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Abstract: The semantics of elementary Algol-l1ke statements is 
diBCU8sed, mainl¥ based on an axiomatic method. 

Firstly, a class of Algol-like statements ~.s introduced 
by generalized inductive definition, and the interpretation 
of the statements belonging to it is defined in the form of 
a function over this class, using the induction principle 
induced by the above detinition. Then a category of program 
is introduced in order to clarify the concept of equl valence 
of statements, which becanes a special case of iBaD07hilJlll 
in that category. 

A revised formal system representing the concept of 
equivalence of Algol-like statements is presented, followed 
by elementary metatheorems. 

Finally, a process of decomposition of Algol-like 
statements, which can be regarded as a conceptual canpiler, 
or a cOJatruetive description of semantics based on primitive 
actions. js defined and its correctne •• is proved fonn&l.ly, 
by the help of the induced induction principle. 
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1. Intro4uction 

This paper 1a intended to describe an axiomatic approach to the 

semantics ot ~ol-l1ke atatements, whicb is mainly baaed on the 

axiomatic treatments of the equival.ence of Algol-like statements by 

19araahi (1964). 

In Section 2, the claaa of Algol-like atatementa of our concern 

is defined ayntactical4', in order to clarity t.he scope of the present 

paper, Which claas is eaaentially generat~ by .imple variables of a 

type, go to atat_ents, label.a, aadgnment atatements with a set 

ot tunctiona, it-thea-else with a aet of predicates, aemicolons for 

concatenation, and parentbeses to ccapoae caIIpOIUld statements. 

Belidea McCarthy'l operator, namel.¥ ( ... , ) for if-then-elBe, 

scme notations different !rail usual onea will be introduced for the 

Bake at -..:onclseness, whicb will posaib~ help UI to apply our mathematical 

intuition, tboush the writer baa no intention of propoaing SUCh a 

notation tor a gener ~1 use. It JDUBt be noted that we use 'Jnly different 

B)'lllbola and do not change the syntax. (othervise, it mis;ht beeCllle 

uncertain that we are working on &l8ori thmic languages.) 

We uae a generalized inductive detinition in order to define the 

claas at our concern, which, although a little unnatural, constitutes 

a balis for defining and proving aCllle thinga related to that class, by 

the help ot the apparent induction principle induced by it. 

In Section 3, the interpretation (that might be seen to be already 

a ltiDd 01' aemantica) of the atatementa belonging to the abOve mentioned 

claaa 18 given, which ia done using induction on the claas and the result 
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hu a lIOIIlewtlat analytical appearance. Actual.ly we .ball define tbe 

interpretation a. a 1'unction on tbe clu. into a certain .et of part1&! twlcticu, 

and, presumably, one can prove everything about the.e Algo1-llke .tatements 

u.ing thia function. 

Scme re.ult. included in the work by Manna and McCarthy (1969) 

will be taken into conaideration, when we define the interpretation of 

conditional atatements. 

In Section 4, categories of a kind woae object. are Al801-1ike 

statements, the interpretation being fixed, will be introduced in order 

to clarify the meaning of the relations which have been UIIed in 

equivalence theories of Al801-like statement.s by Yanov (1958), Ig&r&lbi 

(1964), de Bakker (1968), etc. (McCarthy (196:5&) discUII.ed tbe 

equivalence of conditional forms, vbich Wall also related to Algol-like 

statements, becauae the latter contain cQlldit1onaJ. statements.) 

together with the correspondence between theae relations and the notion 

of correctness introduced by Floyd (1967) and refined by Manna (1968, 1969), 

which 1s also rel.ated to the dillcuaa10na by Hoare (1969). 

The relations :. defined by Igarashi (1964) becCllle x 
special cases ot isanorphiBIIUI in one of the .. categorie.. (On tbe one 

hand, these categories, whose objects are defined in Sections 2 and " 

are intended to serve as a model of the fo:nuJ. ayat_ de.cribed in the 

later sections, though we shall not enter into th1. point. On tbe otber 

hand, they can possibly be regarded &I a buia for further algebraic 

theories concerning programs, aa & brancb of math_t1cal theory of 

computation. ) 
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In Section 5, a formal ryattlll repreaenting the relationa X 

and ; vill be presented, which is a revision of the main fomal 

syste (L.4) in the paper by Igaraahi (1964), of Which the latter Yill 

scaet1mea be called. 'the previoua system'. Besides minor refinements, 

it is ao extended tl)at par+;ial f'unctions and partial predicates ma.y 

be allowed. in atatementa and that the ability of the formalism may he 

considerably improved, although it is incanplete (which is inevitable). 

Especially, Inference Rule 9 is nev, for which McCarthy's notion of 

hcaallorpb1.a of programs (unpublished) and Floyd's above mentioned 

work are taken into consideration u well u the obvioua relationah1p 

betveen program achemat., firstly treated by Yanov (1958), and finite 

autanata diacuaaed by Igarashi (196') and Rutledge (1964). This rule is, 

bmrever, .toW _ result of canpranise between capability and 

a:1mpl.ic i ty • 

Axiaaa related to go to stateents have been entirely reformed. 

In Sect ion 6, _ number of eleentary metatheores concerning the 

formal syst_ of Section 5 are proved. These met_tbeores show that 

any theor_ in t:le previous syattlll beccaea a tbeore &180 in the 

present syate. Therefore eacb of the ccmpleteness theorema for the 

prev1CJU ayat_ remains val1d, though we shall not enter into this 

point. 

It IIIWIt be noted that the 1neaap1eteneu of the formal system does 

not ~ that thl. formal1sm gives only an inadequate description of 

semant1ca, tor describing or defining the meaning of a program can be 

regarded as a rather special cue of equiva1ence. In fact, for any 

Al801-l1ke .t.t.eat A (in the aenae of Section 2) in which variable 



symbols xl' .•• ,xn occur and tor &n7 "fU'iable-h'ee ar1tblllet1c u.preaaiOl1l 

(constants in effect) c
1 
•... ,cn.d

l 
•••• ,dn , the tollcwing hoIda: 

Let el , ... ,cn,dl , ... ,an be the value. correapond1ng to 

cl '· •• ,cn,d1, ••• ,dn • reapect1~. '!'hen, A .top. and give. the 

t'inal values (il' ••• ,an to Xl' ••• ,xn ' "apective~, provided 

that the initial vUues of ~, ••• 'Xn are Cl ' ••• 'Cn ' reapectively, 

if and only if the formula 

is provable in th~ formal ayat_ ot our concern. (See Theorem 55 

by Il;arashi (1.964).) 

Thus the formaliam haa an ab11.ity no lell tban the explicit definition 

of the interpretation given in Section ,. (NUlel¥, 

J[A](cl' ••.• cn'~) ~ (~, •..• dn") if and onlf if the &bove formula 1s 

provable.) 

In Section 7, we shall define & spec1&! transformation of the Clall 

of Algol-like statement.s of ?ur concern. On the one hand, this 

transfonnatiOl'l can be regarded .. a repre.entation ot .. 

conceptual canpller. On the other bmd, it c!aaonttr .. te. how the meaning 

of e&eh statement eL, be defined in terIU of certain pr1Jnitive &etlans 

on a conceptual machine. (Therefore, this tranaformation itself might 

be regarded. as a , Cl>nstruct ive' det1n1tion ot .8I&Iltics.) 

In Section 8, we shall to~ prove the val1cU.ty of the above 

transformation, (which math_Ucally aeul8 that eICb prograa ia transto:mled 

into .. progr_ equivalent to it), in the 17ft- pruerrtecl in Section 5. 

On the one hand, this can be regat'decl .. a ldD4 of proof ot 
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campller correctneaa (at 1eaat lIIOat at the essentlal teatures of the 

proot at compUer correctness being included), whlch baa been done 

:firat~ by McCarthy and Painter (1967) tor arithmetic expreaa1ona, 

uaing 1Ddw:t1ora on expr.aliona. On the other band, thla can be 

regarded as a autticient proot ot the validity at the particular 

description ot aanantics in Sectlon 7 which 1s baaed on pr1mitlve 

actions. (Alao ct., Painter (1967) and Kaplan (1968).) 

Notation and. Tel'lllinolog,y 

We shall uae the toUow1ng notatims and terminology. 

1. ~. 

S,mbol fJ denotes the null. set. S+S t denotes set SUS' 

+ whenever sns'._. 'n-{O,1,2, •.• ,). 'l. (1,2, ... }. (O].fJ. 

It n ~ 1, tben en] - [1,2, ••• ,n} • 

2. Functions. 

We shall u .. the wrd tunctlon to mean a possib~ partial functlon. 

(n) Expre .. ion 

t : S .... St 

reaU as tollon. 

(1) tea) may or may not be defined, tor each a£S. 

(11) It tea) is d.etined, then f(a)£St • 

(i11) It a/.S, then tea) 1s undefined. 

(t2) Dam t - {alt(a) ls de~~ed) • 
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( (3) Let So s;; S, then tl So Ileana the t'uncticn S defined .. 

tollow.. (f: S - S') 

DaD g .. Dan f n So • 

gCa) ~ tCa) tor each a£Dan g • 

( (4) We note that tl DCIIl t i. a total. tuncticn tor any t. 

( (5) f" g meana that f and g are defined on the lame .et and 

that flnom f .. glnom g , wile the latter equality meana the 

equivalence of the total fUnction. in the Wlual aeRIe. 

(fG) If f: S - SI and g: S' ... S" , then got, or st, means 

the function h defined .. followa. 

h : 8 - 5" • 

Dom h = DOII1 r n (alrCa) € Dcm g} • 

h(a) = g(f(a» tor each a eDan g • 

(f7) If f: S ... S , then tt denote. the function fo ... ot 

(n times) • lim ~ means the fUnction g detiDeci .. tol..l.ava. 
n- • 

g:S-8. 

a E Dan g if and onl.:y it there exist. Ma E1l such that 

rMaCa) = t~+lCa) , 80 that tmCa) - tt(a) 

and n>M • 
- a 

M 
g(a) = r a(a) tor each a E nom g • 

6 
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(tS) It t: S ~ S' and g: S .. S' ,then t+g meana the :f'Unct1on 

h defined as tollow •• 

h : S ~ S' 

Dam h .. (DaD f - Dan g) U (Dom g - DOIII f) 

u (ala € nom f n Dan g and tea) = g{a}} • 

{

fCa) 
hCa) '" 

g(a) &€Daag-Danf. 

3. Predicates 

We shall. uae the yord predicate to lIlean a. po.sibly pa.rtial pr~lca.te. 

We shall write pea) .. T, pea) - F , and pea) - u , to mean p(a) 

is true, talae, and undefined, rupect1 ~. For -.ch pred1ca.te p, 

Vp denote. the total predicate detined by 

(VpH·) • {: 
pea) .. u 

otherwise. 

Similarly, for .-ch function t, Vf denotes the total predicate 

detined by 

= 
{

TF (Vt)(a) 
tCa) is Wldetined 

othel'V1.e. 

(Here II and. t are assumed to be unary and defined aD a. certa.1n tixed 

strt, tor liIIIpl1c1ty'. sake.) Thu (V r)(a) means..., .. tCa) uaed 

by Manaa and. McCarthy (1969), while we aba.ll use .. tor varioua 

pu'poae. in the preaent paper. 
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4. Truth Table •• 

Since we are going to treat partial predicates, we have to 

define the meaning of logical connective. .." /I. , V , :::>, and _, 

for three-val.ued. logiC, for which we ,hall Wle the truth tables by 

t.uka.levicz (1941) denoted by r t ' and that by McCarthy (19Ei3b) denoted 

by rm' r t for the value U 1. a, folJ..on. 

(-, U) = U • (u /I. T) .. (T " U) = U • * (U "F) c (F "U) .. F . 

(U " U) .. U • * (U V T) • (T V U) .. T • (U V F) = (F V U) = U • 

(U V u) = u . * (U ::J T) .. T. (U ::> F) ;;;; U. (U ::J U) '"' U • 

(T::J U) = U. (F ::>U) .. T. (U. T) = (T. U) .. F • 

(U :; F) = (F § U) .. F. (U E U) .. T • 

In f71l the asteri.ked member., the rl!lllA1ning lII_bers being the 

same, become as follows. (F" U • F and T V U • T.) (U" F) • U • 

(U vr) .. U. (U::J T) - U. In order to indicate the truth tables conal4ered, 

l.ogical connective. Yill be auffixed by rt or r'1ll' ThuI, for instance, 

"r (U,F) = U • 
m 

5. structures. 

By a structure R we shall mean a collection of :t\mctiona and 

predicates defined. on & aet, which 11 called the under~1ng set of iii. 

and denoted. b~ IRI I together With that set. In the present paper 

these functions and predicate. are poaaib4r lI&rl1al. We ah&ll. conaldel' 

two atructure. (or t'WO similarity cluse. iltrictly) iii. and ~ in 

tbe text. 
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2. Formation ot Alg01-like statenant. 

Al.phabet 

Let t, V , , , and R be four disjoint sets whose elements 

are cal.l.ed. label 8YJIlbo1B, variable symbols, function 8YJIlbols, and 

predicate symbo1a, respectively. The set ,. is the union of disjoint 

(0) (1) ,(n) sets, " , ••• , and the el.ement s ot are called n-ary 

function symbols. S1Jnilarly, p is the union of disjoint sets 

p(o) ,p(l.) , ••• , s.nd the el.ements of p(n) are called n-ary predicate 

s;ymbols. The al.ph&bet of Algol-like statements consists ot all the 

dements of t, V , , I and P, together with the following special. 

symbols. 

A -1 := - , ) 

In SaDe cues described bel.ow the logiCal. symbols: 

will be alao contained. 

Algo1-like statenents 

Algol-like statements, or atatements, are defined together with a 

function denoted by ) - which senda each statement onto a finite 

sub.et ot t, by generalized inductive de1'1nition as follova. 
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Atca1c ~tatllllenta 

(al) A 1a an atomic .tatllllent. (A) - - fJ • 

(&2) For each c1£t, c: and ,,-1 are both atClll1c .tatementa. 

(0)- a ~. (a-1)- ~ {a) • 

(.3) For eeeh XEV and each YEV, X:. Y ia ad atallic .tatllllent. 

statements 

An atCIII.ic atateent is .. statllllent. Any other word on the above 

al.phabet ill • atateent if' and only it it is defined to be a. atatllllem 

by a repeated use ot the :tolloving rul.e •• 

(bl) If A and B are two atattIDents such that (A) - n (B) - • ~ , 

then AiB is a atattlDeDt. (Ajl) - .. (A) - + (D)· • 

( f • f· t:t ent d (n) (n) b2) I X.- 1"'" x .-:tn are n I It; em s an It €'$ , 

then x:c .(n)t
1 
... t

n 
is a atat8H!lt. (x :-Ir(n)t

1 
... :t

n
)· • ~ • 

(b3) If x:= f l , ... ,x :"" :tn' A, Uld B are n+2 statements 

such that (A)· n (B)- '" ~ and p(n)EP(n) , then 

(p(n)f1 ••• f n -A,B) 18 a atatement. «p(n):t1 ••• f
n 

- A,B»-. (A)-+(B)- • 

A statement which is defined to be so ~ b)' the above rul.es will be 

called a basic statement. 

(el) If (p ... A,B) ia a statement, then (-, P ... AlB) ia .. atatement. 

«.., P ... A,B».- = «p .. A,B» - • 

10 



(c2) It (p -0 A,B) and (q ... A,B) are two statement8, then 

(p 1\ q ... A,B) and (p V q ... A,B) are both statement8. The 

valuel of ( ) - are both identical with «p ... A,B» - • 

(c~) It (p ... A,B) i8 a statement luch that XEV occurs in p 

and neither Yx nor :;\x occurs in p, then (Yxp'" A,B) 

and (~xp ... A,B) are both statement8. The v&lue8 o'f ( )­

are both identical with «p ... A,B» -. 

Parenthele8 and CCIIIIlas will be uled alao auxiliarly to avoid 

syntactic ambiguity and to improve readability. Especially .(n)fl ... f n 
__ A (n) (n» (n) 
~ p fl···f are written .. " (fl, ••• ,f and p (f , •.. ,f ) , n n 1 n 

reapectively. Semicolon8 will be abbreviated if there i8 no po8sibility 

of Ulbigui ty. 

Rpelentation by ALGOL 60 

The stat.entl in the above lenae are intended to mean the statements 

in the 1.le of ALGOL 60 (Haur et al., 1960) as fGJ.J.ow8. 

A correaponds to a duaIny atatement (empty). 

a corresponds to i2 to a. 

-1 a corresponds to a: (dtmIIIy statement labelled by tJ). 

(p ... A,B) corresponds to if p ~ A ~ B. 

: .. , ;, ..." 1\ I and V mean the lame &8 in ALGOL 60. 

The parenthese8 used to avoid ambiugity either corre8pond to begin 

and ~ delimiting compound atatement. or mean the 8ame as 

in AIOOL 60. 

(A) - denote. the .et of l&bell standing in A. 
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Thue -.ch statement can be reprded aa a statement in the aenae 

of AIJJOL 60 in so tar aa neither Y nor S occurs in that. Thue we 

ah&l.l call a, -1 
a f such that x: .. t is a statement, and p 

such that (p ... A,B) i. a statement, reapeetively, a go-to, a 

labelling, an arithmetic expression, and a Boolean expression. 

Nota.tions 

Statements are denoted by A,B,C,... • Aritbnletic expressions and 

Boolean expreaaions are denoted by f,g,h, ••• , and, p,q,r, ••• , 

respectively. Label symbols and variable symbolaare denoted by 

a,'f,u, .•. , and, x,y,z, ••• , respectively. We shall use a nl.lllber 

of functions and predicates defined on the statements Which deacribe 

elementary syntactic properties. The tunctlon ) - , being & typical 

example, YU already defined in the above. All other 1\mctiona and 

predicates listed below can be eftectively defined in a similar manner. 

1. Sets of Labels. By an occurrence of aEl in a atatement A we 

mean only such an occurrence as is dirterent trcm the occurrences in 

-1 the statement. of the form a occurring in A. 

A+ {ala occurs in A} • 

A- {ala-loccurs in A} 

A~ = A+ IJ A- • 

A++=A+.A-. 

A-+ .. {alC7EA+ n A- and a-l occurs text~ earlier thaD an 

occurrence of a in A} • 
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+ 
Thua A mean. tbe set of l&bela lIhicb are uaed for the purpose ot 

del1gnat1ng the de.tin.tiona of the go to statements occurring in A. 

++ 
If A f. ~ , then the control ma.y leave A by executing a SO to 

statement whose destination is not within A. Such 8. go to statement 

-+ 
will be called an exit of A. If A .. () , there are no loops in A. 

2. Set. ot Variables. 

and 

v(A1 - {xl x occurs in A} , 

v(t1 - (xix occurs in t) , 

V[p) '"' (xix occurs in p) • 

L(A] .. {xl a statement ot the torm x := r occurs in A} • 

R{A] i. defl.ned by induction &a tollows: 

For each atClllic statement SUCh that V(A) .. ~ , R{A] = ~ • 

R(X:- t] '" Vcr) • 

R(AiB] - R{A) U R[B] • 

R(p -A,B)1 = V[p] U R[A) U R[B] 

Thus L[A] means the .et ot variables Vhose value. may be ch.&nged by 

tbe exet:Utlon ot A, Vhile R[A] means the set of variables whose 

value. lIII;Y aftect the course ot action and the results ot executing A. 

3. Substitution. Let B1,. ",Bn tUld A be n+l statements such 

that Bi occurs in A mi tilDe. (m
1 
~ 0) , Vhere tbe occurrences 

may be overlapped by each otber unle.s they are not the slllle. Let 

!i, je[mi
], denote. tbe j-th occurrence ot B

1
, where the order is 
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defined by the poait1on at the occurrence ot the tint aplbol.. Lat 

A.- B [C_, ••• ,C ] 
-~l"'" n i n 

or (adtted ca-u) 

A- B [C l ,·· .,e ] 
-~l'" n n 

is meant an arbitrary stateeDt that ie obtained. trc. A by substituting 

~h(i,l) Ah(l,l i ) 
Ci for Bi , ••• ,Bi ' tor each ie(n] I with the toJ.low1ng 

restrictions: 

(11) 1 $h(i,l) 

(111) The occurrence 

< ••• < h(i"1) $ -1 • 

Bh(i,j) aDd .. h(l' ,j') 
i B1, do not overlap each other, 

for any distinct pairs (i, j) and (i ' ,.1') . 

(iv) The result of the substitution is a stat.ent. 

A.- B tc
l

, ... ,C ]0 
-"Bl ··• n n 

Is meant the unique atat_ent that is obtained in the cue that '1 - mi I 

for every ie{n] I in the above, vb1ch does not ~s exiet because ot 

the restriction ct)DCerning overlapp1ng and the requir_ent that the 

result should be a stat.ent. 

We shall usp the sam8 notation al.ao tor aritbmetic expreeaiona 

and Boolean expressions. 

1.4 



4. £S!!. Let CJ1, ••• , CJn be arbitrary diat1nct elalent. of 

At _ A++, and let "1' ••• ,'T
n 

be diat1Dct UId. 'TiJAt., for arry 

h(n) • Tben 

1. called a cCIW of A. It -'1. 1. a capy of A, and, ~ 1, a 

copy ot '1.' then ~ 1. al.ao called a c~ of A. Copies of A 

are denoted by A' ,A" ,A"' , • •• • 

5· Go-to and LabeJ.;Linl. 

A bepn' With a l.abel.l.iDs, it A 11 ot the form a -~ • 

A .u with a so-to, if e1ther A 1. ot the form BCJ or A 11 

ot the torm (p - B,C) and B and C both end with go-to •• 

An ocCU1"NllCe ot atat_crt B in A i'Feeedeel by a go-to, 

(equ1val.tIlt~, B 1. preceded by a go-to in A) , it A 

11 ot the torm C A(aB] • 
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By an 1Dterpret&t100 of .tat_eat. we .ball mean (U, K,a, rO, J) 

defined u foJ..J.ar.. 

Let U be. sub.et of V, ~ the let ot at.t_ent. 

(A\V{A] S U) , and K • biject10n (i.e., 1-1 and onto f\mQUon) 

such that 

+ 
where I 1. eitber [.], tor an ., or 71 in accordance with tbe 

card1nal1ty ot U. Let r denote 1+ h.} , where z. 18 & nev :t1xed 

.~bol. 

I.e\. " be & atructure that ati.tiea the following 

conditioo •• 

1. III ~ ~ . 

2. For.-ch .Cn) E7(n) , an n-&ry partial function denoted by {n) 

11 den-ned. I.e., 

}. For.-ch pen) Ett(n) , an n-ary partial relation denoted by p~n) 

i. det1necl. I.e., 

The .u.ent. ot \1.1 Yill be deDated by ~, bl , cl' ~, b2, c2' ••• • 

'l'b:uI by I w1l.l. be meant the total !Unct1on. by Ybich .(n) ~ {n) 

IUId pen) ~ ~n) .. well. .. the atructurt= it.elt, Itrictl\Y. 
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:r..t rO be a .et of truth table8 tor logieal eonnective.. Let 

\.11 denote \1\·Xi', i.e., 

\1\ )( •.. )( \1\ )( (tt-{r.J) , 
-....---

• t1Jae. 

it U 1. tinite. The dement. ot \.&\ vUl. be clenote4 by a, b,e, •••• 

For each a( \'&\ .uch that 

a = (1.1.' ••• ,aa,a) 

and ee.ch U(U, au denotea &K(U) , and ax clenote. a. We write 

(a)u inatead of au floequently tor the readability'. lake. If U 

is infinite, the infinite cl1menlicnal direct product \I\I Yil.l. be 

Uled instead of \R\I, naaely • i. eonsidered to be infinite. 

The total tunetion J defined bel.Ow .enda eacb atateent A~ 

onto a partial fUnction, .r[A], f'raD 1.11 into \.&\. .r[A] wUl. 

be written u A.&, tbua 

Two partial f\mctiona, one .ending ee.ch arithmetic upreaaion t 

sueh that v( f] S U onto a partial tunetian 

and the other lending each Boolean expre .. ian p ncb that yep] s U 

onto a partial predicate 

P,b: \.&\ ~ {T,F) , 

1.7 



will be defined .1JIultaneo1.l~ tor tbe reedabU.ity" Ake. 

For a partial t\mction 

«p : \,,\ ... :.&\ , 

q; denote. the tunction defined by 

and 

q; : \.&\ ... \.&\ 

q;(a) • {a 
«p(a) 

Det1n1t1on 01' : 

otberv1.e. 

Tbe definltion of J[A) I 1.e., A", given in accordance with 

t.he lut l'\Il.e which .hould be Wled in order to define A to be a 

.tat-.ent (SectiCln 2), which define. J(A] tor every Ad
U 

eftective~ 

by the lnduction principle induced by the det1n1tion 01' statement., ia 

&I tollow •• 

AtCllllc statement. 

(al) A = A • 

A,,(a) .. a tor any ae \,,\ • 

Hereafter tbe pbrue like 'f'or any &E\..tI' will be CIII1tted. 
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(&2) (1) A"' a • 

and 

x 
u 

A~(a) = a, otherwile. 

(11) -1 
A "" a • 

and 

A~(a) = a I otherwile. 

(a3) A ~ x := y • 

"" a • y 

and 

St~tement8 (non-atomic) 

(bl) A =- B;C 

19 

,it ,=L; 

, it -x=a; 

x 

U-Y. or 'Y. 



(b2) 

and 

u = x 

u£U-{x) or u = X 

A~(&) z a, otherwiae. 

~(&) .. 

a , 

aX = z. and (p(n)!l·· .tn)~(a) = F , 

or a a:-
X 

undefined, othend.e. 

20 

if' a = z. 
X 

(1) 



(C1) A = (-, P ... B,e) • 

(See Section 1.) 

A~ la defined by the .. e ru1e as (1) 01' (b3) above except; 

that (p(n)f1 ••• fn)~(a), occurring twice in it, ahould be 

replaced by (-, p) ia) • 

(c2) (1) A = (p A q ~ B,e) • 

A~ ia defined by the aame ru1e as (1) of (b3) above 

( (n) 
except that p 1'1" .fn) ia) shoul4 be replaced by 

(p " q) ~(a) • 

The case A = {p v q .. B,C) as yell .. the cue (C3) will be 

omitted, for it suffices to define (p V q) ~' (yxp) ~ , and 

(o;xp) ~ Simil.ar~ and use (1) .. the above. 

Intuitive Meanins of J 

Practical..l¥, J[A], name~ A~, baa the foll.owing meaning. 

We consider a canputatlona1 process denoted by (A,a) as follon: 

1. ::::uppose 

a = (~, ... ,aa' a). (s may be infinite) 

Assign the value ax. 81(X) to the variable x (identified with 
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the variable ~bol x) u the initial value tor each XEU. 

2. Execute A frcm the point labelled. by (1 I while the lettm08t 

point ot A is chosen u the entry if (1. r. , and, if' (1~A-

then ve consider A has no ettect (1.e., identity transtormation). 

Then thetollov1ng hoU. 

It the process (A, a) terminates at the exit whose destination 

is or , giving the final value bx to the variable x tor each X€U, 

then 

(J[A](a»x = bx tor each xeU 

and 

(J[A](a» = T , 
X 

and vice versa. 

It (A,.) tendnatel at the normal exit, i.e. the rightmost 

point of A, then 

(J[A](a» = r. , 
X 

while the relationship concerning the values remains unchanged, and, 

it (A,.) does nat terminate, then J[A] i8 undefined. The converse 

are also valid. 

Choice of' rO 

As studied by Muma and McCarthy (1969) I the choice of r O i8 an 

important problfllll. We sball &l8UIIle r t as the foundation hereafter, 

o unless ve apecifY r . BOIIever, it IIIU8t be noted that all the axicm 
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Icbalata ot the tomal iy8t-. prea.ted in Sectica 5 are va114, which­

ever let ot tl'\lth tabl.e8 we IU¥ ue. Frca the PftCtieal. point ot viw, 

the proce •• ot moat 1mpJ.ementationl are related to r"l !"ather tba& to r t . 

On the other hand, they make no difference in 10 tar ... all 

t~n) and p~n) are total and neither V nor ~ il involved, which 

ia alao the uaual cale vhen we conaider actual AlDOL 60 prosraa which 

contain no recurlive nalls ot procedurel. 

Flmction J ia an extenaion of J 1 for T 1. -stat_enta and J 

for T2-stat-.enta (Igarashi 1964). For instance, J(A](a) defined 

above ia identi~al with 

The reader may notice that IIlI in the prelent paper corresponds to .& 

in that paper, while ~ in thil paper ia uaed in a different lIlHIliDg. 

2} 



4. Cat!lO!7 ot ProtaP! 

Prosr_ iD the General Sense 

It letIU to be convenient tor us to cO!Ulider more general progrlllllJl 

u the baclrCl'OWld. tor the treatments ot the propertiel ot Algol-11ke 

ltat_errtl. By a program, let us mean a partial. tunction trCIII an 

arbitr&ry let to another set together with its denotation. This 

detiDition doel not exclude those partial tunetionl which cannot be 

detiDed ettective~. Instead, we lhall. describe it explicitly whenever 

the det1nabil1ty or conatructiveness matters. 

ProgrllU will be denoted by A,B,C,... • For each A, J(A) 

denotes the partial. tlmetion corresponding to A, and G(A] the graph 

at J(A) • Let D be an Algol-like stat_errt such that D~, 

and (U,K,I,ro,J) be Ul interpretation. Then the pair (D, (U,K,I,ro,J» 

is a}U"OgrUl, tor a unique partial. f'unction J[D], namely D~, is 

detel'ld.ned by it. Thererore we .ball usume the interpretation il 

riXed hereafter, 10 that each D~ represents a unique program. Thus 

we idmtity an Alsol-l1ke Itatement with the program represented by it, 

and the let ot auch programs will be denoted by f1I • 

What we sball do tirstly is almost the same u considering a aub­

catqory ot !DI (the category or sets) whose objects are graphs of 

partial. tuncticma. The CJI14r ditterence 11el in that the denotationl 

are diat1np1lhed in OIU' tratmenta. For inltance, we do not say A 

IIDd B are identical. nor A. B , ewn if' J(A] - J[B] , lihUe we may 

A¥ A and B are iaClllOrphiC. 
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Category Pr 

Eacb pro£l"Ul will be called an object ot category Pr. '!'be cluB 

or all tbe object., naely progreu, 1. d.emoted bJ' Db Pr 

:pa1r A and B belonging to Ob Pr I R~(A,B) denote. tbe .et ot 

triple. ot tbe tom (A, t,B) .ucb that 

t : G[A) ... atB) 

and that t 11 a ~ function. Tbe eJ.eent. ot ~ (A,B) are 

called aorph1.. ot Pr. It tbere i. no po •• ibil1 ty ot ccatuiOl1 

the morphi_ (A, t,B) will be abbreviated by t . We trequently 

write t: A - B or A ~ B inateK ot tEH~(A,B). It A! B n C I 

then (A,'T\e,C) E R~(A,C) i. derined u the cC!!jROdUOI1 ot aorphi .. 

(A,e,B) and (B,1\,C), where 111 in (A,1ll,C) deaotea tbe c~it1011 

or function. e M4 11 in the u.ual .en.e. Let i~[A) denote tbe 

identity tuneUon ot GtA) onto it.elt. The JIIOl1Ih1- (A'~[A),A) i. 

called the identity JaOrpli_ ot A aDd 1. denoted br lA' 

We .hall ••• that Pr latiatie. the axicaa ot catesolT u tol.l.on: 

1. Allociativity or CC!!RO.itiOl1. It 

tben tent) - (t'T1H &I morphlS1U. 

2. Identity. If' A! B , then e - llA. It c!l A I thea 11 - lA11 • 
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}. It tbe paiN (-'1,B1) _d (~,B2) are d18t1net, then 

H~(-'1,B1) n H~(~,B2) - _ • 

Cateaorx .,.r. 
Let Pre. denote the f'ull subcategory of Pr such that Ob Pr" 

c~btl ot ~ thOle programs A luch that 

Daa(J[A)) S li'l , 

where 

1;1 - {alaE!,.&1 _d aX - z.} • (See the below modification of J.) 

For.-eb A€ Ob Pr" and B E OB Pr" , 

Haa (A,B) - H~(A,B) , 
Pre. ,~ 

by definltlon (ot tull subcategory). 

We caulder a map: 

Ob Pr .. Ob PrJ. 

whicb aenda..ch AeOb Pr onto A E Ob Pr" such that 

" 

That 11 to M;J we lball torget caaputational procell.s starting fran 

tfIf:/ entry different trClll the normal one, nam~ the leftmost point, if' 

A 11 an Algol-11ke program, modity1ng J[A] into J[A] IIi' I . 
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" Here&f'ter we aball be coneeroed vlth Pr , ao that A,B,C, ••• 

will be underatood.. "A, .",B, "C, • • • it the toraer do not belong to 

Ob Pr". AH*rent~ the morphia (A,t,B) ia & lDOIlCIIlOl'l!h1amJ 

!Rimor;pbiam, or iaan0rphiam, according .. the tunction t ia univalent 

(1-1), onto, or univalent and onto. We aball write t: A :. B or 

t 
A =- B to expreaa that t: A - B is an iaaaorpbiam, and A:' B to 

express that there is an iaanorphiam fran A to B, NUIle~ A and 

B are isomorphic. 

Value-Preserving Monaaorphiams 

We pay special attention to such & monClllOrphi_ t that hal the 

following property: 

Suppose t : A - B , and the tunction t: G(A] .. G[B] aencla 

(a, b) E G(A) onto (c,d) £ G[B1 such that 

a = c 

and 

b = d for each uEX + {xl, u u 

for a subset X of H, for any &E I; I . 

In such a caBe, t (as a morphi_ and .. a tunctim) will be said to 

preserve the values of X, or to preaerve X, and we ahall f'requent~ 

write tx inatead of t in order to indicate tbat t preservea X. 

Moreover, if the choice of t it.eU doea not matter, we write A f B 

instead of tx: A - B. Similarl-y we aball trequent~ write 

A ::. B or A:' B instead. of ~.: A ~ B , and A; B inatea4 ot 
X X -X 

tu : A =- B J that i8 A IT B • 



(i) A f B f C 1arpliea A .. C • 
xnY 

(11) 'xt ." 1arpllel that t preserves X n y • 

(i11) tlx. TIy 1DIpliei that the function t I Im tx preserves X n y • 

(iv) Tlylx. lA implies that ~ and 'T1 both prelerve XU Y • 

(Y) In aD arbitrary category c., a morphiam 1 il an isanorphilllll 

it Ul4 ooly 1t there exists a morpbiam FJ and c,d € Ob C. such 

that 

-1 
Sw:h & ~ 1s unique and ~ denoted by 1 

Propo!1t1on t. It A X B and B"/ A , tben A X ih B • 

l!:22!. Ir' ut1D1tion ot X, there exillts tx: A ... B. Then, 

lx(a,J[A](a» • (II.,J{B](a» tor any 11.£ DomJ(A) , 

becau.. the I'iIbt aide is tbe unique element ot the torm (a, b) 

bel.ong1.ac to O[B 1. S1milar~ there existl 1iy: B .. A such that 

1lr(a,J[B](a» • (II.,J{A)(a» tor any 11.£ DanJ[B) • 

Tbua Ix 18 - iaClDOl'Jlbiam, tor 'Ilrlx"' lA and tx TIy .. ~ 

(ct. R.ark (v». Bea1del, t preaerve. XUY , by Remark (il/'). 

Q,.E.D. 
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Propo.it1on 2. A i B 1t aDd 011~ it A f B &Del B i A • 

Proat. Sufficiency: Apparent tl'CII PropolitioD 1. 

Hece.lity: It A i B , there exilt. ~; A - B aDd 

C1 
: B - A IlUCh that ~-lCx" lA (ct. R.ark (v». ~-l 

pre.erve. X, by Remark (iv). 

Q..E.D. 

For each A£OI. and B£tI! , the.e value-pre.erving JlllCaallOrJIh1--

or i.CIIlOrphillll18 have the practical lllean1np lllted bel.ov. Tbe reader 

IIlI\y recall that A 11 underltood Whenever A deDOte. SUCh a progrUl 
Co 

that Dan J[A1 S 1.&f..1 is not .ati.fied. 

1. Relation X • 

The tol.l.aV1ng relat10nahlpa are equivalent with each other. 

(b) Dan J[A] s: Dan J(B] , aM tor any aE DCIIlJ(A) , 

(J[A](a»u z (J(B](a»u tor each uEX+ {xl. 

(c) For each aE 1.1"1 , if' the procea. (A, a) (.ee SectiOl1 3) term1na.te. 

with the reault b, bE 1.&1 , then the proce.. (B,a) tendDate. 

with the reault c .ati.fYiDs 

bx '"' ex tor each xEX, 

name~ the value. ot variable. coincide variable-vi.e. aDd 

b .. c 
X X 

namely the deatination. of'the exit. are identical. 
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2. Relation i . 
The relationship A i B h.ol.Ia it and only if' the tol.1.ow1ng 

condition. are .aUstied. 

It (A,a) te:m1n&tes, then (B,.) terminatell tor any &4&1.1 • 

Bea1de~ the de.tinations of the exits are identical. 

3. Relation i . 

The tol.J..ov1ng relationlhips are equivalent with ~~I other. 

(a) Ai B • 

(b) A f B and B X A , or, by Proposition 1, A f B and. B i A • 

(c) Dam J[A] - Dam J[B] , 

and, tor any a€ DaD. J(A] , 

(J(A1(a»u - (J{B](a»u tor each ud+ (xl. 

(d) The proce.. (A,a) terminate. it and ~ if' (B,a) terminates, 

and the .. e con41ticma as l( c) above are .atlltied by the results 

4. Stroas Equ1 valence and Ordering. 

Tbe relationship A '; B holta if and only it A and B are 

at!?¥lX equivalent in the usual. sen.e. The relationship A U B holds 

it and oal,y it J[A) S J(B) in the natural. ordering ot partial. tunctionl, 

n .. ~ cp S t it and oal,y it cp i. a restriction of' ... A;; B it 

IoDCl only if A i1 B and B U A , which are still weaker than J[A) .. J(B1 



in the original aense ot J(A] and J(B] , being ~val.ent to 

J[ A) • J( B] , i.e., 
I. I. 

5. Correctness. 

First~, the concept ot correctnesa ot prosr- introduced by 

Floyd (1967) and extended by Manna (1969) vill be expla1ned in our 

notation so that the CanpariBon 'becomes euier. Manna's de11nitiClls 

are as f'ollavs: 

Program A i, .a1d to be part1al..ly correct v.r.t. predicates p.& 

and q.& if and ~ 1t 

pia) - T implies q~(J[A)(a» so T , tor aDy ae DaIlJ[A]· (1.) 

Program A 18 sa1d to 'be COllect v.r.t. P.I and q.l it and ~ 

pia) ;a T implies a€DomJ(A] I 

besides (1) above. 

Let 6 denote either a or· a-la tor an arbitrary a 8UCh 
+ 

that alA -. Then, apparent~, (1) and (2) are equivalent to the 

following relationships in this order. 

(p .. A,e) ~ (p - A;(q - A,6),6) • 

(p .. A,a) ~ (p -. A,a) 

(2) 

(2') 



6. Representationa of X and ~ by ~ • 

Since we aba.l1 conaider • formal. system which represent8 (although 

incompletely) the concept of equivalence, n&IIlely relation8 X and ';;, 

we 8hall aee that X and X can be defined by ';;, here. We shall 

u8e, hO'fever, X as well as ';; in the formal system because of its 

practical applicability. 

~ ••• x 
Let I: n ( f'l' ... , f' n) denot e the statement 

:= f • 
n 

Relationship A i B holds if and only if 

t
l 
•.• t 

A;I: m(c, ••• ,c) 

for an arithmetiC expreSSion c 8uch that V[ c) "" ~ and t l' ... , tm 

such that {t1, ••• ,tm) "" V[t.] UV[B]-X 0 

Relationship A tB holds if and only if 

","here the following conditions a.re sati8fied: 

fV1,. 0 .,vn} n (V[Al U V(B] U X) .. ~ 0 

-1 -1 
is a caw of Aal .. oak (see Section 2) 

( -1 -1) It t II. 
such that Aol .. oak n B = 'P 0 



Inductive Limit. 

The concept ot inductive lbdts 1a uaetul. in Pr and Pr" 0 

For inatance, we can trequent,q uae the toJ.1ow1ng metbod in order 

to prove A Z B • 

We tind two sequences ot progr.s (Ai) 1£11 and (Bi ) iEl1 

Vi th morphisms such u 

eij 
: Ai ... Aj , 

~j : Bi .. Bj , 

(A,ti> • lim (B1,~j) , 
~ 

tor each lE'1! and j£'l'!. This is a sufficient condition tor a t 

IUch that t: A ... B and that t prelerve. X to exiat. It p and 

q contradict each other, then (p ... A, (q .. B,6» 11 a!!!! ot 

(p ... A,ll.) and (q ... B,6) , in the len.e ot the tel'lllinoloSJ of eategO!7', 

being a special. ease of inductive Umit, were l>. is a It&t.ent ot 

the form a -la luch that a/At U Bt and A++ n B- • A- n B++ • ;, • 

This fact may be considered ... a juatlt1c&tion ot writing p.A+ poB 
instead ot (p ... A,B) convenien't,q used in the proof ot the ccaapletene .. 

of L.~ by 19aruhl (1964) 0 



5. Formal System RepreaeatiDg the Egu1 val.enee of statements 

Well-formed Formula8 

For tvo arbitrary Algol-11ke statements A and B belonging 

to r:1
U 

and an arbitrary subset X of U, 

A';B 

and 

are well-formed f'ormu.l.aa, or wf'fs. (cf. Intended Interpretation be1.ow.) 

Substitution Rule. 

In the f'oll.oving schemata of' axioms and inference rules, &rbitrary 

statement. i variab1.e symbol.a i label. SJDlbo1.8; arithmetic expressions; 

B001.ean expressions; and sets of variable symbol.a can be substituted 

inpl.aceot A,B,C, ••• ; x,y,z; 0',0'1"'" T,Tl , ... ; f,g, ... ; p,q,r, ••. 

and X, Y,Z, ... ; respectively, provided that the results of such 

substitution. constitute vf'ts, and that all the restrictions imposed 

on the schemata, :1lIImed1ately following each schema, are ful.filled. 

An arbitrary cagy of the statement that is substituted in place 

of C can be IUbstituted in place of' C t in AxiCl!l 12; any other 

occurrence of subltitution operator indicated by brackets should be 

treated sim1l&rly; and an arbitrary statement ot the font 0'-1.0' ~an be 

substituted in pl.ace ot 6.; with the same proviso as the above. 

A schema ot 'lffs 8(i) in vbich i occurs as index ot statements 

shoul.d be replaced by the liDe of' the form 



8(1) ••• 8(v) 

before any other substitution, where vt<11 and v sboul4 be subatituted 

in place of n oec~ing in the reatrictions. 

The symbol I stands tor a nul..l.ary predicate 8)'IIlbo~ such tbat 

~ .. T. SiJllil.&rly 0. = F • 

The fomulas in the sense of predicate calcuJ.us tbat are obtained 

after the substitutions of the symbols f,g, ••• , p,q, ••. and that 

constitute a part of l"estriction, except those expressions containing 

set-theoretic symbols, should be inter.preted in one of the follaving 

ways: 

(I) Let (J be a formula (in the sense of predicate calculus) tbat 

contains exactly n variables such &8 xl' ••• ,xn • Then, we conSider 

that the restriction exprelSed by (J is satietied if and only if 

(II) We presuppose an axian system r (or theory) tbat is consistent 

(and semantically canplete, preferably) and that contains all the 

symbol.s belonging to , or P and the two symbols and •• Then, 

we consider the restriction expreseed by (J, &8 above, is satisfied 

if' and only if 

~ (J • 

In the both methods, l.ogical connectives oecurring in the reatrictioD8 

before substitutions should be read as th~ connectives of r J. ' and 



cp ... interpreted u either both lides are de:t1ned and equal., or 

both aid.s are undefined. 

Since semantic~ complete axian systana do not al.vays exist, 

we have to note (1). 

Axioms and Theorema 

Any wtf that ia & reault of substitution into an axiom schema is 

an axiom. An axiom is & theoran. If 

is a result of substitution into an interenee rule schma, and 

'1'" "'n are theorans, then , is al.ao & theorSl. All the theorems 

are defined to be so o~ by th.se rules. We sb&ll f'requent~ write 

r , 
to mean that , is a theorem. 

Asterisks are uaed to empbaaize a certain restriction, tor the 

readabi~"!.ty'. aalte.l so that they are not part. ot the toma.l system. 

+ + 
Index like (Ia ), (IIlm ), etc. indicates that the aDe axiom or inference 

rule vu used and indexed by 1&, lIm, etc. by 19araahi (1964), for the 

convenience ot comparison. 

Special SUbstitution 

In the toll.alf1ng schemata ofaxiOllUl and inference rules, any 

occurrence ot '" can b. repl.llCed by if, and vice versa. 



Axim l.(a) 

(b) 

Adm 2. (a) 

(b) 

Axian ~. (a) 

(b) 

Axlm 4. 

Axian 6. 

Axian 7. (a) 

(b) 

"leu and Inference Rul.e. 

(AB)e ;; A(~) • 

a«AB)c) ;; a(A(BC» • 

-1 _ 
a ;; h • 

-1 _ 
aa ;; A • 

0;""..- • 

x := x '; A • 

x := f;A;x := g ;; ~[f]O;x := 8x[f1° • 

A++ '" fJ • 

L[A1 n (V(f] U {x}) :; • 

x :=f;AiY :=g ';; x :=f;Ax(f];y :.Sx(f1 • 

x and y are distinct. 

L[A] n (V[f) u {xl) '" ¢ 
xtV[ f) • 

+ (Ie) 

+ (Ia ) 

+ 
(Ic ) 



AxiCIII 8. 

L[A] n x • f> • 

++ 
A = fJ • 

-+ ~ 
A ==" . 

Every f'unctioo or predicate 8}'IIlbol occurring in A represents 

a total function or predicate, b7 the interpretation. 

AxiCIII 11.(a) (p - (q ~ A,B),C) W (p A q -A,(p A ~ q - B,C». (llIP+) 

(b) (p - (q - A,B),C) • (p -~,C) . 

AxiCIII 12. (a) (p ... A,B)C '; (p - AC,BC') • 

(b) a(p -0 A,B)C '; a(p - AC,BC') • 

,kol -a,..., • 

Ax1am p. * x:-f;(p -A,B}. (p (fl -x:-fiA,x:-fiB). 
x 

* If XEV[t], then px[t] is restricted to be px[t]o. 

(p ~ A,B) '; (p - Ac{(p ... c,n) ],B) • 

L[A) n Vip] - f> • 



Ax1aa 15.(&) (p - x :.1',A) '; (I' - x :-g,A) • 

(b) (p .... x := 1', A) '; (p .... ~,A) • 

f .. g • 

pillq,. 

Inference Rule 1. 

A:'B 
X 

B:'A 
X 

Inference Rule 2. 

Inference Rule 3. 

A:'C 
X 

A:'B 
Z 

P ~ 91' . 

ZSXUY. 



Inference Rule lI.. 

(p ... AtC) i (p ... a,e) (q ... AtD) i (q ~ I,D) 

Inference Ru1. 5. (a) 

(b) 

Inference Rule 6. 

A:'I 
X 

(r ... A,E) i (r ~I,E) 

R[e) s: X • 

r:JpVq. 

A and I eo4 with so-toa. 

A aDd B occur in C • 

I eDda with a go-to. 

A OCCUZ'8 in C, or, A 1. 

e~ .. _An[A, •• • ,h] , where ~, ••• ,~ 

ve preceded by so-to. in C • 

C-H n A- - C++ n B- • fJ _ 



Int'erence Rule 1. 

* 

A i B* CJi A i C11B 

CA i CB 

++ - ++ - { ) 
C n A .. C n B • <11.' ••• , "n • 

A++ n C- e B++ n c- = ~ • 

If C enda with a go-to, or A and B both begin with 

labelling., then the upper lef't tonnula may be an1tted, 

provided that n > 1 

Inference Rule 8. 

* 

A = B* 01A = <11B 

C~CA[B] 

Same as above. 

Inference Rule 9. 

kdnJ . 
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1. '1'he.et s - {~l' ••• ' ~n} i. a non-.apty aub.et of A - , 

and a total tunction 

.. nela MCh a
1 

onto lt
i

• t, together with S, aati.tiea 

the tollav1ng condition.: 

s 2 S' 

and 

for each atS n S" , 

where 

ana. 

(i) Di i. of the torm (Pi - ail~i) and ~i i8 ot the 

~ i i 
tom (Pi ~ ai,e ) ,where ~ i. either Ti or 
-1 + + 

Ti "Ci such that Ti ~ A- U B- • 

(11) 1 n All the occurrence. of <71 in A, •.• ,A are within 

i the Itat.eat. ot the torm (Pi" ai' £ ) , or all the 

1 n oc~urreneea ot a1 in B, •• o,B are Within the 

- 1 1 .tat.ent. ot the fona (Pi'" ai' t) where f: IlUbj ect I 

to the ... re.triction aft ~ i above • 

-1 It A doe. not beain with &. labelling <7 aueh that atS, 

1 n thaD all of A, ••• ,A IIlUIt end with go-to.. It B doe. not 

beI1n With a la'bell.in8 a-1 such that att(S), then all of 



Intended Interpretat ion 

A vff of the form 

will be interpreted as the relationship A X B in the senae ot 

category prt. (see Section 4). Similarly, v1:f 

A';B 

will be interpreted as the relationship A -; B in Prt. • 

Intuitively, it seems to be obvious that ~ Ai B always implies 

that relationship A X B in Pr~ holds so that the above system is 

consistent. We shall not verify the consistency, however, in the present 

paper, for which presumably ~he constructive definition of J will suffice. 

(See Section 3.) 
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6. Elsen.tary Metatheorss 

+ 
Index weh as (Th. ~ ) shows the number ot the same theor8l1 

tor the formal systems treated by Igarashi (1964). The results at 

this section imply that ever.1 axian of L.4 in that paper becanes a 

theorem in the present Jysten and that for every ruJ.e of inference 

of L.4 such &8 

~1 ••• 'n , 
the tolJ..oring hoJ.da: 

It r '1"'" ~ ~n' then ~, • 

Therefore every theorem concerning completeness in that paper holds 

also tor the present f'omal ByEtem. 

Theor_ 1. (Ref'le' . .Lvity) 

f!:22!. 

AA sA (Ax. 2&) 

A=M (Inf. 1, (1) ) 

AsA (Inf. 2, (1) , (2) ) 

A=-A 
X 

. (Int. ~, (~)) 

Q.E.D. 
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Thua X satisties the equivalence lay formally, the ayBDetrlcity 

and the transitivity being Int. 1 and Inf. 2. 

Theorem 2. 

If ~ J\ i ~, ... , r An _1 X::. An' then r J\ i An ' 
1 n-l 

for any X such that X S n Xi 
idnJ 

Proof. A repeated use of lnf. ; and lnf. 2. 

Q.E.D. 

Theorem 3. 

r (0 ... A,B) '; B • (Th. 25+' ct. McCarthy (1963a) 

~. (0 ... A,B) '; (-, 1 ... A,B) 

'; (1 ... B,A) 

:; B . 

Theorem 4. 

If r p V __ P J then 
r 

r (p ... A,A) '; A • 

(Axian 16b) 

(AxianlO) 

(Axlan 9) 

~. (p ... (p .... r".,A),A) - (p" p ... A, ep" ...., p ... A,A» 

- (p ... A,CO ... A,A» 

(Axian lla) 

(Axlan 16b) 

'"' (p ... A,A) • (Theorem 3, Int. 8) (1) 



S1m1larl¥, 

r h p .... (p .. A,A),A) -= h p .... A,A) • (2) 

Thus, 

(p V .., P ... (p ... A,A), A) -= (p V .., P ... ~, A) 

«1), (2), Inf. 4) 

The premise of the theorem, Aldan 16b, and Axian 9 give the 

conclusion. 

Q.E.D. 

The pr_ise of Theorem 4, being the lay of the excluded IIl1dclle, 

hoJ.cla if p" 1s total and r is semantically caaplete. (See Section 5 

method (II).) 

Theorem 5. 

l- (P" A, (q ... B,e» ;, (p .... Il, (.., p " q .. B,e» , 

with the nme praise as Theorem 4. 

E!:22!. 

(p ... A, (q ... B,C)} -= h p ... (q .. B,C),A) (Axiau lO) 

;. h p " q .. B, (-, p /I..., q .. C,A)) (Axicm lla) (l) 

(p .. A,hp" q .. B,e» :; h p .. (..,p" q .. B,C),A) (AxicmlO) 

-= h p /I. .., P " q .. B, (..,P/l..., ("'P" q) .. C,A» (Axicm 11&) 

-= (.., p " q .. B, (.., P /I. .., q .. C,A» • (Axiom l6b) (2) 

statements (1) and (2) are identical. 

46 



The .. bove wo 1mpl1ea that Axial IIq ot L.2 in the previCJl1.8 

paper vaa dependent on othera. 

Theorem 6. 

If rr f = g , then 

l- x : .. f'; x :- g • 

Proof. A ~la1 ca.e of Axial 16&. 

Theorem 7. 

It h- p :;l f '" g , then 

~ (p .. x:=f;A,B)" (p~x:.g;A,B) 

Proof'. (p ~ x :,., f',1\) '; (p .. x :- g,A) • (Axial 15&) 

Rlght multiplying both aldea by A, 

(p ~ x:., f;A,A') .. (p ~ x :-gjA,A') ("dan l2a) 

By Inf. 4, 

(p ~ x := f;A,B) = (P'" x: .. g:A,B) 

Q.E.D. 

Theorem 8. 

If \rp.q, I-AiB,and I-cxD,then 

l- (P'" A,C) X (q ... B,D) 
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~. (p ~ A,e) i (p -t D,C) (Iat. 4, premi •• ) 

; (-, P -t C,D) (Ax1C1111O) 

i (-, P -t D,B) (Int. 4, premise) 

; (p -tD,D) (AxiCllllO) 

-: (q ... B,D) (Axiom 16b) 

By Theorem 2, 

(p-t A,e) i (q -t B,D) 

Q.E.D. 

Theorem 9. 

It ~ AiB and ~ A~B, then 

~. A l})eCial. cue of Inf. ,. 

Q.E.D. 

Theorem 10. 

Proof. A lpeCial cue of Inf. ~. 
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Tbeore ll. (Bupertluou. Labeh) 

It a/A+ U B- , then ~AB '; Aa-~ • 

~. 
_ -1 

II. ., a • 

aA '; (aA)lI. 

'; a(M) • 

By Int. 8 with (,) and (4), 

By (2) and (5), 

AB ~ A(t~ • 

Theoran l2. (Dl.eonnected Stat-.nt.) 

!!!:22!. 

(Int. 8, (1» 

(Axiaa2a) 

(Axiaa 2a) 

(Axiaa 1a) 

(Afiaa 4, prel.e) 

Alao the premiae implie. that A+ n (aB)- ., A+ n (a)- • fJ , .0 that 

A{dB) '; Aa • (Int. 8, (1» 

Q.E.D. 

(1) 

(2) 

(4) 

(1) 



'l'beorem ~. (Superfluou Go-Toa) 

L -1 
r A -.: A -1 {CJCJ 1 

a 

For any or, 

-1 _ -1 
"ra '" 'faCJ 

otherwiae, (1) 

because the f'onDUla. 

CJa ";; a ('l'beorem 12) 

and Inf. 8 give 

(aa) a -1 .. aa-1 

In!. 8 with (1) givea the concluaiOD. 

Q.E.D. 

+ ... 
It ~ Aa '; BO' f'or a a such that CJ# - U B- , then 

~ A" B • 

Proof. 

obtain 

Ri8bt 1INl.t1~ both aide. of' the tint formula by CJ -1 , we 

-1 -1 
Aaa ~ Baa • (Int. 6) 

By the premiae concerning a and In!. 8, 

A .. B • 



Theor_ 15. (Copiea) 

r A'; At 

+ 
~. ( 1) The caae that A - n (A') - c ~ will be proved. t1rat~. 

tor any h[n] • Then 

r A ~ B • (Tbeor .. 11 and 13) (1) 

But 

tor each occurrence ot ai' (2) 

-1 -1 
becauae <Xi ~i "1 1 occura in B, tor which 

(Aldan 3b, Theorems 11, 13) 

so that Int. 5a gives (2). Since the mmaber of'occurrenc:ea ot a
i 

in B is finite, 

by the repeated use ot (2). But the right aide ot (3) i8 

t -1 -1 -1 -1 -1 -1 
A _, _l(OL ~1 "11"11 ' ... ,01 ~ "I "I ] 

A -. A ~ n n n n 
"'1 .• • ... n 
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by definition ot A' , .0 that 

r (3) ; A' , (4) 

aimilar~ to (1). Formulaa (1), (3) and (4) give 

(ii) The eue that A+" n (A')- I- fJ 1a redueed to (1) as tollova: 
t _ "-

Conaider another copy A" ot A tor which A n (A") • .,.. and 

+ - "- L L (A')- n (A") =.,... Then r A':, A" &nd rAf ';, A" aceording to (1), 

BO that r A ';; A' • 

Q.E.D. 

Theorem 16. (Oper-tins a (1» 

It' B occur. in A and meSa v1th .. go-to, and CJ€S-, then 

~. r OS .. CaB)' byTbeor8ll15. (aB)' endawithago-to, aotba.t 

oA = (aA)a[(aB)'] 

"; (aB)'A • 

Theorem 17. (Operating a (2» 

(Int. 5&) 

If aIL B [A, ... ,A] end8 with _ go-to, and, B
l

, ••• ,B
n 

are 
-"B1 .. • n 

prece4e4 by go-toa in A, then 
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tor any a auch that a J U B1 • 
b(n] 

~. SilD1lar to the above, vbl1.e we notice the latter &l.tematlve 

in the re~rlctio~ of Inf. 5b. 

and 

tor each tE[n] 

tor each i€[n) , 

S' z U (A1)++ n ~- , 
1£[n] 

and each Ai end8 with a go-to, then 

for any i£(n] • 

Q..E.D. 

1 + -t 4i !!22!. Let D be (1 - 0i''r) , where -r!X IJ B ,Ulcl A be 

1 ( 1 n 0 AD, ••• ,0] , tor each iE:{n] • Then, a
1 
.. • a

n 

OiA'; (1 A (Axial! 9, Int. 6) 
i 

(premise) 

(repeat Int. 8, Axlaa 9) 
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In order to un Int. 9, at is defined lUI a
1

, and Ai i. aubn1tuted 

1n place ot Ai , Bi , and Ci ot t'lat .chema. The lett two Ichemata 

ot vtr. becCDe (1) and (2), and the risbt two 

~1 - - "1 
1\ a [al,···,a] -x- A 

al ·•• n n 

and 

"1 But the lett aide ot (,) is A itlelt, 10 that (}) .. vell .. (4) 

(2) 

(4) 

bolda because ot the re:t'lex1v1ty (Theora 1). We __ ine the re.triet1on •. 

Condition 1. t(G
1
>. a1 for each lE{n) I .0 that the .ec0n4 

17" '~ltion, nwaely 

where 

tea) '" a for each aeS n S" , 

S". U (Ai)++ n A++ , 
1£[n] 

i •• aU.tied, vhUe the fir.t con41tlon 1. included in the pr_i'e 

ot the theore explicitly. 



Condition 2. (i), (11) Apparent. (11i) ~e define U .. X. 

Condi tion ,. Apparent. 

tor any i£[n] • 

By the derivations for (1) and (2), 

T"lleorem 19. (Interchange of Copies) 

If B endS with a go-to, and B and B' occur in A, then 

I- A;' Ag,[B',B] 

Proof. (i) The cue that A begins with a labell1Dg and that B 

and B' are preceded by go-tos in A is proved tirst~. Let C be 

AaB' (A,A) and D be the right side ot t;he conclU8iCl1 ot the theor •. 
+ 

Let ,. be a label such that "I'M - • 

{ 

(aB) 'AT 

akr ;, (aB') 'AT 

(~) 'TAT 

Similar~, 

{

<oS)'DT 

aDT ';, ( oS • ) 'DT 

(~) 'TAT 
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because DB'B[A,A] is u.o C. By'l'beora 1.8, (1) and (2), 

tor any ad-. 

Therefore, 

tor any ad-. (Theorem 14) 

Choosing ao such that -1 ao occurs at the 1ettmost ot A, 

A';; D • (Tbeorem ~) 

(11) It A does not begin with a labelling, then we prOV'e 

-1 -1 
TT A = TT Aaa,[B',B] 

+ 
for a T such that T~A-, which is a special cue ot (1). FOI'IIIUla 

C~) and Theorem ~ give the cODc1uaioo. If' B or B' i. not preceded 

by go-toa in A, then we insert ocil and ~-1 before B aDd B' , 

...... ere ",J..t .... d A.J."i:. -L 4> -L () 11 w.. ~ _. ",po f3 ~, being a cC1F,{ 0... a ~, i imp es 

(4) = ~,[,,-~, ,~-1a] 

= Au, [",,-~, la:x-~] 

(3) 

(4) 

Deleting a:x-1 aDd ~-1 trail the lett aides ot (4) and (5) by Theora 11 

A = Au,IBt ,B) 

Q.E.D. 
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Theorem 21. (Go To 1eedin« to uaual statements) 

It a -~'r -1 occur. ill A, then 

~. (i) Tbe case that 
++ 

atB is proved tir.t~. Let C be 

A';C 

'" B'T • 

By (2) and Inf. 5b, 

C"C [B'T) a 

-;;; A [B'T) 
a 

Formulas (1) and (3) give the conclwlion. 

(Theorem 13) 

(Theorem 11, Theorem 13) 

(Theorem 15) 

(Theorem 13) 

(ii) 
++ 

The case that ad) will be proved. Supp08e B' 1. 

[ I I t -1 I -1) Let B" b B ' [at') 
-1 -1 111"'" on' 111 , ••• , ern' e a ' 

ar · . ana 1 .•. a n 
B 

where a" I-At U (BI)!. Then a"-~" 1 •• caw of a-', aDd 
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Iut .. of (2) in the cue (i), we bave 

Therefore, 

a(G-~T) ~ (G-~)T 

': a"-~"'f 

(Tbeor8B 13) 

(Theora 15) 

(Inf'. 5b) 

But ever,y occurrence of' rI' in the right aide of (5) can be replaced 

by a, because ot 

and Inf. 5a. Thus 

(6) ; (Aa[a"-Ia"T)rI'[a)O 

; (Aa[B"'f)rI'(G]O 

(Theorem 15) 

(Theora 11) 

The risht aide of (7) ia Aa{B'T] because of (4), name~ 

A '; Aa[B''f] • 

Q..E.D. 

~. 

and Int. 5b give the conel.uaioo. 

Q.E.D. 

(5) 

(6) 



Theorem 2,. 

If' A+ Ii C- '" A- n C+ .. fJ, B+ n D- 4 B- n D+ • fJ, r A:' B , 
R[C]UR[D]UX 

and r C i D , then 

Proof. (1) The case that 

+ - - + I. B lie =B ne =,- (1) 

is proved :firstly. The first yff of the premise ot the tbeorem implies 

rAe :. B: 
R(C] U R[D] UX 

(Int. 6) (2) 

The second yft, C i D , implies 

(In!. 7) (') 

Thus, 

(Theorem 2, (2), (3» 

(11) If (1) does not hold, we cmaid.er the copies B' and Ct such 

that A+ Ii C,-l, A- Ii C,+, B'+ n D-, B'- n D+, B'+ n C' , aDd 

E' - Ii C' + are all ~. By Theorem 15, 

B ';, Sf 

and 

c -;; C' 
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We carry out the following derivation. 

Namely, 

':BD 

.AC:'BD 
X 

(Inf. 6) 

(by (1) above) 

(Int. 7) 

Q.E.D. 

The above metatheorem8 £bow that vtr 7 1s provab1e in the present 

formal. system if it is provab1e in the previoo.s system as noted a.t the 

beginning ot thil section. For the convenbnce or later use, Theorems 

11 and 12 will be modified &8 tollovs. (Proof8U"e e8l1enti~ the 8ame 

u bef'ore.) 

Theorem 11. (Superf'lUOU8 IAbeb) 

It a/:A- ,then \- A '; ~[a-~] • 

Theorem 12. (Di8connected Statements) 

+ -If' Aa[A] n B ,.. ~ and B is preceded by a go-to in A, then 

The tirat ot the toJ.low1ng theorems will be used in Section 8, wbUe 

the second is related to tbe notion ot correctness. Tbeorem 24 a~s that 

two atat_ents which are concatenation. of' a number ot statements (loop. 

~ be contained semantically) are equivalent if tbe constituent statements 



are equivalent statement-viae, which fact ia related to compilation. 

Moreover, thia theorem givea an example ot proving the equivalence ot 

two atattlllenta Which do r.ot necessarily terminate. 

T.1COt"em 24. 

If 

and 

and 

Proof. Let C and D be 

and 

tor eacb ae U A~ • 
iE{n] 



Suppose C- .. {11~, ••• ,l1n]' while C '" U A~+{"l""'''n} by 
idnl 

definition. Then we notice the toJ.l.ov1np;. 

I- ... ,. -i1Ai :::'x "",. -iLl .# - { , 
y v ~ J.oreach I1€A

i
+'t lj , (~) 

because, 

(Theoren.s II (extended), 13) 

(premise of the theorem) 

(Theorem ll, Theorem 13) 

and, for 11 EA~ , 

(Theorem ll) 

(premise of the theorem) 

(Theorem ll) 

Therefore, 

(2) 

(rnf. 6, (1» 

By Theorem 16, 

C~) 

(4) 



But 

(Theorem 15) 

(by (2» 

(Theorem 15) 

so that 

We change the index i of Inf. 9 into j , define a
j 

aa a
j 

, and 

i 
substitute OJ (wecana1mplyuae O'J inateadot (l-aj,tI) .. 

shOW!l in the proof of Theorem 18), C, D, (O'j,.~lAiTi+l)" 

(O'jt~~iti+1)I,and C in place of' ni, A, B, Ai, Bi, and. C, 

respecti vely _ We note that 

(ref'lexiv1ty) (6) 

Then wffs (3) - (6) COllSti tute the pl-emilles of Int. 9, and. all the 

restrictions are apparently 8&ticf'ied, 80 that 

(Tbeorau 11, 13) 

(by (7» 

(Tbeor .. 11, 13) 

6; 



~ooo~ ; '[ 1e 

x '[ 1D 

; B1 ··oBn 
. 

Q.E.D. 

TheortID 25. (Verification Condition for Aaaignment Operator) 

Statement x:= r is partially correct v.r.t. p and q if and 

on~ if 

(ct., Floyd (1961) and Hoare(1969).) 

We shall examine the calditlons tor p and q to satisfy 

(p .. x:", t,l1) ; (p .. x:- t';(q .. ",,11),11) (1) 

(See Seetion 4, 5. Correctness, (1'» 

(p .. x:"' t;(q .. A,I1),I1) 

CAxian 13) 

= (p" ~[tlO .. x := f,(p 1\ ..., <Ix[t]o - A,A» 

(Axlcma 5, ll&) 

;; (p 1\ ~[tl" .. x :- f,~ (1'heorem 4) (2) 

Theretore, (1) is equivalent to 

0) 
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for which, obvioualy, 

namely 

1s necessary (see 3 below) and .uff1c1ent. 

Q.E.D. 

Renarks 

1. Fonnula of (!I) is logically equivalent to Fl.o1d's original 

formula (written in our notation): 

~x (x = f [x ]0 A P [x ]0) ~ q , 
o x 0 x ° 

provided that the equality axiana e.re satisfied. 

2. We assumed the completeness of r (incl.uding the lay of the 

excluded middle) in order tOLllle Theorem 4. 

;. The necessity i8 baaed on the meaning of to::nml.aa, which can be, 

however, improved as follows. 

We aha.ll consider 

as an assertion of the validity ot formula P in the aense ot predicate 

( 4) 



calculua, and denote it b)" 

Then we can prove r * p::> ~[f)o fo~ fran yff (3) by the 

folloW1ng derivation: 

Let r denote P" Ilx[f)o , and A the statement (r ... .'1.,6) • 

(p ... x :- f,/).) :. (p ... 11.,1::.) • (Axian 8, Theorem 8) 
¢ 

(SimUarly) 

so that 

~ (p ... h,A) , (by (5» 
~ 

(p ... h,ll) ;0 (r ... A,Il) (Inf. 3) 

(p ... A,A) ; (p A. r ... A, (p " ..., r ... t.,A) ) (Theorem 4) 

:; (p ... (r ... A,A),A) (Axian lla) 

a (p ... (p ... h,A},A) (~. (6» 

'; (p" p ... A, (p " ..., p ... A,~) ) (Axian lla) 

:; (p ... h,A) • (Axian l6b, Theora 4) 

Simllarly, 

(..., p "..., r'" A,A) ;; (..., P ... A,A) • 

Therefore 

(p ." r V .., P " ..., r ... AlA) ; (l ... A,A) (Int. 4, (7), (8}) 

• A • 

But 
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(Mica 1&) 

so that 

(by (9), (3D» 

(The sufficiency canes from Axian 16b.) 

4. Although the main reason that ve introduced quantifiers into 

Algol-like 8~atement8 (see Section 2) i8 to include formulas of 

usual predicate calculus in conditional statements in connection with 

thl' nat:!.cm of correctness, this syntactic generalization of ~l-like 

statements may not 1)8 easential. FO"', the study of Engeler (1967) 

aeems to BUgge lit tbat inf'initary logic is f'requent~ more appropriate 

than ordinary logic. It 1IIU1It be noted that the exaple given by 

Floyd (1967) ~ be considered to be bUed upon infinitary logic. 

Also, the verification condition. for branch and join ca.anct. 

(the reat not being e.aential) can be at&ted and proved without uaing 

quantH'iera, .imilarly to the above. 
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7. DecO!!!pO.it1on of Stat.ent. 

Let V be a sub.et of V such that V-V containa infinite 

e~aaent. YO,Y1, ••• , and L be a sub.et of 1 .uch that l-L contain. 

infinite e1.ent. 0 0 ,01"" • By 110 i. denoted the .et of statement. 

defined by induction ... follows. 

(ell) A belonga to 110 • 

(d2) For each :1£1, a -~ and a be10ng to 11
0

, 

(d~) For e&eh x£V and a fuf:d e1aaent YO of V-V, x:= YO 

and YO : .. x belong to 110 • 

(d4) 

belongs to 1.10 • 

and e~, ••. ,en_~ 

for each ~.£[n-l), 

such that either 

(n) 
YO :- n wOel···en_~ 

(d5) For each p(n)€,Jn), GEl, and el, ••• ,en_~ ... above, 

( (n) ) 
p Yo.~" ·.~l ... a,A belDnga to 110 • 

( ell If' A and B bel.ong to 110' then AB belongs to 110 • 

(A- n B- - fJ .hould be satisfied. Otherw1 •• , AB 1s not 

a stataent.) 

Let 11~ be the .et of statements consisting of all A such that 

V[A] ~ V, At S L , and that the logical eymbola other than ..., and " 

do not occur in A. 

We .hall eatabll.h .. tunct10n 

which hal the follov1ng ch&racteri.tic •• 
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1. Coutructiv-...: 

t i. total 814 effectively defined. 

2. Correctn ••• : 

r A ~ t(A) for any AE01 • 

In other vorda, t i. an algorithm that carrie. out a tnna1atiOil 

ot al into aO ' 01' lIhich the latter co~.i.ta 01' '«lUeace. 01' 

relatively .1mple Itateent.. Moreover, we CaD t01"M.l.ly prove that • 

alway. giv .. a .tat_ent equivalent to thtl origiaal one 10 .0 far .. 

the value. 01' variables belonging to V and the de.tinat101l1 01' ezit. 

are 'oncerned. (Actually ve prove the above alIo tor each _try. cr.. 

proot of Theorem 26). 

Fo!' the conv_ience of de.cription: ve introduce two .et.ot 

statements, lUI follows: 

(12 .. {x : .. tlxEY and. V[f] S V) • 

(1~ = {(p .... 'T ,A) l'TEl and V[p) S V) 

i'rcm a1 , a2 ' and (1" re'peetively, only in that .cae ntt1xe. 

are added. (See Definition of 8 belalr.) 

Definition of • 

Let e and 1 be two f'unctiona .. defined belDlr. 'rhea 



1. D~in1t101l ot 8 

We define the tunction 

* where the 81._. at O. are statements whose symbo1s are poaaibly 
.1. 

1U1't1xe4. For -.ch A and each vE7/, 8 (A) denotes the image 
v 

ot (A,v) • Actually, however, 8 is extended so that, tor each 

aritbletic expre.sIon t mer. that v[ t] ~ V and tor each B001ean 

exprea810n p auch that V[p] S V, ~ (t) and ~ (p) are 

defined. Be. idee , two aux1llary tunc tiona 

~ : 01 U {p \V[p] :: V} ... 'T/ 

~ : {t\V[t] :: V} ... 'T/ 

are defined. 

PractIcal meaning ot thee. tunctions are u follovl. 

!Io(t) The number ot 't'equired working etoragee to caapIlte t. 

8 (t): The reauJ.t ot l111'f'iXing tunctlon aymbo18 occurring in f 
v 

eo &II to apecit'y the allocation ot working atorag ••• 

(v 11 irrelevant.) 

>Io(p) '!'be number at auxUiary label.a to cOIIlp1te p, Wbich 1. the 

nUllber ot occurrencee ot aymbo1 .., in p. 

,,(p) The number ot requil'ed work1ns atoragee to cOIIlplte p • 
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a,,(}) The re.w.t o~ IU1't1X1ng }) to ~ifJ all tbe 

auxiliary labela ua1n& 1n4ex greater than v • 

>"(A) 

and S:1JIlll&r to >..(p) and a (p) • 
" 

,,(A) 

FUnctiona a, >.., and \10 are detiDed a:1aultaneoua~ bJ 

~nductioo on atateaent. u tol.l.awa. 

(al) 
III1d 
(&2) 

-1 
e-h,a,ora: 

a (c) '" c tor each v. 
v 

>..(e) sO. 

(a3) C '" x :. t , where t .. y 

\10 ( r) = 0 • 

av(r) = t tor each v • 

a (e) .. x : .. a (t) 

" " 
>..(c) .. 0 • 

statementa (non-atanic) 

(bl) C" AB : 

av(c) = .,,(A)a~>"(A)(B) 

>..(c) = >"(A) + >"(B) • 
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(b2) c - x :- t , where 

~(t) • Mt1n , 

were 

M • max ~(ti)' 
OSi~n-1 

ft,,{C) and lI.(C) are defined by (1) and (2) .. bove. 

~(p) • Mt-m , 

where M and m a.re detined by C~) and (4) above. 

8,,(P) ., 1'1:1. ... ,Mt-m ~(tO)" '8.v(tn_1) • 

lI.(p) - 0 . 

(1) It A ls T and B ls A, then 

~(C) • (8,,(P) ~ 1",1.) , 

and 

lI.(C) - lI.(p) • 

( 11) It A 18 not ot the torm T or B iB not A, then 
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where 

B - " + ~(A) + ~(B) + ~(p) , 

and 

~(e) • 8+2 • 

(c~) e. (-, p ~ A,B) : 

8" (-, p) - ""1 8...,(p) • 

~(~ p) - ~(p)+l • 

(8) 

8..., (c) and ~(c) are defined by (5)-(8) above. (Sublt1tute ..., 

in place of p .) 

(c2) C = (p V q ~ A,B) 

~(p V q) • ~(p) + ~(q) • 

8,,(C) and ~(C) are defined by (5)-(8) above. (Buba1tute p" q 

in place of p .) 

2. Definition of , 

We define the function 

* * * By A , f , and P will be denoted "- (A), "- (f) , aDd 

e." (p) , reapecUvely, for certain value. of ...,. Thu, for inatMce, 
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(bl) beloW, i ••• , 

* * * * ,(A B ) c yeA )Y(B ) 

r.u as toll.on: 

* • 
Since e - AB , " (e) i8 ot the torm A B • Define 

* * Y(A ),(B) u ,(~ (e» • 

Yo ~ the role ot an aceumul.a.tor. 

, ia defined by induction .. tollon. 

Atcmlc Statement. 

(al) Y(A)· A • 

(&2) yea) ca. 

-1. -1 
y(a } .. " • 

(a3) (1) '(.0:= y) a YO :- y • 

(11) It X i YO ' then Y(x:- y) 18 det1ned b)' (1) bel.ov. 

(SUb8tltute y in place ot t.) 

* * * * (bl) '(A B ) • ,(A ),(B ) 

(b2) (1) '(Yo:. nCO»~ = YO :~ nCO) . 

(ii) '(.0'· TT(n) to*" .tn* -1} 
• a(l) ••• a(m) 

(n > 1) -



tor 1€(n-l) , 

and 

tor e.ch l€[n-l) I 

~Cl) being defined by the tol..l.oring 1n4uet1on: 

~(o) .. 0 • 

~(i+l) • 
~(1) 

~(1)+l 

* * (111) ,(x:- t) .. '(.0 : .. t )x :-.0 • (x I- .0) (1) 

(b~) (i) ,«p (0) ... T ,h» = (p (0) ... T ,h) • 

Cn) * * ) 
(ii) t«Pa(1) ••• a(m)tO •.. t n_1 "'1(1)1(2) T,h) I (n ~ 1 

(ct. (b2)(ii).) 

* * * (iii) t«p "'1(1)](2) A,B ) 

(A 1. not ot the torm T I or B 1. not A.) 
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• (e1) (1) t«i P "'r,A» 

* ».1 - t«p - a &,A 'ra 6 • 

(ii) 11' A 1. not 01' the f'orm 'r , or B 1. not A, then 

* t({-,& p "7(1)y(2) A,B» is defined by (2) above. 

* * (Sub.tltute -'6 p in place of p .) 

* * (e2) (1) t«p Vq ,,'(,A» 

(11) 11' A 1. not of' the 1'orm or, or B 1. not A, then 

Kz"Ple 

* * t«p V q "7(1)7(2) A,B» 1. detbed 'by (2) above. 

* (Sub.t1tute p* v q* in place 01' p .) 

W. caulder tbe nat-.rt 

!! x < 0 ~ x :- -x , 

wbich .... uaecl .. an exaple of ccapll&t1on in (lprubl, 1968). 

Here, 1.t UI &llDv ~ biJJ&r7 -, md .ee hOW the nat8Uftt 

(1) 

!! x < 0 ~ x :. O-x , (2) 

(x <0 .. x :. O-x,A) (3) 

in CIUZ' DOtat101l, i. treated. 

LIt A be (p(l)x .. x :_ n(2)n(0)x,A) • Then, 
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and 

V '. TT(O) , v '. TT(2)V X' x '. v ' (1-1 o ' , 0 ' 0" 0' 2 • 

Especially, ve define x < 0 &1 P (l)x, 0 &8 TT(O) , and x-y 

as TT(a)xy, 10 that A becomel (~), 

teA) i.e., * Y(A) v1ll be written 

in AWOL 60 and lilted with corresponding actions, symbol.a va' 0'1 ' 

and 02 being repl.&ced by ace, Ll, and L2, respectivelY. 

ace :- X; load x 

if' &ee < a ~ i2 .:E2 Llj jump on miDua Ll 

jump L2 

Ll: inlert label Ll 

~ :- 0; load 0 

!£.!:. : = .!££ - x; IUbtract x 

x := !!:£; Itore x 

L2: inlert label L2 

(4) 

Statement (4) is different o~ in triv1&l poiDta trcm prosru B 

(in the above paper) for which 
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~ (1) =- B 
fx) 

is proved as an example of derivation. That proof', f'or thia ;particular 

pair of atatementa, needed two pagea of derivation (20 stepa) preceded 

by one page (10 Iteps) tor an auxiliary formula, being ded vee. direct~ 

rraa the previoua formal. ayatem. In the present paper, however, ve 

ahall. prove, alao to~, that 

A ~ teA) 

is valid for every AfQ1' which implies that (2) =- (4). 
v-{acc) 
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8. ramal Proof of the Correctness of DecCDJ)Oaitlon 

In this section we sball prove t~ the t'oll.olling theorem vbich 

implies the validity of the tranat'ol'lll&tlon detined in the previ0U8 

section. 

Theorem 26. Let (V, K, a,ro,J) be an interpretation such that n. 
Is • total. t\l.nction tor ~h nd' and that p. is a total predicate 

for each p£P. Then 

We shall prove the tollowing leamu firstly. 

LeIIIII& l. It x~V( t] I then 

r x :'" t; '1 :- S :. Y 
V-{x} 

r x :. f; (p ... a,A) :. (p (f]o - a,A) 
V-(x} x 

~. Choose z such that z I x • 

x :- t; y :- g • x :- fi Y :- g; z :- z (AlCia. 2&,6, etc.) 

;IX :- tj y :- 8x[t]; z :- z (AlCian 7b) 

':ox :- tj Y := 8x[t] (Conversely) (1) 

x :- f :. 

V-{x} 
A (Axiom 8) (2) 
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so thllt, right JIII1l.t1plying both sides at (2) by y:- 8x[t]o , we 

obtain 

x :- tj Y :- Sx[t]o - y:- Sx[t]O. (Int. 6) 
,-{xl 

(3) 

It muat be noted that ~ Sx(t]o instead ot an arbitrary 8x(t] 

should be used beeauae it must not contain x to uae Int. 6. By 

\1) and (3), the first vit 11 provable, ¥hUe the latter can be 

proved in the same mar.ner. 

Lemma 2. Let C and D denote (p ... A,B) and 

-1 -1 
(p - 11,A)Br 21 1 AT2 ' reapective~. Then 

r c ~ D , 

and 

Proof. Let C and D denote 

-1 -1 -L) ., (p -.:xx 'A,~""""B 6 

a.nd 

+ + 
respectively, where 0:, ti, ." and 6 do not belong to c- u n-. Then, 

by Theorems 11-13, r C -;; C, ~ ac ~ ac, r D '; D I an4, 

~ aD -;;; aD , tor any aEA- U B-. Let {al, ••• ,an } be A-UB-u{a'~'1} 
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(Theorem 16, Theorem 17) 

But 

(Theorem 22) 

and 

-; (p ... a,A)tm (Theorem 21) 

(AXian 12&) 

(Theorem 12) 

Theref'ore 

(a'lA)'6D olEA -

(a'lB)'6fi °1€B -
.. .. 

aiD ;. A'6D °1 = a (1) 

B'6~ °1 = ts 

(p -a,ts)fl °1 = 7 . 
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Apparently (1) is provable i! C 1. au'o.t1tuted in place of D, 

80 that 

aie ':: cr D - i 

Therefore, 

and 

(Theorem 18) 

Lemma. 3. 

~ cr(p ~ A,B) ~ cr(q - B,A) for each ad- 11 B-

Proof. Let,. be a label symbol such that -rtA- U B-. Then 

cr(p ... A,B)T ~ cr(p ... A-r,Br) , 

o (q ... B,A),. ~ a(q ~ Br ,M) , 

and, by Theorem 16, 

_ 

{ 

(JA) I,. (p ~ A-r ,Dr) 

a(p-A"t',BT) 

CaB) '-r (p ... A-r ,BT) 

Similarly, 

(.Axlcm 12'0) 

(Axicm 12'0) 

(HA-

(1) 

(2) 



{

< GA) '" (q, ~ Br,A'r) 

a(q - Br,I«) .. 

(aB),,.(q - Br,kr) 

Theretore, by Tbeor_ lB, 

a(p -kr,Br) ': a(q -Br,A'f) 1 

10 that, u1Dg (1) ud (2), 

a(p ... A,B),. .. a(q ... B,A),. • 

'!'bu, 

a(p ... A,B) .. a(q ... B,A) 

aEA-

(Theorem 14) 

I.- 4. It the 1nterpret&t ion .. tis ties the premiae of Theorem 26, 

them 

r (p ... 'f , A) (q ... 'f, A) ; (p V q ... ,., A) • 

~. 

(p ... ,., A)( q ... 'f, A ) ': (p ... ,. (q ... ,., A), (q - 'f , A» (AxiClll 12&) 

(4) 

.. (p ... ,., (q ... ,., A» • (Theorem 12) (1) 



(p v q ... T , 1\) ';; hh p " -. q) ... T , A) (Ax1C11l l6b) 

'; h p " .., q ... A,T) (Ax1ca lD) 

- (-, p " .., q ... A, h p 1\ q -,.,T» (Theora 4) 

~ (-, p - h q - A,T),T) (Adem lla) 

- (p -,. , (-, q ... lu T» (AlCiem 10) 

- (p ... ,. , (q ... ,. , A» (Adem 10) 

statements (1) and (2) are identical. 

Proof of Theorem 26. 

We shall prove the following statements, which include the 

conclusion of the theorem, by induction. 

1. For each MOl such that A ia neither ot the torm x:- t nor 

of the fom (p ... ,. ,11) , 

and 

* r crA V a'f(A ) for each aEA- • 

:2. For each statement ot the form x : = f belonging to 11~ or 112 , 

* rx.-f::' 'f(x::f) 
S[x:=:r*] 

where 
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* * 8[x :- ~ ] - (xl u (,-w[~ ] - (vol) , 

~. For a.ch .tat.ent of the fO:nll (p ~ T ,A) be101J8ing to c11 or ~, ' 

* Since V S 8[x : = f ] , thue natement. imply 

Atca1c atataaent. 

(&1), (&2(1), (&2(11), and (.,)(i). 

* t(A) i. ideDt1c&1 with A, .0 that the above nat.ent. are 

apparet. 

(.,)(11) • 

,(vo :- y)x :a Vo 1. Vo :- y; x := vo ' 

for wbich 

:- y , 

s[x :- y] - , - (YO) • 

Stateaent. (~-atca1c) 

(LeIIDa 1) 

Heratter the .tat.ent. 1 - ~ will be u.ed u the 1ncluction 

bQot~ ••• 



~ B7 ft1pOthe818 1, 

* A V ,eA ) , 

* a d.-aA V a'(A ) tor each , 

* B V '(B) , 
and 

* -aB V al(B ) tor MCh aEB 

Theretore, 

* * AS V l(A )l(B ) 

and 

* * cAB ~ a'(A ),(B ) (Theorea 24) 

(b2){i) * Apparent becaU8e yCA) i8 identical with A. 

(02) (li) Cn) Cn) 
Let D be n "O~·· .un_1 ' D(n) be 

k 

We prove, tir8tly, 

tor eech k 

by induct:l.on on k. 
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v. DOte tbat 

wbich 1. 8hoIm .. toll.on. 

(by det1n1t1on) 

• aa4, it u1tJ, t~ U1~(tO]' (1 - 0, ••• ,n-l) • Tbua 

8(D(n) 1 n v( t;l - _ I ao tbat (:5) bolda. By {2} and ('), 

Vo :- to ; D(o) = COO(n} 
S[.o:-~] U {.o} 

(Int. 6) 

- D(n) 
- 0 • (Ax1<JD 7&) 

~ kt-l: V. 1111. (1) .. th. ~1t1on ot ift4uctian. F1r~, ve 

prow the cu. that u...:.-JV. 

(Int. 7, (1» 

(2) 

(4) 



C :: u.. '.t 
k+1 S[ ,tM-] Et"1' k+1 

"k+l'" k+l 

(Bnotheai. 2) (6) 

We note that 

which 18 .hOlm .1mil&rly to the above, by 

* and, it ui;'V, then u1;'W[ f kt-1)' (1. 0, ••• , n-1) • Therefore 

(Int. 6) (8) 

(LeIIIaa 1) (9) 

But 

= Tkt1 ' 

80 that 

«5), (8), (9), Tbeorem 2) (10) 
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SecOll~, the cu. that ~l €V baa to be proved. In this cue, 

however, Ck+l is A I 
D(n) i8 identical with D(n) 

k+l k I 

and Tk+l. Tk ' sO that (1) 1mplles (3D). Thus (1) baa been provec1. 

Let k = n-l • 

(by (1» 

* * Tn_1 • V -W[f' ] = 5[YO 
:= f' ] 

:. * "0 := f . 
S["O:=f ] 

(by (ll» (12) 

(b2)(11i). By (b2)(11) above, 

* '(Yo :== t) :. *"0 := f I 

V-W[t ] 

so that 

* ,(wo :- t )x :- "0 :. *"0 := t; x :- "0 
{xl u (v-w[t ]) 

(Int. 6) 

(Leama 1) 

'rhenf'ore 

* x :- t :. ,ex : .. t ) 
{xl u (v-w[t"]-{wo}) 

(Theorem 2) 



* Apparent becauae t(A) i. identical with A. 

Cb:')(ii). We have on4r to modify the proot of (b2)(ii) ... toJ.l.gn. 

en) ( (n) , Let n be p v
O

u
1 

•• ,u
n

_
1 

... or ,10; , 

n~n) be (p(n)fo ••• tk~l"'~_l .... ,.,A) , a.nd 

,.tor k:; 0, ••• ,n-1 • 

Then ve can prove vtf (1) above alao tor thi8 case, lUling the 

axiCID8, tbeol'8ll8, etc. in the same manner. Letting k c n-1 , ve have 

c ••• n n(n) :. (p ... or ,A) (13) 
n-1 0 V-W(t*l-{vo} 

Therefore, 

(b~)(111). By (b})(11) above, 

By Hypatheda 1, 

* -A:' t(A ) 
V 

* aA ~ at(A ) 

- * B V t(B) , 

(14) 

for each a €A-



* crB Va'(B ) 

(ret1exivity) 

Tberefore, 

(Tbeoraa 24) (15) 

... (I' - A,B) • (Leaa& 2) 

- * * * (I' - A,B) V,«p -7(1)7(2) A ,B» • (16) 

(cl)(l) • 

(HnK»the.1a 3) (17) 

(tnt. 6) 

CAlCian 12.) 

... (I' - A,"r) ('lheo~ II -13) 

... hI' - "r,A) • (Axiaa 30) 



Tbua 

(Theore 2) 

~-!llill. By (el) (1) above, (14) holda alao in this eue, _0 that 

the _.e :proot as that of (b3)(i11) surtiee'. (SUbstitute ..,p and 

* * "'a p in place of p and p in (14), respectively.) 

(c2)(1) • 

(Hypathelis 3) 

* y«q -0 T ,A» V (q - T ,A) • (SbL1l.arly ) 

Theretore, by Theorllll 24, 

* * ,«p - 't,h»"«q -0 T,h» V (p ... T,A)(q ... -r,A) 

';(pvq--r,h) • (LeaID&4) 

Thus 

(e2)(ii). By (e2(i) above, (14) holds alao in thi. e ... , 80 that the 

same P'rCX){ as that of' (b,)(iii) suffices. (Substitute p V q &Del 

* * * p v q in plaCe ot p and p in (14), r.spectively.) 

Q..E.D. 

(18) 
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