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PREFACE

This report consists of notes prepared for Arplied Mathematics @06b—-

< at Harverd University in the Bpring term of 1965 and Lomputer Science .

208 at Stanford University in the Fall quarter of 1966 and 1967. They

do not pretend to-be more than lecture notes; tmpexticular, no attempt

has been made to expand outlines end remarks into full sentences. In

spite of the’ deficlences and Whe incompleteness Of-the-nobes, students

seem to 11nd them useful. For this reason, they are reprinted as a

technical report.

Mendelson's Introduction to Mathematical Logic, van Nostrand, 1964,

was used as a supplementary text for the course. The formal treatment
of the propositional calculus here is primarily a commentary on the test
and is therefore incomplete.

Two sections of the notes are reprints of material written by others.
The section on the Infinity Lemma is a translation by Anthony Sholl of
a cheapter of Konig's Theorie der Graphen, Chelsea, 1950, which is other-
wise unavailable in English. Also included is the chapter "A very
elementary system L" reprinted with minor chenges from Hao Wang's A

Survey of Mathematical Logic, Science Press, Peking, 1963.
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COMPUTER SCIENCE 208

FOUNDATIONS FOR COMPUTER SC1ENCE

The short title for this course is "Foundations for
Computer Science”. A longer snd more accurate title would

be "Foundations of Mathematics for Computer Scientiscus:

an introduction of logic, set theory, algorithms and computa-

bility."

Historical background

The historical background for a combined study of
logic, algorithms and computation can be said tc date back
to 1666 and to Leibnitz.. who dreamed that scme day philo-
sophical and mathematical arguments could be avcided by

calculation. He envisaged a universal characteristic, "a

general method in which all truths of the reason would be
reduced to a kind of calculation. At the same time this
would be a sort of universal language or script, but infi-
nitely different from all those projected hitherto; for the
symbols and even the words in it would direct the reason;
and errors, except those of fact, wonld be mere mistakes in
calculation." Instead of disputing, men would simply calcu-

late.



This dream, in a much more sophisticsted form, wes
shared by Hilbert at the turn of this century. Hilbert
emphasized that mathematics should be treated as a formal
system, sbstructed from ite mesning. The study of the formel
systen was celled metsmathematics, or proof theory. One of
the main problems of the Hilbert program was the decision
proolem--the problem of finding a genersl method to determice
if a given mathematical statement is true. The mathemstical
problem would be expressed in terms of the formsl system, end
a purely mechanical procedure would determine if the conclusion
was in fact a theorem of the formal system. At the time it
did not occur to anyone that this would be impossible, slthough
clearly the problem was difficult.

These hopes were destroyed by the work of Godel, Turing
and Church, who showed that it wes impossible to find such
genersl methods, even in quite restricted areas. (There are
some very simply stated unsolvable problems.) Thus, the
situation is that in the 1930's, 10 to 20 years before the
hardware is ready, tefore the introduction and widespresd
use ~f modern high-speed computing machines, the dream of
using mechanical methods to solve all of methematics is
shattored.

The reaction to these discoveries waa violent. Von
Neumann i8 said to hyve received word of Godel's results whilc
lecturing on logic He reed the messege, remsrked "Gentlemen,
I have nothing further to say," left, and never returned ¢ 'tr. »

to that class or to his work on logic and set thecry



The discouragement because of the negative results on
solvability has also been reflected in the actual use of
computers. In the development and application of computers,
the emphasis has been on numerical methods. This, of course,
13 primarily because of the rapid development of computers
during the war, in response to a need for numerical computa-
tion, for ballisties, for atomic enersy But it also reflects
the tremendous discouresgement of logicians by the great
unsolvability results. As we shall see, it is not until the
late 1950's that the question of using computers to apply
decision procedures where they do exist, and of working out
partial procedures in other cases is seriously considered.

Our treatment of logic, algorithms, and computation
will be from both the negative and positive points of view.

On the one hand, we will try to give a clear description of
the limits of what cannot be computed, or solved by computation.
On the other hand, we will investigate the areas in which

computation can, either partially or completely, succeed.
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Intreduction to the Fropositional Calculus

We begin informally, introdvcing the propositional
calculus with its usual &pplication tc sentences, by means
of truth-table definitions for its connectives. (Later, we
shall treat the propositional calculus as & furmal system,

and show by means of soundness and completeness proofs that

the informal system is correctly and sdequately described
by the formal one.)

In the informal treatment th: basic 'wits are
sentences, statemenis, or propositions. These are gtomic
indivisible units, and are declsrative statements which

edmit to being either true or false. 7 is a prime. Hervard

University is in Cembridge, Msssachusetts. L is en odd

number. These basic units are combined by means of copnec-
tives to form new compound seritences. If 4 is an odd

number, then 7 is 8 prime. Harvard 15 in Cambridge if

snd only if 7 is a prime. The truth or falsehcod (briefly,

the truth-value) of the resulting combination then depends
only on the truth-v.liues of the component secntences, and
not un any intermsl relation between them. Same two compound

sentenc:s. Consider mlso: Socrstes is s man. All men are

mortal. No conclusion in the prcpositiorrl calculus.

Socrates is 8 man. 1f Socrates is a man, then Socrates is

mortal. Conclusion in the propositional calculus.
If we interpret the elements of the propositional

calculus as sentences, we will wish also tc interpret the



~onnectives as English words «: phrascs There is a corre-
spondence between the connectives and the words not, and,
or, if ... then, end 1f and oniy if. wh.ch are usually
used as translations. But th: meaning of ' hie connectives
is @ defined meaning, not subject to the various alternative
readings which are available fcr the corresponding words.
-I. some cases, the meaning of the connectives may appear
urnatural, relative to the corresponding English, but since
the connectives are precisely defined, rno real damage can
result.

The elementary or atomic statements of the propositional

ce.culus are denoted by the statement letters p, q, T, Pys

Qs Ty o--e - The two truth-values are falsehood, denoted
by '0' or by 'F', and truth, denoted by ‘1' or by T' .
In general, no confusion arises from using numerals to denote
the truth-values, and it is more convenient for computation
However, in proofs, the tetters ‘T and *F° will be used.

The connectives. Atomic sentences are combined into

compound sentences by means of the coanectives.

Negation.

There is one singulary connective, noi, which

corresponds to negation The negation of p 18 usually

¥ iV [/ t i

written 'p' or '-p' or or ’'~pi . 1ts value,

Y
which depends only on the value of p 1is given by rhe truth-

table



w0 1

-p 1 O

That is to say, ~p is true if p i: false, and ~-p is
false if p is true.

While '-p' is generally resd ‘not p', it 1s, of
course, not true that we form the negztion of a sentence in
English simply by prefixing the word -not’ . '7 ig not s
prime' is the negation of '7 is a prime’ The word ‘'not’
is thus placed within the sentence. To obtain a uniform
method of translation of -p 1in temrs of p we mey use

it is not the case that p ', it is not the case that 7

is & prime.
There are four binary connectives, alsoc defined by

truth-tables.

Conjunction.

The truth-table for conjunction, p and q 1is

(pA) 0o 0 0 1

(p A q) 1is true only when both p is true snd g is true.

{pAq) is slso written 'p & g', and 'p - g s8nd 'pq’



p AN q is the conjunction of p and q; p end q are the

conjuncts of the conjunction.

Disjunction.

Alternation or disjunction is the first of the
operations for which the deperture from English usage
requires comment. 'p ¥V q' 1s true if p 1is true, or if
q 1is true, or if both p and q are true (the inclusive

or). The truth-table is thus:

[
(=

(pVYey O 1

Frequently in English; & disjunction using or 1is intended
to exclude the case in which both disjuncts are true. To
express that case in tke notation of the propositional

calculus, it is necessary to write a more complex statement:
(pva « (-(pAra)) for example

that is, to exclude specifically the case in which both p
and q are true. The notation ‘V' for alternation 'vel'

as opposed to 'aut' {the exclusive or). p and q are

the disjuncts of the disjunction (p V q)



Comment on the form of the truth-table.

It is more usual to write truth-tsbles using columms
rather than rows for the valuer of the propositional variablee.

The truth-table for (p V q) is thus usually written

p a4 (PVQ

T T T
F T T
T F T
F ¥ F

The two forms sre, of course, equivalent and either form is
acceptable. The one I am using makes somewhat more trans-
parent the isomorphism with Boolean algebra, and in addition,

seems eagier to use.

Conditional.

The conditional p>gq resd if p then q might
be said to depart even farther from common nonmsthematical

usage, since it is defined by the table:




It is true: if p is false, or if q is true. It seems
clear that 'if p then q ' should be true if both are true,
and should be false if p is trve and q 1is false. The
case, p felse, g true, must be true in order that

PA g2 g always be true, regardless of the truth-value of
P . DBesides, otherwise the value is independent of the
value of p, which is very uninteresting. The remaining
case in which p > q 1is held to be true when the antecedent
p end the consequent q are both false, can be asrgued on
the bzsis that an even integer should not be taken as &

ccunterexample to if x is odd, then x2 is odd, nor an

occasional absence of smoke as a denial of the statement,

if there is smoke, there is fire. The conditional thus

defined is called the material conditional, to distinguish
it from other possible conditional relationships, as, for

example, that of cause and effect.

Biconditicnal.

The final common binary connective to be defined is
the biconditional 'if and only if', p#® q . Its truth-

table is




pE®E q is true if p snd q have the same truth-valus,

otherwise it is false.

Nonconjunction, nondisjurction.

There are two binsry connectives which are only
occasionally used, but which are interesting because each
alone suffices, by compound use, to express all of the

connectives given above. These are nonconjunction (Sheffer

stroke) and nondisjunct:on (jcint denial).

p 6 1 o 1
q o 0 1 1
plqd 1 1 1 o

(bdg 1 0 0 0

Exercise

Work out negation and conjunction for Sheffer stroke. Play

with relations between connectives.

10



Application of propositional calculus

to arguments in natural language.

The original application, or st any rate one early
apLlication, of the propositional caleculus was in treating

arguments of the following type:
If Jones is a communist, Jones is un atheist.
Jones is an atheist.

Jones is a communist.

let p be Jones is a communist. let q be Jones is an

atheist. Then the premises of the argument are

p34q
and
q,
and the conclusion is
D -

But (p Dq) A q does not logically imply p . Therefore
the srgument is invelid. (Work out with truth-tables.)
For some good examples of applicetions to mathemstics,

see Rosser, Logic for Mathemsticians, McGraw-Hill, 1953.

1l



Avpumests can be given to show that the indigcriminate
application ur 1 propositional calculus can lead to ubsur-
dities in philosopt.ic arguments. FProfessor Stevenson of
Harvard gave s preseutation to the philosophy club there in
which he etitempted to show that logic wor not e fit subject
for teaching to undergraduates. He pointed out, for example,
that the compound statement, “If I pound on this desk st

11 o'clock, Widener Libra-y will fall down,“ can be proved
to be valid, since its antecedent is false. Consider also
the following discuseion. A  If Resgan is elected,
Cslifornia will be a better place to live, B. Thet's false.
A. You have just asserted that Reagan will be elected.

Or "If it rains, I wear & raincoat” hence "If I den’t weur

a rainccal, it doesn’t rain.” BSuch matters will nct ¢ ncern

us here.

e



i

Degation not P -p ~p P 0 1 7 is a prime.
‘ P P - 1 © 7 is not a prime.
conjunction p and g (p A g conjuncts P 0O 1 0 1 7T 4is a prime.
Pq q 0 0 1 1 11 is an even pumber.
Ppta (pAgg 0 © O 1
P&
ais ion p or q (pV q daisjunctsa (pveg 0 1 1 1
conditional if p then q (p Dq) antscedent 1 0 1 1 4if 7 1is a prime,
consequent then 11 1is an 0dd number.
biconditional p iff g (p=q 1 0 0 1
nonconjupction not both p ad q P | @ Snaffer stroke 1 11 0

pondisjunction  nmeither p nor 4q plq Joint denial 1 0 o O



DEFINITION: The symbols ~, A, V¥, 2, and = ({(we exclude

now l and | ) will be called propositional

connectives.

DEFINITION: (informal) A statement form ot the propusitional
calculus is an expression built up from the state-
ment letters p, q, I, Py oo by sppropriate

arplicetion of the propositional connectives.

Notation: We use A, B, ... es variablei over statement forms
and p, q, ... s statement letters {Mendelson uses @, 5,

for variables over statement forms, snd P, g, ... fcor letters.)

DEFINITION. statement form
1. Any statement letter is a statement form.
2. If A and B are statement forms, so are
(-a), (AAB), (AVBE), (A>B), send
(A = B)

5. Extremsl clause

Comments on extremal clause:

|

L. Only those expressions are statement forms which

are determined to be 50 by means of (1) and (2).
2. € is a statement form 1f and only if there is s
finite sequence A

0 Bor me An (n > 1) such

that An -C, and if 1< i<n, A1 is either



a statement letter or is & negation, conjunction,
disjunction, conditional or biconditional constructed
from previous expressiong in the sequence.

3. An expression is a statement form if and only if
it can be shown to be 8 statement form on the basis
of clauses (1) and (2).

4. The only statement forms are those given by (1)
amd (2).

5. An expression is a statement form if and only if
it is so by virtue of (1) and (2).

Note: Excludes (A ¢ B) .

Also excludes infinite case, ((A1 v AQ) v Aj) cen .

Parentheses

Note thet under this definition A VY B 1is not a
stetement form because there are no parentheses.

While & statement form must, by definition, have
parentr eses associated with each of the connectives, con-
ventions are usually made about abbreviated forms with fewer
parentheses. If the parentheses are omitted, according to
some rule, cthe expression is treated as if it were the state-
ment form of which it is an sbtreviation.

Standayd conventions for the restoration of omitted
parentheses are the following:

1. Outer parentheses sre owitted.

2. Associate trom the left for any one connective.



3. The connectives are ordered: =~, A, V, 3, & .
From L to R they each apply L0 the smallest
possible scope. p V -q D r ® p thus sbbreviates

(((p V(<))o r) = p)

Dot notations

In edditlon to the conventions about omitted parentheses,
there are several dot notations in use. These tend to strengthen
the associsted connectives, that is, to move them to the right
in the ordering given. Whitehead and Russell (Principia Math-
emstica), Church, end Quine sll have slightly different con-

ventions. Examples:

PM #3.3 F(((®>a 2 1) 20 2 (g2r))

'-p-q.:-r::gpnbn QO r

Church P2 (q3r) 2. (p2q)2(p>r)

In general, it seems best ‘n an informal t:eatment to avoid
the use of dots by the use of parentheses; however, one should
be aware that these conventions exist and thst they difier

from one snother slightly.

16



Evaluation of a Statement Form

7> far we have given truth-table definitions for the
connectives which have given us s means of evaluating, i.e.,
finding the truth-value of, sny expression with one connective.
This method can be extended step by step to obtain an evalu-
ation for any statement form, since the form is built up by
individual spplications of the comnectives.,

Thus, for every assignment of truth-values to the

statement letters of a statement form, there corresponds a

truth-value for the statement form.

Example:
p2@2r)>2{(p>24q > (q>r))

Thus, each statement form determines a truth-function (a
function frcm truth-values to truth-values) (f: (0, 1)n -
(0, 1)), reoresented by the truth-table. For n distinct
statement letters, there are 2" agssignments of truth-values

n
to the letters (columns), &nd thus 22 truth-functions.

Formats for truth-tables

p Ol01 0101
0011 0011
r 0000 1111

-p 1010 1010
-pVgq 1011 1011
~pVq>r 0100 1111

7



usual form: pVag ® qVop

P PVg QVPp PVeTaVvep
F F F F n
T ¥ T T T
F T T T 7
T 1 T 1 T

Quine's format: (~pVq) >r
STTT TT
TITT TT
LTIi T1
TLTI TT
LT Uy L4
TITT 1L
I1TLIL T&
TLTI L L

Tasutologies (Wittgenstein)

DEFINITION: A statement form which is always true, regard-
of the truth-values of its statement lectter,

is called a tautology.

(In the truth-table of a tautology, the bottom

row contains only 1l's .)

Example (axiom 3):

(~q2~p) @ ((~q>27p)>q))

DEFINITION: If (AD B) is s tautology, them A logically

implies B .



If (A® B) is a tautology, then A is
logically equivelent to B .
[Note that by reading the horseshoe as “if...

then" and the symbol 'S' as 'if and only if'

we have reserved the words implies and equivalent

for statements in the meta langusge.]

Examples of tautologies

p vV ~p
P 8 rem D
p N q logicelly implies p.

pA(p>q) logically implies q .

p>2g snd ~p VY - are logically equivalent.

DEFINITION: A is a contradiction if A 1is false for all
possible truth-value assignments to its state-

ment letters.

DEFINITION. A is satisfisble if A 1is true for some

truth-value assignment.

From the definition of tautology, It is immediately

clear that the truth-tables provide an effective method for

deciding for any given statement form, whether or not it in

a tautology.



We now prove some theorems about tautologies.

THEOREM 1.1: If A sand (AD B) are tautologies, so is B

PROQF: .

Suppose there is some assignment of truth-velue to
the statement letters of B which makes it false. Then
there is an assignment to the letters of A amd B vhich
makes B false end A true. (Since every assigmmcnt makes

A true.) But then this assignment makes (A= B) false.

But this is impossible because (A2 B) is a tautology.

THEOREM 1.2: (Substituti>n in a tautology yields a tautology.)

If A is a tautology containing the stutement letters
Pys Pps +os P and B arises from A by substitution of
the statement forms Al, ooy An for 120) pe, ooy pn

throughout, then B 1s a tautology.

PROOF:

Consider any assignment tc the statement letters of
A].' vaap An . It gives an assignment of truth-values to
Al’ vrep An SBY Xyy -ceep X - Then the truth-value of B
i8 the same as the value of A under the assignment of the
x, to the Py But since A 1is a tautology, this value
is T . But this was true for any assignment to the state-

ment letters of B . Hence B 1is a tautology.

20



REMARKS :

However, i1 we begin with a statement form which is
not a tautology, we can, by substitution, obtain a tautology.
This is true with only one exception (that is, except when

the statement form is a contradiction).

THEOREM 1 3: (Equivalence Theorem)
If C' arises from C by substitution of B for

one or more occurrences of A, then

(1) ((A=8) > (csc'))

is a tautology. Hence, if A is logically equivalent to

B, then C' 1s logically equivalent to C .

PROOF:

Consider any assignment of truth-values to the stete-
ment letters of (1). If under the assignment A and B
have different truth-values, then (1) is true, by the truth-
table for the conditional. If they have the same truth-values,
then C end C' will have the same truth-vaslues.

The final statement follows, by the definition of

logically equivalent, and Theorem 1 1.

2l



Example 1.

Would you believe pq Vv p_r vV qrs ® pq V pr T But
pqVPrVqre epq V prV (qrs A (p V p)) [vhere 'e' means,
temporarily, has seme value for all truth assignments],
because pVperl and AALl &A .
epq V pr V¥ pgrs V pgrs because BA (C VD) «» (CAB) YV (DA B

«pq Vpars V pr V prqs resrranging.

«pqV pr because AV (AAB) @A .

Example 2.

(p2q 2 ((r2q) 2 (pVr>y4q)

epVq V (rVq V (pVr V q)

by A2B o ~AVB

«(Pnrg VY (TAQ) Vv (pVr) Vv q

AVBeAAEB

o(pAq) vV (rAqQ V (pVr) Vg

BeB

e((pYVr)AgQ VqVpVr

(AVB)YACeo(AAC)V (BAC)



o (((pVr)vVe) A (QVq)) V pVr
os(pvr)vgVvyVr

1l

What is a truth assigmment? Usually say a truth
assigmaent J to the letters of a formula A, i.e., if A
has & statement letters (pl, caey pn) each p,; is replaced
by O or 1 . Will write JA =0 or 1 as value of A
under truth assigmment 7T .
A truth function f is a mapping f£: (0, 1)? = (0, 1) .
Every statement form of n letters generates by its

truth-table an n-ary truth function, cevioualy.

THEOREM 1.L:
Bvery truth function of n variebles is generated by

some statement form with n statement letters.

PROOF: (by construction)
Let f(x,, ..., x_ ) be a truth function. We can

1 n
express this function by a table giving the value of the

function as the last line.

Xy 0101 ... Qlol
X, o0l1 ... 0011
x3 0000 1111
X, Q000 1111
e.g. f 1011 0010

23



There are 2" coluans, n rows. (Explain.)

n
U, where U, is P, or
J=17J J J
. th .th .
~ Pj accord.ng as the entry in j row, i column is

For 1<1i<2% 1et c, =A

1 or 0. let D= VCk whzre k ranges over only those
columns in which f 1is true. Then f 1is truth function
corresponding to D . For, if T is any assignment to
(pl, ey pn) then there is a corresponding -~olumn k of
the above table such that TCk =1 and JC =9 (i F k).
If f is true at T then row f, column k is 1; so
Ck is a disjunct of D; so IJD=1. 1If f is false at

T, then row f, column k, is 0; so Ck isn't disjunct

of D; so ID=0.

This completes the proof except when the truth function
is identically false. The construction then produces nothing.
Take D as Py A Py -

Example:

Xy 0101
Xo 0011
f 1101

D = pypy V pyPy VPP,

24
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NORMAL FORMS IN THE PROPOSITIONAL CALCULLS

DEFINITION: A literal is a statement letter or the negation

of a statement letter.

fotation

S and ; are used as varisbles over the signed
statement letters p and p . If £ is p, then Y s

p. If S is EL then ; is p .

DEFINITION: A statement form is in disjunctive (conjunctive)

normsl form if it is a disjunction (conjunction)
consigting of one or more disjuncts (conjuncts)
each of which is a conjunction (disjunction) of

one or more literals (abbreviated d.n.f., c.n.2.).

DEFINITION: In spesking of a d.n.f. (c.v.f.] we refer to the

disjuncts (conjuncts) ss clauses.

THEOREM 1.5: Every statement form is logically equivalent
to a statement form in d.n.f.
Every statement form is logically equivalent to one

in c.n.f.

PROOF:
For the d.n.f.: Corollery to the proof of Theorem 1.k,

That is,

S}
N



(1)

(2)

sny contradiction is logically equivalent to
PAD,

if 1t is not a contrediction, then its truth-
table has st lesst one 1 . The alternstien
of the Ck corresponding to the 1's in the
truth-table is equivalent to the original form,

ad is in disjunctive normal form.

For the c.n.f.: The d.n.f. of

DEFINITION:

~A 1is Al v A2 V...V Ah

-A eqv. A1 v A2 V...V Ah

A eqv. ~(A1V cun VAX‘)‘

4

eqv. ~A1A~A2/\ ,,,A~An

. AB A ... A
eqv. B AB, B,

eqv. c.n.f.

The tull disjunctive normel form (f.d.n.f.) of

@& statement form A 1s & logically equivalent

statement form which is in d.n.f. and in which

1. 1in each clause every letter of A eccurs
exactly once; and

2. no two clauses contain precisely the same

literals (no duplicates).
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THEOREM 1.6: Every non-contradictory (non-tautologous)
form has a f.d.n.f. (f.c.n.f.) which is unique to within

oxder.

PROOF:

The construction for Theorem 1.5 in fact produced a
f.d.n.f. and f.c.n.f. It is unique to within order since
any form having different clauses will have different truth-

tables.

Algorithm for Obtaining Disjunctive Normal Form

1. Eliminate unwanted connecti.es.
2. Push negation all the way in.

3. Multiply out the conjunctions.

METHODS for obtaining f.d.n.f.:

1. The truth-table method given by the proof of the
theorem.

2. Suppose A 1is any non-ccentraction. Put into
d.n.f. using equivalences. Then if any clause
A is missing a letter, sar p, replace Ai by
(pVvp & A, . This becomes p& A, V DA A -
Eliminete duplicates and any pE's and repeat
until f.4d.n.f. is obtained.

Methode for obtaining f.c.n.f. are analogous (dual).

a7



Examples:

d.n.ft. 5V G
pa vV 2aVreaVpg

f.d.n.f. pa ¥ pa Vv pg

(pa vV pa)
(p vV pa)(aVpa)
PvRpVval@ve@’yad
(pVvaiaVvp
(PYaVa
(pVriipVr)
prVrpVrr
pr v rp

not Just r

p®-p

a contradiction.

No f.d.n.f.} f.c.n.f. pAp okay.

COROLLARY L 7: An f.d.n.f. with n 'letters is s tautology

if snd only if it nas 2" clauses.
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l. By the truth-table argument.

2. Suppose the clause pqr 1s missing. Then the
trutb-velue assignment 010 will mek@ A false.
On the other hand, if all clsuses appear, there
is one which is true for any assignment.

3« By factoring, by the use of equivalences and the
distributive law, we cen reduce to p V p which

is a tautology.

THEOREM 1.8: A necessary and sufficient condition that a
c.n.f. form £ be a tautology is that in every clause of the c.n.f.
taut.

at least one letter appears both negated and unnegated.

PROOF: Assume A 1is a tasutology. Let A' be a4 c¢.n.f. of

A . It is iientically true. Hence every clause must be

identically true. But & clause A, is an alternetion of

i
litersls and hence can be identically true iff some one

letter occurs both negated and unnegated.

THEOREM 1.,9: Dusl stetement for d.n.f.: A n.s.c. that a

d.n.f. d.n.f. be a contradictior is that in every clause some letter
contra-
diction occurs both negated and unnegated.

PROCF: Dual to the above.
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Decision methcds in the Propositional Calculus

We have shown that for any statement form of the
propositional calculus we can test whether or not it 1s
always true, (identically true}, i.e., whether or not it is

& tautology. Thet iz to say, we have a decision procedure

for the propositional calculus Tne decision procedure is

effective end general.

By effective we mean, rcughly, that there is g purely
mechanical way of carrying out the method, which does rot
require the exercise of ingenuity. (Church)

By general, we mean that the method epplies to every
problem in the class. Note that the class of problems is
infinite.

Restated: The decision problem for the propositional
calculus is the problem of deciding effectively for any given

statemert form, whether or not it is a tautology.

Decision methods

1. Truth-table.
I

2. Pt oir fdon.t ey H-, Cr2.3¢ 5, 1 19 7 Cu.1ology
Cy 0 heorew apave
3. Quines (resolution) method Form & tree, sub-
stitute at each level O or 1 for one letter.

As the substitutions are made, evaluate by the

following rules.

M
@]



~ Q0 el OAA&O « C

~ 1 &0 1ANA el O% Ae~A
OVAeA 02 Ael 1% AewA
1VAel A2 QO es~A

Continue uatil either some branch comes to O =--rot tautology,

or all JON e 1D Qa2

Example 1

{(pqver) 2 _(am=r

TN

Subst for p
r> (g a1 Q> (q & 1)
Subst for g \ /\
TRT ror 1l r
Subst for r /\/\
Exsmple 2
sk V ac V vcd ab V ac

Subst for =

Subst for b

Subst for ¢

Bavis-Putnam slgorithm

Tests a ¢ n.f. for contradicticn.
Step O: May assume no clause contsins P and ; . Any such

clause can be removed (if all, then net contradiction).



ona-literal -clause rule

are clauses

(p) and (§)
both py

yes »— contradiction

eliminate all occurrences of

is p yes | -
present ¥ and all clauses contsining p
no not
‘ anything left contradiction
affirmative negative rule
”~
P 3"‘“""’ | eliminate all cleuses
p not containing p
no
any left | not
v le contradiction
A_\/ ap:itting rule
L
now both p or
§ oceur
suppress all clauses suppress all clauses
Al containing p A2 containing p contradiction

\

\____._—.-‘:-::1fAlandA2are




Example 1.

(;1 !) (a.v r) (P) (;)

which is:
~(p>a) A (@2r) 2 (p21))
by OLCR:
(» 2 (p)
(q)(q)
*'contradiction
Example 2.

(py @ (p, I (2, QP @

(a) (9) (q q)

both contradictions

THEOREM (.10: DPavis-Putnam procedure works.

PROOF -
Note that there is a dual procedure for testing if

d.n.f is e tautelegy.
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Reproduced from
best available copy

_Durham's iimiration /ncorem

THECKREM: let A be the d. p.t tomala

where the l:-1ter P QOcS LGU Lo.ur in A1 (3 =1, « ,; &

Bz (L =1y ~. .y m or (O, 3wl “re, for il |« AlB' 15

a contradiction L=t A" b
. v v
vBa v viBa vis v . viB Ve

Then A is a tautology 1f snd only 1f A" 1s a tautology

PROOF:

Every clause of A" 15 also & clause of A, so if
A' is & taatology; so 1s A Thus 1t 1s only necessary to
prove that it A 1s & tautoiogy, th=n 50 18 Af We prove

this by showing that there 1 =0 acsigument Of truth-values

1o the letrers of A wnicn makes A *ru~ and A false

. A
Casz 1. p__1s P -

Then
; ) V . VAV v

A eqv. I\AJ A An)

ViR Vg Vv VoRp oV

1 o I
o egv JA VY VA v v v A

R eq Pl SRR 0’

v ;(HL ViRV YR



Let all the letters of A be (p, N e pk} and suppose

the truth-valuc assignment {a, @,y o« ‘k) makes A true,

1!
A' felse,

Case la s is O

Then (O, a iy 8 makes A true, A' false,

1’ k)

hence (B, V ... V Bm) V C false. This is sosurd.

1

Cese 1b. a is 1 .
Then (1, 8y, oo ak) makes A true, A° false,

v ...V v “en
hence (Al . A VY C true and (Al v v A, v

A V... VA)VCC false. Hence it must make A, true
i+1 n i

and C faise But then, since A, and C do not contain

i

ps (0, 8, - nk) also makes Ai true sand C felse. But

since A 1is a tautology (0, a., ..., Ik) must make

1)
B,V ...V Bm) true. But it is net possible to make both
A, and (3. V ... V Bm) true, since to do so would make

AiBJ true for at least one Jj, contrary to hypothesis.

Hence this case is slso impossible.

By symmetry.

DUNHAM'S METHOD

For each letter p 1in the d.n.f. formula A, circle

the eccurrerice of ﬁ in clause ‘Ai iff A also contains a



clause ;BJ such thet Ai’J is not a contrauiction. Dele'e
811 clsuses ~“ - contain uncircled literals. Erase circles
and repeet until at some step no clause is deleted. If there
are no clauses 12ft, A 18 not s tautology. If the d.n.f.
formule A' remsins, then A 1is 8 tautclogy iff A° 1is a

tautology.

REMARK: To contrast with other methods, take pq ¥ pq V pg
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AN AXIOM SYSTEM FOR THE PROPOSITIOMAL CALCULUS

NOTA _BERE: These lectures are intended ss comments on
Section L, Chapter 1 of Mendelson. They are in no sense
complete, but are intended to assist in reading the text.

They do not replace the text, which is essential.

Ressons for wanting to construct s formal system:

1. To be used later in quantificstion theory.

2. There sre interesting subsystems of the
propositional calculus.

3. For a simple illustrstion as sn introduction

to the basic notions of formel systems,

Formal Thecry

1. Countable set of symbols. (Normally constructed
from a finite set of symbols.)
Q. Aol eforie o Comulne o vitrs) This must be etfc¢otive.

3. Axioms. 1If effective then an axiomat,i_c_ theory.

Example of a non-axiomatic theory would be to
take as axioms the theorems of ihe first-order
predicate calculus.

L. “v of inference. Again effectively decidable.



Proof
Theorem

Decidable vs undecidable theories

The formal exiomatic theory L for the propositional calculus

primitive symbols
wife

.f £, B, and C are any wifs of L, then the

following gre axioms of [

Al (AD(BDA))
A2. ((AD(BZC)) DO {(ia>B: D (ADC)

A5, ((~BD~Al O ((~BDA DB))

Remarks: Negatlon occurs only in A3. The system with
ax:oms Al and A2 is calliad the positive implicatiungl
calculus snd is decidable (Arnold Schmidt). schems,
schemata (schemas). We omit parens. es ebbreviation.

Rule of inference MP. Note that with mere rules of
inferernce we could have fewer axioms In particular, with
a substitutiorn rule we could have a finite sxiom set.

Frove that the s<t of axioms is effective, 1i.e.,

L 18 &L axiomatic theory.

Nole now tha* the exioms are ali tautclogies.

1o show that L 1a& in fact the system we want, we
wi.. prove the following metatheorems. (def.)

1. Soupdness. Every iheorem is a tautology.

(Verify thei sc far okay, sll sxioms sre tautologies.)

ble



2. Completeness. Every tautology i1s a theorem.
3, Consistency. For nowf A, both A and ~A
sre thecrems of L .

Absolute consistency. Some wf A ia not a theorem

of L. (Por if the system does not have negation, we
cannot prove consistency as defined above.)

Absolute completeness (supersaturation). If we add

spother schema, which is obtained from a statement form

tnat 45 not a theorem, the result is inconsistent. (Exer:ise.)

Prior to proving the main metatheorems we will want

some theorems.

LEMMA 1.7:
Heuristic argumer+
This is a proof srhema, not a prodf.

Note ilat the comme .:s on the right are not part of

the proof.
They can re et ctlvely recovered from the rrooi.
Note that A% is not used.

.

DEDUCTION AND THE DEDUCTION THECREM

Definition of deducticn.
Three proparties or the notion of cons<guence.
Property (1) does not slways hold...in particular

if there is s substitution rile of inference.
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Note that not every line of a deduction is a teutology.
Deduction theorem  Herbrand.
Exampi-c of usefulness, Prove corcilary 1.9ii. Lemma 1.10a
Proof of the deduction theorem.
Remar anly axioms Al and A2 are used in proof  plus MP.
constructive
Mo e IFMMA ! i(. -- 't 15 essentia. to tne proofs of the main

mstgthe Or=ms

PECP 1 .. LEvery theorem 1§ & tautoiogy  soundness

Proof by irduction on the lines of e proof.

PROP ! 13 Every tasutology is & theorem of L . complete-
eSS

Nevds .

LEMMA 1 1?2

Note that tre object 1s Lot to show that A’ is true

LOQEr the hypotr-ses. but that A’ 1s provable from the

ryDILheses

et A be a -U . and let Pis o5 Py pe the state-
ment ietters o arring 1n A . For a given assignment of
truth-values to Py - 2 P let P, e P if Py taces

“he valuse Tj and let pl be ~—pi if pi takes the value
F le+ A bte A, 1f A takes the value 1 under the
a:cignment; lev A’ be ~ A if A takes the value F .
The: p{, Py P— A

DROOY



Alternative Axiomstizations of the Propositional Celculus

P, p2(a2p)
p2(3>r) 2 {((p2q 2 (p27))

(((@>f)yDf) 2p)

or: {~#p>D~gq) D {(¢g>p) [This is Lemme 1.10d
Exercise 42,1]

Rules of inference

MP

SUBST: From A to infer SgAl .

Note now the necessary redefinition of a deduction.

Fach line is: e hypothesis

or g variant of an axiom
or is inferred oy MP from twc preceding lines
or is inferred by SUBST from a rreceding line,
where the variasble substituted for does not

ocrur in the hypotheses.

Example of viglation:

r
PFo (hypothesis)
ph~p (subst)
PO~p deduction theorem

All tautologles are axioms.

L1



Historical Notes

Prcpositional Calculus

Quine, Preface to Methods of Logic, “Logic is an 0ld subject,

and since 1879 it has been a gcreat one."

Frege Begrifisscurift 1879

U

P: p2(a2p)

p>(@>dr) 2. (2q D (p2r)
(p2(@dr)) D a2(p2r)
(p2q) D (~a2~p)

~~p2Dp

po~~p

Rules of inference are MP and SUBST.

Exercise: Discuss the independence of the axioms.

Frege's work wus Lot known to Whitehead end Russell when the; began.

Later they were perhaps the first to appreciate its significance.
Use of axiom schemata: von Neumann 1927

Use of all tautologies as axioms: Herbrand 1930

P, Wajsberg 1930 P, Jukasiewicz 1930 (from PF )

has constant f no constants

&
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Frege 8 notetiin

- A judgement

jo—— A B3 A ~{B & ~ A)

condirtinnal stroke .

MP as on.y rule of inference (but in fact SUBST 1is

needed )

trom

1—-—r-‘ A and  bk—a to infer — 3B
-—= B

frmmp— A ~A

}--T-———-A BD~A ~(E&~4) 1i.e., ~(BOA)

—— B ~BV~aA ~(B & A)

l.-——r—-— A ~ B2 A B AA
e

o A ~(B 2~ A ~{~ BV ~ A) BAA
——- B

Note trat he has mplications end pegations (only) .

I L R L R TR TR T PR L LR L R R il it

-
[



fn. argument

/
i——{;—{ (a)
r—3—¢ (a)
T
2 x (a)
{ UI e

f—r-\./w—x (a)

(Va) & (a)
scope = _r
A (a)
B (a, e)

there are x's

4k

“The number 20 can be
represented as the sum
of four squares."

“Any number."”

(Ta)x(a)



First-order Predicate Calculus

Introduction:

I <he propositional calculus we dealt with logical
interencec ' s5ing statement letters (whish represented senten-
;s ws unbroken units) ana the legicai connectives. But,
as ve voint:d ou., even the simple classiral syllogism waes
beyond the scope of thst system.

In the firs”-order predicate cslculus (cr functional
calculus) we deal with the internal structure of sentences,
using symbols tor properties or relations, and lor expressions
such as gll, eny, soue.

Consider the example:

l. There is a man who is physician {u everyone.

2. Everyone has some physician.

T+ is easy to se: that logically 2 follows from 1. However,
the argurent lies outside the scope of the propositional
cilculus. It is just this sort of argument for which the
predicate calculus is suited. 1t can be expressed as:

L. (Ex) (y) F(x, y)

20 y) (Bx) Flx, y)

o
.

stands Tor x_ 13 physicien to y . The existential

guant itier (Ex) meuns <iere is some X, and the universal

quantifier (y) means for all Y - The argument is valid,
mor20Vveer, tor an arbitrary binary relstion F, and for an
arbitrary set as the renge of the individual varisbles x

ond vy .
45



The formal system of the propositional calculus was
designed to catch as theorems all the universally true state-
ments or tautologies. For the predicate Icalculus we similarly
wish to have as theorems all the statements which are yvalid,
that is which are true in every non-empty universe. In proving
completeness, we will show that all such valid wffs are

theorems.

Formal development cf the predicate calculus

(Wote that the system to be developed here differs from
Mendelson's and is essentially a subset of it., Mendelson includei
individual constants and function letters.) The system we
present here is the pure first-order predicate calculus.

Primitive symbols:

Individual varieblec: X, ¥, Z) X;» ¥p» 21> Xor ore
Predicate letters:

Monedic: Fl, Glg Hl’ Fi, Gi, é’ F;, sae
2 2

Dyadic: Pzi G, “2: Fﬁ, Gl’ ﬁ: 'g.v e

J-adic: r, 6, ¥, ¥, o, u), r]

1’ 2 *e-
(For each j, ar infinite number of

j-adic predicate letters.)

Connectives: ~2, ()
Metalanguage: A, By ... for w.fs.
Xy, ¥y 2 for variables,



Atomic formulas

1f F' isa predicate letter and X, , X, 5 ecep X
i il 12 i

n
are individual varisbles (not necesearily distinet), then

Fril(xi y oeees Xy ) 1is an stomic formula.
1 n

Converntion

Superscripts on predicate lctters may be omitted,
gince it is always clear from the context in any wIf what

the supercoripts must be. In the formule
F (x), x,) 2 F(x)

it is ¢lear that the two predicate letters are in fact distinct.

Although it is more usual to then use different letiers:

Well-fcrmed formulas

L. Every atomic formulas is a wfr .

. If A and B are wtfs, and y 4is a variable,
then (~A), (A2 B), ani ((y)A) are wffs .
Comment: Note that we do not require that y
occur (free) in A .

3. Extremal clause.

Note that the rules for a wff are effective.

b7



Pure first-order pradicate calculus

first-order: no quantification over predicete letters.

pure: no individual constants, no function symbols.
(Hence the only terms are variables.)

predicate calculus: no nonlogical axioms (as opposed to a

"first-order theory").
Definition

In the expression ((y)A)
(y) is a universal guantifier

A is the scope of the quantifier (y)

Alternate notation: (Vy)

Conventions

Parentheses omitted as before.
The scope of a quentifier is to be taken ss smell as

pcssible. In (y)A V B the scope of the quantifier is A .

Definition: (@x i) A stands for ~(xi) ~ A

(Sxi) or (Ex 1) iz an existential quantifier

AVBE stands for (~A) & B
AAB stands for ~(A D ~ B)

A=} for (AD B) A (BDA)
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Free and bound variables

Definition:

Definition:

Definition:

A particular occurrence of the individual varisble
Xy in A is » bound occurrence 1f x, is the
verisble of the quantifier (x,) or if it is
within the scope of a quantifier (xi) . Other-

wise, the occurrence is free.
(), (xp, x,) F,(x))

A varieble is bound in A if it has at leest
one bound occurrence in A . Similarly, free
in A,
Remark: A veciable may be both bourd and free
in A.

If A 1 a wff and x3 and xi are variables,

3 is said to be free for x, in A iff

= p——

then x

no free occurrences of X, lie within the scope

of any quantifier (xd) .

Informally: If we substitutg xJ for free x, through-
out A, then x‘j is never captured by a quanti-

fier (xj) . Note also that (ExJ) is ~(x3)~.

Substitution convention

Alx,

1

have some Of X, , ovup X free . Then A(X, 5 sesy X, )
1 L 4 3

y evey Xy ) ia used to denote a wff which may
n

n n

kg



is the result of substituting x, for x

j y 8t all of the

free occurrences of Xy
Exemples:

If A(xl, x2) is Al(xa) v AE(xl)
then Alxy, x;) 1s A (x.) V A(x))

and A(XB’ xl) is Al(xL) v A2(x)) ,

Axjom schemata

If A, B, end C are wffs, and x and y are vari-

ables, then the following are axiowus:

1. AD (BDA)
2. (AD>D(BD2C)D((AD>B)D(ADC))
3. (~BDO~A)D{(~BDA)DBE)
h.(x)A(x)DA():)
if y 1is free for x in A(x) .
5. (x){(A DB D (aAD (x)B)
if A contalns no free occurrences of x .

Remarks: {x)A D A 1is a special case of Axiom 4, Verify validity.

Rules of inference

1. Modus ponens. (MP) From A and (A D B) tn infer B .
(i.e., B is a direct consequence of A and ADB.)

2. ‘jeneralization. (GEN) From A to infer (x)A .
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Remark: 2 (CEN) cannot be rephrgsed as an axiom
A D (x)A
since this would give

A(x) D (x)alx)
or

(x) (A(x) 2 (x)A(x))

) (21y) D (x)A(x))

Teke A(x) as "x i8 8 prime”.
Remark: We say x 1is generslized on.

Violations for A4, AS:

(x) @7 (x, ¥) D EF(, ¥) 2K other

(x) (F, (x) D F,(x)) D, (x) 2 (x)r,(x)) ;E:kemn

F2 even square

(x) (@), (5) = 6,(x)) DAEYELH) D ()
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THEOREM 2.1: Every wff A which is an instance of a tautology
(of the prop. calc.) is a theorem. And it may be proved using

orly axioms Al-3, and MP.

PROOF: A arises i'rom a tautology W by substitution. By
the rompleten=ss of L (the propositional calculus, b-w .
Now .sodify the proof of W by making throughout the same
cuostitutions as were used in obtaining A from W . (For
statement leticrs which occur in the proof which de not
ocecur in W, put arbitrary new wffs . (This is necessary
pecause we 3id not include propcsitional variables in our
formulaticn of the first-order predicate calculus.)) Then
the result is a proof of A ({because of the use of axiom

gchemata). It uses only Al-A3 and MP.

ROREM: b (y) ~ Aly) =~ (Ey)A(y)

FROOF : pPE~~D Tautology (by
completeness of L )

~ ~ (y) ~A(y) By the theorem above.

]

B () ~ Aly)
F (v) ~ Aly)

1]

~ (Ey)A(y) By definition of (Ey) .



CONSISTENCY

THEOREM: The first-order predicate calculus is consistent,

(i.e., there is no wff A such that § A and |- ~A ;.

PROOF:

1. DeTine a mapping h of the set of wfrs of “he
predicate calculus into the set of wifs ¢ the
propositional ~elculus:

Let h(A) be the wff obtained from A by

i. deleting quantifiers and variables,
together with associated commas and
parensheses, and

ii. replacing distinct predicate letters
by distinct statement letters.

2. If b A of the predicate calculus, then | L h(a) .
Axioms map into tautologies. Al-A3 obviously.

M inte (A DA), A5 inte ((ADB) > (2DB)) .
MP and GEN preserve tautologies.

3, h(~4) 1is ~h(A) .

S if voth | A end b ~A in the predicate
calculus, we would have by (2),  n(a) sma
 ~n(A) in L, which contradicts the consistenmcy

of L.,
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DEDUCTION THEOREM (see also Mendelson 2.5)

Definition: A deduction of B from a set I' of wffs is
a finite sequence of wffs Bl’ Be, aeey B' of
which B, is 3 and for each i either

1. B]. is an axion

or < B.. is a member of T

or 5. B, results from BJ snd B (3, k< i) by
P

or b, B, results from Bj (§ < i) Dby GEN subject

to the restriction thet no veriab’¢ free in any
wff 4n [ 1s generalized upon.
Definition: If there is a deduction of B from I, we

write T | B .

LEDUCTION THEOREM
If T,AFB then "'k aADB.
PROOF: Consider a deduction of B from [, and A:
r, a By

k5,
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Induztion Hypntuesis: T = AT Bi for el1 i< h

To show: I‘I—ADBh.

Case 1. Bh is sn sxiom,

r 5,2 (a2B8,) Al,
- B, Axiom.
a2, MP.
Cose IIA. Bh is A .
Tk A>A Instance of
tautology.

Case II.B. B‘h el .

r ks, 2 (a38)
F B,

I—ADEh

Case III. Bh arises from B‘j and Bk by MP. Bk is
B,2B
J

- Continued on next page.
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' - 42 (s R Trnduction nypothesis

J 4
rkasnm, Induct!
Poor 2 TR DR DA RID A
| 1 4 :
I~ 6 -3 2(ATR)

Taze VLW avices froum UP by GEN,
o 0
Tk AT hk

f b ) (AD BP‘;

o nypothesis

) Bh)) Axiom
MP
MP

ByGEN(x rot

free in T')
P (a8 )2 (AD (e)B) Axiom 5 ( x not
k Kk
free in A )
I E A2 (x) B, MP
Treretwro, if Iy A b #, *hen I' b ADB . g.e.d.

Nobe the wni oo i oprop. caic. we had  that if T b A then

tor any :=t £, e.:0 T, b A thic no longer follows

amnedistely. (But o be rroved,)
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USEFUL THEOREM SCHEMATA

For any wffs A and B:

1. (vy) -A(y) 8 ~ (Ey)A(Y)

2. (xl)(xz)k o (x2) .(xl)A

3. (x)(~. 2 B) = {{x)a D (x)B)

L. ‘x){(A D E) D ((E«)A D (Ex)B) Comments:

- Note validity

5. (x)(A A B) ® (x)A A (x)B - Note movaments of
quan-ifiers in
and out

6. (yp)---Gr)aona - Note V, A"

7. It A(x) and A(y) are simila:

(xja(x) = (y)A(y)

8. If A(x) and A(y) are similer

(Ex)A(x) » (By)A(y)

9. If x not free in A

Awm (x)A

10. If x not free in A

A*™ (Ex)A

#11. If x not free in A

(x)(A 2B) = (A D (x)B)
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*]12.

13.

w1k,

*1E .

¥16.

*17.

(Ex

(xyr = tF- -

it ¥y mer Lo

({xiBie) 7

\
e
™

If x wuat free in A

h o (BB

Y= (Bx)ia D B(x;y

SmxE v [FydB) = {(Ex)(A V B)

({x)a v (8

) (x){A v B)

fex (A =Y O ((ExJA A (E¥)B)

it 0 ahess mpe left ar excreises. Proof of 16,

Itew.  These sehemata are used frequently and will

Cireied roamber, viz @.
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16. If x not free in A, ({x)B(x) 2 A) = (Ex)(B(x) D A)

Proof':
Left to right: 1. (x)B(x) 2> A Hyp
2. ~(Ex)(B(x) D A) Hyp
3. ~~x) ~ (B(x) D A) 2, Abbreviation
Lo (x)(B(x) A ~ A) 3, by tautologies, &
replacement thm
5. B(x) A~A L, Axiom 4 and MP
6. B(x) 5, tautology
7. (x)B(x) 6, GEN
8. A 1, 8, MP
9. ~A 5, “autology
10. AA~A 8, 9, tautology
11. (x)B(x) D A, ~ (Ex)(B{x) = A) | AA~A 1-10
12. (x)B(x) 2 A | ~ (Ex)(B(x) 2 A) 2 (AA ~A) 11, deduction thm
13. (x)B(x) 2 & F (Ex)(B(x) D A) 12, tautology
. | (x)B(x) 2 4> (Ex)(B(x) = 4) 13, deduction thm
Right to left: 1. (x)B(x) Hyp
2. B(x) 1, Axiom 4 and MP
3. ~A Hyp
L. ~(B(x) 2 A) 2, 3 taugology
5. (x) ~ (B(x) 2 A) GEN
6. (x)B(x), ~ A |- (x) ~ (B(x} 2 A) 1-5
7. (x)B(x) F ~AD (x) ~ (B(x) D A) 6, deduction thm
8. (x)B(x) F (Ex)(B(x) > A)DA 7, taut., def.
9. (x)B(x), (Ex){B(x) 2 A) | A 8, MP
10. b (Ex)(B(x) ® A) © ((x)B(x) O A) deduction theorem
Sk ((x)B(x) @A) = (Ex)(B(x) 2 A) 14, 10 by taut.
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6. F (v,) «.. (f,'?)A:JA

PROOF:
(yy) «enls 08 Q) (y)) -en (v ) A Hyp.

(2) (y?) vae (yn)A Al and MP

(n+1) A

iy dedact ol theorem.

Let, A(x)‘; crine rom A(xi) by substituting x, for all

%

free occurrerce: of X

[

Definition: 1t x; and x, are distinct, then A(xi) and
A(xi\, are similar iff x5 is free for x; 1in

A(x.) &nd A(x,) has no free occurrences of X
i

Intuitively:
Yo 10 Ax. ) an A(.xi') are similar, then (xi)A(xi) =
(x J£{x
\7‘]) K'.‘
PROOF :
(1 <"):i~lA(\>‘:.:‘r > A(x‘i.} N
() e Jelx ) 2 A(xj)) GEN
) e )Alk) 2 (x1)A(xj) A5 and MP
() X A D <X1)A(xi) Simiiaerly
L YA X)) = ) po) > A
\7) (x VA, (xJ)A(xj) A, (A2 A A2)
Theorem 2.1, Def. of

~ MP twice.
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8. Will follow trivially from equivalence theorem.

Conjunction Rule A, B |-aAB

Disjunction Rule

ADC, BDD, AVB }l cVD

Proof by 2.1.

9. If x not free in A then | A& (x)a

(1) A>a Theorem 2.1

(@) (x)(a 24 GEN

(3) AD (x)aA A5 and MP

(%) (x)a>a Al

(5) A= (x)A (3) (4) def. of =, and conjunc~
tion rule.
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EQUIVALENCE THEOREM

If B is @ wl subformula (or subewff) of A and A'

result ol replacing zero or more occurrences of B in A by

a wff B' and if every {ree varisble of B or B' which is

bound in A accurs in the list Yys Ypr wees ¥y then

by

(v,)(B=B) O (A= A"

PRONF: By indn Licy on the number n

quantitiers in A .

Basis: n =0 .

of connectives and

Ther A must be an atomic formula, hence

either 0O ocrurrences are replaced or B is A,

It 0 occurrences,

then reduces to

Ir B is A, then reduces to (yl) vee (yk)

{6 =8 O (aA=k8) @

Induction:

We riow have n >0 end B

Acsume true tor all wffs A with less than n

connectives and guantifiers.

wi 1. A is
o A is
A s

Reproduced from
best available copy

~D .
(M DE) .

(x)b .
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Sase 1. A' is ~D' .

F () .- (3 )(B=B) D (D= 0D")
 dep)D(~D=~D")

B (¥y) --- (yk)(B £3') D ( ~D= ~D')

which is the desired result.

Case 2. A' is D' DE' .

b o(y)) «- () (B =B D (D= D)

Fo(y)) oo (v )(BeBY D (E=E)

Ind. hyp.
Theorem 2.1

Theorem 2.1
and MP

Ind. hyp.
Ind. hyp.

(pwp) . (E=E) D((0DDE) = (p' DE))

b yy) e () (BEEY D (AR AT

Case 3. A' is (x)D' .

F () .- (y)(B=B) D (D =DY)
F iy .- (y) (=B 2 (0= D))

b () o (3)(B=B) D (x)(» ® DY)

F o= p') o ((x)p = (x)p*)

F (v) e (y)(BEB; D ((x)D = (x)D)

63
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tautology

tantology
and MP

GEN
Ax 5 and MP

by hyp. x
not free in

. (y)(B =B

@

taut. and MP



Corollary Replacement Theorem

A, B, A', B' 85 above. If | (B®B) then | (A®wA') .

If b (2=9) 2nd F A then } a'.

Corollary Change of Bound Veriable

If (x)B{x) is & sub-wff of A and B(y) 1s similasr
to B(x) end A' results from A by replacing one or more
occurrences of (x)B(x) by (y)B(y),

Then | A= A'

PROOF: By Cj) und replacement theorem.
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PRENEX NORMAL FORM [PNF)

Note: needed for Completeness Proof to follow.

Note: use as lemmas the usefu’ theorem schemata which are starred.

Definition: A wff C 1is in prenex (normal formif C is

(w M y) ..o @M

where: (1) Yi» Ypr «ves ¥, ave distinct individual
vbls., r > 0, which occur in N,
(2) each (Q‘Vi) is either (yi) or (iyi),
and (3) M is s quantifier-free wff .

M 1is called the matrix of C; (le) cas (er)

the prefix.

Definition: A juantifier (Qy) in e wff 1is said to be
initial if both
(1) (qy) occurs at the left, or is preceded
only by other quantifiers,
(2) the scope of (Qy) extends tc the end of

the wff .

Corollary: A INF is & wff in which all qusntifiers ere

non~-vacuous and initial.

€5



THEOREM: For any wif ( there is & wff c® in PNF such

thet F Cs .
Note: PNF can be defined so as to oe unique.

PROOF: use Church's proof--it gives uniqueness by working on
first quantifier not initially placed, provided we use alphabetically
earliest possibility when making changes of bound variables.
Procedure:

Let C be written without abbrevistions other than
existentisl quantifiers. Starting from left, pick out first
non-initial quantifier (@x) . If there is one, it must be

in a wff part of C of one of the rforms in column (1)

(1) (2)
~(x)B (Ex) ~ B D)
~(Ex)B (x) ~B ®
AD (x)B (x)(A D B) x not free in A @
(x)B DA (Ex)(BDA) |x not free in A (9
AD (Ex)B  (Ex)(ADB) |x not free in A @
()BDA  ()(BDA  |x not free in A @

The wfts in (2) sre equivalent to those in (1), provided x
ic not free in A . If x is free in A use change of bound
variable to a variable not free in A nor occurring in B .
Then use replacement theorem.

If quantifiers are not distinct, delete first (Q.vl)
vy (@ (@)A= (@)a by D, @). Delete (@) for ¥

not in M. 66



PROOF of termination: By considering the number of connectives
not within the scope of the left-most non-initial quantifier and

the number of non-initial quantifiers.

PROOF of | Cc = ¢°. By the lemmas and the replacement theorem,
and transitivity of = .
Comment: A PNF may contain free variables.

Buvt we can always find clcsed C' in PNF such that

Fcelc.

C' is the closure of C .

Remarks on PNF:

Actuslly need not remove A and V but can use

AV (Ex) (Ex)(a Vv B) x not free in A
AV (x)B (x)(A Vv B) “
AA (x)B (x)(A A B) "
A A (3x)B (Ix) (A » B) "
tixamples:

(x)(F(x) D (¥)(6(x, y) D~ (2)H(y, z)))
() (N (F(x)  (6(X, y) 2~ (2)H(y, 2)))
CHII(F(x) o (o(x, ¥) D (E2) ~ H(y, z)))
() (¥)(F(x) D (Fz2)(6(x, y) =~ Hly, 2)))
(x)(¥)(F2)(F(x) = (6(x, ¥) D~ uly, 2)))
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7, (x, ) O (E((E,(y) 2 (B)Fy(x) > Fy(y))]
(B)(2) (Fy(x, 3) D (Fy(w) D (Fy(z) D Fy(¥)))

Example with V , A .



A VERY ELEMENTARY SYSTEM W
(Hao Weng)

A Burvey of Mathematical logic, Science Press, Peking, 1963.
(Distributed by North-Holland Publishing Co., Amsterdam.)

The system W contains a single two-place predicate
(s dysdic relation) R, three constant nemes 1, 2, 3 of
individusls, and the variables x, y, z, etc. If R holds
between x end y, we can write R(x, y). The axioms cf
W are as follows:

Al. There sre exactly the three things 1, 2, 3:

(x)(x=1Vx=2Yx=3)
&14282F£3814¢3

A2. R is irreflexive:
(x) ~ R(x, x)
A3. R is many-one:
(x)(¥)(z) .R(x, ¥) & R(x, 2) 2y =z
Ai: R 1is one-many:
(x)(¥)(z) .R(y, x) 8 R(z, x) Dy = 2
AS.

(x) (E¥)R(x, y)

Rr(1, 2)
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The concepts of model and satisfiability can be defined
thus:

Definition 1. An axiom system is satisfiable if there
exists a model or interpretation of the system. An interpre-
tation of an axiom system is ar assignment of meanings to the
undefined terms of the system according to which all the
axioms are true.

In particular, a model of the system W is detzrmined
by: (a) a (non-empty) domain D of objects; (b) a rule
that associsrt~ s each constant name wiil a thing in D; (c) a
relation R¥ us the model of R; (d) a rule of interpretation
telling us, for any objects a and b in D, whether R*
ho'.ds beswecr them, and therefore, derivatively, for any state-
ment, whether it is true or false; (e) the fact that the
statements Al-A6 come out true according to (a)-(d).

It is quite eagy to find a model for W . Take the
domain D ac consisting of three persons, Chang, Li, and Yang,
sitting arocund a round table with Chang immediately to the
right of L1, associating them with 1, 2, 3, respectively, and
interpret the relation R as holding between two persons a
and b if and only if a sits immedjately to the right of
b . It can be checked that all the axioms Al-A§ come out true.

In fact, we can take an arbitrary domain D with three
vbjects 1¥, 2%, 3% which represent 1, 2, 3, respectively,
and obtain a model for the system W by choosing a relation
R* such that R¥* 18 true of the pairs (1%, 2#), (2%, 3%),
(3%, 1*), and false for the remaining six pairs. As a result,
we do nri even have to use eny concrete interpretations for
W . We can say abstractly that the following matrix definea
a model for W .

R 1 3
1 - -
2 - - +
L3

T0



We come ncw to the femilier ncticn of isomerphism.
Thus, two models of W s&re isumorshic (or essentielly the
same) if there exiats a one-tc-one correspondence betwee: the
two domains such that the first wodel of the velation R holds
between two objects of the first domain if and cnly if the
other model of the relation R holds between their images in
the other domain. It tollows thet s statement is true in one
model if end only if it is true in the other. For instence,
any two models for W, which hoth setisfy the matrix given
above, are isomorphic. In general, an axiom system may contain
@ number of technical terms which stand for properties, rela-
tions, and operstions. In two isumerpric models of the systems,
all these should correspond so that, for example, if fl and
f2 stand for s same functor and 851 b2 correspond to )
b, then fl(alfbl) must correspond to fa(az, b2) This
condition on models for the technical terms is equivalent to
the requirement that any statement of the system is true in
one model if and only if it is true in the other. We cen,
therefore, give the defirnitions:

Definition 2. Two models of an axiom system 8 are
said tc be isomorplic if there exists a one-to-cne correspon-
dence between the two domsins and eny stalement of § 1is true

in one model if and only if it is true in the other.

Definition 3. An axiom system S is categorical if
and only if every pair of models of S is isomorphic.

It is not hard to see that the system W, determined
by Al-A6, is categoricel. 1In fact, by straightforward combin-
atorlal considerations, we cen see that all models of W
setisfy the matrix given above. Thus, by Al, the domain of
each model of W consists of exactly three objects (say)
1%, 2%, 3* . Therefore, there are nine osdered pairs of the
objects of that domain. For each of these pairs, R may
elther hold or not. Hence, we have 29 possible interpretations
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of the relation R which would all satisfy Al. By A2,

R(1%, 1*), R(2*, 2%¥), R(3%, 3#), must all be false.
Therefore, there are only 26(49/25 ) 7possible interpretations
of R satisfying both Al and A2. Of these 64 possibilities,
only 27 satisfy also A3, because, by A5, if R holds of the
pair (1, 2) then it cannct hold of (1, %), end so on. By
similar considerations, we see¢ easily that of the 27 remaining
possibilities, only 18 sstisfy also A4, 2 satisfy Ab and A5,
and only one satisfies A4-A6., This interpretation of R that
satisfies all the axioms Al-A6 1s determined by the matrix
already given: R 1is true for the pairs (1%, 2¥), (2%, 3%),
(3%, 1%), end false for the six remesining pairs. Hence, W
is categorical.

Thus, it is clear that additionel axioms serve, in
general, to reduce the number of permissible distinct interpre-
tations for a system. When we add enocugh axioms to reduce
the number of irnterpretations to one (up to 1somorph1sm), we
have a categorical system. But if we add any more axioms
which would eliminate elsc the last interpretation, the resulting
system would not be satisfiable according to Df. 1.

In fact, once we assume Al, the problem of finding
additional exioms to obtain a categorical and satisfisble
system is pretty triviel. For exsmple, instead of A2-A6, we
can use directly the f-llowing:

Al*. R is true of the pairs (1, 2}, (2, 3), (3, 1)
and false for the 5ix remaining pairs cornsisting of 1, 2, and 3.

Al and Ai* determine the same interpretation as Al-AS.
Or, we can choose any one of the other possible interpretations
of R by using some analogous axiom in place of Al*. Then
we would have in each case a different system, which is again
cetegorical.

If we omit from W the names 1, 2, 3, then we can no
longer state the axioms Al and AS, although we can still keep
the axioms A2-A5. In place of Al, we can use:
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Al'. There exist only three distinct things: (Ex)(Ey)
EB)W(x ¢ ydyfz&xfdzd W=xVu=syVws=2)).

But nothing resemblirg A6 car be expressed in the new system.
The system determined by Al' and A2-AT can sgain be shown to
be cetegorica) and complcte; the lack of anything like A6 is
compenssted by the decrease in expressing power caused by the
omission of the names 1, 2, 3.

Furthermore, if we use instesd of the reletion symbol
R & function symbol £, then we zan replace A2-A5 by the
following:

A", (x)(£(x) # %) .

As'. f(y) = f(2) Dy =z .

The system determined by Al'-A5' is essentially the
same as the system determined by Al' ard A2-A5; in the new
formulation, A4 and AS become absorbed into elementary logic
snd notationsl conventions.

Since W has a model, W is satisfiable.

Definition 4., A system is said %> i+ complete if every
proposition (closed wff) p 1in the system is either provable
or refuteble; in other words, for every p, elther p or
~p 1is a theorem.

From Df. 3 and Df. L, we can prove:
Theorem 1. Every categoricel system 1s complete.

If a system is not complete, there is a prcposition
p 1ir the system such that neither p nmor ~p is a theorem.
Hence by Th. 10 given below in §7f'there exlsts one model in
which p is true end one model in which p 1is felse. These
two models cannot be isomorphic. Hence, the system cannot be
categorical.

#Theorem 10, A aystem formulated in the predicate calculus
without eqp&lity is consistent iff it is satisfisble. (Skolem,
Herbrand, Godel.)
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Since W 1is categorical, it is complete.

One may also regard the choice of s model as the con-
struction of a sort of truth definition for the system under
consideration, specifying the propositions which are true
under the interpretation. In fect, in every case we require
that ell theorems must be true in the model and that for every
proposition p, either p or ~ p but not both must be true.
Hence, when a system is complete, the theorems must coincide
with the true propositions. It follows that for a complete
system, a decision procedure for provability also yields a
decision procedure for truth, and(conversely)

Definition 5. A decision procedure for provability
(truth, validity) of an axicmatic system is sn effective

method by which, given any proposition of the systems, we
can decide in a finite numbar of steps whether it is provable
(true, valid).

In the case of the system W which has only one model,
we can easily give at once a decision procedure for both truth
and provability. Thus, after eliminating " A “, * O #,
"(Ex)" in femiliar manner, we can characterize all propositions
of the system W:

() If e eand b are numbers among 1, 2, snd 3,
then Rab and a = b are (satomic) propositions;

(11) If p and g are propositions, so are ~ p
ad (pVq) .

(111) If Ha 1is e proposition, so is (x)Hx .

(iv) There ere no other propositions except those
required by (1) - (111).
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A truth definition 1s simply:

(1) Among the etomic prop.sitions, R12, R23, R31,
l=1,2=2,3 =3 are true, all others are
falae;

(11) ~p 1is true if end only if p 1is false, (p V q)
is true if and only if either p or q is
true;

(111) (x)Hx 1s true if and only if Hl, HZ, H5 are
true.

This truth definition gives a decision method because
for every proposition of W, no matter how complex, we can
always reduce the question of its truth to that of less complex
propositions, in such a way thet in a finite number of steps
we arrive at a finite number of atomic propositions which can
be decided by (1).

Hence, there 1s a decision procedure for W both for
truth and for provability.

If we delete AG from W, the resulting system is no
longer complete, but we can easily see that it still has a
decision method for provability.

Theocrem 2. There exist incomplete axiom systems for
which there are decigsion procedures for provability.

Incidentally, the axioms Al and Al' have a different
character from the other axioms in so far as they do not
assert properties of R asnd f but directly specify their
domain. Such axioms are sometimes called "axioms of limitation”.

Definition. Given an axicmatic theory, & subset X of

the axioms is said to be independent if some wff in X can-
not be proved from the rest of the axioms.

5
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Exsmple

Al: (%) (F(x) 2 G(x)) @ ((x)F(x) 2 (x)G(x))

Take domain as the positive integers.

Take F as the property 'x 1is divisible by &'
i.e., the set of multiples of 4 .

Take G as the property 'x is divisible by 2'
i.e., the set of all even numbers.

Then, under the interpretation, A is true.

Example
As (ex)F(x) @ (By)c(y)

Then under the same interpretation A2 is true.
But under the interpretation which follows, it
is false.
Take D as {0, 1} .
F as the property x =x 1l.e.,
the set D = {O, 1} .
G as the property x #x 1i.e.,

the empty set = {} =¢ .

Example

Ay (vIF(x, y)
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Take same domain.

Texe F(x, y) as x <y .

Then under the interpretation A3 is neither

true nor false--it represents the l-ary relation

Nxgy

and 1s true for x = 1, false ctherwise. Note

that »‘\3 is not closed.

A wff A is satisfiable if there is some interpreta-
tion of A (with non-empty domain D ) and some assignment of
elements of D to the free varlables of A which make A

true.

Examples

Al is satisfiable.
A2 is aatisfiable.

Ay 15 satisfiable (assign 1 to x ),

A wff A is valid if under every interpretation and
avery assigmment of elements of the domain D of the inter-
pretation to its free vearisbles A 1s true. (This is eqv.

to previous def.).

Examples
A'l is valid.

A2 is not valid.

A3 is not valid.
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A clogsed wff is either true or false under

any given interpretation.

COROLLARY A wff A 1is velid iff ~ A Ig not sstisfisble.
The notion valid corresponds to slweys true. (No counter-
example).

DEFIRITION: The closure of 8 wff A with free verisbles

Yo seer ¥y 18 (y)) woo (yplA .

{Remark: By @ the order of these universsl

quantifiers doesn't mstter.]
COROLLARY A is valid iff the closure of A is valid.

THEOREM (Soundness)
Every theorem of the first-order predicate calculus is

valid,

PROOF: Axioms sre valid.
Rules of inference preserve validity.

(See details on pages 79-81.)

COROLLARY To show A is not a theorem, it suffices to show

A not valid, i.e., ~ A satisfiable.

Validity and Theoremhood

Given a wff A, cuppose we are concerned with whether

or not A is a theorem. If we cen prove A, then A is a

9



theorem (and is valid). But if we do rot succeed in proving
A, perhaps A is not a theorem. To show that A it nct a
theorem, (since it is possible thet neither A nor ~ A is
@ theorem because pred. calc. not complete in that sense) it
suffices to show that A is not valid, that is ~ A ig
satisfiable. By the Godel Completeness Theorem (to be proved)
A is a theorem iff A 1s valid. Hence it will be the case
that either A 1is 8 theorem or ~ A is satisfiamble. And
while this is not enough to yield a decision procedure, it
will be enough to yield sn effective proof procedure. (This
is an alternative proof procedure to the purely syntactic one

already given for all formal theories.)



Proof procedures and decision procedures

THEOREM:
In any axiomatic formal theory, there 1s an effective

proof procedure.

PROOF:

1. Reduce countable (finite or enumerable) set of
symbols to finite set by use of subscript 1 as
new symbol. I.e., replace Al’ A2, «asy by
Ay Mgy oo s (prove unique readability.)

2. Introduce & new symbol called carrisge return.

hF
.

Now we could enumerate =1l expressions composed of

the finite set of symbols as follows:

All expressions conseisting of one occurrence
of a symbol.

Al)l expressions consisting of two cccurrences
of symbols.

All expressions consisting of n symbol
occurrences.

4. Now, since wffs are effective, we could redo the
enmumeration...saving in the 1ist only =xpressions
vhich wre wffs (between carriage rcturn symbols).

5. Now, since proofs are effective (axioms are, and

rules of inference are) we can redo the list so

that every string in the lisgt is a proof.
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9.

Eventually every proof will occur in our list.

A p.our 18 a proof of its last line.

Therefore to find a precof for a given well-formed
formula A we need only construct the list until
at last we come to a proof of A .

But, if A is not a theorem, we will never know

that we should give up, hence we will go on forever.
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Details of Soundness Proof

Axioms are valid

Axiom 1. A2 (B2 A)
To satisfy the negation we must find an interpretation
and an sssignment to the free vbls. which mekes A
true, B true and A false. Clearly impossible.
Axiom 2. (A2 (B2C))2((a=2B)> (A> )
To satisfy the negation we must have
AD(BDC) true

ADB true

ADC false

hence

c falge
B false
A false

Axiom 3. (~BD~A) D((~BDA) DB

To satisfy the negation must have
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~BO~A true

~BDA true
B false
hence ~ B true
hence ~ A true
A true
Axiom 4. (x)A{x) D A(y) y free for x in A(x)

To satisfy the u~gation must have

(x)A(x) true

Aly) false

So suppose d € D essigned to y and ~ A(d) . Then
~(x)A(x) . Note role of proviso on y . Otherwise

there is no free variable in A(y) .

Axiom 5. (x)(A 2 B(x)) (A D (x)B(x)) x not free in A

To satisfy negastion must have

(x) (A 2 B(x)) true
A true
{x)B(x) false .- for some 4, ~ B(d)

Hence have ~(A 3 B(d)) which contradicts (1) .



Rules of inference preserve validity

Modus Ponens

ADB

Suppose AT B, A are valid and B 1is not valid. ~ B is

satisfied by an interpretation 7 with assignment (4, «vvy Q)
to the free variables (xl, cony xn) « Then this assignment makes
A2 B true (since AD B 1is valid) hence makes A false, hence

contradicts validity of A .

Generalization

A

(x)A

If (x)A is not valid then for some interpretation T and

some d e D, ~A(d) . Hence A not valid.
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Sotice that there are now 3 kinds of equivalences;
@ -A=B equivalence
Ol ek interprovability

() A valia % B valid  intervalidity

@ = @ REPLACEMENT THEOREM
- w (3 SOUNDNESS & COMPLETENESS
@ O (to be proved)
Examples
1. b (x)F{x) » = (EY)c(y)

gince both sides sre false

but certainly not:

F (x)F(x) = (Ey)G(y)

for this is not valid. Take domain {0, 1},

take G(y) as y#y

take F(x) a8s x =1x.

2.  (OF(x) = - (x) ~ F(x)

pt |} (X)F(x) s (x) ~ F(x)

Example using the closure of a wff .

Interprovability  P(x) » - (x)F(x)



PROOF:

L to R: Buppuse |= F(x) . Then we construct s proof

of (x)F(x) ss follows:

. proof of F(x)
F(x)
{x)F(x) GEN

Rto L: Suppose | (x)F(x) . Then we coustruct s

proof of F(x) as follows:

': proof of (x)F(x)
(x)F(x)
(x)F(x) 2 F(x) Axiom L
F(x) M

Intervalidity F(x; valid = (x)F(x) valid

By Corollary sbeve (from definition of valid).

Equivalence

not F F(x) = (x)F(x)

Note: We have proved this if x 48 not free in F(x) .



PROOF:

Every theorem is valid  (soundness). Therefore it

suffices to show that

F(x) s (x)F(x)

is not valid. We construct an interpretation under which it
is not true.

Take D f0, 1, 2} .

Take F(x) a8 a relation (property) which is true for

1, false for 0, 2:

F(0) F(1) F(2)

false true false

(Example might be oddness.)
Take 2 a5 the sssignment to the free vbl. x .

Then under this interpretation the formula is true iff

F(2) = F(0) A F(1) A F(2)

so true under this interpretstion.
But now take 1 as free vbl. Then under the new

interpretation

F(1) = F(0) A F(1) A F(2)

which is false. (Satisfies F(x) ¥ (x)F(x) .) Hence not valid.
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SKOLEM NORMAL FORM

DEFINITION. A wff A 1is in Skolem normel form (SNF) if it

is in closed prenex normal form with prefix

(Byy) ... (By ) (z)) ... (2) . ™, n>0

TO BE PROVED.

For every wff A there exists a wff A' in SNF

such that

Faew | ar

and

A velid *= A' wvalid.

Temporary notation:

-t

(By) for (Eyl) cas (Eyn)
a
y for Yis e ¥y

Aly, u] to exhibvit all the free variables of

the wff A .
— >
Let A be (By) (w)Bly, u)
- a A A
A be (2y) ((u) (Bly, u) @ F(y, w)) 2 (W)F(y, u))



=
where B has y, u as its only free vbls, end F is an
mtl-sdic predicate letter not im A .

Show how this will lead to SNF.
LEMMA 1 Fa=ka

PROOF:
F @ llwley, v G, ol 2 @G, vl

Assume given a proof of Al; from it we construct a proof of
A .

Take B*[.;, u] ez the result of replscing all bound
vbls of B[;, u) by new vbls. which do not occur in the given
proof. Replace F(Z, v) throughout the proof by B*[Z, vl .
Show the result is a proof.

Instances of Axioms 1, 2, 3, MP and (EN all okay.
Instances of Ax. & [(x)A(x) @ A(w) provided w free for
x in A] all okay since all new quantifiers have new vbls
hence do not have w . Instances of Ax. 5 [ (x){A > B(x)) @
(A2 (x)B(x)) provided x not free in A ] all okay since
B*[‘:, w] has seme free vbls as F(‘z‘, w) . Hence, by con-

struction
- > - -
b (Ey) ((u) (B{y, u] @ B*(y, u]) @ (u)B*{y, ul) .

Now, by change of bound variables, the asterisks can be remcved

to give:



- A a a
 (By)((u)(Bly, u] @ Bly, u])> (w)Bly, ul)

Let G, v be new:

BOB = G(w) vV~ G(w) Theorem 2.1
(prop. calc.)

- ' a

(EY)[ () (G(w) V ~ G(w)) > (u)Bly, u)) replacement
theorem

— -

(E¥) (G(w) Vv ~5(w)) > (u)Bly, ul) Theorem 9 and
replacement

— -

G(w) vV~ a(w) @ (Ey)(u)Bly, ul Theorem 17 and
replacement

g(w) v ~ G(w) Theorem 2.1

- -

(Ey)(w)Bly, ul MP

LDMA 2 F A=} Al

Insert to proof of Skolem normal form (Mendelson p. 89).
The following replaces the argument from line 2 "Conversely,
..." to line 8 "... }F A, ". The replacement is needed to

avoid use of Rule C and individual constants. To prove:

Fasba
where A is

(By,) - (By, ) (u)Blyy, --vs Ya, ul
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and A1 is

(By)) oo (@2 Py, o0, v, w))
2 Wy, ey vy )
FPROOF:

1. For any wffs C, D

(x)6(x) 2 (()(C(x) 2 D(x) D (IDE)  gng orape oote.
2. (w)B 2 ()3 > F*) > ()F™h) Instance of 1,

5. For any wifs C, D

(x)(c(x) @ p(x)) > ((Ex)c(x) @ (Ex)D(x))  Thm. &
b (r (B2 ((u)(B 2 F*) > (u)F™h)) omx of 2.

5. (Ey,)(w)B > (By,((u)(32 F"") 2 (™)

4, .instance
of 3, MP,

Repeating steps 4, 5 with y

n-1? o Yys e obtain

6. (By)) oo (By,)(w)B 2 (By) ... (By,)(()(3> F™Y)
> ()F™*h)
Hence, by the hypothesia {~ A and MP

F ey .o (B ) ()(B3 ) 2 ()Y

that is, | A -
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THEOLEM For every wff A we can effectively find a vif A'

in Skolem normal form such that | A iff |- A' .

PROOF

l'

2'

By previous theorem we car find A® in closed
prenex normal form such that | A ® |- A° .

Now by the const;uction giver above we can, At each
step, reduce by civ the number of existential
quantifiers whicn procede universal quantifiers.

From

(By)(u) B(¥, w)

where

—
3G, W) is (gz) B'(¥, 2, u]

ve get
(2v) () (B(Y, u) @ F(F, u)) 2 (WF(F, )

which gives

() (E)(B' (7, u, ¥)) vhich is

— —

> >
(By)(Bu)(Qz)(w)B" (¥, u, 2, v)]

where W is new and where the quantifier (w) is

right-most in the prefix of B' .
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NOTE THE TRADE-OFF
For each universal we get on: new existential.
Hence, for example, I¥E becomes FEAV . This is
important in the consideration of redivction classes.
In addition, since we plan to use the Skolem normal

form to prove completeness, we need

A wvalid * A' wvalid .

{Mendelson has already proved completeness, hence does not

need this atep.)

THEOREM: A wff A is valid in a given non-empty domain iff
its Skolem normal form is valid in that domain. A wif is

valid iff its Skolem normal form is valid.

PROOF: Parallels the proof that |- A ® | A', except that

wherever that proof makes use of a theorem, the present proof
makes use of the fact that the theorem 1s vaiid, and wherever
that proof makes use of a rule of inference the present proof
must instead use the fact that the rule of inference preserves

validity (in an arbitrary non-empty domain).

Example 1 for Skolem normal form

(x)(6(x) @ H(x)) @ ((Ex)a(x) > (E&)H(x3)

Put into PNF. Already closed. Working L to R we would get

ok



(1) (@x)(y)(Ez) . (6(x) 2 K(x)) 2 (a(y) = H(z))

But if we chose to pull out the gquantifiers in a

different order, we could get SNF immediately:
(2) (@x)(3y)(z) . (G(x) 2 H(x)) 2 (c(z) 2 H{y)) -
To put (1) in SNF
(3x) « ()((E2)((a(x) > H(x)) > (6(y) 2 H(z))) @ F(x, ¥)))

2 (y)¥(x, y)

(3x) (@) (32) (w) (((6(x) D H(x)) > (6(v) DH(2))) D F(x, ¥))

D F(x, u)
i.e.
(&x) (8y) (22) (u) (6(x) D Hx D (Gly) D H(z)) D F(x, )

D F(x, u))

N.B. VWe cannot always obtain SNF directly.
Proof: JVI is unsolvable--All other prefixes with

3 quantifiers are solvable.

Example 2 for Skolem normal form

Mendelson, page 39,

(x)(v)(Ez) A(x, vy, z)
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where A 18 a quantifier-free wff with x, y, z as its
only free variables.
Rote: in this case we start with a universal quantifier,

Fote: predict that final anawer will have prefix ZHIVY |

x)((y)({3z) A(x, ¥, z) D F(x)) D (x)F(x)

where F 1is new. Now put in PRF:

(@x)(y) (@) (v) . (Ax, ¥, z) DF(x)) DF(v)

Let this be

(Ex)(y)(3e){v)  B(x, ¥, z, V) .

Note that B is a quantifier-free wff. (dz)(v)B has x
and y free.

@x)((+){{32){) B(x, ¥, 2z, v) D 6(x, ¥)) 2 (y)a(x, y))
where G 18 new .

(3x)(@y)(@2){v)(w) . (B(x, ¥, 2z, v) D a(x, ¥)) DG(x, w)
which is

(@x)(@y) (@z)(v)(w) . (({((A(x, ¥, 2) DF(x)) D Fv)) Do(x, ¥)

2 a(x, w))

Note prefix,
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Example 3 for Skolem normal form

(8x)(3y) F(x, v, z) D (@y)(¥2) F(y, 2, x)
Put into PNF.

(@y)(@u)(v){w) . F(v, %, 2) DF(y, u, x)
Now need to get closed PNF.

(2)(x)(@y) (@u)(v) (v . F(v, w, z) DF(y, u, x)
() ((x)(Ty) (Bu)(v)(W)A D c(z)) D (2)G(z)
(32) (x) (By) Bu) (V) (W) (x,) ((& D 6{z)) 2 6(x,))
(82)(3x) (3y) (@) (v) (W) (x, ) (%)
((((a 26(2)) D 6lx,)) Da(2, x)) DH(z, x,))

Or, using the left parenthesis convention

AaD26(z)D G(xl) D H(z, x) D H(z, xg) .
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THE INFINITY LEMMA

There are a group of results which are closely connected

with the famous infinity lemms, which van be steted thus:

The Infinity Lemma
If there is an infinite sequence Q‘l’ 02, cee
of disjoint finite se:t.s of ordered pairs of points such
that the first point of each pair in Q,,, (1=12..9
is the ssme as the second point of some pair in Qi’
then there is an infinite sequence of points Pl, P2, ves

gsuch that (Pi’ P...) belongs to Q,, for every i.

i+l

Consider the set of finite paths each of which consists
of a member of Ql followed by a member of 0,2, and so on.
The set is infinite since each member of each Qi’ for every
i, occurs as the last edge of some finite path. Hence, there
must be at least one pair (Pl’ Pz) in Q, which occurs in
infinitely many finite paths. All these finite paths must
contain as the second edges finitely many (P2, PB) in Q,
and hence there must be some PB guch that there are infinitely
many finite paths which begin with (Pl, P2) and are followed
by (PQ’ PB) . Continuing thus, we get the desired infinite
sequence Pl’ P2’ «s.y Which makes up an infinite path.

To emphasize the nontrivial character of the infinity

lemma, consider a case where one point of level one is
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connected to an infinite number of points Al, '“2’ A)-’ ‘e
on level two such that A, goes to the (i+1)th level. 1In

such an example, there exists no infinite path.

 — ——
.
.

 —
& — S—

Lemma Law of Infinite Conj_mtiqg

Let Al, Aa, <+« be &n infinite sequence of propo-
sitional formulas such that for every n, there is an
assignment of truth-velues which makes Ll, AQ’ crey An
simultaneously true. Then there is an assigmment which

makeg all of Al’ Aa, «+s  8imultaneously true.

PROOF: Using infinity lemms.
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Konig's Infinity Lemme

D. Xénig, Theorie der endlichen and unendlichen Graphen, Leipszig, 196,
(Reprinted by Chelsea, 1950), pages 81-85.

Translated by Anthony Sholl

Thm 6: (Unendlichkeitslemma): Let Mys My Tmyers be s denumerably
infinite sequence of finite, nonempty, pairwise-disjoint
point sets. The points contained in the union of these sets
are taken as the nodal points of a graph G . If now G
has the property that each peint of "n+1(n =1,2,%...) 18
connected to some point of = by an edge®*of G, then G
has at least one simple**, infinite peth Pl P2 P, ceuy

3
vhere P (n =1,2,3...) is a point in L

For the proof of this theorem we shall call a (finite) peth in G
points

an S-path if its { .
are infinitely many S-psths in G, in fact, with the exception of the

points of X, every node of G is the terminus of some S-path. Each

1 belong by turns to Ny Tgseees Ty There

S-path begins with an edge which connects & given point Pl in Y with
a point x2 in . Since there exist only a finite number of such
edges, one of the edges, say Pl P2, must occur in infinitely many S-peths.
All of these S-paths contain as their second edges one of the finitely
many edges 1’2)(3 where )c5 belongs to lj; hence, there must be in
a point P3 with the property that infinitely many S-paths which
begin with P1P2 also contain P2P5 . Continuing similarly, one defines
a point Ph in 0 P5 in xs,

and it leads to an infinite peth P1P2P5... of the desired type.

and so on. The process cannot terminate,

# By an edge of G is meant any path of length one between two nodes
of G .

*#A path P P,P,... is simple if for ik, Pi/-PJ .

123
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(1

only in graph theory - of which we shell give many examples later on -

The infinity lemma proved here ’ lends itself to applications not
but also in the various mathematical desciplines where often it provides
a useful method for extending certain results from the finite to the
infinite domain. Three exsmplss follow.

The first exemple concerns xindredship, which, in the form of the
genealogical tree, provides an old aud well known application of graphs.
We show namely that if orne takes as typothesis that mankind will never
become extinct, then there exists some person, alive now, who is the

. . . . 2
ancestor of an unending line of aescendents( )

let El be the set of persons alive at tnis moment; E2 the set

of children of members of El; E5 the set of children of members of
E2; and so on. By the hypothesis atove - and because of the finiteness
of human life -~ none of the sets El’ Eg, EB"" is empty. Since a
given person can have only finitely many children, it follows from the
finiteness of E1 that all the sets Ei are finite. With each element

in a given set Ei let us associate a point so that the set E, and

i
the point set ny correspond one-to-one (i = 1,2,3,...) .(5) We take
the points of these sets n, &s the nodes of a greph G . A node A
from "n+l will be connected by en edge of G to a node B from xn

if the person corresponding to the point A is child of the person cor-
responding to point B . Other edges are not admitted. The graph G

go defined and the sets L] sartisfy the conditions of the Infinity Lemma.

Applicstion cf the lemma yilelds, therefore, an endless seyuence
a,, 8., 85,.., with the property that &, is an element of Ei and

1s a child of ai . Cousequently, a is & contemporary person

8541 1

of the desired type.

(1) This proof, as does the one abtove of theorem 3, uses the axiom of
choice. In most applications of the infinity lemma, however, the use of
the axiom can be avoided. We shalt not go into the matter further here.
(2) This says more than the assertion simply that there exists a personm,
allve now, who has infinitely many descendents. That goes without saying.
{3) An 1nd:viduel cen belong to more than one of the sets. E, . In that
cese we let aim correspond to different points according as hé is con-
stried as a mempber of cwe or anocther of the “generations" Ei; the L
are then disjoint.
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By s similar consideration, one can show that the existence of an
endless male line follows from the interminability of the male sex.

Many instances of application of the Infinity Lemme are applications
of an anslogue of the Borel covering thecrem. It seems interesting to
notice, therefore, that from one point of view the Infinity Lemma may be
conceived as the real bvasis of these "Borelish" theoreus. We shall pro-
ceed to reduce to the Infinity Lemma the following theorem of de la Vallee
Poussin which clearly subsumes Borel's theorem as a speciel case:

Let E be a closed subset of the interval (0, 1) and I,
a set of intervals so coustituted that each point of E is
contained in some one of these intervals. Then there is a
natural number n such that if one partitions (0,1) into 2"
equal subintervals, those subintervals which contain a point
of E are (themselves) included in some interval belonging
to the get I .

If the theorem were faise, then for each < value of > n, there
would be at least one subinterval (E;‘, m—f),
2, or ..., or 2° -1, which confaing a point of E and is included
in no interval belonging to 1 . We designate the set of these subinter-
vals by En . With each element of the set Ei we associate & point in
such a manner that E] and the point set =«

where m is O or 1, or

1 are in one-to-one corres-
pondence (i = 1,2,3,...) . We +ake the points of these sets " as the
nodes of a greph G . A node A from LY is connected by an edge of

G toe node B fram L in case the interval corresponding to A arises
from the interval corresponding to B by bisection; other edges are not
admitted. The graph G so defined and the point sets Ty satisfy the
conditions of the Infinity Lemma. Application of the lemma gives the
following result. There exists an endless sequence of intervals,

a, a,, ‘5"" which all

1° Arise from predecessors by bisection;

2° "Contain a point cf E

}o *Are included in no interval contained in I .
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Then, however, the pcint & common to the intervals 815 8, aj,... is
conteined in no interval which is a member of I . But that is impossible
because by the closure of E, a belongs to E . (This proof makes use
only of the theorem on nested intervals, .ot of the Bolzano-Weierstirass

theorem, and it remains valid for the plane, 3-space, etc.).

The third application of the Infinity Lemma is based on the following

so~called Baudet conjecture proved by van der Waerden.

a) If k and ! are two arbitrary natural numbers, then there
is a number N (which depends on k eand ) with the property
thast however one partitions the set 1,2,... N into k pairwise
disjoint parts, one cf these parts contains an [f-termed arith-

metic progression.

We do not prove this theorem here tut show that it is equivalent to the
following theorem:

Y If %X and ! sare arbitrary natursl numbers and if one parti-
ticons the totslity of natursl numbers entirely arbitrarily into
k pairwise disjoint parts, at least one of these parts contains
an (f-termed arithmetic progression.

It is clear that PB) follows from J). The converse of ‘this assertion
goes through with the help of the Infinity Lemma as follows. We consider
as the set En those partitions of the set Zn = 1,2,..., n 1into k
disjoint parts which are so constituted that none of the < corresponding >
k parts contains an (-termed erithmetic progression; En is, of course,
finite. If we assume tnat theorem «a) is false, then none of the sets
En is empty. We associate points with the elements of the sets En in
such a way that the seis En and the point sets x, are in one-to-one

correspondence (n = 1,2.). A point of is connected by an edge

n
to a8 point ., it the corresponding elzzznts A of En+1 and B

of En stand in the following relation. The partition B of Zn arises
from the partition A of Z . by the deletion of the number "nel”,

The graph so defined and the sets " satisfy the conditions of the
Infinity Lerma, which epplied, yields an endless sequence Al’ A2, A)'

with the property that, for each
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1° An “is an element of En;

2° 1Two numbers which belong to the same block of the
pa-tition An also belong to the seme block of the
partition An-
A

1 (therefore also to the same blocks of

oo’ An__,j,...) .

If one assigns each pair of natural numbers to the gsame ciass if and
only if these two numbers belong to the same block of some partition An
(therefore to the same block of all partitions A, in which the two
numbers appear) he obtains a partition of the natural numbers into k
disjoint parts < where the blocks of this partition are the "classes"
cited above > . By theorem 8) one of these blocks contains an f-termed
arithmetic progression. If N is the largest number of this progression
then this sequence must already be contained in some block of the parti-
tion AN which belongs to the set EN . This condition contradicts the
definition of the sets En . (One sees that this proof of the equivalence
of theorems «) and B) remeins valid when instead of arithmetic progres-
gions other classes of finite sets of numbers are taken into consideration,

for example for geometric progressions, etc.)
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Godel Completeness Theorem (See sisc Church §ik)

THEOREM: Every valid wff of the first-crder predicate

calculus is & theorem

PROOF:

A wff is velid iff its Skolem Normal Form is valid,
provable iff its Skolem Normal Form is provable. Therefore,
it suffices to consider ocniy formulas in Skolem normal form.
Further, we may assume that the first quantitier is an exis-
tential, since if not, (Ey), where y is new, cen be pre-

fixed.

OUTLINE OF PROCF:

From A we will construct a s=quence of formuls-
Bi, Bé, «.. of the propositional calculus such that:
(a; If for some k, Bj V...V Bﬁ is » teutology,
A is a theorem.
(b) If there ir an assignment of truth-valu:s which
makes ~ B{, ~ Bé, -

then there 1s an interpretation which satisfies

simultaneously <rue,

~ A, that is, A 1is not valid,
(¢) But by (the law of infinite conjanction proved
by) the ivfinity lemme, either for some k,

'V B!V ... ' . .e. ~ B
B, V B} v B, 1is a tautology (i.e B,
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&~ Bé & ... & ~fB& is & contradiction) or

there is an assigrment %hich mskes ~'Bi, ~ Bé, ces
simaltanecusly true.
Thus, to prove the theorem we need only show how to
construct By, Bé, ... and prove (a) anmd (b).
For, by (a)-(e), A is s theorem or A is not -alid,

i.e., A valid = A theorem . Let the given formule A

be
(Eyl) eee (Eym)(zl) ves (zn)M[yl, covs Ypo Zys cres zn]
where Yys eees Ipr Zyr tves z, are all the varisbles of M .

An ordering of m-tuples

We order all m-tuples of natural numbers ss follows:

(11, cenp im)
comes before
Gy wen )
if
(1 (1l+ e + im) < (.jl+ cee + 35

or

(2) () + wen 1) = Gy + oo+ 3)
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and
i = oo = i 3
3o e = N S

for some k . Exsmple for m = 3:

{0,0,0)
{0,0,1)
{0,1,0)
(1,0,0)
{0,0,2)
{0,1,1)
{0,2,0)
{1,0,1)
{(1,1,0)
{2,0,0)

{0,0,3)

.
Let the k”h gih m-tuple be
kL), [k2), eesy [Em))

{mtn) -tuples

From the Kl m-turle we Torm an associated (m+n)-

tuple:
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({x1], [¥2], ..., (km], (k-1)ntl, ..., kn)

k=1 m=3 000}1 2
2 n=2 ool1}3 &
3 o10}5 6
" 1007 8
5 oo2)910
6 011l

motivate by prefix of = A interpretation in domain natl.

nos.

g 1
Definition of Bk’ Bk’ Ck, Dk

Let Bk be the result of substituting the new

variebles:

x[kl], x[k2]’ caey X[m]’ x(k'l)ml' csey xkn

£OT  ¥ys Yor vecs Vo 2y cces I in M. B s M[xl,
X0 Xgr Xo x8] . ’

Let By be formed from B, by replacing l'i(...) vy

pFL( ) uniformly. I.e., to each atomic formula assign &
unique :tatement letter of the prop. calc.,

V...V .
Let Ck be Bl BK

Let D, be (xo)(xl) (xlm)ck i.e., the closure
of Ck .

are new and distinct.

Note that the variasbles substituted for the z's
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(a) Lemma: For every k, b I'kDA .

Proof by inductior on k .
Basis: | D, 2 A

(1) @) MF; 72 (Ey) (2 My; 2]

ar nt:

B(x) 2 (8x) B(x) (x)B(x) 2 B(x)
and prop. calc.
Axiom L

(DM > @) @

(3y,) (@M > @y, ) (Ey,) (@)K

@yp) .. @) EDM> (@) ()M
and (A2 B) A (BDC)DADC prop. calc.

and M.P.

- -
(2) (z)M[xo, vy X3 2] DA

0
argument, :
- -
(Z)M[Ylv R Ym; z] DA (1)

(ym)((z)Ml Yyr eeer Vi 2132 A)
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(ym)((?)M[yl, ooy Vi z12 a)

-l -
D, (2)MIyy, sees Y a9 X0 2] DA
1 m-1* 70 Ax. 4 (no x

quantifiers)

0

-
(:)M[yl, cees Vg2 Xgi 2] DA MP

do this m times.

() (xl) (xn)M[xo, cder Xgi Xpy oeeey xnID A

change of bound varisble n times.

() (xo)(xl) (xn)M[xo, eep Xl Xpp eeey xn] DA
ar nt:
(xo)[(xl) (xn)MD A} GEN

(xo) (xl) (xn)MD (xo)A f)l::;xz;‘l‘vaag;l}!?
> ((x)A > (x)B)

(x){x,) .v0 (x )M A by Thm. 9
(¢} 1 n (X)A = A
and Replacement
X not free in
A L)

Induction Step

Assume |- D _, A end show I-—DkDA .
Note that C,_ is (ck_l v nk); D 1s (xo) (x‘m)

(c v Bk) .

k-1
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F 0> (xg) woe Grpeanyd Gy ¥ Cgeaymed) =
(xlm) Bk) Axiom 5

X(k-1)n+l ...
(xkn) are not

free in ck-l .
(They were z-
values, new at

Kt m+n-tuple.)

(x){~ A(x) @ B(x)) 2 ((Bx) ~ A(x) = (Ex) B(x))
Theorem &

(x)(A(x) V B(x)) @ ({x)A(x) v (Ex) B(x))
by teut. from
Theorem L.

- D > (xo) (x(x-l)n)ck-l v (Exo) :zh:zcan:'e

cee (m(k_l)n) (x(k-l)'l"‘l) see (an)sk

+ D, 2 (D, Vv A) Alph. change
: 1, vbl. (m+n) .

[ D DA P:op. calc. and
hypothesis
> v
D, (Dk_l A)

A D, Vv A)

>
DkA

Now “f Bi V..V B\'( is a teutology, any instance of
it is a theorem, hence B1 Voo v Bk is 8 theorem.
But this is C,_ . But then by GEN, D, = (xo)
(xkn)ck is a theorem. Hence by the sbove, and MP,

A is e theorem.

{p) Suppose there is some a:ssi;nment of truth-values

which makes ~ Bi

» ~ é, .+ similteneously true.
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From this (master) assignment we construct an inter-
pretation (in the domain D of the natural numbers)
which satisfies ~ A .

To the g-adic predicate letter F assign a
q-place relation R, as follows: If Pp(x IRLLY

1l
X, ) receives true, or is unassigned, in the master

i

asgignment, put (11, ceny iq) in Ry . Otherwise
<il’ vess iq) ¢ Ry . This interpretation makes ~ A
true, hence A false.
Proof: ~A is (yl) . (ym)(Ezl) vee (Ezn) ~M.
Consider an arbitrary m-tuple of elements of D,
say the kth m=tuple. We must show that there
exist other elements of D such that ~ M.,

But the k™' (mtn)-tuple gives us the other
elemonts: (k-1)n#l, ..., km . For ~B 1is

true under the master assignment to the pF(xi

xj), and the interpretation gives F(i, ...,
j) tte same tv as pF(xi - xd); hence, under
the interpretation ~ M[[ki], ..., [km], (k1)

nrl, ..., kn] 1is true.

Corollary: (Skolem-Lowenheim Theorem) If A is
satisfiable, then it is sstisfiable in = denumerable
domain. [By soundness. ~ A not
satisfiable in denumerable domain = |- A= ~ A not

satisfiable in tay domain.])
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Corollary: (Herbrand Theorem) If A is a wff in

th k
SNF and if B, (subst. k' (mtn)-tuple) and Ce = ViaiBy
are a3 above, then A 1is # theorem iff there is some
k such that Ck is an instance of a tautology.

Note that this yields a proof procedure.

13



Remarks on the Completeness Theorem

Alternative proofs and reasons for this choice.
Constructive. Gives the domain.
Applications.

Examples: Non-theorem

Theorem
Note why this does not yleld s decision procedure.
Proof procedures.

Theorem-proving by computer.

non~-SNF: Enumerations.
Consequent complications of proof.

non-PNF: Herbrand Theorem.

Decisicn tables

Reduction to monadic for (Ey) (zl) (zn)

Solveble prefix cases.

Reduction classes.

Interprovability of

(x) (y)M (Ex) (y)M (Ex) (Ey)M
(y) (x)M (Ey) ()M (Ey) (Ex)M
(x) (By)M
(¥) (Ex)M

11k



Satisfisbility in & Denumerable Domain D

Remark: By the Skolem Lowenheim Theorem, which followeda as

a corollary of the proof of the Godel Completeress Theorem,
a formula A is satisfisble iff it is satisfieble in some
denumerable domain.

Therefore, we consider a way of attempting “o satisfy
a wff A {in a denumersble domain: i.e., of trying to fird
an interpretation which makes A true. By the result on
the Skolem Normal Form we need consider for provebility only
formulas of the form ‘~'z) (Eym)(zl) (zn)M,

M g-free, hence for :.tisfiability only formules of *he fore.
(%) (vy) oer () (z) «ov (2)M, M g-free .

In order to satisfy (%) we must find an interpretation, i.e.,
a denumerable domain and an assignment of relations 1o the

predicate levters of M, such that (*) is true under the

interpretation.

Decision Tables

An example: consider the wff

(x) (Ey)¥

where M is ~ F(x, x) & ~ F(x, y) and suppose we wisghed
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to show that this is satisfieble in some denumerable domain.
We must find some .relation RF to correspond to F .

The formula must be true, i.e., for every a € D,
there must be some b < D such that ~ F(a, a) & ~ F(a, b) .
We represent the problem by a Decision Table (Church): As
heading we put first the individual. variables, then the

atomic formulas.

x y F(x, x) F(x, ¥)

Now for any |8 € D, there must be some b such that:

a b F(a, a) F(a, b)
0 0]

iees, (s, a) ¢ Ry (s, b) ¢ Ry

EXAMPLE

Satisfisbility (in a denumersble domsin D ) of
(x)(Ey)-M, where M is a quantifier-free matrix which
contains at most the atomic formulas F(x, x), F(x, y),

F(y, x), and F(y, y) .

x ¥ F(x, x) F(x, y) F(y, x) My, )

0 1 F(o, 0) F(0, 1) F(1, 0) F(1, 1)
1 2 -

Suppose M is F(x, x) V F(x, y) . Then -M is -F(x, x)
& -F(x, y) . To satisfy (x)(Ey)-M, we must find some

relation to correspond to F for which the formula is true.
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We need 8 relation R such that for every element a D
there is some element b D such that (a, a) R and
(s ®) R.

Using the decision table we can find such a relation:

a2 b F(a, a) Fla, b)
0 0

0 1 o} 0

1 2 0 0

In this cast it is clear that the empty relation R will
satisfy the formula. Hence, since the negatlon is satis-

fiable, the formls (Ex)(y)M is not s theorem.

117



Cowputer Science 208

SET THRORY
FEFERENCES
Neive Bet Tleory
Bourbaki, I. I. Théorie des Ensembles
" Fascicule de Resultats, Hermenn,
Paris, 1950.

#Cantor, ‘Transfinite Numbers, Dover, undated.
(Original Germen editiom, 1895-97.)

Hausdorff, Set Theory, Chelsea, 1957.
(Translation of 1957, third Germen edition).

Kamke, The Theory of fets, Dover, 1930.

T
Kelley, General Topology, chapter O,
van Mostrand, 1955.

Mendelson, Introduction.

Axiomatic Set Theory
*Halmos, Maive Set Theory, ven Nostrand, 1960.

Kelley, Appendix.
Mendclson, Chapter b.

Weng snd McNaughton, Les Systémes Ax,s_e%;xms
de ls Théorie des Ensembles, Gauthier-
Villars, Psris, 1955.

118



WAIVE SET THEORY

A set is » collection of objects, Cantor: “A iet

is o collection intc a whole of definite, well-distinguished
cbjects of our intuition or of our thought.”

The chjects in the collection are called elaments or
mesbers of the set. x €y for x 1s e meaber of ¥ .

~(x €y 4is written x ¢y .
A set x is » subset of y .if every member of Xx

is also a member of y . xSy .

To give w set, liat its members

x = {0, 1, 2]

x={0, 1,2 ...} ;or
uss a defining property
y = {xla(x)]
where A(x) 1s s predicate with only x free
y = {xix is a prime number] .
Unit set or siugleton is a set with one member. {3

Importance of the distiné¢tion between member and

subset. x € Aw (x} C A . Example:
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The smpty gt is a set with nowembe.s. f er [ ) . Note
that § 14 not the same e () . In fact, Pe g .
Alse, #C {f) .
Sat egquelit;
x=y iff xSy and ySx .

or,

(z)(sex®zey) .

Union intersection

xUyw{elzexvzey)

xNy={elzexAzeyl

x end y are digjoint iff x Ny =6 .
Complements

~ A= (xlx ¢ A)
x~A=(yly exAy ¢l

Theorem: PSAABCSACAUD
Theprem: lLet AC X, BSX. Theu AT B iff

ANBuA iff B=AUB §ff X~BCX~A iff
ANX~Buf iff (X~A) UB=X.
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Theorem: Let A, 3, C end X be sets. Then

(8) X~ (X=~A) wmANX

(t) (Commutative laws)

(¢) (Associstive laws)

(d) (Distributive lews)

AUB«BUA

ANB=s2NA

AU(BuC)={AuB UC

AN(BNC) =)ANNK acC

AN{(BUC) =(ANB) U(ANC) +and
\

AU (BNC)

{e) (4e Morgan's lews)

X~ (AUB) = (X~A)N(X~3) end

X~(ANB) « (X~A) U (X~B)

(d) AN(BUC) =(ANB) U (ANC)

xeANBUC)®xcA& x e (BUC)

® xcA & (xeB V x¢C)

® xeA & xcB V xeA & x¢C

®xecANB V xeANC

oxe¢e(ANB) U(ANC)
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1he caraina.

numtsr ol a set of r elzmen's 1§ & Th=

cardine: rumrer of the empry s<t 1s O

INFINITE SETZ

DEFINITION:

DEFI! "TICN

DEFINITION.

LEFINITION

REMARK :

LETINITION

Reproduced from
best available copy

Two sets A and B wre €guir.mcrous (A - b

it't thelr elements can be DLl intl OLe- -Lfee 07

I

r-syporderce (1. , fthere 18 3 oL One fun~lion

¥ with range FE s8rnd aora.r A

A snd B have tr- same cardinal nunuer LUU

A~ . if A~ CTB and ot b A'CA
rhern the cardinal number oY A is less " ran
~he cardinal number of B A - .ard A

cardiual ramver of A

(I~dekind, A set is infinite 1f 1* 1S5 =q.i-
rumerods with some proper subszt of itself

O*nerwise it 18 finite

A set 1s fipite 1f it is =mpty or if 1t 1s
cgquinumercus with the set {C. e 2, .,
of a:l ratural numbe s l=sB i1han positive

integer n . Otherwise it is infinite

The two definitions are equivelernt, bur the
proof of tneir ~quivelence requires th=s Axiom

of lroice

A set is denumerable or countatly infinite af

it 1s equinumerous with the set of all naturai

numbers. A denumerable set is s§813 10 have

cerdinaiity % .

22



DEFINITION A set is countgble if it is finite or count-

ably infinite.

DEFINITION: A set is uncountadle (nondenumerable, onon-

enumerable) if it is not countable.

THEORENM 1: (Cantor) The set of gll retionsl numbers is

countsble.

PROOF: We can imsgine te be written down in order of magni-
tude, first, all whole nusbers, i.e., all numbers with
denominator 1; then ell frections with denomingtor 2; then
al. frasctions with denominator 3, etc. There arise in this

manner the rows of numbers

1 2___3 bo—..
1 2 /2/-
2 / 2 ?
Py 2 /l L3
3 3 3 3 o

FE
£
s
e

If we write down the numbers in the order of succession
indicated by the line drswn in (lesving ocut numbers which

are equal to ones which have alresdy occurred), then
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every positive raticnal number certainly sppears, and only
once. The totality of these rational numbers is thus

written as a sequence
1, 2, /2, 1/3, 3, &, 3/2, 2/3, 1/k, ....

(This is Cantor’s first disgonal srgument.) If we dencte

the above sequence by

then

0, -r r., -r r
4

1’ 2? PO

is an enumeration ot all the rational numbers.

DEFINITION: Power set The power set of a set x is the
set of all subsets of x . F(x)
AcPx)mAcx® (x|xeA » xex) |

Ezsmple: The set {0,1) bas power set ({ ), (0],
(1), {0,1)). Note that for a finite set of
n members the sire (cardinal number) of the

pover set is Zn .

DEPINITION: We have dencted by Xo the number of integers.
It is natural to denote by 2x° the site of
the power set, that is, the number of sudbsets

of integers.
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0
PROOF :
. ntegers
Z ; 4 y
subsets “
o o]
S1 1 v y .o
82 0 1 i 1 if the
integer
S5 1 i C is ir the
subget, O
. otnerwise.

Now, diagonsalize -- construct a set not in the list.

X eS: ®x§ 5,

THEOREM: The set of reals is wncountable.

PROOF : Seme. I1st,
r, o 9 i 0
T, 8 1 3 1
b g

then the diagonal can be modifiec¢ to give a real which

differs from tne nth real in the nth

N
2 1f a‘" =2
Set d =

\ "
nT g ogp &PV g

125
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The principles Cantor employed had
previously been used for argumeats about finite sets. He
was the First to extend them to infinite sets, His work
met with some disapproval snd distruat, but his srguments
appeared sound.

But, in 1902, the theory of sets wss challenged by

the discovery by Russell of e persdox.

RUBBELL's PARADOX (1902)

With the notetion of naive set theory we can write:
v = (x]x ¢ x)

80 y is the set of all sets which are nut mesbers of

themselves. Is yey?

If yes, then y € y, hence v elx|x £ x) hence yéy.

If no, then y £y, hence y #lxlx ¢ x} hence yey.

What's wrong?



AXIOMATIC SET THEORY

A result of the discovery of the paradoxes of naive
set theory wes an ettempt to sxiometize set theery. Since
it was clesr that te rely on the intuitive netien led to
paradex, the solution eppesared to be to state precisely the
axlomatic bagis for the theory. The basic preblem sppeared
to e that we cannot consider sets which are too big. There
are seversl such axiomatizstions which so far appear to be
conaistent (contradiction-free). The most impertsnt of
them ure the system EZ-F of Zermelo and Fraenkel. end the
system NGB of von Neumann, Gedel, and Barnays. By Godel's
second incompieteness theorem we know that no such systea
can be proved to be consistent (without using wethods which

are in some sense more powerful than those of &et theory.)

Problems with sets which are too big.

So meybe we should start with very amall sets (which
we can understand), and build up slowly in ways that seem

reasonable.

Axioms of Set Theory

The asystem Z-~F below is due to Zermelo and Fraenike).,
(The mejor alternative NBG (von Neumann, Bernays, and

Gedel) 1z given in Mendelson. NBG distinguishes between
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sets (which may be elements), snd glagses (which cannot be
elements)).

Notice that all axioms after the first assert set
existence.

Ve stert with predicste calculus, and introduce ¢
a8 a nev primitive symbdol.
1., Axlom of Extension

xuyD2(W{xew @ yew

Cmpare the definition of equality (z){(z ex= z e y). A
set is determined by its elements. That is, if two sets
have the ssme members, then everything true of one is true

of the other.

2. Axigy of Unerdered Pairs
Given sets x and y, (x,y] 1is s met:

(EBw)(z)sew ® (gux V £=y))

Nete that e3 a specisl came (x) exists.

3o Tever et Axion
L Por any set x, the set of all subsets of x (the

pover set of x ) exists.
B xey ®» (Wvex D wez)l

ENE)Ixecy = x€z]
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Reproduced from
best available copy

or

T2V EyYy = Ty

4, Axiom of Unions

X EyMxMx ey = ‘MNx o . & woe 2))
or
2V Ey)ly - Ui,
5. Ausscnderungsaxion faxiom 2% Svezificatizn or Subsets)

Given & set 2z and a predicate Alx) {oz

not containing free y, there 15 3 g.bset o1 2z containing

ui
3

a.? and only those sets x  s.in “na% ~ox} 1S true
(x* Ty x¥x ey = xez2 & px"M

Compare ‘his w.tfn *ne naive nol.orn

Iylalytl

»
"

See now this resclves the Russe.l paradcx, This gives the

null set.

6. Axicm of Infimity

There 1s a set wnich c¢ov alas the enp*y set and wnlcn,

for every menber ¢t %, centsing 3is8C *hne unit set
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Ee)(fez & (x)(x ez O (x}ez)!

7. _Axiom of Reguisrity (Fundie saxiom
Any nonempty set x contains e set y which is e
minimal element.

EB)(yex) @ EBy)iyex & ~F)zex & z eyl

8. Axiom ef Substitution (or Replacement) (Ersetzinggexiom)
Jf the domein of a 1 - 1 function is s get, so is
the range.

1t A(u, v) 1is a function, i.a.,

) () B ([Ax, y) & Az, ]2 (x =2) 8 (y=w)

then, if thers is a set of sll sets u such thet
(Bv)A(u, v), then there is & set of all sets v such that
(Bu)A(u, v) .

9. Axiom of Choice

I1f x 1is & set of non-empty disjoint elements, then
the union of x has et least one subset u having one ant

only one element in common with each member of x .

(P ()([yex & 2z ¢ x)
S[{(vey & ~(Bw)(wey & wez)l)

S(Eu(y)yex D EB)()(t=v & teu & teyll)]
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The Cartesien product of a non-empty family of non-

eapty aets is non-empty.

Axiom of Choice iAxCh}

If «=A = @ is 8 function defined for all o ¢ x,
then there exists another function f{@) for o ¢ x, and
fla) e Au .

This allows us to do an infinite amount of "choosing"
even though we have no property which would define the choice
function and allow us to use Replacement instead.

We used AxCh in the Completeness Proof:

(x) (Ty) A(x, y)

then

(@£) (x) Alx, £(y)) .

The existence of the Skolem function f follows from the

Axiom of Cholice.

Alternative Formulstions of the Axiom of Choice
1. The Ca'r‘.tesim proeduct of a non-empty {amily of

non-empty sets i3 non-empty.

2. G@iven a non-empty cless K of disjoint non-empty
sets there exists a function f with range K such that

£(x) € x for all members x of X .
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This is proveble by induction for finite K .
A cheice functien. Intuitively, the funetion f

selects ene element of each member A of K.

3. Well-ordering principle. Every set can be well-
ordered. A set is well-ordered if every non-empty subset

has a leazt element.

b, . lesms. If X is a non-empty partially-
ordered get such that every chain in X has en upper beund,

then X contains e maximal element.

Axieqy of Chojce
Of the axioms of set theory, the AXIOM OF CHOICE

(given @ family K of disjoint non-empty set I f such
thet f(x) ¢ x for each x in K ) has seemed alvays to
be less intuitively obvious than the others. Its expression
is more couplex and does not seem reducible to more basic
notions. It has not been obvious thet it might not be
either contradictory--or else perhaps derivable from the
others.

In 1939, Godel, in a paper in the Proceedings of the
Netional Academy of Sciences, followed in 1940 by an orange-
covered publication, entitled, "The Consistency of the Axiom
of Choice and of the Generalized Continuum Hypethesis with
the Axioms of Set Theory," generally known as "The Menograph,"

proved that if the other sxioms of set theory are censistent,
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then set theory remsinz consistent if the Axiom of Choice
anid the Generalized ‘ontinuum Hypothesis are added.

Then, in 1962 63, Paul J. Cohen of the Mathematics
Depertwent at Stanford University proved another equally
importent snd interesting result. The Axiom of Choice 1is
in fact independent. That is, the axioms of set theory, if
consistent, remain so, even if we assume that the axiom of
choice is false. This shows, of course, that the Axiom of
Choice 1s not a consequence of the other axioms, Further-
more, the continuum hypothesis is independent from the
Axjiom of Choice.

The proof of these results is beyond the scope of

this course. See Psul J. Cohen, Set Theory and the Cortinuum

wthﬂsi.’ W. A, knj.m’ InC., New York. 1966.

Let ¢ = power of the continuum = 2 ¢ .

Continuum Hypothesis
There is no A such that

E N
N<h<2®,

godel, 1939. Relative consistency of (AxCh) and GCH.
Cohen, 1963. Independence of AxCh and GCH and of OCH from

AxCh. Cochen believes (CH is false.

PROOFS: by constructing models for the axioms of set theory

which satisfy AxCh, GCH (Godel) violste AxCh, GCH (Cohen).
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Computer Bcience 208

ALQORTTHVE

DECISION PROBLEM (Entscheidungsproblem): Find an effective
method to determine for eny wff @ of the first-order
predicate calculus vhether or not @ is ¢ theorem.
Suppose we hed & suspicion thet this wes impossidle
-=that there was no effective wvay of doing this; that there
vwes no effectively calculable function f which when applied
to a number 2 representing & would produce 1 if | @,
0 otherwise. How could we prove this?
Notice first that effective or effectively calculable
is a good intuitive notion:
1. Some processes are clesrly effective. (Deduction
theorem, truth-tables, etc.)
2. Of other functions we can certainly say that we
don't know enough sbout them to tell.
But to prove that some function is not effectively
ecalculeble we must have 8 precise notion. BSuppose we meke

some essumption in the form:

THES1S: Every effectively calculsble function is

or

Every effective procecs is
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vhere the blenk 1is filled in by some precise notion. Then
we would be able to prove--to everyone who accepted our
thesis--that certein functions are not effectively calculeble.

The proofs will all be relstive to the thesis. And.

the thesis itself is not subject to proof since it involves
an intuitive notion. We cannot prove the thesis. But we
can give what is called "the evidence for the thesis®.

Most people accept the thesis to be presented. Notice
that even if you do not, the proofs which will follow are
still proofs--but they must then be qualified as relative
to the thesis.

The THESIS has a number of versions. Perhaps the
strongest evidence for it is that they are all equivalent,

even though they have arisen under quite varied circumstances.
TURING'S THES1S: EVERY EFFE.TIVELY CAICULAELE FUNCTION s
COMPUTARLE: BY A "JKING MACHINE.

CHURCH'S THESIS: EVENY EFFECTIVELY CALCULARLE {partisl)
FUNCTION IS GENERAL (pertisl) RECURSIVE.

MARKOV'S NORMALIZATIUI: PRINCIPLE: Bvery algorithm in ean
slphabet A 15 fully equivalent relative to A teo

some normal (Markov’ elgorithm over A .

8imiler, and equivelent, theses can be stated for Post

aorwel systems, and for A-definability.
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ijw .yv'dence for Church's thesis gmp

(A) Heuristic evidence

(Al) Every particular effectively calculable functionm,
& cvery operation for defining s function effectively
f.oom other functions, for which the question has been

investigated, has proved to be general recursive.

(A2) The method: for showing effectively calculable
functions to be general recursive are developed to a
degree that it 1s impossible to imagine any effective
process for evelusting a function which could not be
trensformed by these methods into a general recursive

definition of thr functiem.

(A3) Every attempt o get a function outeide the cless
of general recursive function has either (1) not lead
outside, or (2) given & function which is not effectively

calculable.

(B) Equivalence of diverse formulations

(BL) As discussed above.

(B2) Stability of each of the notions. The several
formulations of each of the main notiona are equivalent.

(To be shown for Turing machines.)

(C) The direct formulation of Turing machines from that
of effective process.
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Ilet us first consider inforwslly the criteria which wve
wouia expect of an effective vrecedure. We 1look et the
notion of algorithm, an effective process which always
terminates.

An slgorithm is a clericel (i.e., deterministic :nok-
keeping) procedure which cen be applied to yny of a certain
class of symbciic inputs, and which will eventually yield,
for each such input, a corresponding symbelic output. We
limit ourselves here to algerithms which teke as input
integers (or k-tuples of integers), and whigh output integers.

Well-knowp exsmples of slgerithms ares

The sieve methed for finding the n-th prime number.

The Euclidean algorithm for finding the greatest commen

denominater of x aend y .

The following are some essential features of the infermel
notion of algorithm (see Rogers):

*1. An algorithm is giver. a8 a finite set P of

instructions.

*2, There is a computing agent L, frequently human,
which rescts to the instructions and carries out
the computation.

*3. There are fgcilities for meking, storing, amd
retrieving ateps in a computation.

#4. The sgent L reacts to the imstructions of P
in e discrete stepwise fashion, without using

continuous methods or asnalog devices.
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*5. The cemputaties is carri~d forward deterministically
--there are ne rendom elemenés to be considered.

It is clear that the motion described contains a strong
analogy to the descriptien which could be made of any compu-
tation carried out by a digitel computes. The notion of
Turing machines dates back to 1936,

In eddition to the criteris 1-5 sbove, there are other
possible requirements which we might impose on the notion of
slgorithm. These requirements cencern bounds on space snd
time. For exsmple, we might (but do not) require the
following:

6. A fixed bound on the sizs of inputs.

7. A fixecd bound on the siz. of the set of instructions.
8. A fixed bound on. the amount of storage space avail-
sble.

9. A fixed bourd on tae length of the computation.
However, because it is posasible to show that many functions
which one would generally agree can be corputed by algorithms
cannot be computed withinm these restrictions 6-9, these are
not to be taken as part of our informal definition.

By accepting one or mere of €-9, one can define inter-
esting subclasses of funciiens and machines. These are teing
increasingly studied.

Even without 6-9, the getion above does place strong
limitations on the capacity eand ability of the comput ing

sgent. The agent can be restricted te
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i. Clerical operations suck as
read & symbol
move ohe symbol at a time backward or forward in
the computation
move backward or forwerd through the instructions

write a sywbol
ii. Fixed finite short term memory

144, Fixed finite set of simple rules determining the
operation to perform, and the next state of the
short term memory.

We now describe the Turing machine, and will claim

(Turing's thesis) that it formalizes the sbove notion.

Befinition of a Turing Machine

Informsl
A Turing machine carries out its operatioms on a two-

way potentielly infinite tepe which is divided into squares:

Fig. 1 (Davig)

By potentialliy infinite we mean that although the tape is

at any time finite in length, additional squares can slweys

pe added st either the right cor left-ruad end of the tape.
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There is @ finite set of tape symbols S5, B, r«() 8
called the elphebet of the mochine. (Turing argues convinc-
ingly tiat a finite set must suf‘ficc, gince if the set were
infiaite, th re would have to be symbols which differed by
arbitrarily small amounts of printers' ink, were thus
"arbitrarily close" and hence indistinguishable )

The machine has a finite set of internal astates
9y Gy And at any given moment the mmchine 1s said
to be in one of these states. Fin#lly, there 1s a reading
and writing head which at any moment stands over (scans)
some squasre of the tape. \

The mschine just described acts only at discrete
momehits of time., And it is very limited in the acts it can
perform,

If at a.time t, the reading head is scanning a
square containihg a symbol éi end the machine 1s in state
q, the next sction, if any, 4f the machine is completely
determined by sn instruction set and must be cne of the
following: ‘

1. Erase 5 and print.'a new symbol and change state.

2. Move one square left, change state.

3. Move one square right, change state.

4. Btop. ‘

These actions can be repressnted by qusdruples (following

Post, rather than Turing, who used quintuples):

1. quisqu (1 way e'qual k)
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2. qJSqur

3. qJSqur

] ebsence ol any quadrupie beglnning qJS1
The symbol SO 18 taker te represet the biank  Thus the
machine always scanc some symbal

The Turing macn ne Accepts 4 niut & marked tape and
begins in state q, scanning the lel® mozt symbol Ine ou’

put is tsken to be the contents of tne tape at the time, 1if

any, wher the machine stops

Formallys

DEFINITION: A Turing machine T 1s a finite set of quadru-
ples of the above 3 Kinds-- such that no two

juadruples have the same first two symbols

(deteyministic)

DEFINITION. The glphabet of T s the set of tape sywbols

Si whichi appear in th- gquadruples of T .

so = blank = B

DEFINITION: The internal states of T are the symbols qJ
which occur in the quedruples of T 9 is

taken to be the initial state

DEFINITION An instantageous description {complete config-
aration) of T 1s 8 word such that

i All symbols but one arc tape eywbels of T
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ii. One state »ymbdol qJ occurs in the
descriptior. but is not the lsst symbol

of the description.

DEFINITION: T moves one instantaneous description « 1into

another B; a.r"b ir

and smong
a is B_is_ the quads is
Pq;8,Q Fq,5,8 44845,y
Pq,8,8,Q P984 84,
Pq, 5, P89S,
PSpa,8,Q Pq 5,840 4545,
1,89 1,863,

DEFINITION: T halts at an instantanecus description «

iff there is no B such that « ; B .

DEFINITICN: A computation of T 1is a finite sequence of
instantaneous descriptions ao, al, ceey O

such that 9 is the left-most symbol of Xy

o &, for 0<i<nm and T halts on

[0 S
m

143



Represeatation ef intégery

Let Sl be 1 .

inlml forspy m 2> O .

Let Sa e * ., tet T(Xl’ sevy X-) be @ function.
T computes f iff with input il. * EE LA ;m
T halts only on RIQJRQ with RLR2 2 Q and Q is =
By (k) Ky - o) E;Thn with R, R possibly empty words
consisting of So's only. (Mendelson)

T computes f{ Iiff with input ea ebove T halts
only on @  where (am>~ !‘(kl, e k-), wvhere for any

expression M, (M) is the number of e@ccurtences of 1 1n

M . (Davis)
Examples

Successor function f(x) = x4+ 1

Merdelson qlqug vis qluq2
q Solqs or none
Exesple
q)1La,
4501

keeps on adding 1 to the left whenever the imitial word

starts with 1
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Ipvarisnce of Turing Machines

We have given 8 perticular definition of Turing

machine in which we have specified that
the instructions are quadruples of g certain form,
the tape 1g 2-way infinite,

theve is erasing (i.e., we can overprint sny symbol
with 5, ) and there mey be any finite number of
symbols, and

there is only one tape.

Each of these conditions is inessential.

MEOMEN: A ™ with instructions which are quintuples can
compute precisely the same functicns as one whose instruce

tions ere qusdruples.

Comsent: The two formuletions are not equivalent in all
senses aince, for example, with quintuples 8 universal
Turing machine can be constructed with only two states
(Shanhon), though not with just one (Shannon); whereas with
quadruples at least thyee states are required (Aanderss).
However, the differences do not effect the clasa of functions

computed, but all concern measures for minimal machines.
PROOF:
1. Quints to guads

Replace each qisjskbq‘ by qis ,jskqi

350 Iy
5



where q; is 8 new stete. 3imilarly for
qistqum :
2. Quads to quints

Replace each qiS,qum by qiSJSJLqm
qiSJqu by qiSJSJqu .

But g inte must move, so replace each
98,8, %, by 9;5;5,1q,

q; rew and add the ! instructions

A\
qiS‘S‘qu for all B‘ .

NOTE: Advantage 1s fewer instructions.

Bxemple: f(x) = 2x Using Davis' convention
q 1 B R Q, erase extra 1
il L'R % mark 1 to 1' to indicete "copied”
a5 1 1 R
% 1" 1" R % move R to first B end write 1"
4 B 1" Ry,
q, B B L q,

N Mt L q, move L until 1 or 1' is
q, 1 1'R 9 encountered: go to A5 OF 4
1 1 L
:‘; 11 L: move to left-mast 1
1" 1' N
Z 1" 1 R:i now have Q' 1' ... 1’2" 1" ... U

qu B Lq,? change 1" 's =~ to 1l's
q,71.1Lq7 go L to Ll 's and change them
q7 1*1 L q_' to 1's

q7 B no instruction

Undar Mendelson’s convention we would skip first instruction

and’ use q for Q-
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Exsgple: f(x) = 2x in les

y By LR
Q! By
vty
LR
LR CRIR
URIRIY
o Loy
Wl R
g 1 L \ 7
R
KRG
%1t % %M %
LY
R
wi'ly vttty

THEOREN: A one-way infinite tape suffices.

Comments: Was used by Turing.

Frequently more useful in applications; the

decision problem proof uses them.
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PROOF: %914 the tepe,

L L LT T T
0-1 1.2 2-3 3%

and modify the program.

: (Weng) Erssing is dispenssble.

THEGIEN
Compgmt: Therefore, computers could get by with paper tape,
THEOREN

:  Twe-symbola suffice.

FROOP: Use a suitable encoding.

bab, baab, basadb, ...
Or use 1052 n  squares.

THEOREM: Progremmed Turing machines will de, (Wang).

- R
— L
& write o

T(a, n) conditional transfer.

To te done in detail later (S8).
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THEQREM: Two-states suffice. (Shannon)

THEOREM: Triples suffice (exercise).
Various extensions: n-tapes; n-dimensional tapes;

Jumps; ete.

A numbering of Tur machines

Since each Turing machine is formally s sat of qua-
druples, it is possible to assign numbers to them 2o that
we may refer to the n-th Turing machine. For example, we
might use Godel mumbers:

Suppose we assign to each of the symbols which may
occur in & Quadruple of some Turing mechine a distinct odd

number >3 . Vigt

3 5 1 9 i 13 15 17

o U 8 % S, «

where 4, b, ¢, 4 are the gn of the I symbols.

Example:
en(q,8,Ray) = 25115771
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Further, with a sequence Hl, Mz, C Mn af quadruples,

w- ussociate the gn:

S M) M) ()

where Pr(n) = n-th prime.

The numbering here is not unique since we have not specified
an order for the quadruples. Thus, each TM hes n! gn,

where n 1is the number of quadruples. But given these gn
we can find a unique gn for each Turing machine by simply

taking the smallest of the n! numbers.

Fundamental Theorem of Arithmetic (For proof see Appendix

t0 Davis):

Every integer x > 1 can be represented in the form

pl-'lp;z . pkm'k where the p; are unique primes. More-

over, this representation is unigue except for the order-of

| the factors. By the Fundempental Theorem, no two of the gn
which we have produced are the same.

This gives a mapping of TH into the iniegers, Nete
thet given anyA number we cen tell whether or not it is the
gn of a ™ From these numbers we can then obtain an
onto mapping by assigning 1 to the T given by the small-
est such gn, 2 to the next (unless some permutstion ef
the quads has already been counted), and so on. We shell
thus speak of the n-th TM assuming that some such serisl
numbering has been adopted.
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Universal Turing Machine)

Eech Turing mechine sppears to correspond to a
specisl-purpose digital computer. One of the uin‘ results
of Turing's paper was the descriptior of the Universal
Turing Mschine, which in a sense comsponds to = general-
purpose machine., The UTM, given a suitably encoded version
of an urbitrary Turing machine T and en input n, produces
the same output as T doee with input n .

Note that the gn of T could be used as the encoding
of T.

Minimal Turing pchines

Turing uehines cen be classified in M1exity by
the state-symbol product (a messure introduced by Shannon).
The following problem then arises: what is the minimal
state-symbol product for a UTM. The current best solution
is due to John Cocke snd Marvin Minsky, who have shown that
4 gtates and 7 symbols suffice.

If we sllow more than 1 tape, the result cem be
improved. Hooper (1963) proved that 2 states, 3 symbols,
and 2 tapes suffice; llkewise that 1 state, 2 sywbols, snd
4 tapes suffice, even requiring that one of the tepes be a
fixed 100p.
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Read: Trakhtenbrot

THE HALTING PROBLEM

We are now in e position to present an unsolypble
problem. Note that sn unsolvable problem is actually an

unsolvable cless of problema.

HP: Given the nusber n of a ™ and an input m, does
™ n helt for input m ¢

We suppose that there exists such s machine and
derive a contradiction. Let mz be the machine which
solves the problem. That is, 'mz computes the functior
9.

1 if ’I‘Mn halts on m
Qz(m’n)' =
O otherwise

We show that given T, we can effectively construct a
TMZ‘ which is self-contradictory.
1, Ve can construct & T™ which frem input n
produces output o .
2. We construct a TM vhich oh input 11 loops, and
on imput 1 halts with output 1 .
3. We then compose (effectively) these two machines
vith TMZ to produce ‘lﬂ‘. which has the desired

property.
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Poe s 'PME yes 11 Converts "ﬁ
m copy e halton | lioo;o -

m? 1t0or |

—

2

wé(k) ={1 if TM, does not halt on k; i.e., ok(k) is
undefined.
loops if mk halts on kX, 1.e., Qk(k) is defined.

1 if ¢;(z') undefined

v, (z")
ande fined v;(z') defined
Converter
9 1R q2 on input 11 loops
% 1L % on input 1 halts with output 1
copying machine {Note that this is & minor variation
- f the machine previously given to
input m_ _ °
output mwm compute 2n ]
Q! R g go right and print *
y B * g,
qe*Lq2 go L to 1 put 1°'
%, 1 1 %
Ll
DRI
{continued on next page)
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qsl'Rq5 € R to B asmd print 1
B ¥R oy

%1 R g

BB 1g,

ququh g L to *

q * L 4

qsl‘lq’ tidy up

B 1R

s * Lo

q61 L % go back to start.
%® Ry

Composition

It is only fair to note that the comstruction of
mz, in detail requires a proof that any two TM can be
composed. I.e., that a new TM can be obtained by using
the output of the first machine as the input to the second.
This cen be carried out formally the details are given in
Davis., What is involved is showing that we can assume
that the second machine begins in the required initial form,
that is, scanning the left-most symbol of the output of the
first machine. This can be proved by the use of a-regular
machines, which always terminste with instantaneous descrip-
tion q --- where 9 is a state symbol for which there

are no instructions in the first machine.

Effectiveness
Note that the construction of T!(z. from ‘!’Mz is

effective--it could be done by a TM.
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uctions of the t1. roblem (HP

Geperel method: Given problem P reduce HP to P .

I.e., show 1if we could solve P this would give a solution

to HP . Conclude cannot solve P .

Covering: N b
{a,} {v, ]
a8, f(ai)

If from a solution to f(a 1) one can derive a solution
to e, then (hi] covers (ai} .

if a unsolvable, 80 is b .

Example:
WP for semigroups.

Example:
Decision Problem for ISt-order predicate calculus.

Example:
HPB (see below).

»
Exanple:
Printing Problem

Example:
Blank tspe - Is the TM tape ever blank?

(for later use)
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THEOREM: THE HALTING PROJLEM FOR TM WITH BLANK TAPE IS

UNSOLVABLE .

There is no algerithm (no Turing machine} which will
decide, given as input the cumersl n whether or not the

n-th T halts when started with a blank tape.

PROOY:

REMARK: The proof iz of a form which is standerd in
proofs of unsolvability. We use the reduction of a known
unsolvable problem to the new problem. That is, we shaw
that a solution to the new problem would yield s solution
to a problem which hes no selution. Therefore, the new
problem is unsolvabdle.

Thie proof is therefore important both for the result,
which we will need, and as a simple example of a very important

method .

NOTE: Need first to reduce HP to HP for single numeral

as input. Proved above.

LEMMA: Ior any numeral m, we can effectively construct a
T™ whichk starts with blank tape, and halts with the instan-
taneous configuration qk;’ where the stetes of the TM
are only 9 ql, ey qk snd there are no instructlons

beginning qksi for any Si .
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PROOF OF LEMMA:
REMARK: Note thet we do not claim that there is
some T which will work for any ;, hut only the: for

sny m there is s TM ,

9B1Rq, ‘ Ty, 11140,

q;BlRq, Uy 1 BBRA, o
Iy-1B1RY,
4B,

PROOF OF THE THEOREM:

Suppose the halting problem for T™ with blank tape
could be sc’ved. We can then solve HP bu follows:
To decide if TM halts on input. ‘m, form a new T

by changing each quintuple of THn as follows:
L ' L
9S8, (ple, to LTPRRPC L (=4 | TN

end edding the above instructions for the ™ which writes
m on blank tapa. Then the new T will halt on blank %spe
Aff T  halts on input m .

Q-E.D.
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REMARK: Note that in this construction, as in those which
¥will follow, ve are using the formilation of T™ in terms
of guintuples rather than quadruples., We have previously

given e proof that they are eguivalert.
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PARTIAL RECURSIVE FUNCTIONS

Church'e thesis: Every pertially computable function is

partial recursive. (Extended form.)

A partial recursive function is reaily a recursive

partisl function. Partial vs. total.

Definition of partial recursive function

A function is pertial recursive 1f it can be obtained

from the initial functions of schemata I, II end 11I below
by a finite number of spplications of schemata 1V, V end VI.
1. S(x]) =x; +1

1. &%(xp, .oy x) =0 Inivial functions

III. U?(xl, veoy xn) =X,

IV. Composition If h, gs ---» B are partial

recursive, so is the function f defined by

f(xl! <o xn) = h(‘l(xl' ey xn)’ se oy

%(xll LR ] xn))

V. Primitive recursion If g, h are partisl

recursive, so is the function defined by

£(0) Xyp +oey xn) = g(xz, ey X))
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£z + 1, Xgp eees xn) = h(z, £(z, Xop son xn),

Xpy wees %)

VI. Minimalization If g is ps-tisl recursive, so

is the function f defined by
r(xl, vesy xn) -uy[g(xl, Cies Xy y) = 0]

"“‘y" is "the least y such that”

f(xl, cory xn) is defined to be y, iff
(Xpy «ees Xy ¥o) =0 and (Vy < ylalx;, «oop xpy ¥)
is defined and non-zero].

DEFINITION: A partial recursive function is general recursive

{or totel) if it can be defined by I - VI in such

a way that in all applications of VI,

(xl) cee (xn)(EY)(B(‘J_: ceey Xps y) =0) .
DEFINITION: A (general) recursive function is primitive

recursive (FR) iff it can be defined without

ugse of schema VI.
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Example for primitive recursive:
[£,(x, ¥) = x4y

Y 2,00, y) = G
£, ¥) = 8B, £,(x, ¥), ¥))

(we write x' for x + 1)

(£,(x, ¥) =xy]
£,(0, y) = 6%(0, y) = 0
f(x', y) = fl(UZ(x, (%, ¥), ¥), U;(X. £,(x, ¥), ¥))
£,(0, ¥) = 5(6°(y)) =1

f5(x', y) = fz(Ué(x, f5(xp Y), ¥), Ug(x, f5(x, ¥), ¥))

Not mll se. . - functions {even of 1 varisble) sre
primitive recursive.

As in halting problem proof we disgonalize:

1. We can godel number the PR functions of 1-vbl.:
godel number the symbols (introducing ; )y
then the expressions; can effectively decide
if PR.

th

Hence we can talk of the x PR function of

1-vbl.
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2. Nov diagonslize.
Let Px be the xth FR fn.
Then Px(") + 1 is c.omputable.
But it is nct PR. For suppose
£(x) =P (xh + 1= P (x) for some e .
Then
fle) = Pe(e) + 1= Pe(e)

This argument would not go through
for partial recursive functions:
because could conclude only that Pe(e) undefined;
for general recursive functions:
because we cannot effectively decidc if general

recursive (step 1 fails).
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We now prove the equivalence of Turing's Thesis and
Church's Thesis by showing first that &1l recur:ive
functions are machine computable, then that all machine

-computable functions are partiel recursive.

THEOREM: All partial recursive ‘unctions are machine
computable. We shall prove this by giving a series of

machines ending in the very simple SS-machine.

Reference: J. C. Shepherdson end H. E. Sturgis, Computability
of Recursive Functions, JACM, Vol. 10, No. 2,
April 1963, pp. 217-255.

Also, preliminary version of above:

J. C. Shepherdson, The computability of partial
recursive functions by forms of Turing machines.
(mimeographed.)

The URM (Unlimited Register Machine)

Infinity of registers [1[2]3]... each of which can

store any natural number O, 1, 2,

Denote by (n) the contents of n™?  register.
Instructions:

P(n): (n) =(n) +1

P(n) : (n) = (n) -1 it (n) #0

®n): (n) =0

c{m,n): {n) = {(m)
J[k]: Unconditional transfer to line k of program

J(m)[k): Transfer to line k if {m) =0
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This is s very powerful mechine; it is therefore
essy to show that every recursive function can be computed.
(Compare proof in Kleene which works directly with Turing
Machines. ]

DEFINITION: We say that a rartial recursive function f
of n arguments is URM-computed if it is
computed by the URM in the following sense:
For every set of natural numbers Xys Xy ceey
xp ¥ B (yéx, "‘1’ Y<N for 1<i<n)
there exists a routine Rn(y - !(xl, vosy .xn))
such that if (xl), . (xn) are the initial

contents of registers X)s sees X then if

n’
f((xl), veey (xn)) is undefined the machine
vill not stop, if f((x ), ..., (xn)) the
machine will stop with (y) = f((xl), s (x))
end with contents of all registers 1, 2, ..., N

(except y ) the seme as their initiel contents.

THEOREM: Every pertial recursive function can be URM-computed.

PROOF:
I. Ry(y = 8(x))
1. c(x, y)

2. P(y)
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II. Ry(y = ®(x))
1. 6(y)

1. Ry(y = Uf(x, ooy X))
1. Clxy, ¥)

IV. Composition
R“(y = f(xl, ceey xn)) wnere f defined by IV

1. RIHI(N +1

"

51("1! revy xm))

m. R (N+m = g(x, ..o x))
m+l. R“_m(y=h(ﬂ+ 1, «.-py N+ m)

V. Primitive Recursion

Notetion: Let I be & subroutine. Then I(n)
goes through I {n) times and sets (n) =0 .
( I must have single normal exit.)

(n),

I 1. J(n){2l, I, D(n), J[1]

2,
R.N(y = f(xl, veey xn)) where I defined by V

1. RN(y, g(xz, ceey xn)), O(N + 1)

n

{nme(lw 2 = n(N+1, ¥ Xy -oc» xn))
X
c(N+2 y), PI(N+ 1) 1

restores 3. C(N+ 1, xl)

register
X
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vI. Minimelizetion

Ry(y = £(x;, ..., x ) where f 1s defined by VI
1. ®(y)

2. Ry, (N+1 = glx, ..., x, 7))

3. J(N+1)[4], P(y), Jl2)

b,

This will loop if p.y[ «es ] 18 undefined.

./« We have for each partial function f & subroutine
ll(y = f(xl, coay xn)) which URM-computes it.

53]

The convention regarding subscript N for subroutines

cean be extended to instructions: We write

Fy(n), Dy(n), Ox'n), Cy(m, n), Jylx), Jy(m)lk] .

Reduction of instruction set
—-—*

The large (6) instruction set of the URM was conve-
nient in the sbove proof. But we can sliminate three of
them:

Oplm): L. J(m)(s]

2, D(n)
3. J(1]

L.
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Cy(m,n): 1. 0Oy(n), O (N + 1)

{m)
2' {PN*].(N + l)' P“"’l(n)‘ m
3. (B, )™

Now EN(m)[k] can be added and used to eliminate
first Jg(m)[k] and then Julk) . ._In(m)[k] is transfer on

nonzero to k

Jn(m)[k]: 1. En(m)[aj, Jn[k] .
2.
Julk): 1. Pml(N +1), 3N+1(N + 1)[k]

Thus we have only the instructions

Py (m)
Dy (m)

T (m) (k)

where subscript N indicates that registers beyond N may
be used as workspace end may be altered, but that registers
1 through N are preserved.

We move toward our very restricted finel machine by
now introducing the LRM, Limited Register Mechine. The LRM
has three inatructions above, but no longer has an infinite
nusber of registers. It has a potentially infinite number,
the actual number being controlled by the two additional
instructions
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N+l

N<+K-1 remove an empty register.
We remove s register (esmpty or not) by the subroutine

¥ N-1: 1. P‘(l)
2. n,(u), 3'(1)(2]

5. l”"l-

THEOREN: All partisl recursive functions are Int-cmﬁble.

PROOF

Teke the URM vhich computes the function and find the
msaximm inatruction subscript X . hphec all subacripts
by M. If N> N, sed initially the instructions
Halel N+l o N+2 ..., N+N - 1 = N+N
and odd st end N+ N l+l‘-1, cers M1l 4 X

S8-machines

he S8-machine is a one-register machine with alpba-
bet {*, %) end three instructics types: P, P and
iw[nl,-el e P are writs instructions, which
print '0'. or ‘L" at the right end of the register.
8CD{m, my] 13 & gcep gnd delete of the leftwost sywhol,
which eperates as followa:
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If no leftmost symbol, take next instructien.
If laftmost is LRy delete and go to .
If leftmost is U delete and go to n, .

THEOREM: Every partisl recursive functien is computsble by
the B8S-machine.

PROOF: (By reducing the LRM to a single register machine
with these instructions.)
The storage medium of the LRM at any time consists

of the contents of N registers:

Introduce the new symbol * and think of memory as
a single word:

S PILINC-PRL BN B¢ §)

LEMMA: There is & subroutine T which will change the
word Al.AQ’ ...'An into AE."'.’AI"‘I'
PROOF: )
T 1. F, sen(3, 2)
2. P, sco(s, 2
3, =a=
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ot ™ be T, ..., T (n times). Obtain the LAN
operstions by bringing the word to be operated on to the

beginning, opersting on it, and restoring it to its originsl
position.

P, (n) ™, B, 0
By (n) 1. ™1 soo(e, 2)
2, Potl
I m)(x) 1. ™1 P, soole, 3]

2. ™0, scolx, kI
5. F, 8cpls, 31

y, B
T'(n)[k] 1. Jy(n)(3]}
2. °, ™, soolk, ki
3. -
MWl P
N Rl 1. ™1, scpfe, 2)
2.

Remark: BCD[;l. I.‘,l cen be further weskened to 8CD(m):

jump on 1, proceed to next if O .
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Physical reslizations of 88-machine

I.

- e aw W e e W M oa e

write head

each head moves after it acts

II. Deck of cards
{1) Add card merked , ai top.
(2) M4 card merked * at top.
(3) Drew bottom card, If , g0 to m,.
It ¥ go to L
If empty g0 to next instructien.

while {’, *] suffices, we could also define an s+l
symbol SS-machine.

THEOKEM: Any 88-computesle function is Turing computable.

PROOF:

From 88 M we construct TM Z which has symbols

% ~and Y and also the blank symbol 80 . Corresponding
to each instruction of m there is a state of Z2:

%

Y

17



Corresponding to the configuration of M at instru-
tion m with tape contents {tape), we have Z i1 the
configuration 8 oq-(tapo)so .

Correspondi-g to each instruction of M, s set of
instructions of 2:

a P (o0 right
to first blank .

{ prinft L

@0 left
to first blenk

right 1
eosh

r‘-'n'an"n =01
qnso'iq;
2454, =0,1
:‘-ln BoRim1
n: 8@[%, 'l]' q.nasoqéi J=0,1
Wp Bo%

! I=0,1
"-.1 o""n‘1

WSohans

COROLIARY: Every partisl recursive function is Turing-

computabls.
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The second half of the equivalence of Turing's thesis

and Church's thesis is given by the following theorem.

THEOREM: Every (partisl) function computsble by a Turing

machine is (partial) recursive.

Il, Section 5

Reference: Davis, Chapter {Iw Sections 1 and 2]
s

Informal Sketch of Precof:
Godel numbers
We have sassigned gn to TM .

Review:

R L So q; S1

gn of an expression
e(a,)
a . B e w®
k=1 °

gn of a sequence of axpressions

()
M, ..y unxl'r: Pn(k)ﬂ”k .

Note: The power of 2 4in the gn of an
expressicn is odd. In e sequence it

is even.

1’3



We gave before the special case of expressions which

were TM .

Kleene's T-predicate

We define a predicate l(z, Xyp vy Xps y), i.e.,
‘rn(z, ;, y), which is to mea: Jor given 2, X,, ...y X,
and y that 2z is & gn of a Turing macnine 2, and Y
i{s the gn of a computation of Z beginning with the

instantaneocus description ql(xl, ceey xn) .

. primitive recursive
DEFINITION: A predicate is { artial recursive ] eccording
a8 its characteristic function is (true = O,

false = 1).
-
THEOREM 1: 'rn(z, x, y) 1s primitive recursive.

Proof uses the fact thst bounded minimalization,
P <z’ is primitive recursive.
U 18 a primitive recursive function such that if
y 18 the gn of a computation, then U(y) 1is the output

of the computation.
THEOREM 2: lLet ZO be a T and z, a gn of zo.

Then the domain of the function q:(zn) (x) is equal to the
o]

-
domain of py‘l‘n(zo, X, ¥) . Moreover
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oV () = Wy (20 %y )

KLEENE JORMAL FORM THEOREM

-
£(x) 1is partially computsble iff izo such that:
>

£(x) - Ueyr (255 X, Y1)

Corollery: Evury {partielly) computable function is

(partial) recursive.
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THEOREM (Post )
There are moncgenic normsl systems with uns: lvitle

halting problems.

PROCF (Wang)1
Take a Universal SS-machine with n instructicns.
Set up a corresponding mcncgenic nermal £ystem Use alprabet

of §S-machine p.us 2izn+l} new symbcls bya ooy By,

e e

1?7t Bnel e

2) 1=
For each instruction 9 which is PO ;
(&8 -
\3 by " b
4) &, = Oe, .4

For each instruction ql which is P1
(5) by by
(6) e, = le,
i i+1l
For each instruction 4 which is SD.k’
- .
(7) 259" €% n

8) b1 e b,

INOTE: Can sisc do fcr Scd k, m), Lty adding biei -

bia%ia

[
-3
-1



(9)

€18441 " %141

(10) ee, e,

Then the 8S-machine halts on input x1x2 xP . This

system halts on the starting word * xlxa xpe1
PROOF
88-machine normal system
start X)Xy oee xp bixlx2 xpei
th v
i instruction is P
X Xy e xpo xlx2 xpeibiﬂ

°1b1+1xl e xp
b1+1x1 xp0e1+l
1th instruction Pl
similarly
th
i instruction is SD!kl
012 ...xp bimz ...xpei
!
x2 s xpei°1+1bi+1
xe vas xp :
®1%abia’ - %
b1+1‘2 oo xpei_',1
112 xp b:l_].x2 ...xpei
¢ lx2 eue xpekbk
X, .- xp ’kbkxe xp

bkx,e tes xpek
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POST CORRESPONTENCE PROBLEM

Emil L. Post, A variant of a recursively unsolvable problem,
Bull. A.M.8., Vol. 52, No. & (April, 1946), pp. 264-268.

Correspondence problem:

To determine for an arbitrary finite set (gl, gi),

Ceey (‘“, “;) of pairs of corresponding non-null strings

on a, b whether there exist n > 1, 1

19 tes in such that

g:. 8 ..-8 =6.1¢8' ves @1
11 12 in 11 12 in
Exsmples
1) peirs: (b5, ba)
(sbe, ba'bB)
. RN 32
solution: &, 8,8, b ab’ b’ = bzb.b b = 31‘251
2) pairs: (e, bs)
(bzl, n’)
(nab, ba)
solution: clearly no solution, since there is
no pair to start with.
£ 8 in spplication to ALOOL

Centor, JACM 9(62), pp. 477-479.

Floyd, CACM 5(62), p. 526, p. 534.
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Post's proof of the umsolvability of the eerrespon-
dence problem began with the unsolvability of the decision
problem for the class of morwal systems on e, b . He
reduced the problem for mormel systems te the correspondence
provlem, hence showing that the cervespondezce problem must
be unsolvable.

We shall .btain the unsolvadility of the correspon-
dence problem by reducing the halting prodlem for SS-machines.

Post Comm' ence Problem

LEMA: If the SS-machine M computes the partial function
f(xl, coey xn) then there is en 88-machine N’
which
1. halts iff M halts;

2. naver has an empty tape, except possibly at
start and end.

Go back to the LRN. Ths function f can be LEM
computed by s program which begins by edding a
register (N — N + 1) end storing * in it.
Ends by deleting * and N <N -1 . The 88
version of this program will then begin with the

instruction P° .
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P

If the SS-machine M’ computes f s above, we
can construct an S88-machine MN" which 1. halts
iff M' helts (hence if N halts) and 2. halts

only on an empty tape.

Construct M" from M' wy replacing any halts by

L: BCD(Lh,Lh) .

M" of course does not compute a very interesting
function, but it is defined for tiie same inputs as
r.

The halting problem for SS-mechines ix unsolveble.

By equivalence with ™™ .

The halting problem for SB-machines starting with
blank tape iz unsolvable.

By equivalence with TM™ .

The following problem is unsolvable for 88-mechines!
Does 8S-machine starting with blenk tape ever ot
back to blank tepe?

t

By previous )emmas.
K

18 {',J-'
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ICP (A modification of Dens Scott's proof.)

Yor any S8-mechine with line Ll I.h effectively

construct corresponding PCP.

Construction

(0s, «0)

(1, e1)

(o, oli) for initial instruction

L (Lye, eOeLy,;)
L: 7 (Lo, ‘ld‘iu)
L,: 8c[L,, L] (L, o0e, -LJ)
all §, k (L ele, eL.)
it Je=k sad (LgeL,, eL,)
I.h: no instruction no pairs

- eeans - e oo SRR Ne ED an Gw P s

To prove: FPCP has a solution iff M starting with
blank tape gets back to blank tape.

PAOY?P: 1. Both words must begin with (e, .1.1)
2. Both words must end with (I, el el ) for

lﬂel;n.



2(9)

scolLy 1)
hait
(Ce, e0) (o, oL)

E
SN A A

(le, el)

2.._ 300142 €0 el, .‘h

— - ——

,mt{:';zae_ﬁfe:z-

°

.1
BCD[ L, le

halt

What doez it do on blank tape?

0oL
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.(LzeOe, eL2)

(Laele, eLa)
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Pairs (Ce, ¢0), (13, 31), (e, el,)
(Lye, eceL,)
(Lye, oldaj)
(LyeOe, oL,)
(Ije,';e, eI,)
(I3°I"L’ 'th)

.Llomr,eamubgune-uu'ouu

Iy Sulp 0 Slaly 20 51 8Ty shelaly 91 01
lSeleISeI,‘ o
Iyelaly

Ir Li writes, it is followed by tape after L:l .

It L, reeds, it is followed by tape before L, .

Exemple 3

- Badf6, 3]

1
2
3.
». P
5
6. 8ed6, 6]
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Ambiguity Problem for Context-free Srarmars

Phrase-structure gremmars and rewriting systems.

(v, 1, 8, P) TGV
8eV-?

Context-free grammar.

P: Ay Ael

® astring in V

i1
{oe oe 1o ... OeL'LOxi oo %y |n >0}
1 “n =

l. is CP
2, define smbiguity
3. 41s unswbiguous

THEOREM: The embiguity problem for CFG is unsolvable.

PROOP: By reduction of the FPCP to the smbiguity problea.
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THE DOMINO PROBLEM
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THE DOMINO PRCBLEM

The domino problem, introduced by Wang in reference
1, is an amusing combinatorial preblem which can be very

simply stated and which has some important consequences.

STATEMENT GF DOMINC PROBLEM

A dominc set is a finite get of types of square
Plates, the dominces, all of the same size, whose edges are
marked with symbcls (or colors), each plate in a different
manner. There are,an infinite number of ccples (alsc called
dominoces) of each type.

The infinite plane is assumei “o be ruled into
domino-size squares, and we seek tc assemble the dominces
onto the plane according to the rules:

l. No dominc may be refiected or rotated.

2+ A dominc must be placed exactly over a square.
3« The symbcls cn adjacent domino edges must match.
L. Every square must be covered with a demino.

A domino set is said to be sclvable if we canr cover thre

entire plane in this way.

EXAMPLE
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We can obtain a solution to this set by using the block

>
- ]
(@]

Q
LS
o

Which has on the periphery the symuols

305 b
1 1
3 3
2 2
> 5 4

Since the top edge of the 3x3 block is the same as the
bottom edge, and the left edge the same as the right rdge,
we can repeat this block in every direction to cover the

entire plane.

The domino problem is the following general problem:

Is there an algorithm (a decision procedure)
by which given an arbitrary domino set P, we cau

decide whether P {s solveble?

Berger, 196k, NO.



DEFINITION: A torus of a dominc set is a rectangle of
Jominos such that
1. adjacent edges have the seme Color
2. the bottom edge is the sa~ as the top edge

3, the laft eloe is the swzme . the right edge.

THROREM: Every .e- whico has a torus is solvable.

PROOF: We can cover the entire plane with the torus.

DEFINITION: A solution of a dcmino set is periodic 1f

there is u torus 1 such that the sviuticn

can be viewed as made up entirely of copies

of T.
Example:
b ¢ b
a| lc b ] [ a
J & t

Note that the esmple has a torus
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and therefore has a periodic solution. The tcrus, and hence
the periodic solution, used onlv tvo of the three duminces

of the set.

REMARKS :
The definition of periodic does not include all
sclutions which 'ght possibly be considered to be in some

sense periodic, but is arbitrarily restricted.

1 1 1 3 L
Solutions:
D
(a) al11 A (b) alL E (c) A 313G
A
E
(a) ¢ (e) A|B|E
A

THEOREN: If rotations and reflections were allowed, the
problem would be trivial, i.e. every set would

have a (periodic) solution.
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b
a l c
| S—
d
b b
13 c a
i d
c a c
¥ d

THEGREM: A set may have buth Pericdic and ncnpericdic

solutions.
Pf: 1 1 1 1
T T
Set P,: 1 2 1 1 > 1
1 1 1 1
A B
With either tcrus we get periocdic soluticns. Using bcth
we can .btain as many jifferent soluticns as there are
binary infinite sequences (i.e. ZXO).
PROOF:
Number (the rectangles of squares of) the plane

arcound the crigin. To fix the origin assign
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[=]>[>]=]

And then use

EIEREIER

[]>[~T>]

tc build the infinite number cf sciuti-ns. The scvlutions

cannot be transiated into one an.ther since

occurs only at the origin.
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Questions on periodic solvability:

DOES EVERY SOLVABLE SET HAVE A TGRUS? (No. Berger
1964)

Subquestion: DOES SOME SOLVABLY SET HAVE SOME SOLU-
TION THAT CONTAINS RO TOCRUS? (BERGER using Thue, yes. But

cannot eliminate the periodic eoluticns.)

THEOREN: (Berger) There exists a domino set which has a

solution which contains no torus.

THEOREM: A set is so)vable on the whole plane iff it is

solvable in & quadrant.

PROCF: = trivial

-
aingle dominos
3 x5 blocks

Infini‘e number of levels. Qed by infinity lemma. Note
that this ias non-constructive - it does not enabl> us to

find a solution.

193



BLANK PAGE



CONSTRAINED DOMINO PROBLEMS

So far we have considered only the unconstrained or
general dominc problem. That is, glven a dominc set P,
can the plane be filled with the dominoes of P .

One might also consider domino problems which are in

some way constrained:

The origin-constrained problem:

Given a set D =P U Q, can we fill the plane
subject to the restriction that the origin is filled with

a domino of P .

Computation by dominoces

If we consider solutions in an infinite quadrant and
require a fixed domino * to occur at the origin, we can
usually find domino sets with unique solutions satisfying
& variety of given conditions.

An example of a puzzle which can be solved with
dominces is the follow!ng.

Find a set of dominoes sucn that if * ig

required to appear at the origin, it has a

unique solution in which P and ¢ occur

respectively at the prime and composite

squares in the first row.
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The following solution uses 38 dcminces and includes
some improvements due to M. Fieldlouse of a soluticn ini1tially
obtained by E. F. Moore and Hao Wang. (Smaller sciutions
are possible). The form of the scluticn is indicated in the

diagram below:

sl P lclelc]l ] ]z
4
A" 8"l A 8| oa ﬁﬂi r B° _f
* * * l
D, 93 D, - T
A n;
»* » *
¢ Ey| D 1
»* * +‘ -
D, D, I, D D,
»
D Es
*
D, G,
»* £
Dg G, G
* * »* 4** * I
D, D, L, D, Died D, D, D,
* * »* ¥* *
BR P G G D] E P oG 6 I
» * »
G E, F @& 1)5 G, B, F G Dg 4
% »* #* »* ¥* X
6, 6 B F 6 6 B F
-« * »* +* * 4
€, G 6, E, Dl 6, G, G, E, 1
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The arrows indicete important signals. The *
{ndicates that the domino is affected by the initial boundary
condition, and the superscript C indicates that the domino
is transmitting the 'number is composite' signal (except that
Dg is absorbing this signal). The dominoes B (which is
used only once) and Dh generate the 'number is composite’
signal.

We assume the left-hand margin is color O, and the
top zolor O . The solution is unique. The 38 dominoes

may be defined as follows:
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30

30

+

1

51 51
3 3
> 3
3 3
7T 2
2 2
2 2

0
P
1
1 1
*
B A
52 26
32 52
»* *
D, Dy
32 30
26
D,
2l
205
o
o
224
37 7
%
E, B
32 2k
7 27
C c
B, E,
226 22U
7
E,
26

1

1 1

53 53
3
7

7T 7

T 7

197
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30
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THECREM: The origin-constrained dominc problem is

unsolvable.

PROOF: Recall: The bhalting problem for TM atarti-, with

blank tape iz unsolvable.

Recall: A TM can be restricted to a one~way infinite

tape.

We give a general method which when applied to any Turning
Machine X produces & corresponding set of dominces Px,
with a distinguished type D such that:

X halts on an initially blank tape @ P has no

solution with D at the origin.

Plot T™M configurations in the plane:
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We 1llustrate the method by applying it to a specific

machine X:
4,508, Ra, 9,5,8,Rq,
L5,8qRa, 95,8, I,
4355, 1q,, 45880lay,
4505019

Px consists of tne following dominc types:

A. Two types for each tape cymbol

[s5), (18], Is,1, [1s))

1

B. One type for each permissible kind of scanned square
(state and symbol):

[ s ] i =l,ooo, h
1% (1,3) # (4,1)
J=0,1

C. One type for the next scanned aquare (symbol and

next state) after a left-shift

[Lqis‘j] t=1,354 3=0,1
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D. One type for the next scanned square after a right

shift
[qusJ, i=1,2,5 J=0,1
E. TFour types for the initial row and column

[D) for origin
[B] for beginning of tape
[t] for initial row

-
[<] for initial column L4

Machine X will halt at step B . We want to color the

dominoes so that the only possible solution is the partial

solution below:



9

9 So
s
8 “t 1 | w8, s, 8, 8,
7 s, | %5 s
1 4 s, o
6 s, fes. | %%l s
1 10 = 0
5 q.8 qlso s1 so
"1 | &
q.5
1°1
" L q,‘so sl so
S <
3 181 q: 0 -Qj.)o So
2 1s s Wy | s s
1 | %% 2 0 0
1 as. | €% | s s s
1 0 R o 0 0 esn
B t ' t ' 1
0
Figure 1
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Let us now describe this domino problem as & prelude

to coloring the dominces:

The conditions on Px

1. origin constraint
[ploo (ex) (Do

2. the initial row and initial column are the boundary

2.1 {DIxy o [Blx'y
2.2 ([B1 v [tlxy) 2 [t1x'y

2.3 (0]l v [=iyx’) 2 [y’

3. the next row above the initial row simulates the initial

configuration
3.2 (tIyx > ([Rq,S,) v [8p] yx’

b, the left or right neighbor of the scanned square at

time is in t determined a left or right shift

and embodies information for the scanned square at time

’

x .

Notation: [Lqi] for ([I‘qisO] v (L

qisll )

(Rq;} for ([Rq;Sy) Vv [Rq,S,])



4.1 [qis.1 Ix'y > [qulﬂ

for (1)J:k) = (2;1»5)’(3;0;“):(5:l;h):(h:0:1)
4.2 [qisjlxv > [Rq, Jx'y

for (1:J:k) = (110;2)1(131)1))(2’0'3)

5. the state and scanned squa.e at time y’ are deter-
mined by ([Lq,] or [qul at time y .
S

5.1 [I.q_lsJ]ny [qisdlyx' i=1,3,b §=0,1
5.2 [quSJ]ny [qisj]yx' 1=1,2,3 j=0,1

6. the tape symbol at time y’ and position x is

determined by the tape symbol at (x,y)

6.1 [s,)yx > (is,] v (Rq,8,] v [Rg8,1 v [Rqy5, ] )yx’
for 1 = 0,1
(L8, Jyx 2 ([18,1 v [1q8;1 V [Ias8,] V [Ley8, )yx’
for i = 0,1
6.2 [ag85)yx o [Lq,8,Jyx’
(q38, lyx 2 (8 1yx’
[q,85)yx > ([Rq;8,) v (Rq 8,1 )yx’
lay8plvx > ([18,] v [Lay8, 1)y’
(9,8 lyx > (18, Iy’
(ag8; Jyx o I8, Iy’

la58plyx 2 (8, Jyx’

7+ in each row [81] and [Lsi] must be distinguished

N —————
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7.1

T2

8.

8.1

8.2

([Rq;1 v [Rq,] v [Ray) v lqy8,] v l458,] v (458, !
v [q8,) v Isyl v s, Ny o (is,) v {s 1)x’y
([qul v [Lq3f| v [1q,! v lqlso] v [qISI] v [qeq\;]

v (1Sy) v (LS {))x'y 2 clLsg) v (Ls,! v [=])ay

the halting oconditions

—‘[qhsllxy

we have gotten 8.1 by simply excluding the type
[*]wDﬂ(qull vV [Lag) v [Lgy))xy

this could be deleted if we had included the condition

that no two types can be assigned to the same place

Argument: These conditions are sufficient to determine

the colors ~n the domino types.

We have not excluded the case in which several dominces occur

at the same place. (1 assures that at least one occurs).

To express this condition we could add an explicit condition:

9.

only one type at xy



How to color the dominces. Each domino gets four colors. ,

We give the colors somewhat unusual names - as shown in

Figure 2.
0 Lo RL L1
A R} S R LSo L &g S1 R 1, IBl L
0 L-0 1 L-l
-1 L-1 1 1
B LaS,l1-0 g 48 11-0 |48, U3,
1-0 1-1 2-1 3.0
L-0 0
L8, }2-0 3 954|r
2-0 roury)
1-0 k-0 1-1 3-1 4
7 I, Iq
cnslu0LL:52-1Lssleho I:521:.35
) o) 0 1 1 1
Lo LO LO L1 Ll 11
10 20 30 11 21 1
Rq JR R ' Rq. R R
p1a| X [r 10 2 k aoq’Rn 1 1 22 g 2d 3
s s 5 s s s
0 0 )
) (o 0 1 1 1
(3 10 € 0
E 5|l o6 6 87 s| = 71 + |7
5 5 [ 5
Figure 2
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Let 8 = {Dl’"" Dn] be & finite set of dominc vypes.

Let Fixy = Fi(x,y) be aquare (x,y) 1s covered by a domino

of type I)1 .

Let &, = {bl,..., Dk] k < n be a subse’ of § to be used

at the origine

Let Ri={j|1_<_,j$nADJ has on left the same color

D, has on right}e

Let Ti ={3 |1 SJ<nA DJ he.s on bottcm the same colcr

D, has on tepl.

i

Then we can fill the quadrant with dominoes of the

types in & iff the following ccnditions are met:

Eve square has precisely one domino type:

V (Fxy A ' N )

i~= l,-u-, n J= 1lyees, n
J#1

Zhe doming to the right matches correctly:

Fiw:: \V4 I-‘jx'y
JeRi

A
The domino on top matches correctly:

Fiy'x:D \/ F‘)‘y'x'

Jl:Ti
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And the origin constraint can be expressed as:

V o

1<1<k

Buchi's lemma

A formula EzKz A Vx3uVyMxuy in which K and M
are quantifier-free is satisfiable iff K A Yx¥yMxx’y is

satisfiable in the domain of the natural numbers.

PROOF: (An irmmediate corollary of the completeness procf.)

(We use axiom of choice.)

Since EzKz let a be some object such that Xa .
Let f be the function that gives the u for each x .
Take the domain fa, f(a), £ff(a)),... ] closed with respect
to f . Now identify this (by remaining) with {0,1,2,... } .
[In the model we do not nccessarily have x’ # 0 and
x’ =y S5 x=y. Thus do not exclude finite models.]

Now consider the conjuction of the conditions above

KO
(Yx)(Vy xx'y
(¥x)(vy)nxy

Thus the condition for the domino set is of the form

(1) KO A Vx¥yMex'y
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But this is satisfiable iff the domino set has a sclution.
Hence we cannot determine whether or not it i< sstisfiable.

Hence we cannot determine whether or not

¥z 2z v Iy udyMrouy

is a theoren.
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THE DECISION PROBLEM

The decision problem for the firat-order predicate calculus.

To find an effective method to determine for an
arbitrary formula of tiae first-order predicate calculus,
whether or not it is a tneores. (Or, equivalently, whetter
or mot it is satisfiable.)

The classic privlem, also known as the ENTSCHEIDUNGS-
PROBLEM was first shown to be uncolvable in 1936 by Church
and Turing. The two proofs were quite diffcrent. Church's
proof uses the undecidability of elementary number theory
(Godel's result). For if we take any undecidable statement,
prefix the conjunction of the axioms for number theory,
and remove function symbols and constants we obtain an expres-
sion of the first-order predicate calculus. If it were
decidable, then number theory would also be decidable, con-
tradicting the Gddel result. (In order to maxe this pronf
go though, we require a finite axiomatization of number
theory. Robinson's system, given in Mendelson, is an example
of such a finite axiomatization.)

Turing's proof is independent ot Godel's result and
uses the ha'ting problem for Turing machines (which in fact
were invented for this purpose). The proof given by Turing
works directly with the Turing machines, without dominoces ’
and gives a weak prefix. A much less complicated proof by
Bichi along the same lines, gives the E A AEA (satisfi-
ability) result. The method of dominoes was used in the

Kahr-Moore-Wang proof for AJA (satisfiability).
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The unsolvability of the decision problem for the first-

order predicate calculus follows & fortiori.

1.

3.

L,

Se

OUTLINE OF THE KANR-MOORE-WANG {-BERGER) PROOF

OF UNSOLVABILITY OF EAE .

The halting problem for 7M with blank tape is unsoliable.

The complete configurations of any TM can be represented

by squares in the plane.

The graphic representation of the TM can be descrided
by a domino set. The conditions on the solvability of
the dominoes can be expressed in terms of the predicate
calculus. (For the original proof, s diagonal-constrained
solution is used ... there are an infinite number or
the copies of the TM at any one time. For the unre-
stricted solution there are alsc an infinite number,
but; their placement on the plane is different. We
demonstrated above the method of the proof in a simpler
case, using the origin-constrained problem, a single
representation of the T™M and settled only for the

A A EAE case.)

An expression AFA B (B g-free) can be written
describing the dorino set. BSuch that AEA B is

satisfiable iff the quadrant can be filled.

But AFA B is not satiafiable iff the TM halts. Hence
EAE -B is provable iff TM halts (by the Godel complete-
ness theorem).
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6. Therefore if EAE were decidable, we could decide the

halting problem.

DEFINITION OF A REDUCTION CIASS.

A class C of formulas of the first-order predicate

Example:

calculus is a reduction class, if for every formula

F we can find a formrla F’ in C, such that F

is & theorem if and only if F’ is a theorem.

The class of formulas in Skolem Normal Form is a
reduction class. (Rxl... EX Ay« Ay M . This

was proven tafore. )

Note that these methods show that the class AVI is

a rgduction class.

l.

2.

)-

Construct the T™M which carries out the Herbrand

Expansion for the given formula F .

"l‘hil TM will halt if and only if the given

formula F 18 a thecrem.

Use the above process to construct a formula
F for that TM. The formuls is satiafiable if
and only if the TM does not halt. Hence, its
negative F’ is a theorem if and only if the

given formula F 1is a theoren.

Note also that the dyadic predicate calculus has been

shown to be a reduction class.



But there are solvable subcases.

' SOLVABLE AND UNSOLVABLE CASES

At this point we have determined all of the prefix-

defined cases of the decision pvcblem: (for provability)

SOLVABLE UNSOLVABLE
Axl- o Ameylo e mn AzKz mmw which gives
Axlc LX) AxmmAZ. cese A.Zn AzExAuEy
+ ExAvAzEy
Axlo LX) MmEylEyzAzl- .o Azn MWAZ

m-l..’ mmwl... Mn (SON.F.)

ExAuEy

Thus, we have settled all prefix cases. For, (1)
adding a quantifier can never make a case soclvable, and

(2) ExEuEyAz follows as the S.N.F. of ExAuEy .
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