
MPL

, MAWMAT I CAL PROGRAMM I NG IANGUAGE

Spbcification Manual for Committee Review

Prepared By: - -. .
Stanley Eisenstat

Thomas Magnant i

Steve Maier

With Foreword By George B. Dantzig

Mic.hael McGrat h

Vincent Nicholson

Christiane Riedl
Y-

5

STAN-CS-70-187--
NOVEMBER 1970

COMPUTER SCIENCE DEPARTMENT
School of Humanities.and Sciences

’STANFORD UN IVERS ITY

MPL

MATHEMAT I CAL PROGRAMM I NG LANGUAGE

Spec i f ica t ion Manual for Commit tee Rev iew

Prepared By:

S t a n l e y E i s e n s t a t M i c h a e l McGrath

Thomas Magnant 1

S teve Ma ier

V incent N icholson

C h r i s t i a n e Rledl

With Foreword By George B. Dantzig

Computer Science Department
S t a n f o r d U n i v e r s i t y
S t a n f o r d , C a l i f o r n i a

Research and reproduct ion o f th is repor t was suppor ted by
t h e N a t i o n a l S c i e n c e F o u n d a t i o n , G r a n t G J 320.

R e p r o d u c t i o n i n w h o l e o r i n p a r t i s p e r m i t t e d f o r a n y p u r p o s e
of the United States Government . This document has been approved
f o r p u b l i c r e l e a s e a n d s a l e ; i t s d i s t r i b u t i o n i s u n l i m i t e d .

1
I

,

CONTENTS

FOREWORD ‘. 1

ABSTRACT . 1

ACKNOWLEDGEMENTS 2

THE NEED FOR MPL 8 3

GENERAL FEATURES OF MPL 5

OVERALL STATUS . 8

DETAILED SPECIFICATION REVIEW 9

RESEARCH PROGRAM ‘. 12

MPL AS A COMMUNICATION AND PROGRAMMING LANGUAGE . . 12

IMPLEMENTATION CONSIDERATIONS 14

ATTACHMENTS

‘MPL SPECIFICATIONS

e TWO EXAMPLES OF MATHEMATICAL PROGRAMMING ALGORITHMS

FOREWORD

A b s t r a c t

-.

M a t h e m a t i c a l P r o g r a m m i n g L a n g u a g e (MPL) is intended as a

h i g h l y r e a d a b l e , u s e r o r i e n t e d , programming too l for use in the

w r i t i n g a n d t e s t i n g o f m a t h e m a t i c a l a l g o r i t h m s , i n p a r t i c u l a r

e x p e r i m e n t a l a l g o r i t h m s f o r s o l v i n g l a r g e - s c a l e l i n e a r p r o g r a m s .

I t c o m b i n e s t h e s i m p l i c i t y o f s t a n d a r d m a t h e m a t i c a l n o t a t i o n

w i t h t h e p o w e r o f c o m p l e x d a t a s t r u c t u r e s . Variables may b e

i m p l i c i t l y i n t r o d u c e d i n t o a p r o g r a m b y t h e i r u s e i n t h e s t a t e -
-=.

m e n t i n w h i c h t h e y f i r s t a p p e a r . No formal clef in ing s ta tement

is necessary . S t a t e m e n t s o f t h e ‘*let’* a n d “ w h e r e ” t y p e a r e p a r t

o f t h e l a n g u a g e . I n c l u d e d w i t h i n t h e a l l o w a b l e d a t a s t r u c t u r e s

of MPL are mat r ices , p a r t i t i o n e d m a t r i c e s , a n d m u l t i d i m e n s i o n a l

a r r a y s . O r d e r e d sets are inc luded as vectors w i th the i r con-

s t r u c t s c l o s e l y p a r a l l e l i n g t h o s e f o u n d i n s e t t h e o r y . Al location

o f s t o r a g e i s d y n a m i c , t h e r e b y e l i m i n a t i n g t h e n e e d f o r a d a t a

manipulating s u b s e t o f t h e l a n g u a g e , a s i s c h a r a c t e r i s t i c o f

m o s t h i g h l e v e l s c i e n t i f i c p r o g r a m m i n g l a n g u a g e s .

Th is repor t summar izes the progress tha t has been made to

d a t e i n d e v e l o p i n g MPL. I t c o n t a i n s a specification m a n u a l ,

e x a m p l e s o f t h e a p p l i c a t i o n o f t h e l a n g u a g e , a n d t h e f u t u r e

d i r e c t i o n s a n d g o a l s o f t h e p r o j e c t .

A version of MPL, cal led MPLI70, has b e e n i m p l e m e n t e d u s i n g

PL/l a s a t r a n s l a t o r . T h i s w i l l b e r e p o r t e d s e p a r a t e l y . U n t i l

f u l l y i m p l e m e n t e d , M P L i s e x p e c t e d t o s e r v e p r i m a r i l y a s a h i g h l y

readable communicat ion language for mathemat ica l a lgor i thms.

- 1 -

Acknowl ednement,s

Professor Dav id Gr ies , b e f o r e h e t o o k a n e w p o s i t i o n ,

l a i d o u t a s u b s t a n t i a l p a r t o f t h e g e n e r a l f r a m e w o r k o f t h e

l a n g u a g e a n d h e l p e d g u i d e i t s d e t a i l e d s p e c i f i c a t i o n . Miss

C h r i s t i a n e Riedl, h i s a s s i s t a n t a n d a l s o m a t h e m a t i c i a n a t

_ _ SLAC t o o k o n a n a c t i v e r o l e a f t e r G r i e s l e f t f o r C o r n e l l .

I m p o r t a n t suggestlons have been made by Dr . C . Wi tzga l l and

D r . R . B a y e r o f B o e i n g S c i e n t i f i c L a b o r a t o r i e s , M r . P a u l
--.

Dav is o f Union Carb ide , a n d m o r e recent ly Pro fessor R . F loyd

o f S t a n f o r d . Professors A lan Manne and R ichard Cattle are

c u r r e n t l y n o t l i s t e d a s p r i n c i p a l i n v e s t i g a t o r s (a s e a r l i e r)

because the coming phase wi l l be concent ra t ing on deve lop ing

a n e f f i c i e n t c o m p i l e r . The work group S . E isens ta t , T .

M a g n a n t i , S, M a i e r , M. McGrath, V, N i c h o l s o n , g r a d u a t e s t u d e n t s

in Operat ions Research and Computer Science are expected to

c o n t i n u e t o c o n t r i b u t e t o t h e d e v e l o p m e n t .
a

- 2 -

THE NEED FOR MPL

The purpose of MPL (Mathematical Programming Language)

i s t o p r o v i d e a l a n g u a g e f o r w r i t i n g m a t h e m a t i c a l

a l g o r i t h m s , expecially mathemat ica l p rogramming a lgor i thms,

t h a t w i l l b e e a s i e r t o w r i t e , t o r e a d , a n d t o m o d i f y t h a n

t h o s e w r i t t e n i n c u r r e n t l y a v a i l a b l e l a n g u a g e s (e . g .

FORTRAN, ALGOL, PL/l, APL).

The need for a h igh ly readab le mathemat ica l ly based

computer language has been apparent for some t ime.

G e n e r a l l y s p e a k i n g , s t a n d a r d m a t h e m a t i c a l n o t a t i o n i n a

s u i t a b l e a l g o r i t h m i c s t r u c t u r e a p p e a r s b e s t f o r t h i s

purpose. The reason is tha t most researchers a re fami l i e r

w i t h t h e “language” of mathemat ics hav ing spent years go ing

to school and tak ing many courses on th is sub ject . F o r t h e

m a t h e m a t i c a l p r o g r a m m i n g a p p l i c a t i o n , t h e a v a i l a b i l i t y o f

s u c h a t o o l i s d e e m e d e s s e n t i a l .

Mathematical programming codes tend to be complex.

(Some commercial codes have over a hundred thousand

. i n s t r u c t i o n s .) They are deve loped by persons formal ly

t r a i n e d i n m a t h e m a t i c s u s i n g , f o r t h e m o s t p a r t , s t a n d a r d

m a t r i x a n d s e t n o t a t i o n s . Recent ly , research has been

d i r e c t e d t o w a r d s t r u c t u r e d l a r g e - s c a l e s y s t e m s . These

s y s t e m s h a v e g r e a t p r a c t i c a l p o t e n t i a l e s p e c i a l l y f o r

p l a n n i n g t h e g r o w t h o f d e v e l o p i n g n a t i o n s , t h e n a t i o n a l

e c o n o m y , o r i n d u s t r y .

- 3 -

To date many methods have been proposed for solving

l a r g e - s c a l e s y s t e m s , b u t f e w h a v e b e e n e x p e r i m e n t a l l y t e s t e d

and compared because o f the h igh cost and the long t ime i t

takes to program them, a n d b e c a u s e i t i s d i f f i c u l t t o d e b u g

a n d t o m o d i f y t h e m q u i c k l y a f t e r t h e y a r e w r i t t e n . I t i s

b e l i e v e d t h a t h i g h l y r e a d a b l e p r o g r a m s w o u l d g r e a t l y

f a c i l i t a t e e x p e r i m e n t a t i o n w i t h t h e s e p r o p o s e d m e t h o d s a n d

would speed up the t ime when they can be used for f ind ing

o p t i m a l g r o w t h p a t t e r n s o f d e v e l o p i n g n a t i o n s a n d

i n d u s t r i e s . Moreover, e x p e r i m e n t a t i o n i s a v a l u a b l e w a y t o

d e v e l o p o n e s I n t u i t i o n a n d t e s t c o n j e c t u r e s p r i o r t o
--.

d e v e l o p i n g t h e o r e t i c a l p r o o f s .

- 4 -

GENERAL FEATURES OF MPL

Research on MPL to date has been directed towards

d e v e l o p i n g a h i g h l y r e a d a b l e l a n g u a g e a d h e r i n g a s c l o s e l y a s

p o s s i b l e t o s t a n d a r d m a t h e m a t i c a l n o t a t i o n . Considerab le

a t t e n t i o n h a s b e e n g i v e n t o k e e p i n g t h e d e f i n i t i o n s t r u c t u r e

of MPL as genera l as poss ib le .

M a t r i x n o t a t i o n i s r e q u i r e d f o r t h e m a t h e m a t i c a l

programming appl ica t ions and th is has been g iven spec ia l

emphasis--4n M P L i n c l u d i n g p a r t i t i o n e d m a t r i c e s a n d m a t r i c e s

w i t h s p e c i a l s t r u c t u r e .

S e t n o t a t i o n i s u n i v e r s a l l y u s e d i n m a t h e m a t i c a l

p r o o f s . However in s ta tements o f a lgor i thms, as found in

t h e o r e t i c a l p a p e r s , one f inds what appears to be se t

n o t a t i o n , b u t w h i c h t u r n s o u t t o b e , o n c l o s e r e x a m i n a t i o n ,

a n o r d e r e d s e t c o n c e p t i . e . there is an assumed under ly ing

o r d e r i n g o f t h e e l e m e n t s o f a s e t . A c o n v e n i e n t s e t - l i k e

n o t a t i o n i s p a r t o f M P L . T y p i c a l l y i t i s u s e d w i t h t h e

s u c h - t h a t c o n s t r u c t w h i c h a l l o w s o n e t o r e s t r i c t o r e x t e n d

t h e d e f i n i t i o n o f a s e t t h r o u g h l o g i c a l e x p r e s s i o n s .

O t h e r i m p o r t a n t f e a t u r e s o f m a t h e m a t i c a l n o t a t i o n a r e

the “ le t” and “where” concepts . As commonly used, they

s e r v e a s e i t h e r a s y m b o l s u b s t i t u t e r (m a c r o) o r a s a s h o r t

subrout ine whose parameters a re eva lua ted and the resu l ts

’s u b s t i t u t e d f o r t h e s y m b o l . LET and WHERE constructs are

a l s o p a r t o f MPL.-

- 5 *

G e n e r a l l y s p e a k i n g , the ltterature o f m a t h e m a t i c s h a s

been devoted to proofs o f theorems. Algor i thms as such,

when they do appear, a r e o f t e n p a r t o f a constuctive p r o o f

and have an ad-hoc . organ iza t iona l s t ruc ture . MPL has

adopted ins tead the formal b lock stucture o f A L G O L w i t h

m i n o r v a r i a t l o n s . A l t e r n a t i v e s a r e p r o v i d e d f o r t h o s e w h o

prefer not to see the words BEGIN and END used as

-punctuat ion marks for b locks throughout a program. The user

c a n o p t i o n a l l y u s e l e s s o b t r u s i v e s p e c i a l b r a c k e t s y m b o l s t o

c o n v e n i e n t l y g r o u p s e v e r a l s t a t e m e n t s f o r m i n g a b l o c k o r t o

group statements which fol low and are subject to IF a n d F O R

c l a u s e s . It is a l s o p o s s i b l e i n M P L t o c o n v e n i e n t l y

ident i fy by labe ls p a r e n t h e s e s p a i r s , c o m p l e x s t a t e m e n t s a n d

a l g e b r a i c e x p r e s s i o n s a n d t h e r e b y g r e a t l y i n c r e a s e

readabi 1 i ty.

I n m a t h e m a t i c s i t i s o f t e n d e s i r a b l e t o c h a n g e t h e

meaning of s y m b o l s (e .g . var iab le names) . In computer

- l a n g u a g e s a f o r m a l s t r u c t u r e f o r * * d e c l a r i n g ” (d e f i n i n g)

s y m b o l s i s u s e d a n d a l s o f o r s t a t i n g t h e “ s c o p e ” (t h e s e t o f

i n s t r u c t i o n s) w h e r e t h e s e d e f i n i t i o n s a r e t o b e a p p l i e d .

Fdr example, In ALGOL names of var iab les def ined withln a

block cannot be used outside the block without r e d e f i n l t t o n .

In MPL, def in i t ion o f a symbol can be made anywhere ins ide

t h e b l o c k u p t o i t s f i r s t a p p e a r a n c e i n a s t a t e m e n t ;

moreover, i t c a n a l s o b e i m p l i c i t l y d e f i n e d b y t h e s t a t e m e n t s

i t s e l f . I m p l i c i t definltfon i s a n i m p o r t a n t f e a t u r e o f M P L .

- 6 -

Y
P r o v i s i o n I s m a d e f o r c o n v e n i e n t l y specifing the scope o f a K

E
v a r i a b l e i f i t e x t e n d s o u t s i d e t h e b l o c k . F i n a l l y , i t i s

p o s s i b l e t o r e l e a s e t h e s t o r a g e s p a c e a s s i g n e d f o r t h e

values of a symbol when no longer needed.

I n d e f i n i n g a l a n g u a g e i t i s n a t u r a l t o w o r r y a b o u t

w h e t h e r o r n o t i t i s p o s s i b l e t o r e a s o n a b l y i m p l e m e n t i t .

For example, t h e p r e s e n t f o r m o f M P L u s e s l i n e a r c h a r a c t e r

s t r i n g s f o r e x p o n e n t s , superscr ip ts or summat ions in p lace

o f t w o d i m e n s i o n a l n o t a t i o n l i k e :

m

1
Ai jBjk

j=l

Thus, ai i s w r i t t e n a(i). However, one of the m e m b e r s o f

o u r t a s k f o r c e g r o u p (V. N i c h o l s o n) h a s r e c e n t l y c o m p l e t e d

a Ph .D . d i s s e r t a t i o n o n t h i s s u b j e c t a n d w e p l a n t o

i n c o r p o r a t e f e a t u r e s o f h i s a l r e a d y i m p l e m e n t e d t w o

dimensiona l nota t ion in to MPL.

E x c e p t f o r s p e c i a l f u n c t i o n s l i k e sin(X),

m a t h e m a t i c i a n s a v o i d t h e u s e o f m u l t i p l e c h a r a c t e r v a r i a b l e

names. T h e r e a s o n f o r t h i s h i s t o r i c a l l y a p p e a r s t o b e

t w o - f o l d : F i r s t , i t i s easier t o v i s u a l i z e a l g e b r a i c

m a n i p u l a t i o n o f symbols w h e n t h e y a p p e a r a s s i n g l e

c h a r a c t e r s . Second, i t a v o i d s p o s s i b l e c o n f u s i o n w i t h

impliclt multiplication e . g . s i n (x) m e a n i n g sI ia n- (x1,

H o w e v e r , b y r e q u i r i n g in M P L t h e e x p l i c i t u s e o f t h e

m u l t i p l i c a t i o n s y m b o l , m u l t i p l e c h a r a c t e r n a m e s a r e a l l o w e ds

- 7 -

as in most computer languages.

Overal 1 s ta tus :

A d r a f t o f t h e M P L s p e c i f i c a t i o n s i n Backus N a u r F o r m

has recent 1 y been prepared under the general guidance of

George B . Dantz ig by our work group wi th Miss R ied l

s e r v i n g a s g e n e r a l c o o r d i n a t o r . T h i s d r a f t i s n o w b e i n g

read ied for genera l rev iew by a commit tee probab ly

c o n s i s t i n g o f R u d o l f B a y e r , P a u l D a v i s , D a v i d Gries, R o b e r t

F loyd, Donald Knuth , a n d C h r i s t o p h W i t z g a l l .

A p r e l i m i n a r y t e s t v e r s i o n o f M P L , r e f e r r e d t o a s

“MPL-McGra th, ” was a t the suggest ion o f Pau l Dav is

i m p l e m e n t e d i n 1 9 6 9 b y M i c h a e l McGrath us ing PL/l as a

t r a n s l a t o r i n t o PL/l i n s t r u c t i o n s . T h i s v e r s i o n i n c l u d e d

t h o s e f e a t u r e s o f M P L t h a t w e r e e a s i e s t t o t r a n s l a t e i n t o

a v a i l a b l e PL/l c o n s t r u c t i o n s .
e

- 8 -

DETAILED SPECIFICATION REVIEW

T h e f i r s t g o a l o f the--project w a s t o s p e c i f y t h e

language in implementab le form. T h e l a n g u a g e o u t l i n e d i n

the pre l iminary proposa l to NSF as o f May 1968 was

systematlcally developed; the syntax was more c lose ly

a l i g n e d w i t h s t a n d a r d m a t h e m a t i c a l n o t a t i o n a n d k e p t a s

g e n e r a l a s p o s s i b l e . M a n y o f t h e e a r l i e r c o n s t r u c t s w e r e

extended and improved, for example:

- The vector construct was extended to Inc lude set

n o t a t i o n i n t h e f o r m o f o r d e r e d s e t s w i t h l o g i c a l

qua1 i f iers.

- M o r e c o m p l e x d a t a s t r u c t u r e s w e r e i n t r o d u c e d , i n c l u d i n g

mu1 t i d i m e n s i o n a l a r r a y s , par t t t ioned mat r ices a n d

r e f e r e n c e a r r a y s .

- The domain

real numbers

- I n r e s p o n s e t o u s e r r e q u e s t s , b l o c k s w e r e i n t r o d u c e d a s

a p r i m a r y m e a n s o f d e f i n i n g s c o p e o f v a r i a b l e s .

- T h e p r i n c i p l e o f d y n a m i c a l l o c a t i o n o f s t o r a g e w a s

a d o p t e d f o r a l l n o n - s c a l a r q u a n t i t i e s .

- Both dynamic and s ta t ic symbol subst i tu t ion were

i n t r o d u c e d Into t h e l a n g u a g e .

- Subscripting w a s g e n e r a l i z e d t o i n c l u d e s u b s c r i p t i n g o f a

express ions .

- 9 -

- F u n c t i o n V a r i a b l e s w h i c h a l l o w a g e n e r a l f u n c t i o n n a m e

to be rep laced by a spec i f ic name were in t roduced.

- Parameter pass ing for p rocedures was grea t ly ex tended

b y d e v e l o p i n g s e v e r a l d i f f e r e n t t y p e s o f p r o c e d u r e s . I n

p a r t i c u l a r , a funct ion procedure was in t roduced which

a c t s e x a c t l y a s a f u n c t i o n i n m a t h e m a t i c s , (i . e . w i t h o u t

a n y s i d e e f f e c t s) ,

- T h i s p h a s e o f t h e p r o j e c t i s n e a r i n g c o m p l e t i o n .

C o n c u r r e n t with. the submiss ion of th is ‘p roposa l , t h e

l a n g u a g e s p e c i f i c a t i o n w i l l b e g i v e n t o t h e r e v i e w

committee. D u r i n g t h e f a l l q u a r t e r t h e l a n g u a g e w i l l b e

used as a teaching tool to obtain f e e d b a c k f r o m p o t e n t i a l

users . B y t h e e n d o f c a l e n d a r y e a r 1 9 7 0 i t i s h o p e d t h a t

t h e s p e c i f i c a t i o n s c a n b e f r o z e n , so that implementa t ion and

use as a communicat ion language can beg in in earnest .

T h e s e c o n d goal of the project was to implement these

e s p e c i f i c a t i o n s . T h i s i n v o l v e d d e v e l o p m e n t o f a PL/l

t rans la tor and made possible evaluation of the l a n g u a g e b y

Opera t ions Research graduate s tudents and researchers f rom

bdth the academic and industrial c o m m u n i t i e s .

O r i g i n a l l y i t w a s h o p e d t h a t t h e c o m p i l e r - c o m p i l e r

system under development by David Gries could be used to

implement MPL on any installation on which his s y s t e m w a s

m a d e a v a i l a b l e . U n f o r t u n a t e l y , the compi le r -compi le r was

never completed. T h e r e f o r e , in order to produce an

- 10 -

e n v i r o n m e n t f r e e c o m p i l e r , a t r a n s l a t o r w r i t t e n i n PL/l w a s

developed. I t w a s f e l t t h a t t h i s w o u l d p r o v i d e t h e w i d e s t

p o s s i b l e c i r c u l a t i o n f o r M P L , s i n c e a n y i n s t a l l a t i o n w i t h a

PL/l c o m p i l e r c o u l d t h e n b< u s e d .

T h e c u r r e n t v e r s i o n o f t h e MPL/PLl t r a n s l a t o r

e n c o m p a s s e s many of the unique constructs avai lable within

MPL. T h e t r a n s l a t o r w a s s u c c e s s f u l l y u s e d i n a l a r g e s c a l e

s y s t e m s opt imiza t ion seminar wi th enthus iast ic s tudent

response. Much va luab le in format ion was obta ined f rom th is

exchange, a n d i t i s h o p e d t h a t t h i s p r a c t i c e c a n b e

c o n t i n u e & O f p a r t i c u l a r n o t e , is tha t many s tudents found

t h e l a n g u a g e e a s i e r t o u s e a n d l e s s t r i c k y t h a n e i t h e r

FORTRAN or ALGOL.

The MPL language was presented to the indust r ia l

community through the Stanford “Computer Forum” by M .

McGrath in 1969 and C. Riedl in 1 9 7 0 ; t o t h e a c a d e m i c

community through lectures by the proposer; and to the

p r o f e s s i o n a l c o m m u n i t y b y R . B a y e r a n d C . W i t z g a l l i n t a l k s

o n t h e i r m a t r i x c a l c u l u s w h i c h i s e x p e c t e d t o play a ro le in

t h e g e n e r a t i o n a n d m a n i p u l a t i o n of s p e c i a l m a t r i x

s t r u c t u r e s . Some work was also done on using MPL as a tool

in deve lop ing new a lgor i thms a n d in presenting s o m e of the

e x i s t i n g a l g o r i t h m s i n t h e f i e l d o f O p e r a t i o n s R e s e a r c h . I t

i s h o p e d t h a t t h i s w i l l b e c o m e o n e a r e a o f f u t u r e

concentrat ion in the further d e v e l o p m e n t of the MPL

language. T h i s h a s p a r t i c u l a r i m p o r t a n c e i n g a i n i n g w i d e r

a c c e p t a n c e f o r ttie l a n g u a g e .

- 11 -

RESEARCH PROGRAM

MPL as a Communication and_Programming Language

To date the pr imary ob jec t ive o f the MPL pro jec t h a s

b e e n t h e f o r m a l l a n g u a g e d e f i n i t i o n . T h e r e s u l t o f t h i s

e f f o r t i s t h e L a n g u a g e S p e c i f i c a t i o n M a n u a l w r i t t e n i n

Backus Naur Form which should funct ion as a bas is for an

implementa t ion . S i n c e t h i s m a n u a l i s i n t e n d e d f o r c o m p u t e r

s p e c i a l i s t s , i t i s n o t v e r y s u i t a b l e f o r a n a p p l i e d--.

mathemat ic ian not t ra ined in computer sc ience . A c c o r d i n g l y ,

a next s tep for the pro jec t (and i ts p r o p o s e d c o n t i n u a t i o n)

is the development of an MPL user’s manual . This document

w o u l d s e r v e i n t w o c a p a c i t i e s :

(1) b y g i v i n g a n i n t r o d u c t i o n t o M P L f o r a w i d e s p e c t r u m

o f p o s s i b l e u s e r s , a n d

(ii) b y e x p a n d i n g a n d i n t e r p r e t i n g t h e m o r e i n v o l v e d

fea tures o f t h e l anguage found in the MPL

s p e c i f i c a t i o n m a n u a l ,

To accommodate both o f these ob jec t ives , the user ’s

manual would endeavor to present MPL in a s impl i f ied form

and at a l eve l in which most o f i ts const ructs a re

e x p l a i n e d . In this manner , t h e r e a d e r a t t h e b e g i n n i n g o r

i n t e r m e d i a t e l e v e l , knowing on ly a subset o f the language,

would never the less be ab le to wr i te MPL programs compat ib le 1

w i t h t h e f u l l l a n g u a g e .d

- 12 -

W i t h a u s e r ’ s m a n u a l a v a i l a b l e , t h e p r o j e c t w o u l d

p r o c e e d i n t o a t e s t i n g a n d e v a l u a t i o n p h a s e . An impor tant

c o n t r i b u t i o n t o t h i s p h a s e w o u l d - b e f e e d b a c k f r o m p o t e n t i a l

users . F r o m t h i s sfeedback w e w o u l d b e a b l e t o a s c e r t a i n

w h a t m o d i f i c a t i o n s , i f a n y , a r e r e q u i r e d t o g i v e u s t h e

“best” l a n g u a g e f o r t h e u s e r . I t i s p r o b a b l e t h a t M P L w i l l

b e e q u a l l y u s e f u l f o r s t a t i s t i c a l a n d n u m e r i c a l a n a l y s i s

gppl i c a t i o n s , p a r t i c u l a r l y i n c o n j u n c t i o n w i t h s p e c i a l

s u b - r o u t i n e s u s e f u l i n t h e s e f i e l d s . Though we would

e n c o u r a g e i n v e s t i g a t i o n o f MPL’s u s e i n o t h e r a r e a s , w e

p r o p o s e t o c o n c e n t r a t e p r i m a r i l y u p o n a p p l i c a t i o n s t o

Mathematical Programming.

Test ing MPL as a language for Mathematical Programming

would proceed a long two f ronts . F i r s t , s tandard a lgor i thms,

such as Genera l i zed Upper Bounding (see a t tached) , would be

programmed using MPL. T h i s w o u l d a l l o w u s n o t o n l y t o

eva luate MPL as a programming too l but a lso to assemble a

l i b r a r y o f a l g o r i t h m s f o r u s e i n f u r t h e r r e s e a r c h . Second,

MPL would be used to wr i te and tes t new a lgor i thms,

c&sequent 1 y, e v a l u a t i n g i t s p o t e n t i a l a s a r e s e a r c h t o o l .

W e b e l i e v e t h a t t h e l a n g u a g e c o u l d h a v e a g r e a t i m p a c t i n

t h i s a r e a - espec ia l ly in academic research where the t ime

and expense in programming for large scale systems has been

p r o h i b i t i v e i n o t h e r l a n g u a g e s .

A s a u s e r ’ s t o o l , MPL h a s b e e n d e v e l o p e d t o p a r a l l e l

much o f s tandard mathemat ica l nota t ion . Thus most

- 13 -

al,gorithms w r i t t e n i n m a t h e m a t i c s c o u l d a l m o s t a s e a s i l y b e

writ ten and read i n M P L . This aspect of the language m a k e s

i t a t t rac t ive as a s tandard . communicat ion language for

a l g o r i t h m s . A s o n e fu r ther p h a s e of th is proposa l , we hope

t o e x p l o r e t h i s i n g r e a t e r d e p t h . I n p a r t i c u l a r , w e w o u l d

i n v e s t i g a t e w h e t h e r i t w o u l d b e p l a u s i b l e t o u s e M P L a s a

s t a n d a r d vehic le for present ing a lgor i thms in journa ls

espec ia l ly for the newly proposed Mathemat ica l Programming

J o u r n a l . N o t o n l y w o u l d t h i s h a v e t h e b e n e f i c i a l e f f e c t o f

s t a n d a r d i z a t i o n , b u t i t w o u l d a l s o m e a n t h a t p u b l i s h e d

a lgor i thms could be eas i ly tes ted or implemented v ia MPL,

S o m e o f t h e o b j e c t i v e s o u t l i n e d a b o v e c a n b e p a r t i a l l y

m e t w i t h t h e c u r r e n t v e r s i o n o f t h e M P L t r a n s l a t o r . i n

o r d e r t o f u l l y t e s t t h e l a n g u a g e a n d i m p l e m e n t i t a s a

u s e r ’ s t o o l , h o w e v e r , t h e tr,anslator w i l l h a v e t o b e

e x p a n d e d o r a c o m p i l e r w r i t t e n . A n i n v e s t i g a t i o n o f t h e s e

p o s s i b i l i t i e s c o n s t i t u t e s t h e n e x t m a j o r t a s k o f t h e

c o n t i n u i n g p r o j e c t .

Implementa t ion Considera t ions

A complete, “machine-independent” implementat ion seems

essent ia l in ga in ing broad acceptance o f MPL as a

mathematical programming language. Such an implementat ion

c o u l d t a k e t w o d i r e c t i o n s :

(1) E x t e n d i n g t h e c u r r e n t t r a n s l a t o r t o e n c o m p a s s t h o s e

- 14 -

M P L c o n c e p t s n o t present ly handled (e .g . subscr ip t ing

a s a n o p e r a t o r , p a r t i t i o n e d d a t a s t r u c t u r e s ,

concatenat ion , a n d s e t g e n e r a t o r s) .

(ii) W r i t i n g a f u l l - s c a l e c o m p i l e r i n t o s o m e i d e a l m a c h i n e

l a n g u a g e (e . g . t h r e e a d d r e s s c o d e o r r e v e r s e P o l i s h) .

The translator w o u l d be less work but t h e m o r e

ef f ic ient code produced b y a compi le r would make the

s o l u t i o n o f l a r g e s c a l e p r o b l e m s m o r e p r a c t i c a l . However,

of -equal , i f n o t g r e a t e r , impor tance is a “How to Implement**

manua 1, a compendium of suggestions on implementing some of--.

the more power fu l MPL const ructs as we l l as techn iques for

h a n d l i n g l a r g e s c a l e d a t a s t r u c t u r e s a n d c o d e s i n v o l v i n g

many thousands o f ins t ruct ions on a computer .

F o r t h e m o s t p a r t , the techniques would be machine

i n d e p e n d e n t , i . e . , t h e m e t h o d o f i m p l e m e n t a t i o n o u t l i n e d i n

the manual should b e of h e l p in implement ing any la rge-sca le

mathematical programming system.

e Part of the manual would be concerned with the analysis

of an MPL program. Items included would be p a r s i n g

techniques , symbol tab le organ iza t ion , a precedence grammar

i f p o s s i b l e , s u g g e s t i o n s f o r t h e i n t e r n a l r e p r e s e n t a t i o n o f

t h e p r o g r a m a f t e r a n a l y s i s , and an outl ine of c o d e e m i t t e d

f o r a d v a n c e d f e a t u r e s o f M P L (e . g . f u n c t i o n v a r i a b l e s ,

i n d e x i n g s e t s , dynamic LET statements) .

Runtime o r g a n i z a t i o n w h i c h i s e s s e n t i a l l y M P L

independent would require a study of data structures

- 15 -

n e c e s s a r y f o r l a r g e s c a l e s y s t e m s , d o p e v e c t o r s , a l g o r i t h m s

f o r h a n d l i n g t h e n o n - f i r s t - i n - f i r s t - o u t d a t a s t r u c t u r e s o f

MPL. -.

I f a n e a s i l y modifiabl e t r a n s l a t o r w e r e w r i t t e n ,

e x p e r i m e n t s c o u l d b e m a d e w i t h d i f f e r e n t runtime d a t a

s t r u c t u r e s , data handl ing a lgor i thms, and computat iona l

a l g o r i t h m s (s u c h a s m a t r i x e x p r e s s i o n e v a l u a t i o n) .

d - 16 -

LANGUAGE SPIKIFICATION

TAR&E OF COWTENTS

Section 0. Notation ..

Section 7, A Basic Concepts
1. The character set of MPL
2. Basic elements of the language

1. Identifiers and reserved words
2. Digit strings
3. a Delimiters
4. Character strings
5. Blanks
6. Comments

3. . 0 Structure of a program
1. Insertions and insert statements
2, Programs-v. .

Section 2. Attributes and Values
1. The type attribute

1.
2.

Simple types (ARITHMETIC, LOGICAL, CHARACTER)
Reference types

3. Procedure types
2. The dinensionality attribute

- 3 0 The domain attribute
4. The shape attribute

Section 3. Expressions
1. Operands

1. Constants
1. Arithmetic constants
2. Logical constants
3. Character constants

2. Variables
- a Vector generators3

1. N tuplets
2. Index ranges
3 Set generators

4. PLocedure calls
5. Relations
6. Synonyms

2. Operators
1. Arithmetic operators

1. Wary operators ;(+ and -)
2. Rinary operators

1. Addition (+) and subtraction (-)
2.
3.

Scalar multiplication ($1 and division .(I)
Exponeniation (**)

4. Inner product (*)
2. Concatenation

Oct. 70, p, 1

3.

Section Q.
1.
2.

3.
4.

3- l

6.
7.
0.
9.

Section 5.
1.

2.
e

3 .

3. Logical operators
1. Negation (7)
2. Binary logical operators

1. AND and OR
2. Logical inner product (CWLT)

4. Subscripting
Expressions . .

Statements .
Blocks and the scope of identifiers
Variable control statements
1. Define stateaents
2. Defining assignment statements
3. Release statement
Assignment statements
Seguence control statements
1. Labels and GOT0 statements
2. RETURN statements
Procedure statements
Conditional statements
Iterati-on statements
LET statement
INPUT / OUTPUT statements

Procedures
Procedure definitions
1. EXTERNAL procedures
2. IBLIW! procedures
3. The procedure head
4. The procedure body
S. The procedure attributes

1 . FUNCTION procedures
2. TNDEPERDENT procedures
3. One-line procedures

6. Examples of procedure heads
Procedure calls
1. YALUE parameters
2. NANE parameters
3. Serial actual parameters
4. The return parameters
Library procedures

Oct. 70, p. 2

SECTION 0. NOTATION

l[n the following language specification, we use a modification of
BACKUS-NAUR FORN (BWP) to describe the syntactic structure of WL.

A syntactic rule or production consists of a LEFT PART (a syntactic
class name), followed by a ::= (read wis defined as"), followed by a
right part (a string of symbols-which define the left part). Syntactic
class names are enclosed in angular brackets <,>; MPL symbols stand by
themselves.

Rates:

ff) If a syntactic class is defined to be one of several strings of
symbols, the alternates are separated by a 1 (read n~r'q)o

Example: <character> ::= <letter> j <digit> j <special character> reads
A character is defined to be a letter, a digit, or a special
character.

VI:) If part of the right side of a production may be omitted, it is
enclesefi in square brackets {denoted by 8,s in this document).

Example: <number> z:= <number base> $<exponent>b is equivalent to
<number> ::= <number base> 1 <number base><exponent>

(ITT) A list of one or more symbols all belonging to the same
syntactic class K is denoted by <CD LIST>.

Example: taigit string> t:= <<t\igit> LIST> stands for
<digit string> ::= <digit> j <digit string>CJigit>

ff the symbols in the list must be separated by a delimiter,
then the delimiter directly precedes the word LIST.

Example: <variable LIST> ::= <<variable>, LIST> is equivalent to
<variable LIST> ::= <variable> j <variable LIST>, <variable>

WV The syntactic class <empty> represents the null string of
symbols.

(V The right side of a production may be partly described by a. comment enclosed in guotes. The comment gives semantic
restrictions on the right part.

Example: <VA expression> ::= <Vector valued" arithmetic expression>

WI Certain delimiters and reserved words may be substituted for
other delimiters or reserved words. If y may be substituted
for x, this is indicated by x <- y at the first occurrence of
x in the language definition. If x <-- y and y C-r x, this is
indicated by x C-r> y.

Example: := <-- = means that = is an alternate assignment symbol
IN <--> means that IN and are interchangeable

Oct. 70, p. 3

StCTTOR 1. BASIC CONCEPTS

1.1. The Character Set of HPL

The set of characters available in NPL vi11 depend on the particular
irplementation. As this language specification is independent of any
iaplenentation, we here define a basic character set vhich will be used
throughout this manual and suggest postiible extensions to it.

<character> ::= <letter> 1 <digit> 1 <special character>

<special character> ::= +I-1*)/3**l<bar>Ii~<l<=f~l,lml>r)>(:=((1)(001~j
I,l:S:Ifl)<C(>>l l,l<blankWE#l

iopening rector &acket)(
<closing vector bracket>

dank> z:= "one blank space"

<opening vector bracket> ::= <I

<closing vector bracket> ::= I>

Rates:
(1) An implementation may allow the use of any other symbols (e.g.,

the Russian or Greek alphabet) in addition to the letters
defined above.

WI L) (-> 0 : 00 <--> 12WINITY

1.2. Basic Elements of The Languagee

1.2.1. Identifiers and reserve words

<identifier> :z* <letter> $<<idchar> LIST>$ 1 <identifier>*

<idchar> ::= <letter> f <digit> 1 -

Identifiers bare no Inherent meaning, but are used to represent ,
simple variables (see 3.1.2)# expressions (see 4.8), labels (see 4.4.1),
and procedures (see S.1). The scope of identifiers is controlled by the
block structure of the 'program (see 4.1). .

Identifiers moast start with a letter,
Gtters, digits,

followed bp any combination of
and underscores: they ray end in one or more single ,

piimes (apostrophes), Identifiers Bay not contain blanks. There is no
restriction on the length of ,identifiers.

Oct. 70, p. 4

The following reserved words have special meaning and aay not
be used as identifiers:

AND
AHSWER
ARITHHETYC
ARRAY
BEGIN
BLOCK
BY
CRARACTl!R
COLUBN
DEPENDENT
DEFINE
DIAGONAI,
DO

._. DOBAIN
DIBENSIORAL

ELSE LET
EHPTP LOGICAL
END LOUER
EXECUTE HATRIX
EXTERNAL .. BULT
FALSE #ABE
FOR NOT
FUNCTION OR
GIVEN OTRERQISE
GO TO PARTITION
IF PROCEDURE
IN PROGRAB
INDEPENDENT RECTANGULAR
INLINE RELEASE
IS RESULT

RETURN
ROW
SCALAR
SPARSE
THEN
TRIANGULAR
TRUE
UNDEFINED
UPPER
VALUE
VECTOR
DHERE
WITH

Examples: CSA, BASTCJARIABLES, X, X’, X’@

1.2.2. Digit strings

<digit string> ::= <<digit> LIST>

Digit strings are used to form arithmetic constants (see 3.1.1.1)
and (enclosed in patentheses) to represent labels (see 4.4.J).

1.2.3. Deliaiters

The following special characters are used as operators,
brackets, and separators:

<de1 imiter> ::= +I-l*l/l**l<bar>l#J<~<311(.~=)>=1>):=11))1~)
,l;l:)wl<Cl>>l<blank>~~~~l
<opening vector bracket>l<closing vector bracket>

1.2.4. Character strings

<character string> ::= <<character> LIST>

. Character 'strings are used in character constants (see 3.1.1.3).

1.2.5. Blanks

A blank space is required after an identifier or reseried word which
is foltoued by an identifier, reserved word, or number. Blanks are not
permitted within identifers. Blank spaces are ignored, except within
character strings.

1.2.6. Comments
Any sequence of characters (excluding a quote fa)) enclosed in

quotes (*,") is treated as a blank space except within character
strings. Such comments ray be used to insert remarks into the program.

Oct. 70, p. 5

1.3. The Structure Of A Program

1.3.1. Tnsertions and insert. statements

A program submitted by a user consists of program text modifiw-7 fry .
insertions which yield the actual MPL program. The insertions and
insert statements (which specify where insertions are to be made) are
editing features and are therefore-; strictly speaking, not par+ of the
language.

An insertion

%INSFRYON <identifier>
q*arhitrary text!
!6PND <%ameg~ identifier>

will be ;leleted from the program text and the "arhit.rary text" witt
replace the insert statement.

'%INSRRT Cident if isr>

wherever it app6ars in the program text. After each replacement, the
resulting program text is searched for fur+hsr inwrtions.

Example: PROGRAM SHORTTE;
WNSERTT~N ALPHA
ANSWER FESULT; GO TO
SEND ALPHA
DEFTNE RESUl,,T := 0;

LfJOP: IF RESULT>20 THEN REGTN
$INSERT ALPHA FXIT END;
RESULT := RESULWl;
$INSSFRT ALPHA LOOP;

EXIT: END

will be transformed into

PROGRAY SHORTIJ?;
DEFINE RESULT := 0;

LOOP: IF Rl?SUL?!>20 THEN REGIN
ANSWER RESULT; GO TO EXIT END;
RESULT := RESULTM;
ANSWER RESULT; GO TO LOOP;

9XIT: END

1.3.2, Programs

<program> ::= PROGRAPI fW*program" label>;d
<<program unit>; LfST>
END $<*%ame" labelM

<program unit> ::'= <statement> 1 <procedure definition>

Oct. 70, p, 6

A program consists of a sequence of statements and procedure
definitions. A program acts as a block (see U.1) and the program label
may be used in a defining statement to delimit scope (see 4.2.1). A
transfer of control to the program label causes reexecution of the
program.

Oct. 70, p. 7

SFCTION 2. ATTRIBUTES and VALUES

The quantities on which the program operates are each characterized
by a set of attributes and a (set of) value(&). A scalar (SCALAR)
quantity represents a sinyle value; a non-scalar (VECTOR, MATRIX, ARRAY)
quantity represents a set of values, a single value corresponding +o
each element of an underlying ordered doraain, The range of possible
values is specified by the type attribute, the underlying domain by the
domain attribute,

Attributes are associated with variable names in defining statements
(see 4.2.1). Values are assigned to variables (see 3.1.2) in defining
statements and assignment statements (see 4.3). The attributes and
value(s) associated with expressions {see 3) are determine? by the rules
for operators (see 3.2).

<at.t,ri.bute> : := <type attribute> 1 (dimensionality attribute> 1
._ <domain attribute) 1 <shape attribute>

<t-ype attribute> ::= ARITHMETIC 1 LOGICAL 1 CHARACTER 1
<reference variable attribute> 1
<procedure variable attribute>--.

<racerence variable attribute> :f= (<<attribute> LIST) 1
*<type attribute>B (PARTTTION $<(<,LIST>) BY LIST>%)

(procedure variable attribute) ::= (<procedure heali>)

(dimensionality attribute> ::= SCALAR 1 VECTOR 1 <matrix attribute> 1 _
%digit string>-DIMENSIONAL$ ARRAY

<matrix attribute> : := MATRIX i ROW VECTOR f COLUMN VECTOR

<domain attribute> ::= $WITH DOMAINS < BY LIST>

 ::= EMPTY 1 <SA expression> 1 <VA expression> J
DOrAIN (<expression>) 1 <"(VECTOR) VECTORtq expression>

<shape attribute> ::= DIAGONAL 1 RECTANGULAR 1 rlPPER TRIANGULAR 1
LOWER TRIANGULAR 1 SPARSE

2.1 The Type Attribute

- The type attribute specifies the range of possible values. The
value UNDEFINED used in initialization is of universal type.

2.1.1. Simple types (ARITHMBTIC, LOGICAL, CHARACTER)

TYPE VALUE CAN BE

ARITHMETIC numeric, +OO, -00
LOGICAL TRUF, FALSE (truth values)
CHARACTER any character provided by an implementation

Oct. 70, p. 8

2.1.2. Reference types

The reference variable attribute specifies the range of possible
values as the collection of all quantities whose attributes are
consistent with the attributes specified (or defaulted (see 4.2.1))
in the attribute list.

2.1.3. Procedure types . .

The procedure variable attribute specifies the range of possible
values as the collection of all proceduw definitions (see 5.1) with
procedure head compatible with the specified procedure head. Two
procedure heads are compatible if their formal input (return)
parameter(s) agree in number and specified attributes.

-2.2. The Diaensionality Attribute

The dimensionality attribute specifies the dimension (number of
component domains) of the associated domain for non-scalar quantities.

An ARRAY may have any number of 'dimensions. A VECTOR is a
l-DIHEWSIONAL ARRAY; a MATRIX IS A 2-DINENSXQNAL ARRAY. A ROU (COLUMN)
VECTOR is treated as a special kind of EIATRXX. For completeness, ve
define a SCALAR as a O-DIIYENSIONAL ARRAY.

The components of a REFERENCE ARRISY are themselves arrays. All
components of a reference array must have the same type and
dinensionality but they can differ in size. In order to access the
scalar elements of the components of a reference array tuo sets of
subscripts must be used [see 3.1.2.1).

A PARTITTONED IlATRIX is a two-dimensional reference array whose
components are matrices. All corponents in a row of a partitioned
matrix must have the same number of rows and all components in a column
must have the same number of columns, so that a 2 by 3 partitioned
matrix can be represented by a diagram:e

2.3. The Domain Attribute

The domain attribute specifies the associated domain for non-scalar
quantities, Domains are restricted to Cartesian products of component

Oct. 70, p. 9

domains. A component domain may he any finite (possibly empty),
strictly increasing sequence of integers. A componctnt Iomain of the
form <iI l *a* # n(> is said to be canonical. A domain is canonical if each
component domain is canonical.

The span E?WTY specifies the empty component dolaain. The span <SA
expression> specifies the cnmponent,domain <II,. ..,<SA expressi.on>lL
The span <VA expression> spwifies the component domain <VA expression>.
The span DO‘PIAIN (<expression>) specifies a sequence of component
domains, namely the component domains associated with the expression.
The span <"(VECTOR) VECTOR (I expression> specifies a sequence of
component Romains, namely the vector-valued components of the P(VECTOR)
VECTCVP expression>.

2.4. The Shape Attribute

--. The shape attribute is used to economize on the space required to
store large data structures and to produce more efficient code to hanAle
then.-

Oct. 70, p. 10

SECTWN 3. EXPRESSIONS

An expression is a rule for computing a (set of) value(s) by
executing the indicated operations on the values represented by the
operands of the expression. In this section, we shall describe the
basic operands of expressions, the allowable operations on them, and
finally the syntax and manner of evaluation of expressions.

We shall use the following abbreviations to denote special classes
of expressions:

A for arithmetic
L for logical
c for character
R for reference type
P for procedure type
S for "scalar valued"
V for "vector valued"

Thus, the symbol <SA expression> used in the preceding section
abbreviates <"scalar valued” arithmetic expression>.

-v.
3.1. operands

3.1.1. Constants

3.1.1.1. Arithmetic constants

<number> ::= <number base> $<exponent>$

<number base> ::= <digit string> 1 <digit string>. 1 &digit string> 1
<digit string>.<dkgit string>

<exponent> ::= E Wadding operator>S <digit string>

<adding operator> ::= +I-

Examples: 1970, 3.1415926536, 6.0247W23, 6.6254E-27

3.1.1*2. Logical constants

<logical value> ::f TRUE 1 FALSE

3.1.1.3. Character constants

<character constant> ::= <opening character quote>
<character string>
<closing character quote>

<opening character quote> ::= <C

<closing character quote> ::= >>

Example: <<NO0 IS THE TIRE FOR b3.L PARTIES TO CORE TO THE AID OF MAN>>

Oct. 70, p. 11

A character constant is a CHARACTER VECTOR (with canonical domain)
whose conqonent values are the characters in the string. The character
string may not contain the sequences << or >>. Blank spaces are valid
characters.

3.1.2. Variablm

<variable> z:= <simple variable> c' <subscripted variable>

<simple variable> ::= <identifier> 1 <variable synonym>

<subscripted variable> : := <variable> (<<range>, LIST>)

<range> ::= <SA expression> 1 <VA expression> 1 *

Examples: A13J, subvector (*), X [3-A),
._. SU3NAT (*,<13,4,51>),ARRAY_EL (6,F3/5,4*+X,R),

SURARRAY (*,*,*,3), REFARR (3)(+&c)
PART-MATRIX (5,6)(*,<J2,8,9,l))

Variables represent storage locations where values are stored
which may change during execution of the program. at any given tins
the value (or the ordered set of values) associated with the var-
iable is the last value(s) assigned to the variable.

Note that a variable may be a scalar, vector, matrix, or array.

3.1.3. Vector generators

<vector generator> ::= <N-*uplet> f <inflex range> 1 <set generator>

<N-tuplet> ::= <opening vector bracket>
<<expression>, LIST>
<closing vector bracket>

<inflex range> ::.= <opening vector bracket>-
<!?A expression>, $<SA expression>,%..,CSA expression>
<closing vector bracket>

<set generator> :: = <opening vector bracket>
<expression><POR phrase>
<closing vector bracket.>

3.1.3.1. ?+tllp1ats

The expressions listefi must be scalars or vectors all of the same
type* The n-tuplet is a vector (with canonical domain) of that type
whose set of values is the concatenation of the values of the scalars
in the list and the sets of values of the vectors in the list.

Exaaplss:
<lTRUE, A OR 8, -iI, X<Y(>
<~<<JOE)>,<<KId>>,<(AGE20))1)

Oct. 70, p. 12

<I1,a-b,-3.5,<1.67E-3,e,12.SI>t>'is the same as
<l(ll,a-b,~3;S1),.67E-3 ,eJ2.5j> which is tb& same as

<I l,a-b,-3.S,.67E-3,e,12,51)

3.1.3.2. Index'ranges

An index 'range is an arithmetic vector (with canonical domain).
The set of values generated bp the index range

<I VFIRST, iSECOND, ..a# VLAST 1,

is the sequence

VFTRST, VFICRST+ WVSTEP, VFfRST+2*VSTEP, .o* , VFIRSTWWV~TEP

where VSTRP = VSRCOMD-VFIRST fif VSECOAD is omitted, then VSTEP is taken
.-. to be one) and

R = sup 1 n 1 x0=0 and (VFfRST+n*VSTEP-VLZIST)*VSTEP <= 0 1.

Tf (VFIRST-VLAST) *VSTtP > 0, then the set of values generated is empty.
-v.

Examples: <171,...,75[> = <171,72,73,74,751>
<10.1.0.3,...,0.8p = <~0.1,0.3,0.5,0.7~>
<17,5,...,-21) ='<17,5,3,1,-11.3
4 3 ,...,Oi> is EMTT.

3.1.3.3. Set generators

A set generator yields a vector having as many cbnponekts as are
determined by the <FOR phrase> (see 4.7). The values of the components
are given by the value of the <SA expression> ds modified by the
successive values of the controlled variable of the <FOR phrase>. The
identifier denoting this controlled variable is local to the set
generator.

Fxarple: <I f**2 ?OR i=<l1,...,61) : i -= 4 I>
* gives <I 1,4,9,25,36 i> with domain <11,2,3,5,6(>

3.1.4. Procedure calls

A procedure call (see 52) may be used as an operand in an
eipression provided that the procedure has precisely one formal return
parameter. The attributes and value(s) are taken from the actual return
paramter.

.
3.1.5. Relations

<relation> ::= <A expressionXrelationa1 operator><& expression> 1
<C expressionX8qualitp 0peratorXC expression> t
<S expression> Sl <V expression> 1
<S erpression> ROT XN <V expression> 1'
<V expression> IS EMPTY 1 .

- <variable> IS URDEFIHED

Oct. 70, p* 13

<relational operator> ::= <equality operator> 1 < J <= 1 >= 1 >

<equality operator> ::= -= 1 =

Examples: 3,5< A+F(B+C), <<HUGO>> -= <<HUGO >>,
2 TN <!8,6,3,-3,21>, X 9s UNDEFINED,
q 10 I**.# Al> IS EMPTY

Relations are operands of logical expressions.
Their values are determined as follows:

[?) The two operands QPl,OP2 of an equality operator may
differ in kind and size.

OPl=OP2 is TRUE if OPl and OP2 have the same dimensionality and size
and every pair of corresponding components of them is equal, and
FALSE otherwise.

OP1 'T-OP2 is TRUE if and-only if OPl=OP2 is false.

Note that this implies for character tests that in the example
above, the value of <<HUGO>> -= <<HUGO >> is FALSE because of the
unequal length of the character strings.

(11) If the relational operator is not an equality operator, then
the two operands must have the same dimensionality and size. The result .

is TRfJFl if the relation holds for every pair of corresponding component-s
and FA.LSE otherwise.

(III) <S expression> TN <V expression> is TRUE if the value of the S
expression is the value of at least one of the components of thus V
expression, otherwise it is F&LSE.

Note that the result is FALSE if the V expression is EPIPTY.

(‘IV) <V expression> IS EMPTY is TRUE if the result of the V
expression is a vector wit.h no components (i.e, it has the domain
attribute EMPTY (see 2.3)) and FALSE otherwise.-

(V) <variable> IS UNDEFTNRD is TRUE if and only if not all of the
components of the variable have been assigned a value yet,

3,‘l.L Synonyms

<synonym> ::= <identifier> tJ;(<<argument>, LIST>)$

<argument> ::= <expression>

<variable synonym> ::= <synonym> "defined by a let statement to stand
for a variable"

<expression synonym> f:= <synonym> ndefined by a let statement to stand
for an expression which is not a
variable"

Oct. 70, p. 14

A synonym must be defined by a symbol suhstitutar in a LET
statement or WHERE phrase (see 4.8) before it can be used, and is not
defined outside the block containing the LET statement @ee also 4.1).

The synonym is replaced by the corresponding expression (enclosed in
parentheses). Variable synonyms," i.e., synonyms that stand for a
variable may also be used on the left side of an assignment statement
(see 4.3). fn this case they ate not enclosed in parentheses when
the substitution is made.

If the synonym depends on arguments, they will be substituted
(enclosed in parentheses) for the dummies occuring in the expression.
The modified expression will then replace the synonym.

The result of this replacement must be an allowable .operanfl for the
expression containing the synonym. .

Examples : .

LET A(j) := 2*j+1oop(j) : C = 0 - A(i.0) ;
is the same as C = D - (2+ (it3)tloop(i+3)) ;-v.
LET S := <I f(j) FOR j IN T : j -= 21) ;
C= <12*i+3 FOR i IN St> ;
is the same as
C = <I 2*i.+3 FOR i IN <I f(j) FOR j TN.T : j-=2 I>!> ;

3.2. Operators

3.2.1. Arithmetic operators

<arithmetic operator> ::= t1-,1*1/1**

The basic arithmetic operators (+,a, *,I,**) are defined for
ARITRUIET?CC SCALAR operands and have the conventional meaning (addition,
subtract ion, multiplication, division, and exponentiation). The

e arithmetic operators defined for non-scalar arithmetic operands may be
described in terms of these basic arithmetic operatow.

3.2.1.1. Unary operators (+ and -)

The unary .operators + and - are defined for all non-scalar
arithmetic operands and are performed componentwise, leaving the
dimensionality and domain of the operand unchanged.

3.2.1.2. Rinary operators

3.2.1,2.t. Addition (+) and Subtraction (0)

The binary operators + and - are defined for all pairs of non-scalar
arithmetic operands with the same dimensionality and domain. The.
indicated operation is performed componentwise, leaving dimensionality
and domain unchanged. d

Oct. 70, p. 15

F

3.2.1.2.2. Scalar multiplication(*) and division(/)

One operand (the first for division) may be any arithmetic
operand, whereas the other must be a scalar and in the case of
division not zero.

The dimensionality and domain 04 the result are taken from the
(dimensioned) operand and the value(s) obtained by multiplying
{dividing) each of its elements by the scalar.

3.2.1.2.7. Exponentiation (**)

If 0P1 and 0P2 are scalars, then OPWWP2 is defined if
(1) OPl > 0
(2) Ol?l = 0 and OP2 > 0
(3) @Pl < 0 and OP2 is an integer.
Tf OF1 is a square matrix, then c)Pl**OP2 is defined if OP2 is a

positive integer N an4 denotes the result of N multiplications of OPl hy
itself; ON**0 denotes the identity matrix with the same number rows anti
colu-mns.

3.2.1.2.4. Inne-f product (*)

The inner product of two non-scalar operands is algebraically a
generalization of matrix multiplication an? the vector inner product.
let

A p-DI?lENS~ONAL ARRAY M(1) BY e.m QY I'!(p)
B q-DIMIINSIONAL ARRAY N(1) BY m.. RY N(q)

denote the two operands. Then the result C = A*R is defined if and only -
if M(p) = N(1):

c (p+q-2).DIMENSIONAL ARRAY
M(1) BY ..a RY M(p-I) BY N (2) BY a.0 BY N ('1)

c (Y VI ,...,I:(P-l),J~2)r....J(1))
= SW'! (A(I[l) ,...,x(p-lf,k)+R(k,J (2) ,...,J(Q)) FOR k TN Y(p))

for all I(i) IN M(i), i = l,...,p-1
JU) IN NW8 j = 2,-43

In -particular, the inner product of two vectors (matrices) reduces to
the vector inner product (matrix multiplication). The inner product of
a matrix and a vector or a vector and a matrix is a vector.

3.2.2. Concatenation

<concatenating operator> ::= <horizontal concatenating operator> 1
<vertical concatenating operator>

<horizontal concatenating operator> ::= J

<vertical concatenating operator> ::= ci

Oct. 70, p. 16

Concatenation is defined for operands of all three types. Both
operands of a concatenating operator must have the same type which will
be the type of the result.

The operands of horizontal and vertical concatenation can be scalars
(interpreted as 1 by 1 matrices) or matrices (including row and column
vectors). The result is the matrix (with canonical domain) obtained by
appending the elements of the se‘cond operand at the right side (or in
the case of vertical concatenation at the bottom) of the first operand.
The tvo operands of i must have the same number of rows, the tvo
operands of t must have the same number of columns.

Examples: Let A be the 2 by 3 matrix 11 3 41
16 -2 41

B the 2 by 4 matrix 1s 3 9 111
._ 1864 21

C the rov vector (0 1 0 1)

then AIB is t h e 2 by 7 matrix 11 3 4 5 7 9 111
--. (6 -2 4 8 6 4 21

BIG is the 3 by 4 matrix 1s 7 9 111
1864 2(
10 1 0 l(

6lCl8 is the rov vector (6 0 1 0 1 8)

3.2.3. Logical operators

The basic logical operators (-; AND, OR) are defined for LOGICAL
SCALAR operands and have the conventional meaning (negation,
con junction, and disjunction). The logical operators defined for
non-scalar logical operands may be described in terms of these basic
logical operators.

e
3.2.3.1. Negation (9)

The unary operator NOT is defined for all non-scalar logical
operands and is performed componentvise, leaving the dimensionality and
gomain of the operand unchanged.

*I -. <--> NOT

3.2.3.2. Binary logical operators

<logical operator> ::= AND 1 OR 1 HUtT

3.2.3.2.1. AND and OR

The binary operators AND and OR are defined for all pairs of
non-scalar logical operands with the same dimensionality and domain.
The indicated operation is performed componentwise, leaving the

Oct. 70, p. 17

dimensionality and domain unchanged.

Flxaaple:
(TRUE, A OR B) AND (FALSE,TRUE)
results TN (FALSE, A or E)

X2.3.2.2. Eogical inner product (MDLT)

The logical inner product of two non-scalar logical operands is
defined analogously to the (arithmetic) inner product except that
multiplication is replaced by AND and summation is replaced by OR.

Examples: Suppose A is ITRUE TRUE 1
IFALSE PALSEl

and B IS (FALSE,T3UE)

then A !!lULT B is the vector (TRUE,FALSE)

and B M.&T A is the vector (FALSE,FALSE).

3.2.4. Subscripting

Subscripting as an operator is defined for all non-scalar operands
(a scalar operand with a non-scalar reference value is treated as a
non-scalar operand with the at+ributes and set of values associated
with the non-scalar reference value). The number of subscripts must
agree with the diaensionality of the operand. A <SA expression>
subscript specifies one element of the corresponding component domain.
A <VA EXPRRSSION> subscript specifies a subdomain of the corresponding
component domain. A * subscript specifies the entire corresponding
component domain. The type of the result is the type of the operand.
The domain of the result is the Cartesian product of the domains of the
vector subscripts and the component domains corresponding to *
subscripts (if all subscripts are scalar, then the domain is
&dimensional and the result is scalar). The (set of) value(s)
associated with the result is the specified (subset of) component(s)
of the operand.

3.3. Expressions

<expression> ::= <arithmetic expression> j <logical expression> 1
<character expression> 1 <reference expression>)
<procedure expression>

<arithmetic expression> ::= Nadding operator>$ <A operand>]
<A expression><arithmetic operator><A operand> 1
<A expression><concatenating operator><A operand>

<A operand> ::= <number> 1 <simple variable> 1 <procedure call> 1
<vector generator> 1 <expression synonym> 1
(<A expression>) 1 <A operand> (<<range>, LIST>)d

Oct. 70, p. 18

<logical expression> ::= <L operand> 1
<L expressionXlogica1 operator><L operand) f
<L expression><concatenating operator><L operand>

I

<L operand> ::= <logical value> f Xsiraple variable> 1 <procedure call> 1
<vector generator> 1 <relation>) -CL operand> 1
<expression synonym> j (<L expression>))
XL operand> (<<~ange>,LIST>)

<character expression> ::= CC operand> 1
<C expression>Cconcatenating operator><C operand>

<C operand> ::= <character constant> J <simple variable> 1
<procedure call> 1 <vector generator> 1
<expression synonym> 1 (<character expression>) 1
CC operand> (<<range>, LIST>)

.-.
<reference expression> ::= Wadding operator>3 <R operand> 1

CR expression><arithsetic operator><R operand>)
<R expressionXlogica1 operator><R operand> 1
<R expression><concatenating operator><R operand>--.

<I? operand> ::= <simple variable> 1 <procedure call> 1
<vector generator> J <relation>) 4R operand> 1
<expression synonym> 1 [<R operand>) 1
<R operand> (<<range>, LIST>)

<procedure expression> ::= <P operand> 1
<P expression><concatenating operator><P op,erand>

<P operand> ::= <procedure identifier> 1 <simple variable> 1
<procedure call> 1 <'vector generator> 1
<expression synonym> 1 (0 expression>) (
<P operand>[Ctrange>, LIST>)

Examples: (<t~,-7,51>*<16,8,4t>)**(F~{a,b)-3)
-VAR IS UIODEPINED AND 00 OR D 'm
<I <<3 LITTtE BEARS>>,<<IN>>,<<THE>>,<<U~~DS>> (>

Any simple variable, procedure call, vector generator, or expression
synonym used as an

1 L operand) 1 logical type t
1 C operand 1 1 character type 1
1 A operand 1 must have 1 arithmetic or logical type f e
1 R operand 1 J reference type 1
1 P operand 1 1 procedure type t

If a logical quantity is used as an arithmetic operand, then TRUE is
interpretted as 1 and FALSE as 0.

The sequence of operations within an expression is generally
executed from left to right, but the order of evaluation is modified by
the following precedence rules:

Oct. 70, p. 19

Each operator has an associated precedence number indicating its
binding power. Operators with low precedence numbers take priority over
operators with high precedence numbers:

Operator Precedence

._.

subscripting . .
*,I
fS
*,/
+r-
<,<=,=,--,>a, >,IN,NOT IN,fS
MOLT
1
AND
OR

first
second
third
fourth
fifth
sixth
seventh
eighth
ninth
tenth

The expression between matching left and right parentheses is
evaluated and the value(s) used in subsequent operations. Thus any
order of execution of operations within an expression can be specified
by appropriate p-arenthesizing.

Oct. 70, p. 20

SECTION 4. STaTEBENTS

The units of operation in ?lPL are called statements. Statements are
executed in sequence, as written, except when this sequence is modified
by sequence control statements or conditional statements.

<statement> ::= <empty> 1 <label>: <statement> 1
<block> 1 <compound statement>)
<variable control statement> 1
<assignment statement) f
<sequence control statement))
<procedure statement> b<WBERB phrase>S 1
<conditional statement) 1
<iteration stateaent) J
<static let statement) 1
<dynamic let statement) i
<input statement> $<UHERE phrase>$ 1._
<output statement> SCWHERE phrase>!8

<variable control statement> ::= <DEFYNE statement> 1
<defining assignment statetnent) 1

--. <RELEASE statement>

<sequence control statement> ::f <GO TO statement> 1 <RETURN statement>

4.7. Blocks and the Scope of Identifiers

<block> t:= BLOCK S<label>;S
<<program unit>; LIST>
END $Psame" labelM

<compound statement> ::f BEGIN $<label>;S
<<program unit>; LIST>
MD $<"same" label>f

+I BLOC&END <--> [,I ; BEGIN,END <--> L,A
BLOCK <label>; C-r> <label>; BLOCK

a BEGIN <label>; <--> <label>: BEGIN
END <label> <--> ;<label> END

Blocks control the scope of identifiers by introducing new levels of
tiomenclature: an identifier declared in (local to) a block represents a
unique entity within that block but does not represent that entity
outside the block. An identifier ,declared in an embracing block is said
to be global to the block. If an identifier is both local and global to
a block, the global meaning can not be used within the block.

Identifiers may be declared explicitly by defining statements (see
4.2.1) or let statements (see 4.8); or implicitly by their appearance as
labels (see 4.4.1) or procedure identifiers (see 5.1). Certain other
syntactic units also implicitly delimit the scope of some or all of the
identifiers declared within them in the same way as blocks:

Oct. 70, p. 21

(1) The conditioned (alternative) statement of a conditional
statement acts as a block with respect to labels (see 4.4.1).

12) An iteration stat.ement acts as a blwk with respect to the
control variable (see 4.7) and labels {see 4.4.1).

(3) A procedure definition act.? as a block with respect to
ident.ifiers used as (part of) formal parameters in the procedure
head (see Xl).

(4) The identifier denoting the control variable in a set generator
{see 3.1.3.3) or a serial actual parameter (see 5.2) is local to +he
set generator or serial actual parameter.

(5) Identifiers denoting dummy arguments in a symbol substituter
are local to the symbol substituter (see 4.8).

(6) Identifiers denoting synonym names in a WHERE phrase are
local to the statement qualified hy the where phrase.

ff a block is labelled, then the block label may optionally foll.ow
the closing END and may be used in defining statements to delimit
scope (see 4.2.1).

A compound statement is used to group together a sequence of
statements and procedure definitions. ff the compound statement is
labelled, then that label may optionally follow the closing END.

4.2. Variable Control Statements

4.2.1. DEFINE statements

<DEFINE statement> : := <DEFINE phrase><<defining phrase!>, LIST> 1
<DEFINE phrase><defining Fhrase>Cqualifier>

<DEFSNE phrase> ::= DEFINE $IN Pblockn label>$
e
<defining phrase> ::= <<variable name>, LZST> <<attribute> LIST>

<variable name> z:= <identifier> f <reference variable name>

<reference variable name> ::= <variable name>
$<(<subset specification>)<blank> LIST>B
(<simple subscript>)

<subset specification> ::= <subspan> I <simple subscript>,<subspan> 1
<subset specification>,trange>

<subspan> ::= <VA expression> i *

<simple subscript> ::= <<SA expression>, LIST>

Examples: DEPTNE A LOGICAL 3 BY 5, B SCALAR
DEFINE c(l,6)- 8 BY 8 DIAGQNAL

Oct. 70, p. 22

DBFINE statements, defining assignment statements (see 4.2.2), and
GlVEN statements (see 4.9) are all defining statements in the sense that
they delimit the scope of identifiers, assign attributes to identifiers
and reference variable names, and allocate storage. Defining statements
are executable; an identifier must be defined before it is referenced.

The scope of an identifier is either the innermost block containing
the defining statement or the embracing block whose block label appears
in the defining statement.

. A variable name is either an identifier or a reference variable name
(a single component of a reference variable; e.g., a submatrix of a
partitioned matrix). The attributes to be associated with the variable
name may be listed in any order in the defining phrase. The type and
dinensionality attributes must be consistently defined throughout the
scope; the domain and shape may change. Hissing attributes are

.- defaulted in the following aanner:

type: unchanged, if specified in another defining statement
ARITR~ETTC, otherwise

dinensionality:
unchanged, if specified in another defining statement
SCALAR, if a domain is not specified
ARRAT (with appropriate number of dimensions),otherwise

domain: EBPTY BY oee BY EnPTY, for arrays
unspecified, otherwise

shape: ROY (COLORI!), f o r ROU (COLUtIN) VECTORS
RECTANGULAR, otherwise

When a variable name(s) is defined, all expressions in the defining
phrase are evaluated, the variable nare(s) is released (thus the
associated value(s) are lost) (see 4.2.3), and storage is allocated.
Scalars are initialized uith value UNDEFINED; arrays are initialized
conponentuise with the value QRDEPINED.

When program control leaves a block, all identifiers defined local
to the block are released (see 4.2.3) and Wn-defined" (lose
definftion),

. DEFINE STATEllERTS BAY BE QUALIPIED BY FOR phrases, IF phrases, and
aHERE phrases (see 4.3))

4.2.2. Defining assignment staterents

<defining assignment statelaent> ::=
?DEFIR& phrase><<siople defining assignment stateBent>, LIST> 1
<DEPINE phrase><sirple defining assignment statement><qualifier>

<simple defining assignment statement> ::a
<variable name> := <expression> Wdomafn specification>S 1
(<<left side element name>, LIST>) := <procedure call>

Oct. 70, p. 23

Cleft side element. name> ::= <variable name> 1 -

Defining assignaent statements serve as def ininq statements
(see 4.2.1) as well as assignment statements (see 4.3) l

The first. form of the (simple) defining assiqnment statement causcjs
evaluation of an expression. The variable name is defined with the
attributes associated with the expeession and assigned the value(s) of
the expression. The domain of the expression may he redefined in a
domain specification (see 4.3).

The second form of the (simple) defining assignment statement causers
execution of a procedure. The left side element name(s) is defined with
the attributes associated with the corresponding formal return
parameter(s) and assigned the value(s) of the correspon3inq actual
return parameter(s). An underscore appearing on the left side means
that. the corresponding definition and assiqnment should be omitted.

Defining assignment statements may be qualified by FOR phrases, IF
phrases, and UHERE phrases (see 4.3).

4.2.3. Release-Xtatement

<RELEASE statement> ::= RELEASE <<variable name>, LTST>

Fxanple: RELEASE MAT , A, B{3,6,7)

RELEASE statements serve to deallocate storage. Scalars are
assigned the value UNDEFINED; arrays are redefined vith domain EMPTY BY
. . . BY EMPTY (u'ith the appropriate number of dimensicns) and shape
RRCTANGULAR. The value(s) associatred with the variable name(s) is lost.

No RELEASE statement is require8 before the terminating END of a
block since the END acts as an implicit RELEASE statement for all
identifiers defined local to the block.

-43. Assignment Statements

<assignment statement> ::= <simple assignment statement> B<qualifier>B
e

<simple assignment statement> ::=
<variable> := <expression> Wdomain specification>$ 1*
(<<left side element>, LIST>) := <procedure call>

<left side element.> ::= <variable> 1 -

<domain specification> ::= NITH DOTlAIN < BY LIST>

<qualifier> :z= <WHERE phrase> 1
<<qualifying phrase>, LIST> $,<WHERE phrase>S

<qualifying phrase> ::= CPOR phrase> 1 <IF phrase>

*- e-3
l - <

Oct. 70, p. 24

Examples: (a,b,c):= f(x)
LOGIC (i) >:= a=e(i) OR i>20 FOR i XR X110,.,.,301>
PART(4,5)(+,4) := A*? i MAT
A := BW - 3.37 * E + <12,3,51>
x := A<B OR F XIV <16,8,91>

Assignment statements serve to assign the value(s) of the expression
or procedure call on th8 right side of the assignment symbol to the
variable(s) on the left side. The variable(s) and the corresponding
value(s) must be assignment compatible:

(1) If the variable is character (logical), then the corresponding,
value must be character (logical), If the variable is arithmetic,
then the corresponding value may be arithmetic or logical (see 2.1).

(2) The variable and the corresponding value must have the same
-_ dimensionality, except that a vector may be assigned to a

ROY (COLUMN) VECTOR and vice versa.

(3) The variable and the corresponding value must have the same
domain. If their domains differ, a defining assignment statement
(see 4.2.2.) must be used.

(4) The variable and corresponding value need not agree in shape.

The first form of the assignment statement causes the evaluation
of an expression and assigns the value(s) to the variable on the left
side. The domain of the expression may be redefined in a domain
specification. The specified domain must be homeonorphic (corresponding
component domains have equal numbers of elements) to the domain of the
expression and compatible with the domain of the left side variable.

The second form of the assignment statement causes the execution of
a procedure and assigns the value(s) of the actual return parameter(s)
to the corresponding (in order from left to right) left side element{s);
The number of left side elements must be the same as the number of
formal return parameters in the procedure definition (see S.1). All

e variable(s) on the left side must be assignment compatible with the
corresponding formal return parameter(s) l An underscore appearing on
the left side means that the corresponding assignment should be omitted.

Examples: (Ret 1, - , Ret 3,) := FU(%-y)
(FU has 4 return paFameters, but only the first and third of
these are of interest).

(Objective value, Basic-variables, Optimal-x,Peasibility) $3
SIMbLEX (M&ix, Costs, RAS, BASXCJARIABLES)

The effect of a simple assignment statement (DEFINE statement,
defining assignment statement) modified by ?OR phrases, IF phrases, and
symbol substituters \

<simple assignaent statement> <qualifying phrase "lfl> *me
<qualifying phrase wnw>, WHERE <<symbol substituter), LIST>

Oct. 70, p. 25

can be described by the following sequence of MPL statements:

LET <<symbol. substituter>, LIST>;
<qualifying phrase **IV@>,

. . .
<qualifying phrase VW>,

<simple assignment statement);-.

except that identifiers denoting synonym names in the let statement are
defined locally.

Examples: E := D* A WHERE A = tw3 1, IClD)
X := x.+1 WffERE x L’ X’
INCIDENCE (i,y) := TRUE IF i IF? ARCS(y)
A (PIROW,y) := A(P-ROW,y) / A(P-ROW,P-COL)

FO‘R y XN COL-DIE (A)
_-. (Y Ii) I 2 (i) 1 := FUNCTION(i) FOR i IN S

4.4. Slequence Control Statements

4.4.1. Labels and GO TO statements-m.
<label> ::= <identifier> 1 (<digit String>)

<Go TO statement) :t= GO TO <label>

A GO TO Statement causes a transfer of control to the statement
immsdiately following the label. Since labels are inherently local
(see 4.1), NO CO TO Statement can lead into a biock, a procedure
definition, the conditioned (alternative) statement of a conditional
statement, or an iteration statement.

4.4.2. RETURN statements

<RETURN statement) ::= RETURN

A RETURN statement causes a transfer of controf from a procedure
b&k to the main program or procedure calling that procedure. A RETURN
statement may not occur outside a procedure definition.

NO RETURN statement is required before the terminating END of a
procedure definition {see 5.1) since the END acts as an implicit RETURN
statement.

4,s. Procedure Stateaents

<procedure statement> X= EXECUTE <procedure call>'

Example: EXECUTE GENERALIZED-UPPER-BOUND (m,n,l,A,G,b)

A proc8dute statement causes the execution of a procedure (that
specified in the procedure call (see S-2)) with no return parameters.
A procedure with return parameters may be called in an assignment
s t a t e m e n t (s e e 4 . 3) . d

Oct. 70, p, 26

4.6. Conditional Statenents

<conditional stateraea,t> ::= Csirple
SOTH

cond
ERWI

<simple conditional statement> x= <XP

it
SE

ional
Calte

phrase> THEN
<condit ioned statement>

statemen
rnatioe

t>
statement>S

<IF phrase> :z= IF <St expression>

<conditioned statement> ::= <statement>

(alternative statement> ::= <statement>

$1 TBEFt <-- , : OTHERWISE <--> ELSE

-_. Example: ZF X(i) = LOUER-BoUND(i) THEM
f-IF GRADIENT(i) > 0, RODIFTEDIGRADIRNT(i) := 0-j

ELSE IP X(i) = UPPERJ3OURD(i) THEM
1-V GRADIENT(i) < 0, !!lODIPIED-GRADIENT(i) := 0-j

ELSE RODIPXED-GRADIERT(i) := GRADIENT(i)--.
A simple conditional stateaent is executed as follows:

(1) The <SL expression> is evaluated.

(2) If the value of the <SL expression> is TRUE, then the
conditioned statement is executed; otherwise the conditioned
statelaent is skipped and the next statement is execute&

The effect of a conditional statement of the form

XF <SL expression> THEH <conditioned
ELSE <alternative statement>

stateBent>

can be described by the following sequence of NPL statements:

IF -<SL expression> THEM GO TO ELSE-LAi3EL;
<conditioned statement>; GO TO NEXT-STATEMIT;
ELSE-LABEL: <alternative statement>;
IEXT-STATEBENT:

‘each ELSE <alternative statement) is to be paired with the innermost
unpaired <simple conditional statement). The resulting syntactic
ambiguity, known as the dangling ELSE problem, can be resolved.

Reference: Paul W, Abrahars, WA Final Solution to the Dangling ELSE of
ALGOL 60 and Related Languages," Cow. ACl!l 9 (Sept. 1966), 679-682.

4.7. Iteration Statements

<iteration statement> ::= <FOR phrase> DO <iterated statement>

Oct. 70, p. 27

<FOR phrase> ::= FOR <control variable> IN <VA expression>
3:: CSL expression>t

<control variable> ::= <identifier>

<iterated statement> ::= <statement>
a.

“1 DO <-- ,

Examples: FOR i IN <ll,...,Nf> : i IN BASIS DO
ClYIN := MIN (CMIN , C(i) - PRICES * A(*,i))

FOR x TN NODES, PGR y IN NODES : y IN SUCCESSOR(x),
CONNECTION(x,y) t= TRUE

An iteration statement causes the iterated statement to be
repeatedly executed for a sequence of zero or more values of the
control variable in the FOR phrase. The control variable is implicitly
declared as an ARITHflETIC SCALAR local to the iteration statement; %hw
its value is lost on exit unless it is assigned to a globally define?
variable. The control variable may not be changed by assignment ui.+.hin
the iterated statement.-v.

The sequence of values of the control variable is evaluated before
the iterated statement is exec\lted. The effect of an iteration
statement can be described by the following sequence of MPL statements:

LET i := <control variable>;
DEFINE S := <I <ii. FOR i TN <VA expression> $:<SL expressian>${> 1,;
IF S IS EMPTY, GO TO NEXT-STATEMENT;
DRPTN?? COUNT := 1;
LOOP: DEFfNE i := S(COUNT); <iterated statement>;
COUNT := COUNT + 1;
XF CCUNT <= LENGTH(S), GO TO LOOP;
NEXT-STATEMENT:

Q.8. Let Statements

<iynamic let statement> ::= LET SXN <"blocW* label>$ <substitution list.>

<static let statement) ::= $LFT SIN <"block n labelM <substitution list>

tsub$titution list> ::= <<symbol suhstituter>, LIST) 1
<symbol substitute0 <WHERE phrase>

<WHERE phrase> ::= WHERE <<symbol substituter), LIST>

<symbol suhstituter> ::= <synonym name> := <expression>

<synonym name) t:= <synonym identifer) $ (<<dummy argument>, LIST>)$

<synonym identifier> t:= <identifier>

<dummy argument> ::= <identifier>

Oct. 70, p. 28

Exarples: LET CBV := COST(BASIC-VARXABLES)
LET GUB(k) := <(G(k),...,Glk+l)-11)

A (static/dynamic) let statement serves to declare a
(static/dynamic), synonym name. The scope of the synonym identifier is
either the innermost block containing the let statement or the embracing
block whose block label appears in the let statement.

A static synonym naae acts as a compile-time macro: the erpressian
replaces (see 3.1.6) the synonym name in the source text ,between the let
statement and the end of the block or another let statement redeclaring
the synonym name.

A dynamic synonym name acts as an expression variable: the value
(an expression) replaces (see 3.7.6) the synonym nane at each run-tirrre
reference uithin the scope of the synonym identifier. The dynamic let
statement serves as an assigneent statement for dynamic synonym names.

4.9. INPUT / OUTPUT Statements

<input statement> ::= GTVEN $lN <"block" label>S
--. <<defining phrase>, LIST>

<output statement) tt= AWSUER <<expression>, LIST>

Examples: GIVER l ,n,l SCALAR, A MATRIX a by n, G VECTOR 1+1,
b COLUtM VECTOR II

ANSWER Status, BV, XBV, YBP, s, KV, CUBJV

The XUPU?/0UTPUT provided in M?L at present is rudimentary and
intended merely as a first step toward more powerful concepts.

The GIVEI statement serves as a defining stateaent (see 4.2.1) as
well as an input staterent. The variable name(s) is defined and
assigned the corresponding input value(s). The type and dimensionality-
of the variable name(s) must be specified in the defining phrase of the
GXVER statement;: the domain and shape ray be specified in the defining

m phrase or vi.11 be taken from the data. The data is assumed to be k
labelled with the variable name(s) and to contain information on type,
dirensicgality, domain, and shape. These data attributes must be
consistent with those specified fn the defining phrase.

The AIISltR statement produces labelled printed output; i.e., the
%ame* of the expression precedes the value. Thus the statement

ANSUER x, S?l(2*PI+X)

will produce the printed output

sI1(2*PI+X) 1 t****lr**** l

Oct. 70, p. 29

StCTTON 5. PROCEDURES

Procedures are subprograms that can be defined anywhere in the
program and which are activated each time a procedure call is
executed. When the procedure is called the formal parameters are
replaced by actual parameters.

5.1. Procelture Definitions

<procedure definition> ::.= EXTERNAL <procedure hea 1
$INLTNE$ (procedure heaD; <procMure body> 1
<one-line procedure definition>

<procedure head> ::f B<procedure attrihute>$ PROCEDURE
B<formal return parameters> :=$ <procedure identifier>
$(<<formal input parameter>, LIST>)3

-- SWHERE <<parameter specification>, LIST>3

<procedure attribute> ::= ?NBEPEt?DENT 1 DEPEMDE!?T .I FUNCTION

<procedure identifier> ::= <identifier>
--.

<formal return parameters) ::.= <identifier> 1 {<<identifier>, LIST>)

<formal input parameter> ::= <identifier> 1 <serial formal parameter>

<Serial formal parameter> f:= <V"identifier, FOR <bound identifier>
IN CvtVA"identifier> S:CnSLwidentif ier>3

<bound iflentifier) ::= <identifier>

<parameter specification> :t=
<<identifier>, LIST><<attrihute> LISTXparameter type> 1
<<identifier>, LXST> X<procedure attribute>$ PROCBDTIRE

<parameter type> ::= VALUE 1 NAME 1 VALUE RESULT 1 RESULT 1 <empty>

Qrocedure body> ::= <statement>

<one-line procedure definition> t:= <<attribute> LIST> SIloLIsJEd
9Xprocedure attribute>$ PROCEDURE
<procedure identifier> $(<<foraal input parameter>, LIST>)$
:=<expression> $WHERE <<parameter specification>, LTST,$

*I PUNCTtOR PROCEDURE <--- FUNCTION

5.1.1, EXTERNAL procedures

The attribute EXTERNAL denotes a procedure that has to be fetched
from a library outside the program; the procedure head in the program
supplies only the neccessary information on its parameters.

Oct. 70, p. 30

5.1.2. ~n~rnt proceaures

A procedure can be specified IDLINE so that if the implementation
permits, the statements corresponding to the procedure as modified by
the actual parameters (see S-2.) will be inserted at the place where the
procedure call occurs in the program. This enables the programmer to
avoid the overhead associated with procedure calls if he desires.
This process should, of course, Plot lead to a recursive situation.

5.1.3. The procedure head

The procedure head contains the name of the procedure and
information (at least type and dimensionality) about its parareters. In
order to conform to mathematical function notation, the procedure head
is written as an explicit assignment to the return parameters. The input
and return parameters are formal parameters i.e. the identifiers used
here do not represent actual quantities and have to be replaced by
actual parameters each time the procedure is called.

Each formal parameter must be specified in the parameter
specification list. If a formal parameter represents a variable, at
least its type--.and dirensionality must be indicated. The effect of the
attribute VALUE is explained in (5.2.1). A serial formal paraaeter
represents a list of actual input parameters depending on a POR phrase.
The <bound identifier> represents the control variable of the FOR
phrase. In a serial formal parameter only the attributes of the first
identifier need be specified; the attribotes of the athers are implied
by their position in the FOR phrase(see S.2.), The scope of the formal
parameters in the procedure head is the procedure definition. The
default parameter type is NABE independent and independent procedures.

5.1,4. The pcoced~e body

The procedure body consists of the actual statements to be executed
vhen the procedure is called (see 5.2.).

The procedure body is the scope for all identifiers defined within
the procedure. The scope of identifiers can not be extended outside a
procedure body. Procedure definitions may be nested, i.e. a procedure
body may contain procedure definitions.

S.t.5. The procedure attributes

The procedure attributes specify subclasses of procedures with
certain restrictions as to their parameters and to the way they
are handled.

The 8ost general case is a DEPENDENT procedure. A DEPENDENT
procedure has free access to its environment and can USQ or change every
quantity defined in the block containing .the procedure definition.
DEPENDPIT is the default value for the procedure attribute.

5.1.5.1. PUIcTfON procedures

PuncTIon procedures are closely related to the mathematical concept
of a.function, La. they compute one or aore return values from one or

Oct. 70, p. 31

more input parameters.

(i) They may not refer to any variable or label whose definition
occurs outside the function procedure.

(ii) They may reference function procedures only, i.e. all procedure
parameters of a function and all procedures defined inside a
function or called from within a function must themselves be
function procedures.

(iii) They may not contain any input/output statement except ANSWER
statements (4.9),

(iv) No input parameters may be changed within the body of a
function procedure. All input parameters are treated as if
they were VfALUE parameters. Assignment of values to input

-- parameters is illegal.

PO FUNCTTON procedures may not have serial formal parameters.

~J.Fi.2, INDEPENDENT procedures
--.

XNDEPENDEWT procedures are identical to FUNCTION procedures except
that they may have NAME parameters and serial formal parameters and may
refer to both FUNCTION and INDEPENDENT procedures.

5J.2.3 One-line procedures

The one-line procedure is provided as a short way of witting a
procedure which computes an expression (see 3). The value of this
expression is returned to be used as an operand or in an assignment
statement. The <<attribute> LIST> specifies the attributes of the
computed expression.

5.1.6. Examples of procedure heads

PROCEDffRE (OPT-X, OPT-Z) :.= SIllPLEX(A,RBS,COSTS) where A
MATRIX, OPTJCJWS COLUMN VECTOR,
COSTS ROW VECTOR, OPT-2 SCALAR

INLI N-E PROCEDURE RSLT := IIAX'IEIUH (Y(i) FOR i IN S :L)
where P(i), RStT SCALAR

FU'IOCTION PROCEDURE A= EXP(B) WHERE A,B MATRIX

S. 2. Procedure Calls

<procedure call> ::= <procedure identifier>
lb ((<actual parameter>, LIST) 3

<actual parameter> ::= <expression> 1 <procedure identifier> 1
<serial actual parameter) 1
%eaning the corresponding actual parameter
is omitted"

Oct. 70, p. 32

<serial actual parameter> ::= <expression><FOR phrase>

A procedure call causes the execution of the statement of the
corresponding procedare boity after these statements have been modified
by actaal parameters. Por a one-line procedure the expression is
considered the body.

Procedure calls may occur in the following contexts:

(1) A procedure without formal return parameters may be
called in a procedare statement (4.5).

WI A procedure with one return parameter may be used as an
expression operand (3.1,4). In this case a dummy variable
is created having the attributes of the return parameter,
and it is used as an expression operand after the completion
of the procedure call.. .

(II?) Procedures with one or more return parameters can be called in
an assignment statement (4.3). Xn this case the actual return
parameters must he assignment compatible with the
corresponding formal return parameter. Upon completion of the
procedure call, the actual return parameters are assigned the
final values of the corresponding formal parameters. If an
actual return parameter is omitted (represented by”-“), then
no assignment is made. If no value has been computed for the
formal return parameter, then the actual return parameter will
be UNDEFINED.

The number of actual parameters (both input and return parameters)
must be the same as the number of formal parameters specified in the
procedure head. Each actual parameter "replaces" the formal parameter
in the same position and must be compatible with it in terms of its
attributes (see 5.2.1. 5.2.2, X2.3 for detafls).

The effect of the execution of a procedure call is equivalent to
the effect of executing the statements of the procedure body modified

- as illustrated in the rest of this section ("equivalent" because an
implementation may choose any optimization strategy yielding the
same result). After all modifications are completed, the procedure
body must yield a sequence of valid RPL statements.

5.2.7. VALUE parameters

Input parameters representing a variable may be specified VALUE
in the procedare head.

In general, for each VALUE parameter there is an internal
procedure variable having the same attributes as the corresponding
formal parameter. (In certain cases, in particular for FUNCTION
PROCEDURES, this may be implemented differently).

Before execution of the procedure body begins, each actual
parameter is evaluated-and the result is assigned to the corresponding

Oct. 70, p. 33

internal variable. Note, this implies that the internal variable
(whose attributes are given in the procedure head) and the actual
parameter must be assignment compatible as defined in 4.2.

If the actual parameter is omitted (i.e. it is *@-v*, the underscore)
no assignment is made and the formal parameter will be UNDEFl[NED,

Any occurrence of the formal parameter identifier inside the
procedure body will then he replaced hy the corresponding internal
parameter.

If the parameter were to be changed within the procedure body by
assignment, this will affect the internal variable only and not the
actual parameter itself.

S.2.2. NAME parameters

All procedure parameters and those parameters tIenoting variables
that have not been specified VALUE are calleil NAHE parameters. The way
in which actual name parameters replace any occurrence of the
corresponding formal parameters is best describei as textual
substitution, i.e.='the %ame** of the actual parameter (enclosed in
parenthesis wherever this is syntactically necessary) replaces the
formal parameter,

Any change made to the formal parameter within the procedure body
iS reflected by the same change occurring to the actual parameter
(note the difference from VALISE parameters).

Actual parameters called by name must have t-heir attributes
specified in the parameter specification. Actual procarlure parameters
must agree in their procedure attributes with the corresponding formal
parameters.

It is possible, but not advisable, to omit a NAME parameter. If
program control reaches a reference to an omitted NAME parameter, then
a? execution error will result.

5.2.3. Serial actual parameters and serial formal parameters

A serial actual parameter (SAP) is of the form

CexpressionXPOR phrase>

A SAP does not stand for a vector, but rather for a list of
expressions controlled by the FOR phrase. The control variable (CV)
of the FOR phrase has as its scope the SAP itself, i.e. any occurrence
of the Cv within the expression represents only the CV and not any
other identifier defined in the embracing block.

The CO, as well as the other components of the FOR phrase (the VA
expression and the SL expression, see 4-7) are available to the
procedure individually and are accessed by means of the serial formal
parameter. The CV is passed by NANE to the <bound identifier>; the

Oct. 70, p. 34

<expression> is passed by #AHB to the <"B"identifier>; the
PVPexpression> of the FOR phrase i.s passed by NANE to the
PVPidentifier> : and the <"SLwexpression> of the FOR phrase is passed
by ?W!IB to the PSL"idientifier>.

S.2.4. The return parameters

811 formal return parameters must denote variables, and must be
specified by a defining phrase in the procedure head. (VRLUE is not
meaningful for return parameters).

For each formal return parameter there is a internal variable
having the attributes specified for the return parameter in the
procedure head. This internal variable replaces any occurrence of the
formal return parameter within the procedure body.

._. After execution of the procedure body the value of the internal
variable is assigned to the actual return parameter if one exists
(see 4.2.2) or is used as an operand.

S.2.5. The RESULT parameters-m.

The Rl%ULT parameter is handled in exactly the same way as a
return parameter.

S.2.6. The VALUE RESULT parameter

VALUB RESULT parameters are handled like VALUE parameters before
execution of the procedure body and like RESULT parameters, after
execntion of the procedure body.

5.3. Library Procedures

This section describes the use of several procedures which are
provided in the NPL library. References to these procedures all have
the form P(P) where P represents the name of the procedure and P

m represents a list of parameters. Uhere indicated, these procedures
return values with attributes as described below.

ARS(SCALAR)
SCALAR Any scalar va.lued arithmetic expression.
- VALUE The absolute value of %CALAR%

ARGI'IAX(YBCTOR)
VECTOR Any vector valued arithmetic expression.
VALUE The scalar arithmetic index of the first occurring

maximum valued element of ~VECTOB*.

ARGRIIQ(VRCTOR)
VECTOR Any vector valued arithmetic expression.
VALUE The scalar arithmetic index 'of the first occurring I

minimum valued element of *VECTOR@.

Oct. 70, p. 35

COLDIH(HATRfX)
!'I A-RX X Any matrix valued expression.
VAZUE The scalar arithmetic number of elements in the range

of the second subscript of @MATRIX*. This function is
intendeil for finding the number of columns in a matrix,
so if VMTRIXr is a column vector, 'VECTOR' := t.

. .
DTM (VECTOR)

VECTOR Any vector valued arithmetic expression.
VALUE The scalar arithmetic number of elements in the range

of 'VECTOR',

XDENTITY (RANK)
RANK The scalar arithmetic rank of the square identity matrix

which is the *VALUE* of the function.
VALUE An identity mat.rix with fRANKf rows and columns.

--
tNVERSE(l'7ATRTX)

MATRTX A square, non-singular, matrix valwd arithmetic expression.
VALUE The inverse of fMATRIXw.

MAX(VECTOR) --.

VECTOR Any vector valued arithmetic expression.
VALUI? The scalar ari+.hmetic value of the minimum value4 element

of 'VECTOR'.

MXk4(VECTnR)
VECTOR Any vector valued arithmetic expression.
VALUE The scalar arithmetic value of the minimum valued element

of 'VECTOR'.

ONES(ROWS,Ci)LUMNS)
ROWS The integer scalar number of rows in 'VALUE'.
COLWMNS The integer scalar number of columns in @VALUE'.
VAtnR A matrix of ones with aROUSw rows and tGOLIfMNSg columns.

ROjtDTH (MATRIX)
YATRTX Any matrix valued arithmetic expression.
VALUE The scalar arithmetic number of elements in the range

of the first subscript of gHATRIXg. This function is
intended for finding the number of rows in a matrix,
so if *MATRIX* is a rou vector, *VALUE* := 1.

SUM (VECTOR)
VECTOR A vector valued arithmetic expression.
VALW3 The scalar arithmetic sum of the elements of * VECTOEP*

TRANSPOSE(MATPfX)
MATRIX Any matrix valued arithmetic expression.
VALUE The transpose of 'tW!!RIX'. If 'MATRIX' has m rows and

n columns, then 'VALTJE * has n rows and m columns.

Oct. 70, p. 36

TRUI'KATE(SCALLR)
SCALAR Any scalar valued arithmetic expression.
VALUE sign of 'SCALAR * times largest integer < ABS(gSCALARo).

ZEROES(ROIS,COLUHNS)
ROYS The integer scalar number of rows in gVALUE~~
COLUNRS The integer scalar umber of columns in 'VANI%
VALVE a matrix of zeroes wXth @ROWS' rows and TOCUHNS~ columns.

Oct. 70, p. 37

1C

mo.Examples of Mathematical Frogramming Algorithms

Written In MFL

SIMPLEX ALGORZTWM

__ GENERALIZED UPPER BOUND

The latter represents an algorithm for solving certain large scale probl.ems.

. Systems of this type 9 encountered in practice, have run over 30,000 equations

and half-million variables V In order to develop efficient codes, it is

necessary that experimental programs be highly readable, easy to debug,

so that variow versions can be quickly tested and compared.

PROGRAM S I M P L E X - A L G O R I T H M :

ffs%~dm~ x(l), x(j) > 0 for j in (2,...,nk

. A*x =b,blO

where V = {V(l), V(2),...,V(m)), the index set of

the initial basis, is given with V(1) = 1 correspondhg

to objective X(1) . It is assumed that

NV) = Identity(m) .‘I

Given m, n scalars, A matrix m by n, b column vector m,

V vector m;
--+.

Let I = {l,..., ml; Let J = U,...,nl;
,

RECYCLE : Define “incoting vatiabte s and 6 the minimum reZative cost”

(s,6) = ARG MIN [A(l,j) for j E J:j # 11;-

If 6 > 0, LAnswer -Bounded-, V, b; Go to FIN11 ;- -

“otherwise ” define ‘Pivot row r and level 8 of incoming variable X(S). ”

(r,e) = ARG MIN [b(i)/A(i,s) for i E: I:A(i,s) > 01;-

If 8 = +m, LAnswer <<Unbounded>>, V, b, s , A(*,s) ; Go to FIN11 ;- -

“Update” A = PIVOT [A,A,(*,s),r]; b = PIVOT [b,A(*,s),r]; V(r) = s ;

‘where PIVOT pivots m&rixA on A(r,s) and returns modif<ed A. ”

Go to RECYCLE;-m

FINI: i End “program”

GENERALIZED UPPER BOUND

GIVEN A, m x h, FIND MAX xn:

Ax = b, xJ 3 0 for j = 1l,...,n-I) ,

c xJj E GUB(k)
= 1, k ='il~...,z41

where . .

GUB(k) = (jIG(k) 4 j < G(H)-1

r

INITIATE: Non-Key Basic Variables: BV

Costs, Values: CBV, XBV

Key Variables: KV
--.

\ Inverse: R

Phase, -Qontrol

Ir *
Start Major Cycle No . End Major Cycle
Neg-DeltaJontrol = 0 Ir= 1 Did all GUB's price optimally?

I

Price-W next GUB-
if

Find Incoming Var. s
J(

Optimal in GIJB?

Ii01

I
I I

1) Yes
r

If none,-c Changeyes . Feasible? &es.--, Phase = I?
Phase

No Nov ?
Answer: .
<<Infeasible=

Answer:-Bounded>>,

I s' SUBJ3V

PROGRAM GENERALIZED-UPPER-BOUND:

‘The descript$on of this algorithm is written in M.P. L. (Mathe-

maticaZ Progrananing Language). Conrmentary such as this on the

aZgorithm are enclosed 6z quotes. --Underlines, no t par t o f the

Zanguage, are to help the reader identify the specSa (reserved)

words of the Zanguage. ”

GIVEN m,n,Z scalar, A matrix m & n, G vector Z+l,b column vector m;

‘The problem is to find

-- Max x(n), x(j) 5 0 for j in (l,...,n-13

%ubject t o

(ii) SUM[x(i) for i in GUB(k)] = 1

for k ti Cl ,. . . J-13 where we”

LET GUB(k) = (G(k),...,G(k+l)-13 ;

‘which we caZZ a’ ’ GUB' ' set. T h e last v&abZe x(n), is to be

maximized. T h e s e t h(n-mtl) ,...,x(n-1)3 contains the artificial!

var&bZes and the matrix [A(*,n-m+l) ,... ,A(*,n)] forms an G!ent~ty

matrix. We also assume that

e G(1) = 1, G(i) < G(H), G(W) = n-m+1

Note tha t GUB(2) = IG(Z),...,n-m3 are the variabZes whkh h a v e

1 no partial sum conditions (ii) associated with them. ”

LET L = {1,...,23 ; LET I = Q,...,m3 ;

“I’rzitiate Non key Basic VariabZes BV. Let the GUB set of the I-th-

basic variabZe BV(i) be denoted by GUB BV(i) . It-

DEFINE BV vector m, GUBBV vector m;

.

For i

“Key basic

seZect for

in I do LBV(i) = n-m+i; GUB BV(i) = Z+l J- -

variables are .denoted by KV. In each GUB we CnitiaZZy

t h e k e y va.riabZe the one w%th lowest cost coef."

DEFINE KV vector Z-1;

KV(k) _= Index Min [A(mpj) for j ir~GllB(k)]

fork&L:kW;

*where In&x-Min is the name of a fwzot$on that y$eZds the

index (or argument) where the %nWmum $8 attained. ”

The Inverse of the coZumns corresponding to BV , as mod-i f<ed by

~subtracting off their key cotwnns, wiZZ be denoted by R.

XnitiaZty R is given by: ‘I

DEFINE R = Identity (m);

The modif<ed RHS is denoted by b' . It is formed by setting

key variabtes = 1) substitut&g into W and subtracting from-=.

b. "

DEFINE b' - b -. SUM (A(*,j) for j 9 KV);

For i in I: b'(i) < 0 and i f m,L b'(i) = -b'(i);R(i,i) = -1j;

ffwhere we have oorrected R and b' so that the initial 6asCc

sotution is feas<bZe. I’

ftBecme R is an adJusted identity, the vaZues of BV in the

initial basic soZution XBV are"
.

DEFINE XBV = b';

“‘In &we = 1 the cost coefficients are atZ 2erO except for

. j h {n-m+1 , . . , ,n-1) where the coef. are each one. For j in

the oost coef. remain sero after subtrqction of the4r key

oohnns. Non-key basic cost coef. are denoted by CBV.

InitiaZty” ’

DEFINE CBV _ _= Row of ones(m); CBV(m) = 0;

“FinaZZy we set up two soatar oontroZ par;rameters, the Phase

oontro2 and the T-Control where the tatter, if &is a sgna to

coFute new n values for the next major or minor cycle. ”

DEFINE Phase = 1; DEFINE n_Control = 1;

"START MAJOR CYCLE"

MAJOR-CYCLE: DEFINE Neg-Delta-Control = 0;

%here the latter counts the number of columns that price-out

negative. we now get ready to price out the various GUB's k. "

FOR k in L do- - m
E “The FOR Zoop ends just after RECYCLE ZabeZ”

MINOR CYCLE: If 7~ Control = 1 and Phase = 1,- -

DEFINE T = -CBV*R;

If 7~ Control = 1 and Phase = 2,- -

=’ DEFINE T = R(m,*) ;

'i.e. the above computes the price vector T. If 7QZontrol = 0, it is not

necessary to compute n and the above seeps ure skipped. I’

Ve are now ready to price out next GUB (or reprice the same

GUBL But first we reset”

T-Control = 0;

"PRICE OUT GUB"

DEFINE (s,d) = ARG MIN [T*A(*,j) for j in GUB(k)];-
M

“where ARG MrN is a fun&Con that returns s and d. s is the

smallest argument (index) for which the tinimwn value d ;s

. attained. Let 6 be the priced-out value of colwrm s after it is

corrected for the price on its GUB equation (for k < z) . ”

If k < 2, define 8 = d-r*A(*,KV(k));

If k = 2, define 6 = d;

"PRICE OUT NEXT GUB"

If 6 >, 0,go to RECYCLE;

‘Where recycle is the Z&eZ at the end of for loop of the minor

cyate, so that k is incremented to k+l and ptioing starts again

with next GUB. However if 6 < 0, then we want to Cntroduce croZwnn

s into the basis and find (%f possible) ootwrm r to drop from the

basis. If

"REPRESENT THE INCOMING CQWMN s v TEW OF BASIS”

If k = 2, define YEW = R*A(*,s);

x k < 2, define YBV = R*[A(*,s)lA(*,KV(k))l ;
F "DETERMINE COLUMN r TO DROP FROM BASIS"

"We first appZy the usual ratso test for the non-key basic

OOttmbt8 BY. "

DEFINE (r,e) = ARG MIN[[XBY(I)/YBV(i)] i @ I: ifm and YBV(j)>O];
---.

'IIf e = -b above, it means no pivot oan be found among the

variabZes BV(1). fie basdc var$abZe corresponding to r -is BV(r) l

We are now Interested in discovering if a key-basso var&ble j

, witt drap because it has a her ratio than those of BV(i).

If yes we reset r equal to th<s j and denote Cts GUB set as GUB-r .

rrtitiaZ2~ we @et GUB-r = 0; as tong as it remains zero it means

r above is stilt the winner. If GUB-r > 0 then by &finG%m

KV(GUB-r) = r.'?

DEFINE GUBr = 0;

"TEST RATIO FOR KEY VARUBLES KV"

+,g+ thts point we need to know the values of KV(i) which we denote

XKV and the oorrespon&ng rspresentatson of caZumn s denoted YKVO

sincle GUB ‘s w&h a unique basic var$abZe don’t drop the$r) bas;c

variable under a basis change (except 9 = k possibly) we need to

cons%der onty those GWs that have non-key basic v&abZes. We

now Zook for such GUB '8. If

*DEFINE a - 0;

f-LOOP: DEFINE f = MIN &US BV(i)- for i in I:GUB-BV(i)>a];- e

If f 22, goo LOOP_EXITelse a = f ;

“The above if iterated will pick up successively the next higher

index f of the GUB's of BV(i)."

LET F = {j for j in I: GUB BV(j)- =f} ;

DEFINE XKV = l-SUM[XBV(i) for i in F];- m

DEFINE YKV = -SUM[YBV(i) for i in F];- m

YKV = l+YKV if f = k;

“where the Zatter corrects YKV if the incoming coZumn s is in__

GUB set f i.e. if f = k. Note that the above states that we can

obtain the values of the key variab Zes by plugging in the values
--.

of XBV(i > into the set equations (ii). We now do the ratio

test on (XKV/YKV)/

If YKVG 0 E(XKV/YK~) s 8, 90 t0 f Loop;- -

"otherwise" r = KV(f); 8 = XKV/YKV; GUB r = f;

“We tempora.rCZy store the winning XKV and YKV;

DEFINE XTEMP = XKV; DEFINE YTEMP = YKV; Go to f-LOOP;- -

‘This completes al 2 the ratio tests except for the poss$bility

that s reaches its upper bound and becomes the key_uariable in
e

pZace of KV(k) for k 4 2.

LOOP-EXIT: If k = 2 and e = +m, go

. If k < 2 and e > l,LKV(k)=s;XBV=XBV-YBV; Go to RECYCLEJ;- -

Tn the latter. case the incoming varia.bZe s reaches its upper

bound and repZaces the key variabte in the same GUB. AcordingZy

we reset KV(k) = s and adjust XBV, Then by recycZing we go on

to price out next GUB. Othezwise we are ready for the pivot. I’

+ontrol = 1; NegJelta-Control = 1;

"SWAP KEY AND NON-KEYBASIC VARIABLES"

%kzpping is not needed in the following case. *’

If GUB_r = 0, go to UPDATE;'

“lf GUB-r > 0 , then i t i s necessq to ~ntsrohange k e y var@Ze r

trith another basic varkbZe t in the same GUB set as r. If

DEFINE t = MIN[i for i in I: GUB BV(i) = GUB r];- -

"We new map r and t."

r = t; KV(GUB r) = BV(t) ; XBV(r) = XTEMP; YBV(r) = YTEMP;

"We must now fix up the inverse. ”

R(r,*) = -SUM[R(i,*) for i in

"UPDATE BASIS, PIVOT'

XBV = XBV-YBV*e; XBV(r) = 8;

UPDATE: t??(r) = s; CBV(r) = 0; GUB_BV(r) = k;

R = PIVOT (R,YBV,r); XBV = PIVOT

‘The fun&on PIVOT pivots in the Zast

I :GUB BV(i) = GUB BV(r)]

(%BV,YBV,r);

c02wmt of the ma&ix

, (R,YBV) on rm r and returns the modified R cotwnw. , Having

pivoted we mm go bc& pd reprice the GUB and continue do-kg th<s

untiZ the GUB prices out optima& before going on to next GUBJ'

Go to MINOR-CYCLE ;- -

When the GUB prices out optimaZZy or s goes ta $ts upper bound we

price out next GUB by going to the recycle ZabeZ at end of the for loop

whioh ~QU fottows. "

. RECYCLE: L1 ; ff,?hd for k in L do hop"-* - -

“#-ter ptic$ng out a22 GUB ‘8 the for eae???ent r)eaohes $ts e n d

d&gWtedabOQe by 1 and controt moves to the next statement betm?”

If fieg-Del ta-Control > 0 s go to MAJOR-CYCLE ;

%. e. stc&ing the pricing over agai begkning with the first GW ”

“Lf Neg-Del ta-Control = 0, it means t3e are optimal and we

eCther inMate phase = 2 or tern&u&e w$th the optima2 soZut%onC”

"TERMINATE"

If Phase = 1 ,L2 if SUM[XBV(i) for i in I:BV(i)>n-m and ifm]>O then- -

j-3 Answer -Infeasible=; Go to FIN1 31

else 'set" Phase = 2; n-Control = 1; Go to MAJOR CYCLE 21 ;-m
a.

If Phase = 2,

L4 Answer <<Bounded=, GUB BV, BV, XBV, KY; Go to FIN1 41 ;- - -

UNBOUNDED; “Phase = 2 and 8 = +a”

DEFINE

Answer Wnbounded-, BV, XBV, YBV, s, KV, GUB-BY;
_-.

FIN1 : END "P,gramff

