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discussed, mainly based on an axiomatic method.

Firstly, a clags of Algol-like statements is introduced
by generalized inductive definition, and the interpretation
of the statements belonging to it is defined in the form of
a function over this class, using the induction principle
induced by the above definition. Then a category of program
is introduced in order to clarify the concept of equivalence
of statements, which becomes & special case cf isomorphism
in that category.

A revised formal system representing the concept of
equivalence of Algol-like stetements is presented, followed
by elementary metatheorems.

Finally, a process of decauposition of Algol-like
statements, which can be regarded as a conceptual campiler,
or a constructive description of semantics based on primitive
actions, Js defined and its correctness is proved formally,
by the help of the induced induction principle.
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1. Introduction

This paper is intended to describe an axiomatic approach to the
semantics of Algol-like statements, which is mainly based on the
axiomatic treatments of the equivalence of Algol-like statements by
Igarashi (196L4).

In Section 2, the class of Algol-like statements of our concern
is defined syntactically, in order to clarify the scope of the present
paper, which class is essentially generated by simple variables of a
type, go to atatements, labels, assigmment statements with a set
of functions, if-then-else with a set of predicates, semicolons for
concatenation, and parentheses to compose compound statements.

Besides McCarthy's operator, namely (- ,) for if-then-else,
some notations different fram usual ones will be introduced for the
sake of ~onciseness, which will posaibly help us to apply our mathematical
intuition, though the writer has no intention of propoaing auch.a.
notation for a gener.l use. It must be noted that we use only different
symbols and do not change the syntax. (Otherwise, it might become
uncertain that we are working on algorithmic languages.)

We use a generalized inductive definition in order to define the
class of our concern, which, although a little unnatural, constitutes
a basis for defining and proving same things related to that class, by
the help of the apparent induction principle induced by it.

In Section 3, the mtez'pret.;tim (that might be seen to be already
a kind of semantics) of the statements belonging to the above mentioned

class is given, which is done using induction on the class and the result



has a somevhat analytical appearance. Actually we shall define the
interpretation as a function on the class into a certain set of partial functioms,
and, presumably, one can prove everything about these Algol-like statements

using this function.

Some results included in the work by Manna and McCarthy (1969)
will be taken into consideration, when we define the interpretation of
conditional statements.

In Section L, categories of a kind whose objects are Algol-like
statements, the interpretation being fixed, will be introduced in order
to clarify the meaning of the relations which have been uged in
equivalence theories of Algol-like statements by Yanov (1958), Igarashi
(1964), de Bakker (1968), etc. (McCarthy (1963a) discussed the
equivalence of conditional forms, which was also related to Algol-like
statements, because the latter contain conditional statements.)
together with the correspondence between these relations and the notion
of correctness introduced by Floyd (1967) and refined by Manna (1968, 1969),
which ie also related to the discussions by Hoare (1969).

The relations % and ¢  Qdefined by Igarashi (1964) become
special cases of isomorphisms in one of these categories. (On the one
hand, these categories, whose objects are defined in Sections 2 and 3,
are intended to serve as a model of the formal system described in the
later gections, though we shall not enter into this point. On the other
hand, they can possibly be regarded as a basis for further algebraic
theories concerning programs, as a branch of mathematical theory of

computation.)



In Section 5, a formal rystem representing the relations i
end = will be presented, which is a revision of the main formal
system (L.4) in the paper by Igarashi (1964), of which the latter will
scmetimes be called 'the previous system'. Besides minor refinements,
jt is so extended that partial functions and partial predicates may
be allowed in statements and that the ability of the formalism may bte
considerably improved, although it is incomplete (which is inevitable).
Especially, Inference Rule 9 is new, for which McCarthy's notion of
homamorphisms of programs (unpublished) and Floyd's above mentioned
work are taken into consideration as well as the obvious relationship
between program schemata, firstly treated Ly Yanov (1958), and finite
automats discussed by Igarashi (1963) and Rutledge (1964). This rule is,
however, still a result of compromise between capability and
simplicity.

Axioms related to go to statements have been entirely reformed.

In Section 6, a number of elementary metatheorems concerning the
formal system of Section 5 are proved. These netatheorems show that
any theorem in the previcus system becomes a theorem also in the
present system. Therefore each of the completeness theorems for the
previous system remains valid, though we shall not enter into this
point.

Tt must be noted that the incompleteness of the formal system does
not imply that this formalism gives only an inadequate description of
semantics, for describing or defining the meaning of a program can be
regarded as a rather specilal case of equivalence. In fact, for any

Algol-like statement A (in the sense of Section 2) in which variable



symbols X s eeeyX, oCCUr and for any variable-free arithmetic expressions

(constants in effect) elre "'cn’dl""’dn , the following holds:

Let El’ ...,'én,al, ...,an be the values corresponding to
cl"“’cn’dl""’dn , respectively. Then, A stops and gives the
final values al,...,an t0 X),...,X, , Tespectively, provided
that the initial values of X;;...,X, Aare 'él,...,'én , respectively,

if and only if the formula

Xy i= cl;...;xn = cn;A = xl i= dl;...;xn 1= dn

is provable in the formal system of our concern. (See Theorem 55

by Igarashi (1964).)

Thug the formalism has an ability no less than the explicit definition
of the interpretation given in Section 3. (Namely,

J[A](El,...,'én,,,) = (El, ...,5n,;) if and only if the above formula is
provable.)

In Section 7, we shall define a special transformation of the class
of Algol-like statements of our concern. On the one hand, this
transformation can be regarded as a representation of &
conceptual compiler. On the other hand, it demonstrates how the meaning
of each statement can be defined in terms of certain primitive actions
on a conceptual machine. (Therefore, this transformation itself might
be regarded as a 'constructive' definition of semantics.)

In Section 8, we shall formally prove the validity of the above
transformation, (which mathematically means that each program is transformed
into & program equivalent to it), in the system presemted in Sectionm 5.
On the one hand, this can be regarded as a kind of proof of



compiler correctness (at least most of the essential features of the
proof of compiler correctness being included), which has been done
firatly by McCarthy and Painter (1967) for arithmetic expressions,
using induction on expressions. On the other hand, this can be
regarded as a sufficient proof of the validity of the particular
description of semantics in Section 7 vhich is based on primitive

actions. (Also cf., Painter (1967) and Kaplan (1968).)

Notation and Terminology

We shall use the following notations and terminology.

1. Sets.
Symbol § denctes the null set. &+S' denctes set SUS'

whenever 805" =$ . MN={0L2..0) . 7N ={L2...}. (0]=9.
If n>1, then ([n]=(1,2,...,0} .

2. Functions.
We shall use the word function to mean a possibly partial function.
(f1) Expression
£ :8 -8
reads as follows.

(1) £(a) may or may not be defined, for each acS .
(41) Ir f(a) dis defined, then f(a)es' .

(111) If afS , then f(a) 1s undefined.

(£2) Dam £ = {a|f(a) is defined]} .



(f3) Let S;cS, then f|So means the function g defined as
follows. (f£:8 - 8')

g:8, -8'.

0
Dam g = Dam £ N SO .
g(a) = f(a) for each acDom g .

(f4) We note that f|Dam f is a total function for any f .

(f5) f = g means that f and g are defined on the same set and
that f[Dom f = g|Dam g , while the latter equality means the
equivalence of the total functions in the usual sense.

(f8) If f :S5S -8' and g : S' - S", then gof, or gf , meansa
the function h defined as follows.

h:8=35".
Dom h = Dom £ N {a|f(a) eDom g} .
h(a) = g(f(a)) for each acDam g .
(1) If £ :S =S , then £ denotes the function fo...of

(n times).  1lim ¢° means the function g defined as follows.

n- o

€ : S =85.
acDom g if and only if there exists M..e‘n such that

fM"(a) = fM‘+l(a) , 80 that fm(a) = f(a) for any m 314.

and n >M_ .

M
g(a) = £ 8(a) for each aeDom g .



(f8) If £ :8~S' and g:S =« 8' , then f+g means the function
h defined as follows.

h:8-58" .

Dom h = (Dom f-Dom g) U (Dom g - Dom f)
U {alaeDom £ N Dom g and f(a) = g(a)} .
f(a) ac¢Dom £

h(n) =
g(a) acbhom g - Dom f .

3. Predicates
We ghall use the word predicate to mean a possibly partial predicate.
We shall write p(a) =T, p(a) =F, and p(a) =U , to mean p(a)
is true, false, and undefined, respectively. For each predicate p,
Vr denctes the total predicate defined by

p(a) =U
otherwise.

(¥p)(a) =

Similarly, for each function f , WV denctes the total predicate
defined by
f(a) 1is undefined
(V1) (a) =
F otherwise.
(Here P and f are assumed to be unary and defined on a certain fixed
set, for simplicity's sake.) Thus (Vf)(a) means —*f(a) used
by Manna and McCarthy (1969), while we shall use * for various

purposes in the present paper.



L. Truth Tables.

Since we are going to treat partial predicates, we have to
define the memning of logical connectives -~ , A, V, D, and =,
for three-valued logic, for which we shall use the truth tables by

Lukasiewicz (1941) demoted by r‘t , and that by McCarthy (1963b) demoted

by Ty . Ty for the value U is as follows.
V) =U. ({UAT)=(TAU) =VU. (UAF)*s(FAU)=F.
{UAU) =U . (UVT)*-(TVU)='1'. (UVF) =(FVU) =U.
(Uviy) =U. (u:T)*='r. WoF)=U. UDU) =U.
(ToW =U. (F>oU)=T. (U=T) =(T=U) =F .
(U=F)=(FsU)=F. (U=U)=T.

In I‘m the asterisked members, the remaining members being the
seme, become as follows. (FAU=F and TvU=T.) (UATF) =U.
(UVT) =U . (UDT) =U . In order to indicate the truth tables considered,
logical connectives will be suffixed by 1'" or l‘m . Thus, for instance,

A. (UF) =U .
rm’

5. Structures.

By a structure R we shall mean & collection of functions and
predicates defined on a set, which is called the underlying set of f
and denoted by |R| , together with that set. In the present paper
these functions and predicates are possibly partial. We shall consider
two structures (or two similarity classes strictly) @ and 2 in

the text.



2. Formation of Algol-like Statements

Alphabet

Tet £,V , ¥, and R be four disjoint sets whose elements
are called label symbols, variable symbols, function symbols, and
predicate symbols, respectively. The set ¥ 1is the union of disjoint
sets ’(0),’(1)’ «+ey and the elements of s(“) are called n-ary
function gymbols. Similarly, e 1s the union of disjoint sets
P(o),P(l), «ssy and the elements of P(n) are called n-ary predicate
symbols. The alphabet of Algol-like statements consiste of all the
elements of £, V, §, and P, together with the following special

symbols.
A =3 (= 5 )

In some cases described below the logical symbols:
- AV ¥ 7

will be also contained.

Algol-like Statements

Algol-like statements, or statements, are defined together with a
function dencted by ( )~ which sends each statement onto a finite

subset of £ , by generalized inductive definition as follows.



Atamic Statements

(al) A 1is an atomic statement. (A)” =§ .

(a2) For each oef , ¢ and 0"l are both atamic statements.

(@) =g . (TH x{a).

(a3) For each xc¥ and each ye¥ , X :=y is an atomic statement.

(x t=y)” =§ .
Statenents

An atomic statement is e statement. Any other word on the above
alphabet is a statement if and only if it is defined to be a statement

by a repeated use of the following rules.

(b)) If A and B are two statements such that (A)" N (B)” =~ §,

then Aj;B is = statement. (A;B)” = (A)”+(B)™ .

(v2) If x := yrrens X oix £, are n statements and ‘(n)es(n) s

then x := t(n)fl...fn is a statement. (x:= x(“)rl...rn)‘ =p.
(p3) If x := 13 esX 3= fn 5 A,and B are nt2 statements
guch that (A)" N (B) = § and p(")ep(“) , then

(p(")rl...fn - A,B) is a statement. ((p(n)fl...fn - A,B)) = (A)"+(B)" .

£ statement which is defined to be sc omly by the above rules will be

called a basic statement.

(el) If (p = A,B) is a statement, then (-~ p ~ A,B) is a statement.
(~p "’A)B)_).- = ((p "AIB))- .



(c2) Ir (p -A,B) and (q —A,B) are two statements, then
(pAq=hB) and (pVq=—A,B) are both statements. The

values of ( )~ are both identical with ((p - AB)) .

(¢3) If (p —~ A,B) is a statement such that xeV occurs in p
and neither ¥x nor Fx occurs in p , then (¥xp -~ A,B)
and (%xp - A,B) are both statements. The values of ( )*©

are both identical with ((p = A,B)) .

Parentheses and caommas will be used also auxiliarly to avoid

syntactic ambiguity and to improve readability. Especially '(n) fl. ..fn

(n) n n
and p fl...fn are written as x( )(fl,...,i’n) and p( )(fl,...,fn) ’
respectively. Semicolons will be abbreviated if there is no possibility

of ambiguity.

Representation by ALGOL 60

The statements in the above sense are intended to mean the statements

in the sense of ALGOL 60 (Naur et al., 1960) as fcllows.

A corresponds to a dummy statement (empty) .

o corresponds to go to o .

ot corresponds to ¢ : (Gummy statement labelled by o ).

(p = A,B) corresponds to if p then A else B.

t=, 33 =mys A,and V mean the same as in ALGOL 60.

The parentheses used to avoid ambiugity either correspond to begin
and end delimiting compound statements or mean the same as
in ALGOL €0.

(A)” denctes the set of labels standing in A .



Thus each statement can be regarded as a statement in the sense
of AIGOL 60 in so far as neither Y nor @ occurs in that. Thus we
shall call g, o1, f such that x:=f 1is a statement, and p
such that (p - A,B) is a statement, respectively, a go-to, a

labelling, an aritimetic expression, and a Boolean expression.

Notations

Statements are denoted by A,B,C,... . Arithmetic expressions and
Boolean expressions are denocted by f,g,h,... , and, P,Q;Ty.e. ,
respectively. Label symbols and variable symbols are denoted by
O, TyUs.+. 5, &0d, X,¥,Z,... 5 respectively. We shall use a number
of functiona and predicates defined on the statements which describe
elementary syntactic properties. The function ( )~ , being s typical
example, was already defined in the above. All other functions and

predicates listed below can be effectively defined in a similar manner.

1. Sets of lLabels., By an occurrence of oef in a statement A we

mean only such an occurrence as ig different from the occurrences in

the statements of the form o % occurring in A .

A = {o|o occurs in A} .
A" = {ala'l occurs in A} .
A=A uya.

FAM S
A"t - {alaeA* N A~ and ot occurs textually earlier than an

occurrence of o in A} .



Thus A" means the set of labels which are used for the purpose of
designating the destinations of the go to statements occurring in A .
It At # P , then the control may leave A by executing a go to
statement whose destination is nat within A . Such a go to statement

will be called an exit of A . If A*=¢,therearenoloopsin A .

2. Sets of Variables.
via] = {x|x occurs in A} ,
v(£) = {x|x occurs in f} ,
and
vipl = {x|x occurs in p} .

L{A] = {x| a statement of the form x :=f occurs in A} .
R[A) 1is defined by induction as follows:

For each stomic statement such that V[A} = § , RIA] = g .
Rlx:=f] = vigel .
R(A;B]) = R[A] U R[B] .

Rl{(p = A,B)] = Vip] U R[A] U R[B] .

Thus L[A] means the set of variables whose values may be changed by
the execution of A , while R[A] means the get of variables whose

values may affect the course of action and the results of executing A .

3. Substitution. Let Bl’ ""Bn and A be n+l statements such
that B, occurs in A m, times (m, > 0) , where the occurrences
may be overlapped by each other unless they are not the same. Let

ﬁi ’ Je[nil , denotes the j-th occurrence of Bi , where the order is

13



defined by the position of the occurrence of the first symbol. Let

Cl""’cn be n statements. Then, by

AB]_’ .. -,Bn[cl’ .e .,Cn]
or (omitted commas)
5,5 [Cp o sG]

iz meant an arbitrary statement that is cbtained from A by substituting
Ah(i,1) -h(1,24)

Cy for B, yeeesBy , for each ie(n] , with the following
restrictions:

(1) 0<e <m .

(i1) 1 <h(1,1) < e <h(1,li) <, -

(i1i) The occurrence ﬁi(i’” and 51251',,1') do not overlap each other,
for any distinct pairs (i,)) and (1,3") .

(iv) The result of the substitution is a statement.
By

G .,cn]°

A3

is meant the unique statement that is obtained in the case that ! g =0y

1I - .Bn

for every ie(n] , in the above, which does not alvays exist because of
the restriction concerning overlapping and the requirement that the
result should be a statement.

We shall use the same notation also for arithmetic expressions

and Boolean expressions.

14



L. Coples. Ilet 0y,...,0, be arbitrary distinct elements of
+ L o 4 t

A -K, and let 7y,...,T, De distinct and 11£A , for any
ie[n] . Th‘n

-1]o

A I CIVRIIrL A -ri reenr T

ﬂl. --O‘n dl . ..dn

is called a copy of A . If A1 is a copy of A, and, A2 i a
copy of Al,then A’Z i1s almo called a ccpy of A . Copies of A

are denoted by A',A",A"',... .

5. Go-to and Labelling.

A begins with a labelling, if A 1is of the form o B .

A ends with a go-to, if either A is of the form Bo or A is

of the form (p = B,C) and B and C both end with go-tos.

An occurrence of statement B in A is preceded by & go-to,
(equivalently, B is preceded by a go-to in A) , it A
is of the form CA[aB] .

15



Page Intentionally Left Blank



3. Int station of -like Statements

By an interpretation of statements we shall mean (U, R, T°,J)
defined as follows.

let U be a subset of V, % the set of statements
{A|VIAl c U} , and & & bijection (i.e., 1-1 and onto function)

such that
kK :U=-1I,

where I is either [s] , for an s, Or 7l+ in accordance with the
cardinality of U . Let £ dencte g+ {ct} , vhere . is a new fixed
aymbol.

le. & be a structure that satisfies the following

conditions.

. (el AP
2. For each =¥ 5™ , an n-ary partial function dencted by xé“)

is defined. I.e.,
UL LU
3. por each p® '™ , an n-ary partial relation denoted by p‘("‘)
is defined. I.e.,
o™+ al” - F) -
The elements of |R] Wwill be denoted by 84,b,Cy; 85:D59Cos oo -

Thus by R will be meant the total functions by which «® }- x‘(‘“)

and p(“) o p'(t") as well as the structure itself, strictly.

16



tet T° be a set of truth tables for logical connectives. Let
|8 dencte |R|"x £, 1.e.,
|l x ocox Rl x (2 (D) »

—— o —
s times

if U 1is finite. The elements of |8 will be denocted by a,Db,¢)... .

For each ac|p| such that
A= (al,...,n.,a)

and each ueU , 8, denotes ‘x(u) , and lx denotes o . We write
(a), instesd of &, frequently for the readability's sake. If U
is infinite, the infinite dimensicnal direct product |R|* will be
used instead of |R|® , namely s is considered to be infinite.

The total function J defined below sends each statement Aeau
onto s partial function, J[A], from |8 into |8 . J[A] will

be written as A’ » thus

Ay : o -8l .

Two partial functions, one sending each aritmmetic expression f

such that V[(f] c U onto a partial function
f,: ‘3I - Ial ’

and the other sending each Boolean expression p such that viplcu

onto a partial predicate

sz "‘ nd {T’F} »

17



will be defined simultanecusly for the readability's sake.

For s partial function
o : |l ~ 18l >

¢ denotes the function defined by

¢: |a - |8l
and

a a =3

- x

o(a) =
¢(a) otherwise.

Definition of &

The definition of J[A} , i.e., A’ , given in accordance with
the 1last rule which should be used in order to define A tobea
statement (Becticn 2), which defines J[A] for every AeZ; effectively
by the induction principle induced by the definition of statements, is

as follows.

Atomic Statements

(/1) A=A .

A’(a) =a for any acl|d| .

Hereafter the phrase like 'for any &e|8|' will be omitted.



(a2) (1) A =0 .

awy =4 ‘
A = ’ it = H
»* . U T ®
and
A}(a) = a , otherwise.
(11) A =071,

L

.S
(A("-))=r » 1t ox=o;
y. \l
and
A"(a) = a , otherwise.
(a3) A=Xx:=Yy .

y’(a,) = -
y,(n) x

(A (&)) = » it % =t
8, U-x or y

AD(a.) = @a , Otherwise.

Statements (non-atomic)
(b1) A = B;C .

o) = 1n G375 (Ep0 2PN

19



(b2) A =x := x(“)fl...rn .

PP ANCEE SICHRORNEAF O}
(n)
(™2 .02 ) o(8) u=x
(Ag(a)), = 1o ) AF 8 T
"‘) b { ueU-{x} or w =X R
and

A,(I.) = 8 , otherwise.
(b3) A = (p(n)fl...fn - B,C) .

(2,2 (8) = 82y H(8)nerty p(8))

/m (By+ 6,)“ By(a)

n=o

.X = and (p(n)fl...fn)’(a) =T,

or & €B
X

lim (B, + C"

u a(Bj + LB) cj(a)

AJ(‘) = ﬂ (l)
ax =¢ and (p(n)rl"'fn).b(") =F ,

or a e ;
X

s, nxf-B'UC'u{»};

undefined, otherwise.

N




(cl) A= (~p~B0C) .
(= P)J(t) = -uro (p’(l)) . (See Section 1.)

Ay 1s defined by the same rule as (1) of (b3) above except

that (9(n)f1'”fn)p(‘) , occurring twice in it, should be

replaced by (- D) g(8) .
(@) (1) A =(pAaq-B0C) .

(p A Q) p(a) = "ro(P,a(‘)"l,(‘)) . (See Section 1.)

Ay is defined by the same rule as (1) of (b3) above
except that (o'®) £1-+1,) p(8) should be replaced by

(P A q)pa) -

The case A = {p V q = B,C) as well as the case (C3) will be
omitted, for it suffices to define (p V q) 3’ (¥xp) 3’ and

(7xp) Iy similarly and use (1) ss the above.

Intuitive Meaning of J

Practically, J[A] , namely A, , has the following meaning.

We consider a computational process denoted by (A,a) as follows:

1. Suppose
a-= ("1"“”‘3’ ¢) . (s may be infinite)
Assign the value & = 8, x) to the variable x (identified with



the variable symbol x) as the initial value for each xeU .
2. Execute A fram the point labelled by o, while the leftmost
point of A is chosen as the entry if ¢ = i, and, if ofA”

then we consider A has no effect (i.e., identity transformation) .

Then the following hold.
If the process (A,a) terminates at the exit whose destination
is <7, giving the final value b » to the variable x for each xeU ,

then

(3(A)(a)),

bx for each xeU

and

"
-
-

(3(A1(s)),

and vice versa.
If (A,a) terminates st the normal exit, i.e. the rightmost

point of A , then
(J[A](l))x =t ,

while the relationship concerning the values remains unchanged, and,
it (A,a) does not terminate, then J[A] is undefined. The converse

are also valid.

Choice of I'o

As studied by Manna end McCarthy (1969), the choice of T° is an
important problem. We shall assume I‘t as the foundation hereafter,

unless we specify l"° . However, it must be noted that all the axiom

22



schemata of the formal system presented in Section 5 are valid, which-
ever set of truth tables we may use. Fram the practical point of view,

the process of most implementations are related to I‘m rather than to rt .

On the other hand, they make no difference in so far as all
fén) and pén) are total and neither ¥ nor ¥ 1s involved, which
is also the usual case when we consider actual ALGOL 60 programs which

contain no recursive calls of procedures.

Remark
Function J is an extension of Jl for Tl-stttments and J

for Ta-atl.tenents (Igarashi 1964). For instance, J{Al(a) defined

above is identical with
EATSIC S PO

The reader may notice that |R| in the present paper corresponds to y.

in that paper, while 2 in this peper 13 used in a different meaning.
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L. Category of Programs

Programs in the General Sense

It seems to be convenient for us to consider more general programs
as the backgiround for the treatments of the properties of Algol-like
statements. By a program, let us mean a partial function fram an
arbitrary set to another set together with its denotation. This
definition does not exclude those partial functiona which cannot be
defined effectively. Instead, we shall describe it explicitly vwhenever
the definability or constructiveness matters.

Programes will be denoted by A,B,C,... . For each A , J[A)
denotes the partial function corresponding to A, and G[A] the graph
of J[A] . Let D be an Algol-like statement such that Deau ’
and (U,%,R,T°,J) be an interpretation. Then the pair (D, (U, % RsT%, 7))
is & program, for a unique partial function J[(D] , namely D.’ » is
determined by it. Therefore we shall assume the interpretation is
fixed hereafter, so that each Deau represents & unique program. Thus
we identify an Algol-like statement with the program represented by it,
and the set of such programs will be dencted by 4t .

What we shall do firstly is almost the same as considering a sub-
category of ens (the category of gets) whose objects are graphs of
partial functions. The only difference lies in that the denctations
are distinguished in our treatments. For instance, we do not say A
and B are identical mor A =B , even if J{A] = J[B] , while we may

say A and B are isomorphic.
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Category Pr

Each program will be called an object of category Pr . The class
of all the objects, namely progrems, is denoted by Ob Pr For each
pair A and B belonging to Ob Pr, Hanpr(A,B) denctes the set of

triples of the form (A,{,B) such that
¢ : 6[A) - G[B)

and that { is a total function. The elements of H%(A,B) are
called morphisms of fr . If there is no possibility of confusion

the morphism (A,{,B) will be abbreviated by { . We frequently

write { : A=-3B or AiB instead of Ce}!abr(A,B) . It A-;oB nc »
then (A,TME,C) eﬂcnpr(A,C) is defined as the camposition of morphisms
(A,§,B) and (B,M,C) » vhere 1Nt in (A;M¢,C) denctes the composition
of functions ¢ aend T in the usual sense. Let “G[A] denote the
jdentity function of G[A] onto itself. The morphisa (A,i.dG[ A],JIL) is
called the identity morphism of A and is denocted by 1, .

A
We shall see that @r satisfies the axioms of category as follows:

1. Associativity of Cmnition, It

AS'BHC-;'D ’

then {(n¢) = (M)t as morphisms.

2. Idemtity. If AEB,thcn ;-uA. It CEA,thm ﬂ-lAﬂ-



3. If the pairs (A,B;) and (Ay,Bp) ere distinct, then
Houp (AysB,) N Homp, (ABp) = -
Category Pr*

Let Pr® denote the full subcategory of @r such that Ob Pr’

consists of only those programs A such that
pom(J1A)) € #°|
vhere
|85| = {a]ac|d| and s = ¢} . (See the below modification of J.)

For each AcObPr® and BeOBPr® ,

Hu"‘(A,B) - ch\,r(A,B) ,

by definition (of full subcategory).

We consider a map:
Ob Pr - Ob Pr¥
which sends each AcObPr onto LA eObpPr® such that
LAl - Jial] \#] -

That is to say we shall forget computational processes starting from
any entry different from the normal one, namely the leftmost point, if
A 1s sn Algol-like program modifying J{A] imto J{Al||F] .
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Hereafter ve shall be concerned with ?rz' , 80 that A,B,C,...
will be understood as :.A’ r_B, LC sees 1f the former do not belong to
Ob Pr® . Apparently the morphism (A,{,B) is & momomorphism,
epimorphism, or isomorphism, according as the function { 4is univalent
(1-1), onto, or univalent and ontc. We shall write { :ASB or

ASB toexpress that { : A B is an isomorphism, and A =B to
express that there ig an isomorphism from A to B, namely A and
B are isomorphic. ’

Value-Praserving Monom isms

We pay special attention to such a monomorphism { that has the

following property:

Suppose §{ : A - B , and the function § : G[A] = G[B] sends
(8,b) €G[A] onto (c,d) eG[B] such that

a=c
and

b, =d, for each ueX + {x} ,

for a subset X of 11, for any ac|F| .

In such a case, { (as a morphism and as & function) will be said to
preserve the values of X , or to preserve X, and we shall frequently
write (x instead of [ in order to indicate that { preserves X .
Moreover, if the choice of § itself does not matter, we write A p B
instead of ;x + A =B . Similarly we shall frequently write

AivB or AiB instead of ;x:A‘-'-"B, and A= B instead of

;U:A'-'oB,tha.t is AﬁB.



Remarks

i AgBgC 14 A - C.
(1) gBgC implies o

(11) gx; =Ty implies that { preserves XNy .
(111) Q& = Ty implies that the function {|Im &, preserves XNY .
(iv) “’!‘X - 1, implies that ¢ and T Dboth preserve XUy .

(v) In an arbitrary category C , & morpnism 7 is an isomorphism
if and only if there exists amorphism & and ¢,de0bC such
that

byslc and 78=1d.

Guch & © is unique and ususlly denoted by 7L,
Proposition 3. 1If AgB and BgA, then A f,B.

Proof. By definition of 3 there exists gx :A -B . Then,

lx(a.J[A](A)) = (8,J(B](a)) for any acDamJ[Al,

because the right side is the unique element of the form (a,b)

belonging to G[{B] . Similarly there exists T : B - A such that
nr(c,J[B](a)) = (a,J[A](s)) for any acDom J(B] .

Thus tx i{s an isomorphism, for “y‘x = lA and gxn! = :|.B
(c¢f. Remark (v)). Besides, § preserves XUY , by Remark (iv).

Q.E.D.
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Proposition 2. AiB if and only if AXB and nia.

Proof. Sufficiency: Apparent from Proposition 1.

Necessity: If A i B , there exists §x :A=3 and
¢1:B -2 such that §7H =1, (cf. Remark (v)). {7
preserves X , by Remark (iv).

Q.B.D.

For each Aeq? and Beft , these value-preserving monomorphisms
or isomorphisms have the practical meanings listed below. The reader
may recall that aA is understood vhenever A denotes such a program

that Dom J[A] € |#°| 1s not satisfied.

h Relation T

The following relationships are equivalent with sach other.
(a) A 2 B.
(b) Dom J(A] € Dom J[B] , and for any aeDomJ[A] ,

(J[a)(s)), = (J[B}(a)), for each uek+{x} .

(c) For each ac|d*| , if the pro?en (A;8) (mee Bection 3) terminates

with the result b, be|d| , then the process (B,a) terminates
with the result c¢ satisfying
bx =c, for each xeX ,
namely the values of variables coincide variable-wise, and
b =¢
x x
namely the destinations of the exits are identical.
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2.

Relation a .

The relationship A aB nolds if and only if the following

conditions are satisfied.

1t (A,a) terminates, then (B,a) terminates for any ;e|.b"| .

Besides the destinations of the exits are identical.

3. Relation i .

The following relationships are equivalent with eac: other.

(a) A i B .

(¢) Dom J[A] = Dom J[B] ,
and, for any aeDamJ[A],

(J[A](t))u = (J[B](l))“ for each ueXx+ {x} .

(4) The process (A,s) terminates if and only if (B,s) terminates,
and the same conditions as 1(c) atove are satisfied by the results
of these processes.

4. Strong Equivalence and Ordering.

The relstionship A = B holds if and only if A and B are
strongly 5\_1_111;1@1: in the usual sense. The relationship A 7 B holds

if and only if J[A] < J[B] in the patursl ordering of partial functions,

namely @ <V if and only if @ is a restriction of ¥ . A= B if

and only if AUB and BﬁA,vhicho,re still weeker than J[A] = J(B]



in the original sense of J(A] and J(B] , being squivalent to
J[LAl = J[LB] > 1.0.,

A,l 1] - a,! 12 .

9. Correctness,

Firstly, the concept of correctness of programs introduced by
Floyda (1967) and extended by Manna (1969) will be explained in our
notation so that the comparison becomes easier. Manna's definitions

are as follows:

Program A is said to be partially correct w.r.t. predicates p"
and q‘o if and only if

pj(a) =T implies qb(J[A](a)) =T, for any aeDamJ[A] -

Program A is said to be correct vw.r.t. Py and q’ if and only
ir

p,(a) 2T implies aecDomJ([A] ,

besides (1) above.
Let & denote either o or- c'la for an arbitrary o such
+
that ofA” . Then, apparently, (1) and (2) are egquivalent to the

following relationships in this order.
(p = A,8) F (P = As(q = A,8),8) -

(p = A)8) ;; (p - AB)
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6. Representatione of and i- by = .
3ince we shall consider a formal system which represents (although

incompletely) the concept of equivalence, namely relations $ and =,

X
we shall see that 4 and ; can be defined by = , here. We shall
use, however, T as well &s < in the formal system because of its

X
practical applicability.

XaoveoX

Let T “(rl, ...,£) denote the statement
X =4 Jeeey X 37 f‘n .
Relationship A § B holds if and only if
t..00t t,...t
h ~ 1
AL Bie,eeese) = BT Bleyeeesc)

for an arithmetic expression c such that Vic] =§ eand tl""’tm

such that {tl,...,tm] = V[AJUVIB]-X .
Relationship A e B holds if and only if

Vlno-

- - -1 Uy sed
AT n(ul,...,un) s (At!mrll cee O )' 1

where the following conditions are satisfied:
{ul,...,un} = v{a) n viB] .

fvgseeesvp} 0 (VIAT U VB UX) = g .

++
{ul,...,ak} = A .

(Aa;.l...o;l)' is a copy of Aoil...o;l (see Section 2)

- 1., T
such that (Aull...okl)" Ne =9 .

32
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Inductive Limits

The concept of inductive limits is useful in ©r and Pr’ .
For instance, we can frequently use the following method in order
to prove A 7 B .

We find two sequences of programs (Ai) and (Bi)

1en iem

with morphisms such as

9.4 -
A=Ay
9.0 .
Tyt By =By

(A)l;) = 1_1_’51 (Bi,ﬂ;") ’

for each 1en and jen . This is a sufficient condition for a

such that § : A~B and that { preserves X to exist. If p and

q contradict each other, then (p - A,(q = B,4)) is & sum of

(p - A,8) and (q - B,A) , in the sense of the terminology of category,
being & special case of inductive limit, vhere & 1z a statement of

the form o lo such that oAt UB- and AT NB =a nBT g .
This fact may be considered as a justification of writing p-A+p-B
instead of (p = A,B) conveniently used in the proof of the completeness

of L.3 by Igarashi (196L).
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5. Formal System Represent the Equivalence of Statements

Well-formed Formulas

For two arbitrary Algol-like statements A and B belonging

to dU and an arbitrary subset X of U,

"l

A=3B
and

Ax

are well-formed formulas, or wffs. (cf. Intended Interpretation below.)

Substitution Rules

In the following schemata of axioms and inference rules, srbitrary
statementa; variable symbols; label symbols; arithmetic expressions;

Boolean expressions; and sets of variable symbols can be substituted

in place of A,B,Crc.. 5 X V52 5 a,al,..., TyTyseer 3 £58yeve 3 PrQsTrove 3

and X,Y,Z,... ; respectively, provided that the results of such
substitutions comstitute wffs, and that all the restrictioms imposed
on the schemata, immediately following each schema, are fulfilled.

An arbitrary copy of the statement that is substituted in place
of C can be substituted in place of C' in Axiam 12; any other
occurrence of substitution operator indicated by brackets should be
treated similarly; and an arbitrary statement of the form o"*o can be
substituted in place of A ; with the same proviso as the above.

A schema of wffs S(i) in which i occurs as index of statements

should be replaced by the line of the form

3k



&) ... B(v)

before any other substitution, where ve?? and v should be substituted
in place of n oceurring in the restrictions.

The symbol 1 stands for a nullary predicate symbol such that
1R=T . Similarly OR=F .

The formulas in the sense of predicate calculus that are obtained
after the substitutions of the symbols f,8 .-+ 5 PsQe-- and that
constitute a part of vestriction, except those expressions containing
get-theoretic symbols, should be interpreted in one of the following

ways:

(I) Let @ be a formula (in the sense of predicate calculus) that
contains exactly n variables such as xl, ceerXy . Then, we consider

that the restricticn expressed by d 1is satisfied if and only if

(Vxl. ..?xnmj =T .

(II) We presuppose an axiom system [ (or theory) that is consistent
(and semantically complete, preferably) and that contains all the
symbols belonging to ¥ or P and the two symbols = and ¥ . Then,
we consider the restriction expressed by & , a8 above, is satisfied

if and only if
|-rd .

In the both methods, logical connectives occurring in the restrictions

before substitutions should be read as the connectives of r‘ , and
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@ = ¥ interpreted as either both sides are defined and equal, or

both sides are undefined.
Remark

Since semantically complete axiam systems do not always exist,

we have to note (I).

Axioms and Theorems

Any wff that is a result of substitution into an axiom schema i=

an axiom. An axiom is a theorem. If

Sl vee Sn

b

is a result of substitution into an inference rule schema, and
31, .o .,sn are theorems, then ¥ 1is also a theorea. All the theorems

are defined to be so only by these rules. We shall frequently write

5
to mean that ¥ is a theorem.
Asterisks are used to emphasize a certain restriction, for the
readability's sake, so that they are not parts of the formal system.
Index like (Ia'), (ITIn'), etc. indicates that the same axiom or inference
rule was used and indexed by Ia, IIm, etc. by Igarashi (196h4), for the

convenience of compariason.

Special Substitution
In the following schemata of axioms and inference rules, any

occurrence of = can be replaced by % , and vice versa.
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Axioms and Inference Rules

Axiom 1.(a) (AB)C = A(BC)

(v) o((AB)C) = o(A(EC))
Axiom 2.(a) ALZ A .
(b) AT A
Axiom 3.(a) otz .
(v) ootz .
Axiom L. OA= o
ofa”
Axiom A=A .
AT -
Axiom 6. X:=XxTA.

Axiam 7.(s)

x:=T;A;x:=g = Ax[flo;x :=gx[f]° .

LAl n (VI£l U x}) = 8

(v)

x:=T3A;y 1=g = X :=r;Ax[f];y :-sx[t] .
X and y are distinct.

Lial n (viglu {x}) = ¢
xfvifl .

3

(1a")

(1v%)

(1c")

(ze")



A (1a")

Every function or predicate symbol oceurring in A represents

a total function or predicate, by the interpretation.
Axiom 9. (1~-AB)ZA . (IIIn')
Axiom 10. (p = A,B) & (- p ~ByA) . (T110%)

Axiom 11.(8) (p = (2 = A,B),C) ¥ (PAQ~A(PA-GQ=BC)) - (111p")

(v (= (g =AB),0) = (p=4C) .
P> Va .
Axiom 12.(a) (p = AB)C = (p = AC,EC') . (IT1u")
(v) o(p - A,B)C = o(p = AC,BC") .

ofc'” .

Axiom 13. x:=f;(p - AB) = (px[f]* - x 1=03A,x :=1;B). (IIIt+)
If xeV[(f] , then px[f] is restricted to be p x[‘.‘.]c .
Axi___O_-__l‘*- (p = A,B) = (p~ Ac[(l’ - C,D)},B) .

LAl N Vv(p] = ¢
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Axiam 15.(s) (p ~x:=1,A) = (p - x:=g,A) .

pof=g¢g.
(v) (p-x:=f,A)'§(p-A,A) .
po VL.
Axiom 16.(a) A‘s’Af[g].
f=g.
(v) AzAplq]-
pP®EQq .
Inference Rule 1.
ATB +
- (137) -
BiA
Inference Rule 2.
AZB BZC
+
___x_:_L—, (n)
Ai-C
Inference Rule 3.
A')EB ATB
AzB
zZcXuy.
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Inference Rule k.

(P~ AC) § (P~B,C) (a=AD)§ (3 ~BD)
(r = A,E) i (r = B,E)

ropvag .
Inference Rule 5. (a)
oA = 1B
C 'iCc[t]

A and B end with go-tos.

A and B occurin C .

(v)
oA =B
C‘-’-CG[B]
B ends with a go-to.
A occurs in C , or, A is
c {Ay.++sA] , Vhere A,,...,
Ayeohy Ay A,
are preceded by go-tos in cC .
Inference Rule 6.
Ain .
K gfire) *
Rl[c]cX .
¢t na=ctnr =9,

Lo



Inference Rule 7.

-~ * -~
A-iB aiAiaiB

CAiCB

c” n A- 8C++ n B- = {ql’.anpun} .
Atnc =" nec =g .

* 14 C ends with a go-to, or A and B both begin with
labellings, then the upper left formula may be omitted,

provided that n >1 .

Inference Rule 8.

ATB OAZa,B
=B Ui —0'1

c= CA[B]

(1vg')

+4 - ++ -
CA[A] N A =CA[A] NRB = [al,...,cn] .

* Same as above.

Inference Rule 9.
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1.

2.

The set 8 = {al,...,an} 13 a non-empty subset of A ,
and @ total function
f:8-2
sends each 0, onto ‘oi . { » together with § , satisfies

the following conditions:

§28
and
Clo) =0 for each ge8 N 8",
where
g =y WY na”
i
anc

++
A .

g =u AHY n
i
The following conditions are satisfied for each ie[n] .

(1) o' 1s of the fom (p, - ,»5Y) and 5! is of tne

form (Pi ‘31:51) s where bi is either T, or

-1 + +

T, 77, such that 11£A' UB .

(11) ALl the occurrences of o, in A%,...,A" are within
the etatements of the form (Pi. - 0,5 ti) , or all the
occurrences of ii in Bl,...,an are within the
statements of the form (p, - 7!1, el) where el subjecte

to the same restriction as bi above.

(111) mricticx .

If A does not begin with a labelling o 1 such that oeS ,

then 811 of AY,...,A" must end with go-tos. If B does not

begin vith a labelling o -

such that oef(S) , then all of
Bl,...,B? must end with go-tos.
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Intended Interpretation

A wtf of the form
A 3 B

will be interpreted as the relationship A i— B in the sense of

category Pr° (see Section k). Similarly, wif

1

A=B

will be interpreted as the relationship A =B in Prt.

Intuitively, it seems to be obvious that | A3 B always implies
that relationship A ;(—' B in @ holds so that the above system is
consistent. We shall not verify the consistency, however, 1ln the present
paper, for which presumably the constructive definition of J will suffice.

{See Section 3.)
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6. FElementary Metatheorems

Index such as (Th. 3+
for the formal systems treated Dy Igarashi (1964).
this section imply that every axiom of L.k in that

theorem in the present system and t

of L.4% such as

51 ,n

e ——————

5

the following holds:

It b Fpeees b 5, , then F o

) shows the number of the same theorem

The results of

paper becomes a

hat for every rule of inference

Therefore every theorem concerning completeness in that paper holds

also for the present formal syetem.

Theorem 1.

(Refle.ivity)

>
n
>

tal Ul

(Ax. 2a)

(Inf. 1,

{(Inf. 2,

(Inf. 3,

(1))

(1), (2)

(3

\
)

)

Q.EcDo

(Th. 3")

(1)
(2)

(3)



-~

Thus I satisfies the equivalence law formally, the symmetricity

and the transitivity being Inf. 1l and Inf. &.

Theorem 2.
it | A1§1A2 s e A leAn’ then | A ZA ,
n-

for any X suchthat X< N X

tefn] b

Proof. A repeated use of Inf. 5 and Inf. 2.

Q.E.D.
Theorem 3.
F (0»4,B) =B . (Th. 25', cf. McCarthy (19638))
Proof. (0 - A,B) = (= 1 - A,B) (Axiom 16b)
= (1 = B,A) (Axiom 10)
B . (Axiom 9)
Q.E.D.
Theorem L.
If F pv-p, then
r
F (paAA) A . (IIIn', cf. McCarthy (1963%))
Proo”. (p = (p = A,A),A) = (b ADP=A(PA-D=AA)) (Axiom 1lla)
2 (p+4,(044A) (Axiom 16b)
T (p = A,A) & (Theorem 3, Inf. 8) (1)
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Similarly,
F Gp-+ (p=+4A)A) 2 (D20 . (2)
Thus,

(PVap—=(P=248A),A) 2 (PVap=iiA) .
((1), (2), Inf. %)

The premise of the theorem, Axiom 16b, and Axiom 9 give the
conclusion.

Q.E.D.

The premise of Theorem %, being the law of the excluded middle,
holds if p’ i8 total and T is semantically camplete. (See Section 5
method (IT).)

Theoxrem 5.

F (-+A,(a2B,C)) = (p=8(~pAa=+BC)) (1119")

with the same premise as Theorem L.

Proof.

(P-’A’(Q*Bsc)) ~p-~ (q = B,C),A) (Axiom 10)

(A PA q+By(~PA~q =+ C,4)) . (Axiom 11a) (1)
(p =+ A (~PA q+B,C)) = (- p= (PA 9+ B,C),A) (Axiom 10)
2 (~PA-DPA Q=B (=PA-(=PA q) »C,4)) (Axiom 1ia)
Z(-ApPAg+B,(~PA-q=C4)) . (Axiom 16b)  (2)

Statements (1) and (2) are identical.
Q.E.D.
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The sbove alsoc implies that Axiom IIq of L.2 in the previous

paper was dependent on others.

Theorem 6.
If l'i' f =g, then
b x:i=f2x:=¢g . (")
Proof. A special case of Axiom l6a.
Q.E.D.
Theorem 7.
It h.p:)fsg, then
 (p=x:=f3AB) = (p=ax 1= g;A,B) . (IIIV+)
Proof. (p—=x:i=f,A) (P =Xx:=8A) . (Axiom 15a)
Right multiplying both sides by A,
(pox:=f;AA') = (D= Xx:=g;AA") . (Axiom 128)
By Inf. &,
(p—=+x:=f34,B) = (p=x :=giA,B) .
Q.E.D.
Theorem 8.
Ir h.p!q, lA%B, and b c$D, then
"' (p - A,C) :i (q = B,D) . (III8+)
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Proof. (p = A,C) % (p = B,C)

i’ (= P-'D:B)

(p - B,D)

1t

(q = B,D)
By Theorem 2,

(p=AC) § (@=BD) .

Theoren

it FAZE ad fAgB, then

Fa =38 .
XUY

Proof. A speclal case of Inf. 3.

Theorem 10.

1t FA=B, then
XY

Fage .

Proof. A special case of Inf. 3.

(Inf. b4, premise)

(Axiom 10)

(Inf. 4, premise)

(Axiam 10)
(Axiom 16b)
Q.E.D.
()
Q.E.D.
(x1h)
Q.E.D.



Theorem 11. (Superflucus labels)

It of' UB  , then |ABZ AdB .

oA = (GA)A

= o(An)
By Inf. 8 with (3) and (L),
AB=AAB

By (2) and (5),
AB = acls .

Theorem 12. (Disconnected Statements)
If of8” and A NB =g, then

| AdB ® Ao .

Proof. 0B =0

(IV.+)
(Axiom 3a) (1)
(Inf. 8, (1)) (2)
(Axiom 2a) (3)
(Axiom 2a)
(Axiom 1a) (%)
(5)
Q.E.D.
(xve*)
(Agicm b4, premise) (1)

Also the premise implies that A n(m) = A" n (o)  =¢, so that

A(oB) = Ao .
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Theorem 15. (Superfluous Go-Tos)

- -1
F az Ao'l[w ] .

Proof. For any =,

to Lz 1007t
A T=0
T cthervise, (1)
because the formula
g0 =0 (Theorem 12)
and Inf. 8 give
(o) otz oot .
Inf. 8 with (1) gives the conclusion.
Q.E.D.
Theorem 1L. (Additional Exits)
+ o+
If | Ac= Bo for a o such that ofA” UB", then
Fazs . (wveh)
Proof.  Right multiplylng both sides of the first formula by ol , we
obtain
Aco™) = Boo™t . (Inf. 6)

By the premise concerning ¢ and Inf. 8,

A=B .

QoEnDa



Theorem 15. (Copies)

FAZA . (Th. 41%)

+
Proof. (1) The case that A™ N (A')” = f will be proved firstly.
+
Suppose A-aTt . {al,...,an} and A' 1is

-1 -1l,0
Aa .o X a'l_..a-]_[ﬂlﬁ"'lan’ﬂl )ooo,ﬂn ] . Let B Dbe
1 nl n

-1.-1 _-1 el =1 -
A -1 -l[al P71 ee @ By Yo'
1o SRR 3« Mamiie |

1 nl n

11, where 71£At us

for any ie¢[n] . Then

A

w
-]

(Theorems 11 and 13) (1)

But

B

B, [Bil for each occurrence of a (2)
i

because a;la;_lyi occurs in B , for which

ai(a;lﬂglri) = 51(0;15;171) 2y, » (axiom 3b, Theorems 1, 13)

so that Inf. 5a gives (2). Since the number of occurrences of a,

in B is finite,

bpn, | o (ByeesByl® (3)

10 .an

by the repeated use of (2). But the right side of (3) is
' “1-1 -1 -1.-1, -1
A 6-1[°‘1 Bl 7171 7+ 2% By To¥p |
Fn
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by definition of A' , so that
F3)yza ()

similarly to (1). Formulas (1), (3) and (L) give

Az A" .

(14) The case that At N (A')" 4§ is reduced to (1) as follows:

Consider ancther copy A" of A for which At N =¢ and
(A')t A(A") =P . Then | A=A" and |A' = A" according to (1),
so that | A=A’ .

Q.E.D.

Theorem 15. (Operating o (1))
IT B occurs in A and ends with a go-to, and 0eB , then

} oA = (oB)'A .

Proof. b o8 = (oB)' by Theoram 15. (oB)' ends witha go-to, so that

oA = (aA) [ (o) "] (Inf. 5a)
= (oB)'A .
Q.E.D.
Theorem 17. (Operating o (2))

If Ay .3 [As-<.»A] ends with & go-to, mnd, Bl,...,Bn are
1°°*“n
preceded by go-tos in A , them
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aA s ( (As.eosA])'A
F “By'-% YA,

for any o such that of U B, -
iefn]

Proof. Similar to the above, while we notice the latter altemative

“in the restrictions of Inf. 5b.

Q.E.D.

Theoram 18.

1§ 4

Fooa=aa for each 1ie(n)
and

F 0B = als for each 1ieln] ,
for a subset S = {al,...,on} of A" such that 8 D 8' , where

st= u WHTr s,
ie[n])

and each A1 ends with a go-to, then

F oA = o.B for any ie[n] .
i t t ~q
Proof. Let D be (l"°1") , wnere TAATUB , and A Dbe
Ai [Dl,...,Dn]O , tor each ie{n}] . Then,
0 e0e0
1 n
p'A = oA (Axiom 9, Inf. 6)
. i
= AA (premise)
z alp . (repeat Inf. 8, Axiom 9)
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Similarly,

plpzalp . (2)
In order to use Inf. 9, o, is defined as “&i , and .11 is substituted

in place of A"l ’ B1 , and Ci of that schema. The left two schemata

of wifs became (1) and (2), and the right two

i ~ ~ - %1

aol...on[ol""’an] zA 3)
and

i . i

Az oa . (%)

But the left side of (3) is Al itself, so that (3) as well as ()

holds becsuse of the reflexivity (Theorem 1). We examine the restrictionms.

Condition ). ;(61) =0y, for each ie¢[n] , so that the second

~- ~*ition, numely
L(a) =¢ for each 0eSNE" ,

where
s = u aH™an",
icin]}
ia satisfied, while the first condition is included in the premise

of the theorem explicitly.



Condition 2. (1), (ii) Apperent. (1ii) e define U as X .

Condition 3. Apparent.

Thus, by Inf. 9,
F DiA = DiB for any ie[n] . ’
By the derivations for (1) and (2),
JUS ~
oiA—DA—Di'BsoiB .

Q.E.D.

Tueorem 19. (Interchange of Copies)

If B ends with a go-to, end B and B' occur in A , then

b oazagts,s) . (xveh)

Proof. (1) The case that A begins with a labelling and that B
and B' are preceded by go-tos in A is proved firstly. let C be
A‘BB'[ AA] and D be the right side of the conclusion of the theorem.

+
Let T be a label such that TfA™ .

(oB) At 0eB” (Theorem 16)
OAT T {oB")'aT ae(B')” (Theorem 16) (1)
(aC)*zAT aeC” . (Theorem 1T) _
Similarly,
(oB) "Dt 0B
oDt = (6B'Y'D1 oe(B*)” (2)

(C)'TAT  ocC
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because DB,B[A,A] is also C . By Theorem 18, (1) anmd (2),

GAT = oDT for any OecA .
Therefore,

oA E oD for any OeA . (Theorem 1k4)

Choosing ao such that o;]‘ occurs at the leftmost of A,

ATD . (Theorem 13)
(1i) If A Adoes not begin with a labelling, then we prove
vt = r A, (B8] (3)

-+
for & T such that 7tfA” , which is a special case of (i). Formula
(3) and Thecrem 13 give the conclusion. If B or B' is not preceded

1l

by go-tos in A , then we insert ool and A~ before B and B',

where cxﬂ\'t and BAAt . B']'B' being a copy of oaip , (1) implies
PN W TR e I T ()
Becsuse of a(a'lB) - p(p'ln') and Inf. 5a, used twice,

PR I )

(1

(¥

Agp. (08718, 007'B] . (5)

(14

Deleting oo™l and pp™l from the left sides of (i) and (5) by Theorem 11
and Theorem 13, we get

A= ABB.[B',B]
Q.E.D.

56



Theorem 21. (Go To leading to usual Statements)

It o 3r™l occurs in A , then
b azafo) . (zva")
Proof. (1) The case that ofB = is proved firstly. Let C De
. Then
AZC . (Theorem 13) (1)

1Bt occurs in C end

a(a'lB-z) 2 Bv (Theorem 11, Theorem 13)
z B'1 . (Theorem 15) (2)
By (2) and Inf. 5b,
c= CU[B"I] -,
= alB'7] . {Theorem 13) (3)

Formulas (1) and (3) give the conclusion.

(11) The case that oeB’T  will be proved. Suppose B' is
B A _llai,...,a!“,oi'l,...,cl'l-l] . Let 3" be Bila"],
o

cee0 0 "0
1 1 n .
+ - -
where o"fA” U (B')” . Then 0"13" is a copy of oln,nnd

]3":",,[010 =B' . (%)



Instead of (2) in tne cese (i), we have

o(a”lBr) = (a7lB)s (Theorem 13)
z olpvr . (Theorem 15) (5)
Therefore,
A= AG[U"-LB";] . (Inf. 5b) (6)

But every occurrence of o" in the right side of (5) can be replaced

by 0, because of
(o lpr) = (e 1pt) (Theorem 15)
and Inf. Sa. Thus
(6) = (A" 'B"r]) l0)°
= (AB"r)) ulol® . (Theorenm 11) 4

The right side of (7) is Ao,[B"r] because of (L), namely

A= AU[B"r] .

Q.E.D.
Theorem 22. (Go To leading to Exits)
If T#A and o't occurs in A, then
-~ +
Azl . (Ive)
Proof. 0(0'11) =q (Theorem 13, Theorem 11)
and Inf. 5b give the conclusion.
Q.E.D.



Theorem 23.

It A nc =anc'=p, BPnD =B ND =p, A =
RICIURIDIUX
and }-cin,then

e oz @ . (18")

Proof. (i) The case that
B nc =8 nc=p (1)
is proved Tirstly. The first wff of the premisze of the theorem implies

= K . (Inf. 6) (2)
R[CJUR[D]JUX

The second wff, C 3 D , implies

X

[S: - : I (Inf. 7) (3
Thus,

b oac i BD . (Theorem 2, (2), (3))
(ii) If (1) does not hold, we consider the copies B' and C' such
trat A ncr, aA"nct, B nD", B nd, B ncr, and

e nct’ are anl 9 . By Theorem 15,

B = B'

and

Q
nt

C'

B,



We carry out the following derivation.

AC = AC' (Inf. 6)
i B'D (by (1) above)
T BD . (Inf. 7)
Namely,
AC § BD .

Q.E.D.

The above metatheorems ehow that wff § 1is provable in the present
formal system if it 1s provable in the previous system as noted at the
beginning of this section. For the convenience of later use, Theorems
11 and 12 will be modified as follows. (Proofs are essentially the same

a8 before.)

Theorem 11. (Superflucus labels)

If ofA” , then | A= ABIG']B] .

Theorem 12. (Disconnected Statements)

1¢ AA BT =p and B 1s precedsd by a go-to in A, then

|-A'-:-AB[A] .

The first of the following theorems will be used in Section 8, while
the second is related to the notion of correctness. Theorem 2k says that
two statements which are concatenations of e number of statements (loops

may be contained semantically) are equivalent if the constituent statements
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are equivalent statement-wise, which fact is reh.ted to compilation.

Moreover, this theorem gives an example of proving the equivalence of

two statements which do rot necessarily terminate.

T.acorem 2h,

If

F oA, § 0By for each OcA;

and

V[Ai] cX , for each ie[n] ,
then

bAoA § ByeoBy
and

+ 0(Ay.e-A) £ 0(By.o B ) for each oc U A, .
1 n’ X 1 n 1e(n] 1
Proof. Let C and D Dbe
-1 -1 -1
AT Ao Ty AT
and

TilB T -r'lBE,...t 1

122 a'n Sn'nel ?

t t
respectively, where ~j,..oT .9 do not belong to (Al...An) U (Bl'"Bn)



Suppose C~ = [01,...,0n] , vhile C = 1€L[Jn] A;* {tl,...,'rn} by
definition. Then we notice the following.

b oo 1 Ay F ot lB for each oeA;-v {‘ti} , (1)
because,
T 11;1Ai = (Theorems 11 (extended), 13)
§ By (premise of the theorem)
2T 11;151 s (Theorem 11, Theorem 13)

and, for oeA; s

ov Ay = oAy (Theorem 11)
§ 0B, (premise of the theorem)
ot 1151 (Theoren 11)
Therefore,
F ot A = ot ]'B T for each oeA, + {1 .} (2)
i 17141 X i i+l i i’
(Inf. 6, (1))
By Theorem 16,
- -1 -
S oc = G AT,4q)'C  for each oer, + fr.} (3)
and -
b op = ("‘;]'31‘1':1)'” for each oeB, +({1,} . (W)
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But

-1

(UT; Ai‘r“l)' T T AT, (Theorem 15)
2 cr;lairhl (by (2))
% (ot ;lBi'r 141) L (Thecrem 15)
s0 that
a (“;1“1‘ o)’ § (T ;131‘14)' . (5)

We change the index i of Inf. g into j , define o_ as 53 , and

bi) as

J

substitute c‘j (we can simply use aJ instead of (1 — oJ,
shown in the proof of Theorem 1€), C, D, (OJT;lAiTi-rl)' s

- i b i
(o‘jti]?i'ri+l)',and C inplaceor D', a, B, at, B', aa ¢,

respectively. We note that
(o At Yt % (ot e ) (reflexivity) (6)
i 71 i+ X i 14+ )

Then wffs (3) - (6) constitute the premizes of Inf. 9, and all the

restrictions are apparently saticfied, go that

b o c D for each g.eC . (m

It

Therefore, for each akeA- ’

o, (A--eA) E O (Theorems 11, 13)
: oD (vy (7))
= ok(Bl...Bn) . (Thecrems 11, 13)
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Similarly,

Al...An

nt
-

R
]

Bl. . .Bn .

Q.E.D.

Theorem 25. (Verification Condition for Assignment Operator)

Statenment x := f is partially correct w.r.t. p and g if and
only if

|v-r =) q_x[f]° . (Cf., Floyd (1967) and Hoare(1969).)

Proof. We shall examine the conditions for p and q to satisfy

(p=x:=£0) = (p »~x:=125(q = A8),8) . (1}

(2

(See Section 4, 5. Correctness, (1'))

(p=x:= £3(q = A,8),8)

(p = (g (£1° = x :=2,x :=£30),2) (Axiom 13)

(B A fl® = x:=5(p A ql£]° - 5,0))

(Axioms 5, 1lla)

(A qx[f]o ~x:=1,4) . (Theorem L) (2)

Therefore, (1) is equivalent to

(p=x:=£,8) = (DA q_x[:t]° - x:=£,4) , (3)

6h



for which, obviously,

Fp=paqlel
r
namely
|:_ p> qx[f]° (&)

is necessary (see 3 below) and sufficient.

Q.E.D.

Remarks

1. Formula of (%) is logically equivalent to Floyd's original

formula (written in our notation):
o o
7x (x = £,0x 1" A p,[x/] )>4q
provided that the equality axioms are satisfied.

2. We assumed the completeness of [ (including the law of the

excluded middle) in order to use Theorem k.

3 The necessity is based on the meaning of formulas, which can be,
however, improved as follows.

We‘ ghall consider
F (p~M8) =A

ac an assertion of the validity of formula p in the sense of predicate
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calculus, and denote it by
*
F e

Then we can prove I-* P2 q_x[f]o formally from wff (3) by the
following derivation:

Let r denote DA [f]o , and A the statement (r —A,4) .
U

(p = x :=1£,8) ; ® = AA) . (Axiom 8, Theorem 8) (5)
(r - x:=£,48) -; @ = M) (similarly)
= (p-nd) 5 (by (5)
80 that
(p = AA) = (r = A8) . (Inf. 3) (6)
(p=h8) =(PAT = A(PA-T =8,8)) (Theorem 4)
= (p—- T - A:A) :A) (Axiom 11a)
s(p-(p~- A,4),8) (o (€))
2(PAD~M(DA-P =B,0) (Axiom 11a)
z (p = N4Q) . (Axiom 16b, Theorem 4) n
Similarly,
(HPA~ ToAB) E (P2 AD) - (8)
Therefore
(pAr v mDPA-T = pA) R (1 - A0) (Inf. &, (7), (8))
A (9)
But



(p>q[f]° ~08) % (p= v = AD) (Axiom 16v)

(PA X vVAapA-r = AL) , (similarly) (10)

go that
F (2o qlel°=a08) 54 . (by (9), (10))

/The sufficiency comes from Axiom 16b.)

4, Although the main reason that we introduced quantifiers into
A.'Lgol-Alike statements (see Section 2) is to include formulas of

usual predicate calculus in conditional statements in conpection with
the notion of correctness, this syntactic generalization of Algol-like
gtatements may not be essential. For, the study of Engeler (1967)
seems to suggest that infinitary logic is frequently more appropriate
than ordinary logic. It must be noted that the example given by
Floyd (1967) may be considered to be based upon infinitary logic.
Also, the verification conditions for branch and join commands

/the rest not being essential) can be stated and px;oved without using

quantifiers, similarly to the above.
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7. Decomposition of Statements

Let V be & subset of ¥ such that VY-V contalns infinite
elaments VgsWyseees and I be a subset of £ such that ¢£-L contains
infinite elements Oyr0yrees By ao is dencted the set of statements

defined by induction as follows.

(1) A belongs to &, .

(d2) For each Jef, ¢ and ¢! belong to a -

(d3) For each xe¥ and a fixed element w

o of V-V, x:=Ww

0
and W, =X belong to do .

(@) For esch n(™es(™ ana e;.--se, ) Such that either
(0) ¢ )
eies or eieV for each 1ie[n-1]1, Wo 1= M Wae e )
belongs to ao .
(d5) For each p(n)e‘Jn) ) OeL, and e,...,8 ) 88 above,

(p(n)voel...en_l-oo,l\) belongs to do .

(el) 1If A end B belong to &, , then AB belongs to 4, -
(A" ANB =f should be satisfied. Otherwise, AB is not

a statexment.)

Let dl be the set of statements consisting of all A such that
viAlc v, At C L, and that the logical symbols other than —~ and V
do not occur in A .

We shall establish a function

[ dl - do ’
which has the following characteristics.
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1. Constructivenses:

§ is total and effectively defined.

2, Correctness:
F AZ&AK) forany Aeg, .

In other words, & 4is an algorithm that carries out a translation
of 4, into 4, , of which the latter coasists of sequences of
relatively simple statements. Moreover, we can formally prove that §
alwayq gives a statement equivalent to the original one in so far as
the values of variables belonging to V and the destinations of exits
are ‘oncerned. (Actually we prove the above also for each entry. cf.

proof of Theorem 26).

For the convenience of description. we introduce two sets of

statements, as follows:
a, = {x := f|xev and VL)l c V} .

@ = {(p = v,N)|ver and ViplcV} .

Besides, a; , a; , snd a; will Ue used, whose elements differ
from al , 02 , and 03 , respectively, only in that some suffixes
are added. (See Definition of 6 below.) '

Definition of §

let & and ¥ be two functions as defined below. Then
#(A) = Y(OO(A)) for each AeZ; -
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1. Definition of 8

We define the function
*
e dlxn-dl »

where the elements of d; are statements whose symbols are possibly
suffixed. For each A and each vye7, OV(A) denctes the image
of (A,v) . Actually, however, @ 1is extended so that, for each
arithmetic expression f such that V[f] <= V and for each Boolean
expression p such that V(plc Vv, av(f) and @,(p) are
ieﬁnod. Besides, two auxiliary functions

Niayufplvipl g vl ~ 7
and

b {Z|VlLlc v} -
are defined.

Practical meaning of these functions are as follows.

u(e) : The number of required working storages to compute £ .

ov(r) : The result of suffixing function symbols cccurring in ¢
so as to specify the allocation of working storages.
(v 1is irrelevant.)

Ap) : The mumber of auxiliary labels to compute p , which is the
mut;er of occurrences of symbol -~ in p .
uwip) : The nunber of required working storages to compute p .
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ev(p) . The result of suffixing P to specify &ll the

auxiliary labels using index greater than v .

A(A)
and : Similar to A(p) and ov(p) .

a,(A)

Functions ©, A, and y are defined simultanecusly by

-nduction on statements as follows.

Atomic Statements

(al) . C =AM\ 0, O a-l

and

(a2) 8,(C) =C for esch v .
AC) = 0

(a3) Cax:=f, vhere £ =y :
w(f) =0 .

av(r) = for each v .
ev(c) =X t= ev(f) . (1)
aMe) =0 . (2)

Statements (non-atamic)

(bl) C =AB :
GM(C) = .v(A)ewx(A) (B)

MC) = MA) +(B) -
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(b2) C=x:=t, vhere £ =nPe ...¢
p(f) = wm ,
where

M= max p,(fi) > (})
0<i<n-1

and m is the number of f, such that fiﬁv .

e\a(f) = "l(l:)l,...,mm e\o(‘to)"'e\a(fn-l) ° (1)
sv(c) and A(C) are defined by (1) and (2) above.

(b3) ¢ = (p = A,B) , where p = p(“)ro...rn_l :

M(P) = Mm ,

vhere M and m are defined by (3) and (L) above.
0,0 = oypl, ... wm BT+ A (Fy.)
Mp) =0 .

(1) If A is v and B is A, then

8,(C) = (8,(p) =1, (5)
and
M) = A(D) - (6)

(11) If A isnot of the form T or B is not A, then
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where
K = v+A(A) +A(B) +NP)
and

AC) = W2 . (8)

(¢1) C = (~p =AB) :
8\' ("l P) = Sgrl o\'(p)

Map) = Mp)d

.av(c) and A(C) are defined by (5)-(8) above. (Substitute -»
in place of p .)

(c2) C=(pvaq-—~AB):

8,(p Vv a) = 8,(p) V8, (2

AMp Vv q) = A(p) +Ma)

ev(c) and A(C) are defined by (5)-(8) above. (Subsitute p Vv q
in place of p .)

2. Definition of ¥
We define the function
. * U d* »*

* * *
By A , £ ,and p will be denoted O“(A), ev(f),cnd

q'(p) , respectively, for certain values of v . Thus, for instance,
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{bl) below, i.e.,

A"z = v )"
reads as follows:

Since C = AB, &,(C) is of the fom A"B" . Define
v(a)r(s") as ¥, ) -

Yo plays the role of an accumulator.

v is defined by induction as follows.

Atauc Statements
(al) ¥(A) =A .
(a2) ¥(o) =0 .
v(o'l) =01,
(a3) (1) ¥(wy :=y) =vy =y .
(i1) It x £ ¥, » then ¥(x :=y) 1is defined by (1) below.
(Substitute y in place of f .)
Statements (non-stomic)

1) ¥(A"B") = ¥(a") (")

(v2) (1) !(vo t= “(0)) =W, i= 11(0) .

(1) ¥ 2= 1) axtm) oo+

=C _1:+:Co3 Wy i= "(n)'oul“'“n-l y (m21)

n-1 o?

Th



(111)

(v3) (1)

(11)

(111)

vhere

fi risV
u = for ie[n-1] ,
ap(1) oY

A tiev )
Cy = . for each ie[n-1] ,
uy = T, fi,_v

@(1) being defined by the following induction:
p(0) =0

g8(1) f,ev

gi)+2 ri,tv

B(1+1) =

¥ (x := f*) = Y('o o= f*)x t= Vo (x * vo) (1)
w6 ~,a) = (6@ <10

* *
Y((pé?)l)--.a(m)fou'fn-]_ ‘7(1)7(2) A, (n2 1)

where Co, '“’cn-l’ Upreee are the same as above.

Myl

(ct. (02) (1) .)
»* » »

WP e 478 )

- v((p - T T R AP RS (1 L (2)
P y(1)y(2) “7(2)’ 7(2) 7(2) 7(@) °

(A 1is not of the form Tt , or B is not A )
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(e1) (1)

(14)

(c2) (1)

(11)

Example

*
'((_‘6 P = 1,A))
* .
- (" ~o et .
If A isnot of the form 1 , or B disnot A, then
*
'(("a P (0)7(2) A,B)) 18 defined by (2) above.
*
(substitute -, p" inplace of p .)
* »*
Y((p vaq =T,A))
* »*
=¥((p -=7,A))¥((q ~=7,4))
If A dsnotoftheform T, or B is not A, then

»* *
*((p Vaq ~(1)7(2) A,B)) 13 deﬁ;;ed by (2) above.
(Substitute p* vq* in placeof p .)

We consider the statement

if x < O then x := =X, (1)

which was used as an exauple of campilation in (Igarashi, 1968).

Here, let us allow only binary - , and see how the statement

if x <O then x := O-x, : (2)

(x <0 -x = 0-x,A) (3)

in our notation, is treated.

Let

A Dbe (p(l)x “X tm n(a)n(o)x,l\) . Then,
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8,(A) = A - (o(l)x 2 %" n{e) n(o)xnl\)

and
* 1 -1
Y(A) = v :-x;(p( )'0 - ol,A)oeﬁl ;
O () O ¢ )
Vo 1= TG M e TGRS X i W3 9y .

Especially, we define x <O as p(l)x » O uas "(O) » and x-y
as n(o)xy , 80 that A lbecames (3).

For readability's sake, #(A) 1.e., ¥(A") will be written
in ALGOL €0 and listed with corresponding actions, symbols W, , 9, »
and 02 being replaced by acc, L1, and 12, respectively.

acc = X; load x
if ace < O them go to L1; jump on mirmus L1
go to 12; Jump 12

Ll1: insert label L1
acc = 03 load O
acc := ace - X; subtract x
X := ace; store x

L2: - insert label 12

¥

Statement (&) is different only in trivial points fram progrem 8

(in the above paper) for which



F( = s
fx}
is proved as an example of derivation. That proof, for this particular
pair of statements, needed two pages of derivation (20 steps) preceded
by one page (10 steps) for an auxiliary formula, being derived directly
from the previous formal system. In the present paper, however, we
shall prove, also formally, that

A% #(a)

is valid for every Aeg, , vhich implies that (2) = (b).
v-{ace}
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8. Formal Proof of the Correctness of Decamposition

In this section we shall prove formally the following theorem which
implies the validity of the transformation defined in the previous

section.

Theorem 26. Let (v,x,a,r°,J) be an interpretation such that "a

is a total function for each me¥ and that Pa is a total predicate
for each opeP . Then '
F AZ#(R)  forany A -
We shall prove the following lemmas firstly.
Lerms, 1. If x/V[(f] , then
- o
F xi=ft; y:=g = y :=glf]",

v-{x}

F x := £5 (p = 0,A) v.=[x] (px[flo - 0,A) .

Proof. Choose z such that z £ x .

XitefjytaguxXx:i=f;yiz=g;zi=2z - (Axioms 2a, 6, etc.)
Sx =Ly ;= gx[r]; z i1=2 (Axiom Tb)
=X i=f; ¥ 3= gx[f] . {Conversely) (1)
X =2 = A ’ (Axiom 8) (2)
v-{x}
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s0 that, right multiplying both sides of (2) by y := gx[tlo s We
obtain

x = f; y 1= g [£]° v_:{x} y := g l£)° . (1af. 6) (3)

It must be noted that only g [f]° instead of an arbitrary gl[f]
ghould be used because it must not contain x to use Inf. 6. By
(1) and (3), the first wff is provable, while the latter can be

proved in the same manner.

Q.E.D.

Lemma 2. Let C and D dencte (p — A,B) and

(p - tl,A)BtzrilA‘r;l , respectively. Then

and

|- o¢ = oD for each oceA B .

Proof. Tet & and D dencte

y L - a1a,e871B)8

and

-1

4 L -1 -1
yHp = 150088 R e

+ +
respectively, where «a, g, 7, and § do not belong to ¢~ YD~ . Then,
by Theorems 11-13, | C=C, fpoc=al, F DZD, ana,

oD = oD , for any oeA” UB . Let {o0.,..050 ] Ve A"UB U {a,B,7) .
1 n
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(o 2 mYe) D .

o = { (o,87'mr,)'D 0,e8”U {8}
(77-1(P - Tl’A)ﬂ) 'f) 01 =7 .

(Theorem 16, Theorem 17)

(o,7'Br,) D = (3,677B) r D

= (515-13)'65 ’ (Theorem 22)

(77" (p = 7,,M8)'D = (p =7 ,0)80

% (p - o,A)8D (Theorem 21)
T (p - o8,8)D (Axiom 12a)
= (p-~a8)d . (Theorem 12)
Therefore
r o -
(aiA)'GD o €A
(013) '65 UiGB-
61“ = < A'6f) °1 =qQ (1)
B'Bb Ui = B
(P"arﬁ)ﬁ o, =7 -
.
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Apparently (1) is provable if € 1is substituted in place of b,

8o that

of 20D for each oies” U B U {=B,7)
Therefore,

oC T oC T oD = oD for each oeA- UB™
and

C'éﬁ;yé'iyf)‘éf)ED (Theorem 18)

Q.E.D.

Lemma 3.

I o(p - A,B) =0(q = B,A) for each geA” I B~

Proof. Let ~

g (p - A,B)T

o(q —= ByA)T

be & label symbol such that T#A” U B~ . Then

and, by Theorem 16,

% o(p - At,Bt) , (Axiom 12b)
= a{q — Br,At) , (Axiom 12b)
(5A)*1(p —~ AT,Br) geA” ,

o(p = At,Br) =

Similarly,

(oB) "1 (p ~ AT,Br) oeB .
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(oA)'t(q = Br,At) geA  ,
a(q - Br,Ar) = (%)
(oB) v (q — Br,Ar) geB
Therefore, by Theorem 18,
o(p = Av,Br) = a(q ~ Br,Ar) , (5)
so that, using (1) and (2),
o(p = A,B)T = 0(q = B,A)T
Thus,
o(p ~ A,B) = 0(q = B,A) (Thecrem 1k)

Q.E.D.

Lemma 4. If the interpretation satisfies the premise of Theorem 26,

then

F (=1, M@=t 0 =(pva=1,4)

Proof.

(p=T,Aa =1, A)=(p=T(a=7,A)(a~7,1)) (Axiom 12a)

2 (p~ T,(Q=1,4) . (Theorem 12) (1)

8>



(PVa~T,A) 2 (opPA-Q) =T,A) (Axiom 16b)
S (hpA-Q=AT) (Axiom 10)
Z(pAaq-~AEPAg=T,T)) (Theorem 4)
2 (—p = (~q = AT)T) (Axiom 1la)
T (p=Ts(~q=~sT)) (Axiom 10)
T(p=1s5(q=TsA) . (Axiom 10)

Statements (1) and (2) are identical.

Q.E.D.

Proof of Theorem 2€.

We shall prove the following statements, which include the

conclusion of the theorem, by induction.

-]
.

For each Ac.’]l such that A is neither of the form x := f nor

of the form (p — T,A) »

Foazwa)
and

b ooaz av(a™) for each OcA™ .

S
.

Tor each statement of the form x := f belonging to dl. or da s

¥(x := f*) ’

;= 1 =
‘— * S[x::f*]

where

8k

(2)



8lx := £7] = [x} U (v-Wl£"] - [w)]) ,
VI£'] betng {w, |1 occurs in £" as surrix} .
3. For each statement of the form (p —7,A) belonging to @, or 2 »
F =m0 30 -1 .
Bince V¢ B[x := "], these statements imply

FASYA) for ey A, -

Atomic Statements

(a1), (a2(4), (a2(44), and (a3)(4).

Y(A") is identical with A , so that the above statements are

apparent.
‘9“11!.
Y(vo = Y)X = v, 18 W, =y X =g,
for which
¥y =Y X i= W, 2 x:=y , (Lemma 1)
V-[vO]
and

8(x := y] -V-{wo] .

Statements (non-atamic)

Hereafter the statements 1 -3 will be used as the induction
hypotheses.
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(b1) By Hypothesis 1,

“*
A%Y(A) s

- » -
oA F a¥(A ) for each O0eA ,
- *
and
*, -
9B ay(B ) for each 0ecB .
Therefore,
*
A3 Y(A)¥(B)
and

oAB 3 ov(A")v(8") . (Theorem 2k)

b2)(1) Apparent because Y(A') is identical with A.
(n) (n) (n)

@2“112 let D be n "0“1"‘“:1—1 » Dk be

(n)

n fO'"fkuk*l"' nel ? and

k
T, = v-u w[r;] - [ui|1e[k] and uif\I} , for k = 0y,..05n=1 .
1=0

We prove, firstly,

(n) = (n) .
Cpe+-CoP T, Dy for each k (1)

by induction on k .



w, =t = c . (Hypothesis 2) 2
o o 8[1'0:-{;] o esis (2)
We note that
(n) *
R[D'] = {vo,ul, '"’un-ll = S[wo cz ro] ’ (3)

vhich is shown as follows.

8lw, := £5] = v-wif]] . (by definition)
But by definition of W[fy],

v Mitg]

wiinv=¢ ,

“’ 1f “1‘AJ » tb.ll uiﬂ[t;] F] (i - O,---,n-l) . Th\ll

R[D(n)] nw[f;] = § , so that (3) holds. By (2) and (3),

(n) = (n)
imf 3D = c (Inf. 6)
Yo ** %o Blwg:=£51U {vy] o°

M n(()“) . (Axiom 7e) ()
Step k+1 : We use (1) as the supposition of induction. Firstly, we
prove the case that uhltv .

chl(ck...con(n)) ;’- chlnl(‘“) . (1ef. 7, (1)) (5)
k



‘e sl if* ] Uy T ey (Hypothesis 2)
Vel ke

We note that

k
R[Dl(‘“)l = (1'iov“i]) U {ug oeeeou i3 © 8y, = f:,,ll ’

which is showm similarly to the above, by
*
H[fkﬂ.] nvsg¢ ,
vif,lev ,

*
and, if ui,év » then ui,éw[fkﬂ] s (1 =0,...yn-1) . Therefore

cblnl(:‘) = CNELE SO Dl((“) (Inf. 6)

8luy,:=fle; 1V {wy]

= pn)

(Lemma 1)
v'{“k,‘.l} k+1

T, 0 (Sluy i fhyy) U D) N (¥ fugy))
=1 N (lug, ) U (v-wig, 1) 0 (v-{u,D

=Ty Wity ) - loyg, )
= Teer »

so that

Crer ™ g p®) . ((5), (8), (9), Theorem 2)

(6)

n

(8)

(9)

(10)



Secondly, the case that “k-'-lev has to be proved. In this case,

however, C ie A p{®) 15 identical with Dl((“) ,

k+l k+l
and T, = T, » 80 that (1) implies (10). Thus (1) has been proved.

et k =n-l .

(n) = ,(n)
CpqroDP g = Dpoy (vy (1)) (1)
n=1
Apparently,
t.3 *
Tn-l =YW ]-= S[VO =) ’
anda D™ 15 w_ := e P that i8 w. := £ , 8o that
n-1 o°* 0" " "n-1"’ o’ 4
cn-l...con(“) SR ARTE (vy (1)) (12)
S[vo:=1’ ]

(b2) (444). By (v2)(11) above,

Rl
y(v0:=r) = L w, =T ,

vaiie) ©
so that
Y(w, := t*)x 1= W = w :=f; x =W (Inf. 6)
0 O (xju (vwig*)) © °
2 xs=f . (Lemma 1)
Y-[vo]
Therefore
sm ¥(x := f*) . (Theorem 2)

£ =
{x}u (vl -{w,})
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(v3){(1). Apparent because Y(A*) is identical with A .

(b3)(11). We have only to modify the proof of (b2)(ii) as follows.

n n
Let D( ) be (p( )'oulnovun-l “T,A) ’

nl((") be (p(“)ro... er1t* Upey ~ T2 » and

k %
T, = v-iLio wie,] - [ui|ie[k] and uitv] - {vo} »

;for k = O,...,n-l .

Then we can prove wff (1) above also for this case, using the

axioms, theorems, etc. in the same manner.

(n) =
C_ ....DD = (P = 1,5A)
nl 0 vt 1-(wg)

Therefore,

(CIEENWENCEE NV

(b3)(411). By (b3)(ii) above,
~ *
(» - 07(1),A) v Y((p - 3'7(1))1\)) .

By Hypothesis 1,

*,
'A%Y(A) s

Letting k = n-1l , we have

* -
oA f,- o¥(A) for each 0cA

~ *,

()

(1k)



+*, -
GB“'—IUY(B) for each a¢B ,

and
07(1) ‘-"7 07(1) . {reflexivity)
Therefore,
* -1 #* -1
W@ =9, ()M UBIT (33 YA o)
T @ 0,0, )T (Teore 20 (25)
(p-aB) . (Lenma 2)
Thus
(@~ MB) § UG = (q),2) AB D - a8

By the same theorem and lemma,

o(p = AB) F ON(B =,03)(2) A 7B )

cl)(1).

YWD ~oun) § B =oph) - (Hypothesis 3) (27)

Right multiplying both sides of (17) by wgl , we have

W -0y N)1ot F (p = oMo, (1nt. 6)
3 (p=og0;l,r0p ™) (Axiom 120)
= (p = A7) (Theorems 11 - 13)
2 (p-TA) . (Axiom 10)
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Thus

Y((~ P ~TANE (bR =T (Theorem 2)

{e1)(41). By {(c1)(1) above, (14) holds also in tais case, so that
the same proof as that of (b3)(iil) suffices. (Substitute —~p and

-y p"t in place of p and p* in (14), respectively.)

c2)(i).
Y((p* - T,A) \=, (p—t,A) . (Hypothesis 3) (18)
Y@ =M F (a=Tn) - (Sinilarly) (19)

Therefore, by Theorem 2k,
* * -
WP ~1A)Y(a ~T,A) F (@ -7 (e ~1A)
T(pvag~TA) . (Lemma k)
Thus

* » -
¥ va =TA) F(Pva—1,A)

(c2)(4i). By (c2(1) above, (14) holds also in this case, so that the
same preof as that of (b3)(1ii) suffices. {Substitute p Vv q and

* * *

p va inplaceof p and p 1in (14), respectively.)

Q.E.D.
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