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Abstract
. .

A general approximation theory for linear and nonlinear

operators on Banach spaces is presented. It is applied to

numerical integration approximations of integral operators.

Convergence of the operator approximations is pointwise rather

than uniform on bounded sets, which is assumed in other theories.

The operator perturbations form a collectively compact set, i.e.,

they map each bounded set into a single compact set. In the

nonlinear case, Frkchet differentiability conditions are also

imposed. Principal results include convergence and error

bounds for approximate solutions and, for linear operators,

results on spectral approximations.
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Chapter I

APPROXIMATE SOLUTIONS OF EQUATIONS
. .

1. Introduction

Consider a Fredholm integral equation of the second kind

h x(s) - j-,’ kb,t) x(t) dt = Y(S), O<sFl 0.1)

where x(s), y(s), and k(s,t) are continuous, real or complex valued

functions for 0 < s, t < 1 and h 1 0.

In a classical method of approximate solution based on numerical--.

integration, the integral in (1.1) is replaced by a summation to obtain

Wnjk(S,tnj)Xn(‘nj)  = Y(S), 0 F S I” 0*2)

If we replace the free variable by subdivision points we get a finite

linear algebraic system

n
' Xn(tni) -

FL
= Y(tni), i = 1,2,...,n.

J =
wnjk(t ni)tnj)xn(tnj)

(1.3)

The two equations (1.2) and (1.3) are effectively equivalent.

Certainly if X,(S) satisfies (1.2) then the xn(tni), i = 1,2,...,n,

satisfy (1.3). Conversely, if (1.3) is satisfied, then (1.2)

determines xn(s) explicitly in terms of the xn(tni) -- in effect, (1.3)

serves as an interpolation formula.

The technique of replacing an integral equation by a finite system

goes at least back to Fredholm [ 261. Hilbert [28] gave convergence

proofs for approximate solutions using the rectangular quadrature
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formula. The idea of using (1.2) goes at least back to Nystrbm [35]

in the mid 1920's. The advantage is that equations (1.1) and (1.2) are

defined in the same space. In particular cases this technique has been

studied by Btickner [24a, 24b], Kantorovitch [29], Mysovskih [30, 31, 321,

Wielandt [3], and Brakhage [22, 231. In all cases rather particular

assumptions were made.

Basic problems to be considered are the solvability of the

equations, convergence of the solutions, error bounds, and the eigen-

value problems associated with these operators. Also to be considered

are integral equations with discontinuous and even singular kernels,

problems in higher dimensions, unbounded domains and nonlinear integral

equations.

Applications can be made in the field of radiative transfer. The

transport equation is an integrodifferential equation which yields a

system of ordinary differential equations when the integral is replaced

by a sum. This problem can be cast so that it can be treated by the

theory to be presented here (see [ 5, 7, 341).

An abstract theory concerning equations in a Banach space will be

presented. Thus all the applications will simply be special cases of

the general theory. The abstract theory has been developed within the

last four or five years. Other principal contributors to the theory

have been R. H. Moore, T. W. Palmer and K. E. Atkinson.
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2. Banach Space Fundamentals

Let X denote the Banach space of real or complex continuous

functions x(t), 0 <, t 5 1, with the uniform norm \\x\\ = max)x(t)(. The

unit ball will be denoted by #. Thus,

R = (xEX: \lxll < 1) .- (2-l)

The symbol [X] will represent the space of bounded linear operators on

X into X with the usual operator norm, ~IK[\ = sup \~xJl
nl

for KE[X].
XE

Lemma 2.1 Let K and Kn be elements of [X]. Then

(JK,-~(1  + o iff ~~K,x-Gc\~ + 0 for all xEX uniformly for xc-n (or any--.

bounded set).

In the general theory as well as the applications to be discussed,

the convergence of the operator approximations is only pointwise and not

uniform in the operator norm. Nevertheless, for the sake of motivation,

suppose we have convergence in the operator norm, that is, I\K~-K\\ ---) 0

as n --,a. Then we have the following lemma.

Lemma 2.2 Let \~K,-K\\ -+ o. Then there exists (h-K)-%[X] iff for

a all n sufficiently large there exist (A-K,)-%[X] bounded uniformly in

n.

In either case,

I(@-Kn )-l-(h-K)-ll)  -, 0 asn-)m. (2.2)

A constructive proof of lemma 2.2 also provides error bounds.

In order to prove the lemma however, let us first state two further

results.
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Lemma 2.3 Let Tt[X] and \IT\\ < 1. Then there exists

(I-T)-l =c Tn t[X] and
n=O . .

II(I-T>-ll\ <, 1/ (l-lITI\) . (2.3)

This is the well known Neumann series for (I-T)-l.

Lemma 2.4 Assume there exists T
-1C[X] and n = \\T

-1 \\*\IT-s\\ < 1.

Then there exists S%[X] with

<-
llT-l[
1-n

and furthermore --.

II S-l+I1 L

To prove this we can write (since T
-1

exists)

S = T-(T-S) = TII-T-l(T-S)] .

Hence, there exists

S-l = [I-T-l(T-S)]-lT-l  ,

(2.4)

(2.5)

(2.6)

(2.7)

and an application of Lemma 2.3 yields (2.4).

To: prove (2.5) we w~itz

S-~-T-~ = &(T-S)T-' . cw

Taking the norm of (2.8) and using (2.4) gives (2.5) immediately.

Now we can easily show (2.2) and give the error bound by using

(2.5) with T =(h-K) and S = (h-K,). We obtain
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\\(~-K,)%-K)-~\\ 5 J1
(h-K

-1 2
)l-\ l \IKn-Kl ,

n

where

An =
II  (h-K)  -y(  l l/K,-K☺I l

Since' I(K,-KJ\ -) 0 and I\(x-K)-'\\ is bounded, (2.2) follows.

That

(2.9)

Notation

The notation K, -, K will be used for pointwise convergence.

(2.10)

II

is, Kn + K iff I\Knx-Kx/i --) 0 for all xEX.
--.

Lemma 2.5 If Kn 3 K for bounded linear

the sequence (Kn] is bounded. That is, there

such that l\K,ll 5 b for all n.

operators K
n and K, then

exists a bound, b < ~0 ,

This is an application of the principle of uniform boundedness.

Lemma 2.6 If Kn --) K, then the convergence is uniform on each

compact set in X.

Before proving Lemma 2.6 a brief discussion relating the concepts

of compact, sequentially compact and totally bounded is in order. A

compact set is a set such that any open cover has a finite subcover.

- A set S is sequentially compact iS, given any infinite sequence taken.

from S, it has a convergent subsequence (the limit may or may not be

in S). A set S is totally bounded iff for each e> 0 there exists a

finite set (an e-net), xl,...,xm, such that for any xES,

minllx-xi\) < E. These three concepts are closely related. First, in
l<i<m- -



a complete metric space, sequentially compact and totally bounded are

the same. Secondly, compactness is the same as either one or the other

concepts if the set S is also closed. And thirdly, a set S is totally

bounded (or sequentially compact) iff the closure of S is compact. The

third concept, total boundedness, is the one to be used in the following

Lemma 2.6 can be stated for either compact or totally bounded

sets and the two statements are equivalent. The proof is now given for

totally bounded sets.
-w.

Let Tn = K,-K --) 0 and let S be a totally bounded set. Since we

multiply by a scalar we may, without loss of generality, assumemay

II Tn II < 1 for all n. Fix E> 0.- Then there exists a finite e-net,

discussion.

X1’-‘Xm.’ such that min \I
l<i<m

x-xi/l < E for any xES. Since \\Tn\\ --) 0
- -

pointwise, there exists N such that \IT,x~~\  < G for i = l,...,m and

n> N. Hence, by the triangle inequality we have

Ilyii F llT,“ill + llTn(X-Xi) ll < 26 (2.11)

which proves Lemma 2.6.

Lemma 2.6 is a special case of a more general proposition. Here

we had pointwise convergence of uniformly bounded operators. Recall

that an operator is bounded iff it is continuous. Similarly, a set of

operators is uniformly bounded iff it is an equicontinuous set of

functions. In much the same fashion it can be proved that pointwise

convergence of equicontinuous functions from one metric space to

another is always uniform on totally bounded sets.
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In the approximation theory and applications to follow, results

will be obtained for pointwise convergence which are quite analogous to

those which hold for operator norm convergence.

3* Collectively Compact Sets of Operators

The integral operators to be used are compact (or completely

continuous). Some definitions and theorems concerning this class of

operators will now be given.

Definition An operator KE[X] is compact iff K maps #, the unit

ball, into a totally bounded set; equivalently, the closure of K/3 is
--.

compact.

Definition A set of operators,K2c:[X],  is collectively compact

iff the set %# = (Kx: KcK, x-1 is totally bounded (or has compact

closure).

It will be shown later that approximations to integral operators

defined by sums form a collectively compact sequence.

Theorem 3.1 Let Tn,TE[X]  and Tn --) T. Then, for each compact

operator K,

(3*1)

-Moreover, the convergence is uniform for KU, where K is any

collectively compact set.

To prove this, recall that convergence in norm is the same as

pointwise convergence uniformly for xW. Consider

(T~-T)~ + 0 o

7
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If x is some point in B and K is either fixed or is some element of a

collectively compact set, then the argument, K-x, is some element of the
. .

set mwhich is totally bounded by definition. But, pointwise conver-

gence is always uniform on a totally bounded set so in (3.2) the con-

vergence is uniform when both K and x vary.

This is an important theorem in that pointwise convergence has

been used to give us a form of convergence in norm. Two corollaries

follow.

Corollary 3a2 If Kn ---) K and (K,-K) is collectively compact, then

(3.3)

Corollary 3e3 If Kn 4 K and {K,} is a collectively compact set,

then

i) K is compact and {K,-K) is collectively compact,

ii> \\(Kn-~>~\\ + o,

iii) I~(x,-K)K,II + o.

The general theory will be continued in more detail later. First,

examples from the field of integral equations are presented.

4’. Integral Coerators

Now the integral equations setting will be shown to be a valid

application of the theory. As before, we will assume our functions are

in real or complex C = C[O,l], with the maximum norm, \Ix\l = max Ix(t)\.

Thus t 1ly4 3 0 iff x,(t) --) x(t) uniformly.
E-t<1- -
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Define bounded linear functionals cp and cp,.Y n 2 1, bY

cpx = cx(t)dt,
0

. (4.1)

‘P,“= f
j=l

wnj⌧(tnj)  l (4.2)

It is necessary to assume that

cPn’cP* (4.3)

This convergence holds for most of the usual quadrature formulas such

as the rectangular and trapezoidal and those of Simpson, Weddle,
--.

Gauss, and Chebyshev. The Newton-C&es:: quadrature rule however, does

not satisfy (4.3).

Lemma 4.1 Given 'pn as above, there exists B < 03 such that

< B for n = 1,2,... o (4.4)

This follows from the principle of uniform boundedness and an elem-

entary calculation

The convergence in (4.3) is pointwise convergence which is

automatically uniform on a totally bounded set, The ArzekAscoli

lemma tells us that a totally bounded set in C[O,l] is a bounded

- equicontinuous family of functions. In other words, cp,x+ cpx

uniformly for x in a bounded equicontinuous family of functions0

To illustrate this uniform convergence, suppose that we have a

family of differentiable functions that satisfy a Lipschitz condition,

1x1(s)-xl(t)1 5 m Is-tl.

9
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Then, for the trapezoidal rule for example, the error in numerical

integration is given by
. .

I’pnx-Tx/ c, 5 ’ (4  l 6>
12n

It follows, since x does not occur on the right side of (4.6), that

the convergence (p,+cp is uniform for functions satisfying the

hypotheses, which form an equicontinuous family,

It is easy to demonstrate that we do not have convergence in

norm.
--.

Lemma 4.2 IICP -n cpll /+o.
To show this consider a function which is identically zero

except in the neighborhoods of the subdivision points. Then the

numerical integral and the integral are far apart.

Now consider an integral operator with a kernel, k(s,t), which

is continuous for 0 C, s, t 2 1 and let

M = max Ik(s,t>l 0
o<_s,t<1-

A formal definition of the integral operator and the approximate

operator is as follows,

Definition K, Kn E [C!] are defined by

bd(d = r kwxw )
*0

(K,x)b) = i
j=l

wnjk(s,tnj)x(tnj)  '

(4 7 >

(4 .W

These operators are bounded,
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Lemma 4.3

II II'K = rnax flk(s,t)ldt  -i, M , and
0+X10-

II IIKn = max
o< s<l

~ lwnjk(s,tnj)l F MB
j=l

(4  l 9>

(4.10)

for n = 1,2,... , where B is from (4.4).

Proposition 4.4. Kn converges to K pointwise. That is,

K --) K , but ~IK,-KII + o (unless K = 0). (4.11)
n --.

Define ks(t) = k(s,t). Then equations (4.7) and (4.8) yield

W(s) = q)(<ksx.r and- (4.12)

(K x)(s) = cp,(k,x>  .n (4 -13)

Since k(s,t) is a continuous function on the unit square, the

family of functions (ks: _0 < s <, 1) is equicontinuous and the products

a ksx share this property. Pointwise convergence is uniform on such a

family so we have uniform convergence for each fixed x in (4.11).

It is easy to showzthat 3@ and {Knx: n 2 1, xa) are bounded and

equicontinuous. Thus, we have

Proposition 4.5c K is compact and {K,] is collectively compact.

These are basic properties needed in the approximation theory.

In particular, they yield the following results involving norm con-

vergence.
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Proposition 4.6 In the integral equations case we have

en 2 ii(Kn-K)Kii -+ 0 and (4.14)
. .

Ben > [I(K,-K)K,II  -+ 0 e (4.15)

where

e = max I ( ‘p,-‘p HK( s,u)K(u,t)]I  + 0 and (4.16)
n

o<, s/t <, 1

(pn and Cp operate with respect to u,

The estimate, en, comes from the numerical integration and shows that

1) (Kn-K)KJ)
--+ 0 and ~~(K~-K)K,~J 3 0 independently of the abstract theory.

The quantity, [K(s,dK(u,t)l is an equicontinuous family of functions

of u parameterized by s and t , so (p, "Cp uniformly on that set.

Hence, the maximum goes to zero, and en + 0. If an error formula

for the numerical integration is known, it can give a computable

estimate for en'

58 Abstract Approximation Theorems

e Again consider bounded linear operators Kn,KE[X], where X is a

Banach space. The principal hypotheses are:

I(l) Pointwise convergence, K 3 K,n

(2) (Kn] collectively compact. As before, we infer

(3) K is compact.

We wish to compare the equations

(h-K)x = y, (5*1)

(5.2)(h-Kn)xn  = Y J
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and the inverse operators

(h-K)-'C[X] , (5.3)

(h-K )-k[X] .n _. (5.4)

The Fredholm alternative asserts that (A-K)-l exists iff (h-K)X = X.

If (h-K)-1 exists, it is automatically bounded.

The type of result we will obtain is illustrated by the next

theorem.

Theorem 5.1 Let K,KnE[X] for n >l. Assume (1) and (2) hold and
LA

h f 0, Then

(a) (h-K)-'&?]  exists iff

(b) for all n sufficiently

uniformly with respect

In either case,

large (X-Kn)-%[X] exists and is bounded

to n.

(c) (X-Kn)-l -+ (h-K)-?

Proof Assume (b). Then (h&x = 0 implies

llxll 5 ll(h-~,)-'ll*ll(h-~,)xll  4 0 which in turn implies that x = 0. Hence

(b) implies (a) by the Fredholm alternative. Now assume (b) fails.

Then there exist (ni} and {xn ) such that
.

llXn II = 1 , (X-K, ,: 3 0 .
i n

i i.

Since {Kn ) is collectively compact, there exists.

that Kn ,cn 3 y.. .
5 9

{ni 1 and yCX such
3

Thenxn 'y/h,yfO,and
.
2

(h-K, >x --* (h-K)y/h = 0 .
. n.
lj 2

Thus (a) fails. Hence, (a) implies (b). Since
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(h-~,)-~-(h-&-  = (~-K,)-~(K~-K)(Mc)-~ ,

we also have that either (a) or (b) implies (c).-.

We shall give another proof which yields error bounds. First

recall that

llopmii + 0 J (595)

//(y.p,K,\l --* 0 e (5.6)

The following auxiliary theorem will be needed.
-w.

Theorem 5.2 Let S,T E[X]. Assume (A-T)-$X] exists and

n = ~~(~-T)-~~~*I/(s-T)sII < IhI o (597)

Then (X-S)-' exists,

lp-s)-lll <, J* 9 (5.8)

and for any $(h-S)X ,

li(h-T)-'ll*\/~y-~y\I+n  l\(h-~)-'yl~
e ll(w-lY-(h-wlYll  <, p\ - n 45.9)

To prove this we first consider the following identity where we

:use the resolvent operator to express (A-T)-l.

~~$1 + (A-T>-IT] = I 0 (5.10)

We want to express the inverse of (h-S). If we consider

A-'[1 + (k-T)-%] as an approximate inverse of (h-S) and substitute

the expression for (h-T)-' from (5.10) we obtain
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A-+ I + (h-T)-‘S](h-S)  = I-b.-l(LT)-l(S-T)S  . (5 l 11>
. .

By the hypothesis (5.7) the operator on the right has a bounded

inverse and we have an expression for (L-S)-l:

(?+s)-1 = h-l[ ~-h-‘(~-T>-‘(s-~)s]-~~[  I+@-T)-‘s] . (5 .=I

Taking norms in (5.12) we see that (5.8) holds. By subtracting the

expression for (h-T)-' given by (5.10) from (5.12) we obtain, after

some manipulation,
--.

(LS)-l-(h-T)-l = h-l[I-h-l(LT)-l(S-T)S]-l~

' +-T)'l[(S-~)+(~-~)~(~-~)-ll  .
(5 J3)

Application of this operator on fi(h-S)X and taking the norm yields

(5 l 9> l

Theorem 5.2 can now be used to prove Theorem 5.1 by substituting

Kn for S and K for T. Thus we obtain

a
IIx,-XII 3 0.

Moreover we obtain the error estimate

llx~-xil L
Ii (~-Q-‘ll~ liKny-K ~l+nnii~,ii 3 o

>
I Ih -A

n

whenever

n =
n \I(- )-'\l*(j(Kn-K)KII < IhI .n

(5 l 14)

(5 l 15 )

(5 ~6)
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The roles of K and Kn may be interchanged to obtain an inequality

similar to (5J5).

The convergence to 0 in (5e15) follows from the boundedness of

\I O--K,) -'I\ and \lxnii and the convergence to 0 of \\~,y-~y\\ and An, The

convergence nn -+ 0 follows from the boundedness of I\(Y.-K~)-'\\ and (5.5)

or (5.6) if the roles of K and K are interchanged,
n

The estimate given by (5.15) is computable in the integral

equations case if the error in numerical integration is known. The

only quantity not due to error in numerical integration is I\(~-K,)-'\\

Lemma 5.3

j/(h-Knrlli < lhl-lo+i\Kn- , II IIe A;"

Here liKnli is given by (4.10) and -I/iA, II
inverse of the coefficient matrix, A

n'

(1*3)*

whicil can be estimated as follows.

I) . (5017)

is the maximum row sum of the

from the system of equations

The following chapter will apply the abstract theory to integral

operators with discontinuous or singular kernels. It will be shown

that these operators do satisfy the hypotheses so that the desired con-

clusions can be drawn.

In Chapter III, the abstract theory will be extended to the eigen-

value problems and more general spectral properties of operators. Non-

linear problems will be treated in Chapter IV. This involves combining

the linear theory with the abstract Newton's method.
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Chapter II

INTEGRAL OPERATORS WITH

DISCONTINUOUS 0~ s~:NGuLAR  KERNELS

1. Introduction

Consider a Fredholm integral equation with functions in real or

complex C = C[O,l], with the maximum norm, l\x\I = max Ix(t)\. We have
o<t<1- -

@x)(s) = J'k(s,t)x(t)dt,  o<_sLl ,
0

(1.1)

for the integral operator and

(KnX)(S) = ~ W .k(s,tnj)X(tnj) 0.2)
j=l nJ

, o(s<l ,_ -

for the approximate operators defined by numerical integration.

The kernel, k(s,t), is assumed to be bounded and possibly dis-

continuous. We include Volterra and other "mildly discontinuous"

kernels which are discontinuous on a finite number of continuous curves

t = t(s) in the unit square, and bounded uniformly. More general

* classes of kernels will be defined explicitly later.

With these discontinuous kernels, the integral operator, K, maps

C into C but the approximate operators, Kn, do not map continuous.

functions into continuous functions. That is,

KC c C but KnC $ C . (1.3)

Therefore we cannot regard K and Kn on the same space C as was the
4.

case for continuous kernels. To circumvent this problem we define a

new and larger space. -

17



Definition Let R denote the normed linear space of proper

Riemann integrable functions x(t), o<t<l, with the supremum norm,- -

II II
. .

X = suplx(t)j.

Lemma 1.1 R is complete; hence R is a Banach space.

To show this note that 6R iff x is bounded and x is continuous

almost everywhere. From these two facts the completeness follows

immediately.

Lemma 1.2 C is a closed subspace of R.

The space R is chosen since it is a rather minimal extension of

--.
C which includes step functions and other piecewise continuous

functions.

We will show that the operators K and Kn map R into R, that

Kn +=K pointwise, that (Kn] is collectively compact and that K is

compact. Hence, the general theory of Chapter I will apply as well

as the approximate spectral theory in Chapter III.

18



2. The Quadrature Formula

To examine the quadrature formula we introduce linear functionals
. .

expressing integration,

cpx = ;x(t)dt , for xER, cm
0

and numerical integration,

n
'pnx = c wnjx(tnj) , for *R l

j=l
(2.2)

We assume that the weights in the quadrature formula are all
--.

non-negative. Thus,

wnk > C , l<k<n .- - P-3)

So we have bounded linear functionals cp, (PIER* with norms

II IIcp = 1, ibnli = f w ’ lj=l nJ
f2.4)

In addition to (2.3) we hypothesize that

and note that for the usual quadrature rules (New-ton-Cotes excepted)

* these two assumptions hold.

Before proving that the hypotheses also hold on the space R we

show that the norm, \\~,I\ is bounded. Since cp, -vp on C,

n

c w . =
j=l nJ

c&l 'cpl = 1. (2.6)

19



The sum of the weights is bounded uniformly in n since it converges.

Thus we have the inequality

. .

.<B<m.
-

(2.7)

The next lemma states thatq and (p, are positive and monotone

linear functionals

Lemma 2.1 For x,y E R,

x >, 0 implies cpx > 0 and 'p,x > 0 ,- -

x 2 y implies (peqy and cp, x >_cp,y*

We also have for complex functions the following fact.

Lemma 2.2 xER iff Re x, Im xER.

The next lemma will be used to extend (2.5) to the space R0

Lemma 2.3 A real function x is in R iff for any E > 0 there

exist real functions xE' xE CC such that

(2.11)

This follows easily from the usual definition of R in terms of

upper and lower integrals. By Lemmas 2.1 and 2.3 we have

cpx” +cpx and(PXE dcpx as E: 30 . (2.12)

Now it can be proved that the numerical integral converges to

the integral on R.

20



Proposition 2.4 If &R then

cp,x + cpx , xER .
. .

Proof By Lemmas 2.1 and 2.3 we have

cpxt; - t <cpx<cpx, + c .

Subtracting (2.15) from (2.14) Yields

qlxe qlXE - E < ql,x -qlx<cpnxE  -rpxe + E .

(2.13)

(2.14)

(2.15)

(2.16)

Since x,s, x% and (2.5) holds, it is easy to see that

'pnx -Cpx 40 as n -+a.

For our theory to apply, it is necessary to know for what

classes of functions in R there is uniform convergence in (2.13)

A standard answer is that on any totally bounded set (p, 3 cp

uniformly, However, in the present case this can be extended. To

this end, we introduce the following concept.

Definition 2.1 A set, S, of real functions such that

S C R is regular iff for each xES and each 8 > 0 there exist real

* functions x6, xc EC such that (2.10) and (2.11) hold and, for each

fixed s > 0, the sets

se = (x,: x6S] and S" = Ix': XES) (2.17)

are totally bounded (or bounded and equicontinuous -- by the Arzela-

Ascoli lemma). An arbitrary set, S C R, is regular iff Re S and Im S
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comprise regular sets.

Using this definition the following theorem holds.

Theorem 2.5 The convergence in(2.13) is uniform

ular set S C R.

Proof By (2.5) and (2.17), for each fixed s,

‘P,Xe 3 OXE J (p,XE -+ cpx” uniformly for xCS.

on each reg-

(2.18)

NOW (2.16) and (2.18) imply that the convergence in (2.13) is uniform

for xC3.

To illustrate the concepts just developed, consider the following

examples.

Example 21 The set of all characteristic functions of

intervals in [O,l] is a regular set but not totally bounded.

the sense of Definition 2.1 by sets of trapezoidal functions which

are bounded and equicontinuous.

This follows from the fact that this set can be approximated in

Any regular set is bounded since SE and SC are bounded. The

e converse is false as shown by the next example,

Example 2.2 Let x,(t) = cos(&nt). Then {x : n = 1,2, . ..]n

is bounded but not regular.,

Proof @or an indirect proof, use the rectangular quadrature

rule:

(2.19)

Then qnxn = 1 and(Px, = 0, n > 1. Therefore, by'Theorem 2.5, the-
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set (xn: n > 1~ is not regular.-

Based on these two examples, we can now state the following

result.

Proposition 2.6 Given a set S C R,

S totally bounded * S regular ,

S regular * S bounded ,

( 2 . 2 9 )

( 2 . 2 1 )

but neither reverse implication holds.

Without proving it here, we state that regular sets may be very

much larger than totally bounded sets. Regularity is essentially a

requirement of compactness or total boundedness in one dimension only.

Any regular set is totally bounded with respect to the Xl semi-norm

but the converse is false. We observe that the pointwise convergence

is uniform on much larger sets when the operators are positive than

when they are not.

From the definition of regular sets we have the following.

Lemma 2.7 If Sl and S2 are regular sets then Sl U S2, Sl + S2,

and SlS2 are regular sets.

Lemma 2.8 If S is a regular set then ISI is a regular set.

Hence, regular sets behave much like totally bounded or compact

sets and may be combined and operated in much the same way. A con-

vex combination of regular sets is also regular.

By using these properties we may obtain further examples of

regular sets. For example, regular classes of step functions and

of piecewise continuous functions may be constructed from the set

of all characteristic functions.
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There are several equivalent forms of the definition of a regular

set. For example, in Definition 2.1 the functions x and xe could be
%

required to be Riemann integrable instead of continuous. Secondly, the

requirement that S,
E

and SE be totally bounded can be replaced by re-

quiring S,s and S' to be finite.

The preceding remarks are a special case of an abstract theory.

If we work in any partially ordered Banach space and Cp and Cp, are

positive linear functionals which converge pointwise, then we can define

q-regular in precisely the same manner as we defined regular,and point-

wise convergence is uniform on any q-regular set.
--.

3* Integral Operators

Let K be a linear integral operator on R and consider the equation

@x)(s) = J'k(s,t)x(t)dt , xER, o<s<l e (3.1)--
0

Definition 3el A real kernel k(s,t) is uniformly t-integrable iff

for each E > 0 there exist real continuous kernels k,(s,t) and kl(s,t)

such that

(3.2)

(3.3)

An arbitrary kernel k(s,t) is uniformly t-integrable iff Re k(s,t)

and Im k(s,t) are uniformly t-integrable.

Examples of uniformly t-integrable kernels are continuous kernels,

continuous kernels for the Volterra operator, and mildly discontinuous

kernels.
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In what follows we use the notation:

ksW = k(s,tL . .

k;(t) = k'(s,t),

k& > = k&t)  l

Theorem 3.1 Let the kernel k(s,t) be uniformly t-integrable.

Then

Cks: o<s<l] is a regular set in R, (3.4)-a

T)(i.ks=- ks.&) --) 0 as s-s*+ 0, uniformly for O<,S,S'<~  . (3.5)

Proof. A check of the definition gives (3.4). To prove (3.5)

define functions f, f" such that

f,fE: [O,l] --) x1(0,1), (3.6)

f(s) = k , fe(s) = k; . (3*7)S

Then f" is continuous for each E > 0 and

f" + f uniformly as ce 3 0 . (3.8)

- Thus f is the uniform limit of continuous functions so f is continuous,

proving (3.5).

The properties of any uniformly t-integrable kernel, given by

Theorem 3.1, allow us to describe a larger class of kernels which we

can deal with.
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Proposition 3.2 Let k(s,t) be a kernel such that (3.4) and (3.5)

hold. Then KR C C, K is compact and i\Ki\ = max cp(,(ks$)
o(s<l

= max iiksiil.
o<s<l- - - -

Proof- BY (3.0,
. .

(a) = Toy)  l

By (3.4), ksER for all s so q(ksx) exists. Secondly,

I owb) I 5 max ilksii~+4i 9
o<s<l- -

where the maximum exists because in (3.7) f is continuous on a

compact set. ='Thirdly, consider

(3aY)

(3.10)

(3-11)

By (3.5), the quantity \\ks-",,I\,+ 0 and we have KR C C. For x@,

the unit ball, (3.5) and (3.11) imply that the functions (k)(s) are

bounded and equicontinuous. So by the Arzela-Ascoli lemma, K is a

compact operator.

To sketch an alternate proof, consider Definition 3.1. This

proof is for the real case in that definition.

Define the integral operator 8 with the kernel k?. Then K?

lcompact  and i\K&-KI/ < E imply K compact as follows.

Since

II'K'x - Kxii < Q for all x@, (3.12)

Ke/? is totally bounded and is also an e-net for K@. Hence m is

totally bounded and K is compact.
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4. Operator Approximations

Consider the operators Kn on R defined by. .

o.ydb~ = E w 'k(s,tnj)x(tnj)j=l nJ ) o<_'<_l t

where k(s,t) satisfies (3.4) and (3.5) and

(4 J>

k(s,t) is s-integrable for o<t<l .- - (4 -2)

The quadrature formula satisfies the conditions in Section 2,

Since dim K.n R < m, each K;;1 is compact.--.

Theorem 4.1 The operators Kn satisfy

KnRcR, (4.3)

K/K, w+)

{Kn) collectively compact. (4.5)

Proof From (4.2) it follows that (4.3) holds. From (3.4) we

. have that

(K x)(s)
n - @x)(s) =qn(ksx) -xJI(.~~x) + 0 uniformly (4 4

in s.

This proves (4.4). To prove (4.5), let x vary in B and note that

But by (3.4) we have



(Pn(lks-ks,l)  4 q(lk -k ,I) uniformly in s,s',s s (4 08)

and by (3.5) we have
. .

cp( Iks-ks’ I> + 0 as s-s'3 0 .

Now, for each e > 0 , there exist 6(s) > 0 and N = N(s) such that

I(K,X)(S) - o$$b’)\ < E if n >, N, Is-s'\< 6, and xa. (4.10)

We already know that

I o$$w I _< M for x(3?, 0~~1 and n = l,2,3,... .- - (4 Al)

It follows that (Knx: n > N, x@] has a finite e-net of step functions.=

N-l
Since each Kn is compact, U (K,x: x-1 > also has a finite

n=l
e-net. Therefore tne set [K,x: n 2 1, x(%] has a finite s-net. By

definition then, the set [Kn] is collectively compact, proving (4.5).

Since (4.4) and (4.5) hold, the general approximation theory

concerning convergence and error bounds applies to this case.

Consider

(h-K)x = y , (A-Kn)xn = y (4 2)

with X f 0 and fiC. Suppose (A-K)-l and (h-K,)
-1

exist. Since

KRCC, x= h-1(KA + y) EC and (h-K)% C C. But xnf C in general

since KnC $ C for discontinuous kernels. That is, if the given function

in an integral equation is in C, the solution will be in C. The

approximate solutions would only be in R. However, we have the familiar
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situation of discontinuous functions converging uniformly to continuous

functions:

. .
xn(discontinuous) -+ x (continuous) uniformly. (4.13)

An abstract generalization of the result, Kn 3 K, and {K,)

collectively compact, can be given after verifying one additional

property, namely

iiK,li  4 ilKi\  l
(4.14)

This follows fxom I\K\\ = max (P(j.ksj) and l\Kn\i = sup 'P,(lk,].). For the
o<s<l o<s<l- -

case involving a kernel, E(&t), which is uniformly t-integrable,

there exist continuous kernels k and k' such that k.< k < k'. Con-
E E- -

sidering the continuous kernel, k', we can define the corresponding

integral operator $ and we can use numerical integration to define the

approximate operators

e By (3e3) and (4.14),

/Ki-Kn/l = li(KE-K),iI ---) IjKIF-KiI < E.

(4.15)

(4.16)

In the abstract setting we now have

Theorem 4.2 If

K; --) KE as n --,a, for each E > 0 , (4.17)

CK,": n L 13 collectively compact, for each sr, > 0, (4.18)
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Kn compact, for n = 1, 2, .eO ,

i\KE - Kn\\ -+ \IK~-K\\ < 8 as n -+ & ,

then

K/K,

(4 .lY>

(4 20)

(4.21)

[K ] collectively compact. (4 2.2)
- n

Proof Kn -+ K by the triangle inequality. Fix s > 0, Then

there exists N =-J(E) such that i\K> - Knx\\ < E for all n 2 N and

XL%?” Hence the set

{Knx: n >, N, x-]~

the one used in the

compact.

IKEX” n > N, xG5) is a totally bounded s-net for
no -

It follows from (4.19), by an argument similar to

proof of Theorem 4.1, that {K,] is collectively

This abstract version of the theorem is of interest since it

indicates a way to extend the theory. For example, suppose we have

theory for integral equations with continuous kernels. Then we can

. extend the theory so it holds for neighboring objects in some well

defined sense, This could be used to extend the theory to integral

equations in several dimensions with other kinds of kernels without

repeating the detailed analysis necessary to the development of the

initial theory.

50 Weakly Singular Kernels

a

The material in this section is adapted from Atkinson [ly].

For xcC consider
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(Kx) = Jlk(s,t)x(t)dt, %x51 ,
0

(5 J>

. .
where ks(t) = k(s,t) satisfies

ksc Ll(O,l) for all s , (5 -2)

ii ks - ks t ill dOass-s'-)O. (5 -3)

As in Section 3 of this chapter, the quantity masx\/ks/\l  exists, and

the convergence in (5.3) is uniform for ~$,s~sg.. Conditions (5.2)

KC C C, K compact, i iKii d ~p4ksiil  l
(5.4)

The continuous and discontinuous kernels treated above satisfy

(5.2) and (5.3). Another example is

k(s,t) = r(s,t)ls-tlWa , (5.5)

.

where r(s,t) is continuous for O$.,t<l and OcaKl. More generally,

suppose

r(s,t) continuous for R-s,t<-1  , (5.7)

and d,(t) = a(s,t) satisfies (5.2) and (5.3). Then ks satisfies (5.2)

and (5.3), KC C C and K is compact. As in the example with

a(s,t) = Is-t/
-Cl

, the "singular part" of a kernel often can be

isolated in a simple explicit form. Now we have
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(Kx)(s) = [l[r(s,t)x(t)lo(s,t)dt  .
-0

Suppose we have operators An ~CCI such that Anx -+x for all xEC as

n +a. Then we define
. .

(K,x>(s)  = /-{A, er(s,t)x(t)l )a(s,t)dt )
0

(54

where A
n

operates with respect to t.

For example, suppose Anx is the piecewise linear interpolation

of x with subdivision points t
nj

= j/n, j = O,l,...,n.  Then

(Knx)(s) reduces to

(',X)(S) = i Wnj (S)r(S>tnj)xonj  > >
j=o

where

w s
nj ( 1 ( t- *)o(s,t)dtn

(599)

(5.10)

j+l

(Ln t)o(s,t)dt

and o(s,t) z 0 for t$!$[O,l] to make the expressions for wno(s) and

W
nn

(s) correct. Note that we must be able to integrate o(s,t) and

to(s,t) with respect to t in closed form in order to obtain an explicit

expression for (Knx)(s)' If Anx is a piecewise polynomial inter-

polation of x, then (K,x)(s) has the form (5.9) with wnj(s) defined

in terms of integrals of o(s,t), to(s,t), t20(s,t),  etc.

Again consider the general situation.

Lemma 5.1

A [r(s,t)x(t)] +r(s,t)x(t) uniformly in s,t .
n (5-11)
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This follows from the fact that {r(s,t)x(t)} is a bounded

equicontinuous family of functions of t.

Lemma 5.2 The set {A,[r(s,t)x(t)]:  n > 1) is bounded and

equicontinuous.

In general, if Fn and F are continuous functions, and F 4 Fn

uniformly, then {F,: _n > l} is equicontinuous.

Proposition 5.3 The following two facts hold.

(Knj is collectively compact,

--.
Kn4K.

(5 l la

(5 J3)

Proof BY (5*2), (5*3), Lemma 502 and a simple triangle

inequality argument,

CK X: n > 1, x-3 is bounded and
n -

equicontinuous . (5 014)

Hence {K,} is collectively compact. Let En
= An - I. Then En --) 0,

and

\\K X-Kx\\ 5 sup\~En~r(s,t)x(t)l~~sup~~cs\~l  --) 0 as n --) CD e (515)
n S S

,
Thus Kn -+ K.

In view of Proposition 5e3, the general approximation theory

applies.
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Chapter III

SPECTRAL AP-PROXIMATIONS

1. General Properties of Collectively Compact Sets

Again let X be a real or complex Banach space. Recall rC c [X]

is collectively compact iff ti is totally bounded. If K is

collectively compact then each KOC is compact and H is bounded.

Finite unions and sums of collectively compact sets are also

collectively compact.
--.

Proposition 1.1 Let K be collectively compact. Then each of

the following sets is collectively compact:

(a) sQ71 for each bounded RC [Xl;

(b) m for each totally bounded RC [X];

(c) the strong and norm closures of K;

(d) 1; hnKn: KnW
n=l

f Ix,I <, bj for each b < 00, Ni a;
n=l

(e) (rrK(A)dh: K(h)cK, a(P) < b} for each b < 03,

. where F is an interval or rectifiable arc of finite length i(P) and

the integral is the limit in operator norm of the usual approximating

SuInS .
.

We shall study operators in [X] such that

T+T,{T - T) collectively compact.
n n (1.1)

The special case,

T/T> {Tn) collectively compact,



includes the integral equations examples.

Lemma 1.2 Let T, T,E[X]. Then

T/T, n(T 1 collectively compact (1.2)

iff

T/T 9 IT,-T} collectively compact, T compact. 0*3)

2. Resolvent sets and spectra

Let TE[X]. Recall:

(i) h@(T), -the resolvent set, iff there exists (h-T)-lEIX];

(ii) the spectrum c(T) is the complement P(T);

(iii) a(T) 3 {eigenvalues) (for example, if T is compact, the

eigenvalues of T form a finite set or an infinite sequence

converging to 0);
03 Tn

(iv) if IhI > \\Tl\ then hEp(T), (A-T)-l= C Xn+l c[XI
n=o

, and

1; (A-T) -‘ii <- ,” \ i,,,,,

(cpns'equently  lhl < iiT\\ for'all hEa(T

’ (v> P(T) open, a(T) closed and bounded (compact);

(vi) the map h 3 (h-T)
-1

is continuous on o(T) and is uniformly

continuous on each closed set in p(T);

(vii) ((k-T)-': he A) is totally bounded for each closed
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The following identity will be used several times.

(A-s)-‘-(h-T)-’  = (h-s)-~(s-T)(L&. (2.2)
. .

Lemma 2.1 If KE[X] and iiK2\1 < !_ , then (I-K)-lEIX] and

(I-K)-1 = (I-K2)-l(I  + K) ,

ii(I-K)-l\i  <,  w l

Theorem 2.2 Assume T 3 T, n[T -Tj collectively compact, and h
n

arbitrary. Then

(a> h’%(T)

iff

(b) there exists N such that h@(T) for all n > N and

((h-T,)-': _n > NJ is bounded.

Either (a) or (b) implies

(c) (h-T )-l -e (h-T)+
n

Proof Assume (a). Then verify

h-T, = (I-K~)(~-T)  )

Kn
= (T,-T)(~-T)-~ )

K/O 7 {K,) collectively compact.

From Theorem 5.1 of Chapter I, there exists N such that

(I-K
n
)-'E[X] for n >, N,

((I-Kn)-l: _n > N) is bounded,
s

(2.5 1

Wd

(2.7 1

(2.8)

(2.9)
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(I-K,)-1 + I. ( 2 . 1 0 )

Therefore,
. .

(h-T,) -’ = (h-~)-l( I-KJ1

and (a) implies (b), (c).

To obtain error bounds, note

II II$I -3 0 .

( 2 . 1 1 )

(2.12)

Whenever i\K2-\\< 1‘;' (2.11) holds,

(L-T
n
)-'-(LT)-~ = (X-T~)-I-K~ ,

~i(h-Tn)-'~-(h-T)-'~i\  5 j/(X-Tn)+j/Knx/i  -, 0 .

(2.14)

(2.15)

Now assume (b). Then (h-T)x = 0 implies

e iixii 5 \\(A -T&-‘i\ 0 ii (W$Jx\i -+ 0 (2.16)

which implies x = 0. Hence, (A-T)
-1

exists. For n >, N,

h-T = (I-Ln)(h-T,),

Ln
= (T-T

n
) (h-Tn)-' compact.

(2.1’7)

(2 ~8)

Hence, (h-T)-'E[X] by the Fredholm alternative. Thus (b) implies (a).

To obtain error bounds, note that (L,] is bounded and
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Ln = CL,-IN, > (2.19)

q-+0, n(L ) collectively compact, (2.2D)

I IIL; 40. (2’.21)

ii ilL+, 'For

(A-T)-1 = (h-Tn)-l(I-Ln)-l, ( 2 . 2 2 )

I\(~-T~)-'x-(~-T) -+4i L \I WPii l iiq\i + 0.

(2.23)

( 2 . 2 4 )

Theorem 2.3 Assume Tn 3 T and {11,-T] collectively compact.

Let A be closed and A C p(T). Then there exists N such that

(a) A C p(T) for n 2 N,

(b) ((A-Tn)-': heA, n > N) bounded,

(c) for each xEX, (h-Tn)-'x  -) (A-T)-lx uniformly for hEA.

Proof In the proof of Theorem 2.1 write K,(h) for Kn. Thus

K (h)n = (T,-T)(~-T)-~

.
and

(2.25)

i~[K,(h)1211 + 0, \jKn(h)x II --) 0 for all xEX. (2.26)

These functions of h are equicontinuous on A. Hence the convergence

is uniform for hEA, and the desired results follow as in the proof

of Theorem 2.1.
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The next theorem is essentially a corollary of Theorem 2.3.

Theorem 2.4 Assume Tn --) T and (T--T] collectively compact.
11

Let R be open and a(T) C R. Then there exists N such that

c(T,) C s1 for all n > N.

Proof Let Q = complement A in Theorem 2.3.

To illustrate, suppose we have operators Kn and K such that

Kn + K, [Knj collectively compact. Then the following apply a

Lemma 2.5 Assume Knxn.= vnxn9 ~1," I-J / 0, lix,I\ = 1, Then

there exists a Subsequence (nil and an x such that

Xn.
3x, Ksr= I-lx, \\ x Ii = L

1

(2.27 >

The proof is similar to that of Theorem 5.1 in Chapter I.

Lemma 2.6 If in addition, x is unique, then

X -4 x.¶
n

(2.28)

(2.29 >

This follows from the facts that [x,1 has a convergent sub-

sequence and has at most one limit point.

13. Functions of Operators; Projections

For fur&her details on the material to appear in this section

see [l] and [ 33, for example. Let X be a complex Banach space. For
\

each TE[X] let

3;(T) = {f: f 1ocally analytic on an open domain

ml = ml*
(3J)
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For each ftS(T) there exists a contour J? C \Q(f) with a(T) inside I'.

Define

f(T) = & j- f(h)@-T)-'dh (3.2)
r

as the limit in norm of the usual approximating sums.

Lemma 3.1 f(T) is independent of r.

n
Examples: f(T) = I, T, T , polynomials in T.

Lemma 3.2 If f,gtS(T) then

(f + g)(T) = f(T) + g(T),

(fd (T)  = @k(T) l

If in addition

f,(h) --, f(h> uniformly on r

then

(3-3)

(3.4)

(3.5)

Example Limits of polynomials.

. Theorem 3.3 Assume Tn 4 T and (T,-T) collectively compact.

Let f-(T). Then there exists N such that

( >a fkS(T,) for all n > N,

b) f’(m) -, f(T),

(c> tf(T,) - f(T): n 2 N} collectively compact.

Proof Theorem 2.4 implies (a). For nt N,
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f(T&f(T> = & s f(h)[(h-Tn)-l-(h-T)-lld~

1 ~rf(h)(h-T)-l(Tn-T)(~-Tn)-ld~~,
=2ni r (3*10)

. .

Theorem 2.3 (c) then implies (b). Proposition 1.1 (a), (b), (e)

implies (c),

Definition 3.1 Complementary spectral sets CJ, c' associated

with T are disjoint closed sets 0, (T' such that cs U alo( I

Lemma 3e4 There exists a contourrwith c inside and (3' outside.

Conversely, each r@(T) determines complementary spectral sets c and 0' 0

With this notation let

E = E&T) = & S,(h-T)%.

Note that

E = e(T) ,,

(3-11)

(3.12)

where

eES(T), e E 1 on 0, e - 0 on CT' n (3J3)

Lemma 3.5 . 2 2
e = ea E = E. Thus, E is a projection.

Definition 3.2 l3X is the spectral subspace associated with T

and c (or r).

Example If G consists of a single isolated eigenvalue,

CT = c 3I-L > and if T is compact and ~1 f 0 we may have

EX= h(p-T), an eigenmanifold, (3.14)

or
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EX= h[ (IJ-T>~I  9 a generalized eigenmanifold, (3.15)

where h(T) is the null space of T. _.

Lemma 3.6 Let E' = I-E. Then

x= EX 0 E'X, (3.16)

TEX c EX, TE'X C E'X. (3.17)

If in addition we let TE = T\EX , TEl = TIN,, , then

dTE),’ 0 t dTEl) = CJ’ . (3.17)

The next theorem is a specialization of Theorem 3.3 to operators

which are projections.

Theorem 3.7 Assume Tn + T and IT,-T] collectively compact. Let

r be a contour in p(T) around a spectral set O. Then there exists N

such that r C o(T,) for all n 2 N.

is a spectral set for Tn. Let E =

( >a
e

( >b

( >C

. for all n

The part an of o(T,) inside r

Er(T) and En = Er(Tn). Then

{E,-E] collectively compact,

dim EnX = dim EX (finite or+ a)

sufficiently large.

Proof Theorem 3.3 implies all but (c). We assert, for

projections that (a), (b) imply (c). We also assert that T,, TE[X],

Tn
3 T imply

dim Tn X 2 dim 'IX eventually. (3.19)
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r

To prove (3.19) let {Txj: j = 1, a. *, m) be linearly independent and

define C = ajmlJ J
c .x.: maxlcjI = 1'). Then C and TC are compact, so

Tn + T unifor;y onC and min\iTxii > 0."
XCC

So eventually min(/Tnx/i  > 0 and
XEC

ITnxj
: j=l, . . . . m} is linearly independent. The result, (3.19),

follows. Now we show 5 in (c). Without loss of generality dim EX < ~0.

Then E is compact and {En] is collectively compact. Suppose that

dim EnX>-m for n>l. By the Riesz lemma, there exist linearly in-

dependent sets {xnk: k = 1, . . . , m] C Enx, n > 1, such that

k-l

iixnk/\ "'l, iixnk - 1 ‘jxnj/i >, '
j=l

for all n, k and {cj}. Since xnk = Enxnk E{En]/5,

there exist a subsequence {n} and elements xkEX

En xi n,k
+ xk for k = 1, . . . . m. Then

(3.20)

which is precompact,

such that xn k =
i

iiXkii = ‘, iiXk - (3.21)

for all k and [cj}, so (xk: k = 1, . . . . m] is linearly independent.

-3 E implies E x
e

Now En n. nils3 EXk,
so that xk =ExktEX for all k. Thus

1

dim EnX >, m for all n * dim EX 2 m. (3.22)

IApply this result to an arbitrary subsequence of {En) to conclude

that

dim EnX 5 dim EX eventually. (3*23)

Since we now have (3.19) and the reverse inequality (3.23), (c)

follows.
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In Theorem 3.7, let o = [CL}, on = {CL,?* Then ~1, -+ U by Theorem

2.4. If dim EX: = 1, then En +E implies convergence of eigenvectors

as follows. Suppose TX = px and ilx+i = 1. Then Ek = X* Let xn = Enx.

Then TnXn = p,X, and Xn +_X.

Proposition 3.8 For some n, let r c &I') n p(T,). Define

E = Er(T) and En = Er(Tn)* Let o and cr, be the parts of o(T) and

o(T,) inside I?. Assume

--.
then

II -x -n Ex,il < r,n = G ;; ,w lIl,.,⌧n  - T�,ii  l

Now assume rn < 1. Then Exn # 0, E # 0 and Q is nonvoid. Let

V = EZ$lEI n11. Then yn CEX, Ilu,\i = 1 and

II 'n - ql I 2r ln

Proof Note that

En - E = & l (A-T)-l(
r

T,-T) (h-Tn)-ldh,

(~T~)-'x~ = (h-p,)%, for )&r, and Enxn =+xn .

Hence,

X - Ex =
n n

dh (p,x, - TX,)
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and llxn - Exnil < rno For rn < 1,

iiYn - xnli 5 /lYn - Exnil + IbX, - Xn/

< 11 - bnll 1 + rn

5 IIxn - Ex,/l + ‘n 5 2rn*

In Proposition 3.8 suppose that dim EX < w (e.g., T is compact

and 0 is not inside l?). Then y, is an eigenvector of T. The

corresponding e.igenvalue IJI, lies inside r and is determined by

TYn = Pnyn*

Now assume dim EX < a and that the hypotheses of Theorem 3*8

are satisfied for all n > N. By Theorem 3.4 there is a 6 > 0 such

that Ih-pnl 2 6 for all ha? and n 2 No Note that

II pnxn - T⌧,ll  = it (T,-T&&ii  < 11  CT,-T)E,il  l-

.
Since E is compact and (En-E] is collectively compact, {En] is

collectively compact. Hence, 11 CT,-T)E,/I + 0 and

r
n + 0,

.

II x -
n =,/I --) 01

II Yn - Xnl/ + 00

In order to estimate rn9 we may use the inequality (2.23)for

Il(h-T)-lll in terms of ll(~-~~)-li(~
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As an application of Theorem 3.8, suppose that, by computational

evidence, certain eigenvalues CL, of Tn seem to converge to some value

near h as n +-*0 Fix n and e > o'such that l~n-ho~ < c and

r = (A: Ih-h
0

1 = SC} C p(T) r~ p(T )*n

Then m(r) = 2ne and

rn-< G max II b-Will  11 p
hEr '1 nxn - Txn'l*

--.
If dim EX < CO and r

n
< 1, there is an eigenvalue IJ~ of T with

Iv-h,l < e* The calculation of rn presents a problem when 8 is small,

since then il(x_~)-'II  is large and lh-p,I is small for Au. Thus,

c: should not be taken too small. This limits the practicality of

Theorem 3.8. For further details, see Atkinson [21].

In Theorem 3.7, let o = (J,], EX = V?[(P-T)~],  where v is minimal.

Then on = (pnk: k = I,..., k 1,n
max(p,
k

nk- 'hi -+ '3 and

kn
EnX = @ SC (pnksTn)

'nk
I'

k=l

where the v are minimal. LetI nk

kn
PO,) = (p-h)', p (h) = n (~n,-/nk'

n k=l

Then

EX = Y[P(T)l, EnX = v[pn(Tn)l.

(3.24)

(3*25)

(3.26)
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Let V, = degree Pn = c vnk*
k=l

Theorem 3.9 There exists N such' that V, 2 v for all n > N.

Proof EP(T) = 0 and P(h) divides Q(x) for each polynomial Q such

that EQ(T) = 0. Similarly, EnPn(Tn) = 0. Suppose

V
n.

= a! for some {ni) C [n).
1

(3*27)

Then

0 = E; Pn (Tn ) -+E(P-T)~ = 0,
ii i

so a/ > v. The result follows.

Theorem 3.10 There exists N such that dim Y(knk-T,) 5 dim %(p-T)

for all n > N and for all k.

Proof See [17, p0 121.

Theorem 3.10 There exists N such that for all n 2 N

kn
dim !JGc (unk-Tn) (Ynk] < dim %[(@J)?-

k=l
(3.28)

-whenever
k
n

' 5 ank < '& and 1 ank = a-
k=l

Proof See [1710
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Chapter IV

FURTHER TOPICS

1. An Alternative Method

Again let X be a real or complex Banach space. Consider

K, Knc[X] for n > 1, with-

Kn 3 K, (K,] collectively compact, K compact. (1.1)

As noted before, the first two conditions imply the third. We
--.

wish to solve

(I-K)x = y (1.2)

or to determine (I-K)-l.

The basic idea of the present method is to find operators

T,Lk[X] such that T-lc[X],  L is compact, and

T(I-K) = I-KL, Cl*31

I-K = T-+1&). w+)

Then the operator I-KL is approximated by I-KnL. By Theorem 3.1

of Chapter I,

/iKnL-KL\i  + 0. Cl*51

Therefore, the standard approximation theory given in Section 1 of

Chapter I applies. Thus, (I-KL) -' exists iff (I-K,L)-1 exists and
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is uniformly bounded for n sufficiently large, in which case

\i(I-KnL)-l-(I-KL)-li\  --) 0, . (1.6)

and there are error bounds.

Clearly, (I-K>-l exists iff (I-KL)-1 exists, in which case

1 1

(I-K)-A = ( I-KIJL~, (1.7)

I ii ii‘T, (1.8)

ij(I-KnL)?-~-(~-~)-l/(  -) 0, (1.9)

and error bounds are available.

Such operators T and L exist. They can be determined in a

variety of ways. For example, if (I + K)-l exists, then

(I + K) (I - K) = I - K*, (1.10)

(1.11)I - K = (I + K)-l(I - K2).

- Thus, T = I + K and L = K in this case.

More generally, let

T = P-lI+K+...+K (P> 2).- ( 1 . 1 2 )

Then

blS>

(1.14)

T(1 - K) = I - Kp,

T(1 - K) = I - KL, L = Kp-l.
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We show that T-l exists if p is a sufficiently large prime. Without

loss of generality, X is complex; otherwise extend T to the space
. .

x + ix. Note that

T = i (K-apqI),
q=l

(1.15)

where the Q
Pq

are the nontrivial pth roots of unity. For p prime,

the a are distinct numbers of absolute value one. Since K is
Pq

compact, the eigenvalues of K form a finite set or an infinite sequence

converging to zero. Therefore, only a finite number of the Q! can be
Pq

--.
eigenvalues and

T-1 p= II
q=l

(K-apq)-'

for p sufficiently large. Usually p < 5 will suffice.
=

Another possibility is

(1.16)

T = I + K + cK2, (1*17)

where the constant c is chosen such that T-1 exists. Then

T(I,- K) = I - KL, L = (1-c)K + cK2. (1.18)

If K and L are integral operators on C[O,l] with continuous

kernels, and Kn is defined by means of numerical integration, then the

determination of (I-KnL) -1 is equivalent to a matrix problem (cf. [lb]).

Each matrix element is an integral over [O,l]. This contrasts with

the method of Chapter I, where the matrix elements were simply values

of given functions. The two methods also differ in that
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\I(I- KnL)-l-(I-KL)-l\/ -+ 0, (1.19)

whereas there is merely pointwise convergence of

(I - K,,-l 3 (I - K)-l. ( 1 . 2 0 )

Thus, the present method requires more work but gives stronger results.

Integral equations of the form (I - KL)x = z sometimes arise

directly from physical problems. For examples in mechanics, electro-

magnetic theory, and radiative transfer, see [5> 7> 8, 9, 14, $1.

In such cases, we can proceed directly to the approximations

I -K,L.

20 Collectively Compact and Totally Bounded Sets of Operators

We have shown in Chapters I and III that operators T, T,&[X]

such that

Tn -+ T, IT,-T} collectively compact, (2.1)

- have many of the properties of operators for which iiT,-T\i -, 0,

Since the analysis simplifies in the latter case it is important to

determine when Tn --) T but i\Tn-T\\ + 0. It is easy to prove

Lemma 2.1 iiTn~Til -+ 0 iff Tn ---) T and CT,-T} is totally bounded

(equivalently, sequentially compact).

Thus, the theory presented above is intended mainly for operators

such that Tn --t T, (T,-T) is collectively compact2  but ET,-T] is not

totally bounded. We shall compare collectively compact and totally

bounded sets in [X].
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Proposition 2.2 Every totally bounded set K of compact operators

inB] is collectively compact.

Proof Fix s > 0. Then there-exist KiEK, i=l, . . ., m, such that

mini/K-Kill  < E for each KQk
i

Hence,

minlb-Kjx// < E forilall KEK, xC6. P-2)
i

m
It follows that S = U KiB is an s-net for X.& Since each Ki is

i=l
compact, S is totally bounded. Therefore, bars is totally bounded and

K is collectively compact.

The next-example shows that the converse of Proposition 2.2 is

false.

Example Let K be the set of operators on e2 such that

Kn(xl,...,xn,...)  = (x,,O,O,...). (2.3)

Then SC is collectively compact. Since I/Km-K,/\ =e for m f n, %c is

not totally bounded.

It was proved in [16] that the converse of Proposition 2.2

. holds for any set K of self-adjoint operators on a Hilbert space.

The proof involved the spectral theorem. More generally, it was

established that:

Theorem 23 Let K be a set of compact normal operators on a

Hilbert space. Then SC is totally bounded iff both K and K* are

collectively compact, where K* = (K*: KEK). (

From this, it follows that:

Theorem 2.4 Let K be a set of compact operators on a Hilbert
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space. Then K is totally bounded iff both K and K* are collectively

compact.

Later, the same result was obtained in [13] for any set K of

compact operators from one normed linear space to another such that

(dim KX: KEKI is bounded, In [18] this was extended to other sets in

[X] by means of spectral theory. Finally, Palmer [36] recently found

a quite direct proof of Theorem 2.4 for an arbitrary set of operators

from one Banach space to another. In fact a somewhat stronger result
*

was obtained.

30 Nonlinear Operator Approximations

Consider a nonlinear operator equation

TX = 0, (3J)

where T maps a Banach space X into X. For example, this might be a

Hammerstein integral equation on C[O,l]:

(TX)(S) = x(s)+J'k(s,t)f(t,x(t))dt  - z(s) = 0 0 (3.2)
0

Assume that T is Fr&het differentiable on X. Thus, there exists

the unique Frechet derivative T'(x)E[X] for each xEX which satisfies

IlT(x+Y)-Tx-T’(x)Yl~  --) 0 as \iy\\ --) 0.

ii iiY
(3e3)

Under reasonable conditions on k(s,t) and f(t,u) in the example,

T*(x) is the linear integral operator

CT’ (x)Y] (s) = y(s)+J’k(s,t)  & f(t,x(t))~(t)dt. (3.4)
# 0
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Consider TX = 0 in the Banach space setting. Suppose TX* = 0,

II x*-x,\I  is small and T'(xo)-lE[X] exists. Then
. .

T'(x,)(x*- x0) = TX*-TX = -TX
0 0’

(3*5 >

x* z x1’ x1 = x0 - T'(xo) Txo. (3.6)

Newton's method is based on

xm+l
= x~-T~(x,)-~Tx,, m = 0, 1, 2, l l l , (3*7)

provided the --inverse operators exist. The Kantorovitch theorem [29],

gives sufficient conditions for the existence of the iterates xm,

for the existence of a locally unique solution x* of TX = 0, and for

I\ xm-x*\i + 0. It also provides error bounds.

To apply Newton's method we must solve a linear problem or

invert a linear operator at each iteration. In the integral equation

example, and more generally, a second approximation method is needed

to deal with these linear problems. R. H. Moore [33a, 33b] has com-

bined Newton's method with the theory developed in Chapters I - III

for linear operators to obtain an approximation theory for nonlinear

operator equations in Banach spaces.

As Moore indicates, it is equivalent and somewhat more convenient

to first introduce nonlinear operator approximations Tn, say with

dim TnX < 03, and then to solve T xn n
= 0 by Newton's method. For

example, Tn can be defined by numerical integration when T is an

integral operator.
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Theorem 3.1 For some xoEX and r > 0 let

(1) llTnx-qI -, 0 for \\x-x,11 < r;

(2) (T ] equidifferentiable at x
n 0’

i.e., the limit in the

definition of Tn(xo) is uniform in n;

(3) {Tn] collectively compact, i.e,, (T x: n > 1, \IxI\< b]
n = =

is totally bounded for each b < 03,

Then

(4) qxo> --, T9(xo);

(5) (Tn(xo)] collectively compact;

(6) T'(x,) compact.

The hypotheses are satisfied under reasonable conditions for

the Hammerstein operator, For the proof and further theory and

applications, see [33a, 33bl a

4. C,ollectively Compact Sets of Gradient Mappings

This material is adapted from [25] by James W. Daniel.

Let X be a real reflexive Banach space and El the real field

w regarded as a Banach space with the absolute value norm. Suppose

that f: X --) E
1

is Frechet differentiable on some domain $3 C X. Then

f9(x)EX* for all xQ3 . The map V f: ~93 X* defined by @f)(x) = f'(x)

is the gradient of f,

Now let 3; be a family of such maps f.

Theorem 4.1 If {vf: f-3 is collectively compact then 9 is

weakly equicontinuous on each bounded convex set.

For a proof, see [25].
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Weak equicontinuity plays an important role in the approximate

solution of variational problems. This is indicated by the following

result.
. .

Theorem 4.2 Let f and fn be weakly lower semi-continuous

functionals such that f,(x) 3 f(x) for all xcB, a closed and bounded

set in X. Assume that (f,-f) is weakly equicontinuous on B. For

each n, let xnEB and fn(xn) 5 inf. fn(x) + En, where .E~ > 0 and
- xEB

E 3 0.
n

Then every weak limit point x' of {x,] minimizes f on B.

For a proof and a number of related results, see [25].

--.
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