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PREFACE 

This report consists of notes prepared for Arrlied)ktbematics ~b 

A at Harvard UnIversity 1n the Spr1ns tera of J.9D5' and,-Computer Science. 

206 at Stanford Unlversit7 in the Fall quarter of 1966 and 1967. They 

do not pretend ~-Ge more than lecture notes; ~ft , •• t1gul.r, no attempt 

has been made to expand outlines and remarks into full sentences. In 

spite of ~ def1ciences and '1me' incompleteness t)t-;me--noeea, students 

seem to iLnd them useful. For this reason, they are reprinted as a 

technical report. 

Mendelson's Introduction to Hathematical LogiC, van Nostrand, 1964, 

was used as a supplementary text for the course. The formal treatment 

of the propositional calculus here is primarily a commentary on the test 

and is therefore incomplete. 

Two sections of the notes are reprints of material written by others. 

The section on the Infinity Lemma is a translation by Anthony Sholl of 

a c~pter of Konig's Theorie der Graphen, Chelsea, 1950, which is other­

wise unavailable in English. Also included is the chapter "A very 

elementary system L" reprinted w1 th minor changes from Hao Wang's ! 

Survey of ~thematical Logic, Science Press, Peking. 1963. 
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COMPUTER SCIENCE 208 

FOUNDATIONS FOR COMPl1l'ER SC1ENCE 

The short title for this course is "Foundations for 

Computer Science". A longer and more accurate title would 

be "Foundations of Mathematics for Computer ScientiE~s; 

an introduction of logic, set theory, algorithms and ~omputa­

bility. " 

Historical background 

Tne historical background for a combined study of 

logic, algorithms and computation can be said to date back 

to 1666 and to Leibnitz .. who dreamed that some day ~hilo­

sophical and mathematical arguments could be avoided by 

calculation. He envisaged a universal characteristic, "a 

general method in which all trutns of the reason would be 

reduced to a kind of calculation. At the same time this 

would be a sort of universal language or script, but infi­

nitely different from all those projected hitherto; for the 

symbols and even the words in it would direct the reasvn; 

and errors, except those of fact, would be mere mistakes in 

calculation." Instead of disputing, men would simply calcu­

late. 

1 



Thil dream, in a much .ore aophisticated form, wa. 

shlred by Hilbert at the turn of this century. Hilbert 

elllphee1zed that mathematic. should be treated as a !2!!!!l 

alit ... abstncted from Ita _Ining. The study of the fonaal 

systera was called _hllllltheIDlUel, or proof th60ry. One of 

the main problems of the P.ilbert prosra. v •• the deci.ion 

proolemuthe problem of findinc a cenerll method to dete-::m:Li.e 

if a given mathematical atatement Is true. The mathelDltical 

problem would be expressed 1n term. of the rormsl syatem, .nd 

/I purely mechanical procedure would detel'1lline if the conclusion 

vas in filet • theorem of the for.al ayata.. At the time it 

did not occur to anyone that thie would be impossible, althoug!1 

clearly the problem vas difficult. 

Theae hopei were destroyed by the worlt of GOd.el, Turing 

and Church, wbo ahowed that it .. a iIlpouible to find such 

pneral .. thoda, even in quite re.trlcted ueu. (There are 

lOile very si1llply stated un.olvable problema.) Thvs, th." 

aituation is that in the 1930'S, 10 to 20 years before the 

hardwsre is ready, before the introduction and vide spread 

use ~f modern hj~h-8~ed computing ~chinea, the dream of 

using mechanical llle1.hods to sCllve all of mathellllltics is 

shllttf'red. 

The reaction to these discoveries va. violt:nt., Von 

Ne~nn Is said to h~ve re~eived word of GOdel's results vhile 

lecturing on logic He reed the mt'ssege, re.rked "Gentlemtcn, 

r have lJothin& f'urther to IllY," lef'l., and n~ver n:turr.ed t : \r." " 

to that elss! or ~o hlS worK on logic and set th€0ry 



The discouragement because of the negative results on 

solvability has also been reflected in the actual use of 

I:omputcrs. In the ·.1evelopment and application of computers, 

the emphasis has been on numerical methods. This, of course, 

13 primarily because of the rapid development of computers 

d~ring the war, in response to a need for numer~cal computa-

th'n, for ballistics, for atomic enerll;Y But it also reflects 

the tremendous discouragement of logicians by the great 

unsolvability results. As w£ shall see, it is not until the 

late 1950's tr~t the question of using computers to apply 

decision procedures where they do exist, and of w~rking out 

partial procedures In other cases is seriously considered. 

Our treatment of logic, algorithms, and computation 

will be from both the negative and positive poil;ts of view. 

On the one hand, we will try to give a clear description of 

the limits of what cannot be computed, or solved by computation. 

On the other hand, we will investigate the areas in which 

computation can, either partially or completely, succeed. 
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We begin informally, int~'Jd"'Clng the propositional 

calculus with its usual f.pvli~atlon to sentences, by means 

of truth-table definitions for its ~0nnectives. (Later, w~ 

shall treat the propositional. calculLls as ,-. fuC"ll81 system, 

and show by means of soundness and compl~teness proofs that 

th~ informal system is correctly and ~d€q~8tely described 

by the forms lone. ) 

In the informal 'treatment th,: baslc 'lI'its are 

sentences. statemeuts, or proposltions. These are ~ 

indi.isible units, and are declarative statements which 

admit to be1rl! either true or false. 7 is a prime. Harvard 

University is in Cambridge. Mauachusetts. 4 is an odd 

number. These basic units are combined by means of ~­

~ to form new compound se~tences. If 4 1S an odd 

number, then 7 i8 a prime. Harvard 1S in Cambridge if 

and only if 7 is a prime. The trutil or falsehcod (briefly, 

the truth-value) of the resulting combination then depends 

only on the truth-v"lues of the component st:!ntences, and 

not un any internsl relation between th~m. Same two compound 

sentenc,~s. Consider also: Socrates is a man. All men are 

mortal. No conclusion 1n the preposltioN.I calculus. 

Socrates is a man. If Socrates is a man, then Socrates 1s 

mortal. Conclusion In the propositional calculus. 

If we interpret the elements of thf' propositional 

calculus as sentences, we will wish also to interpret the 



~onnectives 8S English wurds '. L phl"[;' S 

spondence between the connectIves and the ~ords n~t, end, 

or, if ••• then, and If 3n(j <.m1:t.2.L wtl .. ch are usually 

used as translations. BUT V'.I: mE-aning of . be connectives 

1s a defined meaning, not subJect to 'the various alternauve 

readings which are aV8ilabl~ fer the corresponding words 

_r. some cases, 'the meaning of the conn!::ctive:; may appear 

u.r.natural, relative to the corresponding Engllsh, but since 

the connectives are precisely defin~dJ no real damagp. car. 

result, 

The elementary or Btomic statements of the proposItional 

ca~culus are denoted by the statement letters p, q, r, Pl' 

ql' r l , The two truth-values are falsehood, denoted 

by '0' or by 'F', and !D!l!.!.1 denoted by ; l' or by 'T' 

In general, no conf'",sion arises from using numerals to denote 

the truth-values, and it is more convenient for computation 

However, i:1 proofs, the letters 'T aud • F' will be u.sed .. 

Ttl;;: connectives, Atomic sentences are combined into 

compcund sent_ences by means of the connectlves. 

Negation, 

There is one singulary connective, ~~ WhiCh 

corresponds to negation The negation of p IS ~sually 

written 'p' or i_ p ' or '-,p' or ''''''Pi 1ts valuE'1 

which depends only on the value of p is gIven by t ht: t .... uth­

table 
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y) 0 1 

-p 1 0 

That is to say, -p is true if p 1: false, and -p is 

ralse 1£ p is true. 

While '_p' is generally re3Q 'not p', it Is, of 

course, not true that we form. the neg:t.ion of a sentence in 

Incllsh simply by prefixing the word 'not'. '7 i8 not a 

prble' 1s the negation of '7 j8 a ~rime' The word 'not' 

is thus placed within the sentence. To obtain a uniform 

method of translation of -p in tenrs of p we l118y use 

'it i8 not the case that p I, it is not the case that 7 

is • pi-We. 

There are four binary connectives, also defined by 

truth-tables. 

Conjunction. 

The truth-table for conjunction. p ~ q is 

p 

q 

(p 1\ q) 

010 1 

o 0 1 1 

000 1 

(p 1\ q) is true only when both p is true and q is true. 

(p 1\ q) is also written 'p 6 q', and 'p' q' and 'pq' " 
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P A q is the conjunction of p and q; p and q are the 

conjuncts of ~he conJunction. 

DisJUDction. 

Alternation or disjunction is the first of th~ 

operations for which the departure from English usage 

requires comment. 'p V q' IS true if p is true, or if 

q is tnte, 2!: if both p and q are true (the inclusive 

or) • The truth-table is thus: 

p 0 1 0 1 

q 0 0 1 1 

(p V q) 0 1 1 1 

Frequently in English~ a disJunction using or is intended 

to exclude the case In which both dlSjuncts are true. To 

expre3S that case in tte notation of the propositional 

calculus, it is necessary to write a more complex statement: 

(p V q) • (-(p A q)) for example 

that is, to exclude specifically the case in which both p 

and q are true. Th~ notation 'V' for alternatIon 'vel' 

8S opposed to 'aut' (the exclusive £!). p Bnd q Bre 

the disjuncts of thE' disjunction (p V q) . 



Comment on the form of the truth-table. 

It is more ususl to write truth-tables using column~ 

rather than rows for the value~ of the propositional variables. 

The truth-table for (p V q) is thus usually written 

p q (p \I q) 

T T T 

F T T 

T F T 

F F F 

The two forms are, of course, equivalent and either form is 
... ~. 

acceptable. rhe one I am using makes somewhat more trans-

pare~t the isomorphism with Boolean algebra, and in addition, 

8ee~ easier to use. 

Conditional. 

The conditional p ~ q read if p then q might 

be said to depart even farther from common nonmsthemstical 

usage, since it is defined by the table: 

pOL 0 1 

q 0 0 1 1 

p;::)q 1 0 1 1 

8 



It is true: if p is false, or if q is true. It seems 

clear that 'if p then q' should be true if both are true, 

and should be false if p is trv~ and q is false. The 

case, p false. q true, must be true in order that 

P A q ~ q always be true, regardless of the truth-value of 

p. Besides. otherwise the vfllue is independent of the 

.alue of p, which is very uninteresting. The remaining 

case in which p ~ q is held to be true when the antecedent 

p snd the consequent q are both false, can be argued on 

the basis that an even integer should not be taken as a 

~o~~terexample to if x 2 is odd, then x is odd. nor an 

occasional absence of smoke as a denial of the statement, 

if there is smoke, there is fire. The conditional thus 

defined is called the material conditiona~. to distinguish 

it from other possible conditional relationships, as, for 

example, that of cause and effect. 

Biconditional. 

The final common binary connective to be defined is 

th~ blconditional 'if and only if', p. q. Its truth-

table is 

p o 1 0 1 

q 1 1 

P !Iii q 1 o 0 1 
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p • q is true if p and q have the same truth-va:'""" 

otherwise it is false. 

Nonconjunction, nondisjur.ctlon. 

There are two bin~ry connectives which are only 

occasionally used, but ~hich are interesting because each 

alone suffices, by compound use, to express all of the 

connectives given above. These are nonconjunction (Sheffer 

strokp.) and nondisjunct~on (joint denial). 

Exercise 

P 

Q. 

(p I q) 

en , q) 

01(\ 1 

o 0 1 1 

1 1 1 0 

1 0 0 0 

Work out negation and conjunction for Sheffer stroke.. Play 

with relations between connectives. 

10 



Application of propositional calculus 

to ar~~nts in natural la~ge. 

The original application, or at arty rate one early 

apl-lication, of the propositional calc't.U.us was in treatinc 

arguments of the following type: 

If Jones is a communist, Jones ie ~n atheist. 

Jones is an atheist. 

Jones ia a communist. 

Let P be Jones is a communist. Let q be Jones is an 

atheht. Then the premises of tae arsument are 

p::l q 

and 

q , 

and the conclusion is 

p • 

But (p ~ q) ~ q does not logically imply p. Therefore 

the argument is invalid. (Work out with truth-tables.) 

For some good examples of applications to mathematica, 

see Rosser, Logic for Mathematicians. McGraw-Hill, 1953. 
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Aq"1I:Jtc:.1 S l'an be given to slJnw that thE indilcriminate 

applicatlon ui" ! !" propositional calC'ulus can lead to ~ilsur­

dities in phi losop!. I,~ arguments. Professor Stevenson of 

Harvard gave /) prt!;.-tltatiun to the philosophy club there h. 

which he attempted to show that logic W~~ not a fit subject 

for teaclJ ing to unde rgraduates_ He point.ed out, for example, 

that the compound stat<:cm;:,nt, "If I pound on this desk at. 

II o'cloCK, Wldener Li brll ~y will rllil down," can be proved 

to be VII! id, Slnce its ar,1.t!cedent if: false. Consider also 

the following Jiscu~sion. A If Reagan is elected, 

California will be B better place to live. B. That's false. 

A. You have just asserted that Reagan will be elected, 

Or "::r i L rains, I wear &. ra 1 ne'Jat" hence "If I d('n' \ ",. -'If 

6. raincOI>1., it. doe:.;r;'t rain," Such matter;; wjll nCe ,. tK'/'rn 

u:: here. 



Ptcure 1 

__ tioD 
notp -p ""'P P 0 1 7 18 a pr1af:. 

-P -,p -,p 1 0 7 1. DOt a pr1llle. 

eon.1unctiou p ml4 q (p " q) coa,1UDCta p 0 1 0 1 7 i •• priM. 

pq q 0 0 1 1 11 18 aD'" ~r. 

~ 

p • q (p " q) 0 0 0 1 

p A q 

41aj~1oa p or q (p V q) 41.ajuocta (p V q) 0 1 1 1 

eoad1 tiona! it' p then q (p ::J q) ~ 1. 0 1 1. it 7 18 a priae, 

eoaaequent tbeIl ll. 1. aD odd DUIIIIler. 

b1CCJDUt1oDal p 1tt' q (p. q) 1 0 0 1. 

DODCOD.11iDCt1ca DOt both P ad q p I q _thr atmu l. 1. l. 0 

DCIIIdiIj1lDCUca .1tber p DOr q p , q JolDt MIlia! 1. 0 0 0 



DEFINITION: The symbols -, A, Y, ~ and ~ (we exclude 

now and j ) will be called propositional 

connectives. 

DEFINITION: (informal) A stete.nt, .!2!! of the propositional 

calculus 1s an expression built ~p from the ~­

ment letters p, q, r, PI' .,. by appropriate 

applic8tlon of the propositional conner.tives. 

Not.ation: We use A, B, .,' as variablel. over statement forIIUI 

and PI q, as statement letters ~Mendelson uses a, 5, 

for vnriables over st'ltement forms. 'Jnd P, q, '" fr'r let te rs.) 

DXFINITION. statement fo~ 

1, Any statement letter is • statement form. 

2. If A and B are statement forms, so are 

(-A), (A" B) J (A Y BL (A:; B). end 

(A II B) • 

3. Extremal claus~ 

Comments on extremal clause: 

Only those expressions are stetem~nt forms which 

are determined to be so by means of (1) And (2). 

2. C is 8 statement form lf 8~d only if there is a 

fini te sequence A l' A2, , .. , An (n ~ 1) such 

th'3t An ,C, snd if 1 < i < n, Al is either 

. ~J 



• atatement letter or 1. a negation, conj~ction, 

disjunction, coo41tioaal or biconditional constructed 

fro. previous expre'a1on, in the sequence. 

3. An expression i. a statement form if Bnd only if 

it can be shown to be a statement form on the basis 

of clauses (l) end (2). 

4.. The only statement fol'lU rare thoae given by (1) 

aM (2). 

5. An expression is a .tatement form if and only if 

it is so by virtue of (l) and (2). 

~: Excludes (A' B) • 

A1BO excludes infinite caa., «(~ V~) V~) •..• 

Parenth.6e~ 

Note tbet under thia defibition A V B is not a 

statement form because there are no parentheses. 

While • 8t~tement form muat, by definition, have 

parentresea aasociated with eacb of the connectives, con­

ventior.s are uaually made about ... bbreviated forms with fewer 

parentheaes. If the parentheses are oaitted, according to 

some rule, tohe expression is treated as if it were thf! state­

ment form of which it is an abbreTiatlon. 

StaMard conv@ntions for the restoration of omitted 

parentheses are the following: 

1. Outer parentheses are olldtted. 

2. Associate t'~ the left tor any one connective. 



3 ~ The connectives are ordered: .... 1'1, ", ::>, - ~ 

From L to R they each apply to the smallest 

pos.ible scope~ p V -q ~ r - p tr.us abbreviates 

«((p "(-q))::- r) - p) 

Dot notations 

In addltlOb to the conventions Bbo~t omitted parentheses, 

there are several dot notationa in use. These tend to strengthen 

the s.aociated connectives, that is, to move them to the right 

in tbe ord.rine liven Whitehead and Russell (Principia Math­

... tics), Church, and Quine ell have slightly different con­

ventiona. !xalllplea: 

PM .,., ~ « (p:> q' :::l r) ::::> (p :J (q:Jr))) 

l.p.('".=>.r:~=p.::J. q::Jr 

Church 

In general, it leelll best :'.n 9n inforlll81 tleatment to avoid 

the use of dots by the use of parentheses; ho~ever, one ~hould 

be aware that thea. conventionE exist and t'1at. they difl'er 

from one another alilhtly. 

16 



Evaluation of a Statement Form 

~J fer we have given trutb-table definitions tor the 

connectives which have given ua • means of evalUlttng, i.e., 

finding the truth-value of, any expression with one connective. 

T~is method can be extended step by step to obtain en evalu-

etion for any statement form, since the form ia built up by 

individual applications of the connectives. 

Thus, for every assisnment of truth-values .E ~ 

statement letters 2!. ~ statement form, :!:!l!.!:!. corresponds !. 

truth-value for 1h! statement !2E!. 

Example: 

(p ~ (q:J r» :J « p:J q) ;:) (q:J r» 

Thus, nch statement fonn detel'llines a truth-tunction (a 

function frem truth-values to truth-values) (t: (0, l)n-+ 

(0, I»), renreaented by the truth-table. For n distinct 

n statement letters, there are:2 IIsaignments of truth-values 

2n 
to the letters (columns), end thus 2 truth-functions. 

Formats for truth-tables 

P 0101 0101 

q 0011 0011 

r 0000 1111 

"""P 1010 1010 

"""'P V q 1011 1011 

('""P V q) ::> r 0100 1111 

17 



\laue 1 form: p " q • q " p 

p p v q q v p r- v c ,- q V P 

F F F F ~ 
l 

T T T " , 
F ':!' T T :' 
T 1 T l' 'I 

Quine's format: (_ p V q) ~ r 

-, r 1 T T T C~ 

T .L T m T T c 

.L T .. ' :L T '1 

-r .L T I T T 
- '" ;' J. .L ~ l ~ 

:;-
~ T T :L .L 

.1 
,n 

.1 .1 T 
, 

J '" ,., 
.L T :! . .L .L 

Tautololies (Wittgenstein) 

DEFINITION: A. statement form which is always true. regard-

of the tr~th-values of' its statement letter, 

is called a tautology. 

(In the truth-table of a tautolocy, the bottom 

row contains only lIs .) 

E7ample (axiom 3): 

DEFINITION: If (A~ B) is 8 tautology, then A logically 

1!!pl1es B. 

l8 



If (A - B) is 8 tautology, ~hen A is 

logically equivalent to B • 

[Note that by reading the horseshoe as "if. .. 

then" and the symbol '.' as 'if and only if' 

we have reserved the words tmplies and equivalent 

for statements in the meta language.1 

Examples of tautologies 

P II .... P 

p • -- p 

p ~ q logically implies p. 

p ~ (p J q) logjcally implies q. 

p::::> q and ... p " are logically equivalent. 

DEFINITION: A is 8 contradiction if A is false for all 

possible truth-value assignments to its state­

ment letters. 

DEFINITION. A is satisfiable if A is true for some 

truth-value assignment. 

From the definition of tautology. ::'t is immediately 

clear that the truth-tables provide an effective met.hod for 

deciding for any given stateMent form, whether or not it i~ 

a ttlutology. 



We now prove some theorems about tautolo,ies. 

THEOR!M 1.1: If A and (A~ B) are tautolo,1ee, so is B 

PROOF: 

Suppose there is some aSSignment of truth-value to 

the statement letters of B which makes it fal.e. Then 

there is an assignment to the letters of A and B which 

make. B false and A true. (Since ever,y assianmcnt makes 

A true.) But then this essignment makes (A ~ B) fals£. 

But this is 1mpossibl~ because (A~ B) is 8 tautOLOgy. 

THEOREM 1.2: (SubsUtut·;)n in a tautology yields a tautology.) 

If A is a tautology contBiniD8 the stltement letters 

PI' P2' ••. , Pn and B arises from A by substitution of 

the statement fonns ~, •.. , An for Pl' P2, .•• , P n 

throughout, then B is a tautology. 

PROOF: 

Consider any assignment tc the statement letters of 

It gives an assignment of truth-values to 

~, ... , An say Xl' .•. , xn ' Then the truth-value of B 

i. the same as the value of A under the assignment of the 

Xi to the Pi But since A is a tautology, this value 

1. T. But this WIS true for any assignment to the state­

ment letters of B. Hence B is a tautology. 

20 



REMArtKS: 

Hr'>wever, if we begin witll a statement form which 1s 

not a tautology, we can, by substitution, obtain a tautology. 

This is true with only one exception (that is, except when 

the statement form is a contradiction). 

THEOREM 1 3: (Equivalence Theorem) 

If C' arises from C by substitution of I for 

one or more occurrences of A, then 

(1) «A. B) ;) (C. C'» 

ia a tautololY' Hence, if A is logically equivalent to 

I, then C' ia lOlieally equivalent to C. 

PROOF: 

Consider any asslsnment of truth-values to the state­

ment letters of (1). If under the sssisnment A and B 

hsve different truth-values, then (1) is true, by the truth­

~able for the conditional. If they have the same truth-values, 

then C and C' will have the same truth-values, 

The finsl s~Btement follows, by the definition of 

losically equivalent, and Theorem 1 1, 
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Example 1. 

Would you believe pq V pr V qrs - pq V P; T But 

pq V pr V qrs "'Plt V pr V (qrs"'" (p V P» [where ' .... means, 

temporarily, has same value for all truth assignments], 

because p" p :.. 1 and A"'" 1 ... A • 

... pq " pr " pqrs V pqrs because B!I. (C 'I D) .. (C !I. B) .., (n /I B) 

... pq'l pqrs V pr'l prqs rearranging . 

... pq "pr because A V (A" B) .. A . 

Example 2. 

(p ;:) q) ;:) «r;:) q) ;:) (p V r;:) q» 

.. p V q V (r 'I q II (p V r V q)) 

by A::J B ... "" A " B 

.. (p "q) 1/ (r" q) V (p V r) " q 

... (p "q) V (r" q) " (p" r) V q 

... «p " r) ,.... q) " q " p V r 

(A V B) " C ... (A " C) V (B " C) 



.. {( (p V r) V q) " (q v q» v p V r 

... 1 

What is a truth assignment~ Usually • ., a truth 

a •• i,naent 1 to the letters of a formula A, l.e., if A 

hal a .tat~ent letters •••• p ) n each Pi, is replaced 

bJ 0 or 1. Will write 1A· 0 or 1 u value of A 

under truth usignment 1. 

A truth tunction f is a mappinc t: (0, l)n ~ (0, 1) • 

ivery statement form of n letter. leneratea by its 

trutb-ta"le an n-ary truth function, oavioull-7. 

THEOmM 1.4: 

Ivery truth tunction of n variables i. ,enerated by 

.ome statement torm with n statement letter •• 

PROOF: (by construction) 

Let f(X
1

, ... , xn) be a truth function. We can 

expreSS this runction by a table giving the value or the 

function a8 the last line. 

Xl 0101 0101 

x2 0011 0011 

x3 0000 1111 

xn 0000 Ull 

e ••. f 1011 0010 
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There are 2n colu,nns, n rows. (Explain. ) 

For < 2n, n is Pj 1 < i let Ci = "j=l U. where U. or 
J J 

- Pj accord.:.ng as the entry in jth row, . th 
1 column is 

1 or o . Let D VCk wh:re k ranges over only those 

columns in which f is true. Then f is truth function 

corresponding to D For, if j is any assIgnment to 

(Pl' ••• J Pn) then there is a corresponding ,'olumn k of 

the above tablE; such that n"k = 1 anl 1C ') ( i ~. k) 
1 

If f is true at j then row f, column k is l' , so 

Cit is a disjunct of D; so jD 1 If f is false at 

j, then row f, column k, is OJ so Ck isn't diSjunct 

of D' , so 1D= o . 

This completes the proof except when the truth function 

is identically false. The constructj~n then produces nothing. 

Example: 

0101 

0011 

f 1101 
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NORMAL FORMS IN THE PJK)POSITIOllAL CALCULtI! 

DEFIJITION: A literal is • statement letter or the negation 

of 8 statement letter. 

!outton 

~ and ~ are used as variables over the .igned 

.t.temen~ letters P and p If' Ap i the" i s P, n P s 

A - Y 
p. It p is p, then p is p 

DEFINITION: A statement form is in ~isjunctive (conjunctive) 

~~ if it is a disjunction (conjunctIon) 

consisting of one or more disjuncts (conjuncts) 

each of which is a conjunction (disjunction) of 

one or IIOre literals (abbreviated d.n.f., c.n.!.). 

DEFINITION: In speaking of a d.n.f. (c.n.r.) we refer to the 

diSjuncts (conjuncts) as clauses. 

THEOREM 1.5: Every statement form is logically equivalent 

to a statement form in d.n.f. 

Every statement form is logically equivalent to one 

in c.n.f. 

PR)OF: 

For the d.n.r": Corollary to the proof of Theorem 1.4. 

That is, 
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(1) Iny contraiict1on ia 10lieally equivalent to 

p " p, 
(2) if it is not a contrad!ction, then ita truth-

table his at least one 1. The alternation 

of the Cit correspondinl to the l' B in the 

truth-table il equivalent to the orilinal f~rm, 

and is 1n iiajunctive normal form. 

For tile c.g.f.: The d.n.f. of 

-A is -\V~V VA 
n 

-A eqv. -\V~V VA 
n 

A eqv. -<~ V .. , V A ) r. 

eqv. --\"-A2" ... I\-A 
n 

eqv. Bl " B2 " " B n 

ellv. c.n.f. 

DEFINITION: The ~ disjunctive ~!!!:!. (f .... n.f.) of 

a statement form A 1S a logically etu1V11ent 

statement form which is 1n d.n.f. an4 1n which 

1. in each clause every letter of A occurs 

exactly once; and 

2. DO two claus~s contain precisely the same 

11 terals (no dLlplicat~s) . 
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THEOREM 1.6: Every non-contredictory (non-tauto1oKOU8) 

fom has a f.d.n.f. (f.c.n.t',) whi~h is unique to within 

order. 

PROOF: 

The construction for Theorem 1.5 in fact produeed a 

f.d.n.t. and r.c.n.r. It is unique to within order since 

any fom having different clauses will have different truth-

tables. 

Alc0ritha for Obtaininc Disjunctive Normal rom 

1. Eliminate unwanted conneeti.es. 

2. Pu.sh negation all the way in. 

,. Multiply out the conjunctions. 

MEDKODS tor obtaininl f.d.n.f.: 

1. The truth-table method given by the proof of the 

theorem. 

2. Suppose A is any non-contraction. Put into 

d.n.f. USing equivalences, Then if any clau8p. 

A is IIlilSing a letter, sa~' P, l'eplsee Ai by 

(p V p) a Ai' This becomes p a Ai V P AI Ai 

Eliminate duplicates and any pp's snd repeat 

until r.d.n.f. is obtained. 

Methods for obtaining f.c.n.r. are analoSQus (dual). 
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d.n.r 

f.d.n.r. 

p V G. 

pq V ;q V pq V pq 
pq v pq v J)q 

(pq v pqj 

(p v p~) (q v pq) 

(p Y j)(p v q)(q Y ~)(i ~ q) 

(p " q) (p v q) 

(p " r) (p Y r) 

pr " rp V rr 

pr " rp 

not Just r 

a contradiction" 

No r.d.n.r.; f .. c.n f. p" p okay. 

COROLLARY i 7: An f.d.n,f. with n 'tetters is a teutololY 

n if and only if it nas 2 clauses 
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c.n.t. 
taut. 

d.n.f. 
contra­
diction 

PROOFS; 

1. By the truth-table argument. 

2. Suppose the clause pqr is missing. Then the 

t~~t~-vllue assignment 010 will ~ke A false. 

On the other hand, if all clauses appear, there 

i& one which is true for any assignment. 

3. By factoring, by the use of equivalences and the 

distributive law, we can reduce to p V P which 

is a tautology. 

THEOREM 1.8: A necessary and sufficient condition that a 

form P be a tautology is that in every clause of the c.n.f. 

at least one letter appears both negated and unnegated. 

PROOF: Assume A is a tautology. Let AI be it c.n.f. of 

A. It is iienticilly true. Hence every clause must be 

identically t~. But a clause Ai is an alternation of 

literals and hence cln be identically true iff some one 

letter occurs both negated and unnegated. 

THEOREM 1.9: Dual statement for d.n.f.: A n.o.c. that a 

d.n.f. be a contradictioL is that in every clause some letter 

occurs both negated Mnd unnegated. 

PROOF: Dual to the above. 
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Decision methods in the Propositional Calculus 

We have shown that for any statement form of the 

propositional calculus we can test whether or not It IS 

always true, (identically true), Lb, whether or not i.t is 

a tautololY' That i& to say, we have a decIsIon procedure 

for the propositional calcul.ls Tne decision procedure is 

effective and general. 

By effective we mean, roughly, that there is a purely 

~chanical way of carrying out the method, which does r,ot 

require the exercise of ingenuity.. (Church) 

By ~neral, we mean that the method Ipplies to every 

problem in the class. Note that the class of problems is 

infinite. 

Restated: The decision problrm for the propositional 

calculus is the problem of deciding effectively for any given 

stateme~~ form, whether or not it 1s a tautology, 

Decision methods 

1. Truth-table, 

2. ?1\t n. fd n,r 1 f ?rj c ~ ') .:.; >- oS, 1 t 1 ~ ,"j • ~1 :. 0 logy 
r·y 'J - :-,c.:!r"p:-r: :-tl''i''~ 

~. Qu1nes (resolution) method Form a tree" sub," 

stitute at each level 0 or 1 for one letter. 

As the substitutIons u'e made, evaluate "by the 

:"ollowing rules 

~c 



• c 
O-A ... -A 

A::IO __ A 

ContHlue ~l.lt il either some branch canes to 0 --r,ot. taut.ology, 

or ell 

Example 

SuDst for p 

Subst for q 

Subst for r 

Exa!J)le 2 

Subst for 'iI 

Subst fOI b 

1 

Subst foY C 

Tests a c n.r, for eontr8dlctic·n. 

Ste~ 0: May ~ssume no clause contains ~ anj p Any Buch 

clause cen be removed (if all, then net contradiction). 



Qn!-literal-claule rule 

~--~ye~&--~~----eontradietion 

yea el1m1D.t. all Qceurrenc.. of 
Ii and all claue.. cODtdnin& p 

aUimative negative rule 

not 
c~t.rad1ction 

I-__ -~ el1td.n.t. all claua •• 

aupprel. all clauaea 
~ CCDtaining P 

containins p 

ap:.1tt1ng rule 

auppre8& all claules 
A2 containing p 

._.­
-------------------

not 
COIltradiction 

contradiction 
it '\ and -'2 are 



Example 1, 

which is: 

by OLCR: 

* contradictton 

Example 2. 

both contradictions 

'J'HEOMM .i, 10: lIavis-Putnam procedure works, 

nOOF. 

Note that there is a dual proced.",re for testin, if 

•• n.f is a taute1ec7. 
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Reproduced from 
best available copy 

THEOREM: Let A Cf- t LEe d II l' 10!il,UJCl 

"A V P 1 

where tht 1': teo! 

l tel, . " rr,: 01 c' 

Then A is a tBlltolo@y 11' and only If A' 

PROOF: 

V 
\I pb v C 

r"l 

( J 0 1, ", , r, I , 

i A B 
1 , 

IS a tautology 

IS 

Every clause of A' IS al[;o a clac.lsE- of A, so if 

A' is e ta,to]oSYI so IS A r~us It i5 o~lv ntCtssary to 

to the l€t'~rs of A wn1,.r, l'l!:.ii(';; A '!'J'" dnd A fa ls€ 

Case j . " .E~J: 
Then 

A e::J.V rIAl V v A V v A ) 
j n 

V p'e< " b~ " V i' V , 
] c 1:. 

AI eqv ['lAl v V 
" 

v A y V A ) 
1 l' 1 !J 

V p\H
1 

V 1· V v C " 

.. 



Let an the let lers of A be IP, "1' ••• , Pk) and suppose 

the truth-valu~ assi«nment (a, a l , "OJ ak) ~~es A true, 

A' felsb 

CISt:" la a is 0 

Then (0, a l , > t> ., a
k

) makes A tru.e, A' false, 

hence (Bl V "B)"C false. Thh is II Di3-...rd , 
m 

Csse Ib, B is 1 

hence 

1..1+ 1 
V 

ami C 

P. (0, 

since 

Then ( 1, a l , • It ., ak) makes A true, A ralse, 

(~ V " A n " C true and (1..1 " .•• V Ai _1 " 

•• , " A ) " C false. Hence it IlUSt IIIIIke 1..1 true n 

fa:,se But then, s1nce Ai and C do not contain 

8
1 

a
k

) Ilso IUIkes 1..1 true an. C felse. Jut 

A 1s a tluto1oIY (0, 8
1

, ... , 'k) must IUlke 

VB) true. But it 1s net possible to meke both m 

(I " ". 0 " B) true, aince to do so would _ke 
l m 

A1B
J 

tru~ for at least one J, c~ntrary to hypothesis. 

Hence this case 1s ~L80 impossible. 

:.s~ 2 t is P 

By synIIletry 

OOIfHAM'S METHOD 

For ea~h letter p in the d.n,f. fonnu1a A, circle 

the accurrence of ~ in clause tAi iff A also contains I 

.; 5 



cllluse 
v 
fl6 j 

all clauses 

luch that Ai1j is not a contrau!~tlon. 

contain uncircled literala. Eraae circles 

and repeat until .t some step no clause is deleted. If there 

are no clauses J,.cft. A i. not 8 tautology If the d,.n.f. 

formula A' remains, then A 1s 8 tautology iff Ai 1s. 

tautology, 

REMARK: To cont rest with other methods, tlik~ pq" pq " pq 

:.( 
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AN AXIOM SYSTEM FOR THE P!!OPa3ITIOML CALCULUS 

~orA BERE: These lectures are intended as c~nts on 

Section 4, Chapter 1 of Mendell~n. They ere in no sense 

complete, but are intended to assist in reading the text. 

They do not replace the text, which is ~s8ential, 

Rea.ons for wanting to construct 8 formal .y.tem: 

1. To be ~8ed later in quantifieation theory. 

::. There are :interesting subsyatell8 of the 

propositional calculus. 

3. For a simple illuatration al an introduction 

to the basic notiol~ of forael syate.s. 

FOrmAl Theory 

1. Countable set of .,mbols. (Normally constructed 

from a finite set of symbols.) 

Tr,i s must. be eff('21 ; 'Ie. 

~ Ax lc'ms. If effective then an !!..!2!!.H.£ theory. 

Example of a non-axiomatic theory would be to 

take as axioms the theo~ms vf 1.r.e first.-order 

predicate calculus. 

4. '. of inference. Again effectively decidable. 



ThE'o!"f:m 

De~ldabl~~s unaec1dable theories 

Th~~~rm.l axiom.tic theory L for tAe propositional calculus 

primitive symbol. 

wfr'" 

.f A, I, and C 8r~ wffs of L, then the 

folloWl~g ire ax1~ms of L 

A.I (A. ~ \ B ~ Ai ) 

A2. ((A:J (B :; C)) :J ((A:J B' ~ (A ~ Cl 

A~, (- Fl :J - Ai -' (( ..... B :J Al ~.8)) 

!:!f.l!!.!:.t.§.: N~ggt1on occurs only in M· 'The .ystelh witn 

aXlolliS Ai and A2 Is call.d thf' positive implicatlc..nal 

calc~lus and is decidable (Arnola Schmidt). acheme, 

schemata (schemas) 

Rule of' inf'-::rence MP. Note that with _re rules of 

inferer,ce WE: could have fewer axiollls In particular, with 

a SubEtitut~~L r~Le we could have, finite axiom set. 

Prove tr~t tne s~t ofaxi0m5 is effective, i.e., 

1. io ar, axiomatic th~Ory. 

Note now ths' the axioms are .11 tautclolies. 

10 show t.hat L 1.6 in fact· the system we want, we 

lolL ~ prove the f:lllowin( met.t.h~orems. (def.) 

: - §0W!!iness., Enry t.heorem 1.s a tautology. 

(Verify that IC tar okay, all axioms are tautololiea.) 



2. Completenes8. Every tautololY i8 8 theorem. 

}. Consistencx. For no wf A, both A and ~ 

are tneore1ll8 of L. 

Ab.olute cons~8tenCY. Some wf A is not a theorem 

of L (Por if the system does not have negation, we 

cannot prove consistency as defined above.) 

Absolute completeness (supersaturation). If we add 

loother schema, which is obta ined trtJlf1 a statement form 

that is not 8 theorem, the result is inconsistent. (Exez-dse.) 

Prior to proving the main metatheorems lte will want 

some theorems. 

LEMMA 1.7: 

Heuristic argumer+. 

This is 8 proof Echema, not 8 proof. 

Note tl~,t the COIIIIle,;<; on the right are not part of 

the proof, 

Th(-y ~an N'- e1 \-- ctl'v",ly ~covEred from the ~rooi. 

Note that A3 is not used. 

DEDUCTION AND THE DEDUCTION THEOREM 

Definition of ded'lctic:n. 

Three properties of the notion of constquence. 

Property (1) does not &lways hold ... in particular 

if there is a substitution 1"'11e of inference. 
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Note that ';ot f:very Line of 8 deauct.ion is a tautolOQ. 

DE-duct 101, I,heorem Herbrand, 

Ex!lm'pi-~ of Llse'fulnt-ss. Prav/, coro~18ry 1.9i1 Lemma 1.10. 

(l!dy axioms Ai aud A2 are .. sed lr, pro')f plus MP 

i.u·" Ir'MMA l :( , .. ". lS esser,tial to tne proof:; of the main 

PRep 1 ,. £v~ry theor~m is 6 t&ut.010&l soundness 

Proof by ir,duction on t.he lines of a proof. 

PROP 13 ~~~_tautolo&y is a t~eorem of L complete-

Ne.-ds, 

lEMMA 1 12 

N()'..- H~A t ! r.t' Object is I;Ot. to :: r.ow that A' ie true 

,.r,QC r tk r'ypOH,-s"",, but that A lS provable from the 

A oe the st.te-

mf'n~ Lt-. t t.t' rt ,J' Arrlr.g ln A For Il given assignment of 

truth-valuE-s to r
1

, ' , P
lt

, leT Pi l.e Pi if Pi ta.tes 

:,h~ va l",. T • arid 1 r , Pi De .... Pi if Pi takes the value , , 

f· L€ ' A tJ~ A, 11' A takes t.ht value 'I under the 

82.;igIJrnent; 1 .. • A' be - A if A takes the value F. 



Alternative Axlomatizations of the Proposit!onal Calculus 

P
l

: p::l (q::l p) 

p::l (q::l r» =' «p =' q) ::l (p:J r)) 

«(q:J f) ~ f) ::> p) 

or: (-p:J-q) :::> (q:Jp) 

Rules of inference 

MP 

SUBaT: From A to infer ~ AI . 

[Tnis is I.e .. 1.100 
Exercise 42.1] 

Note now the necessary redefinition of a deduction. 

Facn line is: a hypothesis 

or (; variant of an axiom 

or is inferred by MP t'rom tv(C"' 1- receding lines 

or is lnferr"d by SL:BST from ~ r receuing line, 

where the variable substituted for does not 

oct: <ll' in the hypotheses. 

Example of violation: 

p ~ p (hypotheS is) 

p I- - p (subst) 

deduction theorem 

All tautolo,ies are axioms. 
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Historical Notes 

~positional CalculUB 

Quine, Preface to Methods of Logic, "Logic is an old subject, 

and since 1879 it has been a greet one." 

Frege Belri f1'SRc!1.rif~ l879 

P
F

: p:::J (q :> p) 

p =- (q :> r) ::J. (p.:J q) .:J (p.:J r) 

(p .:J (q .:J r» .:J. q.:J (p .:J r) 

(p .:J q) ::> (- q :; ..... p) 

Rul.ea of inference are MP and SUBST, 

Exercise: Discuss the independence of the axioms. 

Fregf:"s work 'N:;.~ L:ct known to 'rlhiter.ead end Russe;.l when th"~' be€,:un. 

Later they were perhaps the first to appreCiate itl significance. 

:rae of axiom schemata: von Neumann 1927 

Uae of all tautologies as axioms: Herbrand l~O 

Pl Wajaberg 19~O 

has constant f 

42 

P2 tukasiewicz l~O (from PF ) 

no constants 



1- A j ud,emer. t 

!--:-- A 
i ._._- B 

-(B. ,... A) 

MP as SL,y r~Lt- of inferenc~ (but. in fact SUBST is 

nf'<-df-d; 

r ___ A and 1-- A t.o infer 1-1 
B 

1 .. ---,- A -A 

:--, A R=>-A -(5' - A) Le., -(B II A) 
1 
--- E -I"-A .... (1 II A) 

B " A 

:"'--,-- A -(- BV - A) BAA 

'.---- B 

Not" t r.at l1e has l!£~£!}! and ne&atlOns (only). 



fn. IIrcument 

I / 
~ I (II) (Ya) • (a) 

h-{,-I (8) 

scope ~ 

~X(a) there are x I s 

44 

"The number 20 can be 
represented as the sum 
of four squares." 
"Any number." 



?jrst-order Predicate CalculuG 

IntroductiO!1: 

Ir •. ~,.:"- ,;'opositianal calculus we dealt with logical 

i:1.1'erence:; ',:; ;.fle :; tatemen"t Ie':. ters (whi ~;, re:>l'esented sent en-

;E;G 8S ,-,r.broke:] units) anti the logica.L connecthres. But, 

as He 'r;oh,t·;c'i OJ .• , even 'the sinlple cle,,::ire.1 syllo~i:;m was 

beyond the ::;c:ope of th8t sy::1.em. 

Ir: th p f'i.n;',-o:r<l,:'J' predica'te c81culuiO (or functional 

calcuJu:<) 'lie deal w:iUl the intt::mal s~r'~c't1Jre ()f sentences, 

using syrr.bols for p~operties ar relations, &nd for expressions 

suc!: as all, any, ~. 

Consider the example: 

1. There is a mar. who is physician tu e'reryone. 

2. Everyone has some physician. 

It is easy to se~ that log~cally 2 follows from 1. However, 

the B!'gur'.cr.t litS outsid.o tile scope of the propositional 

c<.culus. It is just t.his sort of argument for which the 

I'l'~diC'fn;e clllculus iE suited. It can be expressed as: 

1. (Ex) (y) F(x, y) 

;:~. ly) (r;x) F(x, y) 

j,'(x, y) s1:,!;J.d:; for ~~,] physician to y. The existential 

(lU(jnt',fi.~r (Ex) m.,unc; '~J.ere ie, some x. and tbe universal 

The argument is valid, 

r:10l'~OV"r, for all arb·l~.r<lrv binary ~E.ls~,lon F, and for an 

fll'oitr'lry set ao:; the range of U .. o iYld;vidllal variables x 

c'nd y. 



The formal system of the propositional calculus vas 

deaiiDe4 to cstch as theoreJIIS all the u.nive1'8aUy tN •• t.te­

Mut. or tautologies. For the predicate caleulus .. aildlarly 

v1lh to have as theoreIU aU the statements wich are valid, 

that 11 which are tNe in every non-empty universe. In prov1D& 

ca.pletenesB, we will show that all such valid wita are 

theoreu. 

Foel develoent C'f the predicate calculus 

(Iote that the s)'lIt.em to be developed bere differs fTom 

MeDdelaOll's and is essentially a subset of it. Mendelson includel, 

1D4iYidual coostant3 and f'unctlon letters.) 1'be aystea we 

present bere is the eI!. tirst-order predicate calculus. 

Pr1a1tive s)"llbols: 

1D41v1dual variableG: x, y, z, Xl' Yl , &1' X2' ••• 
Predicate letters: 

lotlDadlc: ,1, al, If, 1 
'1' 

1 a
l

, ~, ,~, 

Dyadic: -,2, a2
, If, ~, 2 

G
l

, si, ~, 
.1-adic: ,J, G.1, w1, 'i, Gi, ai, ~, 
(For ea"h j, an 1ntinite DUd)er ot 

j-adic predicate letters.) 

Connectlvetl: -::>, () 
tor wAts. 

X, y, z for variables. 



AtOlll1c formula,; 

If ~ is B predicate letter and xi' xi ' ••• , xi 
1 2 n 

are individl.l.&l va.riables (not r.ecesserily distinct), t~n 

••• , xi) 
n 

is an atomic formula. 

ConvE;ntion 

Superscri:>ts on predisste ldters may be omitted, 

since it is always clear from the context in any wff what 

the supencripts must be. In the formula 

it is clear that the two predicate letters are in fact distinct. 

Although it is more usual to then use different lettera: 

'tIell-f, !1Iled formulas 

.L. Every atomic formula is a wfl'. 

If A end FI art' wffs, and y is a variable, 

then (- A), (A ~ B), ani «y) A) ere wffa • 

Comment: Note that we do l'.ot. require that. y 

occur (free) in A • 

3. Extremal clause. 

Note thet the rules for a wf! are effective. 



Pure tirlt-order predicate calculus 

first-order: no quantification over pre41c.te letter •• 

pure: no individual cons hnts. no f'.1nction .ymbob. 

(Hence the only ~ are variables.) 

predicate calculus: no nonlogical axiOlll8 (as opposed to a 

"first-order theory"). 

Definition 

In the expression «y)A) 

(y) is a universal ~uant1fier 

A is the !£22! of the quantifier (y) 

Alternate notation: (Yy) 

Conventions 

Plrenthesel oadtted as before. 

The scope of a quantifier is to be taken 8S ... 11 .. 

pclSible. In (Y)A" B the sco~ of the quantifier i. A. 

Definition: (:ax i > A stands for -ex,) - A 
1. 

(:ax i) or (El! i) is an existential quantitier 

AVB stands for (- A) =- B 

A"B stands for ..... (A ~ ..... B) 

AaB for (A ~ B) " (B ~ A) 
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Free and bound variables 

Definition: A ?srticular occurrence of the individual variable 

Xi in A ia I ~ occurrence if xi i, the 

variable of the quantitier (Xi) 2! it it i. 

within the scope ot a quantifier (Xi)' other­

wise, the occurrence ia ~. 

Definition: A variable is bound in A it it haa at le •• t 

one bound occurrence in A. Similarly, free 

in A. 

Remark: A vL:i.ble lIlY be both bound an4 tree 

in A 

Definition: If A is a vtf and Xj and Xi are variablet, 

then Xj is said to be tree to~~ in A ltt 

no free oceurrences of Xi lie within the scope 

of any quantifier (X
j

) . 

Informally: If we substitute Xj tor tree Xi through­

out A, then Xj is never captured by a quanti-

fier (X
j ) • Note alao that (Ex

J
) i. ~Xj)-' 

Substitution convention 

A(x. , 
).1 

•• " Xi ) 
n 

is used to denote a vtt which.., 

have some of xi' .. " Xi free, Then A(X j , •• ,' Xj ) 
1 n 1 n 



1. the resu:.t of substituting Xj for Xi at allot the 

tree oCCurrences or xi • 

Ex •• plea: 

If' A(x1, x2) 

then A(xl , Xl) 

and A (x3' '(1) 

Adall schemata 

is ~(X2) V ~(xl) 

is ~(x~) V ~(xl) 

is Al(x~) V A2(X,) 

If A, B, and C are wf'fs, and x and y are vari-

ablea, then the folloving are axi~: 

1. A::> (B :::> A) 

2. (A::::> (B ::> C» ::> «A:> B) ::> (A ::> C» 

~ • ( .... B ::>,... A) ::J «( .... B ::::> A) ::> B) 

4. (x)A(x)::>A{Y) 

if y is free for x in A(x) • 

5. (x) (1\ ::> B) :::> (A ::> (x)B) 

if. A contains no free occurrences of x. 

Remarks: (x)A:::> A is a special case of Axiom ~. Verity validity. 

Rules of inferenc~ 

1. Modus penens. (MP) lrom A and (A ~ B) ~~ infer B. 

(1. e. , B is a direct consequence of A and A::J B .) 

2. 'leneraliutton. (GD{) From A to infer (x)A. 
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Remark.: 2 (GErl) '=!annot ~e rephrased as an axiom 

A::J (x)A 

l:>ince this wO'lld give 

A(x) ::J (x)A(x) 

or 

(x)(~(x) ::J (x)A(x») 

i.e., 

(y)(p~y) ~ (x)A(x» 

Take A(x) as fiX ~8 8 prime". 

Remark: We say x is gener.liz~d on. 

Violations for A4, A5: 

(x) (iy)r{x, y) ~ (ay)r(y, y) Take 
F as mother 

Take 
F1 even 

o.k. : 
F 2 even squa.re 
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THEOREM 2.1: Every wff A which is an instance of a tautology 

(of the prop. calc.) is a theorem. And it may be proved using 

or"cy axioms Al-3, and MP. 

'PJiooF: A arises from a tautology W by substitution. By 

the "om),let.en~ss of L (the propositional calculus, ~ W • 

Now .nodi fy the proof of W by making throughout the slllDe 

~uG~tltutions as ~re used in obtalniUf A ~rom W. (For 

statement letters which occur in the proof which do not 

o('cur in 'fI, put arbitrary new wffs. (Thi5 is necessary 

becauac we ::lid not include propcsitional variables in our 

formulatic.n of the first-order p"'edicat~ ce.lculus.» '!'ben 

the result is a. proof of A (because of the use of axiom 

acheMata). It uses only Al·A3 and MP. 

'IFF()REM: l- (y) - A(Y) ;;; "" (EY)A(y) 

PROOF: Tautology (by 

completeness of L) 

I- (y) - A(y) == '" ~ (y) - ACy) By the theorem above. 

I- (y) - A{y) ;;; '" (EY)A(y) By definition of (By) 



ca.s IS'l'El'lCY 

THEOREM: The firat-order predicat~ calculus 11 conaistent, 

(i.e. J there is no wff A such thllt I- A and r- .... A ;. 

PftOO,: 

1. De;'ine a IlI8pping h of the set of wfr~ or ',be 

predicate calculus into the set of wrt. "\ the 

propositional '~e~ culus: 

Let h(A) be the wff obtained tram A by 

1. delet~.ng quantifiers anll variables, 

together with associated com.as and 

paren~heses, and 

ii. replacing distinet predieate letters 

by distinct statement letters. 

2. It I- A of the predicate Calculul, then I- L b(A) • 

Axl~ map into tautologiea. Al-~ obviou.ly. 

AA into (A:J A), A5 into «A::> B) ::.- (A ::> B» • 

MP and GEN preserve tautologies. 

,. h(~) is ..-..n(A) 

:. it both I- A Bnd ~ "-It. in the predicate 

calculus, we would Mve by (2) J ~ heAl aDd 

~ -heAl in L, whieh eontrad1cts the cooaistency 

of L. 
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DEDUCTION THEOREM (see 81so Mendelson 2.5) 

Definition: A deduction of B from 8 set r ot wrt. 1, 

1-

or <c. 

or < -' . 

or 4. 

a finite sequence of wffs BI , B2, ••• , B. ot 

which Bm is B and tor each i either 

B. is an Bxiorl 
1 

B 16 a melllber of r 

1\ results from B
j 

Bnd Bk. (j, it < i) by 

J'Y 

B. 
1 

results from B
j 

(j < i) by GEN subject 

~o the restriction that no vBridb"~ free in any 

wff in r 1s generRlized upon. 

Dcfln~tion: If there is 8 deduction?f D fron r, we 

write r I- B • 

~EDUCTION THEOREM 

If r, A I- B then r I- A :> B • 

PROOF: Consider 8 deduction of B from r, and A: 

I- B 
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Indu:::tion Hyp,.,t'1er;j.s: 

To show: 

r t- A =-. B. for all i < h 
1 

Ca.e I. Bh 1s.n axiom. 

1.1. 

Ax10l11. 

MP. 

Instance ot 

tal.ltolol7. 

Case I~. ~ E r . 

Case III. ~ arises from Bj and Bk by MP. ~ 1, 

B
j 
~ Bh • Continued on next page. 
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f- ,. - f!, ::::; " " ¥ 

I r- " I., - " \ ~ 
".;J 

j f- A:: ;'It 

, 
~I(A :J 

} ) 

(A :J H \ 
f:) 

~r:d\)('tion f,ypothesiel 

!nduct~on r.ypothesis 

P j) ::::; (A :.> Bt;) ) .1x1o.r. 

MP 

By GEN (x r.ot 
free ir. r) 

Axiom 5 (x not 
free in A) 

MP 

'r} " 'J' J' A l __ " ",nn j" I A ..... B • • erel'.!'l," , r ". _,~ r...J q.e.d • 

q ,I" c,:"" 'r. j , i /1 ! '" 'J'. ,", i, • "'t' h~"j that if r I- A then 

r , I-. A ',hi I: no lon~r follows 

Reproduced from 
best available copy 



USEFUL l'HEOREM SCHEMATA 

For any "fta A and B: 

1. (Y) _ A(,,) ..... (Ey)A(Y) 

2. (xl)(~)A ~ (x2 ) (X1)A 

,. (x)(Jl. :::> B) ::. :. (x)A ~ (x)B) 

4. ~x){A :::> ~) ::> «(E;:)A ::> (Ex)'B) 

5· (x)(A A a) • (x)A A (x)B 

6. (y1} •.• (y )A::>A n . 

7· Ir A(x) and II(Y) e,re aitltilal 

(x;A(x) • (Y)A(Y) 

8. It A(x) and A(y) are s1~11&r 

(Ex)A(x) • (Ey)A(Y) 

9. It x not tree in A 

A • (x)A 

10. It x not free in A 

A • (Ex)A 

*11. If x not free in A 

(x)(A :::> B) • (A :,) (x).B) 
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COIIIIIIentl: 

- Bote vall~lty 

- lote IIOV _nb of 
quan-:.1flerl in 
and out 

- lote v, A . 



*12. If x nc- 1 ;, , 

13· (X) (Po - R) , , r )A :: (x)f) 

*14. (Ex) ~ .: )? 

*l~ . ix)r -~ F . ,- { 

~16. it Y fl" " i, 

((x)A v (;';(1) (x)(i-.. v B) 

, (J ,·'fl .. ) '/Oi i i; 

Reproduced from 
best available copy 

'i~, ;ri :.'lI11h"r, viz @. 



16. If x not free in A, «x)B(x) ~ A) = (Ex)(B(x) ~ A) 

Proof: 
Left to right: 1. (x)B(x) ~ A 

2. -(Ex}(B(x) ~ A) 

3. - -(x) ... (B(x) ;:, A) 

4. (x)(B(x)" - A) 

5. B(x) II ... A 
6. B(x) 
7. (x)B(x) 

8. A 

9. - A 

10. A A - A 

11. (x)B(x)::> A, .... (Ex)(B(x) =- A) I- A" - A 

12. (x)B(x) ~ A I- - (Ex)(B(x) ::> A) ::> (A 1\ - A) 

13. (x)B(x) ~ A I- (Ex)(D(x)::> A) 

11!.. I- (x)B(x) ~ A::> (Ex)(B( x) ::> A) 

Right to le ft: l. (x)B(x) 

2. B(x) 

3. -A 
4. -( B(x) ::> A) 

5. (x) .... (B{x) ::> A) 

6. (x)B(x), .... A :- (x) .... (B(x) ::> A) 

7. (x}B(x) I- ... A::> (x) - (B(x) ~ A) 

8. (x)B(x) r (Ex)(B(x) ::> A} ~ A 

9. (x)B(x), (Ex)\B(x) ::> A) I- A 

10. ~ (Ex)(B(x) ::> A) ::> (x)B(x) ::> A) 

:. I- «x)B(x) => A) .. (ExHB{x) => A) 
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Hyp 

Hyp 

2, Abbreviation 

3, by tautologies, & 
replacement thm 

4, Axiom 4 and MP 

5, tautology 

6, GEN 

1, 8, MP 
5, "';autology 

8, 9, tautology 

1 - 10 

11, deduction thm 

12, tautology 

13, deduction thm 

Hyp 

1, Axiom 4 and MP 

Hyp 

2, 3 taugo1ogy 

GEN 

1 - 5 
6, deduction thm 

7, taut., de!. 

8, MP 

deduction theorem 

14, 10 by taut. 



PROOF: 

(y ) i, 
n 

Hyp. (1) (Y
l

) 

(2) (Y2) A4 and MP 

1:;+1) A 

Let A(x) ,'r'':'" :'rnrr. A(x,) by substitu"ing x, for all 
.] 1 \.i 

Definit.ion: It' x, and x, are dilltinct, then A(x,) and 
J (~ 1 

&re similar iff Xj is free for xi in 

has no j'l'ee ()ct:urrence~ of x" • 
J 

1I1tuitivply: 

"( . J r fix I 
1 ' 

;, (x , ) 
, ,I' 

(x )dX,i 
,1 " 

PROOF: 

( ,', (x,"\A(x,,1 ') A(x,'jl 
" l ' , :1 

(:,) -: K , ) (( j; , ) j., ( x ,) ::> A (x , ) ) 
,J .1 1 J 

(:; ) 'x J AI '( !) ;:) (X ,j ) A (x j ) 

(', ) " x :AI"" 

\7) (x IA:x,) 
1 1 I 

Reproduced from 
best available copy 

:) (xj)A(x
i

) 

(XJ)A(X
j

) 

f)( \ 

A4 

GEN 

A5 ~nd MP 

Similarly 

Al :;l (A2 => Ai " A'2) 

Theorem 2.1. DeL of .. . MP twice . 



8. Win follow trivially from equiv8~~ theorem. 

Co~lunction Rule A, B I- A /I. B 

Disjunction Rule 

A ::J C, B::l D, A V B ~ C V D 

Proof by 2.1. 

9. If x not free in A then ~ A Ii (X)A 

(1) A::JA Theorem 2.1 

(2) (x) (A .:J A) GEN 

(3) A ::J (x) A A':> and MP 

(4) (x)A :::> A A4 

(5) A. (x)A (3) (4) def. of., and eonjune-
tion rule. 
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EQUIVALENCE THE0R}:M 

~ fBi s a wf' subf'ormula (or sub-wff) ')f A and A t Is the 

result or J"(:pLl<~ing zero or more occurrenc-.. s of B 1n A by 

8 wff n' ancl jf every frel' variable of B or Bf which is 

bound in A o,~ '~.Ul':; i.ll the li::;t Yl , Y2' ... , ~' II. 
then 

PROOl.': Py i C1d'1, L [('II '1tl U." number n of \'onnectjves lind 

quantiticH 1n A. 

B8 S i.s: !l...::..Q 

Then A must be an atomic formula, hence 

I'i ther 0 00.rurrences Are replaced or B is A. 

It () occurrences, then reduces to C:::) (A. A) 

Il' B j8 A, then reduces to (Yl) (Ya) 

(A ;: Bt) ..:J (A :, B') ® 

fnd'l.C'tion: -----
1;k now have Jl > 0 end B a proper part of A • 

" :..: r \"'.i: 

Reproduced from 
best available copy 

A'S.l:n<: tr\lC for <Ill wffa A with less than n 

1 . A jij - D 

:'1 A is (n ~ E) 

A. ic (x) D 
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:aae 1. A' is - D I • 

I- (Y1) '" (yk)(B. B')':> (D • D') 

I- (n !! D') :::> ( - D Iii - D') 

~ (Y1) ••• (yk)(B an') :::> ( ..., D Ii - Dt) 

which js the desired r~sult. 

Cue 2. A' is Dr ::lE' . 

I- (Yl) (Yk) (B :eB') ::J (D • D') 

I- (Y1) (Yk) (B • E') ::> (E Ii E') 

Ind. hypo 

Theorem 2.1 

Theorem 2.1 
and MP 

Ind. hypo 

Ind. hypo 

(D - D') 1\ (E iI E') :::> «0 :JE) • (D' ::) E'» 
tautQlosy 

.. I- CY1) ••• (Yk) (B • B') ::J (A • A') tantolosy 
and MP 

Case ,. A' is (x)D' • 

I- (Y1) (Yk)(B I!1B') ::> (D. D') 

~ (x)f (Yl \ ••• (yk)(B -B') :.:> (D. D'») (ZEN 

~ (Y1) ••• (Yk) (s E B') :J (x) (D .. Dt) Ax , and MP 
by hypo x 
not free in 

(Y
1

) .r. (yk)(B -,B') 

~ (x) (D Iii Dt) :::> «x)D _ (x)D') @ 

.. I- (Yl ) ••• (Yk)(B. B', :J «x)D • (x)D') taut. and MP 



Corollary Replacement Theorem 

If 

A, B, A', B' ss above. If 

~ (B e B') and ~ A then 

Corollary Change ~f Bound Veriable 

then l- (A. A') • 

If (x)B(x) is a sub-wff of A and B(Y) is similar 

to B(x) end A' results from A by rep19clng one or more 

occurrences of (x)B(x) oy (y}B{Y), 

Then ~ A ;: A' • 

PROOF: By (2) ~nd replacement theorem. 
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PRENEX NORMAL FORM (?NF) 

Note: needed for Completeness Proof to follow. 

Note: use as lelllllas the usefu'~ 'theorem schemata which are starred. 

Definition: A wff C is ir. p'renex (normal ~ if C is 

where: (1) Yl , Y2' .," Yr are distinct 1nd1v~ual 

vbls •• r ~ 0, whi~h occur in ~ 

(2) each (Qy i) is either (Yi ) or (iy i)' 

and (3) M is a quantifier-free wff • 

M is called the ~ of C; (Qyl) ••• (Qy) 
r 

the prefix. 

Definition: A quantifier (Qy) in 8 wtr is .ald to be 

initial if both 

(1) (Qy) occurs at the left, or is preceded 

only by other ~uan~ifiers, 

(2) the scope of (Qy) extends to the end of 

the wrf. 

Corollary: A }~F is a wir in which all quantifiers ere 

non-vacuous Bnd initial. 
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THEORiM: F'or any wit' t there is a wff CO in PN1 such 

that ~ C Ii CO • 

Note: PRF can be defined BO as to De unique. 

PROOF: use Chul'ch's proor--it gives uniqutlness by working on 

first qUl!ntii ier not initially placed, provided we use alphabetically 

earliest possibility when making changes of bound. variables. 

~cedure: 

Let C be written without abbreviations other than 

existential quantifiers. St~rtins from l~ft, pick out first 

non-initial quantifier (Qx) • If there 1s one, it must be 

in a wff part of C of one of the forms in column (1) 

(1) (2) 

~(x)s (Ex) .... B @ 
-(Ex)S (x) .... B @ 

A ::> (x)B (x)(A ::> B) x not free in A @ 
(x)B ::> A (Ex) (B ':) ~) x not free in A @ 
A :> (Ex)B (Ex) (A ::> B) x not free in A @ 
(l!.x) B ::> A (x) (B ::> A) x not free in A @ 

The wffs in (2) lire equivalent to those in (1), provided x 

is not free in A. If x is free in A use ~ 2! !!2!!!!!! 

variable to fI variable not free in A nor occurring in B. 

Then use replacement theorem. 

If qU!lfJti1'iers 8l'e not distinct, delete first (Q,y i) 

by (Qyl~ {Qyl)A. (Qri)A by (2), @. Delete (<ai ) for 1"1 

not in M. 66 



PROOF of tennination: By considering the number of connectives 

not within the scope of the left-most non-initial quantifier and 

the number of non-initial quantifiers. 

PROOF of I- c :: ~. By the lemmas and th(. replacement theorem, 

and transitivity of =. 
Com~nt: A PNF may conta.n free variables. 

But we can always find closed C' in PNF' such that 

~ C cot ~ C· • 

C' is the closure of C. 

Remarks on PNF: 

Actually need not reoove II and V but can use 

A V (Ex) 

A V (x)B 

A II (x)B 

A II (:3:x)B 

(Ex) (A V B) 

(x)(A v B) 

(x)(A 1\ B) 

(3x) (A" B) 

x Dot free in A 

.. 

.. 

" 

!':xamples : 

(x)(F(x) ~ (y)(G(x, y) ~- (z)H{y, z») 

(x)(Y)(F(x), (G(X, y) ::J- (z)lI(y, z») 

(x)(Y){F(x) -' (G(x, y) ~ (:3:z' .... H(y, z») 

(x)(y)(Ji'(x) ~J (:3:z){G(x, y) ::J .... H(y, z») 

{x)(y)(]z){F(x} -] (G(x, y) ~ ... H(y, z») 
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'lex, yo) :::> (3Y(['2(Y) :::> (b)'2(x) :::> ,,(y»] 

(Iv)(z)('l(x, y) :::> ('2(v) :::> ('2(z) :::> ,,(v») 

En.pie with V, ". 
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A VERY ELEME!lTARY SYSTEM W 

(Hao Wang) 

!. Survey 2! Mathematical Logic, SCience Preu, Peking, 196'. 

(Distributed by Horth-Holland Publishing Co •• Amsterdam.) 

The system W contains a single tvo-placa predicate 

(a dyadic relation) R, t~ree constant namea 1, 2,' 01' 

individuals, and the variables x, y, z, etc. If R holds 

'between x and y, 'lie can write R(x, y). The ex ... OIU or 

W are as tolJ.ov.: 
Al. There are exactly the three thing!! 1, 2, ,; 

(x) (x lZ 1 V x .. 2 V x • ,) 

IIl"2112,t3'1~' 

A2. R i. 1rretlex1ve: 

(x) - R(x, x) 

(x)(y)(~).R(x. ,) Ii R(x, z) j y • z 

J,A: R is one-many: 

(x)(,)(z).R(y, x) II R(z, x) j y. z 

A5. 
(x) (El).ex, y) 

16. 
R(l, 2) 
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The concepts ot model and a&tisfiab11i~ can be detined 

thus: 

Definition 1. An axiom syetem is satisf~able it therp. 

exists a model or interpretation ot the system. An interpre­

tation ot an axiom system is at: aasigDment of lIIP.anings to the 

undefined terms of the system according to vhich all the 

axioma are true. 

In particular, a model of the system W is determined 

by: <a> a (non-empty) domain D of objects; (b) a rule 

that .6Iocipt,.~s eacb t:onstant name witi. 11 t.hing in D; (c) a 

relation R* ~s the model of R; (d) a rule of interpretatioD 

telling us, for any objects a and b in D, whetber R* 

ho"_ds be-.ween them, and therefore, derivatively, for any state­

ment, wh~ther it is true or false; (e) the tact that tbe 

statp~ents AI-A6 come out true according to (a)-(d). 

It is quite easy to find a model for W. Take the 

domain D ar. consisting of three persons, Chang, Li, and Yang, 

sitting around a round table with Chang immediately to the 

right of Li, aSSociating thea wit.h 1, 2, " respectively, and 

interpret the relat:on R as holding between two persons a 

and b if and only if a sits immediately to thp right ot 

b. It can be checked 'that all the axil:aB Al-A6 ~ome out true. 

In fact, we can take an arbitrary domain D with three 

,)bjects 1«·, 2*, 3* which represent 1, 2", respectively, 

and obtain a m."ldf:l tor the system W by chOOsing a relation 

R* such that R* is true of the pairs (1*, 2*), (2*, ,.), 
('*, 1*), and false for the remaining six pairs. As a result, 

ve d~ n~~ even have to use «ny concrete interpretatioDs tor 

W We can say abstractly that the follOWing matrix detinp.~ 

a model for W. 

R 1 2 

1 + 

2 + 

, + 
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We come new to the familiar nct:;'cn (If is',)lhorphism. 

Thus" two models of W ere is-:..:nor~r,jc (0:' essentially ele 

same) if there exists a one-tc,-one correspondence betwee:1 the 

two domains such that the first model of the l."ela~ion R holds 

between two objects of the first dome in if and (.,nly if the 

other model of the relation R holds between their images in 

the other domain. It follows that Oi statement is true in one 

model if and only if it is true in the other, For instence, 

any two IOOdels for W, which hoth satisfy the matrix given 

above, are isomorphic. In general, an aXIom system may contain 

a number of technical tenns which stand !'or properties, rela­

tions, and operations. In two isumC'.'Fr.ic models of "he systema, 

all these should correspond so th~t, for e~Bmple, if fl and 

f2 stand for a same functor and 8
2

" b
2 

correspond to a l , 

bl , then fl (at bl ) must correspond to f)s2' b2) Thl.S 

condition on models for the technical terms is equivalent to 

the requirement that any statell'Cnt of the system is true in 

one model if and only if it is true in the other. We call, 

therefore, give the d~fir.itions: 

Definit ion 2. Two modelE: of an axiom system S lre 

said tc be isomorphiC if there exists a one-to-one correspon­

dence between the two domains and any statement af S is tru'~ 

in one model if and only if 1 t is true i.n the other. 

Definition 3. An axiom system S is categorical if 

and only if every }lair of modelS of S is isomorphic. 

It is not hard to see that the system W, determined 

by Al-A6, is categorical. In fact, by straightforward combin­

atorial considerations, we can see that all models of W 

satisfy the matrix given above. Thus, by Al, the domain of 

each model of W consists of exactly three objects (say) 

1*, 2*, 3* Therefore l there are nine o~ered pairs of the 

objects of that domain. For each of these pairs. R may 

either hold or not. Hence, we have 29 possible interpretations 
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of the relation R which would all sa~i8fy Al. By A2, 

Re1*, 1*), R(2*. 2*), R(3~, 3*), must all be false. 

Therefore, there are only 26(c29/~) po8sibl~ interpretations 

of R satisfying both Al and A2. Of these 64 possibilities, 

only 27 aatisfy also A3, because, by A3, if R holds of the 

pair (1, 2) then it cannot hold of (1, ~), and so on. By 

similar considerations, we se~ easily that of the 27 remaining 

possibilities, only 18 satisfy also ~, 2 satisfy A4 and A5, 

and only one satisfies A4-A6. rhis interpretation of R that 

satisfies all the axioms A1-A6 is determined by the matrix 

already given: R is true for the pairs (1~, 2*), (2~, 3*), 

(,*, 1*), and false for the six remaining pairs. Hence, W 

is categorical. 

Thus, it is clear that additional axioms serve. in 

general, to reduce the number of permissible distinct interpre­

tations for II system. When we add enough axioms to reduce 

the number of ir.terpretations to one (up to isomorphism), we 

have a categorical system. BI.Lt if we add any more axioms 

which would eliminate also the last interpretation, the resulting 

system would not be satisfiable acco~ing to Dr. 1. 

In fact, once we assume AI, the problem of finding 

additional axioms to Obtain a categorical and satisfisble 

system is pretty trivial. For example, instead of A2-A6, we 

can use directly the fJllowing: 

Al*. R is true of the pa~rs (l, 2), (2, 3), (3, 1) 

and false for the six remaining pairs cor.slsting of 1, 2, and }. 

Al and Al* d~termine the same interpretstion as Al-A6. 

Or, we can choose any onf:: of the other possible interpretations 

of R by using some anal?gous axiom in place of Al*. Then 

we would have In each case a different system, which is again 

clltegorical. 

If WE' omit from W the names 1, 2, 31 then we can no 

longer state the axioms Al and A6, altt~gh we can still keep 

the axioms A2-A5. In place of Al, we can use: 
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Al'. There ~ist only three d:sc.il:r:: t , t.hl.ngs: (Ex) (Ey) 

(Ez) (w) (x # y • y I z Ii: .x f z Ii: (w :: ;'( V w "- y V'll'" z)) • 

But notting resemblir:g A6 car:. be expressed in the !lew sYHt-=m. 

The system determined by Al' and k~-A; can again be shown to 

be categoriesJ and complete; the lack of anything like A6 ia 

compens.ted by the decrease in expressing pow~~ c9uaed by the 

omiss!on of the names 1, 2, 3. 

Furthermore, if we use instead of the relet ion symbol 

R a function symbol 

following: 

A2'. (x)(f(x):I x) 

then we ~an replace A2-A5 by the 

A3'. f{Y) =' f(z):J Y '" z • 

The system determined 'YJ AI' .. Aj' is essentially the 

same as the system determined by Al' ar,d A2-A5; in the r,cw 

formulation, M and A5 become absorbed into elementary logic 

Bnd notationsl conventions. 

Since W has 8 model, W is 6atisfi~ble. 

Det'inition 4. A syst,em is said 1;; :.-.1 complete if eVErY 

proposition (closed wff) p in the syst~~ is either provable 

or refutable, in other words, for every p, either p or 

..., p is a theorem. 

From Df. 3 and Df. 1" we can prove; 

Theorem 1. Every categorical system is complete. 

If 8 system is not complete, there is a prokJosition 

p ir. the system such that neither p nor ..., p is a theorem. 

Henee by Th. 10 given below in ~7,*there exists one model in 

which p is true and one model in which p is false. These 

two models cannot be isomo~hic. Hence, the system cannot be 

categorical. 

*Theorem 10. A system fOrlllllated in the predicate ca.lculus 
without equality is consistent iff it is satisfiable. (Skolem, 
Herbrand, aOdel.) 
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Sin~ W ia categorical, it is complete. 

One l118y also regard the choice of • model as the con­

atruction of a sort of truth definition for the system under 

consideration, specifying the propositions which are true 

under the interpretation. In fact, in every cue we require 

that aU theorema muat be true in the model and that for every 

propoaition p, either p or - p but not both muat be true. 

H~nce, when a aystem ia complete, the theorems must coincide 

with the t~e propositions. It follows that for a complete 

system, a decision procedure for provability also yields a 

decision procedure for truth, and(conversely~ 

Definition 5. A decision proC'edu,oe for provability 

(truth, validity) of an axiomatic system is an effective 

aaethoc1 by which, given any proposition of the systems, we 

can decide in a finite numb~r of steps whether it is provable 

(true, valid). 

In the case of the system W which baa only one model, 

we can easily give at once a deci.ion procedure for both truth 

and provability. Thus, after eliminating" " "," ::::> ", 

"(Ix)" in familiar manner, we can characterize all propositions 

ot the system W: 

(i) If sand b are numbers among 1, 2, and 3, 

then Reb and • - b are (atomic) propositions; 

(ii) If p and q are propositions, so are - p 
and (p V q) • 

(ill) If He Is a proposition, 80 i8 (x)Hx. 

(iv) There are no other propositiona except thoae 

required by (i) - (iii). 
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A truth definition 1 •• t.ply: 

(1) Among the atomic pro ..... dtion., Rl2, R2" ~l, 

1 .. 1, 2 .. 2" , .. 3 are true, all others are 

false; 

(11) - p is tNe it and only it p 1s false, (p V q) 

is true 1t and only it either p or q is 

true; 

(iii) {x}Hx is true it aM only if' Hl, HZ, ~ are 

true. 

Thi, truth definition gives a deCision method because 

tor every proposition of W, no matter how COlllpleX, we can 

alway, reduce the question of its truth to that of less complex 

propositiona, in such a yay that in a finite number of steps 

we arr~ve at a finite number at atolllic propositions which can 

be decided by (i). 

Hence, there i, a decision procedure for W both for 

trutb and tor provabillty. 

It we delete A6 from W, the resulting systelll is no 

longer complete, but we can eaaily aee that it still has a 

decision method for provability. 

Theorelll 2. There exist incolllplete axiom systema for 

which there are deci,lon procedures for provability. 

Incidentally, the oioma Al and Al t have a different 

character from the other 0101118 in so tar as they do not 

.. sert properties of Rand f but directly specify their 

dOlllin. Such 0101118 are sometimes called ttaxioms of limitation". 

Definition. Given an axiomatic th~orYI • subset X ot 

the oioll18 is said to be independent if some yff in X can­

not be proved from the rest of the axioms. 
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Ex8!p1e 

Al: (x)(F(x) ~ G(.» ::> «x)F(x) ~ (x)G(x) 

Take domain as the positive integers. 

Take F 8S the property 'x is divisible by 4' 

i.e., the set of multiples of 4 . 

Take G as the property 'x is divisible by 2' 

i.e., the set of all even numbers. 

Then, under the 1nterpntation, '\ is~. 

ExalllPle 

":2: (Ex) F(x) ~ (Ey) G(y) 

ThEn under the same interpretation ~ is true. 

But under the interpretation which follows, it 

is false. 

Example 

Take D as [0, 1) • 

F as the property x: X i.~., 

the se'" D .. {O, l} 

G as the property x" x Le., 

the empty set ~ {} : ¢ . 

~: (Y)F(x, y) 
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Take same domain. 

take lex, y) as x ~ y • 

Then under the interpretation ~ is :;.either 

true nor false--it represents the l-ary relation 

(y)(x :::: y) 

and is true for x ~ i, false ctherwise. Note 

that ~ is not closed. 

A wff A is satisfiable if there is some interpreta­

tion of A (with non-empty domain D) ~ some assignment of 

elements of D to the free variables of A which make A 

true. 

Exa!!ples 

~ is satisfiable. 

~ is aatisfiable. 

~ is satisfiable (assign 1 to x). 

A wff A ia!!!l& if under everY interpre'tation and 

every assignment of elements of the domain D of the inter­

pretation to its f~ee variables A is true. (Th1s is eqv. 

to previous der.). 

ExalllJlles 

~ is vslid. 

"'2 is not valid. 

~ is not valid. 
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A elo.ed wtt i. either E:!!!. or !!!!! under 

aar given interpretation. 

COROLLARY A wtt A i. valid itt - A ~I not satisfiable. 

The notion ~ correaponda to elvaya true. (No counter­

exallPle) • 

DEFIRmC8: The closure ot a vtt A vith free variables 

(Remark: B1 ® the order of these universal 

quantifier. doeanlt matter.) 

COROLLARY A is valid itt the closure ot A is valid. 

TPEOREM (SoWldneaa) 

Ever)' theorem of the first-order predicate calculus il 

valid. 

PROOF: Axioms are valid. 

Rules ot interence preserve validit1. 

(See details on pages 79-81.) 

COROLLARY To show A is not a theorem, 1t suttices to show 

A not valid, i.e., ..... A satisfiable. 

Validity and Tbeoremhood 

Given a vff A, &uppose we are concerned with whether 

or not A 1s a theorem. If we can prove A, then A is a 
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theo.... (and 18 valid). But if we do r.ot succeed in proving 

A, perhaPI A is not a theorem. To show that A is net /) 

tbeore., (ainee it is possible that neither A nor -- A is 

• theore- beeaule pred. calc. not comple~e in that sense' it 

suttiees to show that A is DOt valid, that is -- A 1s 

.atisfiable. By the GOdel Completeness Theorem (to be proved) 

A is. theorem!!! A i8 valid. Hence it will be the case 

that either A is. theorem or -- A is satisfiable. And 

while this 18 not enough to'yield 8 decision procedure, it 

will be enoUBh to yield so effective proof procedure. (This 

18 an alternative proof procedure to the purely syntactic one 

already given for all formal theories.) 
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Proof' ptoeedurel aDd decision procedures 

In aII¥ axiOlllltic fo:nu.l theory, there is an effective 

proot procedure. 

PROOF: 

1. Reduce countable (finite or enumerable) set of 

symbols to finite set by use of subscript 1 as 

new syaabol. I. e., replace -\,~, ••• , by 

~, ~, •••• (prove unique readability.) 

2. Introduce a neli symbol cal.led carriage return. 

;.. Now ve could enumerate ell expressions composed of 

the finite set of symbols as follows: 

All expressions consisting of one occurr.~nce 

of a 8)1111bol. 

All expres8ions consisting of two cccurrences 

of' symbols. 

All expressions consisting of n s)l1llbol 

occurrences. 

4. Now, since wifs are effective, ve could redo the 

enumeration ••• saving in the list only expressions 

which are vCfs (between carriage n-turn symbols). 

5. Bow. since proofn are effective (axioms are, and 

rules of inf'eren~e are) ve can redo the list so 

that every string in the list is 8 proof. 
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6. Eventually every proof vill occur in our list. 

1. A:r. ;)'J.t' is a proof 2!. its last line. 

8. 'l'beret'ore to find a proof for a given vell-formed 

formula A we need onl.y construct the list until 

at last we come to a proof of A. 

9. But, if A is not a theorem, we will never know 

that we should give up, hence ve will go on forever. 
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Details of Soundness p~ 

.AxlO11lS are valid 

Axiom 1. A ~ (B:::> A) 

To satisfy the negation we must find an interpretation 

and. an assignment to the free vbls. which makes A 

true, B true and A false. Clearly impossible. 

.Axiom 2. (A:::> (B:::> C» :::>«A ;;> B) :::> (A:::> C)) 

To satisfy the negation we must have 

hence 

Axiom. ,. 

A ::> (B ::> C) 

A::>B 

A::>C 

A true 

C false 

B false 

A false 

true 

tn.-e 

false 

( ..... B :::> ... A) :::> «- B :::> A) :::> B) 

To satisfy the negation must have 



hence 

hence 

-B-::JA 

B 

-B 

-A 

true 

tru.e 

ralS8 

true 

true 

A true 

Axiom 4. (x)A(x) ~A(y) y free tor x in A(x) 

To satisfy the ll"gation must have 

(x)A(x) 

A(y) 

true 

ralse 

So suppose d € D assigned to y and - A(d) • Then 

-(x)A(x) • Note role of proviso on '1. Otherwise 

there is no tree variable in A(y) • 

Axiom 5. (x) (A ~ B(x») -::J(A ::::> (x)B(x») x not free in A 

To satisfy negation must have 

(x) (A -::JB(x» true 

A true 

(x)B(x) false :. for some d,"" B(d) 

Hence have -(A ~B(d)) which contradicts (1) • 



Rules of inference preserve v811dit~ 

)ot)dus Ponena 

A:JB 

A 

B 

Suppose A:::l B, A are valid and B is not valid. "" B is 

satisfied by an interpretat'ion 1 with assignment (d
l

, ••• , dn) 

to the free variables (xlI"" xn) • Then this assignment makes 

A ~ B true (since A::J B is valid) hence makes A false, hence 

contradicts validity of A. 

Generalization 

A 

(x)A 

If (x)A is not valid then for aome interpretation 1 and 

some d E D, "" A(d) • Hence A not valid. 
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;toUce that there are now , kiDds of equivalences: 

CD ~A.B 
®~A"I-B 

equivalence 

interprovab111ty 

~ A valid .. B valid inte"alidity 

Examples 

REPLACEMENT THEOREM 

SOONDNESS 6 CCMPLE'l'EHESS 
(to be proved) 

1. ~ (x)F(x) .. I- (Ey)a(y) 

since both sides are !!!!!. 

but certeinly ~: 

I- (x)F(x) • (Ey)G(y) 

for thls is E£i~. Take domain CO, 1), 

take G(y) as y ~ y 

take rex) as x ~ x • 

2. ~ (x)F(x) .. ~ (x) - F(x) 

!!21 ~ (x)F(x) • (x) - F(x) 

Example using the closure of 8 wit. 

Interprovabl1lty ~ rex) .. I- (x)F(x) 

86 



PROOF: 

k...!:2..!: Suppuae r rex) • Then we con8truct a proof 

of (x)r(x) 8. follows: 

F(x) 

(x)F(x) 

} proof of Fex) 

U2..1t: Suppose ~ (x)F(x) • Therl we COl:struct a 

proof of F(x) 88 follows: 

(x)F(x) 
} 

(x)F(x) ;) F(x) 

F(x) 

proof of (x)F(x) 

Axlom 4 

Intervalldity F(x; valid • (x)F(x) valid 

By Corollary 8bove (trom definition of ~). 

Egul.valence 

~ F(x) • (x)F(x) 

~: We have proved this if x 18 n~)t free in F(x) • 



PROOF: 

Every theorem is valid (a0un4nea8). Therefore it 

suffices to show that 

rex) • (x)r(x) 

is not valid. We construct an interpretation under which it 

i. l'lot true. 

Take D {O, 1, 2} . 

Take F(x) 88 a relation (property) which is true for 

1, false for 0, 2: 

F(O) 

false 

(Example m1ght be oddness.) 

F(l) F(2) 

false 

Take 2 as the assignment to the free vbl. x. 

Then under this interpretation the formula is true iff 

F(2) • F(O) h F(l) A F(2) 

so true under th1s interpret~tion. 

But now take 1 88 free vbl. Then under the new 

interpretat.ion 

F(l) • F(O) h F(l) A F(2) 

which is~. (Satiafies r(x); (x}F(x) .) ~ ~ ~. 
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DEFDITICIf. A w!f A is in Skolem normal fOnD (SNF) if it 

11 in cloaed prenex normal fOnD with prefix 

TO BE PROVED. 

For every yff A there exists a wft A I in SNF 

auch ttt.t 

l-A-l-A' 

and. 

A valid - A' valid. 

Temporary notation: 

~ 

(Ey) for (Eyl ) ... (Ey) 
n 

..:a 
y for Y1, ... , Yn 

A[y, u] to exhibit all the free variablea of 

the vff A. 

Let A be 
~ ..:a 

(Ey) (u)B[y, u) 

~ ..:a ..:a ~ 
(!y)«u)(B[y, u) ~ F(y, u» ~ (u)F(y, u)) 



.. 
where B baa y, u .s 1t. only tree vbla, aDd F 1. an 

0+1-ld1c predicate letter not In A. 

Show haw thi. will lead to SlIP. 

LDI4A 1 

PROOF: 

Assume siven a proof of ~; fros it we construct a proof ot 

A • 
~ 

Take 8*[y, u] .. tbe relult at replac1nc all bound .. 
vbl. ot B[y, u) by new vbla. which do not OCCUr in tbe Siven 

~ ~ 

proof. 1Ieplace F(z, w) throughout the proof by B*(z, v) • 

Show the result 1 •• proof. 

In.tances ofAx1oms 1, 2, 3, Ml' .04 GEN aU ouy. 

Instances of Ax. 4 (x)A(x) ~ ACv) provided w tree for 

x in AJ.ll ouy lince all new quantifiers heve new vbla 

hence do not have w. In.tances of Ax. 5 ( (x) (A:;) B(x» ~ 

(A::> (x)B(x» provided x not free in A J aU okay .inee 
~ ~ 

B*[z, v] ba •• a .. free vbla as F(z, w) • Henc~. by con-

atruction 

~ ~ .. . r- (Iy) «u) (B[y, ul :,:) 8*(y, u]) ::> (u)B*[y, u)) • 

Now, by chance of bound variables, the •• ted_a can be ralC'ved 

to give: 



-lI. ~ ~ .lo 

~ (Ey)«u)(B[Y, u1 ::I B(y, uD=> (u)B[Y, u}) 

Let G, W be new: 

B::I B • G(w} " .... G(w} 

..3. 

(lY)[(u)(G(w) V - G(w» ::I (u)B[Y, u1J 

~ .a. 
(E1)[(a(w) v .... a(w»,::I (u)B[Y, u]) 

~ 

G(w) v- a(w)::I (Ey)(u)B[Y, ul 

a(w) v .... G(w) 

Theorem 2.1 
(prop. calc.) 

replacement 
theorem 

Theorem 9 and 
replacement 

Theorem 17 and 
replacement 

Theorem 2.1 

Insert to proof of Skolem normal form (Mendelson p. 89). 

The following replaces the argument from line 2 "Conversely, 

••• " to line 8 "... ~ Al ". The replacement is needed to 

avoid use of Rule C and individual constants. To prove: 

where A is 

(Eyl' •.• (Ey )(U)B[Yl , "'J Y ul n n, 
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nOOF: 

1. For an)" vtt. C J D 

(x)C(x) :;) «x)(C(x) => D(x) ~ (x)D(x) 

,. For any vir. C, D 

(X){c(X) => D(x» :;) «Ex)C (x) :;) (Ex)D(X» 

By theorem , 
and prop. calc. 

Instanr:e ot 1. 

TbIIl. 4 

4. (Yn)[ (u)B ;:) «u)(B ;:) ,t1+1) ;:) (11),0+1») GEN of 2. 

5. (Eyn)(U)B;:) (EYn«U)(B => 1'0+1) => (u)~+l) 
4, instance 
of 3, MP. 

Repeating steps 4, 5 vith Yn- l , ••• , Yl , ve obtain 

6. (Byl) ••• (Eyn)(U)B => (Byl) ••. (Eyn)(u)(B;:) ,.0+1) 

::> (u)~l) 

Hence, by tht:! l".ypothea1a I- A and MP 

that 1a, I- Ai • 
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fHECI~ For every wff A we can effectively find a vff A' 

in Sko1em no~l :rorm such that f- A iff f- A I • 

PROOF 

1. By previous theorem w£: car, find A 0 in closed 

prenex normal forre a 'ole h the." f- A" f- A 0 
• 

2. Row by the construction e:iver, above we can, at each 

step, reduce by Cl'" f,jl£; numb('r of exist~ntial 

quantifiers whic:r. t>rv'_'ede universal quantifiers. 

From 

-" 
(Ey)(u) B(y, u) 

where 

~ "'" "'" (Qz) B"[y, z, u] 

we get 

-" ~ ... 
(Ey)«U)(B(y, u) :) F(y, u)) :) (u)F(Y, u)) 

which gives 

~ 

(Ey)(Eu)(B' (y, u, w» which is 

where 11 is new and where the quantifier (w) 1s 

right-most 1n the pr~fix of B' • 
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NOTE TAE TRADE-OFF 

For each universal we get on' n~w existential. 

Hence, for example, !Y! becomes ~. This ia 

important in the consideration of redlction classes. 

In 8dd1 tion, since we plan to use the Skolem nonna!. 

form to prove completeness, we need 

A valid • A I valid. 

(Mendelson has already proved completeness, hence does not 

need this step.) 

THEORD(: A wf'f A is valid in a given non-empty domain iff' 

its Skolem normal form is valid in that domain. A wif i. 

valid iff its Skolem normal form is valid. 

PROOF: Parallels the proof that I- A. r- At, except that 

wherever that proof makes use of a theorem, the present proof 

makes use of the fact that the theorem 16 valid, and wherever 

that proof makes use of a rule of inference the present proof 

must instead use the fact that the rule of inference preserves 

validity (in an arbitrary non-empty domain). 

~le 1 for SkOlem normal for~ 

(X)(G(x) ~ H(x» ~ «ix}Q{x) ~ (ix)H(x)) 

Put into PliF. Alread:i closed. Working L to R we would get 
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(1) (3x)(y)(Sz) • (G(x) ~ H(x» ~ (G(Y) ~ H{z» 

But if we chose to pullout the quantifiers in a 

different order, we could get S~T immediately: 

(2) (:b:)(:iy)(z) • (G(x) ~ H(x» :.J (G(z) ::J H{y» . 

To put (1) in SNF 

(:ix) . (y)«3z)«G(x) ~ H(x» ::J (G(Y) ~ H{z») :.J F(x, y») 

~ (y)lo'(x, y) 

(ix)(iy)(iz)(u)«(G(x) ~ Hex» ~ (Gey) ~H(z») ~ F(x, y» 
~F(x, u) 

i.e. 

(ax}(gy)(iz)(u)(G(X) ~Hx ~ (G(y) ~H(z» ~ F(x, y) 

~F(x, u» 

N.B. We can~ always obtain SNF directly. 

Proof: :n1I is unsol vable--Allother prefixes with 

, quantifiers are solvable. 

~le 2 for Skolem normal form 

Mendelson, page 89. 

(x)(y)(iz) A(x, y, z) 
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wh'ne A is a Q.uantit1er-tree vrf with x, "I, Z as Ua 

only free variables. 

Rote: in this case ve start vith a universal quanUfi.'r. 

Rote: predict that flnal answer vill have prefix ~ . 

(x){(y)(iz ) A(x, "I, z) ::::>F(x»:::> (x)F(x) 

where F h nev. Row put in PIIF: 

(lx)("I)(3z)(v) • (A(x, "I, z) ~ l:'{x» ::> F{v) 

Let this be 

B(x, "I, z, v) • 

Rote that B is a quantifier-free wft. (3z)(v)B baa x 

and y free. 

(lx)(~·)(:izHY) B(x, y, z, v) ::::> a(x, "I» ::::> (y)a(x, "I» 

where G is !'lew. 

(!x)(:ily)(3z)(v)(w) • (B{x, Y. z. v) ::::> a(x, "I» ::> a(x, v) 

which 1s 

(3x)(ly)(lz)(v}{w) • ««A{x, "I, z) ::::> r(x» ::::> F{V» :::> a(x, "I) 

::> a(x, w)) 

Rote prefix. 
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Example , for Skolem normal form 

(ix)(iy) rex, y, z) ~ (ly)(lz) F(y, z, x) 

Put into PNF. 

(3:y)(iu){v){w) . F(v, ,." z) ::> F(y, u, x) 

Now need to get ~ PNF. 

(z){x)(ly)(au)(v)(w. F(v, w, z) ::> F(y, u, x) 

(z)«x)(iy)(3u)(v)(w)A ::>G(z»::> (z)G(z) 

(iz)(x)(Sy)(Su)(v)(w)(xl)(A ::> G(z» ::> G(xl » 

(iz)(b) eSy) (au) (v) (w) (xl) (x2) 

««A ~ G(z» ::> G(x1» ::> H(z, x» ~ H(z, x2» 

Or, using the lett parenthesis convention 

97 



BLANK' PAGE 



THE INFINITY !.EMMA 

There are a group of results which are closely connected 

with tbe famous infinity lemma, which ~an be stated thus: 

The Infinity Lemma 

If there is an infinite sequence ~.~, ••• 

of disjoint finite sets of ordered pdirs of points such 

that the first point of each pair in Qi +l (i = 1, 2, ••• ) 

is the same as the second point of some pair in Qi' 

then there is an infinite sequence of points Pl , P2' 

such thst (Pi' Pi+l ) belongs to Qi, for every i • 

Consider the set of finite paths each of which consists 

of a member of ~ followed by a m.embe .... of ~I and so on. 

The set is infinite since each member of each Qi' for every 

i, occurs 8S the last edge of some finite path. Hence, there 

must be at least one pair (Pl ' P2) in ~ which occurs in 

infinitely many finite paths. All these finite paths must 

contain as the second edges finitely many (P2' P3) in ~I 

and hence there must be some P, such that there are infinitely 

many finite psths which begin with (Pl , P2) and are followed 

by (P2' P
3

) . Continuing thus, we get the desired infinite 

sequence Pl , P2, "'1 which IIIIllees up sn infinite path. 

Tb emphasize the nontrivial character of the infinity 

lemm., consider a case where one point of lev~l one is 



connected to an infinite number of points ~~ ~I ~, ••• 

on level two such that Ai goes to the (i+l)th level. In 

such an example, there exists uo lnfinite path. 

!1~. 
I I I I I 
. iii [ 
. iiI 

. [ r 

I i 
. f 

. 

Law of Infinite Conjunction 

Let ~, -\, ••• be an infinite sequence of propo­

sitional fonnula8 such that for every n, there 18 an 

assignment of truth-va1'.1es which makes ~, ~JI ••• , An 

simultaneously true. Then there 18 an uaigraent which 

makes all of "ll A2, simultaneously true. 

PROOF: Using infinity 1elllll8. 
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D. lOoig, 

IC"anic ' s Ift1'in1 ty LeIIIII8 

Tbeorie der endlicben and unendlichen Graphen, Le 1pa is, 19'6, 
(Reprinted by Chelaea, 1950), pages 81-85. 

Translated by Anthony Sholl 

(Unendlichkeitslealll8): Let 111, 112 , 1)"" be a denUlllerably 

~inite sequence of finite, nonempty, pairwise-disjoint 

point sets. The points contained in the union of these sets 

are taken as the nodal points of a graph G. If nov G 

has the property that each point of nn+l(n ~ 1,2" ••• ) 1s 

connected to some point of " by sn edge'* of G, then G n 
has at least one stmple**, infinite path Pl P2 P, ••• , 
where P (n .. 1,2" ... ) is a point in I( • n n 

For the proof of this theorem we shall call a (finite) peth in G 

( POintS) an S-path if its nodes belong by turns to "1' J(2"'" 1tk • There 
are infinitely many S-paths in G, in fact, with the exception of the 

point, of "1' every node of G is the tennilltJ.5 of acme S-path. Bach 

S-path begins with an edge which connects a given point P
l 

in "1 V1tb 

a point ~ in "2' Since there exist only a finite number of such 

edges, ~ of the edges, S8Y PI P2' !DUst occur in infinitely many S-patM. 

All of ~ S-paths contain as their second edges one of the finitely 

Jll8ny edges P2X, where 13 belongs t·o '3; hence, there must be in 

"3 a point P; with the property that infinitely DIllIn)" S-paths which 

begin with Pl P2 also contain P
2

P
3

' Continuing similarly, one defines 

a point P4 in 1(4' P5 in "5' and so on. The process cannot te:nn1nl.te, 

and it leads to an infinite path P
1

P
2

P
3
... of the desired type. 

* By an edge of G is meant any path of length one between two nodes 
of G • 

**A path PI P2P,." is simple if for 1 fa j, Pi fa P
j 

. 
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The infin1.t.y lelllJllll proved here (1) lends itself to applications not 

only in graph theory - of which we shall give many examples lat.er on -

but also in the vaI~OUS mathe'Tl8t1cai dE'sc~plint;s where often it provides 

a useful method for extending certain results from the finite to the 

infinite domain. Three examples follo~ 

The first example concerns kindredship, which, in the form of the 

genealogical tree, provides an old ar,d well kno'oln application of graphl. 

We show namely that if orJe takes as rlypothesis that lIII'Inkind will never 

become extlQct, then there exist.s some person, alive now, who is the 

ancestor of an unending line of descendenu (2) , 

Let El be tl':f; set of persons alive at tnis moment; E2 the set 

of chlldren of members of E1; E; the set of children of members of 

E
2

; and so on. By the hypothesis acove .. and because of the finiteness 

of human life - nODe of the sets E
l

, E
2

, E
3
,... is empty. Sl.nce a 

given person can hive only finitely many childr~n, it follows from the 

finiteness of E1 that all the sets Ei are finite. With each element 

in II given set Ei let us associate 8 point. so that the set El and 

the poiut set 1I: i correspond one-to-·one (i = 1,2,3, .•• ) • (3 ) We take 

the points of these sets rti as the nodes of a graph G. A node A 

frem rtn+ 1 w1:Ll be connected by ar. edge of G to a node B from I(n 

if the person corresponding t.o the point A is child of the person cor­

responding to point B. othf.r edges are n·)t admi'tted. The graph G 

so defined and the sets n
i 

sa~i5fy the ~onditions of the Infinity Lemma. 

Applicatlon of the lemma yields, therefore, an endless se~uence 

a
l

, a
2

, 8
5
"" with the property that 

8
1
+

1 
1S 8 child of a

i 
Consequent1.y, 

of the desired type. 

8 i is an element of. Ei and 

a
1 

is a cont.;:;mporary person 

(1) This proof, as does t.he one above of theorem 3, uses the axi<:l\l or 
choice. In most applications of the infinity lemma, however, the use or 
thp axiom can be avoided. We shall not go into the mltter further here. 
(2) This says more than the assertlon simply that there exists 8 person, 
alive nOli, wro has mfinitely many descendents. That goes without sayina. 
(3) An lnd~_Vldual can belong to more thBn ODE of the sets· E

i
• In that 

case we let him correspond to differe~t points according 8a he is con­
strncd as a merriber of orle or anot.her of the "generations" E

i
; the 1(1 

a~ then diSjoint. 
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By • similar consideration, one can show that the existence of an 

endleas male line follows from tbe interminability of the male sex. 

Many instances of application of the Infu.ity Le!lllla are applications 

ot an aD810gue ot the Borel covering theorem. It see-IllS interesting to 

notice, therefore, that from one point of view the Infinity Lemma may be 

conceived a. the real basis of these "Bore11sh" theoreaus. We shall pro­

ceed to reduce to the Infinity Lemma the follOWIng theorem of de 18 Vallee 

Feussin which clearly subsumes Borel's theorem as a special case: 

Let . E be a closed subset of the interval (0, 1) and I, 

a set of intervals so const:1.t'lt.ed t.b.at each point. of E is 

contained in some one of th~se intervals. Then there is a 

natural number n such that If one par~itions (0,1) into 2n 

eqUal subintervals, those 8ub1ntervals which contain a point 

of E are (themselves) included. in some interval belonging 

to the set I. 

It the theorem were talse, t.hen for each < value of > n, there 

(m 111+1) would be at least one subinterval -r;, ·2n ' where m is 0 or 1, or 

2, or ••• , or 2n - 1, which contains a point of E and is included 

in no interval belonging to 1. We designate the set of these subinter­

vals by En. With each element. of thE" set- E1 ·.,.e associate a point in 

such a manner that E) and the point set lIi are in one··to-one corres­

pondence (i '" 1,2,3, ••• ) • We ~ak~ the po~nts of these sets '\ as the 

nodes of a graph G. A node A from fln+ 1 is connected by an edge of 

G to a node B from fl in case the lnterval corresponding to A arises 
n 

from the interval couesponding to B ·by bisection; other edges are not 

admitted. The graph G so defined and thE' point sets 1Ii satisfy the 

conditions of the lnfinity temma. Application of the le!11118 gives the 

following result. 'I'here E'xists an t<ndless sequence of intervals, 

8
1

, a2 , ay... which all 

1° Arise from predecessors by bisection; 

2° ContalD a poir&t of E 

30 
'Are: included in no intervd! contained in 1 • 
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Then, how~ver, ohe peint a common to the intervals e l , a 2, a,,'" is 

contained in no interval which is a member of I. But that is impossible 

because by the closure of E, a be~ongs to E (This proof makes use 

only of the theorem on nested intervals, ~lot of the Balzano-Weierstrass 

theorem, and it remains valid for the plane, 3-space, etc,). 

The third application of the Infinity Lemma is based on the following 

so-called Baudet conjecture proved by van der Waerden. 

a) If k and 1 are two arbitrary natural numbers, then there 

is a number N (which depends ')n k and t) with the property 

that however one partlt!ons the set 1,2, ••. N into k pairwise 

disjoint parts, one of these parts contains an I-termed arith­

metic progression. 

We do not prove this theorem here but show that it is equivalent to the 

following theorem: 

~) If k and are arbitrary natural numbers and if one parti-

tions the to~ality of natural numbers entirely arbitrarily into 

k pairwise disjoint parts, at least one of these parts contains 

an I-termed arithmetic progression. 

It is clear that ~) follows from ~). The converse of 'this assertion 

goes through with the help of the Infinity Lemma as foaows. We consider 

as the set E those partitions of the set Z 1,2, ••• , n into k 
n n 

disjoint parts which are bO constituted that none of the < corresponding > 
k parts contains an t-termed arlthmetic progression; En is, of course, 

finite. If we assume t'nat theorem a) is false, then none of the sets 

En is empty. We associate points with the elements of the sets En in 

such a way that the sets En and the point sets nn are in one-to-one 

c)rrespondence (n = 1,2 •• ). A point of "n+l is connected by an edge 

to a point 

of E 
n 

lltanlj 

:r( 11' the corresponding elements A of Eland B 
~ ~ 

in the following relation. The partition B of Z 
n 

ariBes 

from th€ partition A of Z by the deletion of the number "n+l". n+1 
The graph so defined and the sets '\ satisfy the conditions of the 

I~finity LemrrA, which appll€d, yields an endless sequence Al , A2 , ~, 

with the property that, for each 
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l O A - 11 an ele:llent of E ; 
on- n 

2 Tvo numbers which belolll to the same block of the 

pa~ition A also belong to the same block of thp 
n 

partition A 1 (therefore also to the same blocks 01:' n-
A 2' A I"") • n- n-.J 

If one assigns each pair of natural numbers to the same cis'3S if and 

only if these two numbers belong to the same block of some ~srtition A 
n 

(therefore to the same block of all partitions A in which the two n 
-numbers appear) he obtains a partition of the natursl numbers into k 

disjoint parts < where the blocks o~ this partition are the "classes" 

cited above>. By theorem ~) one of these blocks contains an I-termed 

arithmetic progression. If N is the largest number of this progres~ion 

then this sequence must already be contained in !2!! block of the parti­

tion Aw which belongs to the set Eu' This condition contradicts the 

definition of the sets E (One sees that this proof of the equivalence n 
of theorems ex) and ~) remains valid when instead of arithmetic progres-

sions other classes of finite sets of numbers are taken into consideration, 

for example for geometriC progressions, etc.) 
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GOdel Completeness Theorem (See alse Chun;h §i.4) 

THEOREM: Every valid wff of the first-erde~ predicate 

~a:~ulus is e theorem 

PROOF: 

A wff i£ valid iff its Skolem Normal Form is valid, 

provable iff its Skolem Normal F()nn i5 provable. 'rherefore, 

it suffic<;!s to consider ",niy fo-mulas in Sirolem :1ormel form. 

Further, we may assume that the first quentif'ier is an exis-

tent hi, since if not, (Ey), where y is new, can be pre-

fixed. 

OUTLINE OF PROOF; 

From A we wil] 'Construct a s":quence of formu:.t· 

Bi, B2, .,. of the propositional cai·::ulus such that: 

(a~ If for som(' k, Bi V ••• V Bk is a tautoJofY, 

A is a the~rem. 

(b) I~' there J ~ dn assignment of trnth-valu::B wbl(~h 

makes ,." B~, ~ B2, ... simultaneJusly ';n:e, 

then th',r," IS an interpretation which satisfies 

,." A, that is, A is not valid. 

(c) But by (tbL' law of infinite conj .mction proved 

by) the" :nrinity lemme, either for some k, 

V B' 
k 
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.. ~ B' .. • •• Ie - Bk' is B contradiction) 2!. 
2. 

there is an 8ssigrment ~~hich makes - B' "" B' l' 2' 

simultaneously true. 

Thus, to prove the theorem we need only show how to 

construct Bi, B2, ... and prove (a) an~ (b). 

For, by (a)-(c), A is a theorem 2.!' A is not :slid, 

i.e., A valid .. A theorem. Let the given formula A 

be 

where Y1, ••• , Ym, zl' ••• , zn are all the variables of M. 

~ering of m-tuples 

We order all m-tuples of natural numb~rs as follows: 

comes before 

if 

or 

(2) (i
1 

+ ..... i ) '" (jl + ••• + j ) m m 

1.)6 



lind 

for some k. Example for m = 3: 

Let the 

(m+n)-tuples 

(0.0,0) 

(0,0,1) 

(0,1,0) 

(1,0,0) 

(0,0,2) 

{O,l,l) 

(0,2,0) 

(1,0,1) 

{l,l,O} 

{2,O,0) 

(0,0,3> 

th 
}I. S'", .'h m-tuple be 

\[kl). [k2], '00, [kin» 0 

From the kth m-tu~le we form an associated (m+n)-

tuple: 
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([k11, [k21, "'J [km), (k-l)n+l, ... , 1m) 

II; '" I m=3 000 1 2 

2 n ." 2 001 3 4 

3 o I 0 5 6 

4 100 7 a 
5 002 9 10 

6 o 1 I 

motivate by prefix of .., A interpretation in domain DatI. 

nos. 

Let Bk be the result ('If substituting the new 

variables: 

Xo' xo' x7, Xa1 • 

Let Bk be formed from Bk by replacing 'i.("') by 

p~( ••• ) uniformly. I.e., to each atomic formula assign a 

uniqu~ 'tatement letter of the prop. calc. 

Let Ck be £1 V ••• V Bk • 

Let Dk be (Xo) (Xt ••• (Xkn)Ck i.e., the closure 

of Ck • Note that the variables substituted for the z'. 

are new and distinct. 
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(8) LeIllll8: For every k, I- Ilk ~ A • 

Proof by lnductior. on k. 

~ 

(1) (t) M[y; 7J ::l (Sy) (z) M[:; zJ 

argument: 

.s(x) ~ (Sx) B(x) 

(t) M::l (ly ) (~I.: 
m 

~ 

(x)i(x) ~ ii(x) 
61111 prop. ("ale. 
Axiom 4 

(ay 2) ... (3¥mHi')M::l (Sy) (~)M 

and (A::l.8) " (~::l C) ::l A ::l C prop. calc. 

and M.P. 

~ ...a. 
(2) (Z)M[xo' ... , xo; z] ::l A 

!!S:.~t;.: 

...a. ...a. 
(z)M[ Y1' ••• I Y ; z) ::'l A (1) 

m 

...a. ...a. 
(Ym)( (z)Mf y l' ••• , 'Ym; z) :;) A) 

GEJi 
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(y: ) «(~MfYl' .•• , y: ; t] ::l A) 
III III 

~ ~ 

::l. (z)M[y1, ••• , Ym-" xo' z] ::l A 
Ax. 4 (no Xo 
quantifiers) 

do this m times. 

change of bowld variable n times. 

argument: 

Induction Step 

Thill • .3 and MP 
(x)(J. :> B) 

:> «(x)A:> (x)B) 

by Tim!. 9 
(x)A • A 
and Repl.aCelleot 
x not free 10 
A • 

As8\l111t. I- D
k

_
1 

::> A and show r- DIL :> A • 

Bote that Ck is (C
k

_
1 

V B
k
); Dk is (Xo) •.. (X

kn
) 

(C
k

_
1 

V B
t

) • 

no 



~ Dk ~ (xO) 

(X1m)Bk) 

(X(k_l)n) (Ck_1 v (X(k-l)n+l) ••• 

Axiom 5 
Noting that 

x(k-l)n+l ••• 
(x

lm
) are not 

free in C
k

_1 • 

(They were z­
values, new at 
kth m+n-tuple.) 

(X)(- A(x) :::> B(x» :::> «Ex) '" A(x) ~ (Ex) B(x» 
. Theorem 4 

(x)(A(x) V B(x» :::> «x)A(x) V (Ex) B(x» 
by taut. from 
Theorem 4. 

r- Dk :::> (xo) .•• (X(k_l)n)Ck_1 V (Exo) by above 
s~he!D8 • 

••• (Ex(k-l)n}(X(k_l)l+l) (xkn)Bl\. 

~ D :::> A 
k 

hlph. chanse 
'\;1. vbl. (m+n) • 

P:'Op. calc. and 
hypothesis 
Dk ~ (D

k
_
1 

V A) 

/I. (, D
k

_
1 

V A) 

Dk ~ A 

Now '.r Bi V ••• V Bk is a tautology, any inatance of 

1 t is a theorem, hence Bl V ••• ., i\ is a theorem. 

But this is ell.' But then by GEN, Dk = (xo) ••• 

(~)Ck 18 8 theorem. Hence by the above, and MP, 

A is. theorem. 

(b) Suppose there 18 80me a~8ii~nt of truth-values 

which makes -- Bj, .... B2, ... Bim~llt8neousl.y true. 
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From this (manter) assignment we construct an inter-

pretation (in the domain D of the natural numbers) 

which satisfies - A • 

To the q-adic predicate letter F assign a 

q-place relation ~ as follows: If PF(Xi , .•• , 
1 

receives true, or is unassigned, in the master Xi ) 
q 

assignment, put (11' ... , Otherwise 

(il , ... , i
q

> ~ ~ • This interpretation makes ..... A 

true, hence A false. 

~: - A is (Yl) ••• (ym)(EZ1) ••• (Ezn) .... M 

Consider an arbitrary m-tuple of elements of D, 
th say the k m-tuple. We must show that there 

exist other elements of D such that - M • 

But the kth (mt-n)-tuple gives us the other 

elements: (k-l)n+l, ••• , kn. For - ~ is 

true under the master 8ssignmBnt to the Pf(Xi 

and the interpretation gives F( i, ... , 
J) tte sa~ tv as PF(X

i 
••. X

j
); hence, under 

the interpretation - M[[kl), ... , [kill), (k-l) 

n+1, ... , lal] Is true. 

CorollarY: (Skolem-tOwenheim Theorem) It A 18 

satisfiable, then it is satisfiable in a denumerable 

domain. [By soundness. - A not 

satisfiable in denumerable domain • I- A. -- A not 

satisfiable in ~ domain.]) 

11.2 



Coro1la1X: (Herbrand Theo't'Em) If A Is. wtt in 

SNF and if Bk (subst. kt.b. (m+n) -tuple) and Ck = V~"'lBi 

are u above, then A Is e theorem 1ff there i8 some 

k such that Ck i8 an instance of a tautology. 

Bote th$t this yields 8 proof procedure. 
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Remarks on the Co!llJ)leteness Theorem 

Alternative proofs and reaaona for this ('boice. 

Const.ructive. Gives the do .. 1n. 

Applications. 

Examples: Non-t~eorem 

Theorem 

Note why this does not yield a decision procedure. 

Proof procedures. 

theorem-proving by comlNter. 

non-SMF: Enumerations. 

ConseQ.uent complications of proof. 

non-F'NF: He rbrand Theorem. 

Deciaic.n tables 

REduction to monadiC for (EY)(Zl) ••• ('n) 

Solvable prefix cases. 

Re·juction classes. 

Interprov.bl11ty of 

(x) (y)M 

(,)(x)M 

(Ex) (y)M 

(Ey)(x)M 
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(Ix) (Ey)M 

(Zy) (Ex)M 

(x) (Zy)M 

(y) (Ex)M 



Satisfiability in a Denumerable Do~in D 

l!!!!!:!..!1: By the Skalem LOwenheim Theorem, which followea. as 

a corollary of the proof of the <lOdel Complet.e~e6S Theon.m, 

a formula A is satisfiable iff it is satisfiabl~ in 6om~ 

denumerable domain. 

Therefore, we consider a way of attempting ",0 satisfy 

• wff A in a denumerable domain: i.e., of tryir.g to fir.d 

an interpretation which maKes A true. By the result or. 

the Skalem Normal Form we need consider for provabiltty only 

fOdlUlas of the form ,,',) ••• (By )(zl) '" (z )M, 
~ m n 

M q-free. hence for t .JUsfiabi11ty only formulas of +he font, 

In order to satiSfy (*) we must find an in~~rpretation, i.e.) 

a denumerable domain and an aSSignment of ~elations to the 

predicate le1:ters of M, such that (*) is true under th.:: 

interpretation. 

Decision Tables 

An example: cons i der the yff 

(x) (Iy)'" 

wher~ M is - F(x. x) • - F(x, y) and suppose we wished 



to ahow that this is a.tlsf~.ble in some denumerable domain. 

We ~st find some relation a, to oorrespond to F. 

The formula must. be true, i.e., for every • € D, 

there muat be some b ~ D such that - ?(., .) • - F(., b) • 

We represent the problem by 8 Decision Table (Church): A. 

headin8 we put first the individual variables, then the 

atomic fo~as. 

x 

Now for any 

• b 

EXAMPIE 

€ D, there must be aome b such that: 

F(a, a) 

o 

i.e., (a, a> f ~ 

Satisfiabil1ty (in a denumerable dOMin D) of 

(x)(Ey) -M, where M is a quantitier-tree matrix 'whieh 

contains at most the atomic tormulaR F(X, x), rex, y), 

F(y, x), and Fey, y) • 

x y F(x, x) F(x, y) F(y, x) F(y, y) 

o 1 F(O, 0) F(l, 0) F(l, 1) 

1 2 

S~ppose M is F(x, x) v F(x, y) • Then -M ia -F(x, x) 

II -F(x, y) • To satisfy (x) (Ey) -M, we muat tind ,!g!! 

relation to correspond to F for whieh the to1"lllUl.a 1. s:!!!. 
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We Deed a relation R such that for every ele!leJlt .. D 

there 1a aome element b D nch that (a, a) R and 

(a, b) R. 

Uaing the decision table we can find .u~h a relit ion: 

a 

o 

1 

... 

b 

1 

2 

r(lI, a) 

a 

o 

o 

F(a, b) 

o 

o 

o 

In thi. caat it is clear that the empty relltion R vill 

.atisfy the fonaula. Hence, slnce the neption 11 satis­

fiable, the to!'llll1l. (Ex) (y)M is not a tbeo~ •• 
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• 

It. In 1 •• collection 01' object.. Ctlntor: lOA .let 

i, • collection into a whole 01' definite, vell-dl.ttblU1shed 

objects 01' our intuition or Qf our th0Y8ht.-

'l'be t"bJects in tbe eollect::'on are oelJ.e4 !,i!!!!fttl or 

x 1.; I lIWNIber 01' y. 

-e •• y'. 11 wr1ttrn • ~ y , 

It. set x 11 a !.'!!!!!1 01' Y if eve17 IIIeIlber uf x 

18 also tl llellber of y. x ~ y • 

To live. set, Hat its _sWers 

x .. (0, 1, 21 

x • CO, 1, 2, ••• } ; or 

WI. • det1D1n8 Propert7 

.., .. (.IIt.(x)} 

wilen It. (x) 11. predicate With only x tree 

y • {xix 11. prime nuaber} • 

Uni t set or aiugleton 18 a set wi ~ one Mllber. ('1 

Importance or the d1ltin~t1OD between member and 

lublet. x EA. {xl SA. Example: 
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'fbi MRk It~ 11 • lIet nth no .-be~ .. , _ .t [ } • Rote 

that ; 1. l'lCIt tt.e 11_., (_1 • II' fact, ~ E (~l 

AlIO, fJ £ t,l . 

Or, 

Itt el\1ll1<;,,' 

• -, U'! x~) .nd y:x. 

(Z)(I , E. , C y) • 

thl19J1 !D!l 1DtenectiDD 

xU, - lela c a V Z E ,) 

• n, _ {,Ie E • A Z E ,} 

x eM , are 41,Jo1Dt itt x n , • _ . 

2ssI.ept, 

N A .. {xlz C Al 

XN A- (,1, E X A,. A) 

tIP_: t.t A S X, • = I. 'l'heu A: J itt 

An'-A m I-AU' ~ X-.~X-A m 
A n X ... B .. _ 1tt (X - A) U I - X • 



Pret,: 

l'beorea: Let It, I, C en4 X be...... Then 

Ce) 1- (X - A) • A n X 

(b) (eo-ataU.,. laYa) AU ••• U A 

(e) (~.oclatlv. laws) A U (I U C) • ~ u .) u c 

A n (I n C) • )A (l I) n C 

(d) (Jlstrlbut1ve lavs) 

A n (I U C) :a (A n B) U (A n C) '\ aM 
\ 

A U (I n C) 

(e) (de Morpu', 1ns) 

x - (A U B)· • (X - A) n (1 .... ) a. 
X- (A n B) • (X - A) U (X -~) 

(d) A n (' u C) • (A n B) U (, n C) 

x cAn \B U C) • x~A • x ~ (I U C) 

• xu.' (xci V xcC) 

• xci. • x€1 v xu • xcC 

• Xd n B V xcA (l C 

• X € (A n I) U (A n C) 
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Ih,::, ca:aL./I, '.UIT.t-:-r ot' a sec of f. ",leme;.:s is r. Th" 

iNFINITE SE';S 

~EFINITION: 1wo s~tf A and B ~re eq~l~~mcro~ ,A': ~ 

iff theIr eleme::ts can Oe 1".1 lnt:' or.~ ';"",'. :',. 

A 

DEFH '1 !GN 

A . ,arc! A 

DEFINITION, (>ddnnd, A set lS if,finile if 1· IS ".u.i-

REMARK: 

[E:IN!110f\ 

Reproduced from 
best available copy 

r. • .unoero·..Is with som", proper suos.;t C'f its"'!~f' 

(l+r'1,::,rwis,: it lS finIte 

A s,::,t IS r~~! If it is ~mpty or If It 1S 

-=quir,wn<:rous"lllUl the set (C .. f 2, r..} 

proo!' of th"lr Pquiv81~nce requIr.,s th" Axl!:'!!, 

it IS equinumerous with the s~t of all natural 

numbers" A denumerable set is sald to navl:' 

: a rd i ne • ~ t '{ ~ 

12':> 



DEFINI':'':ON A let 1s cOUDtt~le if it is finite or count~ 

ably infinite. 

DD'mTI<lI: A set 18 UDCOUDtable (nondenu.eJ'llb1e. non­

enumeJ'llble) it it 1. not caunteble. 

'!HEOREN 1: (Cantor) 'I'be .et of all nt10nel nUlllber. 18 

count.bie. 

PII::>OF: We Can 1 .. ,loe te be written down in orier of IIIIIp1-

tude, firat, all whole uu.ber., I.e., all nuabera with 

denolD1D11tor 1; then aU fnctioDB with denoainator 2; then 

11 .. trlcUona with 4enOlliDlitor " etc. '!'bere 11'1.1 In thll 

IIIIIMer the rovs ot nUllbers 

1 2_' 4 --.. 
i/g /l/! / 

• / I" 2 

l i ! ,. , , , ;-

1/ 
t 2 It 

4' i 

It ft write down the nUllbere 111 the 01"lle,. ot luec ... lon 

1a41eete4 by the line drawn 111 (l.aYinl out ~r. which 

are equal to ones 
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every pod t1 ve rat1c.nal. number certainly appear.. and only 

once. The totality of theRe rational number. 1. thus 

vri tt.rl .. a sequence 

1, 2, 1/2, 1/" " 4, 5/2, 2/~, 1/'4, 

(Tb18 i. Centor: I first d1160nal argument..) It we denote 

tbe above sequence by 

then 

0, r., , 
.L 

1. an Inu.erat~on of !!! the rational number •• 

DEFINITION: Power set. The vower set of a set x 1. the 

l!uple: 

.et ot all subset. of x. 

A € p( x) " A = X • (x \xd. "xEX) • 

The .. t (O,l) ba. power set ((), (0), 

(l), to,l}), Note that tor a tin1te .et of 

n meabera the aice (cardinal nuaber) ot the 

power s.t is 2n. 

llEl'Il'I'l'ION : We bave denoted by Xo the nUliber at 1ntesera, 

It 1a natural to denote by 2~ the alel ot 

the power aet, tbat 18, the Il'UIIber ot lUb .. ta 

ot integera. 



TIIF.OREM: ~> ;(0 . 

PROOF: 

: ntegers 

;; , 4 
subsets ~ 

'" e> OJ 

51 1 0 CJ 

8
2 

0 1 1 if the 
lnteser 

s~ 1 1 '- is il" th~ 

subset, 0 
otnel'loue. 

Now. diag~allze .- construct a set not in the list. 

THEORE)l.: T!';e- set of reals i8 ·w'.co-untab1e. 

PROOF: Same. ;:.lBt, 

r
1 

0 9 1 0 

T" 8 1 ~ 1 

r., 
.J 

then the dlagonal can be mod1fiec to give a real which 

differs from the th real in tht' th 
pla."f:. n n 

<' if d In' 1 
Set d 

d(n' n 
1 if I -
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The principles Cantor employed had 

previously been used tor argwllente abO\1'; ~ seta. He 

va. the firat to extend th_ to irltinlte sets. Hi. work 

met witb so. cliaapproval ao4 clhtl'Ult, but hi. arpJaenta 

appeared. IOUDd. 

But,- in 1902, the theo~' of sets we8 challenged by 

the 4iaeovery by Rusaell ot • per.cloa. 

RIB8ILL'. PAJW)OX (1902) 

With the notation or naive let theory we can vrite: 

y • (xIx ~ xl 

So Y is tbe set ot all !!!!. which In rwt; _libel'S ot 

tbell8elvea. Is y € Y t 

It l!!.I then y € y, hence y Ebllx ~ x) benee .,. I. r • 

It E2I then y J y, hence y ~(x Ix i xl bence r E y • 

What' a 11%\. ~T 



AXICIIATIC 81'1' 'l'JaltY 

i\ reault ot the a.L'covery of the para4ox ... of nuve 

.et thealT .. a an attempt to uioMt1ze .et thMry. Since 

it VII .. clear that w rely on the intuitiw n.ti.D led to 

.-,ra'ax, the solutitm appeared to be to .t.te preciaely the 

ul_tic basis for the theory. n.. .... dc pre .. lelll appe.re4 

to ~e that we cannot consider set. which are too glg. There 

are levera1 such ax1omatizations which so rar appear to be 

cansi.tent (contr.diction-free). The most ~rt.nt of 

thea are the .yatelll E-' of Zel1ll:el0 and Praenul. and. the 

aratell NGB of von N8UIIIIDD, aectel, and Bemey.. By aGtel' • 

•• eIM inc_leteneaa tbe,rea we know that no .nch "atea 

can ~ prove. to be con.i,tent (without usiD& .. thods vbieb 

are in some senae JllQre puwerful than tho •• of aet theory.) 

Proble1118 with sets which sre too bil. 

So iUybe we should .tart with very _ .. 11 sets (vbieh 

we can understand), and build up slowly in ways that seem 

reuQlllble. 

Ax101U of Set Theory 

The .yatell. Z-F below is due to Zermelo aXloi Pr .... ].. 

(The _jor alternatiVe! lUG (von Neumann, Berney., 1M 

Get. 1) is liven in Mendelson. NBG distincuishe ••• tween 
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!!!!. (whicb _y ~ eleMDt.), ,n4 cll"ea (Which elMO" be 

elaenta». 

Bot ice that III axl~ atter the flr.t .,aert let 

uhtuce. 

We atart with p~101te Cilculus, 'ni introduce E 

&I • Dew priaitive alldol. 

1. Axloc of IxtelUlioD 

~ • y ~ (w) (x I Y ~ Y I .. ) 

C~re the definition of equality (z)(z, x a z ~ y). A 

Nt 11 •• tera1Ded by its d_atl. Tblt 1., 11' t1IO .et. 

have the ... Mmben, tbeD e.,.rrtlUDa true of one 11 true 

Qf the other. 

2. Ade ot YDtrd.reI. "it! 

Given •• t. x ani y, (a,,) 1 ••• et: 

(Iw)(&)(a E Y • (~. x V £. v») 
-.te thlt 'I , ,,.c1l1 c... (x) ed.ts • 

. . 
_ r.r any .et x, tbe •• t of ,11 aub.lt. ot x (the 

paver .. t.t x) exi.t •• 

(a) (Iy) (z)[z € Y • (v)(v € x ~ .. € &)1 

(&)(Er)(x)(z E, • x= z] 



Reproduced from 
best available copy 

Ot· 

h 0 AXlOUl -;)1' UnlOnS 

or 

nul::' Eet. 

~"7~'! 

,x c 2 
, " ... 1',')( - , 

for IOvery rr,~-:_,"(or cf :x, cent,,: :,[ a:"sc "nf- '~!li t se' cf x . 
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(Ez)(; E Z • (X) (X E z ~ (xl E z): 

7. Ax10111 ot ltepllritx (Fundi_run,csadOll) 

Any no~ty set x contains. .et f wbich 1. • 

1Il1ns.-l element. 

(Ey)(y E x) ~ (Ey){y EX. -(Sz)(z £ x • Z E y)) 

8. AxiOll..r Substitution (or Rep1!C!lle!lt) (Erl5et!l'P!'taxi01l) 

If the dOMin of a 1 - 1 function 1s •• et, ~ is 

the ranse. 

If A(u, v) il. function, i •• _, 

(x)(y)(.)(V)«(A(X, y) • A(I, v) ] ::;) (x s z) • (y ... v») 

tbeD, .!! then ia I aet or .U seta u such thllt 

(Iv)A(u. v), then tbere il e set of all set. v such tblt 

(Iu)A(u, v) • 

t. .biOI! of Choice 

If x is e let of non-empty disjoint elellentl, tbeD 

the union ot x hal at lelat one subaet u bavine one _ 

only one el..ent 1n ca..on with each me~er or x. 

(x)([(y)(z)«(y EX. Z ~ xl 

:> l (Iv)w E y • -<!}wHw E y • W E z) l) 

!) «Iu}(yh EX::> (Ev)(t)(t .. v • t E U • t ~ y)])] 

l}O 



Axiom of Choice {AxCh} 

It • - ~ = ~ 1. a function defined for all a £ x, 

then there exi.ta 8uother function t(cr) for a £ x, and 

l' (a) € -\, • 

Thls allova us to do an infinite amount of "choosingll 

even thouSh we have no property whieh would define the choice 

funetion and allow U8 to u.e Replacement instead. 

We used AxCh in the Completeness Proof: 

(x) (Iy) A(x, y) 

then 

(11') (x) A(x, f(y» • 

The existence of the Skolem function r followa trom the 

Axiom of Choice. 

Alternative Formula~ion. of the Axioa of Choice 

1. The Cer.tesian prc4uct 01' • non-e'IIpty folly or 
, ~I 

non-empty seta is non-empty. 

2. Given a non-empty class K 01' t1'Joint non-empty 

.eta there exists 8 function l' with r&Dle K such tbet 

rex) E x for all me~rs x ot ~. 
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ft.!, is prova.le by induction for finite I: • 

A ~ fUnctien. Intuitively, the tuaction f 

.elect •• ne eleMl1t of each meaMr A of IC. 

~ • Well-ol'lleriM principle. Every let can 'be well­

o~.red. A set i, well-ordered if ever.., DOn-elipty aubset 

has • le.at element. 

4., _ 1... It X 18 a non·· • .,ty partially-

orterell aet such that every chain in X 11 •• an upper lMwl4, 

U.n X contain •• uxilrl&l elelllent. 

Ali. of Cholc, 

Of the adOllS of let theory, the .Q:ICII OF CHOICI 

(liven a family K of clhjoint non-apty .et I f .uch 

tbllt t(x) E x tor each x in K) bat se ... ala,.. W 

be l •• s intuitivel, obv1oua than the otherl. Ita expres.ion 

11 II!DI'8 co.plex a.od d~B not Ben re(ue1ble to .,re Maie 

notiona. It haa not been obvioUB that it lDitbt not be 

either contradictory--or elae perhaps derivable trom the 

other •• 

In 1939, GOdel, in a peper in the Prac ... inca at the 

National Academy of Sciences, followed in l~O by an o~­

covered publication, entitled, "The Consiatency ot the Ax10a 

ot Choiee and of the Generalized ContinuUIIL ItnetJlea1a with 

tba Axioms ot Set Theory," pnerally known II "'rbe -'-p'apb,· 

prGVM that !!. the other ax101D8 ot let theox-y are c-.tatent, 



then set theory re~inn consistent if the Axiom of Choice 

ariel the Generalized 'ontlnuum Hypotheeis are added.. 

Then, in 1962 6,. PIIul J. Cohen ot the MatheJllat1ca 

DepertMnt at Stanfoni University prgved another equally 

iaportant and intere1tiug reault. '!'be Axiom of Choice 18 

in tact independent. That 18, the axio"" of set theory, it 

conaistent, ~1n '0, even it we assume that the axia. ot 

choice is falae. TbiB shO'tll', of course, that the AxiOlll ot 

Choice is ~ a consequence ot the other 8xiollUl. !'uTther­

more, the continwa hypothesis 1s inclepeDdent froll the 

Axiom of Choice. 

The proof of the.e result. is be70nd the .cope Qf 

thia cour.e. See hul J. Cohen, Set '1'be017 and the Cor:t1nuUDl 

Hypothe.i., W. A. JenjlUllin, Inc., New York. lQ66. 

Let 
x 

C .. power of the continuum & 2 C • 

Continuum l{ypotbea1s 

There is no A such that 

.... 1 < 'I < 2~o 
1'4,0 I't. • 

~ 1~9. Relative consistency of (AxCh) aDd OCR. 

Cohen. 196'. Independence ofAxCh and QCH and of OCR trOll 

AxCh. Cohen believes QCH ia t.lae. -
PROOFS: by con.truct1nc JDOdela tor the axiou of .et theory 

which aatlaty' AxCh, OCR CaDdel) violate AxCh, QCII (Cohen). 
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C~ter Bciepce aoe 

DIClSIC8 PROBLDI (Intlcheld\IPC.probl_): Find.ft efrective 

.. thad to 4ete~ne tor any wrt a of the fir.t-order 

predicate cdeulu. whether or not. a 11. theONli. 

Suppo.e we hee! e ,u.picion thet thil w .. iJIIpo .. ible 

--that there WI. 9i .ffective w'f of 401118 thi'j that there 

VI. Di etrectively calculable function r vhich when applied 

to • ~r it reprelentinc a yould produc. 1 it I- a, 
o othezv1ae. How could we prove thi.T 

Rotice tir.t that effective or efrestivelY calcul.ble 

i. a 1004 intuitive notion: 

1. Sa. proee .... Ire cl.arly efrective. (Deduction 

theo~ truth-tabl •• , etc.) 

2. Of' other function. we can certainly .8Y that we 

don't know enoUCh about them to tell. 

But to prove that lome function i. Be1 effectively 

celculeble ve lIU.t h.ve • preche notion. Suppa.e we !118ft 

.aIa I •• umption in the form: 

THESIS: Every ettec1.1vely cdcullble tunction is 

01' 

Eve!,), errectt ... procers 1.. ______ _ 



¥beN ta. blank 11 tUled in by SOllIe preche notion. '!'beD 

we woal4 -. able to prove--to everyone who accepted our 

tbed.--thet certain !unctions .re not effectively c.lcule.le. 

fbe .1'001'8 w111 .ll be relative ~ the the.i.. AD&. 

the theai. it.elf i. not subject to proof since it inT01 ... 

• n 1J1tuit1ve DOtlon. W~ ~ proVE: the the'ill, But we 

can ,lve what 111 called "the !vi4enee ~ the thell!'-' 

Ib.t people accept the thesis to 'be pre.ente', Ifotice 

that even if you do not, the proofs ~h1ch will follow are 

Itill .roof.--but they mu.t then be qualified a. relative 

to the theli •. 

The TmlSrS hal • lNIIIber of verBlons, Perbap. the 

ItrongeSt eyldence for it is that they are all equivalent, 

even thOUlh they have arilen UDder quite varied eircw.atlnce •• 

'l'OItI!fG'S TlESIS: EVERY EFFE:'!'IYl?1Y CAI,cl-'uA.BLE F'lJNCr:ON ~S 

CQMPtr. ML~; B~ A '';''·Jft.1NG MACHINE. 

CHUICH'S THESIS: !VEl! E~IVILY CALCUI,,\BLE (partial) 

ruNCl'ION IS CJIIIERAL (pertlal) ~.rvr. 

MAltIO'I'S NORMALIZATIl:r: l'hJ.HCIPLE: Every algoritt. 10 lID 

alphabet A l~ fully equivalent relative to A t. 

lome normal (Markov) alaoritlwl over A, 

8t.1lar, and equivalent, the.es can ~ lit. ted tor !2!l 

at!I!! .,.tau. and tor )'·defiAlb1l1t!(. 
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tt,_ .w''..dence for Church'. thell. (!l!w): 

(A) ~.u~l.tic evidence 

(Al) Every particular erfect1~f'ly calculable f-.mCUOll, 

L14 o:very opel'lltion for defininc I t'unct.1o!'l etfecti .... l,. 

tlr. ... other functiona, tor whicb tbe pation ha. been 

1Dre.tipted, has proved to be pnerd recurdYe. 

(A2) The meth04~ for ,hawing effect ively calculable 

fuI1etions to be genel'lll recursive are developed to , 

4-.re' that it ia impossible to baagine .~ etfective 

prace,s tor ev~luat1na a function which could not be 

tND8to~ by theae .. thada into a pnersl recurl1ve 

def1n1 tion ot tb' tuncUa. 

(-,,) Every attempt r.() pt a !unction outride the class 

ot general recura1ve f'unctiOll has either (1) not lead 

out'ide, or (2) given B function ¥bieh is not effectively 

calculable. 

(I) ~Qulvalence of diverae ro~l.tlooa 

(Bl) As 4iacussed above. 

(82) StabUity of each of the Dotlema. The .everal 

to~t1ons of each of the main notiana are equivalent. 

('1"0 be Bh~' for Turinl machinea.) 

(e) 'Dl! 41rect fonmlation of Tur1nc 1IIIIchiDe. tJ'CII that 

". .tt.tctive prosesa. 
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Let us first consi~r lnfof!!llr the criterl. which we 

wouJ..Q expect of an effec~ive 'Dreeedure, We look".t the 

notion of algorithm, an effective process whieh d".ys 

tc!"IIiMte •• 

An .lsorit~ i. a cleric.l (i.e., deterministic r,ok­

keepinc) proce4ure whicb can be applied to _ny of a certain 

class of Iymbc~ic inputa j .ni which wlll eventual:y yield, 

for e.ch luch input, 8 cornaponding symbel1c output, We 

limit ollr.elvH bere to .J.t-ri tbms which take •• lnput 

intepral (or k-tuples of 1ntqen), aod whioh output inte.rl. 

Well-knnvp ex.l1ple. ef altil&'itllms arel 

~ deve _tGecl for findilll the n-th prime number. 

!.'he luc:li .. n alpritha for findiD8 the lreateat c~ 

deoollinatllr of x ant y , 

The follQVine are lame essential features of the 1nte~l 

notion of allQrlUIl (lee lIop:rs': 

*1. An 'l&orithll ia liver. 88 a finite aet P of 

instructions" 

*2, There is • computinc -.ent L, fH~eDtly m..a, 

which re.eta to the instruetions and cwrie. out 

the comput.tion . 

• 3, There. are f.cilities for -kiDs, storinc, alJll 

retrlevin~ steps in a coeputation. 

*4. The agent L reacts to the instructioDs of P 

in a discrete stepwise fashion, without usine 

continuous methods or analol devices. 
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*5. The ~tats. h c.rr1~ teTVllr« 4etel"lllinist1c.lly 

~-ther. are ne remOlD ell!.a! .. a to be considered, 

It is cl~ar that the notlon Qescr1~ contains a stroA8 

auloCY to the 4eaerlptl.n lItlich coul" be r'fJlde of any compu­

tation carried out by a dl,ltel compl.lte:t, The notion of 

'Xurinc .. c.:h1nes utea back to 19~6, 

In at4itlon to the =r1t~ria 1-5 above, there are other 

possible re,u.;'j·ementa which we mlsht impose on the notion of 

elJprithm.. rr~.e requirements concern bounds on space and 

t~. r~r example, we might (D~t do not) require the 

follow1q: 

6. A fixed bound Oft the siEe of 1nputs· 

7, A fixe<'. bound MI the liz ... of the set of instruet10ns. 

8. A fued boun. 0'1. the aDlOuot of storage space IIvail·· 

able. 

9. A fued boUl'lt on tile lenetb of the computation. 

However, because it IS poasible to ,how that many functions 

which one would generally 'I~e csn be co~uted by eltorlthms 

cannot be compl.lted within these rest~1ctio~s 6-9, these are 

~ to be taken as part of our 1nfo~1 definition. 

By accepting one 01' more of 6-9, one can define lnter­

e.ting subclasses of fUnct~ni and machines. These are being 

inareaaingly studied" 

Even without 6-9, tne ODt1on aDo~ .oes plece stronc 

11111tstiODS on the capacity .no _bUity of the computina 

_cent 0 The agent can be re6tr~.;te4 t.. 
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1. Cle~1c81 operations .uck e. 

read I 'Y'l!bol 

!DOVe on. l}abol .t a tia backward or forward 1n 

the cOltPUtatlon 

move backward or fornrd tbrough the in.tructions 

wri te a l!yIIbol 

ii, Fiaed finite sbort ~ -.mory 

iil. Ftxe4 finite set of si~le rules determininl the 

.,.ration to perfo~, and the next state of the 

stJ.)t"t teN memory. 

We now de.cribe the Turlne ~chine, end vill clata 

(Turiftl'. thesia) that it fo~llzes the sbove notion. 

Betinition Of 8 Turing MachIne 

Informalk 

A Tur~ .acnine earries out its operationa on • two­

way potentlelly infinite tape which is divided into squares: 

I I 1 I 
Fig. 1 (Davis) 

By potentialll lnfinlte ve m~~n that although the tape ls 

at any time finh", in length .. additional r.quare. can 81ft,.. 

be added at .. ithu thf- r'tght ('r l~n-i~tljd end (".f thE: tape. 
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!here 1s a finite set of 1!E! 1l!b211 So' B1, ,or, Sn 

ul.l .. the elphebet of the machine, (Turine argue. conville· 

lncl¥ tl,!lt a finite set lIuSt surf1~f.., !'linea if the set ... ere 

1Dt1aite, th,~e would have to be symbols which differed by 

arbitrarily small amounts of printers' ink, .. re thus 

"arbitrarily close" and hence indiFltinpl.lBhable 

The mechlne has a finite set of internal ~ 

" ~ And at sny given moment the .achine is said 

to be ..m one of these ststes, F1nally, the" 1, • ntadina 

,nil writ1ec head which at any moment. .taade over (scan,) 

lome sqUIre of the tape. \ 
The ... ehine jUlt de8crlbed act. on~ at discrete 

___ htl of tiM. And 1 t 1& very list te4 in the acta 1 t can 

perform. 

It at ., tiM t, the readine bead iI Icanninl • 

aquare contain1ilc II symbol 8
1 

and the machine is in state 

qJ the next Bction, if an" Qf the machine is completely 

dete!'lllined by .ninstruction ~t end IlUBt be one of the 

follOWin,: 

1, Er... 51 and print 8 new sym~ol ana chance state, 

2. M::>ve one .quare left, cheap stete. 

, • No.,. one 'quere rllht, cbaDp state. 

4. Stop. 

These actions can be reprelected by qu.druple. (following 

Pbst, rather than Tur~ng, whO ~.ed quintuples): 

1 11111 equ81 k) 
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,L qjSl Lqr 

3, qJSiRQr 

4 IiIbsenc€ of any QLladnlp J e oe'giwJlng 'lJS 1 

The .ymbol So l~ THKt·, tc rerr. c~·,' 'n·c t>i.q(jf. 

machine al~ay6 SCan~ some symbnl 

begins 1n state ql ;~'_'i1llJtng ttl":' Ler- ml)~l syMJol lilt' ou' 

put J S taken to be tilt: contents of trlt' tape at the t111fl, If 

any, when the machine stops 

DEFINITIOH: A Turing ~£hine T 1S ~ fI~ite set of qu.dru~ 

ples of the a'Vlvt. 3 IOrds-- such th_t QO two 

~u.druples have the sam~ first two ayabola 

(4e1;.trminiatic) 

DEFINITION The ~et of T '.S the set of ~pe ly1Ibols 

81 wbieb 3Ppc31 In th~ quadruples of T 

So '" blank & B 

DEFINITION' The internal stslS! of r are the Iywbol. qj 

WhlCh occur in the quadruples of T 

taken to be the tn1 tid ~. 

is 

DEFINITION An inatanttaeoua description (complete c.nfic­

IlTstion) of T is a word such that 

All .1IIbols but one are tape I!)'IIWl. of T 
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11. One shte ayUo1 tj occur,s in the 

descript1or, but 1s ~ th~ last symhol 

of the de.cription. 

DUINInoo: T IlX>ves one instantaneous descript ion a into 

another ,,; a T IS it 

end Imcng 
the QUIIA. is 

DEFlNITIOlf: T !!!!ll at an instantaneous d.,.cription a 

iff there 1s no ~ such tlttlt ':.t T ~ . 

DEFINITION: A comwtat1on of T is 8 f1uite sequence of 

instantaneous descriptions ao'~' ... , am 

such that ql is the left-most symbol of ~O' 

a 1 T 01-+ 1 for 0 ~ 1 < III .nI T halts on 
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Repre.eataUoft or lntu!U 

Let 81 be 1 . 

- ~1 • • 1 tDr any 11 ~ 0, 

Let 82 Je 4. Let r(x1, •• " %.) be. function, 

T ~~ f iff wl.th input i l * ~ * .. , • km 

T baIts only on RlqJ~ with Rl~. Q and Q i. = 

1)f(~, ~, .' 0, km,!\ with ~. 1\ poaslbly empty worrts 

consi.tlni of So's only. (Mendel.on) 

T £D!pUtee r iff with Input ... Dove T halts 

ollly on 0Il where «(Jill). f(~i ' ..• k.). where for any 

e.pression Mj (M) is the number of occurrences of 1 In 

11(. (DRVis) 

ExWles 

Successor function f(xi :-!~ 

Merlllelson 

or none 

!Xyp1e 

ke~p. on a4i1ng 1 to the left whenever tbe iJlUld yo~ 

starts nth 1 
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Ipvarbnce of Turilll Machines 

We have liven 8 particular definition of Turing 

IIBchl.Df. in which we have specified that 

the inatruct10ns are quadruples of • certain form, 

the tape 1a 2..".y infinite, 

the~ 1s erasing (i.e .• ve can overprin~ any symbol 

with 50) and th€re mfly be any nnite number of 

s7Jllbols, end 

tllere is only ooe tape. 

Each of these conditions is inessential. 

MO_, A 'l1( with instructions which are quintuples ~an 

comput" preciilely t.he SWIle functions &.s ·:·ne ... h'~se lns\ J .... l·· 

tiona ere quadruple •• 

ca.eDtt '!'he t1Io tonaulatlons are not equivalent in ill 

sense. a1nce, for ex.~le, with quintuples 8 universal 

TUrin& macbine caD be constructed with only tvo states 

(Shennon), thouah lICIt with Just one (Shannon) j whereas with 

qued.tI1~lea at lHat tbree states are required (Aanderu). 

HOwever, the differebOel do not effect the class of function' 

ccaputed, but all concem measures for minl!11111 machines. 

PROOF: 

1. Quin~. to p. 

Replace eaeh qiSjSk~ by qiSjSkqi 

~l~\,:'~ 



.nere q~ is 8 new state. Similarl, for 

CliSjSkRIlm 

2, ~ds to quints 

But q ints must move, so ~place each 

qi. r.ew snd add the I 1nltrlAcUona 

'is,SIR~ for .11 8, . 

It01'E: AdVllntase is fewer instruction., 

IpllPle: f(x) '" 2x 

ql 1 B It ~ 

~ 1 l' R ~ 

~ 1 1 R~} 
~ 1" 1" R ~3 

q3 B 1" R ~ 

~ B B L \} 
~ 1" 1" L ~ 

,1'l'R\i 
~ 1 1 L '5 
'ls1 1 L'5) 
4s l' l' I'~ 

%1"1 R~} 
~BBL4r 

Clt 1 1 L<l-r) 
"r l' 1 L'T 

~!! 

USiQl navi.' convent1on 

erase extra 1 

mar~ 1 to l' to in4iclte "copied" 

~.~ R to first B and write 1" 

mov~ L until 1 or l' 1. 

enco.mtered: SO to ~ Or ~ 

~e to left-most 1 

now have ,1 t l' ••• C ~l· 1- ... C 
Y ..... 

chanse lt1 's to l's 

10 L t.o 1" 's a~ chance u.­
to l's 

no instruC'tion 

Under Mendelsonts convention we would skip first 1aatruction 
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IMIRk: r(x). 2x 1n mal •• 

'1 1 B <Ii '1 1 I .. 

~ 1 l' q,,? ~ l' '- ., 

..,lft", 

" 1" It ., 

~ B 1" ca; 
~ B L , 
, 1" L '4 
, l' It '6 
, 1 L '5 
~l L 's 
'Is l' R ~ 

«If, 1" 1 116 

~ B L 'r 
~ 1 L ~ 

..., l' 1 ~ 

q~ 1" " , 

THBORIN: A one-yay intin1te tape sufficeB. 

Frequefttly .are useful in appllcltlona; the 

elec1.ton problem proof uses th_. 
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0·1 1 ~2 2·' ; 

~: (tIella) Eras lll1 it -dispenlable, 

=_~t: 'Itaerefore, cOIIlpUter!'l could pt by with paper t.~. 

JIItOOP: U •• I auitlb1e enc041nc. 

bab, beab, ba.ab, 0"' 

2t ule lo~ n squares. 

THE'-: Pro&r.-ed Turinc machines will ... (WI,,) • 

• 
HOt, n) 

R 

L 

write .. 

conditional traDlt.~, 

To be done in detail. later (SS) , 



'l'IItOREM: 'two-stites ,urnet. (Shannon) 

THEOREM: Triple. suttie. (aerche). 

Verioue uteaaloas: n-tapes; n-d111lensional tltpes; 

j'lIIlpa; etc. 

A n_uilll ot turiy uchine. 

Since eltch TUr1ns maehine ia formally a set of qua­

druples, it ia po.,ible to a.aian numbers to them go that 

we lII8y refer to tile n-th TIlrina mach lne . For elample, we 

might uae aDde1 !!!.!!!'PH: 

Suppoae v. Issiln to each of the .~ols which may 

occur tD a quadruple of some Turing machine e di.tlnct odd 

number ~, • V1I& I 

, 5 7 9 11 13 15 17 

It L So q1 81 ~ S2 ~ 

ThII!n the a04el number (1ft) ot I) quadruple 1a 

,9, r .' 
- ) ~ I 

where I, b, e, d ue the CD or the ~ s)"lllbols, 

Ex.mple: 

gn(qlS1R~) • 29,115'713 • 
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Further, with a .~uence '\'~" • Mn .t ~.druple., 

,." :.ssociate the Ill: 

where Pr{n} = n-th prime. 

The numberina here is not unique 5l.nee .... have not specified 

an order for the quadruples. Thus J each 'I'M hes n! 111, 

where n is the number of quadruples. But g:f.ven theae ~ 

we can find a unique gn for nch Turinc III&chine by simply 

taking the smallest of the n! numbers. 

Fundamental Theorell of Arithllle t 1c (For proof see AppenoiJe 

tG Davis): 

Every integer x > 1 can be repre.ented i~ the form 

PI ~P2'(tt~· Pk m..,. where the Pi are unique prilllleB. More­

over, this representation is unique except for the order'of 

the factors. Iy the Fund~tal Theorelll, no two of the an 

which we have produced sre the same. 

This gives a mapping of TN into·the integer.. Jete 

that .iven any number we can tell Ybether or not it 1. tbe 

go of a 'I'H From these nu.hera we Can then obtain an 

~ mappine by assigning 1 to the 'I'M liven by the .. 11-

est such gn, 2 to the next (unl ••• some pel'lllUtetion et 

the quads has already been countd), and so on. We sMll 

thue speak of the n-th TM assuai.. that some .uch serial 

numberin8 has been adopted, 
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univerl,l TuriPi Mecb19t' 

Etch Turilll _chIne .ppears to eorresponet to 8 

apee1el-purpoa. 4111tal computer. One Gt tbe .. in results 

of 'l'IlriSlS' B peper vas the delcripttoR of the Universal 

Turins Mach1ne l which in a sense corresponds to a general­

purpoae mach1,ne. The UTM, siven a lUitably encoded version 

of aD lIt'hltrary Turins machine T and. lin input n, produces 

tbe same output lIS T does 111 th input n. 

Note that the gn of T could be used as tb~ encod.las 

of T. 

Minimal TuJ'W_chibeS 

Turint .. ehines can be classified ih ~lexity by 

the state-s~l product (a Jleasure introduced by Shlnmon). 

The followinc pl'Obl.em then arises: whet is the II1nilll.1 

state-symbol pro4uct for a UTM. The current beat solution 

is due to John Coclte .net Marvin Minsky, who have shmtb. that 

4 state8 an4 7 Iymhol. suffice. 

If .". .11ov IIPre than 1 tape, tbe result cn be 

improve4. Hooper (1963) proved that 2 states, , sjaboll, 

and 2 tapes sutfice; likewise that 1 state, 2 symbola, and. 

4 tapu alU'f'ice. even requlr1ns that one of the tapes be a 

fixed lcSop. 
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BeIS: Trakht.urot 

TfIE HALTING PROBLEM 

We art now in • poll1t1on to present en uplOlnble 

Rl'«Iblea. lot, that atl unsolvable p1"Oblem 11 actually en 

unsolvable el ••• of problems. 

HP: Given the nUBber n of a TM and an i~t m, does 

TN n halt for input m 1 

We 8uppose that there exists sueh a .. chine an~ 

derlve a contradiction. Let 'l'M~ he the Il8chine which 

solve. the problem. That la, 'l'Mz computes the functior 

III • 

"'z' 

on 1ft 

~. ,haw ~t liven TM~ we can effectively con8t~ct a 

TMz' which is self-eOQtradlctory. 

l. We clin eon'ltruct I TN which from input ; 

produce, output ~. 

2. We construct a '1'M which Ob input 11 loop., and 

Oft Snpl:.t 1 halt, with OI1tput 1 

" W. then cOIllpO" (effectively) theae two IUchin.s 

v11h '1'Mz to produce 1\ I which haa the desired 

property. 
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-II ---- Poes TM- l.ves 11 ,oorNert. ~ ... n 
II! COP)" halt on 11 to 

no 1 100I' no 1 
Ii ? 1 to 1 

z 

Zl 

~~(k) =t if TMk does not halt on k; i.e., ~k(k) 1s 

Wldefined. 

loops if ~ halts on k, 1 e., .k(k) is defined. 

{ 

if ,~(%I) undefined 
ql'(ZI) 

Z '.defined ~. (~ I ) (tl!'fi nll!d z 

Converter 

copY1nc macnlne 
input ;;; 
output ;.; 

153 

on input 11 loop. 
en input 1 halts with output 1 

[Note tblt th18 11 • minor variation 
of tbe .. chine previously liven to 
compute 2n. J 

go rllht and print * 

go L to 1 put l' 



~ l' R 

~} 
CO R to B and. print 1 

~* It 

q) 1 ·R 

~B 1 

~l L 

~} 
80 L to * ,* L 

~ l' 1 

~} 
tidy up 

"51 R 

'5* L 

<16 1 L 

~} 
go back to start. 

~B R 

CO'!IlOaition 

It is on~ rl1r to note that the construction of 

TMz ' 1n detail requires s proof that en.y two TM can be 

Compoled. 1. e ", thllt a new TN can be Gltta lned by us ina 

the output of the first machine as the input to the second. 

This can be carrie! out formally, the details are given in 

Davis. What is involved is shoving that we can assUJlle 

that the second machine begins in the re~ired initial form, 

that 18, scanning the left·most symbol of the output of the 

tirst machine This can be proved by tbe use of n-regqlar 

.. chines, which always terminate witb'tn.tantaneoua descrip-

tion qk'" where qk is. state sylltol for which there 

are n2 instructions in the first machine. 

Effectiveness 

Note that the construction of TNz ' from TMz is 

effective--it could be done by a TM. 
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<it!!tr,l method: Given problem P ~ lIP to P. 

I.e., ~ if we could solve P this would give a solution 

to HP. Conclude cannot sol.,. P. 

Coveriy: 
!. ~ 

(ai) (b
1 

) 

s1 f(St) 

If from, solution to f(si) one can derive I solution 

to a, then {bil covers {ail. 

:. it !. unsolvable, ao is ~. 

1iX'!!ple: 

WP for sem1gr::lups. 

st Decision Problem for 1 -order predicate calculus. 

ExalllRle: 

IiPB (see below) . 

Exampll: 

Printing Problem 

Bltampl.: 

Blenk tape - Is the 'DI tape ever blank' 

(for later use) 
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'l'JEOftEM: THE HALTING PItOJ[J:M FOR 'I'M WITH BLANX TAP! IS 

URSOLVABLE. 

There is no alcoritha (no Turing meeh1ne) which will 

decide, given as iPput the numeral n whether or not the 

n-tb TN balta when started with 8 blanK tape. 

PROOf: 

REMARK: The proof is of a form which is standard in 

proof'1 of unsolvabil1ty. We use the reduction of s known 

Wl.olvable problem to the new probleo,. That is. we ahow 

tbat • solution to the new problem would yield a solution 

to a problem which h88 no solution. Therefore, the new 

problem is unsolvable. 

~is proof 1~ therefor~ important both for the result, 

whioh we will need, and 8S 8 Simple example of a very important 

MthOO. 

IOTE: Need first to reduce HP to HP for single numeral 

as input. Proved above 

~; lor any numeral., we can effectively construct a 

TN whic~ starts with blank tape, and haltl with the instan­

tapeaua configuration qkm, vhere the states of the TM 

are only ~, ql' ••. , Clk and there ere no instructIons 

besinn1na ClkS i for any 81 . 

156 



KEMAJUt: lot. that we do DOt ele1Jll thet there I, 

... N vblcb will work fM all¥ ii, but only thfo~ for 

'111' iii there 1s. TN. 

~lBBR~2 

C1a_lllR~ 

PItOOP' or THE THlOREM: 

Suppose tile halt1q problem tor 'l'M with blank tape 

eou14 be Bc.'_vee!. W. can then solve HP .. tollovac 

To decide if TM halts on input ,i, torm a DeW 'I'M 
n 

by changing each quintuple ot 'I'M as follon: 
n 

to 

e'ld "'1_ the above instructions tor tbe til vblcb 1!B"Ua. 

iii on blank tepa. '!bell the DeW 'III will bIIlt on blanlttspe 

itt ~ halts on input •• 

Q.E.D. 
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REMARK: Note thtlt in this construction, as 1n those which 

yi11 follow, '" are using the fomulat1on of TM in terms 

of quintuple. rather than qu.clruples. We have previously 

,iven e proof that they are equivaler.t. 
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PAATIAL RECUilSlVE PUNCTIONS 

Church's thesis: Every partially cOIIIPuta'bl." f\.oflct1on is 

partial recursive. (Extended fonn.) 

A partial recurslve function is reallY a recursive 

artiel fvnction. Partiel vs. totaL 

Definition of partial reCursive fUnction 

A function is pertial reCUrSlVf: if it cln b~ obuined 

from the initial functions of schemata I, II snd III below 

by a finite number of applications of schemata IV, V £nd VI. 

1. 

II. 

III. 

IV. 

S(X1) '" Xl + 1 

&n(x
l

, . ... , Xn) 
• a I Init.ial functions 

~(Xl' ... , Xn) • Xi 

Compontion If h, gl' .... ~ arE- partill 

recursive, so is the function f defined by 

f(X l • . ., Xn) .. h(ll (Xl' •.. , Xn), .. , 

~(Xl' .. " Xn») 

V. Primitive recursion If g, h ere p9rtial 

recurSive, so is the function defined by 
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f(z + 1, X2' ••• , Xn) • h(~, r(z, x2' ••. , Xn), 

x2' ••• , xn) 

VI. Min1mal1zation It g is p8:ot1al l'f!curatve, so 

is the fUnction f defined by 

"~" i8 "'the lea8t Y 8uch that" y 

t(~, .," xn) i8 defined to be YO iff 

i8 defined and non-zero]. 

DEI'DI'!l<ll: A partle.l recursive t'unctiOD i8 general. recura1.ve 

(ur totp~) 1f it can be defined by 1 - VI in such 

& vay that in aLl applications of VI, 

DEFIBITION: A (pneral) recursive function 1. primitive 

recursive (PR) iff it can be defined without 

use of BCheN VI, 
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Example for primitive recursive: 

yX: fl(O, y) = Ji(y) 

fleX', y) = S(~(X, flex, y), y» 

(we write x' for x + 1 ) 

f 2(0, y) = $2(0, y) = 0 

f 2(x', y) = fl(~(X' f 2(x, y), y), uSCx, f 2 (x, y), y» 

2 r,(o, y) = S(8 (y» • 1 

f,(x', y) -= f2C~(x, r,(x, y), y), tS(x, f~(x, y), y» 

Bot all rb- = fUnctions (even of 1 variable) 8r~ 

primitive recursive. 

As in halting problem proof we diasonalize: 

1. We can gOdel number the PR fUnctions of l-vbl.: 

godel number the symbols (introducing ; ), 

then the expressions; can effectively decide 

if PRo 

Hence we can talk of the xth PR function of 

l-vbl. 
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2. !low diasonallze. 

Let P be the xth PR tn. 
x 

Then P (x) + 1 1s computable. 
x . 

Bu.t it is n,-t PR. For suppose 

rex) : P (xA + 1 = P (x) for some e. x . e 

Then 

fee) • P (e) • 1 = P (e) e ~ 

contradiction. 

Tbia ulWDeot would not go through 

for partial recursive t'uncttons: 

because could conclude only that Pe(e) undefined; 

for ,eneral recursive functions: 

because we cannot effectively decid~ if ceneral 

recursive (step 1 talls). 
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We nov prove the equivaleoce of T~~1ng's Toesls and 

Church's Thesis by showing first that ~ll reCUr~lv€ 

functions are machine computable, then tr.8t all machine 

computable functions are partial recursive. 

THEOREM: All partial recursive ~'unctions are machine 

computable. We shall prove this by giving 8 series of 

machines ending in the very simple SS -machine. 

R.teren~e: J. C. Shepherdaon and H. E. SturgiS, Computability 
of Recursive Functions. JACM, Vol. 10, No.2, 
April 1963, pp. 217·255. 

Also, preliminary version of above: 
J. C. Shepherdson, The ~omputability of partial 
recursive functions by forms of Turing machines. 
(ldmeographed. ) 

The URN (Unlimited Register Mech~ne) 

Infinity of registers 1112151.,. each of which can 

store any natural number 0, 1, 2, 

Denote by (n) the contents of nth register. 

Instructions: 

P(n) : (n) 

D(n) : (n) 

(n) + 1 

(n) - 1 

&(n): (n) .. 0 

C(1Il,n): (n) -- (m) 

J[k]: Unconditional transfer to line k of program 

J(m)[k): Transfer to line k if (m) = 0 
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'l'hb b • velT powertul. _chine; It is therefore 

•• .,. to lbow that evet'y recurllve function can be computed. 

(eo.p.re proof in neene whlcb worb directly with Turh'lS 

Mlch1nea.] 

DIFDI'l'Iah We lay that a fartial recursive functiol'1 f 

of n arsu-ents Is URN-computed if it II 

CQIIPUted by the URN in the follOlfing lense: 

For evelT' set of natural DWlbera xl'~' ••• , 

ltn, y, R (y ~ Xi' Xi' Y ~ R tor 1 ~ i ~ n) 

there exilt. a routine a.(y - t(xl , ••• , ,xn)} 

such that it (Xl)' ••• , (xn ) are the initial 

contents of resisters Xl' ••• , xn' then it 

t«xl ), ... , (xn» is undefined the .. chIne 

vill DOt ltop, it t«xl ), ••• , (Xn» the 

.. chine vill stop with (y) - t({x
l
), ••• , (xn» 

snd with contents of all resisters 1, 2, ••• , R 

(except y) the la .. as their initial content •• 

'J'HIORDI: EveIT partial r.eursive function can be UIII-ca.puted. 

PROOF: 

I. a.(y. Sex»~ 

1. c(x, y) 

2. p(y) 



II. 

III. 

IV. 

~(y • -(x}) 

1. -(Y) 

~(y '" ~(Xl' ••• , x )) 
n 

1. C(X
i
, y) 

Co~aitlon 

~(Y ... t(X1, ... , x )) n wnere f defined. by IV 

1- ~l(N + 1 " g1 (Xl' ... , x)) m 

2. 

m. Ra+.(~ + m = ~(xl' .• 0' xn)) 

mHo l\ttm(Y" heN + 1, ... , N + m» 

v 0 Primitive Recursion 

Not.tion: Let I be a subroutine. 

goes throuch I (n) times and sets 

(I must have single normal exit.) 

2. 

l1i(Y & t(xl , ••• , xn)) where f defined by V 

1. Rx(y, S(~, ... , xn)), &(N + 1) 

2. (R,l+2(R + 2 = heN + 1, y, x2 ' ... , Xn» 
<x ) 

e(N + 2, y), P(N + 1.'} 1 

reltores ,. C(N + 1, xl) 
reliater 

xl 
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VI. M1ntal1z.Uon 

... , x » where t b tet1net by VI 
n 

2. ~l(N + 1 • g(xl , ••• , Xn' Y» 

,. J(. + 1)[4], P(y), J(2) 

~. 

This will loop it ~ [ ••• ] i. undefined. 
y 

:. W. haVe tor e.ch p.rtiel function f • subroutine 

JJ(Y - t(xlI ••• , xn» which URM-compv.tes it. 

The convention regarding subscript • tor aubroutinea 

can be extended to instructions: We write 

Reduction of instruction set , 

The lup (6) instruction Nt ot the URN wa. CODVe-

nient In th-. .bove proof. But we c.n .!l1aln.te three ot 

thea: 

1. J.(n)[4) 

2. D(n) 

,. J[l) 

.... 
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~(lII,n): 1- 9N(n), ~l(N + 1) 

2. [PN+l(R + 1), PB+1(n)1<~) 

,. [PB+l(lII») (R+1) 

Now JR(lII)[k] can be added and uaed to eliminate 

fir.t JR(lII)[k] .nd then IN[kJ . JR(lII)[k] 1s transfer 

nonzero to k 

JR(lII)[k) : 1- JX(1II)[2], JR(t] • 

2. 

JX[k]: 1. PB+l (N + 1), I N+1 (N + l)[k] 

Thus we have only the instructions 

PN(m) 

D
lf

(lII) 

I N(lII)[k] 

'-;n 

where subscript N indicltes that registers beyond N may 

be u.ed 18 workspace Ind 1II8y be altered, but that registers 

1 throUlh N are preserved. 

We move toward OUT very reatricted fin.l 1II8chine by 

naw introducing the LRM, Limited Aegister *chine. Tbe LJI)I 

bes three instructions above, but no longer hlB an infinite 

nUll1Hlr of relisters. It has a potentially infinite nwaber, 

the actual number being controlled by the two additional 

instructions 
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• ~ • - 1: 1. p.(.) 

2. n.(." J.(.)[2) 

, ..... - 1 • 

!a" the U. vb1cb cOIIplt.. t .. fact10D .... t1D4 the 

_t.a iDaUuctloD ~b8c:l'ipt •• "ace.ll 8U8Cl'ipt. 

• •• It • > I, H4 1Illtbll¥ the iutJ'W)tionl 

I .. I + 1, If + 1 .. • + 2, ••• ,. I +. - 1 .. • + II 

.. ... at.. • + II ~ I + • - 1, ••• , I + 1 ""\ I. 

Mr"" 

1M •• _'M U • _-__._ .... t_ wi. al:JIa­

lie. (', *) IIIIl tbIM tannctioa -..., ~, r ... 
ICD[,\, ~]. ~ u4 r aft mtI. ~ __ , wIl10h 

~ -0.' or ~. * at tbe ~ .... ot • ncln.r. 

IICD(,\, 1ft] 18. 10M e .. lt5t ot. J.tt.n 1fIMl, 

wb10b .,.ate ... tollanl 



It .. let1a:).t .,.abol, take next in.truett.ll. 

It ~ttm.t is .0' delete and 10 to ." • 

It lettm.t is a1, delete and 10 to ~ . 

TJEORIM: Every perthl reclU'll" tunctlen i. eoaput.ble by 

the SS -IIIIIch1J1e • 

PROOF: (By re4uciDI the LJIC to •• inIle re,iater .. chin_ 

with the.e in.tructlona.) 

The .tore. llediWll of the LRM at any tt.e cond.t. 

or the content. of R reli8ter8: 

Introduce the new symbol > and think ot memory .. 

a 8in11. word: 

(1) , (2) , ••• • eft) 

LDIIA: '!'bere 1. a .ubroutine T which will change the 

word '\ • -'2 ' ... • Aw- into ~' ...' .. ,. ~ • 

• 
PlOOF: 

T: o 1. P, SCDC', 2J 
1 2. P, SCDC" 2] 
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Let 'f'l 'be I, ••• , I (a tt..). Obtain the till 

operai.1cma bJ br1zll1D1 the VON to be operated on to the 

~ opentina Oft it, an4 reatol'ina it to it.. or1c1nal 

poIJtt1oD. 

P.(D) rf" • r, tt'-ft 

"'(ft) 1. r'-l, SCD[2, 2] 

2. ,f'-n+l 

J.(D)[k) 1. ~-l •. pO, SCD[2, ,] 

2. .('-n, SCD[k, It) 

,. PL, SCD[4, '] 

~. r!-a 

'j.(ft) (It] 1. J.(ft) [,) 

2. ~, ", SCD(k, It] , . 
...... 1 .; 

.... -1 1. ,,-1, 8CD(2, 2) 

2. 

"'1'1t: 8CD(~, ~l c.a 'be f'urtber WHi1ue4 to 8CD(a) : 

j~ Oft 1, proceed to next it 0 • 
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PhY!lc.l realizatlons ot SS-.. chlne 

I. 

na4 bad 

eaeh bead .aves after it .ct. 

II. ))eel ot c.r4. 

(1) Add carel .. rbd J .t top. 

(2) Add cart _rbd * .t top. 

(,) Dnw bottoa eard. It J co to ~. 

It * ~to ~. 
It .-pty ~ to neat iaatructlen. 

WhU. {', *1 IUttlce., we coulj, .1.0 detiM an s+l 

symbol S5-machine. 

'SOlIDI: Any l18-eoqutaille function h Turing coaputable. 

aoor: 
hca as M we cacatl'llct TIl Z which has symbols 

.0 '.04 ~ end .110 tile bl.nk syeol So. CorreapollA1DI 

to each 1n.truetlon at • there is • atate of Z: 

• 
1 
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Coneap0a41111 to the contiguration ot M at in.tru­

t10a • vith tape content_ (tape), ve bave Z in the 

coatllur&tico Bo~(t.pe)Bo 

Corre8pODd1"C to •• cb inBtZ'llctiOD' ot II, • let ot 

iDltrQctloQa ot Z: 

a: .;. 

a: 8CD[~~]. q,.aJBO\.. 
~ 

q,.Bo Soq,. 

~jScflClaJ 
~Bo~l 

j .0, 1 

j .0, 1 

j - 0, 1 

j • 0, 1 

ooaoLLAR!l belT put1a1 NCUJ'riYe t\u'I~t101l la !tu-iJII­

ca.pIltable. 
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The second half of the equivalence of Turinc's thesis 

and Church's theaia is given by the following theorem. 

'1'H!<m!M: !very (pertiel) function cOIIIputable by s Turins 

.. chine ia (~srtisl) recursive. 

( Ill Section 5 1 
Reteren~e: DAvia, Chapter IV: Sections 1 and 2 

Informal Sketch of Proof: 

aOclel numbers 

We have .. signed gn to 'I'M. 

Review: 

5 7 9 11 

gn of an expression 

.. fi 
k=l 

gn of 8 sequence ofaxpres.iona 

If 
ID(~) 

1\, .. " M.. P (k) • 
n 1 n 

1. :lte : The power of 2 in the en ot an 

expression ia~. In s sequence it 

ia ~, 

1;'3 



We gave before the special case of expressions which 

were TN. 

Kleene1a T·predicate 

We define a predicate 

• Tn(Z, x, y), which is to mea;~ ~O:-' given :z;, xl' "" xn 

and y that z is a gn of a '1 uring macnine Z, and Y 

i8 the an of a computation of Z beginning with the 

instantaneous description ql(x1, .•• , Xn) . 

DEFIlfITI<lf: A predlc.!lte is {primrtitiiv1e recursiiVe} according 
pa a recurs ve 

as its characteristic function is (true = 0, 

false .. 1). 

~ 

THEOM!:M 1: Tn< z, x, y) 18 primitive recursive. 

Proof uaes the fact that bOWlded minilllalization. 

~~, 1s primitive recursive. 

U is. primitive recursive function such that if 

OJ is the ill of a computation, then U( y) 18 the output 

ot the computation. 

THEOREM 2: Let Zo be a 'It>f and Zo a gn of Zo • 

Then the domain of the function rp( n) (x) is equal to the 
~ Zo 

dOllllin of ~y'l'n(zO' x, y) • Moreover 
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KLEEHE .fORMAL F{)RM THEOREM 

.. 
r(x) is partially computable iff izO such that: 

f(~ 
.:. 

U(~yrn(ZoJ x, yj) 

Corollary: Ev'!ry (partially) computablE- function is 

(partial) recursive. 
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THEORDf (Post) 

There are monogenic nOrmhl systems with ~ns, IVlt:e 

halting problems. 

Take a Universal 55-machIne wlth n instructions. 

Set up a correspondjr~ mcncg~nlc nc;mal f/stem 

,I) 0 - 0 

For each lnstn.ction qi which is pC; 

For each instruction Q.
1 

WhICh is pI 

(5) b. \+1 1 

(6) e
i 

Ie 
1-l. 

For each instruction qi which is SD . .1<~ 

Can also do fOT Scd',k, m), ty adding b.e. 
1 1 



This 

PlOOF 

SQ-mehine IlOnIIIIl syatem 

~ x1x2 ••• Xp b i xl x2 ••• xpe i 

1 th instruction is pV 

similarly 

1th 1natruct~on 1s SD(t) 

eiei+lbi+1X.: ,-
_ x 

p 

b1+l x2 ••• xp8 1+l 

llt2 xp b i lx2 X
p

8 i , 
lx2 xp8 kbk 

x2 II 8 t b ltx2 x 
p p 

bkx2 Xp8 k 
pap 178 



POOT CORM:SPOEENCE PROBLEM 

!ail L. Pb.t, A variant ot a recursively unaolvable proble., 
~. A.M.S •• Vol. 52, No.4 (April, 1946), pp. 264-268. 

Corre.pondance problem: 

To detenDine for an arbitrary finite set ('1' Ii)' 

, ." (~,~) of pairs of correspondiDl non-null strings 

on a, b whether there exist n ~ 1, i 1, •.. , in such that 

'i 'i 'i • " I' I' 
i l 12 i 1 2 n n 

g'Sl., 

1) peira: (b', b2) 

(Sb2, ~~) 

solution: 'l~'t '" b'ab;' ,. b~'b'b2 = 'il2'i 

2) pairs: (a, lil.) 

2 
(b " .3) 

(a~, be) 

solution: clearly no 10 lut ion, liDee there 

no pair to Itart with. 

Bet'renc!l in application to ALOOL 

Cantor, JACM 9(62), pp. 477-479. 

no~, CACM 5(62), p. 526, p. 534. 
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Poat' a proot ot the __ lnbllhy ot t.M _rnapon-

deDOe problea bepn with tbII auolvabll1ty of tbe tedaion 

pdl.ea tol' tbII cla .. of ~ a1'81ieM OIl ., 'b. He 

~ the pl'Obla tor .... 1 a1'8t.. te * col'reapoalece 

proltla, boce ab:nr1Dl tbat the o_...peDl1ace probl_ .wit 

.... UDaol vable • 

We aball,btain the 1ID80lftUUty ot the correapon­

'ence pl'Ob1a by re4uc~ tile battin, problell for SS-.. cb1n ... 

Poat Corre",uce Probl_ 

LIIIIA: It the SS __ ch1ne • CCIIIIJUtea tM pertial function 

t(xl' ••• , xn) tbID taen 1a .n lS __ cbine J(' 

vb1cb 

PROOF: 

1. balta ltf II balta; 

2. DeftI' baa an IIIIPtT tape, except po •• lbly .t 

atart Ui4 lOll. 

Go back to tbe LIII. ft-. function t can be LIIC 

~te4 by a procna which be,ina br 1144"- • 

~hter (. ~ • + 1) a4 ator~ * in it. 

lid. by delet1n& * IDIl • -.1' - 1. The SS 

Ylrllon ot this pl'OJl'lll v111 then be,in vi tb the 

inatruction pO. 
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lallA: It tbe sa·.chiDe N' =-Pltea t .1 above, we 

can construct aD SS-ucb1M ". ¥bich 1. halta 

itt N' hdta (benc. it • ..lta) aDd 2. halta 

only on en el!Pty tape. 

PIlOOl': Coni truc t M" troa X' ,,. rephciDa any halta 11,. 

In: SCD ( ~ , ~) • 

M" ot course ~a not COIIpUta • wry IntereltlDl 

t'uDction, but it i. detu. tor ti~ .... in_. aa 

t . 

LDIIA: Tbe halt.1n& problem tor SS __ clUn.a 11 UDlolT8ltl •• 

PROOP: .,. .quinlence vith TN. 

LmIa: Tbe hdt1nc probl_ tor _ .. chiMa IItartiDC Yltb 

blank tape is unaolvlble. 

J'B)()I': By equivalence vi th TN. 

LElIa: '1'be tollovlna problem 11 UIlI()ln'~ tor SS ... blMl. 

Doel SS-machiPe Itut1Jll with ~l.ank tape eYer lit 

btick to blank tape? 

JIIII:U': By prevloul lellllllh. 



PCP (A .a41tlcatlon ot Dau Scott'. proof.) -
lor IlD7 SS .... ch1De with' liue I;. .... Lh effectively 

CODatruet COl'reapond1as JICP. 

Coytnct1oD 

(0., eO) 

(J., el) 

(e, e~) tor 1D1tlal inatructloD 

L1 : ~ (LIe, eOeL1+1' 

L1: Y- (Lte, eleL1+1) 

L1 : SCD[L3, ~) (LtM, eL.1) 

all .2, It (Lla~, .x..:) 
1.t 3 • It aM (LieLi , ~1) 

~: DO iutJ'l¥ltloD DO paira 

--..... --------.. _----------_ ... ----------.. -----------._. 

To JII'Oft: PCP baa a aolutl00 1ft, )( Rartlnl nth 

blaak tape pta be.ck to blulr. ta})e. 

~! 1. Both wol'Cla IIl8t bq1ll witb (e,~) 

2. loth von. m.t eDd with (~-l~'~) tor 

~ ~. 



b.-I.e 1 

~: 
p(O) 

~: 8CD(~ ~] 

r.,: halt 

(0., eO) 

(le, el) 

I!eple 2 

~: pO 

~: pi 

x.,: BCD[~ r.,1 
t,..: halt 

(., eI;.) 

lIbat 40ea it 40 on bbDk tape! 

~: 0 

~: 01 

1;: 1 

~: U 

r.,: 1 

(~e, eOeL2) 

.(~eOe. eLg) 

(~ele, eL2) 



Pain (0., eo), (13, '1), (e, e~) 

(~., eoe~) 

(~., e~) 

(1;.0., .~) 
(r., e~ .. e, ex.,) 

(r.,er,., ~) 

ok 

It' Li write., it 18 to11owecl by tape.!tar L1 • 

. It Li .£!d!, it 18 tollond by tape betore Li • 

"'-l!,2 

1. pO 

2. 8cd[6, ') 

,. r 
~. r 
5. 804(6, ,] 

6. 8a4(6, 6] 
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IXaaple: 

~1IBity Problea tor Context-tree ~rft~ra 

(v, T, 8, p) T c: V 

P: A -+. A E I 

• • atrlllg in V 

1 1 
{Oe lloe n-La 

1. 11 CP 

2. detiDe aab1cu1 ty 

.3 • 11 unall'.b1pou. 

'l'HIO_= '1'be uabillUity probla tor CPO 18 uuolvabl •• 

PBOOI': By re4uction ot tile pcp to tbe Ulb1p1ty probl_. 
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Reterences 

Hac Wang, Proving Theorem. by pattern recognition - II, 

Bell Sntel!l Technical Journal, 40(1961), 1-42. 

A. S. Iahr, Edward F. Moore, and Hao Wang, Entscheidungs­

problel!l reduced to the AEA case, Proceedings ot the 

Rational Acad~ ot Sciences, U.S.A., 48(1962), 

365-'77. 

Hao Wang, Do.1noes and the AEA ca.e ot the decision proble., 

Proceedings or the SY!J)OaiUII on Mathema.th:L-l Theory 

ot AutCM.ta, Polytechnic Institute ot Hrook.l.yn, 1962, 

2'-55. 

Robert Berger, The UDdecidabi1ity ot the «a.1no Rr~~!!!, 

doctoral tbeds, Harvard UniVersity, 1964. COIIIIP'.lta­

tion Laboratory Report Ro. B~'7. 

ldE) 



mE IXICINO PRCBLEM 

The domino problem, introduced by Wang in reference 

I, 1s an amuaing combinatorial problem which can be very 

stmply .tated and which bas s~ important consequence~. 

STATEMElIT OF DOMINO PROBLEM 

A ~ m is a flm t~ set of types of square 

plates, the dominoes, all of the lame size .• whose edges are 

marked with symbcls (or colors). each plate in a different 

manner. There are,an infinite number of ccp'.es lals~ called 

dominoes) of each type. 

The infinite plane il as.umPi to be ruled into 

domino-size square., and we seek to assemble the dOminces 

onto the plane according to the rules; 

1. No domino may be reflected or rotated. 

~. A domino ~st be placed exactly over a square. 

,. The symb~18 cn adjacent domino edgeo must ma1cb. 

4. Every square mult be ccvered with. domino. 

A domino set is 8aid to be solvable if we car. cover the 

entire plane in thi~ way. 

5 
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We can obtain a solution to thi~ set by using ~he block 

ABC 

CAB 

B. C A 

Which baa on the periphery the ~ymuols 

~ C; 4 

1 1 

., :3 

2 2 

, 5 4 

Since the top edge of the 3X3 block is the same a8 the 

bottoa edge, and the left ecSse the same a8 the right reise, 

we can repeat this block. in every direction to cover the 

entire plane • 

.!!!! ~ problem 18 the following general problem: 

Is there an algorithm (a decision procedure) 

by which given an e.rb1trary dOlll1.no set P, we ca;, 

decide whether P i8 801~ble? 

Berger, 1964. 110. 



DKI'IlfITl~: A~ of a dOmino set is a rel.ta.ngle of 

J'JJIIino8 such that 

1. adjacent edges h&v~ the ~ame C0l0r 

2. the bottom edge is th~ S~'~ ~s the top edge 

'l'HBaUD(: Every _,~":, whicn has ~ to!'US is solvable. 

PROOF: We can cover tne entire plane with the torus. 

DEFIBlTION: A solution of a demino set 1s periodic If 

there is Ii. torus 'r such that the suluticn 

can ~ ,riewed as made up entirely of copies 

of T. 

!x!I!ple: 

b b 

a t 

Note that the e;:.',·'lple has a torus 

b b 

'0 b 



and therefore has a ;.eriodic solutlon. The torus, and hence 

the periodic soluti:>n, used only h'o of the tnree d<)Jllinces 

ot the set. 

RIIIARI8: 

Tbe definition of perlodic does not lnclude all 

solutions which ught possibly be considered to be in some 

sense periodic, but is arb1trarily restricted. 

Bx!gIle: 

Solutiona: 

(a) all A 

B 

(d) C 

A 

(b) all E (c) ~ 
A l!IT 

A 

DIBIBDI: It rotations and reflections were &lJ.owed, the 

problem would be trivial, i.e. every set would 

bave a (periodic) solution. 
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PROOF: 

b 

d 

:i d 

THEUlEM: A set may havp b\. T,h periC'itc and ncnperic:ilc 

solutions. 

Pf: 1 1 1 1 

Set PI: 1 t 1 1 ~ 1 

1 1 1 1 

A B 

With eitht>r tCTUS we get periodic soluticns. Using bet.h 

we can ~btaln as II&ny :hfferE:nt Boluticns as there are 

binary infinite se~uences (i.e. 2Xo ). 

PROOF: 

Number (the rectanglt>s of squares of) the plane 

around the Lrig1n. To fix the or1gin assign 
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And then use 

A 

;. 

B 

and 

b 

B 

B 

8 

tc build the inflnHe number cf scl".th'ns. Th~ sL'l'Utions 

C&rulot be translated into vnf- &[!\,. t·her SlnCE' 

occurs only at the origin. 



~ueations on periodic solvability: 

DC£S EVERY SOLVABLE SET HAVE A TOOUS'? (No. Berger 

l~) 

SubquesUon: DOES sex SCiLVABI~ SET HAVE SOlIE SOW­

'1'IClf THAT carrADIS 110 Tat1.S'? (BERGER :.;.dng Thut', yes. But 

cannot eliminate the perIodic eolutlcns.) 

THIORIM: (Berger) There exists & domino set which has a 

.olution which contains no torus. 

~: A .et i. so)vable on the wbJle plane iff it is 

aolvable in a quadrant. 

PftOCIIP: • trivial 

• 
a1na1e dOlllino. 

, )(' blocks 

Infini ';.e nUllber ot level.. Q.ed. by lnflni ty lealll&. lIote 

that this ia non-conatructive ~ it doe. not enabl~ us to 

~ • aolution. 
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So far we have considered only the unconstrained or 

general domino problem. That is, given a domino set P, 

can the plane be filled with the dominoes of P. 

One might ~l&o consider domino problems which are in 

some way constrained: 

The origin-constrained problem: 

Given a set D K P U Q, can we fill the plane 

subject to the restriction that the origin is filled with 

a domino of P. 

CO!putation Sf dominoes 

If we consider solutions in an infinite quadrant and 

require a fixed domino * to occur at the origin, we can 

usually find dOlll1no sets with unique solutions satisfying 

a variety of given conditions. 

An example of a puzzle wbich can be solved with 

dominoes is tbe follow!ng. 

Find a set of dominoes su(n that if * is 

required to appear at the origin, it has a 

unique solution in which P and C occur 

respectively at the prime and composite 

squares in the first row. 
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The following so~ution uses 38 dominces and includes 

some improvements due to M. Fie1illiouse of 8. solutlcn inltially 

obtained by E. F. it>ore and Hao Wa.ng. (Smaller solutIons 

are possible). The form of the solution 1s inaicated in the 

diagram below: 

: I p p e p c p I c " c p I ~' p I .£ , 
... ... ... :;: • ... ~ ... 

'If'. * 
I te Ie IC Ie Ie ',.. I C' Ie 

A B A B A £ A ~ ! ~ A ~ A B" f ~ ... 
* 'If'* * 1-~ 

, I Ie I 
~ 

I '-~I 
D1 D, D4 D D2 !J4 

f 
1 

f • * It 
EC E F D5 F D5 

* * * t GC rl t G E2 D6 E 2 4 .6 1 ... 
D- D* L* "* ~ ~Dl 

or 
D2 Dlj. ... 1 t 1 2 , D4°o - D2 

* Fe D5 ~ G1 D5 

1 * EC 1 D5 G1 F D 
5 5 

* (" 

r,~ t t D6 G2 
G' E'4 2 

• * • 9. * J I ,-Dl D2 C2 D, D4 ~D1 D2 D2 D2 D~- r+ .... 
1 * • * * * El F G2 G2 D5 E, F Gl °1 r:c; 

.-

* * * 1 °1 E2 F ° D5 °1 E, F °1 Dr; 
.-

• * 11 * * 
°1 G2 E2 F D5 G1 G1 E F D5 3 

* * * 11 * 1 °1 °2 G2 E2 D6 G2 °2 °2 E4 D6 
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The arrows indicate important signals. The * 
indicates that the domino i. affected by the initial boundary 

condition, and the superscript C indicates that the domino 

is transmitting the 'number is composite' signal (except that 

D~ is absorbing this signal). The dominoes B (which is 

used nnly once) and D~ generate the 'number is composite' 

signal. 

We assume the left-hand margin is color 0, and the 

top ~olor o. The solution is unique. The 38 dominoes 

may b~ defined as fol1ows: 

l~ 



0 0 0 

0[:]1 101 1EJl 
51 1 21 

01 !~ I~l 
1 1 21 21 21 

51 [2]2 2[~} 1~2 {~ I, ,I,:; I· 
,2 52 

}2 32 52 26 5.~ 5' 

o I D~ 13 31 D; I, 31 D; 153 53\ D: 130 21 D; 12 71 D~ 12 
37 '52 32 53 5~ 52 
26 26 :226 } 3 

'O@3 '@' ,5]30 25]2 77@2 
7 24 3 3 26 

226 2<.6 3:2 3 
'01 Di I, 3~Il3 7~2 711 D~ 12 

~ 224 '7 226 

'7 31 1 24 24 24 

01 E~ 11 21 E; 17 25]7 7~2 25]2 25]2 
32 ,2 24 7 24 26 

,2 'i!T 'i!T 224 224 224 

01 G~ 12 21 Ef )77 21 ~ 17 702 21 G~ 12 21 G~ 12 
32 226 224 'Z7 224 226 

,2 7 

21 a; 12 25]71 
,2 26 
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THEOREM: The origin-con.trained domino problea is 

W18olvable. 

PROOF: Recall: l'he halting problem for TN starti ~-b ."ith 

blank tape 1r unsolvable. 

Recall: A TN can be restricted to a one-way infinite 

tape. 

We sive a general ~ which when applied to ~ Turning 

Machine X produ\!es a correspondins set of dominoes Px ' 

with a distinguished type D such that: 

t 

X balts on un in1 tially blank tape - P has no 

solution with U at the orisin. 

Plot TM configurations in the plane: 

4 

~ 
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WI) illustrate the method. by applying 1 t to a specific 

achine X : 

P conaiat. of the following domino types: x 

A. Two types for each tape cymbol 

B. One type for each permissible kind of scanned square 

(state and symbol): 

[~Sj] i z 1, ••• , 4 

j '" 0,1 
(i,j) ~ (4,1) 

C. One type for the next scanned .qua.r~ (a7"'b01 and 

next state) after a J.eft-shift 
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D. One type tor the next scanned square after & right 

shUt 

E. Four types fOI the inl. t.i&l row a.nd column 

[D) for origin 

[B) for beginning of tape 

[t) for initial row 

'" ( ... ] for initi&l column .. 

Machine X will baIt at step B. We want to color the 

dominoes so tbat the only possible solution is the parti&! 

solution below: 
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4 
t 

.-

9 ... So 

... ~Sl ~Sl S1 So So 
L 

8 

... lSl q,Sl 
ca.}1 So 

L 
1 

... 
1£1 Q1S0 ~S1 So 

R 
6 

... 
q1Sl ~SO 51 So 

R 
5 

... Q1Sl 
q,~So 8

1 So L 

... 1£1 ,\So ,.)30 So r. -•. 

... 
IB1 ~SO ca,SO So So 

R 
2 

... 
"lS0 

~So So So So So So ... 
R 

1 

D B t , t 1 t t , 
o 

Figurl! 1 
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Let us now describe this domino problem as a prelude 

to colorins the dominoes: 

The conditione on P 
x 

1. origin constraint 

[Dl00 (.r:x)(D]** 

2. tbe initial row and initial column are the boundary 

2.1 [DJxy~ (B]x'y 

2.2 ([DJ V (t]xy) ~ (tlx'y 

2., ([D] V I~Jyx/) ~ [~lyx' 

,. the next row above the initial row s1mul&tes the initial. 

confieation 

'.1 [B)yx~ (q1so]YX' 

,.2 [t)yx ~ «(R~SO] V (So] )yx' 

4. the left or rilbt neighbor of the scanned sguare at 

time y 18 in wt determined by a left or right shift 

and embodies information for the scanned IIquare at time 

I' . 

Notation: [~) for ([Lq1S0) V [LqiS1]) 

[Rqi] for ([RqiSO] V [RqiSl]) 



4.1 (Q1SjJx'y;j [~]x;y 

for (1,j,k). (2,1.,),(,,0,4),(,,1,4),(4,0,1) 

4.2 (Q1Sj)XY;j [R~)X'y 

for (1,j,k) - (1,0,2),(1,1,1),(2,0,,) 

5. the atate and acanned. a9ua.'e at time ;/ are deter-

ained by [Lqi] or [R~ ) at time y, 

~ • 1",4 J = 0,1 

6. the tape .ymbol at time y' and po81t1on x 18 

deterllined by the tape '¥!b0l at (x,y) 

6.1 [S1]YX~ ([51] v (RQ1S1] V [R~S1] V [R~S1])yxl 

tor 1 - 0,1 

for 1 - 0,1 

6.2 [~Soh'x;j [~So]YX' 

(q,Sl)YX~ [So]yx' 

[~Soh'x:;) ([RQ1S0] V [F~SO])YX' 

[q1So]YX:;) ([LSl ] V (Lq,S1])YX' 

[qlSl]YX:;) (LS1]yx' 

['*c!Sl)YX;j (51 ]yx' 

[Q,so]YX:;) (Sl]YX' 
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7.1 ([Rql) v rR~] v rRq~] v 1~3l] v rq,SO] v [q,SlJ 

v [q4S0] v rS
O

] v (8 l !)xy ~ ([SO) v {Slnx'y 

7.2 ([Lql] V [Lq;1 V [T..q4' V lqlSO] V [q1Sl) V ["2<\) 

V (LSO) V iLSlj)x/y~ dUlO] V (LSl,1 V [1J)xy 

8. the halting (Dnd! tiona 

8.1 ...,(Q4Sl],cy 

we have gotten 8.1 by simply excluding the type 

8.2 [ ... ]xy::> ...,(rLql] V [L~3:1 V rLq4])XY 

this could be delete~ if we had included the condition 

that no two types can be assigned to the same place 

Argument: These conditiQns are sufficient to determine 

the colors ~n the domino types. 

We have not excluded the case in which several dominoes occur 

at the same place. (1 asaures that a.t least one occurs). 

To express this condition we could add an expl1cit condition: 

9. only one type at xy 



How to color the dominoes. Each domino gets four colors. 

We give the colors somewhat unuau&l names - as shown in 

Figure 2. 

0 10 Rl Ll 

A .~. G} G} 6} 
0 L-O 1 L-l 

L-l L-l 1 1 

B LI ",-SO 1,-0 ~ ',S, 1 1-0 @ ~ 
1-0 1-1 2-1 3-0 

L-O 0 0 

,I ;S~2-0 '\ y.J 4-0\ ~S+ 
-0 

1-0 3-0 4-0 1-1 3-1 4-1 

C LI ":~ \40 [lJrn L S 2-1 L 8
0 

3 ru L S 40 ffi {~] 
LO LO LO Ll Ll L1 

10 20 30 11 21 ru ~ .~ 2f~ I· IT} ill D 1-1 S
I

R 10 S 11 8 1 S 

1 1 1 

6 10 6 0 

E {~} {~} 5C;} {~} 
5 5 

Figure 2 
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Let Q = {D1, ••• , Dn1 be & finite set of domino types. 

i 1 
Let F 'X:Y '" F (X/y) be aq\l&1'e (x,y) 18 covered by a domino 

of type Di • 

Let "0 = llll"'" Dk,) k < n be a subse~; of Q t·o be used 

at the origin. 

Let Ri .. {j I 1:: j ~ n "Dj has on left the same col.or 

Di has on right}. 

Let 'ri :: {j I 1:: j ~ n " D J m.a on bottcm the u.me co~.cr 

Di has on top 1· 

Then we can fill the quadrant with dominoes of the 

types in , iff the following conditions are met: 

Every square has precisely one domino tYIle: 

y /\ 
i 1, ••• I n j 0$ 1, ••• ) n 

j f i 

1he dOmino to the right matches correctly: 

.. 
The dQadno on top matches correctlY: 

~yx::> V ,.iyxl 
j.:T

i 
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And the origin constraint ca~ be expressed as: 

BUchl 's lUllll& 

A formula EzKz" YlC8uYytIxuy in which K aIle. M 

are quantifier-free is satisfiable itt KC" YXYyMxx/~. is 

satisfiable in the domain of the natural numbers. 

PROOF: (An immediate corollary of the completeness pro0f.) 

(We use axiom of choice.) 

Since EzIZ let a be some object such that Ka. 

Let t be the function that gives the u for each x. 

Take the domain ra, t(a), tf(a», ... 1 closed with reapect. 

to f. Row identit.y this (by remaining) with {O,1,2, ••• } • 

[In the model we do not nc~essarily bave x'; 0 and 

x' - y' ~ X .. y. Thus do not exclude t'1nite IIICIdels.] 

Row consider the coajuction of the conditions above 

KO 

(YX)(YY)MD'y 

(YX) (Yy)lIxy 

Thus the condition tor the domino set i8 of the form 

(1) 



But this ia s&tia~iable 1ff the dOmino set has & solution. 

Hence we ~ determine whether or not it j~ satisfiable. 

Hence we cannot determine wb~ther or not 

1s a theorem. 



THE DECISION PROBIDI 

The decision problem for the first-order predicate calculus. 

To find an effective method to determine for an 

arbitrary formula of t~e first-order predicate calculus, 

whether or not it is a tneoreD. (Or, equivalently, whet~eT 

or not it is satisfiable.) 

The classic pr ... ·'llem, alao known as the ENTSCHElDUNGS­

PROBLEM was first shown to be unr~lvable in 19,6 by Church 

and Turing. The two proofs were quite different. Church's 

proof uaes the undecidability of elementary number theory 

(GOdel's result). For if we take any undecidable statement, 

prefix the conjunction of the axioms for number theor,y, 

and remove function symbols and constants we obtain an expres­

sion of the first-order predicate calculus. If it were 

decidable, then number theory would also be decidable, con­

tradicting the GOdel result. (In order to ma;{e this pro!)f 

go though, we require a finite axiomatization or number 

theory. RObinson's system, given 1n Hendelson, is an example 

of such a finite axiomatization.) 

Turing's proof is independent ot· o04el's result and 

uses the hL'.t1ng problem. for Turing machines (which in tact 

were invented for this purpose). The proof given by Turing 

works directly with the Turing machines, without dOminoes, 

and gives a weak prefix. A lIIuch less cOlllPllcated proof by 

BUchi along the same 11nes, gives the E A AEA (s.tisfi­

abillty) result. The method of dominoes was used in the 

Xahr-Mbore-Wang proof for A3A (satistlability). 
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The unsolvability of the decision problem for the first­

order predicate calculus foll::)'"s .! !E:!!.2!!. 

ourLIRE OF THE ~-M:lORE-WANG (-BERGER) PROOF 

OF UNSOLVABILI'l'I or EAE. 

1. The halting problem for JoM with blank tape is unsob abl~,. 

2. The complete configurations of any TM can be repreaented 

by squares in the plane. 

~. The graphic r~resentation ~f the TN can be described 

by a dOmino set. The conditions on the solvability of 

the dominoes can be expressed in terms of the predicate 

calculus. (For the original proof, a diagonal-constrained 

solution is used ••• there are an infinite number of 

the copies of the TM at &EI¥ one time. For the unre­

stricted aolution there are also an infinite number, 

bU1; their placement on the plane is dif'f'erer.t. We 

demonstrated above the method of ~he proof in a simpler 

case, using the origin-constrained probleIrll a single 

repreBentat~on of the TN and settled onlJ' for the 

A "EAE case.) 

4. An expreSSion AEA B (B q-free) can lIe written 

describing the d~ino set. Such that AEA B is 

satisfiable iff' the quadrant can be filled. 

5. But AEA B is not satisfiable iff the TN halts. Hence 

EAE -B is provable iff TN halts (by the GOdel complete­

neBB theorem). 
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6. Therefore if EAE were decidable, we could decide the 

halting probles. 

RJX:ALL: DEFIKITIOR OF A RED~IOB CIASS. 

A clas8 C of formulas ot the first-order predicate 

CalCulUA is a reduction £!!!!, if for every formula 

, we can find a forml'la r' in C, such that F 

18 a theorem if and. only if F' is a theorem. 

Example: The class of formulas in Skolem Normal Form is a 

reduction class. (Exl '" ExmNl1 ••• Ay nM. This 

W&8 proven l:·!1'ore. ) 

Rote that these methods sbow that the class 3ft is 

& reduction .=!!!!.. 

1. Construct the TM whi ch carries out the Herbrand 

Expansion for the given fOnRula F. 

2. This TM will halt if and. only if the given 

formula F iB a the~l'em. 

,. Use the above process to construct a formula. 

F tor that 1'L The formula 1s satisfiable if 

and only if the TN does not halt. Hence, its 

nq&ti ve " 11 a theorem if and only it the 

given formula F is a theorem. 

Bete also that the ~ predicate CalculUol has been 

shown to be a reduction cl .... 
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B\\t there are lolvable lubeaaes. 

SOLVABLE AKD UlISOLVABLE CASES 

At thia point we have determined all of the prefix­

defined cale. of the deci.ion p~oblem: (for provability) 
• 

SOLVABLE 

Axl '.' Ax EyAz •••• Az 
III .1. n 

UNSOLVABLE 

AzKz ExAuEyNxuy which gives 

AzExAuEy 

ExAuAzEy 

ExAuEyAz 

Exl ••• ExmAyl'" Aye (S.B.r.) 

Thus, we h&ve settled ~ll prefix eaa.l. For, (1) 

adding a quantifier can never make a case solvable, and 

(2) ExEu!jr\Z followl as the S.B.F. of ExAuEy. 
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