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Abstract

A general approximation theory for |inear and nonlinear
operators on Banach spaces is presented. It is applied to
nunerical integration approximtions of integral operators.
Convergence of the operator approximtions is pointw se rather
than uniform on bounded sets, which is assumed in other theories.
The operator perturbations form a collectively conpact set, i.e.,
they map each bounded set into a single conpact set. In the
nonlinear case, Frkchet differentiability conditions are also
inposed. Principal results include convergence and error
bounds for approximate solutions and, for |inear operators,

results on spectral approximations.






Chapter |
APPROXI MATE SCLUTI ONS OF EQUATI ONS

1. Introduction

Consi der a Fredholm integral equation of the second kind
N x(s) - fi k(s,t) x(t)dt = y(s), 0<s< 1 (1.1)
where x(s), y(s), and k(s,t) are continuous, real or conplex val ued
functions for 0 <'s, t <1 and A £ 0.
In a classical nmethod of approximate solution based on nunerica

integration, the integral in (1.1) is replaced by a sunmation to obtain

O A X O O

If we replace the free variable by subdivision points we get a finite
l'inear al gebraic system

n
A xn(tni) ) A wnJ'k(tni’tnj)Xn(t ) = y(tni)’ 1=1,2,...,n.

nj
(1.3)

The two equations (1.2) and (1.3) are effectively equivalent.
Certainly if xn(s) satisfies (1.2) then the xn(tni),i = 1,2,...,n,
satisfy (1.3). Conversely, if (1.3) is satisfied, then (1.2)
det er m nes xn(s) explicitly in ternms of the xn(tni)-- ineffect, (1.3)
serves as an interpolation fornula

The technique of replacing an integral equation by a finite system
goes at least back to Fredholm [ 26]. Hilbert [28] gave convergence

proofs for approximate solutions using the rectangul ar quadrature




formula. The idea of using (1.2) goes at |east back to Nystrbm [35]
inthe md 1920's. The advantage is that equations (1.1) and (1.2) are
defined in the sane space. In particular cases this technique has been
studi ed by Blckner [2ka, 2kb], Kantorovitch [29], Mysovski h [30, 31, 32],
Wel andt [37], and Brakhage [22, 23]. In all cases rather particular
assunptions were nmade.

Basic problens to be considered are the solvability of the
equations, convergence of the solutions, error bounds, and the eigen-
val ue problens associated with these operators. Al so to be considered
are integral equations with discontinuous and even singular Kkernels,
probl ems in higher dinensions, unbounded donains and nonlinear integral
equations.

Applications can be made in the field of radiative transfer. The
transport equation is an integrodifferential equation which yields a
systemof ordinary differential equations when the integral is replaced
by a sum This problem can be cast so that it can be treated by the
theory to be presented here (see [ 5, 7, 34]).

An abstract theory concerning equations in a Banach space will be
presented. Thus all the applications will sinply be special cases of
the general theory. The abstract theory has been devel oped within the
last four or five years. Qher principal contributors to the theory

have been R H More, T. W Palmer and K E. Atkinson.




2.  Banach Svace Fundanental s

Let X denote the Banach space of real or conplex continuous
functions x(t), 0 < t< 1, with the uniform norm ||| = max|x(t)|. The
unit ball will be denoted by 5. Thus

B = {x€X: |jx]| < 1) . (2.1)
The synbol [x] will represent the space of bounded |inear operators on
Xinto X with the usual operator norm ||| = su%“KxH for Ke[x].

Lenma 2.1 Let K and Kn be el ements of Tiq. Then
& -kl - o iff |k x-kx|| - 0 for all xex unifornty for x¢8 (or any
bounded set).

In the general theory as well as the applications to be discussed
t he convergence of the operator approximations is only pointw se and not
uniformin the operator norm Nevertheless, for the sake of notivation,
suppose we have convergence in the operator norm that is, HKH-M\—*O
as n - «. Then we have the followng |emua

Lemma 2.2 Let [[K -K|| - 0. Then there exists (k) "Ye[x] iff for
all n sufficiently large there exist (A-KHYJE[X] bounded uniformy in
n.

In either case

Ik ) -K) |~ 0 as n - w (2.2)

A constructive proof of lemma 2.2 also provides error bounds.
In order to prove the |emma however, let us first state two further

results




Lemma 2.3 Let Te[x] and ||T|| < 1. Then there exists

(1-1)7% =i_Tn t[X] and
=0

ll(z-1) ) < 1/ (-l (2.3)

This is the well known Neumann series for (I-T)'l.
Lerma 2.4  Assune there exists T'lﬁ[X] and A = HT_anW'SH < L

Then there exists S €[] with

‘ -1

s < 2L (2:4)
and furthernore --

5Ll < ”T_lf'AHT-SH , (2.5)

To prove this we can wite (since T_1 exi sts)
S =T-(T-9 = [ 1-7(1-8)] . (2.6)

Hence, there exists

st = (- (T-8)1 7t (2.7)
and an application of Lemma 2.3 yields (2.4).
To prove (2.5) we write

g lop~l _ s'l(T-s)T’l . (2.8)

Taking the norm of (2.8) and using (2.4) gives (2.5) imediately.
Now we can easily show (2.2) and give the error bound by using

(2.5) with T =(h-K) and S = OwKn).V% obtain




vk )™ () 7Y ¢ LKL - (2.9)

wher e
By = 110 e, Kl (2.10)

n

Since' [k k|| - 0 and |\(>\-K)'l\\ i s bounded, (2.2) follows.

Not ati on
The notation K - K will be used for pointw se convergence.

That is, K - Kiff l\Knx-Kx\i - 0 for all xex.

Lemma 2.5 If L K for bounded |inear operators Kn and K, then
t he sequence {Kn} is bounded. That is, there exists a bound, b < =,

such that |k | < b for all n.

This is an application of the principle of uniform boundedness.

Lenma 2.6 |f K - K, then the convergence is uniform on each
conpact set in X

Before proving Lemma 2.6 a brief discussion relating the concepts
of conpact, sequentially conpact and totally bounded is in order. A

conpact set is a set such that any open cover has a finite subcover.

~Aset Sis sequentially conpact if, given any infinite sequence taken
fromS, it has a convergent subsequence (the limt may or may not be

inS. Aset Sis totally bounded iff for each ¢> 0 there exists a

finite set (an e-net), x IRRRPS ¥ such that for any x€s,

1

mion-xiH < e. These three concepts are closely related. First, in
1<igm



a conplete nmetric space, sequentially conpact and totally bounded are

the sane. Secondly, conpactness is the same as either one or the other
concepts if the set Sis also closed. And thirdly, a set Sis totally
bounded (or sequentially conpact) iff the closure of S is conpact. The

third concept, total boundedness, is the one to be used in the follow ng

di scussi on.

Lemma 2.6 can be stated for either conpact or totally bounded
sets and the two statenments are equivalent. The proof is now given for
totally bounded sets.

Let T, = Kn-E{ - 0 and let S be atotally bounded set. Since we
maymul tiply by a scalar we may, wthout l|oss of generality, assune
“Tn_“ <1 for all n. Fixe>0. Then there exists a finite e-net,
Xyyeees% , SUCh that min |x-x|| < e for any x€s. Since [ |~ 0

1<i<m

poi ntwise, there exists N such that |lrx.|| <efor i =1,...,n and

n> N. Hence, by the triangle inequality we have
Iz il < x| + llz_(x-x,) || < 2e (2.11)

whi ch proves Lemma 2.6.

Lenma 2.6 is a special case of a nore general proposition. Here
we had pointwi se convergence of uniformy bounded operators. Recall
that an operator is bounded iff it is continuous. Simlarly, a set of
operators is uniformy bounded iff it is an equicontinuous set of
functions. In nmuch the same fashion it can be proved that pointwise
convergence of equicontinuous functions from one metric space to

another is always uniformon totally bounded sets.




In the approxinmation theory and applications to follow, results
wi |l be obtained for pointw se convergence which are quite anal ogous to

those which hold for operator norm convergence.

3. Collectively Conpact Sets of Operators

The integral operators to be used are conpact (or conpletely
continuous). Sone definitions and theorems concerning this class of
operators wll now be given.

Definition An operator X€[X] is conpact iff K maps B, the unit
ball, into a totally bounded set; equivalently, the closure of K8 is

conpact .

Definition A set of operators,K<[X), is collectively conpact

iff the set ¥8 = (Kx: K€K, x€B} is totally bounded (or has conpact
closure).

It will be shown later that approximtions to integral operators
defined by sums form a collectively conpact sequence.

Theorem 3.1  Let Tn,T€[X] and T - T. Then, for each conpact

operator K,
H(Tn-T)KH =0 . (3.1)

-Mreover, the convergence is uniformfor KcK, where X is any
col l ectively conpact set.
To prove this, recall that convergence in normis the sane as

poi ntwi se convergence uniformy for x€3. Consider

(Tn-T)Kx - 0. (3.2)




If x is some point in B8 and Kis either fixed or is some elenent of a
col l ectively conpact set, then the argunent, Kx, is sone el ement of the
set ¥B which is totally bounded by definition. But, pointwise conver-
gence 1S always uniformon a totally bounded set so in (3.2) the con-
vergence is uniform when both K and x vary.

This is an inportant theorem in that pointw se convergence has
been used to give us a form of convergence in norm Two corollaries
fol | ow.

Corollary 3.2 If L K and {Kn-K} Is collectively conpact, then

Ik - = o . (3.3)

Corollary 3.3 If Kn - K and {Kn} is a collectively conpact set,

t hen
1) Kis compact and {Kn—K} is collectively conpact,
ii) H(Kn-K)KH - 0,
iii) H(Kn-K)KnH - 0.
The general theory will be continued in nore detail later. First,

examples from the field of integral equations are presented.

4. Integral Ovperators

Now the integral equations setting will be shown to be a valid
application of the theory. As before, we will assune our functions are
in real or conplex C = C[0,1], with the maximum norm |jx|| = max Ix(t)\.

Thus , |\xn-x\\ -0 iff x,(t) - x(t) uniforny.




Define bounded |inear functionals ¢ and P, D > 1, by

PxX = I;}C(t)dt, , (4.1)

n
= 4.2
¢ X gl wnjx(tnj) ) (k.2)
It is necessary to assune that

o, - (%.3)
This convergence holds for nost of the usual quadrature formulas such
as the rectangular and trapezoidal and those of Sinpson, Weddl e,
Gauss, and Cheli}shev. The Newton<Cotes: quadrature rule however, does
not satisfy (4.3).
Lemma 4.1 Gven 9, as above, there exists B < » such that
n
o I =J,§1|anl <Bfor n=1,2,.... (b.1)
This follows from the principle of uniform boundedness and an elem
entary calculation
The convergence in (%.3) i s pointw se convergence which is
automatically uniformon a totally bounded set, The Arzeld-Ascoli
lemma tells us that a totally bounded set in ¢[0,1] is a bounded
- equicontinuous famly of functions. In other words, P ox
uniformy for x in a bounded equicontinuous fam |y of functions.
To illustrate this uniformconvergence, suppose that we have a

famly of differentiable functions that satisfy a Lipschitz condition,

lx' (s)-x'(t)] < mls-t]|. (k.5)




Then, for the trapezoidal rule for exanple, the error in nunerical

integration is given by

o x-px| < —5 . Lo
n 1217

It follows, since x does not occur on the right side of (4.6), that
t he convergence ?,"® is uniform for functions satisfying the
hypot heses, which form an equicontinuous famly,

It is easy to denonstrate that we do not have convergence in
nor m

Lemma 4.2 llo - ol /0.

To show this consider a function which is identically zero
except in the neighborhoods of the subdivision points. Then the
nunerical integral and the integral are far apart.

Now consider an integral operator with a kernel, k(s,t), which
is continuous for 0 <'s, t< 1 and let

M= max |x(s,t)] .
0< s, t<1
A formal definition of the integral operator and the approxinate
operator is as follows,

Definition K Kne[C!] are defined by

(1) (s) = j;us,t)x(t)at , o .7)

(Knx)(s) = 2;1 ank(s’tnj)x(tnj) . (4.8)

These operators are bounded,

10



Lemma 4.3

1
Nk = max [ [k(s,t)lat < M, and b0
0<s<10
n
|Kr;| = max Z Iwnjk(s,tnj)l < MB (4.10)

0<s<1l j=1

for n =1,2,..., where Bis from(4.4).

Proposition 4.kh. kK, converges to K pointw se. That is,

K, =K, but NKn—KII # o (unless k= 0). (4.11)

Defi ne ks(t) = k(s,t). Then equations (4.7) and (4.8) yield

(kx)(s) = o(kx) and (4.12)

(x,x)(s) = o (kx) . (4 .13)

Since k(s,t) is a continuous function on the unit square, the
fam |y of functions {kSG <s < 1) is equicontinuous and the products
k X share this property. Pointw se convergence is uniformon such a
famly so we have uniform convergence for each fixed x in (4.11).

It is easy to showothat 8 and {Knx: n > 1, x€B} are bounded and

equi continuous.  Thus, we have

Proposition 4.5. K is conmpact and {Kn} is collectively conpact.
These are basic properties needed in the approximation theory.
In particular, they yield the followng results involving norm con-

vergence.

11




Proposition 4.6 In the integral equations case we have

e > [i(k -K)K| » 0 and (b.1%)
n — n §
li(x - - .1
Be > lI(K, K)Kn“ 0. (%.15)
wher e
e = mx | (o -9 )[K(s,u)K(u,t)]] -~ 0 and (4.16)
" o<s,t<1

?, and ¢ operate with respect to u.

The estimte, e , COMES from the nunerical integration and shows that
I (Kn—K)K” - 0 and “(Kn'K)Kn“ - 0 independently of the abstract theory.
The quantity, [K(s,u)K(u,t)] is an equicontinuous fanmily of functions
of u parameterized by s and t, so ¢, 9 uniformy on that set.

Hence, the mmximum goes to zero, and e  -0. If an error formula

for the nunmerical integration is known, it can give a conputable

estimate for e,

5, Abstract Approxination Theorens

Again consi der bounded |inear operators Kn,KE[X], where X is a

Banach space. The principal hypotheses are:
(1) Pointwise convergence, K- K,
(2) {k} collectively conpact. As before, we infer
(3) Kis compact.
Ve wish to conpare the equations

(M-K)x =y, (5.1)

()‘"Kn)xn =Y (5'2)

12




and the inverse operators

(nK)Lex] | (5.3)

(A=K )Helx] ) (5.4)

The Fredhol m alternative asserts that (n-K)™ exists iff (h-K)X = X
If (An-K)7! exists, it is automati cal Iy bounded.
The type of result we will obtain is illustrated by the next
theorem
Theorem 5.1 Let K,Kne[x] for n >1. Assume (1) and (2) hold and
A # 0. Then
(a) (n-K)"Le[x] exists iff
(b) for all n sufficiently large (A-Kn)'le[x] exi sts and is bounded
uniformy with respect to n.
In either case,
(¢) (vE)™ = (h-K)-?
Proof Assune (b). Then (A-K)x = O implies
¢ < “(}"Kn)-l“'”O"Kn)x” -+ 0 which in turn inplies that x = 0. Hence
(b) inplies (a) by the Fredholm alternative. Now assume (b) fails.

Then there exist {ni} and {xn } such that
i

n.

Hxn“ =1, (XK )x, -0.
| | |

Since {Kn} is collectively conpact, there exists {ni } and y€X such
1 3
t hat X, X, 7 Y. Thenx - y/N , y#0, and
1. 1. ni.
J 7 J
(K-Kn )xn - (A-K)y/N = 0 .
i, 1.
J J

Thus (a) fails. Hence, (a) inplies (b). Since

135



(k)07 = (K ) THE -K) (K) T

we also have that either (a) or (b) inplies (c).

W shal | give another proof which yields error bounds. First

recal | that
|(x -K)x|| - o, (5.5)
ll(x_-KK || - 0. (5.6)

The followi ng auxiliary theorem will be needed.

Theor em 52 Let S,T €[X]. Assune (7\-T)'1€[X] exi sts and

& = |- i (s-m)s) < ] (5.7)

-1

Then (A-8) ™ exists,

Oy~ L
1094 < \\I‘& ?)A sli , (5.8)

and for any y€(A-S)X ,

LO=1) "L lisy-Tyll+a Lo-1) Myl
]?\.-A

[v-8)"Yy-(-m) Nyl < .(5.9)

To prove this we first consider the following identity where we

use the resol vent operator to express (?\—T)'l.

7\'1[1 + (x-T)'lT](x-T) = 1. (5.10)

W want to express the inverse of (h-S). If we consider

T+ (?x.-T)-lS] as an approximte inverse of (h-S) and substitute

the expression for (k-T)'l from (5.10) we obtain

e




AN I4-T) IS (0e8) = AT (T) N (s-T)S Al

By the hypothesis (5.7) the operator on the right has a bounded

. . -1
inverse and we have an expression for (A-S) ~:

1

(-8)"F = AT Tt o) T (s-m)s1 e [ TH(A-T) ). (5.12)

Taking nornms in (5.12) we see that (5.8) holds. By subtracting the
expression for (>\-T)'l given by (5.10) from (5.12) we obtain, after

some nani pul ation,

-1

(n-5)"t )t = ATz ) TR (s-m)s1

. - -1 (5 ‘l5>
"(A-1) T L(8-T)+(5-T)s(A-T) )
Application of this operator on y€(A-S)X and taking the norm yields
6o

Theorem 5.2 can now be used to prove Theorem 5.1 by substituting

K for Sand K for T. Thus we obtain

|l -x[l = o. 50 )
Moreover we obtain the error estimte
Ot ) [ e o
llx,-xll < -0, 5o)
|x| - An
whenever
a0 = 10w )Tk -K)K]| < 7] . (5 .16)

15



The roles of K and K may be interchanged to obtain an inequality
simlar to (5.15).

The convergence to 0 in (5.15) follows from the boundedness of
| (k) 'l\\ and Hxn\i and the convergence to 0 of [K y-Ky| and & . The

convergence & - 0 follows from the boundedness of H(x-Kn)'l\] and (5.5)

n
or (5.6) if the roles of K and Kn are interchanged,
The estimate given by (5.15) is conputable in the integral

equations case if the error in nunerical integration is known. The

only quantity not due to error in nunerical integration is l\_(x-Kn)'ln
whica can be estimated as fol | ows.
Lenma 5.3
-1 -1 !
Ok )7 < IR N lA 7D (5.17)

Here \\Kn\'\ is given by (4.10) and HA;]H is the maxi num row sum of the
inverse of the coefficient matrix, Ay from the system of equations
(1.3).

The following chapter will apply the abstract theory to integral
operators with discontinuous or singular kernels. |t will be shown
that these operators do satisfy the hypotheses so that the desired con-
clusions can be drawn.

In Chapter 111, the abstract theory will be extended to the eigen-
val ue problems and nore general spectral properties of operators. Non-
linear problems will be treated in Chapter IV. This involves conbining

the linear theory with the abstract Newton's method.

16




Chapter |1

| NTEGRAL OPERATORS W TH
DI SCONTI NUOUS OR SINGULAR KERNELS

1. Introduction

Consi der a Fredholm integral equation with functions in real or

conplex C = ¢c[0,1], with the maxi mumnorm ||| = max Ix(t)\. W have

t1
@) (s) = [k(s,t)x(t)at, o<s<t | (1.1)
0
for the integral operator and
Il 2)
(Knx)(s) = Jz;lwm.k(s,tnj)x(tnj) , <1, (1.

for the approximate operators defined by nunerical integration.

The kernel, k(s,t), is assumed to be bounded and possibly dis-
continuous. W include Volterra and other "mldly discontinuous”
kernel s which are discontinuous on a finite number of continuous curves

t

t(s) in the unit square, and bounded unifornmy. Mre general
classes of kernels will be defined explicitly later.

Wth these discontinuous kernels, the integral operator, K naps
C into C but the approximate operators, K do not map continuous

functions into continuous functions. That is,
KCc Chbut Kc ¢ C. (1.3)

Therefore we cannot regard K and K on the same space C as was the
case for continuous kernels. To circumvent this problemwe define a
new and |arger space.

17




Definition Let R denote the normed |inear space of proper
Ri emann integrable functions x(t), 0<t<l, with the supremum norm
Ixll = sup[x(t)].

Lemma 1.1 R is conplete; hence Ris a Banach space

To show this note that x€rR iff x is bounded and x is continuous
al nost everywhere. From these two facts the conpleteness follows
I mredi ately

Lenma 1.2 Cis a closed subspace of R

The space R is chosen since it is a rather mninal extension of
C which includés step functions and other piecew se continuous
functions.

W will show that the operators K and K, map Rinto R that
K —K poi ntwi se, that {Kn}is collectively conpact and that Kis
compact.  Hence, the general theory of Chapter | wll apply as well

as the approximate spectral theory in Chapter I11I.

18



2. The Quadrature Fornmul a

To examne the quadrature formula we introduce linear functionals
expressing integration,
1
Px = Ix(t)dt , for xeR, (2.1)
0

and nunerical integration

n
QX = zwnjx(tnj) , for x€R. (2.2)
=

W assune that the weights in the quadrature formula are all

non- negat i ve. ‘Thus

vy > 0, IKk<n . (2.3)

So we have bounded |inear functionals cp, ¢ ER¥ wi th norns

n
ol = 1 ol = L (@)
In addition to (2.3) we hypothesize that
qan—'cpasn—'oo,onc, (25)

and note that for the usual quadrature rules (Newton-Cotes excepted)
- these two assunptions hol d.

Before proving that the hypotheses also hold on the space R we
show that the norm |l || is bounded. Since 9 - on C

n
w. = ¢l-9l =1 (2.6)
o n

19




The sum of the weights is bounded uniformy in n since it converges.

Thus we have the inequality
n .
o ll = Xw, <B<=. (2.7)

The next |emma states that ¢ and o, are positive and monotone

| i near functionals.

Lemma 2.1 For x,y € R
X > 0inplies ox > 0 and ¢ x >0, (2.8)
X >y inplies x>y and @_x >9 y. (2.9)

VW also have for conplex functions the follow ng fact.
Lemma 2.2 xR iff Re X, Imx€R.

The next lemma will be used to extend (2.5) to the space R.
Lemma 2.3 Areal function x is in Riff for any ¢ > 0 there

. . £
exi st real functions Xgs X €C such that

XE S X S xs 3 (2.10)

Cpxbe - ox < €. (2.11)

This follows easily fromthe usual definition of Rin terns of

upper and lower integrals. By Lenmas 2.1 and 2.3 we have
oxT ~gx and 9x_ ~9x as ¢ = 0 . (2.12)

Now it can be proved that the numerical integral converges to

the integral on R

20



Proposition 2.4 If x€R then

¢ X~ ¢x , x€R . (2.13)
Pr oof By Lemmas 2.1 and 2.3 we have

¢ X, <9 x< cpnxe s (2.14)

cpxe -6 <PX<Qxg + € . (2.15)
Subtracting (2.15) from (2.14) Yields

Px, “Px_ - €< QX -px<Pxt -0x° ¥ . (2.16)

Since x,, x°€c and (2.5) holds, it is easy to see that
X -¢x 0 as n -,

For our theory to apply, it is necessary to know for what
classes of functions in R there is uniform convergence in (2.13)
A standard answer is that on any totally bounded set o, "0
uniformy, However, in the present case this can be extended. To
this end, we introduce the follow ng concept.

Definition 2.1 A set, S, of real functions such that

ScR isregular iff for each xs and each ¢ > 0 there exist real
* functions Xes x® €¢ such that (2.10) and (2.11) hold and, for each

fixed € > 0, the sets

S = {x£: x€8} and s® = {x®: xes} (2.17)

are totally bounded (or bounded and equicontinuous -- by the Arzeld-

Ascoli lemm). An arbitrary set, Sc R is regular iff Re Sand ImS

21




conprise regul ar sets.

Using this definition the follow ng theorem hol ds.

Theorem 2.5  The convergence in.(2.13) i s uniformon each reg-
ular set S cR.

Pr oof By (2.5) and (2.17), for each fixed e,
Pxe = Pxg s Cane - ox° uniformy for xeEs. (2.18)

Now(2.16) and (2.18) inmply that the convergence in (2.13) is uniform
for x€s.

To illustrate the concepts just devel oped, consider the follow ng
exanpl es.

Exanple 2.1  The set of all characteristic functions of
intervals in [0,1] is a regular set but not totally bounded.

This follows fromthe fact that this set can be approximted in
the sense of Definition 2.1 by sets of trapezoidal functions which
are bounded and equicontinuous.

Any regular set is bounded since S, and s¥ are bounded. The
converse is false as shown by the next exanple,

Exanple 2.2 Let x,(t) = cos(2tnt). Then {x =12, ]
is bounded but not regular.,

Proof  For an indirect proof, use the rectangular quadrature

rule:

x(k/n) . (2.19)

s
5
I
g I
-
1
l_,[*’]:s

n

Then ¢x = 1 andox =0, n>1 Therefore, by Theorem 2.5, the
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set {xn; n>1}is not regular.
Based on these two exanples, we can now state the follow ng
result.

Proposition 2.6 Gven a set Sc R

Sstotally bounded = S regular |, (2.29)
S regul ar = S bounded , (2.21)

but neither reverse inplication holds

Wthout proving it here, we state that regular sets may be very
much larger than totally bounded sets. Regularity is essentially a
requi rement of conpactness or total boundedness in one dinmension only.
Any regular set is totally bounded with respect to the £ sem - norm
but the converse is false. W observe that the poi ntwi se convergence
is uniformon nuch larger sets when the operators are positive than
when they are not.

From the definition of regular sets we have the follow ng.

Lemma 2.7 | f Sl and S, are regul ar sets then slusg,sl+82,
and 8,5, are regul ar sets.

Lemma 2.8 If Sis aregular set then |s|is a regular set.

Hence, regular sets behave much like totally bounded or conpact
sets and may be conmbined and operated in nuch the same way. A con-
vex conbination of regular sets is also regular.

By using these properties we may obtain further exanples of
regul ar sets. For exanple, regular classes of step functions and
of piecew se continuous functions may be constructed from the set

of all characteristic functions.
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There are several equivalent forns of the definition of a regular
set. For exanple, in Definition 2.1 the functions X, and x* could be
required to be Riemann integrable instead of continuous. Secondly, the
requirement that Sé and s® be totally bounded can be replaced by re-
quiring S’e and s to be finite.

The preceding remarks are a special case of an abstract theory.

If we work in any partially ordered Banach space and ¢ and ¢, are
positive |inear functionals which converge pointw se, then we can define
g-reqgular in precisely the same nanner as we defined regular and point-

wi se convergence is uniform on any g-regular set.

3. Integral Qperators

Let K be a linear integral operator on R and consider the equation

1
(kx)(s) = jok(s,t)x(t)dt , x€R, Xs<1 . (3.1)

Definition 3.1 A real kernel k(s,t) is uniformy t-integrable iff

for each ¢ > 0 there exist real continuous kernels ks(s’t) and x¥(s,t)

such that
k,\é(s;t) < k(S)t) < ks(syt) ,» Ks,t<1, (3.2)
[ [x5(s,t) - k (s,t)]dat <e , O<s<l . (3.3)

An arbitrary kernel k(s,t) is uniformy t-integrable iff Re k(s,t)

and Imk(s,t) are uniformy t-integrable.
Exanples of uniformy t-integrable kernels are continuous kernels,
continuous kernels for the Volterra operator, and mldly discontinuous

ker nel s.
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In what follows we use the notation

k (t) =k(s,t),
kZ(t) = x(s,t),
ks(t) Lk (s58) .
Theorem 3.1  Let the kernel Kk(s,t) be uniformy t-integrable.
Then

{k,: 0<s<1}is a regular set in R (3.4)

@(Lksa; ksﬁj - 0 as s-s'~ 0, uniformy for O<s,s'<l . (3.5)

Proof. A check of the definition gives (3.4). To prove (3.5)

define functions f, £% such that
£,£%: [0,1] — £,(0,1), (3.6)
f(s) =k, £%(s) = k° . (3.7)
Then £ i's continuous for each & > oand
£ - f uniformy as ¢ ~ 0 . (3.8)

“Thus f is the uniformlimt of continuous functions so f is continuous,

proving (3.5).

The properties of any uniformy t-integrable kernel, given by

Theorem 3.1, allow us to describe a larger class of kernels which we

can deal with.
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Proposition 3.2 Let k(s,t) be a kernel such that (3.4) and (3.5)

hold. Then KR c C, K is conpact and ||| = max ¢(|k }) = max ‘\'\kSHl'
O<s<l S O<s<l

Proof. Ry (3.1),
®<)(s) . @(kx) | (3.9)
By (3.4), k €R for all s so CP(ka) exists. Secondly,

| (kx)(s) | < max [i[l, -kl (3.10)

s<1
where the maxi mum exi sts because in (3.7) f is continuous on a

conpact set.Thirdly, consider
| (k) (s) - (kx)(s')] < gty flell - (3.11)

By (3.5), the quantity Hks-ks,\\l—' 0 and we have KR c C. For x5,
the unit ball, (3.5) and (3.11) inply that the functions (kx)(s) are
bounded and equi continuous. So by the Arzela-Ascoli lemma, Kis a
conpact operator.

To sketch an alternate proof, consider Definition 3.1. This
proof is for the real case in that definition.

Define the integral operator X with the kernel ¥. Then ¥
.compact and HK&—KH <e¢inply K conpact as follows.

Si nce
“Kex - kx|| < e for all x€5, (3.12)

k%5 is totally bounded and is also an e-net for KB8. Hence X5 is

totally bounded and K is conpact.
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L. Qperator Approxinations

Consi der the operators k on R defined by
n
(Knx)(s) = jz__:_lwnjk(s’tnj)x(tnj) , Ks<1 , (4.1)
where k(s,t) satisfies (3.4) and (3.5) and
k(s,t) is s-integrable for Oct<l . (4 -2)

The quadrature fornmula satisfies the conditions in Section 2,
Since dimky R < =, each K; is conpact.

Theorem 4.1  The operators K satisfy

K RCR, (4.3)
K =K, (L.k)
{k } collectively compact. (4.5)

Pr oof From(4.2) it follows that (4.3) holds. From(3.k) we

have that

(I%x)(s) - (Kx)(s) =q’f1'(ksx) -ccpé.ksx) - 0 uniformy (4 .6)

ins.

This proves (4.4). To prove (4.5), let x vary in A and note that

| (& x)(s) - (K x)(s")| <o (5 -k, |) - (k.7)

But by (3.4) we have



‘Pn(lks-ks.l) - o]k kg [) uniformy in s,s', (4 .8)
and by (3.5) we have

(i -k, [y -0 as s-s'= 0 . (4.9)
Now, for each ¢ > 0 , there exist 8(e) > 0 and N = N(e) such that

|(kx)(s) - (Kx)(s')| <eif n>N |s-s'|< 6, and x€5. (4.10)

W al ready know t hat

I(Knx)(s) | < Mfor x€8, Xs<1 and n = 1,2,3,... . (4 .11)
It follows that (Knx: n >N x€3} has a finite e-net of step functions.
TN
Si nce each K i s conpact, U {Knx: x€B} , also has a finite
n=1

e-net. Therefore tne set {Kx:n > 1, x€B} has a finite s-net. By

definition then, the set {Kn} is collectively conpact, proving (4.5).
Since (4.4) and (4.5) hold, the general approxination theory

concerning convergence and error bounds applies to this case.

Consi der
(M-K)x =y, (MK )x =y (4 .12)

with A £ 0 and y€c. Suppose (»-k)"L and (%.—Kn)-l exist. Since

KRC C, X= h'l(Kx +y) €C and (X-K)'lc c C. But xnjé C in general
since kC ¢ C for discontinuous kernels. That is, if the given function
in an integral equation is in C the solution will be in C.  The

approxi mate solutions would only be in R However, we have the famliar
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situation of discontinuous functions converging uniformy to continuous

functions:
xn(discontinuous) - X (continuous) uniformy. (4.13)

An abstract generalization of the result, Kn - K, and {Kn}
col lectively conpact, can be given after verifying one additional

property, nanely

Il = 1l (k.14)

This follows from [|[K| = max ®(1k;1) and || || = sup @ (lx1). For the
0<s<1 T okl
case involving a kernel, k(s,t), which is uniformy t-integrable,

£

there exist continuous kernels |e< and k® such that k< k <k . Con-

£

sidering the continuous kernel, kx°, we can define the correspondi ng

integral operator K and we can use nunerical integration to define the

approxi mate operators

(Knx)(s) = jglwnjkg(s’tnj)x(tnj)' (4.15)

By (3.3) and (4.14),

¢ -k | = [I(&*-K)_|| = |K°-K|| < e. (4.16)

In the abstract setting we now have

Theorem 4.2 |f

K; - K* as n-w, for eache >0, (4.17)

{K;:: n > 1} col l ectively conpact, for each e > 0, (4.18)
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K, conpact, for n =1, 2,..., (4 .19)

ik - k|l - Kk <eas n -2, (4 .20)
then

K, 7% (4.21)

fx } collectively conpact. (4 .22)

Proof kK -~ Kby the triangle inequality. Fix ¢ > 0. Then
there exists N =.(e) such that HKSX -k x| <efor all n> Nand
xc/5.  Hence the set {Kix: n>N x€}is atotally bounded s-net for
{Knx: n>N x5}, It follows from (4.19), by an argument sinmilar to
the one used in the proof of Theorem 4.1, that {Kn} is collectively
conpact .

This abstract version of the theoremis of interest since it
indicates a way to extend the theory. For exanple, suppose we have a
theory for integral equations with continuous kernels. Then we can
extend the theory so it holds for neighboring objects in some well
defined sense, This could be used to extend the theory to integral
equations in several dinensions with other kinds of kernels wthout
repeating the detailed analysis necessary to the devel opment of the

initial theory.

5. Wakly Singular Kernels

The material in this section is adapted from Atkinson [19].

For x€C consi der
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(Kx) = [ k(s,t)x(t)at, O<x<l (5.1)
0

wher e ks(t) = k(s,t) satisfies

k € £,(0,1) for all s, (5 .2)

+0as s -s8' 0. (5 .3)

iiks = ks 1 Hl

As in Section 3 of this chapter, the quantity mgx“ksl\l exists, and
the convergence in (5.3) is uniformfor 0<s,s'<l. Conditions (5.2)

and (5.3) imply
KC c C, K conpact, ||K|| % mgxl\ksl\l. (5.4)

The continuous and di seontinuous kernels treated above satisfy

(5.2) and (5.3). Another exanple is
k(s,t) = r(s,t)]s-t]™", (5.5)

where r(s,t) is continuous for 0<s,t<l' and O<1. More generally,

suppose

k(s,t) = r(s,t)o(s,t) , (5.6)

r(s,t) continuous for &s,t<l | (5.7)

and o_(t) = o(s,t) satisfies (5.2) and (5.3). Then k satisfies (5.2)
and (5.3), KCc C and K is compact. As in the exanple with
o(s,t) = ls-tl'a, the "singular part" of a kernel often can be

isolated in a sinple explicit form Now we have
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1
(kx)(s) = _r'o[r(s,t)x(t)lc(s,t)dt .

Suppose we have operators An g[c] such that A X =X for all xeC as

n - . Then we define

. :
(kx)(e) = [ 1y, Irls,e)x(0)] JoCs,t)at (5.8)

wher e An operates with respect to t.
For exanple, suppose A x IS the piecew se linear interpolation
of x with subdivision points tn‘_j =jln, j = 0,1,...,n. Then

(Knx)(s) reduces to

(Knx)(sj' = ?—_'_:Ownj (s)r(s,tnj)x(tnj ) (5.9)
wher e
L
an(s) == J‘j_" (t- -ﬁ—-)o(s,t)dt (5.10)
J+l

+ % [ (% - t)o(s,t)dt

and o(s,t) = 0 for t£[0,1] to make the expressions for wno(s) and
vxn(s) correct. Note that we nust be able to integrate o(s,t) and
to(s,t) wWith respect to t in closed formin order to obtain an explicit
expression for (Knx)(s). | f A X is a piecew se polynomal inter-

pol ation of x, then (Knx)(s) has the form(5.9) with wnJ.(s) defi ned
internms of integrals of o(s,t), to(s,t), teo(‘s,t), etc.

Again consider the general situation.
Lemma 5.1
An[r(s,t)x(t)] - r(s,t)x(t) uniformy in s,t . (5.11)
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This follows fromthe fact that {r(s,t)x(t)} is a bounded
equi continuous famly of functions of t.

Lemma 5.2  The set {A [r(s,t)x(t)]: n > 1) is bounded and
equi cont i nuous.

In general, if F and F are continuous functions, and |y » F
uniformy, then {Fnra > 1} is equicontinuous.

Proposition 5.3 The following two facts hold.

{k }is collectively conpact, 5005
K - K. (5 .13)
n

Pr oof By (5.2), (5.3), Lemma 5.2 and a sinple triangle

inequal ity argunent,
{kx: n>1 x8)is bounded and equi conti nuous . (5 .14)

Hence {k } is collectively compact. Let By = A -1 Then E - 0,

and
[ x-Kxl| < S%P\\En{r(s:t)x(t)]\\Sug\\cs“l ~0asn-w=. (515

Thus K - K.
n
In view of Proposition 5.3, the general approximtion theory

appl i es.
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Chapter I11

SPECTRAL APPROXIMATIONS

1. Ceneral Properties of Collectively Conpact Sets

Again let X be a real or conplex Banach space. Recall #£ c [X]
is collectively conpact iff ¥5 is totally bounded. If ¥is
col l ectively conpact then each XK is compact and ¥ is bounded.
Finite unions and suns of collectively conpact sets are al so
col I ectively conpact.

Proposition 1.1 Let ¥ be collectively conpact. Then each of

the following sets is collectively conpact:
(a) ¥m for each bounded 7 c [X];
(b) ™ for each totally bounded Mmc [X];
(c) the strong and norm cl osures of ¥;

N N
(a) {¥1=1an“: K €K, nzzllknl < b} for each b < =, N< o;
(e) {[ K(N)dr: K(M)€K, 4(T) < b} for each b < =,

r

where ' is an interval or rectifiable arc of finite length £(I') and

the integral is the limt in operator normof the usual approximating

sunms .

W shal |l study operators in [X] such that
7T {T, - T) collectively conpact. (1.1)

The special case,

T, T, {Tn} col lectively conpact,
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includes the integral equations exanples.

Lemma 1.2 Let T, TnE[X]. Then
T ~T, (T} collectively conpact (1.2)
i ff
T~ T, {T -1} collectively conpact, T conpact. (1.3)

2. Resolvent sets and spectra

Let T€[X]. Recall:

(i) neo(T), the resolvent set, iff there exists (n-1) " Yelx];

(ii) the spectrumo(T) is the conplement P(T);

(iii) a(T) o {eigenvalues} (for exanple, if T is conpact, the
eigenvalues of T forma finite set or an infinite sequence

converging to 0); o0
(iv) if |x > |7]| then reo(T), (?»—T)-l=n:0 "+l €[x)

and

1

L~ i< =T (2.1)

(eonsequently |A| < ||T|| for'all r€o(T));

(v) o(T) open, a(T) closed and bounded (conpact);

(vi) the map A - (h-T) "L i's continuous on o(T) and is uniforny
continuous on each closed set in p(T);

(vii) {(X-T)-l: N A) is totally bounded for each cl osed

A C p(‘I‘).
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The following identity will be used several tines.
- - - -1
(n-8) (1) Lo (a-9) l(S-T)(x-T) .
Lenmma 2.1 |f Ke[X] and HKQH <1, then (I-K)"“€[x] and

(I-K)'l = (I-Ke)’l(I + K)

o) < LAl

(2.3)

(2.4)

Theorem 2.2 Assume T - 1}{Tn-T} collectively conpact, and A

arbitrary. Then
(a) Nep(T)
i ff
(b) there exists N such that Np(T) for all n > N and
{(A-Tn)'l: n > N} is bounded.
Either (a) or (b) inplies
() (h-T)F = (e

Proof  Assune (a). Then verify
a1 = (TK )1
K = (T iT)(K-T)-l
n ‘'n ’
K, =0, {Kn} collectively conpact.
From Theorem 5.1 of Chapter I, there exists N such that
-1
(I-Kn) €[X] for n > N,

{(I—Kn)'l: n >N is bounded,
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(I—Kn)'l* | (2.10)
Theref ore,
(x-Tn) -1 (x-T)‘l( I-Kn)'l (2.11)

and (a) inplies (b), (c).

To obtain error bounds, note
I 2.12
Ik li- 0. (2.12)

Wienever HKIEI\'K 1, (2.11) holds,

0en )t g o lr e gl (2.13)
1 - ikl

(n-r ) (e T = (e )R (2.14)

ii(K-Tn)'lx-(h-T)“lxn < H(K-Tn)_lH'HKan -0 . (2.15)

Now assume (b). Then (A-T)x = 0 inplies
el < o -2 ) - L ) = 0 (2.16)
which inplies x = 0. Hence, (>»-T)'1 exists. For n > N
AT = (I-L ) (-T,), (2.17)
L o= (T-T) (>\-Tn)’,l conpact . (2 .18)

n

Hence, (k-T)'lE[X} by the Fredhol malternative. Thus (b) inmplies (a).

To obtain error bounds, note that {Ln} i s bounded and

31



L = (Ln-I)Kn , (2.19)
L =0, (Ln} col I ectively conpact, (2.20)

HLi| - 0. (2.21)

2y
For ;L |l < 1,

(1)t = (e ) HE-L )T (2.22)
NI 5 o 1 4

I T)_ﬁ < 1 - i) (2.23)

101 )7 %= (m) el < | ) TH] Lz ] = o (2.24)

Theorem 2.3 Assune T, ~ T and {Tn-m} col l ectively conpact.
Let A be closed and A < p(T). Then there exists N such that

(a) Acp(T) for n> N

(b) {(»r)7: Aer, n > N) bounded,

(c) for each x€X, (?\--Tn)_lx - (k-T)'lx uniformy for Aea.

' and

Pr oof In the proof of Theorem2.1 wite Kn(k) for K . Thus
_ -1
K (M) = (T -T)(A-1) (2.25)
2
lltx, (D171 = o, nKn(x)xH - 0 for all xex. (2.26)

These functions of A are equicontinuous on A Hence the convergence
is uniformfor Mep, and the desired results follow as in the proof

of Theorem 2.1.
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The next theoremis essentially a corollary of Theorem 2.3.
Theorem 2.4 Assume T -~ T and {T -1} collectively conpact.

Let @ be open and a(T) < ©. Then there exists N such that
o(t ) cafor all n>m (2.27)

Pr oof Let @ = conplenent A in Theorem 2. 3.

To illustrate, suppose we have operators K and K such that
K, =K {Kn} collectively conpact. Then the follow ng apply .

Lemma 2.5  Assume Knxn: WoXos B £ 0, HXnH = 1. Then

there exists a Subsequence {ni} and an x such that
X —x, Ke=upx, || x| =1, (2.28)
7
The proof is simlar to that of Theorem5.1 in Chapter I.

Lemma 2.6 If in addition, x is unique, then

X - x. (2.29 )

This follows fromthe facts that {xn} has a convergent sub-

sequence and has at nost one [imt point.

3. Functions of Operators; Projections

For further details on the material to appear in this section
see [1] and [ 3], for exanple. Let X be a conplex Banach space. For

each Te[X] | et

F(T) = {f: f locally analytic on an open donmain (3.1)
8(r) o o(T)}.
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For each fc#(T) there exists a contour I c o(f) with a(T) inside .
Def i ne

! -1
£(T) = 57 J’Ff(x)(x-T) an (3.2)

as the limt in norm of the usual approximting suns.
Lemma 3.1 f(T) is independent of T.
Exanples:  f(T) =1, T, Tn, polynomals in T.

Lemma 3.2 If £,g¢%(T) then
(£ + g)(T) = £(1) + &(T), (3.2)
(feg) (1) . £(T)e(T) | (3.4)
If in addition
£ (*) = £(A) uniformy on T (3.5)
t hen
li£ (T) - £(D)]| =0 . (3.6)

Example Limts of polynonials.

Theorem 3.3  Assume T - T and {Tn—T} col l ectively conpact.
Let f€*(T). Then there exists N such that

(a) ft?(Tn) for all n >N,

(0) £(1,) - £(T),

(c) {f(Tn) - £(T): n > N} collectively conpact.

Proof Theorem 24inplies (a). For n> N,
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2(7)-5(1) = gz [ EOO-) ™ 0em)
- o [ e -1 THE 1) (A1) e (3.10)
r !

Theorem 2.3 (c) then inplies (b). Proposition 1.1 (a), (b), (e)
inplies (c).

Definition 3.1  Conplenentary spectral sets o, ¢' associ ated

with T are disjoint closed sets o, o' such that ¢ U o= o(T).
Lenma 3.4 There exists a contourl with o inside and o' outside.
Conversely, each Tep(T) determnes conplenentary spectral sets o and o' .

Wth this notation |et

_ = £ [ (nr)Tar
E=E(T) = 57 [[O-1) @ (3.11)
Not e that
E = e(T) 3 (3'12)
wher e
e€%(T),e=1ono,e =0 on o'. (3.13)
Lemma 3.5 ‘ e2 =e = E2 =E Thus, Eis a projection.

Definition 3.2 EX is the spectral subspace associated with T

and ¢ (or T).
Exanple If o consists of a single isolated eigenval ue,

o = {u3, and if Tis conpact and u £ O we may have
EX = n(u-T), an ei genmanifold, (3.14)

or
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EX= n[ (u-T)"] , a generalized eigenmanifold, (3.15)

where h(T) is the null space of T. _

Lemma 3.6 Let EE = |-E Then
X = EX® E X (3.16)
TEX c &, TE X € E X, (3.17)

If in addition we let T, = T‘Ex , T = T‘E'x , then
o(TE)\A= g, c(TE,) =o' . (3.17)

The next theoremis a specialization of Theorem 3.3 to operators
which are projections.

Theorem 3.7  Assume T - T and {Tn-T} col lectively conpact. Let
I be a contour in p(T) around a spectral set o. Then there exists N
such that T c p(Tn) for all n> N The part o of o(Tn) inside T
is a spectral set for T . Let E = EF(T) and E_ = EF(Tn). Then

(d) E ~E,

(b) {En-E} col l ectively conpact,

(c) dimEnX = dimEX (finite or+ «)
. for all n sufficiently large.

Proof  Theorem 3.3 inplies all but (c). W assert, for
projections that (a), (b) inply (c). W also assert that T Te[X],

Tn*Tiany

dimt X > dimx eventually. (3.19)
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To prove (3.19) let {ij:j =1, ..., m be linearly independent and

m
define C = {an;.ﬁz ma.x\cj\ = 1}. Then C and TC are conpact, SO

J=L .
T - T wniformly onC and min||T_|| > 0." So eventually min||T x|} > 0 and
n X s I
x€C x€C
{Tnxj: j=1, . . . . m}is linearly independent. The result, (3.19),

follows. Now we show < in (c). Wthout loss of generality dimEX < .
Then E is conpact and {Eh} is collectively conpact. Suppose that
dimEX>mfor n>1. By the Riesz lemm, there exist linearly in-

dependent sets {xnk: k =1, n} C Ex, N2 1, such that

k-1

el =25 by - ;éfjxnjn 21 (3.20)
for all n, k and {cj}. Since x . =Ex €{E}& which is preconpact,
there exist a subsequence {ni} and el ements xkex such that Xnik =
En1.xn.lk *xkfor k=1 .. .. m Then

k-1 ‘

ka“ =1, ka - ngcjxj\\ > 1 (3.21)

for all k and {cj}, SO {xk: k =1, . . .. m}is linearly independent.

el L I
Now E_ E inplies En1xnik Ex,, SO that x, =Ex €EX for all k. Thus
dimEX > mfor all n=dimEX>m (3.22)

“Apply this result to an arbitrary subsequence of {En} to concl ude

t hat
dimEX < dimEX eventual ly. (3.23)

Since we now have (3.19) and the reverse inequality (3.23), (c)

fol |l ows.
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In Theorem 3.7, let o = {u}, o, = {w,}- Then u, —u by Theorem
2.4. If dimex = 1, then E —E inplies convergence of ei genvectors
as follows. Suppose Tx = px and [lxf = 1. Then E = x. Let x =E x.

Then T x =, X and x - X.
nn nn n

Proposition 3.8 For some n, let T < p(T) n p(T ). Def i ne
n
= = be the parts of o(T) and
E= EF(T) and E = EF(Tn). Let ¢ and o, p (T

o(Tn) inside r. Assune

t hen

-1,
o(r L -T) "7 .
. —7552 max “4y—= IthXh - TXn“ .

|z - Ex |l <r
n n — n \ET

Now assume r, < 1. Then Ex # 0, E# 0 and o is nonvoid. Let

v o= Ebcﬁn/ﬂE'X'nil- Then y_ €EX, llynll =1 and
”yn - anl _<_ 2rn.

Proof Note that

L

2 [ 0D, Oer)

E - E-=
n r

-1 -1
(-T) 7%, = (-w ) x, for €T, and Ex =%

Hence,

-1
, 1 -7
Xp - BX =t dr (?\- )
'J‘n

dA (“nxn B Txn)
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and |lx - Ex || <r.For r <1,
n nt — n n

v, - x )l < lly, - Bl + lex - x|

<Ji-llEx ] + r,

<=, - Exnﬂ +r <or.

In Proposition 3.8 suppose that dimEX < » (e.g., T is conpact
and 0 is not inside I'). Then Y, is an eigenvector of T. The
correspondi ng eigenvalue " lies inside I and is determned by
Ty = wg¥y

Now assume dim EX < » and that the hypotheses of Theorem 3.8
are satisfied for all n>0N. By Theorem 3.4 there is a 8§ > 0 such

t hat ]A-pnlzafor all ar and n > N. Note that

lo g, = Tl (2 -T)E >l <l (T -T)E || .

Since E is conpact and {En-E} is collectively conpact, {En} is

col lectively conmpact. Hence, | (Tn'T)En" - 0 and
rn - 0,
ly, - x|l = o
In order to estimte r » We rmay use the inequality (2.23) for

l-m) "M in terns of f(a-z ).
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As an application of Theorem 3.8, suppose that, by conputational
evi dence, certain eigenval ues by of T seem to converge to sone val ue

near 1y as n —»e. Fix n and ¢ > 0 such that Iun-xol < ¢ and
r=m: gl = el ep(mnp(T)

Then £(r) = 2me and

r < e max ”-’——-2,-—'”].1. X - Tx'n||.

Aer

If dimEX < » and ry < 1, there is an eigenvalue p of T wth
lu'lol < ¢. The calculation of r presents a problem when ¢ is small,
since then H()\-T)'lll is large and l)\-unl is small for j€r. Thus,
¢ should not be taken too small. This limts the practicality of
Theorem 3.8. For further details, see Atkinson [21].

In Theorem 3.7, let o = {4}, EX = R[(u-T)], where v i s ninimal.

Then 0, = {U'nk: k =1,..., kn}, mekxxlp.nk- p,] - 0, and

k
n \Y]
EX = @ ol (u,-T ) ™1, (3.24)
n k=1 n n
)Ahere t he ik are mnimal. Let
¥) kn '\)nk
P(\) = (u-2)7) P (A) =1 (u,-2) (3.25)
k=1
Then
= o[P(T)), E X = [P (T )I. (5.26)
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k
n

Let v. = degree P_ = Ve
n n KT nk

Theorem 3.9 There exists N such' that v >y for all n>N

Proof EP(T) = 0 and P(h) divides q(x) for each polynonial Q such

that EQT) = 0. Sinmlarly, EnPn(Tri) = 0. Suppose
vnl = o for sone {ni} C {n}.
Then

o _
0 = Eﬁ.Pn.(Tn.) - E(w-T)* = 0,
1 1 |

SO ¢ > v. The result follows.

(3.27)

Theorem 3. 10 There exists N such that dimo(y  -T ) < di m2(u-T)

for all n>Nand for all k.

Proof See [17, p. 12].

Theorem 3. 10 There exists N such that for all n > N

k

di m m[fi (unk-Tn)dnk] <dim m[(u-T)a]
k=1

- whenever
k
n
0 < < =
S @S v andkg Qe a

Proof See [17].

b7
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Chapter 1V
FURTHER TOPI CS

1. An Aternative Mthod

Again let X be a real or conplex Banach space. Consider

K, Kne[x] for n > 1, wth
kK -~ K {Kn} col l ectively conpact, K conpact. (1.1)

As noted before, the first two conditions inply the third. W

wish to solve

(I-K)x = y (1.2)
or to deternine (I-K)'l.

The basic idea of the present nethod is to find operators

T,L¢[X] such that 7t

€[X], L is conpact, and
T(1-K) = I1-KL, (1.3)

|-K = T(1-KL). (1.4)

Then the operator |-KL is approximated by I-K L. By Theorem 3.1

of Chapter I,
Ik z-KL)| ~ 0. (1.5)

Therefore, the standard approximation theory given in Section 1 of

Chapter | applies. Thus, (I-KL) L exists iff (I-KnL)'l exists and
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is uniformy bounded for n sufficiently large, in which case
H(I-KnL)'l—(I-KL)’lH - 0, . (1.6)

and there are error bounds.

Cearly, (I—K)'l exists iff (I-KL)'l exists, in which case
(1-x)™ = ( 1-K1)7'T, (1.7)
(T L) ™ 0= (1K) ™| < [l(z-K 1) ™= (z-kn) M| -l (1.8)

I (I-k L) 7-(1-K) ™| - 0, (1.9)

and error bounds are available.
Such operators T and L exist. They can be determined in a

variety of ways. For exanple, if (I + X)™" exists, then

(1 +K (1 -K =1 -%, (1.10)
|- K= (I + )1 - £2). (1.11)
-Thus, T=1 +Kand L =K in this case.
More generally, let
T=T+K+...+x"! (p> 2). (1.12)
Then
(I-K =1 -k, (1.13)
MI-K =1 -K, L=g""1 (1.14)
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W show that T™* exists if pis a sufficiently large prime. Wthout
loss of generality, X is conplex; otherwise extend T to the space
X +ix. Note that

b
T=1 (K-« I), (1.15)
-1 P4

where the apq are the nontrivial pth roots of unity. For p prine
the apq are distinct numbers of absolute value one. Since Kis
conmpact, the eigenvalues of K forma finite set or an infinite sequence
converging to zero. Therefore, only a finite nunber of the apq can be
ei genval ues and

=g (K-o )7t (1.16)

=1 P

for p sufficiently large. Usually p <5 wll suffice.

Anot her possibility is

T=1 +K+ ok, (1.17)

where the constant ¢ is chosen such that T'1 exists. Then
T(I-K =1 -K., L=(1-c)K + cK. (1.18)

If Kand L are integral operators on C[0,1] with continuous
kernels, and K, is defined by means of nunerical integration, then the
determination of (I-KnL)'L is equivalent to a matrix problem (cf. [14]).
Each matrix element is an integral over [0,1]. This contrasts with
the nethod of Chapter |, where the matrix elements were sinply val ues

of given functions. The two nethods also differ in that
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Iz - & 1)™-(1-k0) 7| - 0, (1.19)
whereas there is nerely pointw se convergence of
- (1 = K)'l. (1.20)

Thus, the present nethod requires nore work but gives stronger results.
Integral equations of the form (I - KL)x = z sonetimes arise
directly from physical problems. For exanples in nechanics, electro-
magnetic theory, and radiative transfer, see [5, 7, 8, 9, 14, 34].

In such cases, we can proceed directly to the approxi mations

| -K L.
n

2. Collectively Conpact and Totally Bounded Sets of Operators

W have shown in Chapters | and Il that operators T, THE[X]

such that

T -1, {r-1} collectively conpact, (2.1)

have many of the properties of operators for which | -Tf| - 0.
Since the analysis sinplifies in the latter case it is inportant to
determine when T~ T but HTn-TH A 0. It is easy to prove

Lenma 2.1 |t -T|| » 0 iff T - Tand {r -1} is totally bounded
(equivalently, sequentially conpact).

Thus, the theory presented above is intended mainly for operators
such that T, {Tn-T} is collectively compact, but {Tn-T} i's not
totally bounded. W shall conpare collectively conpact and totally

bounded sets in [X].
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Proposition 22 Every totally bounded set ¥ of conpact operators

inXl is collectively conpact.
Pr oof Fix ¢ > 0. Then there-exist K€%, i=1,. . M such t hat

miJ;.nHK-KiH < ¢ for each kek. Hence,

minHKx—Kix“ < ¢ foriall KeX, x€5. (2.2)
f
m
It follows that 8 = UKiB is an s-net for X&. Since each Ki is
i=1

conpact, S is totally bounded. Therefore, X5 is totally bounded and
X is collectively conpact.

The next-exanpl e shows that the converse of Proposition 2.2 is
fal se.

Exanple  Let ¥ be the set of operators on 12 such that

Kn(xl,...,x yess) = (xn,0,0,...). (2.3)

n

Then ¥ i's collectively conpact. Since [k -K || =2 for mén, ¥is
not totally bounded.

It was proved in [16] that the converse of Proposition 2.2
hol ds for any set ¥ of self-adjoint operators on a Hlbert space.
The proof involved the spectral theorem More generally, it was

established that:

Theorem 2.7 Let ¥ be a set of conpact nornal operators on a
Hilbert space. Then ¥ is totally bounded iff both X and ¥* are
col l ectively conpact, where ¥* = (K*: Kex}.

Fromthis, it follows that:

Theorem 2.4 Let ¥ be a set of conpact operators on a Hlbert
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space. Then X is totally bounded iff both ¥ and ¥* are collectively
compact.

Later, the same result was obtained in [13] for any set ¥ of
conpact operators from one normed |inear space to another such that
(di mKX: K€k} i s bounded, In [18] this was extended to other sets in
[X] by neans of spectral theory. Finally, Palmer [36] recently found
a quite direct proof of Theorem 2.4 for an arbitrary set of operators
from one Banach space to another. In fact a sonmewhat stronger result

was obt ai ned.

3. Nonlinear Operator Approximations

Consi der a nonlinear operator equation
Tx = 0, (3.1)

where T nmaps a Banach space X into X  For exanple, this mght be a

Hammerstein integral equation on C[0,1]:
1
(Tx) (s) = x(s)+f0k(s,t)f(t,x(t))dt - z(s) = 0. (3.2)

Assume that T is Fréchet differentiable on X Thus, there exists

t he uni que Fréchet derivative T'(x)€[X] for each x€X which satisfies

IT ety ) -Te-T )yl g lill = o. (3.3)
iiYii

Under reasonable conditions on k(s,t) and f(t,u) in the exanple,

T'(x) is the linear integral operator

1
(2 () (2) = (3] x(s,) S e(ex(0))y(t)at.  (3.4)
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Consider Tx = 0 in the Banach space setting. Suppose Tx* = 0,

||x*-x || is small and T'(xo)'le[x] exists.  Then
T (x, ) (c*-x ) = Tx*-Ty = -Tx, (3.5 )
X*;Xl’ X, = X - T'(xo) TX - (3.6)

Newton's method is based on

. -1
X = x =T (xm)

m+l Txm, m = 01 11 21 e @y (5'7)

provided the --inverse operators exist. The Kantorovitch theorem [29],
gives sufficient conditions for the existence of the iterates X

for the existence of a locally unique solution x*¥ of Tx= 0, and for
me-x*\i - 0. It also provides error bounds.

To apply Newton's method we nust solve a linear problem or
invert a linear operator at each iteration. In the integral equation
exanple, and nore generally, a second approximation nethod is needed
to deal with these linear problems. R H More [33%a, 33b] has com
bined Newton's method with the theory devel oped in Chapters | - |11
for linear operators to obtain an approximtion theory for nonlinear
operator equations in Banach spaces.

As More indicates, it is equivalent and somewhat nore convenient
to first introduce nonlinear operator approximtions T, say with
di anX < =, and then to solve Tnxn = 0 by Newton's nethod. For
exanpl e, T, can be defined by numerical integration when T is an

integral operator.
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Theorem 3.1  For sone x &X and r > 0 let
(1) [lzx-Tx|| = 0 for |lx-x || < r;
(2 (T} equidifferentiable at x i.e., the limt in the
definition of Tr‘l(xo) is uniformin n;
(3) {r} collectively conpact, i.e., (Tx: n>1, =l ©3
is totally bounded for each b < .
Then
() o (x ) = T (x);
(5) {Tr'l(xo)} col l ectively conpact;
(6) T‘(xo) c_b'rrpact.
The hypotheses are satisfied under reasonable conditions for
the Hammerstein operator, For the proof and further theory and

applications, see [33a, 33b] .

L. Collectively Conpact Sets of G adient Mppings

This material is adapted from[25] by Janes W Daniel.

Let X be a real reflexive Banach space and E, the real field
regarded as a Banach space with the absolute value norm  Syppose
that f: X - E, is Fréechet differentiable on some domain 8 € X Then

1
£'(x)ex* for all x€0 . The map v f: & X* defined by (vf)(x) = f' (X)

is the gradient of f.
Now let & be a famly of such maps f.
Theorem 4.1  |f {vf: f€%} is collectively conpact then % is

weakly equicontinuous on each bounded convex set.

For a proof, see [25].
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Weak equicontinuity plays an inportant role in the approximte
solution of variational problens. This is indicated by the follow ng
resul t.

Theorem 4.2 Let f and £ be weakly | ower sem -continuous
functionals such t hat fn(x) - f(x) for all x€B, a closed and bounded
set in X. Assume that {fn-f} i s weakly equicontinuous on B. For
each n, let x €B and f£(x)<inf. f

— X€B
e - 0. Then every weak limt point x'of {xn} mnimzes f on B.

,(x) + £, where ¢ > 0 and

n
For a proof and a nunber of related results, see [25].
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