents serve to deallocate storage. Scalars are
assi gned the value UNDEFI NED, arrays are redefined vith domain EMPTY BY
Y EMPTY (with the appropriate nunber of dimensicns) and shape
RECTANGULAR. The value(s) associated With the variable name(s) is |ost.
No RELEASE statenent iS required before the termnati n% END of a
bl ock since the END acts as an inplicit RELEASE statenment for all
identifiers defined local to the bl ock.
4.3, Assignment Statenments
<assignment statenent> ::= <sinple assignnment statenment> $<qualifier>$
<si mpl e assi gnnent st atement> ::= _
<variable> := <expressi on> $<domain specification>$ |
(<<left side el ement>, LTST> := <procedure call>
<left side elenment.> ::= <variable> | _
<domai n specification> ::= WITHDOMAIN <<span> BY LI ST>

<qualifier> ::= <WHERE phrase> |
<<qual i fying phrase>, LIST> $,<WHERE phrase>$

<qual i fying phrase> ::= CPOR phrase> { <IF phrase>

*¥) 17 L= =
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Exanpl es: {a,b,c) = f(X) _
LOGC (i) = a=e(i) OR i>20 POR | IN <{10,...,301>
PART {4,5) (*,4) := A*? & MAT
A := Bec - 3.37 * B + <|2,3,51>
X == A<B OR F 1% <}6,8,91>

Assignnent statenents serve to assign the_valuegs) of the expression
or procedure call on the right side of the assignnent synbol to the
variable(s) on the left side. The variable(s) and the corresponding
value(s) must be assi gnnment conpati bl e:

(1) |If the variable is character (logical), then the corresponding,
val ue nust be character (logical), |If the variable is arithnetic,
then the corresponding value may be arithmetic or logical (see 2.1).

42) The variable and the corresponding value nust have the same
i mensional ity, except that a vector may be assigned to a
ROY (COLUMN) VECTOR and vice versa.

3) The variable and the correspondi ng. value must have the sane
omain. If their domains differ, a defining assignment statenent
(see 4.2.2) nust be used.

(4) The variable and corresponding value need not agree in shape.

The firstform of the assignment statement causes the eval uation
of an expression and assigns the vaIue(s% to the variable on the left
side. The domain of the expression may be redefined in a domain .
specification. The specified domain nust be homeonor phic (corresponding
component domai ns have equal nunbers of elenents) to the domain of the
expression and conpatible with the domain of the left side variable.

The second form of the assignnent statement causes the execution of
a procedure and assigns the value(s) of the actual return paraneter(s)
to the correspondlng_é|r1 order from left to right) left side element(s).
The nunber of left sSide elenments must be the same as the nunber of
formal return parameters in the procedure definition (see S.1. Al
variable(s) on the left side nmust be assignnent conpatible with the
corresponding formal return paraneter(s) . An underscore appearing on
the left side meansthat the correspondi ng assignment should be omtted.

Exanpl es: (Ret 1, _, Ret 3,. _) == PO(x-y) _ _
(P has 8 return parameters, but only the first and third of
these are of interest).

(Cbj ective value, Basic-variables, Optimal-x,Peasibility) :=
SINPLEX (Matrix, Costs, RAS, BASIC_VARIABLES)

~The effectof a sinple assignment statement (DEFINE statenent,
defining assignment statement) nodified by ror phrases, |F phrases, and
synbol substituters \

<sinple assignaent statement> <qualifying phrase "1*> ...
<qual i fying phrase ®®, W-IE¥ZE <<symbol substituter>, L| ST>

Cet. 70, p. 25



can be described by the follow ng sequence of ML statenents:

LET <<symbol substituter>, LIST>;
<qual i fying phrase wn",

'<q'ua!if?/i ng phrase "1,
<sinple assignnent statement);

except that identifiers demoting Synonym nanes in the let statenent are
defined 1locally.

Exanples: E :=p* A  WHERE A = (BIC) & (C|D)

X ¢= X'#1  WHERE X = X'

| NCl DENCE (i,y) := TROE | F i 18 ARCS(Y)

A (P_ROW,y) == A(P_ROW,y) / A(P_ROW,P_COL)
FOR IN COL_DIM (A)

(Y (i), 2 (1)) := FUNCTION(i) FORi IN S

4.4, Sequence Control Statenents

4b.0.1. Labels and\GO TO statenents

<l abel > ::= <identifier> | (<digit string>)
<go Tostatenent) ::= GO TO <label>

A GO ro Statement causes a transfer of control to the statenent
immadiately following the label. Since labels are inherently |ocal
ése_e 5.1, NO CO ToStatement can lead into a block, a procedure
efinition, the conditioned (alternative) statement of a conditional
statement, or an iteration statement.

.4.2. RETURN statenents
<RETURN st atenent) ::= RETURN

ARETURN statenent causes a transfer of control froma procedure
back to the main program or procedure calllng that procedure. ARETURN
statement may not occur outside a procedure definition,

NO RETURN statement is required before the termnating END of a
procedure definition {see 5.% since the END actsasan inplicit RETURN
st atement .

4,5. Procedure Stateaents
<procedure statement> ::= EXECUTE <procedure call>
Exanpl e: EXECUTE GENERALI ZED- UPPER-BOUND (mn, |, A G b)

Aprocedure Statement causesthe execution of a procedure (that

specified in the procedure call (see 5.2)) with noreturn paraneters.

A procedure with return paraneters may be called in an assignnent
statement (see 4.3). -
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4.6. Conditional statements

<conditional statement> ::= <simple condit ional statement>
SOTHERWISE <altelnatl 0e statement>$

<sinple conditional statement> ::= <IF phrase> THEN
<conditioned Statenent>

<1F phrase> ::= | F <sL expression>
<conditioned statenent> ::= <statenent>
(alternative statement> s::= <statenent>
*) THEW <-- , ; OIHERW SE «<--> ELSE
- Exanpl e: IP X(i) = LOWER_BOUND(i) THEN
{_IF GRADIENT(i) > O, MODIFIED_GRADIERT (i) == O_|
ELSE 1P Xg |) = UPPER_BOUND(i) THEN
{_IP DI ENT(i) < 0, MODIFIED GRADIENT(i) := 0_|
ELSE mopTIPTED_GRADIENT(i) := GRADI ENT(i)
A sinple conditional stateaent is executed as follows:
(1) The <SL expression> i s evaluated.
(2) 1f the value of the «st expression> is TRUE, then the
conditioned statenment is executed; otherwi se the conditioned
statement i S Skipped and the next statement i S execute&
The effect of a conditional statement of the form

IF <SL expression> THEN <conditioned statement>
ELSE <alternative statenent>

can be described by the follow ng sequence of ®pL statenents:
IF ~<sL expression> THEM GO TO ELSE_LABEL;
<conditioned statement>; (GO TO NEXT_STATEMENT;

ELSE- LABEL: <alternative statement>;
NEXT_STATEMENT:

‘each eLSE <alternative statement) is to be paired with the innernost
urr;galr.ed <simple conditional statenment). The resulting syntactic
ampi guity, known as the dangling ELSE problem, can be resol ved.

Ref erence: Paul W Abrahars, »a Final Solution to the Dangling ELSE of
ALGOL 60 and Rel ated Languages," comm. ACX 9 (Sept. 1966), 679-682.

4,7. lteration Statenents

<iteration statenent>

:= <PoR phrase> DO <iterated statenent>
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<FOR phrase> ::= FOR <control variable> IN <VA expression>
$: <SL expression>$

<control variable> ::= <identifier>
<iterated statement> ::= <statenent>
x) DO <-- ,

Exanpl es: FOR i 1IN <§1,...,81> 1 IN BASI S DO
CMIN == HIN (cMIN | C(i - PRICES * A+, i))
FOR x 18 NODES, For y IN S :y IN SUCCESSOR( x),
CONNECTION (x,y) == TRUE

An iteration statenment causes the iterated statenent to be
repeatedly executed for a sequence of zero or nore vauesof the
control variable in the FOR phrase. The control variable is inplicitly
declared as an ARITHMETIC SCALAR local tO the iteration statenent; thus
its value IS lostonexit unlessit IS assigned to a %I obal |y define?
variable. The control variable may not be changed by assignnent within
theiterated statement.

The sequence of values of the control variable is evaluated before
the iterated statement is executed, The effect of an iteration
statenment can be described by thefollowi ng sequence of MPL statenents:

LET i =:= <control variable>; _

DEFINE S := <| <{i FOR 1 TN <VA expressi on> $:<SL expression>${> |>;
1 S IS ruprYy, GO TO NEXT- STATEMENT,

pRFIN® COUNT := 1;

LOOP. DEFPINE | := S

COUNT := COUNT + 1;

TF ccunt <= LENGTH(S), GO TO LOOP;
NEXT- STATEMVENT:

4.8, Let Statenents

(COUNT); <iterated statenent>;

<dynamic | et statement> ::= LET $IN <"block" label>$ <substitution list>
<static let statement) ::= $LRT $IN <"block" label>$ <substitution |ist>

<substitution |isSt> ::= <<synbol substituter>, LIST> #1
<symbol substitute0 <WHERE phrase>

<WHERE phrase> ::= WHERE <<synbol substituter>, LI ST>

<synbol substituter> ::= <Synonym name> := <expressi on>

<synonym name> ::= <synonym identifer> $ (<<dummy argunent>, LIST>)S$
<synonym identifier> ::= <identifier>

<dummy argunent> ::= <identifier>
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Exanmples: LET CBV := COST(BASIC-YARIABLES)
LET GUB(K) 2= <{G(K) yeee,G{k¢+V)=1>

A(static/dynamc) let statenment serves to declare a o .
(static/dynamc), synonP/m name. The scope of the synonymidentifier is
either the innernmost block containi n% the let statement or the enbracing
bl ock whose block |abel appears in the |let statenent.

Astatic sgnonym name acts as a conpile-tinme macro: the erpressian
replaces (see 3.1.6) the synonymnamein the source text between the |et
statenment and the end ofthe block or another let statement redeclaring
t he synonym nane.

A dynam c synonym nane acts as an expression variable: the value
(an expression) replaces (see 3.7.6) the synonym nane at each run-time
reference within the scope of the synonym identifier. The dynamc |et
statement serves as an assigneent sfatement for dynami c synonym nanes.

4.9. |INPUT , QUTPUT Statenents

<input statenment> ::= GIVEN $IN <"block"™ label>$
<<defining phrase> LIST>

<output statement) s:= ANSWER <<expression>, LI ST>

Exanpl es: G VER ® n,| SCALAR, AMATRIX a by n, G VECTOR 1¢1,
b coronx VECTOR =
ANSWER St at us, BV, xBv, YBP, s, kv, GUB_BV

. The 1NpUT/00TPUT provided in MpL at present is rudinmentary and
intended nerely as a first step toward more powerful concepts.

The erven statement serves_as a defining stateaent gsee 4.2.1) as
wel | as an input staterent. The variable nane(s) is definada~&fa }
asm%ned the corresponding input value(s). The type and dimensionality
of the variable name(s) must be specified in the defining phrase of the
GIYEN statement;: the donmain and shape ray be specified inthe defining
phrase or vi.1ll be taken from the data. The data is assuned to be '
labelled With the variable name(s) and to contain information on type,
dimensionality, domain, and shape. These data attributes must be
consistent with those specified im the defining phrase.

The awswer statement produces labdelled printed output; i.e., the
wname® Of the expression precedes the value. Thus the statenent

ANSWER X, SIN(2%PI*X)

will produce the printed output

X = SRERERERRE SIN(2¢PI*X) = Sesesasxks
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SECTION 5. PROCEDURES

Procedures are subprograns thatcan be defined anywhere in the
program and which are activated each time a procedure call is
executed. When the procedure is called the Tormal parameters are
repl aced by actual par anet ers.

5.1. prrocedure Definitions
<procedure definition> ::= EXTERNAL <procedure heai> |
$INLINES (procedure head>; <procedure bhody> |
<one-line procedure definition>
<procedure head> ::= $<procedure attribute>$s PROCEDURE , .
$<formal return parameters> :=$ <procedure identifier>
$ (<<formal | nput paraneter>, LIST>)$
$WHERE <<paraneter specification> LIST>S
<procedure attribute> ::= INDEPENDENT | DEPENDENT { FUNCTI ON
<procedure identifier> ::= <identifier>
<formal return parameters) ::= <identifier> | {<<identifier> LIST>)
<formal input parameter> ::= <identifier> | <serial formal paraneter>

<Serial formal parameter> ::= <"Evidentifier> FOR <bound identifier>
I N <"vAmidentifier> $:<"SL"identif ier>$

<bound identifier> ::= <identifier>

<paraneter specification> z:=
<<identifier> LIST><<attribute> LIST><parameter type> |
<<jidentifier> LIST> $<procedure attribute>$ PROCEDNRE

<paraneter type> ::= VALUE | NAME { VALUE RESULT { RESULT | <empty>

<procedure body> ::= <statenment>

<one-line procedure definition> ::= <<attribute> LIST> SINLINES
$<procedure attribute>$ PROCEDURE
<procedure identifier> ${<<formal input parameter>, LIST>)$
:=Cexpression> $WHERE <<paraneter specification> LIST>S

*)  PUNCTION PROCEDURE <-- FUNCTION

5.1.1. EXTERNAL procedures

The attribute EXTERNAL denotes a procedure that has to be fetched

froma library outside the program the procedure head in the program
supplies only the neccessary information on its paraneters.
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S.1.2. INLINE procedures

A procedure can be specified INLINE SO that if the inplenentation
ermts, the statements corresponding to the procedure asnodified by
he actual paraneters (see 5.2.) will be inserted at the place where the
procedure call occurs in the program This enables the programmer to
avoi d the overhead associated with procedure calls if he desires.

This process should, of course, Plot lead to a recursive situation.

5.1.3. The procedure head

- The procedure head contains the nane of the procedure and
information (at |east type and disensionality) about itS parareters. In
order to conform to nmathematical function notation, the procedure head
Is witten as an explicit assignment to the return paraneters. The input
and return parameters are fornmal paranmeters i.e. the identifiers used
here do not represent actual quantities and have to be replaced by
actual paranmeters each time the procedure is called.

Each formal paraneter must be specified in the parameter
specification list. If a formal parameter represents a variable, at
| east its type-and dirensionality mast be indicated. The effect of the
attribute VALUE is explained in (s.2.1. A serial formal paraaeter
represents a list of actual input parameters depending on a POR phrase.
The <bound identifier> represents the control variable of the FOR
phrase. In a serial fornal parameter only the attributes of the first
Identifier need be specified; the attribotes of the cthers are implied
by their position in the FOR phrase(see 5.2.). The scope of the formal
parameters in the procedure head is the procedure definition. The
default paraneter type is ¥aMe independent and independent procedures.

S.1.4. The procedure body

The procedure body consists of the actual statenents to be executed
vhen the procedure is called (see 5.2.). _ o _ o

The procedure body is the scope for all identifiers defined within
the procedure. The scope of identifiers can not be extended outside a
rocedure body. Procedure definitions nmay be nested, i.e. a procedure
ody may contain procedure definitions.

S.t.5. The procedure attributes

The procedure attributes specify subclasses of procedures wth
certain restrictions as to their parameters and to the way they
are handl ed. _

The most general case is a DEPENDENT procedure. A DEPENDENT
procedure hasfree access to its environment and can use or change every
quantity defined in the block containing .the procedure definition.
DEPENDENT is the default value for the procedure attribute.

5.1.5.1. PONCTION procedures

roncrron procedures are closely related to the nathematical concept
of a function, i.e. they conpute one or more return values from one or
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nore input paraneters.

(i) They may not refer to any variable or |abel whose definition
occurs outside the function procedure.

(ii) They nmay reference function procedures only, i.e. all procedure
arameters of a function and all procedures defined inside a
unction or called fromwthin a function nust thenselves be
function procedures.

(iii) They may not contain any input/output statement except ANSVER
statenents (4.9).

(iv) %o input parameters may be changed within the body of a
function procedure. Al input paraneters are treated as if
they were VALUE paraneters. Assignment of values to input
paranmeters is illegal.

(v) FUNCTION procedures nmay not have serial formal parameters.
€. 1.5.2. | NDEPENDENT procedures

INDEPENDENT procedures are identical to FUNCTION procedures except
that they may have NAME paraneters and serial fornal parameters and nay
refer to both FUNCTION and | NDEPENDENT procedures.

5J.2.3 One-line procedures

The one-line procedure is provided as a short way ofwitting a
procedure which conputes an expression (see 3). The value of this
expression is returned to be used as an operand or in an assignnent
statenent. The <<attribute> LIST> specifies the attributes of the
conput ed expressi on.

5.1.6. Exanpl es of procedure heads

PROCEDURE (OPT-X, OPT-Z) := SIMPLEX(A,RHS,COSTS) where A
MATRI X, opT_X,RHS COLUW VECTCR,
COSTS ROW VECTOR, opT_z SCALAR

INLI NE PROCEDURE RSLT := mMaxIMuM (Y(i) FORi IN S :L)
where Y({i), RSLT SCALAR

FUNCTION PROCEDURE A= EXP(B) WHERE A,B MATRIX
5.2.Procedure Calls

<procedure call> ::= <procedure identifier>
$ ((<actual parameter>, LIST)$

<actual paraneter> :3= <expression> | <procedure identifier> |
<serial actual paramater(} !
"meaning t he correspondi ng actual paraneter

IS omitted™
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<serial actual parameter> ::= <expression><ForR phrase>

A procedure call causes the execution of the statement of the
corresponding procedare body after these statements have been nodified
y actuwal parameters. Por a one-line procedure the expression is
consi dered the body.

Procedure calls may occur in tkhe follow ng contexts:

(Iy A procedure without formal return paraneters may be
called in a procedare statenment (4.5).

{11) A procedure with one return paraneter may be used as an
expression operand (3.1.%). In this case a dumy variable
Is created having the attributes of the return parameter
and it is usedas an expression operand after the conpletion
of the procedure call.

(11?) Procedures with one or nore return parameters can be called in
an assignnent statement (4.3). 1In this case the actual return
parameters nust he assignment conpatible with the
corresponding formal return paraneter. Upon conpletion of the

rocedure call, the actual return paranmeters are assigned the

inal values of the corresponding fornmal paraneters. If an
actual return paraneter 1s omtted (represented by"_*), then
no assignnent is made. If no value has been conputed for the
formal return parameter, then the actual return paranmeter will
be UNDEFI NED.

The nunber of actual parameters (both input and return parameters)
must be the sane as the nunber of formal paraneters specified in the
procedure head. EBach actual parameter "replaces" the fornmal paraneter
In the sane position and nust be conpatible with it in terms of its
attributes (see 5.2.1, 5.2.2, 5.2.3 for details).

The effect ofthe execution of a procedure call is equivalent to
the ef fect of executing the statenents of the procedure body nodified
as illustrated in the rest of this section ("equivalent" bécause an

I npl enent ation nay choose any optimzation strategy yielding the
sage result). After all nodifications are conpleted, the procedure
body nust yield a sequence of valid meL statenents.

s.2.1. VALUE paraneters

_ | nput paranmeters representing a variable may be specified VALUE
in the procedare head.

In general, for each VALUE parameter there is an internal
Procedure variable having the sane attributes as the corresponding
ormal parameter. (In certain cases, in particular for FUNCTION

PROCEDURES, this may be inplenented differently).

Bef ore execution of the procedure body begins, each actual .
parameter is evaluated-and the result is assigned to the corresponding
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internal variable. wote, this inplies that the internal variable
(whose attributes are given in the procedure head) and the actual
paraneter must be assignnent conpatible as defined in 4.2.

|f the actual paraneter is omtted (i.e. it is »_», the underscore)
no assignnent is nade and the formal paraneter will Dbe unperInep.

Any occurrence of the formal paraneter identifier inside the
procedure body will then he replaced by t he corresponding internal
par amet er.

~ If the parameter were to be changed within the procedure body by
assignment, this wll affect the internal variable only and not the
actual paraneter itself.

5.2.2. NAME paraneters

Al'l procedure paraneters and those paraneters denoting variables
that have not been specified vALUE are called NaME paraneters. The way
In which actual name paranmeters replace any occurrence of the
corresponding fornmal paraneters is best described as textual _
substitution, i.e.~the "name" of the actual paranmeter (enclosed in
arenthesi s wherever this is syntactically necessary) replaces the
ormal paraneter,

Any change made to the formal parameter within the procedure hody
is reflected by the sane change occurring to the actual paraneter
(note the difference from vaLuE paraneters).

Act ual Par ameters called by name nust have their attributes
specified in the parameter specification. Actual procsdure parameters
nust agree in their procedure attributes with the corresponding fornal
paraneters.

It is possible, but not advisable, to omt a wnawe parameter. |If
program control reaches a reference to an omtted NAME parameter, then
an execution error wll result.

5.2.3, Serial actual paraneters and serial formal parameters

A serial actual paraneter (SAP) is of the form
<expression><PFOR phrase>

A SAP does not stand for a vector, but rather for a list of
expressions controlled by the ror phrase. The control variable (CV)
of the ror phrase has as its scope the SAP itself, i.e. any occurrence
of the cv within the expression represents only the CV and not any
other identifier defined in the enbracing block.

The cv, as well as the other conponents of the FOR phrase (the VA
expression and the SL expression, see 4.7) are available to the
procedure individually and are accessed by means of the serial formal
parameter. The CV is passed by wame to the <bound identifier>; the
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<expression> is passed 8¥ NANE tO0 the <wevidentifier>; the
<"vavexpression> Of the FOR phrase is passed by wame to the
<"vanidentifier> ; and the <"sLvexpression> Of the Por phrase is passed
by ®ame to the <"sL"idientifier>.

s.2.4. The return paraneters

A1l formal return parameters nust denote variables, and nust be
speci fied b}/ a defining phrase in the procedure head. (vaLue is not
meani ngful for return paraneters).

~ For each formal return paranmeter there is a internal variable
havi ng the attributes specified for the return parameter in the
rocedure head. This internal variable replaces any occurrence of the
ormal return paranmeter within the procedure body.

~ After execution of the procedure body the value of the internal
variable is assigned to the actual return parameter if one exists
(see 4.2.2) or is used as an operand.

5.2.5. The RESULT paraneters

The resoLt paraneter is handled in exactly the sane way as a
return paraneter.

S.2.6. The VALUE RESULT paraneter

VALOR RESULT parameters are handl ed |ike VALUE parameters before
execution of the procedure body and |ike RESULT paranmeters, after
execution Of the procedure body.

5.3. Library Procedures

~This section describes the use of several procedures which are
provided in the neL library. References to these procedures all have
the formP(P) where r represents the nanme of the procedure and e
re[)resents a list of parameters. where indicated, these procedures
return values with attributes as described bel ow.

ABS (SCALAR) _
SCALAR Any scal ar valued arithmetic expression.
- VALUE The absol ute val ue of *scarare.

ARGMAX (VECTOR) _ _ _
VECTOR  Any vector valued arithmetic expression. _
VALUE The scalar arithnetic index of the first occurring

maxi mum val ued el ement of t*vecrose,

ARGMIN (VECTOR) _ _ _
VECTOR  Any vector valued arithmetic expression. _
VALUE Thée scalar arithmetic index 'of the first occurring
m ni mum val ued el enent of *VECTOR@
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COLDIM (MATRIX) ,

MATRI X Any matrix val ued expression. .

VALUE The scalar arithnetic nunber of elenents in the range
of the second subscript of rmarrix*. This function is
intended for finding the nunber of colums in a matrix,
so if 'marrIX'is a colum vector, 'VECTOR :=1,

DTM ( VECTCR) o _
VECTOR ~ Any vector valued arithnetic expression.
VALUE The scal ar arithmetic number of elenments in the range

of 'VECTOR ,
IDENTITY (RANK) _ _ _ _ _
RANK The scalar arithmetic rank of the square identity matrix
which is the *vaLoe* of the function.
VALUE An identity matrix with *RaNk* rows and col ums.

TNVERSE (MATRIX) . , _ _ _
MATRTX A square, non-singular, matriXx valued arithnetic expression.
VALUF The inverse of *MATRIX'.

MAX (VECTOR) ‘
VECTOR  Any vector valued arithmetic expression.
VALUE The scal ar arithmetic val ue of the mininum val ue4 el enent
of 'VECTOR .

MIN (VECTOR) . . .
VECTOR  Any vector valued arithmetic expression.
VALUE The scalar arithnetic value of the mnimum val ued el enent

of 'VECTOR .
ONES {ROWS, COLUMNS) _
ROAS The integer scalar number of rows in *vaLug*.
COLWWS The i nteger scal ar nunber of colums in 'VALUE®.
VALU® A matrix of ones with *rows* rows and *coLuMNs* col umms.

ROWDTIN (MA\TRI>2\n _ . . .

MATRTX y matrix valued arithnetic expression.

VALUF The scal ar arithmetic nunber of elements in the range
of the first subscript of *martrrx*. This function Is
intended for finding the nunber of rows in a mtrix,
SO if 'MATRIX' is a row vector, *VALUE' := 1,

sum (VECTOR) _ _ .
VECTOR A vector valued arithnetic expression.
VALUE The scalar arithmetic sum of the elenments of * VECTOR'.

TRANSPOSE(MATRIX) _ _ _
MATRIX  Any matrix valued arithmetic expression.
VALUE The transpose of 'marrix*. [f "MATRIX has m rows and
n colums, then *vaLue* has n rows and m col ums.
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TRUNCATE (SCALAR) _ _
SCALAR  any scal ar valued arithnetic expression,
VALUE sign of 'SCALAR' times | argest integer < ABS('SCALAR').

ZEROES (ROWS, COLUMNS)
ROWS The integer scalar nunber of rows in 'VALUE',
coLunNs The integer scal ar number of columms in 'VALUE’,
VALVE A matrixof zeroes with 'ROWS' rows and 'COLUNNS' col unms.
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Two Examples of Mathematical Programming Algorithms

Written In MFL

SIMPLEX ALGORITHM

GENERALIZED UPPER BOUND

The latter represents an algorithm for solving certain large scale problems.

Systems of this type , encountered in practice, have run over 30,000 equations
and half-million variables . In order to develop efficient codes, it is
necessary that experimental programs be highly readable, easy to debug,

so that various versions can be quickly tested and compared.



PROGRAM SIMPLEX -ALGORITHM:

"pind Max X(1), X(j) > O for j in {2,...,n}:
A*x = b, b >0
where V= {V(l), V(2),...,V(m)}, the index set of
the initial basis, is given with V(1) = 1 corresponding
to objective x( 1) . I¢ is assumed that

A(v) = Identity(m) .”

Given m, n scalars, A matrix m by n, b column vector m,

V vector m;
Let | ={1,...,m; Let I=1{1,...,n};

RECYCLE : Define "incoming variablesand s the minimum relative cost”

FINI:.

(s,8) = ARG MIN [A(l,]) for je Jj #11;
If 6> 0, |Answer -Bounded-, V, b; Go to FINI] ;
“otherwise” define "Pivot row r and Zevel s of incoming variable x(s)."
(r,8)= ARG MIN [b(i)/A(i,s) for i e I:A(i,s) >0];
If & = +~, |Answer <<Unbounded>>, V/, b, s, A(x,s) ; Go ta FINI] ;
“Update” A = PIVOT [A,A,(*,s),r]; b= PIVOT [b,A(%,s),r]; V() =s;
‘where PIVOT pivots matriz A on A(r,S) andr et urns modified A."
Go to RECYCLE;

End “ program”



GENERALIZED UPPER  BOUND

GIVEN A, m xn, FIND MAX xn:

Ax =D, xd>,0for j o= 0,...,m-1)

X; = 1
j e GUB(K)I

where

, k=10,..,-1

GUB(K) = {316(K) « § < G(k+1)-1

INITIATE: Non-Key Basic Variables: BV

Costs, Values: CBV, XBYV
Key Variables: KV
Inverse: R

Phase, =_Control

Start Major Cycle

No

End Major Cycle

Neg_Delta_Control = O

&

Find Incoming Var. §

S ootimal in GUB?
v

No

[ If r = KV(k)

v
pP—— Find Olitgoing Var. r
Pivot, Update
v

-—— Reprice GUB

Price Out next GUB-—.|

Did all GUB's price optimally?

$» GUB_BV

BV, XBV, YBV, KV,

O y Yes
| If none | W Feasible?|.es | Phase = 17
Phase |
| No Y No
Answer: . Answer :-Bounded>>,
<<Infeasible>> BV, XBV, KV, ’
GUB BV
If none , =
———1  Answer:
<<Unbounded>>




PROGRAM ~ GENERALIZED-UPPER-BOUND:

"The deseription Of this algorithm is written in M.P. L. (Mathe-
matical Programming Language). Commentary such as this on the
algorithm are enclosed <n quotes. -Underlines, not part of the
Zanguage, are to relp the reader identify the special (reserved)

words of the Zanguage. "
GIVEN m,n,Z scalar, A matrix m by n, G vector z+1,b column vector m;

"The problem is to find
Max x(n), x(j) > O for j in {1,...,n-1}
‘subject to
(1) A*x =D
(¢z) SUM[x(i) for i in GUB(k)] =1
for kKin Cl,. .. J13 where we"
LET GUB(k) = {G(k),...,G(k+1)-1};
‘which we catz @ ' GUB''set.  The last variable X(n), iS to be
maximized. The set {x(n-m+1),...,x(n-1)} contains the artificial
variables and the matrix [A(»,n-m+1) ,...,A(n)] forms an identity
matrix. We also assume that
G(1) =1, G(i) < G(i+1), G(z+1) = n-mH
Note that GUB(Z) = 6(Z),...,n-m} are the variables which have
~no partial sumcondi tions (<) associated with them.
LET L ={1,...,2}; LET | =101,...,m};
"Initiate Non key BasiC Variables BV. Let the GUB set of the i-th
basic variable BV( i) be denoted by GUB_BV(i)."
DEFINE BV _vector m, GUBBV vector m;
Fori inldo| BV(i)=n-m+i; GUB BV(i) =2+ J
“Key basic variables are.denoted by KV. Ineach GUB we initially

select for the key variable the one with Lowest cost coef.”



DEFINE KV vector Z-1;
KV(k) = Index_Min [A(m,j) for j in GUB(k)]
L :k * Z;

for k in

"where Index Min ig the name Of  a funetion that yields the

index (or argument) where the minimwnmig attained. "

"The Inverse of the eolumns corresponding to BV , as modi fied by
subtracting Of T their key columa,will be denoted by R.
Initially R is given by:"”
DEFINE R = Identity (m);
"The modified RHS is denoted by b' . It is formed by setting
key variables= 1 ,substituting into (¢) and subtracting from
b. "
DEFINE b* = b - SUM (A(%,J) for j in Kv);
For i in 1: b*(i) <0 and i ¥ mL b (i) = -b'(i);R(i,1) = -1 J;

"yhere we have eorrected R and b' so that the initial basie

sotution is feasible. "

"Becaquse R is an adjusted identity, the values of BV in the
initial basic solution XBV are”

DEFINE XBV = b";
"In Phase = 1 the cost coefficients are all zero except for
j inn-m¥1, _ _ , ,n-1} where the coef.are each one. For j in {1,...,n-m}
the oost coef. remain zero after subtraction of their key
eolurms. Non-key basic cost ecoef. are denoted by CBV.
Initially"”
DEFINE  CBVRow of _ones(m); CBV(m) = O;

"Pinally we set up two scalar control parameters, the Phase

eontrol and the m_Control where the tatter, if 1, is a aignal to
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compute NeW mvalues for the next major or minor cycle. "
DEFINE Phase = 1; DEFINE =_Control=1;
"START MAJOR CYCLE'
MAJOR-CYCLE: DEFINE Neg_Delta_Control=0;
"yhere the Latter counts the number of colwmns that price-out
negative. e now get ready to price out the various GUB’s K. "
FORKinL do
|1 The FOR Zoop ends just after RECY CLE zabel”
MINOR CYCLE: If = Control =1 and Phase =1,
DEFINE r = -CBVxR;
If = Control =1 and Phase = 2,
~ DEFINE m = R(m,) ;
"i.e. the above computes the price vector w=. If n_Control=0,<t <s not
necessary to compute = and the above steps are skipped. "
"We are now ready to price out next GUB (or reprice the same
GUB). But first we reset"
m_Control = O;
"PRICE QUT GUB"
DEFINE (s,d) = ARG MIN[m*A(*,j) for j in GUB(k)];
“where ARG MIN is a function that returnss andd. sis the
smallest argument (index) for which the minimm value d is
attained. Let § be the priced-out value of colum s after it is
corrected for the price on its GUB equation (f Or k<z).”
If k <2, define s = d-mxA(*,KV(k));
If k =1, define s = d,
"PRICE QUT NEXT GUB”
1f 620, go to RECYCLE;

‘Where recyecle is the label at the end of for Zoop of the minor
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eyele, so that k is incremented to k+1 and prieing starts again
with next GUB. However 1 T 6<0, then we want to introduce colum
s into the basis and fiNd (if possible) cotum r 1O drop from the
basis. "
" REPRESENT THE | NCOM NG coLuMy s IN TEKMS OF BASIS"

Af k =7, define YBV = RwA(x,s);

If k < 2, define YBV = Ra[A(%,s)-A(%,KV(k))] ;
"DETERM NE COLUW r TO DROP FROM BASI S'
"We first apply the usual ratio test f or the non-key basic
colums BY. "

DEFINE (r,8) = ARG MIN[[XBV(1)/YBV(i)] for 1 in I: ifm and YBV(i)>0]:

"If 8 = o above, it means no pivot oan be found among the
variables BV(1). Thebasicvariable corresponding to r <e BV( r) .
We are now interested in discovering if a key-basso variable J
witt drop because it has a lower ratio than those of BV (i).
If yes we reset r equal to this j and denote Cts GUB set as GUB_r
Initially we set GUB_r = O; as tong as it remains zero it means
r above is stilt the winner. If GUB_r> 0 then by definition
KV(GUB_r) = r."

DEFINE GUB_r = 0;

"TEST RATI O FOR KEY VARIABLES KV"

"4¢ thts point we need to know the values of KV( i) which we denote
XKV and the eorresponding representation of ecolumm S denoted YKVY.
Since GUB 'swith a unique basic variabledon't drop their basic
variable under a basis change (except i = k possibly) we need to
congider only those GUB'a that have non-key basic variables. We
now Zook for such GUB 's. "

DEFINE a = O;



f-LOOP:. DEFINE ~ f=MIN [Gus BV(i) for i in I:GUB_BV(i)>al;
If f >7,go to LOOP_EXITelse a = f;
“The above if iterated will pick up successively the next higher

index f Of the GUB's Of BV(i)."
LETF=(ifor jinl: GUBBV(§) = f} ;
DEFINE XKV = 1-SuM[xBV(i) for i_in F;
DEFINE YKV = -SUM[YBV(i) for i_in F];
YKV = 1+ykv if f = k;
“where the Zatter corrects YKV if the incoming colum s is in
GUB set f z.e. if f = K. Note that the above states that we can

obtain the values of the key variab Zes by plugging in the values

of XBV(i )into the set equations (ii). We now do the ratio

test on (XKV/YKV)."
1f YKV < O or (XKV/YKV)> 8, go -to fLOOP;
"otherwise" r = KV(f); 8 = XKV/YKV; GUB r =T;
"We temporarily Store the winning XKV and YKV;
DEFINE XTEMP = XKV; DEFINE YTEMP = YKV; Go-to f_LOOP;
‘This completes a7 the ratio tests except for the possibility

that s reaches its upper bound and becomes the key variable in

place of KV(k) for k41.
LOOP-EXIT: If k =2 and & = +~, gO to UNBOUNDED;
If k <z and e>1, [ KV(k)=s;XBV=XBV-YBV; GO tO_RECYCLE |;
"In the latter case the incoming variable s reaches its upper
bound and replaces the key variable in the same GUB.  4ecordingly
we reset KV (K) =s and adjust XBV, Then by recycling we go on

to price out next GUB. 0thermvsise we are ready for the pivot. "

n_Control = 1; Neg_Delta_Control = 1;
"swAP KEY AND NON- KEYBASI C VARI ABLES'
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"Swapping is not needed in the following case. ”
If GUB_r = 0, go to UPDATE;"
"If GUB_r> 0, then it is necessary to interchange key variable r
with another basic variablet in the same GUB setas r. "
DEFINE t = MIN[i for_i in I: GUB BV(i) = GUB r];
"We now swap r and t.”
r = t; KV(GUB r) = BV(t) ; XBV(r) = XTEMP; YBV(r) = YTEMP;
"We must now fix up the inverse. "
R(r,*) = -SUM[R(i,*) for i in 1 :GUB BV(i) = GUB BV(r)]
"UPDATE BASIS, PIVOTI
XBV = XBV-YBVx6; XBV(r) = 6;
UPDATE: BV(r) = s; CBV(r) = 0; GUB_BV(r) = k;
R = PIVOT (R,YBV,r); XBY = PIVOT (XBY,YBY,r);
"The function PIVOT pivots in the last colwm of the matriz
(R,YBV) on row r and returns the modified R colwms. , Having

pivoted we now go back and_reprice the GUB and continue doing this

until the GUB prices out optimally before going on to next GUB."
Go ta MINOR-CYCLE ;
"When the GUB prices out optimally or s goes toits upper bound we
price out next GUB by going to the recycle label at end of the for Zoop
whichnow follows. "
. RECYCLE: 1] s "End for_k_in L do Zoop"
" After pricing out all GUB's the for etatement reqches its end
desigrated aboue by 1] and eontrol moves to the next statement below?"
If Neg_Del ta_Control > 0 , go_to MAJOR-CYCLE ;
"i.e. starting the pricing over again beginning with the first GUB."
"If Neg_Del ta_Control = O, <% means we are optimal and we

either initiate Phase = 2 or terminate with the optimal solution."

-6 -



" TERM NATE"
1f Phase = 1,]2 if SUM[XBV(i)_for i in I:BV(i)>n-m and i#m]>0 then
|3 Answer -Infeasible=; Go to FIN1 3]
else"set" Phase = 2; n_Control = 1; GO_to MAJOR CYCLE 2];
1f Phase = 2, )
|4 Answer <<Bounded>>, GUB BV, BV, XBV, KY; Go to FINL 4] ;
UNBOUNDED; “Phase = 2 and 8 = +"
DEFINE
Answer <<Unbounded>>, BV, XBV, YBV, s, KV, GUB_BV;
F"IANl: END "Program"



