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§1. Vector Spaces

W sunmarize sone basic concepts fromlinear algebra. A
VECTOR.SPACE ¥ OVER A FIELD K (1.1)
(denot ed VK) is an abelian group (V,+) --the zero element being

denoted by 4 or sinply 0 --with Kas a nultiplier field; i.e
with a mapping K x ¥ -V (SCALARMULTIPLICATION) sati sfyi ng

Va,B € K; x,y €V: olx+y) =ax+qay
(@+B)x=ax+By
(@ B)x = ofp x)
Ix = x

X €EVis called a

VECTOR, (1.2)

a€Xxiscalled a

SCALAR (1.3)

Exanpl es:

(i) Let (If,+) be the additive part of a field X. Then Ve
is a vector space over K with multiplication in K as a
scalar nmultiplication.

(ii) Let Vv = k" be the n-fold direct product of k;i.e., the

set of all ordered n-tuples of elements of k. VW my wite
t hem col umwi se.

] f/al &
VvV = K = < % aie K, | = 1, 2, Ve e n
i .

\ |



[ Not e:

Define + over Vv conponentwi se in the sense of K:

) By ot By
%

BT %R
an Bn an+3n

0
Then (V,+) is an abelian group with the zero elenment ¢ = [0|.

0
Let scalar multiplication be defined by conponents in the
sense of K:

gl o
al o | = (o
O"n:’; Oan
Then VK is a vector space over K. It will be denoted

K Its elements in the representation given above are

cal led COLUW VECTCRS .

(iii) Let c[0,1] be the set of all real-valued functions defined
and continuous on the closed interval [0,1] .

£, 1, € c[0,1], define f = £F f, by

For

f(S) = £ (&) - £,(8) v £ €[0,1]

Then ¢[0,1] i s an abelian group wWith zero elenent ¢ :

¢ ()=0 . For g € c[0,1], o€ R, definef = a g by

£(E) = a g(&) V ¢ €[0,1]

Then c[0,1] is a vector space over R .
The sum and nultiples of continuous functions are continuous].




Exanple (ii) and Exanple (iii) are special cases of vector spaces

obtained froma field X by formng ordered sets of elements,
ordered according to sone index set (the set (1, 2, . . . . n) of
natural nunbers and the set [0,1] of real nunbers respectively).
In Exanple (iii) noreover, an addi ti onal property is postul ated
(continuity) which is hereditary under the conponentw se operations.

A subset vy of a vector space Vg is called a
SUBSPACE COF vK (1.4)

if it is a vector space over K, i.e., if

= x,yEVl>x+y€V1
Voa€K: XEVl>ax€V1
or equivalently,
Vop€Kk: xy€V, > x3+p . €V .

ax+ By iscalled a

LI NEAR COVBI NATI ON (1.5)

of x andy .
A subset M of a vector space VK is called a

K-BASI'S OF Vg or sinply a BASIS OF E (1.6)

if any x € vK is uniquely determined by some (finite!) I|inear
conbi nation (x = Xy *ox, . 4 amxm) of elenents of
M(xiél\/) . For Exanple (ii), the axis vectors



1 0 0
0 5 :
e, = , €, = e = (.
1 : 2 : 2 > "n 0
0 0 1
. n
are a basis for K
| f VK has a
FIN TE BASI S, (1.7)

i.e., a basis forned by a finite number n of elements, then every

basis has n el ements and these elenents are K-|inearly independent:

aiEK, ozlxl+. . +anxn:O>al=oé:...=a =0,

n is called the

g (1.8)

DI MENSION OF V
(denot ed dim(vK) ) and Ve is isonorphic to K .

In Exanple (ii), the dinension of k" is n . W call k" an

n- DI MENS| ONAL _ OOCRDI NATE SPACE. (1.9)

In particular, we shall consider " and c”, where R is the
real field and C the conplex field.



$2. Normed Vector Spaces

A set Mis

ORDERED BY A RELATION p or p- ORDERED

if there is a relation p over MX M an ORDERI NG of M

the properties:

TRANSITIMITY: X pyANypz>xp2z V¥ xy,z€M

REFLEXIVITY: X px Vx€M.
ANTISYMETRY: X pyAypx>x =y YV x,y €M

An abelian-group G = (M+) s a

p- ORDERED GROUP

(2.1)

W th

(2.2)

(2.3)
(2.4)

(2.5)

if the ordering p of Mis conpatible with the group conposition;

i.e., if

apb>a+x p b+tx Va,b,x €M

An element of Gis

NON- NEGATI VE

if Opx. Anordering p of Mis

LI NEAR

if it has the property

xpy vV ypx Vxy€M

(2.6)

(2.7)

(2.8)




If the ordering of an ordered group Gis linear, then Gis a

Exanpl es:
(1)

(i)

(i)

(iv)

LI NEARLY ORDERED GROUP . (2.10)

The famly of all subsets of a given set is ordered, the
ordering being set inclusion C: XCY:=xp€X>p€Y.
It is not linearly ordered

The set of natural nunbers has a linear ordering, usually
denoted by < .

The additive parts of the ring of integers Z, the rational
field P, and the real field R are linearly ordered
abelian groups for the ordering usually denoted by < .

Let X be a field, the additive part of which has a
linear ordering < (e.g., P or R . Then

Xpy:BS xiiyi’ i:l, 2,..., n (211)

defines an ordering p in x* ( COPONENTW SE_ORDERI NG ;
The additive part of K* is a p-ordered abelian group

For n > 1, however, the ordering p is not |inear.
Neverthel ess, we shall use the conventional sign < to
denote this ordering; i.e.

XS- y -3 x, < yi’ | = l’ 2’..., n ’ x’y e Kn (212)

i -

In accordance with standard practice, we shall use <to
denote strict inequality; i.e.,

x<y mx; <y,i =1 2,..,n s x,y € Kb (2.13)

Note that x <y and x # y together is weaker than
x<y .



Furthermore, we shall denote by |x| the vector whose
conponents are the absolute values of the conponents of x :

x|

1X| = ‘XE{ , x €x° (2.14)

x|

A functional over a vector space V with values froma p-ordered
abelian group G i.e., amppingv : V=G isa

NORM (2.15)
ifitis _

SUBADDITIVE: v(x+y) p v(x) + u(y) Vx,y € V (2.16)

NON-NEGATIVE: 0 p v(x) V¥V x €V (2.17)

DEFI NI TE: x=4 % v(x) =0 . (2.18)
Exanpl es:

(i) Let X be the primtive field of characteristic 2 with
elenents 0 and 1 . Define a function v over K
with values in the < - ordered abelian group of integers
by:

X

If x=[ "2 has k conponents which are 1,

then v(x) = k . (2.19)

Then v(x) is a norm the "Hamm ng norm' of coding theory.



.. n
(ii) In v =R or ¢ the

TSCHEBYSHEFF NORM  or  MAXI MUM_NORM (2.20)

with values in R is defined by

v(x) := max |Xi|' (2.21)
Kikn

(iii) In VvV =c[o,1], the Tschebysheff normwth values in R
is defined by

v(f) = max{f(e): 0 <t < 1}

(iv) In Vv =28 or c"

, anormwth values in the vector
n
space G = R,

ordered conponentw se (2.11), is defined by
v(X) = |x]| . (2.22)
We will refer to this normas the

MODULUS NORM (""BETRAGSNORM") (2.23)

of " or C For n =1, it reduces to the sinple

absol ute value which is a normover the vector spaces R
and C .

In a normed vector space with a real

norm a (unsymmetric) di stance
- i's induced by

d(x,y) 1= v(x-y) . (2.24)

It has the properties:

TRIANGLE [NEQUALITY:  d(x,z) < d(x,y) + d(y,z2)
NON- NEGATI VI TY: - 0 < d(x,y)

(2.25)

(2.26)
8



DEFI NI TENESS: d(x,y) =0 ¥ x =y (2.27)

Proof: d(x,z) = v(x-2) = v( (x-y) + (Y-4 ) < v(x-y) + v(y-2)
= d(x,y) + d(y,z)

In particularx #y > d(x,y) >0 .If the normis
SYMVETRI C: v(-x) = v(x) (2.28)
then the distance is

SYMVETRI C: d(x,y) = d(y,x) , (2.29)

and, by means of the distance induced by the norm the vector space V
becomes a topol ogi cal space, the topol ogy being based upon e-
nei ghbor hoods

U (x) = (y:d(xy) < el

Moreover, the distance is

TRANSLATI ON- | NVARI ANT:  d(x+a, y+a) = d(Xx,y) . (2.30)

Conversely, a distance which is translation invariant induces a norm
by means of

v(x) = d(x, ¢). (2.31)
Exanpl es:
(i) The usual distance in Euclidean geonmetry which is in-

variant under translation, furnishes the npst inportant
and best-known exanple of a norm The

EUCLI DEAN NORM (2.32)

given by the distance fromthe origin, is the natura
norm of the vector space of Euclidean geonetry. |n an



i sonor phi ¢ coordinate space of dinension n it is given
by

(2.33)

(ii) I'n Manhattan, the distance a car has to travel from one
place to another is the sumof the distances along the

streets and the avenues. In R® or Cn, the MANHATTAN
DI STANCE is
o I ev T I - -
a(x,y) r= ey |7 byl e %% 4l -y (2.34)

The normin Vv = R* or ¢ induced by this translation

invariant distance, the

MANHATTAN NORM or SUM NORM (2.35)
is defined by
— n
vix) = ) |xi| . (2.36)
i=1
A nmappi ng o: VR X VR - R of a vector space VR over the real field
R is a
SCALAR PRODUCT (2.37)
ifitis
SYMMETRIC: o(x,y) = o(y,x) (2.38)
Bl LI NEAR Playx, + axy, y) = 0(x,y) + op(x,,y) (2.39)

DEFI N TE: X # > o(x,x) > 0 (definite on the di agonzalzl )40)

10



A scal ar product defines a norm the

SCALAR PRODUCT NORM (2.41)

-

v(x) = [o(x,x) 1% . (2.42)

The scal ar product normof a linear conbination ax + By can be
expanded using (2.42) and (2.39) as

vE (axspy) = oAVE(x) + 2ope(x,y) + 85E(y) > 0 . (2.43)
For a = v(y), B = -0(x,y)/v(y) we obtain
VEOVE) - 92(x,y) >0,

whence

SCHWARZ-BUNJAKOWSKI | NEQUALITY: [ (x,y) | S v(x)v(y)  (2.kk)

The cosine of the ANGE a, Q < a < =x, between x and y may there-
fore be defined by

cosa=%, xE PNy +b (2.45)
since \;%é%t%%sd <1

A scalar product norm has the additional property (see(2.43))

PARALLELOGRAM EQUALITY:  v2(x+y) + v2(x-y) = 2v2(x) + 2v2(y)

(2.46)

The scal ar product is reproduced fromthe norm by

3V (ety) - Vi (x) - Ve 1
v (x) + vo(y) - v2(x-y) ] (2.47)

%EVE’(X+Y) - vg(x-y)] .

o (x, y)

11



Moreover, any normv for which the parallelogram equality holds
defines by (2.k7) a function which is a scalar product (:EL:xercise 1)
and therefore is a scalar product norm v(x) = [p(x,x)]%.

A normed vector space with a scalar product normand hence a scalar
product is a

H LBERT SPACE . (2.48)

In the vector space R, any scal ar product ¢(x,y), being a sym
metric, bilinear, definite functional, can be witten as a symetric,
bilinear, definite formin the conponents of x and vy, i.e.,

o(x,y) = X Ay (2.49)

wher e xT is the transposed vector x and Ais a symetric,
positive definite matrix of order n . Consequently, any scalar
product normyv can be witten

V(X) = (XTAX)% (2.50)
The Euclidean normis a special case with A =1

Exercise 1. Let g(x) be a real functional over VR such that

g(xty) + g(x-y) = 2g(x) + 2g(y) .
Show t hat
glxry+z) - g(x+y) - g(y+z) - g(z+x) g(x) gly)  =&(z) . 0 .
Let furthermore V(x+y) := Blg(x+ty) - g(x) - g(y)] .
Show t hat

W(x',*'y)z) = W(X)Z) + ﬂ!(y,z)

12



§3. Honobgeneous Nor ns

Very often, the range of a normis not only an ordered abelian group,
but a field (such as the real field in some of the exanples in $2) or
a vector space (as in Exanple (iv) of $2) with an ordered additive part
such that non-negativity is preserved under suitable multiplications.
By way of definition, afield Kk is a

LI NEARLY o, - ORDERED FIELD (3.1)

if the additive part of K, is a linearly p, - ordered group and the
ordering po is conpatible with non-negative nultipliers:

V-a, B7€K: O@mQABE 7Y >aB m oy (3.2)
In particular,

Va BeK : Op aAOpo B>0 po &P - (3.3)
Since we have a linear ordering and a oo 0 > 0 o (-3)

VaeXo: Opo. VOp .o
. 2 2 . . .
Since (-a)” = o, squares are non-negative and, in particular,
1:(1)2>op01.

As a consequence, the characteristic of a linearly ordered field cannot
be finite:

Op 1>0pon+ 1 (=1+...+1)Vn>1.
Mor eover,

Opoa/\a%0>0poa'l; (3.4)

15



ot her wi se,

Opooz/\oz'lpoo>lpoo,

a contradiction. Furthernore, from~a -'é' = a'lB'l(B - a),

-1

Opoa/\ayéoxxapor3>5'1poa (3.5)

The rational field P, the real field R, and the field of all real
al gebrai c nunbers are linearly ordered fields with the conventional
< - ordering.

Simlarly, a vector space G over a linearly p - ordered field X
is a

p - ORDERED VECTOR SPACE (3.6)

if the additive part of Gis a p - ordered abelian group and multi-
plication by non-negative scalars is conpatible with the ordering p :

VaekKo,xyeG Op aAXpy>0XxXpQYy - 3.7)
In particular,

Vae K, x e G Opooz/\$px>$pax. (3.8)
Exanpl es:

(1) R' is a p - ordered vector space over the linearly < - ordered
field R p being the < - ordering of (2.12)

(ii) c[o,1] is a p - ordered vector space over the linearly < -
ordered field R, p being defined by:

fpG:xf(E) < E, VEelo1].

14




| f L% IS a normed vector space and the range of the norm v is a

p - ordered vector space G over a linearly p - ordered field X,
Ko a subfield of X, then it mkes sense to define

HOWOGENEITY: V a eXKos = €V: O o @ > e X) o Q@ e . (3. 9)
For hompgeneous norns, (2.17) and (2.18) can be repl aced by:

POSITIVE DEFINTE: Vv X eV: X #0 > 0 p v(X) Av¥# 0 (3.10)

Proof :
From honogeneity with o = 0,

vi) . v(0... wv(x) = 0 ;5 i.e., x = %> v(x) =0
From positive definiteness,

v(x) = 0 »x =¢-
giving (2.18). This and positive definiteness give (2.17).

In R* and C%, the Tschebyscheff norm the Euclidean norm and ot her
scal ar product norns, the Manhattan norm and the nodul us normare all
honogeneous. W shal | assune honmpgeneity in succeedi ng paragraphs and
shal | speak sinply of norms if Gis a field (mainly the real field)
and of VECTORIAL NORVMS if G is a vector space of dinmension greater
“than 1 over some field (again mainly the real field).

15







§4. Linear Mappi ngs.

A

LINEAR MAPPI Ng, (4.1)

i.e., a mapping ¢ of a vector space Ve into a vector space VI; is
called a VECTOR SPACE HOMOVORPH SM i f

Vo pekK xyelpolax+py)=aoek)+poly); (.2

i.e., if ¢ is conpatible with linear conbinations. In particular,
o) =4 .

The i mage qJ(VK) C VIQ is itself a vector space, a subspace Of VI; .
¢ induces a SURJECTIVE (onto) |inear mapping of v, onto cp(VK) .

However, since we frequently consider homonor phisms of a vector space

Vi into itsel f (ENDOMORPHISMS), it would be inpractical to restrict our

attention to surjective mappings only.

Let ¢ be a linear mapping of v, into VI’{ . The set

K
Ker ¢ := {x ¢ VK: o(x) = q{}]

is a subspace of V. the KERNEL of cp . [Note that ¢ ¢ Ker o;
o) =4 n o) = 4> olax+8y) = a0+ ealy) = 4.

® IS INJECTIVE i f

o(x) . o(y) »x . . .

Equi valently, o is injective 3 Ker o = {§} . [ Not e that

P(x)= o(y) % o(x-y) = 0(x) - 9(y) = ¢ ;
(cp(2) =#>2-= ) % [x ¢ Vo(x) = 4} = @} 1.

16




@ Iis ONEETOONE if it is both surjective (every el enment of Vk has at

| east one preinage) and injective (every el ement of VI; has at nost one
preimage). Such a mapping ¢ is called a REGULAR mappi ng or ISOMORPHISM.
If Ker ¢ = {#}, then the induced |inear mapping CH —'cp(VK) is an

i sonorphism  The set of all |inear mappings of a vector space % into

a vector space V denot ed

KJ
Hom (VK: VI/() ('4--5)

is itself a vector space over K wth addition and scalar nultiplication
defined by

P=9, +o, E o) =0,(x) to,(x), Vxe V. o (kD)

¢=a9 = ox) = a o (x), Vxe Vi o (h.5)

The zero elenment of Horn (VK, VI;) is the zero mapping 0 : Qx) =4 .
If v, is just the field. X itself, the mapping ¢ is called a

K
LINEAR (K - VALUED) FUNCTI ONAL OF VK (4.6)
and we wite
1{112 = Hom (VK, K) (%.7)

The zero element of Vo is the ZERO FUNCTIONAL ¢ :47(x) = 0 .

Exanpl e:
The dual vector space of the coordinate space R" is the set of
all linear functionals
pf(x) = £.X. 4%, - . . . Lx £T‘x (4.8)
171 "et2 nn’ ?
where T = (11,12, el zn) is called a RONWVECTOR In this

representation, (R'n)D is again a coordinate space of dimension n
over R.

7




§5. Subadditive Functionals CGenerated by a Set of Linear Functionals

Linear nappings are trivially seen to be subadditive and honogeneous but
not definite. W shall use supremum constructions which preserve sub-
additivity and honpbgeneity to generate functionals that are non-negative
and even definite. W first turn our attention to the case where X is
the real field R and GKo coincides with X, i.e., the real field.
Thus, we discuss real-valued functionals and norns of a vector space Vv

over R .

I n the linearly ordered real field R the supremumof a set of elenents
is defined for bounded, nonempty sets. To remove these restrictions,
we formthe EXTENDED REAL FI EL_D® R* = {R, + », - ®»} and define

-

SpR=+o; supg=-o (5-1)
inf R=-o; inf gd=+e

where ¢ denotes the enpty set. The < - ordering of Rt is that of
R, supplenmented by

Theor em (5.2)

Let s = 1P = Horn (v, R) be a set of linear real-val ued function-
als of a vector space U over R . Then

7g(x) = swlo(x): o ¢ 5) (53)

is a subadditive, honogeneous functional (sometines called a GAUGE
FUNCTI ON) over ¥ wth values from extended real field R¥ .

®Note that R* is not a field: (+ ®») + (- @) is not defined.

18




Pr oof :

vg(xty) = suple(x+y) : @ e 8)
= sup{p(x) + o(y): @ e S}
< sup{p(x) : ¢ € 8} + sup(op(y) : ® e S}
=Y, (x) + Yg(¥)

YS(X) i's subadditive.

Yglox) = sup{@(ox): ¢ ¢ S}
= sup{a ¢(x) : ¢ € S}
= a sup{p(x): ¢ ¢ S} for a>0
= a Yg(x)

" ys(x) i s honpgeneous. QED

To be a norm yé’(x) must al so be non-negative, definite, and real-
valued (i.e., bounded). A sufficient condition for the first property

s given by:
Theorem ¢D eS>o§YS(x), VxeV. (5.4)
Pr oof ; 0 =4 (x) < suplp(x): ¢ € 5) = vgx) .

A mapping over V with values fromthe extended real field R* is a
SEMINORM (5.5)
if it is subadditive, hompgeneous, and non-negative. Qoviously,
VoesS, xeV:o)< Ys(x) . (5.6)

Moreover, some |inear conbinations of elements of S are bounded by

D
Yg  Let @5 95 o w @ eDV and Ops Qs o o vy O € R . Then
P, t o, t ... ta® eV isa
OONVEX OOVBI NATION OF @15 @5 +v25 @ (5.7)

19




i f 0_<o€ and ozl+oc2+. .. +ﬁ\:1.

Theorem Let o be a convex conbination of @,, ® 5 .-+ ® €S . (5. 8)
Then
¥V xe V: p(x) < 7S(x) . (5. 9)
Proof :
0 (x) + o, (x) + ... + a0 (x)
Sogrglx) apg(x) L rg(x)
] (al 52 . # o an) 7S(X)
- » 7g(x) .

Theorem (5.10)

I f QD can be represented as a convex combination of elenents of
S, then 7S(x) i's non-negative and therefore a sem norm

The converse is not true, e.g., Exanple (i)(d) below

Exanpl es:

(i) The follow ng subadditive, honbgeneous functionals 7g over

R are depicted by their contour maps in Figure 1.

(a) 8, = {(0,1), (1,0)} YSl(X) = max(xy, x,)

() 8, = {(1,1), (1,2), (3:1), (2,2)}
YSQ(X) = max{xl+x2, X, +2X,

2X1+X2 s 2xl+2x2]
(c) 85 = {(4,2)1) 20, 1, >0, zi + zg = 1)
Y%(X) = ((ci + xg)% X, 20, x,> 0
X, xl' >0, x,<0
.%o x; < 0, X5 2 0
\ max (xl,x2 ) X) < 0,x, 50

20
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2
(a) S, = { (11,12): Lo>o0 1]+ L = 1}

(Xi+xg)% x> 0
7g (%) =
U |x2f x, <0
(ii) ~ The follow ng seninorns .‘73 over R2 are generated by sets
S which contain Q}D or a subset, a convex conbination of which is

¢D (See Figure 2):

(a) 85 = {(1,0), (0,1), (0,0)}  7g (x) = max(x,xp, 0)

p)
(b)sg = {(£52,): £, 20,4, > 0, zi + zEL: 1Y u (0,0)}
Yo (x = max(yq (x),0)
Sg S5 ’
(iii)  The fol | owing functionals 7, Over R° have + e among their
values. Al except (a) are seninorns. (See Figure 3):
(a) = {(2,,0): £, >1} e X, > 0
T ' 7g (%) = '
S 1y x, <0
(v) Sg = { (zl,o): L > 0} + ® x> 0
Yo (%) =
S8 0 Xl <0
(c) Sy — {(4,45): £, > 0,2, > 0} 0 x, £0,x, <0
YS9(X) 1+ e ot her wi se
(a) S0 = {(zl,o): L, eR} _Fr ® X, #0
Yo ( X=
510 0 x, = 0
(e) s, = {(2,1,): |12| <1} |x21 x, =0
75, ) s ot her v se
Note that in all the exanples, the set
Kp := {x : 7S(x) < p} (5.11)

Is an intersection of a famly of half-planes
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H := (x : 9(x) < p} .

P, 0
In fact
=N .12
Theorem K FAPL (5.12)
Pr oof :
x e K >vg(x) <p
>o(x) <p, YopeS by (5.6)
>xeH , VoesS
Yo P
> N H
* € pesSTy,p
XecpneSHq),p>X€Hq),p’ VoesS
>o(x) <p, Vo €5
> o upper bound for {p(x): ¢ ¢ S)
> 0 <Yg(x) = lub{e(x) : ¢ e 5]
> K . E. D.
x e K QED
For o < O, Kp may be enpty. In particular, Kjis a
CONE, (5.13)

i.e., a subset of V such that

xeKO/\CtGR/\O:_>_O>O£X€KO.

K, certainly contains d} and may degenerate to [f}) :

Theorem A seminorm is definite % K, = (4] . (5.14)

| f Ky = (4}, then

nH .= . (5.15)



i.e., S "surrounds the origin of P

A seminorm y (x). is a normif it is definite and al so
S

BOUNDED: ¥ X € V: “7g(x) < + =, (5.
A sufficient condition for boundedness is:
Theorem If Sis a finite set, then Vg i's bounded. (5.17)
In v = Rn,ys is bounded if S is conponentwi se bounded. If 7g i S

both definite and bounded, we wite the norm defined by S as
- VS(X) ) (5.18)

In particular, we can now derive the Tschebyscheff, Euclidean, and
Manhattan norms in R® fromtheir generation sets. Let

:= (0,0, .y, 0,1,0, . . . . O)Te R' where the 1 is in the ith

e
1
place. The Tschebyscheff normis defined by
T T, . -
S |U {ei, -ei} 5 VS(X) m?‘Xi|Xi . (519)
The Euclidean normis defined by
n 1
2 2 2 - 2\%
ol ) e sty vgle) = (g;l x; )
(5.20)
Pr oof
VS(X) = sup{lTx YK 1}
< (xTx)% since by (2.49) Iszl < (ITI)% (xTx)%
For IT = xT/(xTx)%, 1T = (xTx)% and ¢%4 =1 .

L vgl) = (T)® = ( L <)%

22
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The Manhattan normis defined by

n
S=((+1,+ 21 ..., + 1)} vs(x) — Z Ixil (5.21)
i=1
Pr oof :
n
Vo es: o) =) x|
i=1
1 xizO T n
For £, =¢ 1 . <o @& =tx =Y Ixl.
i — i=1

W can now discuss real-valued norns of a vector space V over the

conplex field C. For the suprenumconstruction, we can no |onger

use linear functionals of Vv over C since they are conpl ex-val ued.

However, the real part of these functionals is still additive and
honogeneous:
Theorem Let sc VP = Hom(V,C) be a set of conplex-val ued (5.22)
functionals on VC . Then
Yg(x) = sup(Re(p(x)): ¢ e S) (5.23)

I's a subadditive, homobgeneous functiona
extended real field R

on V with values from the

The theory devel ops further as in the real case. For the Tschebyscheff

norm the Euclidean norm and the Manhattan norm the generating sets are
respectively,

s:u{mef: o] = 1) (5.24)
i

S = {(zl,..., zn): ]zll2 +|12|2 + ... +|zn12 =1}  (5.25)

5= {(opay. - . o) Ia)ll=1, i =12 ....n . (5.2)

Before going into a simlar study of the case of vectorial norms, we shal
el aborate on the generation of norms somewhat further in order to investi-
gate fields of values and eigenval ue exclusion theorens.
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%6. Replete Cenerating Sets. Application: Fields of Values and

Ei genval ue Excl usion Theorens.

W shall call the set SCVD that generates 7S(x) (or v, (x))

REPLETE (6.1)
if
Txev 29e85: o(x), rgx) . (6.2)
If Sis replete, then
7l = X 900; (6-3)

i.e., the supremumis actually attained.
Not every set is replete; in §5, Exanple (i)(d),
x . (9) > 0(x) < 7g(x), ¥
a l q') 7SX 2 cp €

Wether a set scv® can be extended to a replete set g’ such that
7g(x) = 7g/(x) and whether

s ={o eV’ s 9(x) < 7g(x), Vx e V]

" is replete are subtle topological problens for which no general answers
exist. For finite dimensional spaces, however, the SUPPORT THEOREM
(Bonnesen - Fenchel) guarantees that every set § can be so extended.
Henceforth we shall consider only replete sets in generating norns in
" and C"

On the other hand, a replete set s need not consist of all Iinear
functionals ¢ satisfying o(x) < 7S(x) . The set
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T T
S = |U {ei’ -ei}

of (5.19) generates the Tschebyscheff normin Rn as does

SI

I

et 0(x) < 7glx), Txev)

= {(4s Ly ooy L)) R N IR T B R

Both sets are replete, but the additional elements in S are convex
conbi nations of the elenments of S and are in a sense superfluous. In
finite dinensional spaces, the set § of EXTREME PO NTS of any replete
ext ensi on 8’,

§={q>es'~;cpl,cp2es’/\cp=acpl+(1-a)cp2/\o§oz51

> =9, VO =91,

contains no superfluous elenents. W shall see in the follow ng applica-
tion to fields of values and eigenval ue exclusion theorems that it is
inportant to choose the generating set S to be replete yet as small as
possi bl e.

Let A be a linear mapping of a vector space v over the conplex field
Cinto itself. The set of all such endonorphisns of v, Hom(V, V)
((4.3)), is itself a vector space over C and even a ring, multiplica-
tion being conposition of mappings. |f

AX = AX (6.4)

where x # 0, then A ¢ Cis called an

El GENVALLE CF A (6.5)
and x ¢ ¥ the correspondi ng
EIGENVECTOR OF A (6.6)
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W define the
FIELD QF VALUES_CF A (6. 7)

with respect to the replete set Swhich generates the norm Vs(x) to
be the set of conplex nunbers

GglA]l 1= {p(a) : pes, x e, vg(x) = cp(x) =1) . (6. 8)

Gg[A] has the property of OOVARIANCE UNDER TRANSLATI ON:

Go[A + 0I] = Go[A] 0 . . . o . aeGglAl}, (6. 9)

S

Proof :
VoeS x eV such that vS(x) =op(x) = 1:

o((A + oI)x) = @(ax) + g(x) = @(Ax) + o .

The field of values of A with respect to such a set Sdefines an
EXCLUSI ON DOVAIN for the eigenval ues of A:

Excl usi on Theorem No eigenvalue of A lies outside GS[A]; (6 .10)
i.e., if AeCis an eigenvalue of A then A e gglA]l.

Pr oo :
Let x # 0 be an eigenvector of A corresponding to the eigenval ue
M. Since S generates a norm vS(x) >0 and x' = x/vs(x) is
again an eigenvector with vs(x’) = 1. By repleteness, there exists

® eSsuch that o(x’) = vs(x’) = 1. o(ax’) = o(xx') = »p(x’) =
AN.1l = A whence M ¢ GS[A] )
QE.D.

InV = Cn, A can be represented by an n X n conplex matrix, an
. . nxn
element of the matrix ring C, and
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GS[A] = [IHAX : lHeS, xeV, VS(X) = 2 = 1}. (6.11)

Using the generating set S Of the:Tschebyscheff norm ((5.24)), we
obtain the

GERSCHGORIN FI ELD OF VALUES, (6.12)

a union of circular donmains centered at the diagonal elements of A :

n

GS[A] ::i=’lU c, [al, (6.13)

where
c:[A) = (z : |z -a..]< la. |3 . (6.14)

i | 11| = A ip
Proof :
Gglal = (o 1fes = U {u)elf lw] = 13, xev, vg(x) = fx = 1)
|
" Tax = 1, xeV,v,(x) = ||—1'meTx=mx=1}

=.U {weiAx.lu)|— ) xeV,Vg(x) = max|x, | = 1, we; i

i=1

| < 1 for u # i}

= U fefax : x, =1 and |x | <1 for u# i}
1 1 pt - .
i=1
i b | £ 1)
= U { a + . X x | <1 for p#i
i=1 Tt g HH
i | | <1}
= U {a.+n a, 0<n
i=1 +t pFEL H
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Corollary: Let x be an eigenvector of A with a DOM NANT (6.15)
i - TH COVPONENT:

o f<hgl o= 2000 o
Then the eigenval ue corresponding to x lies in Ci[A]'®

Ve also note that c. [A] reduces to a single point, C, [A] = {aii},

if and only if e is a LEFT EIGENECTOR of A : A = hel; i.e., the
i-th row of Ais just a8 . Consequent |y, the Gerschgorin field of
values reduces to n points if and only if Ais a diagonal natrix,
these n points being the eigenvalues of A. The follow ng exanples
show, however, that one or several of the disks ci[A] may be arbitrarily
smal | without containing an eigenval ue:

Exanpl es: 11 e-l\
: -1
(i) A=(1 2 3¢ " with eigenvalues 1, 4 + /15 (6.16)
e Je / -
CB[A] = (z : |z- 6]< ke} does not contain any eigenval ues
of A for e sufficiently small.
1 e O
(ii) A = ( oo e'l)w'th ei genvalues 2, 2 + /3 (6.17)
0 e 3
c,[Al = (z : |z - 1] < ¢} and CB[A]: « lz - 3] < e} do
not contain any eigenvalues of A for e sufficiently small.
D The cl assical elementary proof of Gerschgorin's Theorem goes along this
line. In practice, however, information of this kind is rarely avail-
abl e.
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Qoviously, the set S generating the Tschebyscheff normis distinguished
with respect to diagonal matrices in so far as all of its elements are
left eigenvectors of a diagonal matrix. Other generating sets may con-
tain nore elements than there coul d be eigenvectors of a non-derogatory
matrix. In general, the field of values will reduce to a finite nunber
of points only if the matrix is a nultiple of the identity matrix. This
is true in particular for the set (5.25) generating the Euclidean norm
The corresponding field of values, the

TCEPLITZ FIELD OF VALUES, (6.18)

s given by

- GS[A] = {xHAx L oy = 1} (6.19)

since by the Schwarz inequality ((2.4k)),

IH.f:l/\VS(X):XHX:].AlHX=l>lH:)!_|.
A classic result by Toeplitz asserts that this field of values is convex
((9.20)., If Ais NORVMAL (unitarily simlar to a diagonal matrix)
then the Toeplitz field of values of A is the convex hull (the set of

all convex conbinations) of the eigenvalues of A :

Gglal = {xax : X = 1)
= {xHUAUHx ot = o = 1)

H .. H
= {y aiag()y : vy =1}

]
laas)
)_h w -
O =
l_,“’lij
<
)_J
.. >
'_h
™M
<
'_I
o
1
H
d

=
I

'—J

=]

In this case, xHAx such that xHx =1 is called a RAYLEIGH QUOTI ENT
and we wite
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GS[A] = H[xl, A Al (6.20)

A

For a vector space V over the real field R we nmay again define
Gg[A] by (6.8), now giving a set of real nunbers which contains all
real eigenvalues of A. For the generating set (5.19), we obtain the
restriction of the Gerschgorin field of values to the real axis, thus
nothing new for real A. For the generating set (5.20), we obtain the
restriction of the Toeplitz field of values to the real axis. If Ais
real and symmetric, then A is normal with real eigenvalues and we again
obtain the convex hull of the two extrene eigenval ues which consists of
all Rayleigh quotients.

In the real case, the set (5.21) generating the Manhattan norm gives the
field of values

6glal = U 1A, s={(x1 +1 ....+1)] (6.21)
T

L7 eS

wher e

T,[A] = {07Ax vg (%) lel . |x2| o Ixnl =1, 27x = 1}

T
= {rmx: x :(llpl,lgpe,, . llrﬁJr? where 0 < p. <1

and Zp. = 1)

= {ITADlp t0<p, <1and Zp =1) where

D, = diag(zl, cees zn)

— T . _
— {Zpi(z ADz)i' 0<wp <land sp, = 1)

T
= B ('), ., (€7AD) )
T, [A] = H[eTDzADlel, o eTDlADen] where e = (1, 1, . . . .1
and e, = 1. (6.22)
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As in (6.15), we can gain sone additional information as to the |ocation
of eigenvalues by looking at the eigenvectors:

Theorem Let x be a real eigenvector of a real matrix A (6.23)

and 20 =(+1 +1, . ... + 1) bé the SIGN DI STRIBUTION of X :

+1, x, >0
l——

Then the eigenval ue corresponding to x lies in T,[A].

1
In contrast to the previous situation, sonme information concerning the
sign distribution of real eigenvectors of a matrix is often available
as is the case with so-called oscillation matrices V% shal
later see that matrices with non-negative elenents have at |east one
ei genvector which has in suitable form non-negative conponents. The
correspondi ng ei genval ue (the Perron root) certainly lies in

T(l, l:’”O--, 1)

Exanpl e: 9 3.6 5
4o.5 48.6 5k
T, 1, ..., 1)[A] = H[72, 70.2, 71] = [70.2, 72]

contains the eigenval ue 36+9/15=70.8568

Note that this theorem gives good results only if the colum sums of A
(or rather of DzADt) are not very different. Thus matrices are distin-
gui shed which are non-negative apart from a sign transformation and whose

colum suns are nearly equal.
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§7. Norm Transfornmations and | nvari ance G oups

Let S be a set of linear functionals and | et
SB := {§B: @eS} (7-1)

denote the transformed set under the |inear mapping BeHom(V, v) where
®B i s defined by

¢B(x) : = o(Bx) . (7-2)

SB is again a set of linear functionals and generates the functional
7gp(x)

Theorem 7o (x) . 7g(Bx) | (7.3)
Mor eover,
Theor em 7B is anormif and only if Yg is a norm and (7.-4)

B is a regular mapping (isomorphisn.

Pr oof :

B not regular » Bx = 0 for some x # 0
> 7SB(x) = 7S(B‘x‘) =0 for some x # O

> 7sp is not a norm

B regul ar A7g not a norms> y_(x) = 0 for sonme x # 0

S
_ _ -1
>7SB(y):7S(By)—Ofor some y =B x #0

>7SB is not a norm

B regul ar Ayg @ norm: (7SB(x) = 7S(Bx) =0>Bx =0»x =0)

iS a norm
QED

>7SB
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B_y ) a

W shall call vB(x) := v(Bx) (in particular, (vS) o

LI NEARLY TRANSFORMED NORM or a LI NEAR TRANSFORMATION OF .. (7.5)

Let Kp denote the set {x: vs(x) < p} = The corresponding set for
VSB is
{x: VSB(X) < p} = {x: VS(BX) < p} = {B_ly: Vs(y) <p} = B—lKT.
Thus,
If Sis replaced by SB, then K_ is replaced by (7.6)
-1 P
BUK

If B leaves the normvinvariant (in particular, S8 = S ), then the
linear transformation B is called a

NORM | NVARI ANCE  TRANSFORVATI ON. (7-7)

The set of all such transformations is clearly a group, the

| NVARI ANCE  GROUP (7.8)

of v(or S ).

The invariance group of the Tschebyscheff and Manhattan norns in R s
t he hyperoctahedral group of permutations and sign-changes of the n

obj ects eI, cees e The invariance group of the Euclidean normin
R" is sonewhat larger; it is the orthogonal group, the group of all

orthogonal transformations in R"

In ¢, the group of pernutations and phase changes is the invariance
group of the Tschebyscheff and Manhattan norns and the group of unitary
transformations that of the-Euclidean norm
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There are norns whose invariance group consists of the identity alone;
e.g., the nornms in R2 generated by the sets:

\V4
N

The application determnes whether small or large invariance groups are
desirable. In nost cases, however, norms have at |east some invariance
properties.

A set S and'a normvare
SYMVETRI C (7..9)
if -1 is an invariance transformation:
-8=S and vx = v(-x) (7.10)
(see (2.28)). A set S and a norm vare

STRI CTLY HOMOGENEQUS (7.11)

if the field K of the vector space vy is the conplex field or a
subfield thereof and {wI: weK, || = 1} 1is a subgroup of the invariance
group:
weK A o] = 1 > @5 = S av(ex)= v . (7-12)

As a consequence, for a strictly honmpbgeneous normv:

VoeK vix)=|o| vx) (7-13)
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since any o ¢ K can be deconposed as ¢ = w|o| with |c|>_ 0 and
Iw| =1 . The Euclidean, Tschebyscheff, and Manhattan norms in c® and
RY are strictly honogeneous.

If Kis the real field R the concepts of symmtry and strict hono-

geneity coincide. In c®, the norns
v(x) = max{|Re ?;il’ }Im Xil} (7.14)
vix) = = IRe X, I + ZlIm Xi}]

are symetric but not strictly homogeneous.

Finally, we may investigate how the field of values GS[A] i s changed
by a regular linedr transformation of the generating set S .

l].

Theor em GSB[A] = G.[BAB (7.15)

S
Pr oof :

H
GSB[A] = {IZHAX: 1esB, v = 2% = 1)

H

= {/zHB’l(BAB"l,)Bx; Jj B'les,vS(Bx)= i lex = 1)

= (T(man™h)%: Tes, v (®) = TR =1} .

Q-E.D.

If Ais normal (unitarily diagonalizable), then there exists a linear
transformation B (dependent on A ) such that the field of values of
A with respect to SBis just the field of values of the diagonal
matrix BAB - with respect to 8. For the CGerschgorin field of values,
we thus obtain the set of all eigenvalues; for the Toeplitz field of

val ues, the convex hull of this set.

The Cerschgorin field of values is frequently used to locate the eigen-

values of a normal matrix if an approximate eigenvector systemis avail-
able.  The success of this procedure is based upon the follow ng theorem
al so due to Gerschgorin:
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Theorem If the union of k Gerschgorin disks is disjoint (7.16)
fromthe remaining disks, then this union contains exactly
k eigenvalues--multiplicities being counted as the nulti-
plicities of the zeroes in the characteristic equation.

The proof, usually using a continuity argunent, seems to be outside of
normtheoretic considerations, In particular, if one Gerschgorin disk
s | SOLATED from all the others, then it contains exactly one eigenval ue.
W& can now obtain some information about the eigenvector corresponding
to this eigenval ue:

Lemma: 1f' c [alnc.[a] = #, then there is no eigenvector (7.17)
whose i-th and k-th conponents are dom nant.

Proof :
If the i-th and the k-th conponents of the eigenvector x are
dominant, then AeC,[A] and XeC, [A] whence AeC,[A] N ¢, [a] # 9,
a contradiction.

As a consequence,

Theorem If the Gerschgorin disk Ci[A] is isolated, then (7.18)
i f contains exactly one eigenvalue X with a correspon-
ding eigenvector x whose i-th conponent is STRICILY

DOM NANT:
u;éi>|xu|<|xi|.
Proof :
Fromthe Lemma, if the conponent X. s domnant, then it is
strictly domnant. |f X, is not dominant, then @u # i such
t hat X, Is domnant and therefore xecu[A]. But xeci[A] whence
neC, [A] N CH[A] # 0, a contradiction.

QED.
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Among linear transfornmations of the generating set S, diagonal trans-
formations or correspondingly SIMLARITY SCALING

d.
A-Dap & -=ta (7.19)

1k ,dklk

with D = dlag(d d2. - d ) and d;l 0 are of special practical
interest. For the Gerschgori n field of val ues, they |eave the centers of
the CGerschgorin disks fixed and change only the radii. Assume that Ci[A]
is isolated and let x be an eigenvector corresponding to, xeci[A].
Since x; is dom nant, }(i|>0andwerray set qu=};‘i-‘|<1, bl

For

_ -1 .
di—land q“_<_c1u <1, u#i, (7.20)
the diagonal transformation D = diag(dl, dys
t he radi us of C; unless it is already zero:

dn) will decrease

d, - 1
1) ﬁéa‘“il = a |2, | < § la;, |
u?i w n#lL wfi
provi ded § Iaipl # 0 . But eventually, isolation of the disk c,
pFEL

will be lost, at the latest when d;l = q for some p since then the
transformed ei genvector Dx will have dom nant i-th and u-th conponents
and therefore c, [DAD q c, -1 # ¢ . Varga has recently discussed
this problemin deta||

Di agonal scaling is of particular inportance in connection with the field
of values obtained fromthe generating set for the Manhattan normin R
since diagonal scaling with positive elenments |eaves the sign distribu-
tion of an eigenvector invariant. Thus if Theorem (6.23) can be used to
prove that the eigenvalue X\ corresponding to the eigenvector x lies
in T,[A], then it can be used to prove that A lies in TI[DAD_l],
provided the scaling is positive. However, scaling can shrink the set

T, enor mousl| y:
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Let pT = (P,' Posves Py) (pﬂj 0) be a row vector with the
P, =

L [ L’l
sign distribution tT; i.e., zulpul' Let D = diag(ipll,

fpgl,.**, bnl) so that eTDD=£TD=pT. Then

I}
-1, _ T -1 T -1
Tl'[DAD ] = H[e'D,DAD "D,e,, ..., eD,DAD Dlen]
T T T T
= HlpAe;/peys . ++y D Ae /pe ]
-1
T,[DAD" "] = H[p'l/pl, C pr'l/pn] (7.21)
where
T
(P]/_: Pé) ) Prll) = p A, (7.22)
Thus, we may reformil ate (6.23):
Theorem Any eigenvalue X corresponding to an eigenvector (7.23)
x Wth sign distribution 1T is contained in
. 7 ’ /
T lal 1= Hlpi/p)s po/Pps oo B /D]

wher e pT = (pl, Pos o **, pn) IS any row vector with sign pattern

7
¢¥ and nonzero conponents and (P, By . -+» P!) = DA,

Note that the n quotients will coincide if and only if p° IS a left
ei genvector of A with the prescribed sign pattern; the better pT
approxi mtes such a left eigenvector, the smaller Tp[A] will be. Such
“a left eigenvector does not exist if A has two right eigenvectors with
the sign pattern ot corresponding to different eigenval ues.

Exanpl e:

1 2 A=3 and x =(i)
A= H 1
-4 7 A=5 and x =(2)
For it = (1,1) and P, > 0, D, > 0:

T [A] contains-both eigenval ues but cannot shrink to a point
since no (pl,pg)T is a left eigenvector.
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For IT = (1,-1) and Py > 0, Py < 0:

P P,

T (Al = H[L -b—=, 7 +2-=] shrinks to {3} for py/p, = -%
and to {5} for p2/pl — -1 but does not contain an eigen-
val ue even if p2/pl approaches these values since there is

no right eigenvector with this sign distribution.

For non-negative matrices, Tp [A] with pu > 0 contains an eigenval ue
(the Perron root) with a corresponding non-negative right eigenvector.
For positive matrices, there is only one such eigenvector and therefore
only one eigenvalue in Tp[A] .

Exanpl e:
A= (i é %) s A=1, 4+ /15 = 7.87298, 4 - /15 = 0.12702
1 -
pT = (1,52.4, L.ok) TP[A] = H[7.8, 7.91, 7.86]
pl - (3.9, -5.6, 2.2) Tp[A] = H[0.128, 0.125, 0.136]
Pl o= (20 1, -1) 1)1 = i, 1, 1]
pT =(-4, 1" 1) TP[A] = H[0.5, 1, 5] no eigenvector

with this sign
di stribution.
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88. Suprema and Infima in Ordered Vector Spaces.

W shall now return to the general case of vectorial norns, norns in a
vector space k with values froma p-ordered vector space ¢ with

: Ko
Ko a subfield of X . In order to-generate these norms by a supremum
construction, we first investigate suprema (and infima) in a p-ordered
vector space GKo over a po-ordered field X, . GKo is characterized
by its POSITIVITY (NON-NEGATIVITY)CONE:
Theorem  The set ¢ of all non-negative elements of GKQ (8.1)
G" o= (xeG, 4 o x) (8.2)
Ko
isa CONE--.
+ +
VaekK, xG : 0 po 0> xeG (8.3)
which is
+ +
CONVEX: xeG A yeG > xty ¢ G+ (8.4)
PONTED AT4:  4ect; xe6™ A (-x)ea’ » x = 4 . (8.5)

Pr oof :

That G is a cone follows from the conpatibility of multiplication
by non-negative scalars with the ordering p((3.8)).

+ +
xeG A yeG >¢-px/\-¢py
by compatability

>-¢p:x/\xpx+y’ of p with
addition ((2.6)
> 4 p xty by transitivity (@2.2)
»xtye G+
IS convex.
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preflexive ((2.3)) >4 o ¢
>feG+

xeG A (-x)eG+>¢px A 4p(-x)
>fpx~~/\xb¢

> x = by antisymetry ((2.4))

©¢" is pointed at +.
Q.E.D

In fact, the cone ¢ compl etely characterizes the erdering p :

Theorem Let G < GKO be a convex cone pointed at 4 . (8.4)
Then the relation p defined by
| X py ¥ y-X e Gt (8.7)

is an ordering which is conpatible with vecter addition and multipli-

cation by non-negative scalars.

Proof :
¢" pointed at 4 > x-x = 4ea
>X px (reflexivity).
XPpYyAypX >(y-x)eG+ A -(y-X) = Xx-y G’
>x =y (antisymetry).

x oy Aypz>(y-x)ea A (z-y)er
> (z-x) = (z-y) + (y-2)€G"
>»X pz (transitivity).
X py > (y-x)eG+
+
> (y+a) - (xta)eG

> X+a p yta (conpatibility wth

vector addition).
+
X py AO@mpa>(y-x)eG A Opa
+
> oy-x)eG

>axpay (conpatibility wth
scalar nultiplication).

Q-E.D.
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An element x of a p-ordered set mis

p-MAXIMAL (p-MINIMAL)or simply MAXIMAL (MINIMAL) (8. 8)

if it has no upper (lower) bound other than itself:

Xpy>y=x (y px>y=x). (8. 9)

El enents which are upper (lower) bounds for all elenents of a subset

h of m are called UPPER (LOAER) BOUNDS of h :

U.bp(h)::{xem: y px, Yy en} (8.10)

pr(n)::(xem:xpy,\fyen}. (8.11)
Either set may, of course, be enpty.

Exanpl e:

For the ordering given by the Hasse diagram

a
b c
d e
f g

the set of all upper bounds of h = {d,e} is {a,b,c} and the set
of all lower bounds is enpty.
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Usual Iy one is only interested in the best upper and | ower bounds, best
in the sense that they cannot be replaced by other bounds. Thus we define
the set of MN MAL UPPER BOUNDS of h c 7

Supp(h) := {ye ubp(n) sy mniml in pr(n)} (8.12)

and the set of MAXI MAL LOAER BOUNDS of h

Infp(n) = {ye £ (n) 1y maximal in oM (8.13)

In the preceding exanple, Sup((d,e]) = {b,c} and Inf({d,e}) = §.

In particular, we are interested in the case where all upper (Iower)

bounds can be replaced by one least (greatest) bound. In this case we
define the
LEAST UPPER BOUND or _SUPREMM COF h (8.14)
a= supp(h) 3 a ¢ ubp(n) Aapx, VXe ubp(n) : (8.15)
and the
GREATEST LOAER BOUND or I NFIMM OF h (8.16)
b = info(h) :§be£bp(h)/\pr,’v’xe£bp(n). (8.17)

Qobviously, the supremum and infinmum if they exist, are uniquely deter-
mned.  Mreover,

Theorem (8.18)
a = supp(h) exists ¥ 3a : pr(n) ={x: apx)
= info(h) exists x 3b : £bp(n) =(X: Xpb).

In the p-ordered vector space G, , the set of all upper bounds of an
element ¢ is the
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TRANSLATED CONE (8.19)

(y :cpyl =ly: y-ceG)=(ctz : zeG) := cra" (8.20)

and the set of all lower bounds is likewise c-&. Therefore, the set
of all upper (lower)bounds of h c GKo is an intersection of translated
positivity (negativity) cones:

Wb (n) = n(c+G) [ (W) =N (c-GH] . (8.21)
P cen P cdl

As an imediate consequence of Theorem (8.18),

Theorem (8.22)
a = sup (h) exists x HaeG N (c+G) = a+q’ (8.23)
b= info(h) exists  TbeG N(e-g") = b-Gr  (8.24)

Ko o

Moreover, if supp(n) exi sts, then infp(-h) and supp(h+a) exi st and

| N\VOLUTI ON: infp(-n) = '—supp(n) (8.25)
supp('eh) = -info(h)
TRANSLATI ON- COVAR! ANCE: sup (h+a) = sup (n) +a  (8.26)
infp(h+a) = info(h) + a .

Theorem (8.22) shows that a rather heavy restriction is inmposed on the
“ordering of the vector space (to be precise, on the defining positivity
cone) if the suprenmum of even two elements should exist. 1In (RB,S),

it is intuitively clear that circular and ellipsoidal cones fail to
meet this restriction (an intersection of such cones is not necessarily
a cone); in fact, suprema and infima will only exist in general in
(RB,S) if the positivity cone is triangular.
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If we require of an ordered set , that the supremum and infinmum of any
two el enents (and therefore of any finite nunber of elenents) exist, then

m is a

LATTI CE-' (8.27)
and wve wite
a|_| b := supla,b) ("a cup b") (8.28)
a || o := inf(a,b) ("a cap b") . (8.29)
A p-ordered vector space G s a

Ko

LATTI CE- ORDERED VECTOR SPACE or sinply a VECTCR LATTI CE (8.30)

if it is alattice with respect to the ordering p. By Theorem (8.22)
this is equivalent to

(a+G+) N (b+G+) = et

YV a, beC—K°3c,deGKo: (a-G+)n(b-G+) Cde (8.31)
Nor eover,
Theorem GKo is a vector lattice if and only if (8.32)
VaeG ! a' = sup{as4) ("positive part") exists.
Proof :

Involution and translation-covariance can be expressed in lattice

notation by
| NVOLUTI ON: (-a) |1 (-b) = -(a] _Jv) (8.33)
(-2) | (-0) = -(a[T]p)
TRANSLATI ON- COVARI ANCE: (at+c) |_| (b+c) = (a|_Jb)+e
(at+c) |7] (b+c) = (a] Jp)+c
(8.34)
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Therefore,
a\_‘b = a+[(al_Jb) + (-a)l

at[¢ | _](b-a)]
a + supt$, b-a)

1

al b =,a + (b-a)+ = v+(a-d)"

Simlarly,

al o = at[(a| |b) -]
a-[(-a)[ | (-b) +a]
a-[¢ |_|(a-b)]

a| |b = a-(a-b)+ = b-(b-a)+

(8.35)

(8.26)

.. The supremum and infimum of two el enents can be expressed in terns

of the positive part of their difference and conversely.
QED

As a consequence,

DEDEKI ND' S PROPERTY: al_Jo+a|T|b = a+b .

The following result characterizes the vector lattice GKD
its positivity cone:

Theorem In a vectorl attice GKO’ every elenment is a
. . +
difference of two non-negative elements: a = a - a-

+ . + +
where a- ‘= (-a) . That is, GKo =G -G -

Proof :

Taking b to be 4 in Dedekind s property,

(8.37)

in terns of

(8.38)

a= ard=a| Mo =2l 4-(-a) _H=a"-a-

QED.
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Mor eover, a+ and a- are DI SJIONT:

a7l = (al_l4) 71 (-al_|4)
= la+(-al_[)] [T (-al_I4)
= al |4 + (-al_I4)
=a[ 14 - a[ |4

2T =4

G her properties of vector lattice operations are

IDEMPOTENCE : a |a=a a~| a=a (8.39)
COMMUTATIVITY: al_|b = bl Ja al |b =01l |a (8.40)
ABSCRPTI VI TY: al | (a]_[b)=a al [ (al]p) == (8.41)

ASSOCI ATI VI TY: al_| (o _le) = (al_Ip)_lec al | (o[ 7le) = & 16y Te .
(8.42)

Moreover, a vector lattice is

(al_|o) 7] (al_le) (8.43)
(a|—|b) !__’ (a|—|c) .

DI STRI BUTI VE: ~— (®["1¢)
al”| (b!_lc)

Proof :
The proofs of idenpotence, comutativity, absorptivity, and associa-
tivity are straight-forward applications of the definitions of
~suprenum and infinum  The proof of distributivity is nore difficult:

ap (al_|p) Aap (allc) >a p (al_|v) [T] (al_le)
(o[ ) p o A(d[le)p e > (b le)p (al I A (b le) p (a |e)
> (o[ le) o (al_lv) 7] (al_le)

“al | (o[ le) olal_lv) 171 (al_le)
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[at(b-2)" 1 |7] [a+(c-a)"]
a+kb-a)+ 7] (c-a)+]
at+[(v| ]e) -a]+

a+[(b-a) [T (c-a)]"

(a] _Jo) [T (a]_le)

n

al_J®[e)

Hence to prove that (a| |b) | 7] (a]_Jc) pa|l _J(b| |c), it sufficies
to prove that f+|"|g+ P (f|_]g)+ .

e = ) T el + T T 6T - a4
=le | )+ T IE LI+ &T9)]
Tl (el_) + T T Hel_J$) + (& )]
= (e 4)
p £ e - (£]]e) |14
|7 le) |14
(r[7le)”

cal 1o e)=@_e) 1=l ]_Je).

fl

The proof of the second distributive |aw is anal ogous.
Q.E.D.

Related to this is the cancellation |aw

x|_lyy = x_lypnxl Ty, =% Tvp > v, = v,

which follows imediately from Dedekind's property (indeed, the assump-

tions give xty, = x+y2) . Another useful result is
al_Je o v e
apb>(al|cp bl e (8.4k4)
+o 4
a. pb
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Pr oof :

a | Jeef(al_Je)| Jo = (al_Jp)|_le = b|_|c since al_|b =1 .

The remainder of the proof is anal ogous.

Exanpl es:
(i) The real field is a well-known though trivial exanple of a
vector lattice.

(ii) R* is a vector lattice under the conponentwise ordering < of
(2.11). The positivity cone is the set of all vectors with non-
negative conponents, the "full first orthant." It is intuitively
clear that the intersection of two translated orthants is again a

transl ated orthant. | ndeed,

and every finite or infinite set of elenments has a suprenum

(iii) B* is not a vector lattice under the ordering p defined by

xpy:§(Vi:xi<yi)V(V I S yi)

The positivity cone is the set of all vectors with positive
conponents together with the origin 4, the 'strict first orthant.'
However, the intersection of two translated cones is in general a
translated cone mnus the point of that cone.

© (iv) R* is a vector lattice under the ordering p defined by

Xp Yy :§(xl<yl)v(xl = yl/\x2<y2)
% (xl: vy A%, = y.zAx5<y5)¢.

V(xl.yl/\x2.,y2'. ,xn.,yn)

("l exicographic" or "tel ephone book" ordering).
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However, it has the property that there exist elements a and
b such that a is "inconparably smaller" than b (a < b):

napeb, vn>1.

For exanpl e, (S) << (é) in (8%, p)

(v) c[o0,1] is a vector lattice with the ordering defined by
f p g :3€Vxe[0,1]: f(x) < g(x) .

The positivity cone is the set of all non-negative continuous
functions on [0,1] .

Exanpl es (ii) and (iv) are prototypes for all finite dinensional vector
lattices over the real field. Mannos (1942) has shown that any n-dinen-
n

sional vector lattice G is isomorphic to R with an ordering built

up by direct union
(g, b) o (g’ b') 3 (g o, &') A (b o b')
and | exi cographic union
(g, b) o (g" b') H (g o, 8" ANg#eg)Vig=g Anp n)

of the orderings of subspaces. If we require our ordered vector space
to satisfy

(VoeK :aaphb)»>a=+%

t hen | exi cographic union is excluded in the construction of p and Gp
is isomorphic to (R, <) of Exanple (ii), with sone one-to-one affine
mapping of the full first orthant as its positivity cone.

More generally, we shall call any ordered vector space GKO whi ch has

no inconparably snall elenments
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ARCH MEDEAN: (Voek :aapb)>a=4. (8.45)
An even stronger property is

STRONGLY ARCHI MEDEAN (“integrally closed"): (8.46)

(VaeK :Op a>aapb)>apd.

I ndeed, every strongly Archinedean ordered vector space is Archimedean.

Proof :
Assune that VYV as K : dxapb . If O a thenaaph.
If 0po(-a), then a(-a) = (-a)a p b . Fromthe strong Archinedean
property, a p4 and -a p4 whence a = 4 .
QED
The converse is not true in general. However,

Theorem If G 1S a vector lattice, then GKo is strongly  (8.47)

Archinedean if and only if G,Ko i s Archi nedean.

Proof :
Assune that GKD is Archimedean. |If 0 ppo @ and a a p b,
thenaa+:(aa)+pb+. If ap O and a a p b, then

aa o4 o b . Thus Vo eK: o a pb . Fromthe Archimedean
property, a+ = 4 whence a p4 .

QED.

To continue the discussion for the finite dimensional case, every finite

di mensi onal Archinedean vector lattice over the real field is isonorphic
to R, <), the ordering being generated by the full first orthant. The
only cones which make R® an Archinedean vector lattice are deformed

full orthants or SIMPLICIAL CONES. Such a cone is the set of all convex
conmbi nations of n linearly independent vectors and non-negative nultiples
t her eof .
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Another difficulty with vector lattices is that there are always sets
of elements for which no supremum exists:

Theorem  The set of all nultiples of a nonzero el enent X (8.48)
F = (ax: e Ko)
has no suprenum

Pr oof :

If the vector lattice is Archimedean, then not even upper bounds

exist. In general, however, if s = sup(%) exists, then ¥ = x+%
and

s = sup(¥) = sup(x + %) = x + sup(d) =x + s

whence x = 4, a contradiction.
Q-E.D.

Thus we can only ask for the existence of the suprenumand infimmof a
set of elements if that set is BOUNDED, that is, has a |ower bound and
an upper bound. Therefore we define a vector lattice to be

COVPLETE (8.49)

i f every non-enpty bounded set has a suprenum (and by involution, an
infimun). As in the case of the real numbers, we can renove this restric-
tion by enlarging the vector lattice Gko to the EXTENDED VECTOR LATTICE

G*Ko with two additional elenments, -« and + o :

VxeGKO: -®pxp+t® (8.50)

inf §:=+e; supg:=-o, (8.51)

Then every set h c G*ﬁo has a supremum and i nfinmum
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[f h not bounded frombelow inf(h) = - =
If h not bounded from above: sup(h) =+ co .

O course GEQ, is not a vector space sincei+® + (- ®) is not defined.

Conpl eteness will only be needed to assure the existence of suprema and
infima of infinite sets. As a consequence of conpleteness,

Theorem A conplete vector lattice is strongly Archimedean. (8.52)

Pr oof :

Assunme-that VaeK: Opa>»aapb. Then h={aa: 0 p a}
I's bounded above whence ¢ = sup(h) exists. But

c+a=supf{(a + 1)a: 0 po @ }
= sup{p a: 1 po B}
p sup{p a: 0 po B}

c

whence a. o4 .
Q-E.D.

The vector | attice (&%, <) of Exanple (ii) is conplete. Therefore it
is the only n-dinensional conplete vector lattice over the real field up
to isonorphism

. +
Exercise: Prove that (a+b)+ 0 a + b .
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§9. Subaddi ti ve Mappings CGenerated by a Set of Linear Mppings.

As was the case with scalar norms ($5), We can now generate norns in

L% with values in a conplete vector lattice G by suprenum construc-

tions over sets of |inear mappings:-

Ko

Theorem Let S c Hom(VK, GK) be a set of linear nappings (9.1)

of a vector space V. into the vector space Gy and | et

Re: Gy - GKO be an additive, & homogeneous mappi ng of

Gy into the conplete vector lattice GKo where Ko is

a subfield of K. Then

7S,p(x) . = supp{Re ?(x) . ¢ e 8}

is a subadditive, honpgeneous mapping of V. into Gf , the
extended vector lattice.

Remark: If S is finite, then conpleteness is not necessary since
Is a vector lattice.
GrKo
Lenma:  Provided that the suprema exist, (9-2)

n,cn, > supp(hl) 0 supp(ng) _

Proof :
Since supp(he) is an upper bound for all elenents of Ny it is
an upper bound for all elenents of the subset n and therefore is
an upper bound of n, . But Sup (nl) is the |east upper bound of

n

Q-E.D.

Lemme: Let n, +m, := (atb @ aen;, ben}. Then (9.3)
provided that the suprema exist,

supp(nl. + ne) = supp(hl) + supp(ne) _
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Pr oof :

1}

supp(hl + n2)

+ .
supp{supp(a n,) o oae n, 3

supp{a + supp(hg) ae hl}

sup (ny) .+ sup (ny) .
QED

Proof of Theorem
Re ®(x) 1is an additive, & honpgeneous nmappi ng of Ve into GKO .

7S,p(X+y) supp{Re P(x) + Re @(y) : 9 ¢ 8}

p sup {Re @) (x) + Re Pp(¥) : @15 9, ¢ S}

I3

~supp{Re Cpl(x) D9y e s} + supp{Re P (x);cpgeS}
= 7S,p(x) + 7S,D(y)

7S’p(oz x) = supp{Re oo X) : ¢ ¢ 8}

= supp{d Re ¢(x) : ¢ ¢S} VoekK

oz-supp{Recp(x):cpeS} VaoaekK : 0p o

o 7S,D(X)

g o is a subadditive, & honmpbgeneous mapping of Vg into
.o )

% .

QED
Exanpl es:
(i) Let Vg = GKo . Then Re: Ge = GK0 is the identity mapping.
For S = {I,0} where | is the identity and O the zero mapping
of Vi into itself,

7s, (%) = sup x4} = %'

is subadditive and & honobgeneous:
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(a+b)+ 0 a + b (9. k)

Opoa>(01a)+=oza+. (9. 5)

(ii) Let 1/K=GKo and let S = (I, -1) . Then

g, 00 = x || (=)
x| #) -

2+ = (X+ - X—)

+ -

=x +x
7S,p(x) = x| = o o+ % (9. 6)
Si nce 73, o is subadditive and & honmobgeneous,
latb| o |a| + |v] (9. 7)
e a]l =ala] Vaoek: O0pa. (9. 8)
Mor eover,

la-b| = (a-b)+ + (a-b)-
= [(a-b)+ + b] + [(b-a)+ - b]
la-b| = a|_Jo - a7 b (9- 9)

From Dedeki nd' s property ((8.36))
ath = a|_Jb +a| 7|,
we now obtain

a|l_|b = #latb + |a-b]|] (9.10)
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al b = #latb - |a-b|] . (9.11)

In addition to being subadditive and honpgeneous, |x| is non-
negative as a consequence of (9.6). Indeed, it is even positive
definite: ‘

la-b] = 0 » (a]_|b) - (a|7Jp) = 0O
> al_lb = a|_|b

>a=>

Thus,
x| s a norm (9. 12)

(iii) Let Ve = R* and GKo = &Y, <), the vector lattice generated
by the full first orthant. Then the norm|x| of Exanple (ii)

s just the nodulus norm (Betragsnorm in R ((2.23)).

Most of the results of §5 carry over to the case of vectorial norns
generated by sets of l|inear mappings. In particular, Theorenms (5.8)
and (5.10) now read:

Theor em If Ais a convex conbination of elenments of S (9.13)
t hen
Re A(x) p 7S,p(x>’ V.ce Vg - (9.14)
Proof :
Let A = 0P, o, ... @ Wwhere @;¢ Ko, 9. 5, 0 0 2,

and zai =1. Then
i

Re A(X) = oy Re 9, (x) + o, Re@,(x) .+ a Re o(x)

n
plo top ..+ o) sup (Re 9(x): 9 ¢ )

= 7o (x) .
S;p Q-E.D.
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Theorem If the zero mapping O can be represented as a (9.15)
convex combination of elenents of S, then 7g p( ) is
)
non-negative and therefore a semnorm

Exanpl e:
(iv) Let Ve = ¢” and GKo = (8%, <) as in Exanple (iii) and |et
S=fal: || =1) . Then

|x| = 7S(x) = sup{Re (o x) : |a] = 1)
is subadditive and strictly honogeneous. By the preceding
theorem it is non-negative [0 = &(1) + %(-I)]; positive
definiteness follows fromits explicit representation. Thus

[x| is--a norm the nodulus normin ¢" .

As in §5, we may introduce the sets

KP = (X ¢ Vy 7S,p(x) p D)) D e GKQ . (9.16)
K¢ = (x: 7S,p(x) p 4} is again a cone and
Theorem A seminorm 7g p(x) is definite l%_: 4 (9.17)
2
We can still represent Iﬁo as an intersection of domains
J:CP:p = (X ¢ VK : Re ¢(x) p p}: (9.18)
: : K. = .
Theorem P cpe(; £q),p . (9.19)
However, £ is no longer a half-plane:
®,p
For ¢ = I, £<P;p: {x: xpop =pG.
_ +
For ¢ = -1, 'ccp,p _ {x: -x p p) = ptd
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A set Gis

CONVEX (9.20)

if
Va, beG pa + (1-p)b e G, O pop ool . (9-21)
Theorem £ IS convex. (9. 22)

®,p

Proof :
Let a,be.i:cpp and O po p e 1. Then Re @(a) pp A Re ¢(b) pp

)

b Re ¢(a) + (1-p)Re @(b)
b P+ (1-p) P
=p

and Re o(p a + (1-u)b)

©

since 0 pp and O p 1-p . Therefore p a + (1-u)b e
Q.E.D.

L
®,p .

In general,

+ -
Spp = X 1 Re0() e p-G') = (Re 0)7 (p-c"),
the preimge of the translated cone p-G+ . Letting § denote the
one-to-one mapping of VK/Ker(Re p) into Re cp(VK) i nduced by Re o,
_a-1
£(p’p/Ker(Re ?) = § (Re CP(VK) N (p-G+))
| f GKo is a finite-dinensional, Archinedean vector lattice, we mght
expect the domains &£ D to be intersections of half-spaces rather than
J
hal f - spaces thenselves. Indeed, if v, is a vector space over the real

K
or conplex field and G = (R, <), then
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and therefore

9,0 = .
= {x e, Re ¢(x) < egp, =1, 2, ,» M
. 7 T
= n {x: Ree; o) <e;p)
. i - i
i=1 ‘
m
= T T .2
£<P,p in Hpe e; @5 e bp (9.23)
m
=N £ =N N T T
IﬁD veS P veS Hpe e;P, e - (9.24)

This result is obviously a consequence of the fact that (&%, <)is a
direct union o-f the linearly ordered real field, and we shall now Iike-
wise investigate this effect on the mapping 7S(x) :

Let L% be a vector space over the real or conplex field and |et
(®", <) . Then it is easily seen that each conponent of a subadditi ve,
honmobgeneous mappi ng of Ve into GKo is itself subadditive and hono-
geneous. If the mapping is a norm generated by a set S, then each
conmponent is a bounded seminorm Or even a norm noreover
Theor em Yo (%) (9.25)
7al(x) = s?
S -
7g (x)
m
wher e
T
S, . {e®:pe . © vg . (9.26)
Proof :
7g(x) = supfRe 0(x) : @ ¢S)

ez sup Re @(x)

\\eg‘1 sup Re ¢ (x)
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sup Re ei o (x) . T
1 since e sup (h) =

o
Sup Re e o(x) sup(ezn) in (Rm:f)

Ysl(X)

75&5X)

Q.E.D.

In the literature, only a special case of this result has been studied:
the case where

The i-th conponent of the normwv(x) is a normon the (9.27)
subspace VIEL‘) = PiVK.
Exanpl es:
(i) Let Ve = & and GKb = (Rg, <). Then the sets
10 1 0 .10, ,-1 0 /10 -1 0
{(0 l)) (O ﬁl)’ ( 0 l)) ( 0 _1)} and {(O l)’ ( 0 —l)}

give rise to the same sets 8 = {+(1,0)} and S, = {+(0,1)} am
therefore generate the same norm Note, however, that the second
set does not generate the first set by convex conbination.

(ii) Let v =R or ¢ and Gy = (R*, <) with v(x) the nodul us
normin Vg Then each conmponent of wv(x) is a normon the sub-
space formed by all scalar multiples of a coordinate axis.

(iii) Let v, = B and 6, = (8% <) vith the norm

y ((x )) ) max (|xll, x2)
X ma-X(-Xg: |X5‘)
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vl S generated by

100, 0 1 0
) (

5=1{t(G o1 (o1 o)

which gives rise to the sets

{(100), (-100 ), (010)}

5

S

, = {(0-10), (001, (00-1))

In this exanple, neither Vg (x) nor Vg (x) is a norm though

1 2
both are bounded semni norns.
Theorem  Let y be a symmtric seminorm on Vg - Then there (9.28)
exi sts a subspace U © Vg such that y restricted to %
is definite.
Proof :

Since y is non-negative, the cone K, = (x: Y(x) p4}is the domain
where 7(x) vanishes. By symetry (y(-x) = y(x)), K¢ contains with
every element x its negative -x . Therefore K, is a subspace of
Ve o Let u = VK/K4+ and let P be the projection of Vg onto u. .
If xeu and y(x) =4 then x ¢ K, whence Px = 0 and x = 0

since Px = X ¥ X ¢ U Thus y is definite on K
I'n conclusion, we note that the concept of linearly transformed norns
carries over unchanged fromg7 to vectorial norns, and that relation

(7.3) is valid for the transformed generating set.

Exercise: Prove that al b e x p al_|b > |x| e la| |_] |b] .
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§10. Additional Remarks.

W have seen how norns can be generated from sets of |inear mappings.
The question may arise whether all norms are so generated. The following
theorem is suggestive: '

Theorem Let y be a subadditive mapping of Ve into GKo
Define
S={p : 9 is additive;, V x ¢ Vg p(x)p 7(x)} . (10.2)

(10. 1)

Then ',Vs(x) p 7(x)

Pr oof :

75(x) = suwpfo(x) : 9 € s)
suplop(x) 1 ¢ is additive; VeeV :o(e)py(£)]

p 7(x) .

Whet her such a set S generates y(x), that is, whether the supremum
is indeed y(x) for all x, depends on the topological properties of
t he space Ve o In finite dinensional spaces over R and C,  the
support theorem guarantees that 7S(x) = y(x) .
A further remark concerns the basic triangular inequality (2.16):

vix . y)pv(x)  Vv(y) .
Replacing x by x + y and y by -y, we obtain

v(x) - v(-y)p v(x + ¥), (10.3)
or, conbining the two inequalities,

4 -y ypvix + y)-v(x)pv(y) . (10.4)

If vis symmetric (v(x) = v(-x)), then
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vz + ¥)-vE&x) o wy) .

Replacing y by -y in (10.3), we obtain
v(x) -v(y) p vix - y)

Again, if wvis symmetric, then

() -v(y) | o vix . ¥y) .
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§11. Mappings of Normed Vector Spaces

Let v, and V. be normed vector spaces with norns v : VK - (GKo,p)

K K
and v : VI’(~(G120,p’) . Let Abe a linear mapping of v, into
/ H . . "_. / .
Vg - Then a linear mapping B: GKo (}K0 s an
UPPER BOUND EOR A or LI PSCH TZ BOUND (11.1)
i f
v/(Ax) p’ BV(x), ¥ x ¢ Ve - (11.2)

The situation is illustrated by the follow ng diagram

v
Al | B (11.3)
7
Vg ¥ (G sp”)
A mappi ng l—lvl’V : Hom(Vy,Vy) = Hom(Gy ,Gy ) is an

UPPER BOUND MAPPI NG (11.4%)

if B= |K||V,,V is an upper bound for A for all A e Hom(Vy,Vy) .

Exanpl es:
(i) Let v, = v, =R and G = Gy = ®<) with v =vi=|x|,
the nodulus norm  Then A e Hom(R%,R") isan n xn matrix (a..)

iJ
and an upper bound mapping is given by

7] = 14l = (lag, 1)

(i) Let v, = v = R® and ¢, = = (R,<) With ve=v'(x)=

I
o % K _ Ko GKo
(Z:xi) , the Euclidean norm  Then
i
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i f

- 2
&) :: m?xla.li\ + (i4k afk)%

is an upper bound mapping.  Another upper bound mapping is the
Frobeni us norm ((16.17))

— o 1
7] = lally = (23 5%
ik
im ' i ; ~g! isa
Simlarly, a linear mapping C : Gy, CTKo
LONMER BOUND_FCR A (11.5)
cv(x) p'v/(Ax), ¥ x e ¥y - (11.6)

A mappi ng .\_\v,,;‘ . Hom(V,,Vy) — Hom(Gy G ) is a

Ko Ko

LONER BOUND MAPPI NG (11.7)

if C= |al,., isalower bound for A for all Ae Hom (Vs V)

Exanpl e:

—_ r 2 = = 2 i — )
et v, =vy =& and G = @ (R5,<) with v = v +4,

the nodulus norm  Then

-1 ,
A= (? ]5“| has the lower bound C = (_2 5) since

cv(x) { _i ']5') (

C=20is also a lower bound for A and |_|, ,=0is alover
J
bound mappi ng.

% | [xy + 3% |

x’llJ < (\5:{1 +xg|) :\Ax| = V() .
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§12. Least Upper and Geater Lower Bounds I.

W shall first investigate the case of scalar norns; that is, ;
(R, <) . For a given mapping A e Hom(VK,VI%), the set of all upper

bounds for A has a least element, the LEAST UPPER BOUND:

lubV/)V(A) c= inf{p V’(Ax)<Bv(x),VxevK}.
Since v'(a$) <p v(i4) for all g,

Iubvl,v( A) = inf{p : v'(ax) < BV(x)Ax%Q'}

A

inf{s : via 7’(‘;5) < BAV(X)# 0}

inf{p : v/(Ax)<pAv(x)=1)

i

lubv,,V(A) = sup{v’'(Ax): v(x) =1}
lub,, (4) ~sup{—-(—5— px # 4]
lubv’,v is, of course, an upper bound mapping and
lubv,’v(A) < mv,,v, V A e Hom(Vy,Vy)
for all upper bound mappings |—|v’,v . Moreover,

Theorem  The mappi ng Luby/ oy Hom(VK,VI;) - R is subaddi-

tive, honogeneous, and positive definite.

Pr oof :

lub,,, (A 4 Ay)

= sup{v'((A] + A,)x) 1 v(x) = 1)

< sup{v’(a.x) + V'(A x) : v(x) = 1)

1

< sup{v’( l)

Ayx)
Lub, / _(A ) + lub, . v(AQ) .

f

sup{ v’ (

I
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(12.2)

(12.3)

(12.4)

(12.5)

v (ax,) 1 V()= vixy) = 1)

: V(x ) = 1) + sup{v/(A2x2) :V(x2)= 1




L lub . is subadditive; honpbgeneity and nonnegativity are like-
)

wi se inherited from ..

IubV,’V(A) = 0> v'(Ax) <0,V x € Vg

>V/(AX)N=O,VXGVK since vis
nonnegati ve
> Ax = O, VerK since vis
a norm
»A =0.
. 1lub. / is definite.
v',v Q.E.D.

Not e t hat lub,, My not be bounded and therefore may not be a norm
J

Exanpl e:
Let Vi = Cl[O,l], the space of once continuously differentiable

functions on [0,1], and let V'I/{ = ¢[0,1], the space of continuous
functions on [0,1] . Take

V(f) = v(f) = max{|f(x)]: 0 < x <1}.

_ 4 ,
Let A = ==. Then Ap:

max|f'(x)| = v(ax) < B v(x) = B . max|f(x)|

for all f ec'[0,1]. Therefore, Lub . (A =+=.
J
Any mapping A e Hom(VK,V}'{) for which 1w, , v(A) <+ ojs said to be
)
bounded. ~ That the set of all such mmppings is a subspace of Hom(V,Vy)

follows trivially from the subadditivity and honogeneity of lub,
Thus:

H

Theor em lubvl N is a normon the subspace of all bounded (12. 6)
2
nmappi ngs.
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In this case, lubv; V is called the
J

LEAST UPPER BQUND NORM (12. 7)
subordinate to the norms V and V .

In finite dinensional spaces, every mapping is bounded, independent of
the norns V' and v used. This can be shown by a conpactness argu-
ment or by Ostrowski's theoremthat all norns over a finite dinensional
space are topologically equivalent; that is, given norns v and Vo
over VK, there exists a constant t such that

Vo.oev, . vi(x) <7 vy (x) .
Thus, the proof is reduced to the case where v and v’ are the naxi-
mum nor m over ¥y and VI:: and follows by using the product topol ogy.
For a given mapping V e Hom(VK,V]'{), the set of all |ower bounds for
A has a greatest elenent, the GREATEST LONER BOUND:

glbv’,v(A) = sup{y: yv(x) < v'(Ax), ¥ X e Vil (12. 8)
= inf{v'(Ax): Vv(x) =1) (12. 9)
= inf{%%%xyz: x # 4} . (12.10)

glb ./ i's, of course, a |ower bound mapping and
J

&lv,)v Selb,s (&), VAe Hom (V,r Vi) (12.11)

for all lower bound mappings |_|, y + Thus, for all x e v, with
) 4 L
x #4, we may bound the MAPPING DI STORTION -A%),

vix) °

v’ (Ax) —
A ey S elbyr (8) S =yt S 1wb. (8) < |A|v',v .
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The mappi ng gl I s homogeneous and nonnegative but neither subaddi-

tive nor definite." Indeed, it is not even superadditive

(glb, 4 (A)+g1b,(A)<g1b

vt olBy viy(Ba ,’V(A1+A2)) as one mght expect.

Theorem If Ais not injective (Ker A # {4}), then (12.12)
glb,/ ,(8) =

Pr oof :

KerA={erK:AX=¢}7‘¢>HX7é‘¢"AX=¢
> x # 4 : V(AX) =0

> glb, ,V(A) =

If Ais injective (but not necessarily surjective), then a left inverse

-1 . . /
A exi sts on Al/K c VK and

glbvl’v(A) 1nf{——(&)§l Doxelp A X # 4
= 1nf{4—)- : x-eVK A X # $3
v(a™tax)

. (IY')
= inf
{v( ) yeAVK AY # -¢}

= l/sup{ 5 yy) L yeAV, Ay # 4

> l/sup{—ﬁ—(—j YGV # 4

where ale Hom(V;,VK) I S any mappi ng which coincides with A'1 on AVK,

an extended LEFT INVERSE of A:

L
A = .
Ax = X, Vxel(K

Theorem If Ais injective and AL is any left inverse (12.13)

L
of A then glbv/,v(A) > l/lubv ,V/(A ) .
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Moreover, if AY is a bounded mappi ng, then lub,, V;(AL) < + «» and
£

L
glbvz’ \(}A) > l/lubV’V,(A y>0.
In finite dimensional spaces, all linear mappings are bounded and any
injective mapping has at least one left inverse. Therefore A isS injec-
tive if and only if glb ., (A) > 0 .
v,V

Theorem If Ais regular (injective and surjective), then (12.1k)
_ -1
glbv/’v(A) = l/lubv,v,(A )
Proof :
If Ais regular, then av, = VI; and A
Thus, we may sharpen the proof of Theorem (12.12)

1 i's uniquely detern ned.

. "y) . /
glb,/ ,(a) = 1nf{ﬁ Pyevy A Y # 4
vaTty)

1/sup{~> .

yelg Ay # 4]

i

-1
l/lubv,V/(A ) .

QED
It v = Vf(’ then the mapping A : v, - V}% i's an endonor phi smand may
be injective yet not surjective. In finite dinensional spaces, a dinen-

sion argunent shows that this situation cannot occur and we obtain a
nonsingularity criterion:

~Theorem If Ais an endonorphismof a finite dimensional (12.15)
vector space, then

-1 . .
) 1/1w,, (A7) if A nonsingular
glbv’,v(A) = {o VoV ot her wi se.

It v = vé and v=v’, then the greatest |ower bound and the |east

upper bound of the identity endonorphism are given by:

gl (1) = lub, (I)=1.

v/, »V
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Al t hough glb,/ I's not subadditive,

Theor em glbv/,v(/_xl_ + A,) < glbv,,V(Al) + lubv/,v(AQ) (12.16)

Pr oof :

For any ¢ > 0, there exists ke¥ with v(¢) = 1 such that
glbv,’v(Al) = v'(Alg) - e . Therefore,

glb,, (A +Ay) < V(A + Ay)E)

< vi(agg) + v (As8)

gl bv',v(Al) +e+ vi(AgE)

N

glbv’,v<Al) + lubv’,v(Aa) + €

Q-E.D.

From (12.5) and (1216) we obtain a result anal agous to that derived for
vector norms (see (10.4)):

1ubv; v(A) - lubv,,v(—B) < lubv,,v(A+B) < lubv/,v(A) + lub, v(B)

2

i12.17)

glb, . ,(A) -lubv,,v(—B) < glbv/,v(A+B) < glbv/,v(A) + lub . (B) .

(12.18)
If v and/or v’ is symetric, then these relations sinplify to

Ilubv,,v(A+B) - lubv/,v(A)l < lubv/,v(B) (12.19)

Iglbvz,v(A+B) - glbv,,v(A)l < lubv,,v(B) (12.20)

as a consequence of the follow ng

Theorem if v and/or v’ is symwetric, then Iubv,V 1s (12.21)
J
symetric.
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Pr oof :

(-A) = sup{v'(-Ax) : v(x) = 1)
sup{v’ (A(-x)) : v(-x) = 1)
sup(v' (Ay) +v(y) =1)

lubv/,v\(A\) g

v(x) = v(-x) > lubvl)v

v/i(-x) = V' (x) » lubv’,v('A> = sup{v'(-Ax) : v(x) = 1)
= sup(v’(Ax) : v(x) = 1)
= lubv/’v(A)

Q-E.D.
Rel ations (12.19) and (12.20) may also be expressed as

IlubV,,V(A) - lubv,,V(B)I < lubv,,V(A—B)

- < -
lew,. ,(a) - gb . ((B)] < lub,, (A-B)

fromwhich it is easily seen that lub,, and glb , . are continuous
v ,V
mappi ngs wWith respect to the topology generated by lub, /

,V |
The effect of norm transfornmations on luby, , and glb_, y i's given by:
. )
Theorem Let v’ and v_ be the transformed norns corre- (12.22)

' R
sponding to t%e nonsi ngul ar linear transformations Q and R

Vé(x)= v/ (qx) and vR(x)=v(Rx).

Then
-1
b, , (A) = 1ubV,,V(Q,AR ) (12.23)
Q' R
-1
glb,, , (A) = glbv,,v(.Q,AR ) (12.24)
Q R
Proof : '
v (A
lub,, ., (A) = sup{ Q( ) x # 4)
viv v_(x
Q' R 'R -1
v'( QAR "Rx)
= Sup{—v(ﬁ)'— © Rx 7‘ '@



A simlar argument shows gib.,. (A) = glb,, f(QARv'l),
&Y SR :

Q R.
QED.

Thus, if v’ is invariant under the group of norm transfornations @'
and v is invariant under the group &, then Lub, / y are i nvari ant

under the product group Q@x R : A - §aR .

Let A be an endonorphi sm of a normed vector space Vo over the conpl ex
field Cand let _v' =v be strictly honogeneous.  Then:

Theorem If A is an eigenvalue of A then (12.25)

glo,  (f) < |l < lubV/,V(A) ,

Proof :
Let A be an eigenvalue of A and x the corresponding eigenvector.

Then Ax = xx and

gloy,y (&) < V\(ﬁg ) V\S)Ei)) = I

%_(;5[)\[ <__lubv,V(A)

Q-E.D.

The domain defined in (12.25) is an annulus in the conplex plane.  For
real, nonnegative eigenvalues, the assunption of strict honogeneity nay
be dropped. In this case, if A = eiew, t> 0, is an eigenvalue of A
then v is a real, nonnegative eigenval ue of e'ieA and

(e_ieA) <1< lub (e .

glbv/ v,V

,v

The domain is still an annulus but the bounding curves no |onger need be
concentric circles.
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If the normv’ is generated by the set s'cr’?

" (v =vS,), t hen

V'(AX) = sup{Re @(Ax) : ¢ ¢ S')

and
Lub,, v(A) = sup{v’(ax) : v(x) = 1)
2
= sup{sup{Re ®(Ax) : @ €8’} : v(x) = 1)
= sup{Re @(Ax) : @ €S, v(x)= 1)
= sup Re {e(Ax) : 9 ¢ S, v(x)=1),
t he Bl LI NEAR CHARACTERI ZATI ON OF THE LEAST UPPER BOUND. (12.26)

This leads us to introduce the

Bl LI NEAR FIELD OF VALUES_COF A (12.27)
subordinate to VS’ and v :
Pgr y[A) = (o(Ax) : 9 ea, v(x) =1). (12.28)
Since
1ubv,,v(A) = sup Re PS,’V[A], (12.29)

lub, V(A) characterizes the position of a parallel to the imaginary
2

axi s supporting Pg v[A} fromthe right. In the special case of

vi= v = Vo conparing (12.28) with the nore restrictive (6.8) gi ves:
Gglal = (@(ax) e Pg [A) : o(x) = v(x)) c P, VS[A] . (12.30)

Thus by Theorem (6.10),

Exclusion Theorem No eigenvalue of A lies outside (12.31)

PSV[A]; that is, if A ¢ Cis an eigenvalue of A
J
S

(Al .
S

then )\ ¢ PS,V
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Pg o [A] is not only larger than GS[A] in general but is also not
2
S

covariant under translation. Like GS[A], however, it is |NVARI ANT
UNDER SCALAR MULTI PLI CATI ON:

¥1eK: PS’VS[”.‘A]= T PS’VS[A], (12.32)
and, for nonsingular B,

Pen ., [A) = P, _ [BAB™Y]

SB,VSB S Vg '

Mre generally, if B and B are nonsingular, then

(4] = B, , [B/4371). (12.33)

p
S'B’ ,vep Vs

If either v’s or v is strictly honogeneous, Ps’,v[A] will have
rotational symretry about the origin: If q € Pgy gA] for sone
choice of ¢ and x, then wgq ¢ PS/,V[A] for all w with lo] =1
(consider the elenent of Ps’,v[A] generated by either o ¢ and Xx
or ® and ax). Thus, (12.31) is a generalization of (12.25) without
the restriction of strictly honbgeneous norns.
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§13. Dual Norns

The order in which the suprema are taken in (12.26) may be reversed:

b, (A) = sup%up {Re 9(ax)} : v(x) = @

’ X eS!

= sup sup{Re QA(x) : v(x) = 1}
peS' X

If we define the mapping WP orVPK = Hom(VK,K) by

v (§) = sup(Re ¥(x) 1 v(x) = 1) 130 |
L= (B 44 (13.2)
= inf{p : Re ¥(x) < B-v(x),¥xeVl, (13.3)
t hen
|Ubv‘,v(A) = suplv" (08) : pes'], (13.4)

the DUAL CHARACTER ZATION OF THE LEAST UPPER BOUND.

The suprenum of (13.1) nuch resenbles the supremumthat led to the |east
upper bound. In fact, since Re is additive and honmbgeneous, a proof
anal ogous to that of Theorem (12.5) shows that vD i's subadditive and
honbgeneous. However, since Re is neither non-negative nor definite,
anot her argument is needed to show that vD s positive definite:

Proof :
Assune t hat vD(qr)go. Then VXeV with x;é-q;. R_?R%Yl
But for such x, v(x) > 0, vvnencereV : Rexl;x)<0. In

particular, V6 e[0,21), X ¢ Vg : Re e \ll(x) = Re (e x) < 0.
Therefore ¥(x) = 0 and ¥ =4P; that is, ¥ #4° > v'(¥) >0 .

QED.
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If vD(q;) i s bounded, then vD is a norm therefore,

Theor em vD(w) is a normon the subspace of bounded |inear (13.5)
functionals of VK’ t he

DUAL _NORM TO THE NORM y. (13.6)

In the finite dinmensional case, every linear mapping is bounded and v
is a normon V1[<) for every normv .

Exanpl es:
(i) Let Ve = R® (or ol ) with v the Tschebyscheff norm Then
D
Ty = (b« V)€ Vs

P = % lv, |, (15.7)
i=1

the Manhattan norm on the dual space.

(ii) Let VK = R" (or Cn) with v the Manhattan norm Then
D
vy = (Wl’ sy "l’n)e VK’

V) = omx [y (13.8)
1<i<n

the Tschebyscheff normin the dual space.

(iii) Let VK be a H%lbert space with the scalar product norm
v () . (e(x,x))% . Then by the Riesz Representation Theorem
Tye VIE dye VK: ¥ (x) = o(x,y) and

D
v (1) . ov(y) . (13.9)
(iv) Let Vg = R" and let A be Hermitian and positive definite so
that v(x) = (xTAx)§ is anorm Then VyTe VE = R]er’
_ e
R NLI (15.10)
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In particular, if A=1, then v is the Euclidean norm and
n 1
D, T 2
v (Y) = (Z |yi| )E)
ot
the Euclidean normin the dual space.

If the set SCVE generates the norm vgs then the unit ball of the

dual norm
D D
K = f¥e Y V3 < 1)
is closely related to S. |n fact, since from (13.3)

vg(‘lf) < 1 % Uxe Vi Re ¥(x) < vg(x),

it follows that

K? = {Ve Vﬁ: Vg(W) < 1}

{ve Vﬁ: Re v(x) < vs(x), Vxe VK}

(13.11)
= XQVK {ve VE: Re ¥(x) < vs(x)}
= XQVK H))if,vs(x)
wher e
Hg,a = {ve V: Re ¥(x) < o) (15.12)

is a half-space in v2 .0t is clear from (9.1) that VxeV : Sc .
X K x,vs(x)
On the other hand, if Sc H o o then VpeS: Re ¢(x) < a whence
2

vs(x) < a and HX,VS(X) c Hx, . Therefore,
Theorem K° is the intersection of all half-spaces in Vﬁ (13.13)

1
containing S, the
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BI POLAR HULL CF S . (13.14)

As a consequence SC K]i and, since the half-spaces HX o are convex,
s

H[S] © K, (13.15)

where H[S] denotes the CONWVEX HULL OF S, the intersection of all
convex sets containing S. |In finite dinensional spaces,

Ki = FH[S] (13.16)

where ¥ denotes the topological closure operation.

Exanpl e: -
Let v, = R and | et

2
S = {(lzl,,.,,ll): zi+z + . ..+/Zn<l},
the open unit sphere. Then
- N. L2 2 2
K = {(zl,..., 1) R L <1},
the closed unit sphere.

At this point it is interesting to note that the work of the preceding
par agr aphs coul d have been done using.l.)l rather than S. However,

the eigenvalue inclusion theorens gave better results for sinple (mninal)
sets S. Aso, it is nicer to generate norms wthout resorting to limt
processes and this can only be done for finite sets S .

If the normv' is generated by a finite set 8', then (13.4)reduces

Iubv, V(A) t0 a maxinum over a finite set of dual norns:
J

1p,, (8) = max (v (on)] - (13.17)
’ PeS!
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Exanpl es:
(i) Let VK = Vk =c" and let y' be the Tschebyscheff normw th
generating set

S' = u {wef lo| = 13 .
I

Then
D, T
1w, (A) = nax v (weiA) . (13.18)
vy 1, |of =1
If v is strictly honogeneous, then

_ D, T
lubv,,v(A) = mEilX v (eA), (13.19)

the maxi num of the dual norns of the rows of A. If v is the
Tschebyscheff norm then vw is the Manhattan norm and

b, (4) = miaxg la s ls 3 0 n

the ROVSUM NORM If v is the Manhattan norm then vD is
the Tschebyscheff norm and

lubv,,v(A) = max |a, (13.21)

i k l,kl’

the MATRI X TSCHEBYSCHEFF NORM

(i) Let Vg = Vk =C" and let v' be the Manhattan normwith

generating set
i6 i6 i6
s'=((e YL,e 3 . ..,e.

Then

1w,  (A) = max vD(zTA) . (13.22)
v ,V T .
17 eS!
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[f v is the Manhattan norm then vD is the Tschebyscheff

norm and

lub , (A) = nmax max |27Ae. |
vi,v T k
L7eS' T k
= max  max |£TAek|
k !ZTeS'
b, (&) = rr?(x; la; 15 (13 .23)
the COLUWN SUM NORM  |f v is the Tschebyscheff norm then VD
is the Manhattan norm and
B T
Iubv,’v(A) = gax % | £ Aekl
L eS!
= max ) le’D,he | (see (6.22))
D, k
|Ubv',v(A) = mix g { Zﬂ (D.CA) ikl , (13 .24)
D, k 1

the maxi mum of the sum of the absolute values of the colum suns
of A under left-sided phase transformations. One nmight have
expected fromthe duality between the Manhattan and Tschebyschef f

norns that
|UbV',V(A) = jgk laigkl
inthis case. |ndeed,
w8 < L lagls (13 .25)
5

however, there is equality if and only if A is non-negative up
to a two-sided phase pattern transformation. Thus in general,

T
ik K
is merely an upper bound for A conpatible with the Manhattan
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(iii)

norm v' and the Tschebyscheff normv .

Let VK = VI'{ = ¢ and let v' and v be the Euclidean norm
W introduce the

BELTRAM - JORDAN DECOVPOSI TI ON .OF A: (13 .26)

A= U v S
where U and V are unitary and € = diag(ol, Oy wees cn) >0 .
Since the Euclidean normis invariant under unitary transformations,

sl
lubv,,v(A) = lubv,,v( U v

= lub (z

vi,v

)
£

= sup~ -

)

< max o, .
i 1
) ] ) (o} = max Oi
This bound is achieved for Xu. 5 < NEx 0, so that
I\Ubv',v(A) = mx o, (13 .28)

the EUCLI DEAN BOUND NORM ("SPECTRAL" NORM).  The non-negative

scal ars o, are the

SI NGULAR VALUES OF A . (13.29)

. H :
Since AA = U.):‘2 UH

are just the non-negative square roots of the eigenval ues of
AHA. If Ais Hermtian or normal, then the o, are t he

absol ute val ues of the eigenvalues of A .

is Hermtian positive definite, the o
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81%. Least Upper and G eater Lower Bounds ||

W shall now consi der |east upper and greatest |ower bounds in the genera
case where Gy, and Gﬂb are not both one-dimensional. But first we
nmust state what we nean by such bounds

Let B[A] < Hbm(GK), q&) denote the set of all upper bounds for A
((11.1)) and let C[A] c Hom(GK), q@) be the set of all |ower bounds
for A ((11.5)). To conpare bounds within these sets we nust introduce

an ordering p in Hom( Thus we define

GKD’ GK'D) .
v _g,l) _&2 c Hom(GKo’ GI'{O): .&l o .&2 133 'V'xeGKD: '$px > ,&lx p' .3‘2x .
(1 .1)

-

Theorem b is transitive, reflexive, and antisymetric. (14.2)

Proof :
Transitivity ((2.2)) and reflexivity ((2.3)) are inherited directly
fromp but the proof of antisymmetry ((2.4)) is nore difficult:

~ ~ +' ' } ‘,&
$1p£2A$2p$l>VxeG. .&lxp .&2)(/\ X p' X

+
> VxeG : -&lx = -gzx

_ . .
>VxeGK°.-3‘lx = -92x since GKo =G G
>.&l=.£«2

QED

Thus p is an ordering of Hom(GKb, Gﬁb)’ t he

ORDERI NG | NDUCED BY p AND p'. (14.3)

Moreover, it is

COVPATI BLE W TH o AND o': (1 .4)
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X, P %, A .&l P .32 > ’&lxl p' -&2}{2 . (I I
Exanpl e:
Let Gy, = (Rk, <) and GI'<° = (RB, <) . Then the ordering p induced
in Bom(®S,RY) = B! s given by
S0 H x Vi, j: (.. < H),., (14.6)

iJ 1J

an el ementw se ordering which we shall again denote by <.

As mght be expected, we can obtain weaker bounds from known bounds by
means of the ordering p:

Theor em (4 .7)
Bl e B[A] A Bl 0 B2 > B2 e BlA]
C, e C[A] A 02 pCy >C, € C[A].
Proof :
Assune that B, e B[A) and B, By, . Then v ' (Ax) p' Byv(x)p'Bv(x)

since. 0 p v(X) . Therefore B, ¢ BlA] .

QED.
_ Theorem A&[A] and C[A] are convex. (14.8)
Pr oof :
. Let B,, B, ¢ B[A] and assune 0 e W po 1 . Then

1’ 72

v'(Ax)p! Blv(x) A v'(Ax)p! Bgv(x)
> wv'(Ax) o' BBV(x) A (1-p)v'(Ax) p'(1-)B,v(x)
> v'(ax) p' [w B] + (1-0)B,Iv(x)

> p.Bl + (]_-p.)B2 e B[A] .

QED.
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The zero elenment 0 of Hom(G

X ? GI'%) is always a |ower bound:

0 e C[A] . (1. 9)
However, this does not inply that Vv & ¢ B[A]: 0 p 4 . Indeed

H ¢ C[A] A & ¢ B[A] > VX,G.VK: Hy (x)p'dv(x),
wher eas

Hb.&aéVzeG'I;o:HZp'-gz.

Still,

Theorem If v-(Xx) is SURJECTIVEQ_IEG;O,
a mappi ng of VK onto G;'), then-

that is, if vis (14.10)

He C[A] A & ¢ B[A] > Hp & .

+
For now (V(x): erK} ={z: ze GKO} .

In the case where Gf(o = (Ko,p0), the induced ordering o is an order-
, D
ing of G = Hom(GKo,Ko), the

DUAL ORDERI NG (14.11)
(For G = (Ko,0) as well, o reduces to the ordering » of Ko ).

The DUAL CONE of the positivity cone ¢ is then given by

GE t= {\]:(-:GIBOZ o° o v}

{We(}go: 0 pot(x), Vx€G+}

I

D D
G, = N, {veG : 0 ¥(x)] (14.12)
xeG- §
an intersection of half-spaces. The question of whether B[A] a2

Ko
has a |east elenment and C[A] a greatest elenment was answered in §8:
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D
B[A] has a least elementfo X B[A] = R + G,

C[A] has a greatest elementy X C[A] =y - G],J+

Examples: N l
(1) Let V. = R° and G, = (R ,<) thvhl I
= and G = i PN bl I A ERCER R
the modulus norm. Let VK = R and X2
Gg, = (Ry<) with v'(x) = [x| . Then VA = (81’82) € Hom('VK,VI'{),
Bla) = {(ps8,): lagl < Bys la,l <8

v

Since MB[A] is a translated positivity cone, B[A] has a least

element B = (|al|, l32l> . However, C[A] has no greatest element.

. 2 2 . x
(ii) Let VK = R~ and GKo = (R7,<) withv x
Let Vi = R and GI’{O = (R,<) with

v'(x) = |x| . Then VA = (al,ag) € Hom(VK,Vr'{),

BlA] = {(61,82)1 B, + By 2fa] + ag}

(@]
—
2,
1




s
Bla] ~

=

/o
/)

B[A] has no |east element and C[A] has no greatest elenent.

Moreover, since the values of v(x) lie on a single ray in G, ,
. . . +

v is not surjective on G and Theorem (14.10) does not apply.

Ko
I ndeed, there do exist sone |ower and upper bounds which are
i nconpar abl e.
(iii) Let ¥, = & and G = (§%,2) with (14.15)
v(xl) _ ( EUREEY )
%ol \nax(lx, |, x,])

Let vy = Rand G = (R,) with V (x) = |x| . Then
VA = (al,ag ¢ Hom (VK, VI'{),

BIAT= { (b))t 28 +8, 2 layl + ayls 8, + B, > max]ay|, [a,0))

an intersection of half-spaces not yet a translated positivity
+

cone. Note that v is not surjective on G,

: D
Let G}'% = (Ko,0) and assune that v' is generated by a set S'eviy
| i near functionals. Then in a purely formal manner, we may extend

the concept of the |east upper bound of A e Hom( ,VI'{) wi th respect

Y

to the norns v' and wv:
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. D
|Ubv',v(A) = 1nf{B€GKO. vt (Ax) po BV(x), VerK}
= inf{BeGgo: sup Re o@A(x) po BV(x), VxevK}
Pes'
= sup inf{peG, : Re oA(x)po B(x), Vxel}]
Ped' )

= sup inf{BeGgo . Re ¥ (%) po Bv(x), VerK}
YeS'A

where the interchange of infinmum and suprenmum is again purely formal.
S'AC Vi is a set of linear functionals on VK . Thus, provided all
the necessary infima and suprema exist, we have reduced the study of
upper bounds for hononorphisns A e Hom.(VK,VI'{) to the study of upper
bounds for linear functionals q;eVE . It is well to remark at this
poi nt that although GKo and G! = (Ko,po) are assuned to be vector

Ko
lattices, Hom(GKO,G' ) = @ s not necessarily a vector lattice.

Ko Ko
Thus, the indicated infim may not exist.

Let Ble] denote the set of all upper bounds for cpeVi:

Blo) := (8eGy : Re 9(x) po BY(x), Vxely] (1416
= N {BeGgozRe o(x) po Bv(x)} |
X eVK
Ble] = N H [o] (14+.17)

wher e

H o] = {BeGDIQJ:Re ¢ (x) po BV (x)]} .

Thus B[e] is an intersection of half-spaces. By Theorem (8.22),
Ble] has a least element g, if and only if Ble]l is the translated
cone go + GE . In this case we denote the |east elenent B by

S OF
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Theorem  If VD((p) exists for all cpeVE, t hen vD is a (14.18)
norm on the subspace of bounded |inear functionals on VK‘ t he

DUAL NORM _TO THE NORM v_. O o2

Pr oof :

D
Let 9, cpeeVK . Then
Re(p,#9,) (x) = Re @ (x) + Re @, (x) po (v (0)) +v (0,))v(x) -
Therefore

v’ (@) + vD(cpe) e Blo +o,]
and

Voo, b v o) +v" (@,) (subaddi tivity)

since vD(cpl+q>2) is the least elenent of B[tpl+q>2] . Honogeneity
follows fromthe honogeneity of the mapping Re: VoeKo with 0 po @,

VD(O‘ ?) inf{ﬁeGI]gof Re o ¢(x) po By(X), VerK}

i

inf{BeGﬁo: a Re @(x) po Bv(x), VerK}

1

a - inf{oleeGgo: Re ¢(x) po a-lsv(x), VerK}

1

a - inf{BeGgo: Re ¢(x) po Bv(x%), Vxevk}

o vD(cp) .

]

Assune t hat vD(cp) 0 o® . Then Vxely: Re »(x)po O . In particu-
lar, for each erK,

VY o eK: Re a @(x) = Re p(a x)po O.

Fromthis we conclude that o(x)
(positive definiteness).

0; that is, cp;éoD>vD(cp)>0

Q.E.D.
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Mreover, as in (13.4),

lub , (&) =sup v (pA) . (14.20)
vi,v peS!
Exanpl es:
(i) Let Ve = R and GKO = (Rn,g) with v the nmodul us norm
D
Let ¢ = (a,, By v e an) € VK . Then
Vo) = ol = (ayl, lay la_|)
P _— = 1!s ols ceey n

x |2 | + x|
(ii) Let 1/K=R3 and G = (R%,<) with v(x;\z (| 1{ IBI)
Then for o, ={,1,0) ¢ V; and @, = %3/ Xl 71X

(2,1,5) e vD:

///// _ e
///] i

v IS surjective; however, for some ¢, B[e] is not a translated

cone.

_ As the preceding exanple indicates, surjectivity of the normv is
necessary but not sufficient to guarantee the existence of a |east
upper bound for the linear functional ¢ . However, in the case of a
finite dinensional norm we can prescribe a sufficient condition .

Henceforth we shall assune that v is a finite-dinmensional norm

vi Ve = (Rk,g) . By Theorens (9.25) and (9.28), each conponent v
of v 1S a seminorm and, if v is symetric, even a normon Some sub-
space ui of Vi . Proceeding along this line, we define the normv
to be

REGULAR (14.21)
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i f VK is a direct sum of subspaces

veEueue. . eu (14.22)

and each conponent vy of v is anormon the subspace ui . Let

D
k

D D D
v _uleaug@...@u

X (14 .23)

be the deconposition ofvg as a direct sum of subspaces u? correspondi ng

i
to (14.22). Then
Theorem If v is regular, then WP exists and (14.24)

P = 50, . ) ve) (14 .25)

wher e

' D D
¥o= (g ligl oo v eV and ¥ e Ul .

Pr oof :

Re ¥(x) =Z Re ﬂ!i(xi) < Zv?(\lfl)vl(xl)
| .

Therefore vD(w) is an upper bound. If (Bl, ceey 5k) e B[v¥], then
ine ui: v, (x,) < B. V'(Xi)

whence V]i)(\lfi) < B, - Therefore Vw) is the |east upper bound.

QED.

Thus we have given a sufficient condition for the existence of WP

Note that a regular normis surjective on G;o but that the converse

s not necessarily true.
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Exanpl e:

Let ¥, =R and G, = (R,<) with v the modulus norm  Then an
i edi at e consequence of Theorem (14.24) is that for ¢ = (q)l,. Co cpn)
€ VE.

o) = lol = (o, l, o« *" o),
the modulus normin the dual space.

Having found a sufficient condition for the existence of |east upper
bounds for |inear functionals @eVE, we now return to the study of
| east upper bounds for hononorphisnms A e Hom(VK,VI‘() . Let v be a
regular norm and | et

Hom (VK, VI'{) = Ll ® £2 ... ¢ (b .26)

k
be the deconposition of Hom(VK,VI'{) as a direct sum of subspaces

.Y,i = Hom(ui,VI'{) (b0 o)

corresponding to (14.22). Then anal ogous to Theorem (14.24),

Theor em Iubv, v exi sts and (14 .28)
s’
|UbV"V<A) = (lubvi,vl(Al)) lubvl’vg(AE)’ e [J© lubv!,.vk(Ak))
wher e
A= (A11A2| oA e Hom(VK, V)

and
A, e &£, .
1 1

W may now drop the assunption that v' is a scalar normand require
instead that v' be a (finite-dimensional) regular norm Let

96




| T VR ] ] t
VK_ul®u2®. o @au]Z (14 .29)

be the direct sum deconposition of Vi such that each conponent Vi
of v'is a normon the subspace ui Let

] —_
Hom(vK,vK) = i?,j £ij (14 .30)
wher e
£ij = Hom(ui,uj)

is the deconposition of Hom(VK,VI'{) corresponding to (14.22) and (14.29).
Then anal ogous to Theorem (14.28),

Theor em lub;,,v exists and (b 0 3
1 ubvi’vl(All) | ubvi, VE(A12) | Ubvi,vk(Alk)
b, @) = IUbv%,vl(A2l) '”bvé,ve(Aee) |Ubv%,vk(A2k)
| ”bvé,vl(A“) |ubvi{y2¥(» 4o) Iubvi,vk( )

(14 .32)

wher e
LY I N T
A= A?l A?—e A?k € Hom(VK,VI‘{) and A.lje -31.3. . (14.33)

11 -3 1k,

Exanpl e:
m

Let v, = R and ¥! = R" with v and v' the nodulus norns in

" and R" respectively., Then for A e Hom(VK,VI'() = ¥,
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11 SE oy
2y 2z, l2gy

| ub ,,V(A) =l ‘ : . (14.34)
lagl el o,

As an imedi ate consequence of the norm properties of | ubv, v
(8

iy

Theor em lub \ is a normon the subspace of bounded homo-  (14.35)
b
nor phi sns AAeIthWVQ.

W now shift our attention to |ower bounds for homonorphisms. W shal
find that, except for the case of scalar norns considered in $12, the
set @A] of lower bounds for A has in general no greatest elenent.
This will follow &mediately fromthe existence of a maximal elenment
which is not conparable with all other |ower bounds

As before, we assune initially that v is a regular normand that !
is a scalar (real-valued) norm

Theorem  Let Y(i) _ glbv,’vai) o= i (14.36)
M _ .
‘l“bv',vu( A) b A
for A = (Al,Agl' . ]Ak)‘e Hom(VK,Vk). Then y(i) = (yii)’ yéi)’
ovhea@A fori=1 200,
Pr oof
- v'(Ax) = vi(ax, + 2 Auxu)
> v'(AiXi) - i v ' ~Ap»xu.)
>glb, o, () v () - lub e, (-4) vu(xu)
’Vs boi am
= glb_, . (A) . v, (x;) [-luwb ,  (-A)] . v (x)
Vi, i iV L vy, e TR
v
QED



| f A; is singular, then glb_, y (Ai) = 0 and the bound Y(i) can be
replaced by the bound 0 by virtud of (14.9). On the other hand, if
A; is nonsi ngular, then gl bv‘,vi (AI) > 0 and, follow ng ROBERT,

Theorem  Let ) (140 37
1b A, = 1
1) 8Ly, (4,) w=1i
Yo TV\eb, (A) . 1w (-ATTA ) m £ |
vivie vy, 1w
for a= (AlIAEI. .. A e Hom(Vi,VE) with A, nonsingular.  Then
W@, 70, fean
Proof :
1 ' ™ -1
vi(ax) = v'(A (x; + ; A, Auxu))
WFEL
-1
> gl bv',vi(A‘l) . vi(xi s Ay AI-LXP')
-1
Z. glb I,,vis i, [Vi(xi) - “‘#i Vi(_Ai Ap‘xu)]
S ALy
> glb v (a,) vy (x) i |Ubvi, vu<»<Ai Au) ) Vu(xu) ]
-1
= glb v, (Ai)vi(xi) + " [ -glb, v (Ai) lubvi’vu(-Ai Au) ]Vu (xu)
-7 e
QED.
Using the inequality
-1
glbv,’vi(Ai) ) lubvi’vu(-Ai Au) < 1ubv,’v$-AJ

to be derived in 816, we find that the bound Y(l) of (14.36) can be
replaced by the bound '\7(1) of (14.37) provided Ay i's nonsingul ar.
Thus the bounds of (14.36) are not necessarily maximal.
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Exanpl e:

_ ) .
Let VK—R3 and GKOZ(R,S)WI'[h
x 3
v 1 X2 + X2
Xl 1 x2 1 2
v zg - Vg(xs) = lx5!

1
o 2\®

_ 2 : v
Let Vi = R and g =(®R<) with v‘(l)=(yl+y2

Ko
Let Ve

SCCR

513
Then
| ub ',vl(Al) =6
glb ',Vl(Al) =1
|Ubv,’v2(A2) = fi?
80,1, (Bp) = /15
-1 f5_
| ub ]_’Vg(-Al A2) ==
and

v @, L)

v@ . (e, /B)

U ,- )

’«7(2) does not exist since A, s singular.

As previously noted, V(l) is a better bound than Y(l), inthis
case a far better bound. Fromthe basic inequality
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/2 2
Y o.ov(x) =vp/x] +ox

. Y2|x5l

2 , 2
< v'(Ax) = /(2xl+2x2+2x5) + (2xl+5x2+5x5)

0 1 3
Yy = (Y:L’Yz) e C[A] satisfies

2 0 2
with x = (-1), (o), (-1), we may infer that every |ower bound

YpS15 ¥, <855 /5y, + 37, < 0.

(L fuifills the first and third conditions sharply, ¥1
is a maximal |ower bound.

Since ¥

Anal ogous to (14.17), it is inmediate from the definition that

Theorem C[A] is an intersection of half-spaces: (14.38)
cfa] = N H [A] (14.39)
xeV
K
wher e

'ﬁX-[A] = {yed : yv(x) < v'(ax)} .

Ko

Since @A < ?I'X[A] for each x, we can obtain restrictions on the set
of |ower bounds by choosing suitable x:

Theorem  VyeC[A]: v, < glb, (Ai). (14.40)
L

Pr oof :

Vxe u.li Yivi(xi) = yv(x) < v'(Ax) = v'(Aixi)

Thus v, is a | ower bound for Ai and v, < glg,,vi(Ai)

QED.
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Theorem |If yeC[A] and 75 > 0, then (14.41)

4 -
< 1w . (-AilA TR IS (14 .42)

Ty T Vi M

Mor eover, if A, is nonsingular, then the bound of (14.37)is naximal.

Pr oof :
1

Let x, € 'UlM (W # 1) and let x; = -A; Ax, € u, . Then for

=x. +
X Xl Xp‘,

() = 7vs (%) . AN (Xu)

< v*(Ax)

\/'(Ai}(i + AU‘XU') = V,(4) -0

-1
(-ATA x
=V1( i *U*) Vx e U
i

|
2le
v

Thus - is an upper bound for -A; A, whence

o e

7.[ - Vi’ vp,

~(1)

~ Assune t hat A, is nonsingular and that HyeC[A] such that 7 <7

~(i)
75 g,lgy(Ai) <7y

~(1) -1 .
- : -A.7A ) < 1) .
" glb . (A1, | (-A7A) < 7, (b # 1)

| 17 W

By Theorem (1%.40), v, Sglbv,',v‘(Ai) and therefore 7, = glbvx,Vi (8;)

>0 . By the result just proved,'
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Y
R v (-A71a )
7T: Vi, " 1w

7. < 75 lubV

. y (-A;LAM) (b # 1)

"

i,

-glb .+ (Ai)lubv

,i i)

-1
(-A;7A ) .
oo P

=1 ~<1)
Th = - A - =
us y glbv,’vi( i,) ubVi,V ( Ai A ) and Y 4 3 whence

Robert's bound is maximal.
QED

The full inmportance of this result will becone evident in $15. For now,

we note that although 0 and Robert's bound are both | ower bounds, they
are usual |y not-comparable. Thus there does not generally exist a greatest
| ower bound for the hormonorphism A « Hom(VK’VI'{) .

Since regular norms are surjective, Theorem (14.10) gives

7eClA] > v < 1ub ,  (A) . (14.13)

b

As before, we may now drop the assunption that v' is a scalar norm

and require only that v and v' are regular norns. W& can now con-
struct lower bounds from the "roww se" bounds previously discussed.

, .
Let A ¢ Hom(VK,VK) and wite

o)
[

l

>
I
5™

3>l

wher e

!
Aj € Hom(VK,UJ,) .
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Then if Y s is a lower bound for Aj(l <j <)

is a lower bound for A.

If x =14, then the row bounds may be taken to be the |ower bounds of

(14.36) in such a manner that there is exactly one element of the form
gib,, (A,,) in each row and each colum. Wth suitable reordering

these el ements will appear on the diagonal and, if the dinensions of the
subspaces in the direct sum deconpositions of V¥, and Vg coincide, we
obtain the |ower bound of FIEDLER

A -1lub -A lub (-A..)
glbvi, vl( 11) v vi,vz( 12) SRR vi, Vi 1k
~1ub (-A..) glb (A..) .. . . -lub , _ (-A

Hei el vorvy 2l Varvp ' 22 VorVie 2KT (g )
-1 (-A -lub -A .. .glb o (A)
1m“@”1( K1) vwvg( ko) Visv, " Kk
=Driedl = YFieal
wher e
D-. = diag(glb A e 1b A
Fi edl 9(g vi, vl( ll)’ o0 8 Vier Vk( kk))
e ). = lubviz"j(-Aij) tF
Fiedl “ij 0 i=j

If the A, are all nonsingular, then Fiedler's bound can be replaced
by the bound of Robert
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Boob = Priear( ~* pob) (14 .45)
wher e
— o
lubvi, vj('AiiAij) 143
(URob)ij = : (14.46)
0 i=3

O course, if all subspaces are one-dimensional, then these bounds
coi ncide as do bounds (14.36) and (14.37).

Let V. =Vp = R® and let v = v' be the nodulus norm Then
X
VA = (a,.) - Hom(Vy,V}) = R,

i]
|all| -\ale\ C —|aln|
Heob = Mriear = la?ll ,8?2‘ S "|a?n| : (14.47)
_Ianll -[aén| .. |a6n|

Finally, we consider upper and | ower bounds for a sum A, + A, of two

1
' v '),
hononor phi sns Al A e Hom ( K,VK)

Theorem Let -&l and -5‘2 be upper bounds for A and A, (14.48)

respectively. Then '&1 + ‘&2 is an upper bound for AL+ A,

* Proof :

v'((Al+A2)x)p ' v‘(Alx) + V'(AEX)
p! .&lv (x) + .&2\/ (x)
- (@) v (x)

QED.
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Theorem  Let H, be a | ower bound for Al and | et .&2 be (14 .49)

an upper bound for -A2 . Then H - .&2 is a |ower bound for
AL+ A,

Pr oof :
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$15. Best Lower Bounds in the Sense of Robert; Applications: Nonsingularity

Criteria and Eigenval ue Exclusion Theorens.

Lower bounds for an endonorphism A . of VK may be used to establish
nonsingularity of the mapping A and to find upper bounds for A
For the case of scalar norms v and v',

A singular > glb , (&), 0 .

b

Equi val ent 1y,

glb , (A > 0 > A nonsingul ar
vi,v

Nbr eover, Si nc-‘é any left inverse for A is the unique two-sided inverse,
Theor em (12.15) gi ves

-1
|Ubv',v(A ) = l/glbv,’v(A),

an upper bound for Al

In the general case, the situation is simlar yet in a weaker sense.

W shall assune that VK = Vf{’ that the norns v and v' are regular,
and that the finite-dimensional vector lattices (G_,p) and (Gg ,p')
have the sane dinension. Thus A ¢ Hom(VK,VI'{) i's an endonor phi sm of
VK and all bounds for A subordinate to v' and v, are square
matrices. Furthermore, both mappings and bound nappi ngs have the property
that Mis nonsingular % & two-sided inverse Ml, where Mis

either a mapping or a bound mapping.

A lower bound He C[A]lis said to have a

1

SEM POSI TIVE INVERSE H (15.1)

if His nonsingular andop H'l, where ¢ is the ordering induced in
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Hom(GI’%,GKO) by p' and p . For such a bound, gt £ 0 and

Vxe ¥, v(x) p H 1v'(Ax) . (15.2)

K

Theorem |f H e C[A] has a semipositive inverse, then A (15.3)

i's nonsi ngul ar.

Pr oof :

x#¢ > V(X)i‘éo

> Ely (ax) £ 0 by (15.2)

si nce H'1

> v'(Ax 0 : :
(ax) # i s nonsingul ar

> Ax # 4
Thus A is nonsingul ar.
QED
Exanpl e:
Let G, =G = (R,<). Then § coincides with 3 and is just

the elementwi se ordering of matrices. Thus His senipositive x
it is conponentw se non-negative.

Theorem |If He C[A] has a sem positive inverse, then H'l (15.4)
is an upper bound for At

Proof :
By Theorem (15.3), A is nonsingular and letting x = A'ly in

.(15.2):
Vye Vi v(A&l) o Bl (y) . (15.5)
QE.D.

Al t hough HL is not necessarily the |east upper bound for A'l and

may be a quite weak upper bound, it often does have the advantage of
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being more easily calculated. Mreover, it is of some inportance in
connection with matrix problens which have a natural deconposition into
bl ocks; for exanple, finite difference approximations in nulti-dinensiona
probl ens.

Exanpl e:
Let VK = R5 and let v =v' be the modulus norm  For

3 -1 1
H=|-1 3 -1
-1 -1 3

H has a semi positive inverse

0.5 0.25 0.25

gt =[0.25 0.5 0.25

0.25 0.25 0.5

which is an upper bound for

0.4 -0.1 -0.1

pt-l-01 04 -0
-0.1 -0.1 0.4
The |east upper bound for A'1 is
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lub.,(A-1) :ko.l 0.k O.l/ .
VyV
0.1 01 04/

-a contradiction. Thus His nonsingular. Mreover,
-1
op'w> HO) p' H(H "w)
>0p H1-w .

1

Thus 0 ¢ H~ and H has a senipositive inverse.

QED.
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A mapping H e Hom(GKo,GI'{o) i's
MONOTONI C (15. 6)
Vu, veGy: Hip'H >upv. (15. 7)
Theorem His nonotonic ¥ H has a senipositive inverse. (15. 8)
Pr oof :
Assume that H has a senmipositive inverse and that Hu p' Hv . Then
v -1
Op H Aop' Hlu-v) > 0 p (v
whence up v . Therefore His nonotonic. Assunme that His
nmonotonic.  Then
H singular > & # 0: Hv =0
{Opw (1507)vm:th u=0, v=w
wp O (lS.?)V\Ath u=w, v=0
> w =0,




Apart fromthe question of whether nonotonic | ower bounds exist, we may
want to conpare the inverses of nonotonic |ower bounds under the ordering

v

o . Let

c'l[A] = {I+|_: HeC[A] has a senmipositive inverse}, (15. 9)

the set of inverses of the nonotonic |ower bounds of A . Then
-1

c [A] B[A-l] (15.10)

. . -1
and we may seek ninimal or even least elenments in C “[A].

Theorem | f Hy and H2 are monotonic, then (15.11)
V - "l v -l
H e By > Hy o Hy
Pr oof :

. -1
Op'w >0 p Hy'w
-1 R . ~
>-HlH2wp w sl nce Hl p H
-1 -1
>
nglew

-1y -1
Therefore H2 le )

QED.

Thus inverses of monotonic bounds which can be replaced in the sense of
o can be replaced in the sense of p . The converse is not true as the
foll owi ng exanple indicates:

Exanpl e:
Let
2 -3 3 -y
H = . H, =
L S~ 2 o 4
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Then

-1 (2 3 1 2 3
Hl _ 5 H2 =
“\L 2 o 2
=1 S
and H) and I42 are nonotone. However, although H, 0 H™ itis
not true that Hy BI% . In fact, H and H, are i nconpar abl e.

W coul d instead consider (15.5) fromthe point of view of obtaining an
error estimate by neans of residuals. In this case we would desire H
to be such that the set

S[H,v] := {ued : Hu p' v} (15.12)
is as snall as possible for fixed v = vt*(x) . For the size of

S[H,v (x)] = (v(a™x): W (a™x) o v (X))

reflects the size of the set

{A_lz: vi(z) = v' (%)},

the set of possible errors.

Theor em HoOPH, > Yved : 8(H,,v] © 8[H,v] | (15.13)
Pr oof
uea@[He,v] > ueG+ A ng p' VvV
‘ .
> ueG A Hlu o' H

U p' Vv since H, pH
> u(—:é@[Hl,V] .

1 2

QED.

Note that the preceding result does not require nmonotonicity, but the
class of monotonic bounds is again distinguished with respect to 8[H,v]:
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Theorem |If His nmonotonic, then VveG'+: S[H,v] is (15.1%4)
nonempty and bounded.

Pr oof :

Since H is nonotonic,

Hu p'v>UpH"lv
and
, -1
S[H,vlC (u: OpupH v}
Thus $8[H,v] is bounded from above and bel ow. Since
+ -
- veG' > H 1V€G+,

H_lveﬂ[H,v] and the set is nonenpty.

QED.

Thus a nonotoni c | ower bound gives a bounded set of norns of errors and
hence a bounded set of errors.

An equival ent characterization of the boundedness of #[H,v] Vvea'"
with respect to an Archimedean ordering is given by

Theorem 8[H,v] i s bounded VveG'' (15.15)
(ueG" A Hu p' 0 > u = 0)

Proof :
Assune that Vveg'': 9[H,v] is bounded. Let ueG' with Hu o' O .
Then

(VveG'+) Vaoek: 0@ @): oued[HV].

But the set {au} is unbounded for u #0 . Thus u = 0 . Assunme
that Fveg' : 8[H,v] is not bounded. Then since
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{fueg™: 0 p' Hu o' v}
is bounded, its conplenent with respect to $[H,v]

{ueG+1 Hu o' 0)

i ‘ . +
i s unbounded and contains a nonzero elenment; that is, HueG: Hu p'0
and u £ 0 .

QED

The full inportance of Robert's bound (14.45) is indicated in the
foll owing two Theorens:

Theorem  The set of all nonotonic |ower bounds with positive  (15.16)
di agonal and non-positive of f-di agonal elenents is non-enpty if and
only if it contains HRob'

Proof :
Let H be a nonotonic | ower bound with positive diagonal and non-

positive off-diagonal elenments. Then H = D(I - U where Dis
diagonal with positive elenents and U is off-diagonal wth non-
negative elements. By Theorem (14.41), U > U Since His

-1 Rob”
nonotonic, H is senmipositive and

0O<DAO<H  =(I -U)'lD'l>0<_(| -U)"l.

. -1
Moreover, since 0 < U, Yk >0: 0< (I -0) lJ( From

(I -U)'lUk = (I -U)’l[I-(I -Uk)]

)-l 2 k-l)

(I -u - (Il +u+vuv +. .. +U

we obtain

1 -1

O<| +u+0+...+ <@ -0

and the infinite sum being el ementwi se bounded and nondecr easi ng,
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I+U+U2+U5+.

< U the infinite sum

I.U w2

+
+ Y%ob * Urob ¥ SRob +

Si nce
conver ges. 0 <Up v

al so converges. The limt is just (I - U o )'l whi ch is element-

Rob
W se non-negative:

-1
0<(T- URob)
whence
-1 -1 -}
0 < (T-Up) Dpiear = oy

and Heob is monotonic. The remainder of the theoremis imediately
evi dent since Heob is a lower bound with positive diagonal and non-
positive off-diagonal elenents.

QED.

Theorem  Among al | nonotonic | ower bounds H whi ch have (15.17)
positive diagonal and non-positive off-diagonal elenents, the
bound He o is least in the sense of inclusion of the domains
S[H,v]:

+
. c
VveG': Q[HRob’v] S[H,v].

. Proof:

Assume that the set of nonotonic | ower bounds with the prescribed
sign pattern is non-enpty. Then by Theorem(15.16)’HROb i s nono-
tonic and an element of this set. Thus

ued[H 1 > Hep® SV

Rob? "
-1

> (I -U rieql’

Ju<D
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Let H = D(I - U be any other such bound. By Theorens (14.40) and
(14.41)'

DS Ppiear’ V.2 Upgp
Thus
-1 -1
(I -u < (I - URob)u <D gV SD
or Hu< Vv . Therefore ued[H,v] .
QED.

The nonotonic | ower bounds which are the subject of Theorens (15.16)
and (15.17) are matrices with positive diagonal and non-positive off-
di agonal elenments which have non-negative inverses. These Mnatrices
(OSTRONBKI) have been studied in detail by OSTROABKI, FAN, KOTELJANSKI,
and FIEDLER and FTAK. ~ GASTINEL has proposed studying the class of
matrices H for which 8[H,v] is bounded VveG'+, and SCHNEI DER has
discussed a related class of matrices. It would be interesting to know
how H is characterized within this class which is wder than

Rob
(Theorem (15.14)) the class of Mmatrices.

W shall now apply our results on bound mappings to formulate several
nonsingularity criteria and eigenvalue exclusion theorems. Thus we
assune that v, = Vg and G = G and that the norms v = v' are

Ko Ko
regul ar.

The dual characterization of Iubv, v(A) ((14.20)) for scalar norns V'
J

(8) = sup (v'(): pes']

P
is also valid for regular nornms v’ . However, a bilinear characterization
and the corresponding bilinear field of values do not seemto exist. Mre-
over, the field of values defined in 8 does not seemto allow a useful
general i zati on.
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There is a natural connection between nonsingularity criteria for a
matrix A and exclusion theorems for the eigenvalues of A

Theorem Let P[A] be a statenment about an endonor phism (15.18)
A e Hom(VK,VI'{) . Then the nonsingularity criterion

P[A] > A nonsingul ar (15.19)
and the eigenval ue exclusion theorem
P[A - AI]) > A is not an eigenval ue of A 15 0

are equivalent.

Proof :
Assune that
[A] > A nonsingul ar
and let A be an eigenvalue of A. Then A -AIis singular:

A is an eigenvalue of A >—- P[A - AI] (15.21)
an equivalent formulation of (15.20). Assume that

P[A - XI] > X is not an eigenvalue of A .

Then
R[A] > X =0 is not an eigenvalue of A
> A is nonsingular.
QED.
Exanpl e:
Let
PlA] :=Vi lalll > ]aijl




Then Cerschgorin's Theorem may be stated as

IN
©
—

)\.€{Z€C: Hi: IZ - a”'

={zec —P[A - ZI]}

or

A is an eigenvalue of A > —P[A - zI].

The equivalent nonsingularity criterion

Vi o Iaiil> EZIaij|> A nonsi ngul ar

J#

was discovered\by LEVY in the nineteenth century.

(15.22)

(15.23)

There is a direct proof of the preceding result ((15.23)) as a specia

case (take. B to be the diagonal of A and consider the |ub subordinate

to the Tschebyscheff norm) of the follow ng nonsingularity criterion:

Theorem |If B is nonsingular and lub(I-B_LA)<< 1, then

A i's nonsingul ar.

Pr oof
1 > 1ub(I - B'lA)

> 1lub(I) - glb(B'lA)

1 - glb(B_lA)

]

0 < glb(B'lA)
-1 . . . -1
Thus B A is nonsingular as is A= B .B A .

QED.

The corresponding exclusion theoremis
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1ub(T - 371 (A - AT)) > 1 >\ is not an eigenval ue of A .(15.25)

Bis usually chosen to be C - AI provided C - AI i s nonsingular.
In this case, (15.25) becones

lub((C - AI)'l(C - A)) >1>\xis not an eigenval ue of A .
(15.26)
Equi val ently, the set

{zeC: (C - AI) is singular or 1lub((C - xI)'l(c -A) <1}
(15.27)

contains all the eigenvalues of A. The preceding results are all
conparison theorens and their useful ness depends on the choice of B
or C.

The nonsingularity criterion of Theorem (15.13) | eads imedi ately to

Theorem Let H e C[A - x] be a nonotonic |ower bound for (15.28)
A -AI . Then X is not an eigenvalue of A .

This result can be applied to HFiedl[A - \I] and HRob[A -AI) . In
the first case, it can be slightly nodified.

Lemma: | f H and H2 have positive diagonal and non- (15.29)
positive of f-diagonal elements and H < H, t hen

Hl nmonot oni c > H2 nmonot oni ¢ .

Proof: Conpare the Neunmann series for Hy and H, .

Theorem (Fiedler - Ptak) If XA is an eigenval ue of A (15.30)
t hen

A€ U| {z: gl bvi,vi(Aii - zI) < ci}
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provi ded ClyChy . . . . Care such that
dlag(cl, Cps + ey Ck) - UFiedl[A]
i S nonot oni c.
Pr oof :

Assune that c .5 ¢, are such that

17620+ O

HC = diag(clgce, o ahahah Ck) - UFiedl[A]
i's nonotonic. Then by the preceding Lemma, if

glbv !

(A > c.
l,v(ii)—c

. 1
1

Then HFiedl[A - MI] is nmonotonic and A is not an eigenval ue of
A.
QED

In the case of the modulus norm we get a sharpened form of Gerschgorin's
Theorem due to KOTELJANSKI| and FAN:

AE U {z: Iaii -zl<ci}. 150 3
|
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§16. Subnul tiplicative Functionals on Hal f-categories and Senigroups;

Normed Categories and Rings

In preceding sections, we have considered nappings between a pair of vector
spaces VK and Vl'< and, in some special cases, mappings of a vector space

l/K intoitself. If instead we have a famly of vector spaces Vél) wher e
| ranges over some finite or infinite index set I, then we may consider
honmonor phi sms between any two members of this famly. [If the vector spaces

are normed, then these norms induce upper and |ower bounds for the hono-
nor phi sns.

Let A V%‘l)—' Vé‘j) and B: V|(<£) -*Vém) be hononor phi sns. Then, pro-

vided the range U|(<J) of A coincides with the domain Ulgl) of B,
the product BA can be naturally defined as A conposed with B . Since

conposition of mappings is an associative operation, if A B, C are
homonor phi sms and A(BC) exists, then (aB)c also exists and (AB)c =
A(BC) . W may abstract this al gebraic structure of hononorphisns and
define a

HALF- CATEGORY (16.1)

as a set 7 together with an associative partial conposition:

VA, B, Ce m: A(BCO exists > (AB)C exists and (AB)C = A(BQ)
(16.2)

Exanpl e:
The set of all finite matrices is a half-category with the usual
definition of matrix multiplication (if the number of colums of A
I's not equal to the nunber of rows of B, then the product AB is
not defined). It is the half-category of homomorphi sms correspondi ng
to the famly of vector spaces (F?}z:l ‘

A hal f-category in which conmposition is defined for every pair of elenents
isa ’
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SEM GROUP. (16.3)

A functional N on a half-category m with values froma (j-ordered
hal f-category 2 is

SUBMULTI PLI CATI VE (16.4)

if for all A B e M such that AB exists, N(A) N(B) also exists and
N(AB) ¢ N(A) N(B) (16.5)

Example:
On the half-category of finite matrices, the mapping

-~

A= o] where A = (a.l.J) and |A| = (laij[)
is a submultiplicative functional.

Theorem Let {V(i)}. be a fam |y of normed vector spaces (16.6)
T ith S CV N O IR CONRN €Y

with regular norms v 77 Vo o - (G;K‘3 ,p ') . For

A e Hom(VI(:),VIgJ)), define

lub(A) :=lub ,. - (8)
vl =1 gy B

(1ub (3) (i)(A) exi sts since \;'}L and v are regul ar norms.)
vd sV

Then lub is a sub-nultiplicative functional on the hal f-category of
- hononor phi sns

m = {A: Hi,jel: A ¢ Hom(v(£>,vK(j))}

with values fromthe i-ordered half-category

P = {& Hi,jel: & ¢ Hom(GIgj);GIg))};
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(1) (3)

the ordering ¢ being the ordering induced on Hom(GKo s Gy ) by
p(l) andp (J)
Proof :

If A, Be M and AB exists, then the donmain of A coincides with
the range of B:

N\

{ . ’
. A I . 9 L JE)
B: VK VK A VK V(K .

From the definition of lub , ,
vhv

v (amx) o () () NON L9 (35

Vv

NG . Y
P gy W I gy @) v

Therefore Iubv(l) v(j) (a) . lubv(j) v(i) (B) is an upper bound for
2 s

AB and

lubv(g),v(i)(AB) 6 lubv(l),xgj)(A) : lubv(j),v(i)<B) (16.7)

where ¢ is the ordering induced by p(l) and p(i). Equi val ently,
lub(AB) ¢ lub(A) 1ub(B) . (16.7)

QED.

The inequality (16.7) may be weakened. If [] ~oand [ . :
v(”),v(J) V(J),v(l)

are upper bound mappings ((11.4))' then

Wy @@ A () Flg) @ a8

’v

1ub(aB) p TA]TB] . (16.8)"
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The proof of Theorem (16.6) depended upon the existence of a lLeast upper
bound for AB with respect to Vv andv ‘'’ . Since the gr eat est

| ower bound for a mapping does not exist in general in the case of non-
scalar norms, We cannot expect a corresponding result for glb . However,
if we restrict ourselves to scalar norns, then

Theorem  Let {Véi)}iel be a famly of normed vector spaces( (16. 9)
with scalar norns v(l): Vél)‘*(R,S_)- For A e Horfrﬂﬂvqf )
define

= glb .y .y (A) .
glo(®) =gl (5) ()

Then glb is a_SUPEXMULTIPLICATIVE functional on the half-category
of homonor phi s

(A 53¢l A e ronv( V)]
with values fromthe < - ordered half-category R, that is
glb (AB) > glb(A) glb (B) . (16.10)
As before, inequality (16.10) may be weakened:
glb(4B) > |A| |B] (16.11)
where | | is any |ower bound mapping ((11.7)).

Theor em (16.12)
lub(AB) > glb(A) lub(B)

glb(AB) < 1lub(A) glb(B) . (16.13)

Pr oof :
Ve > 0 3y £4:

(3)
lub( B) - eg"—é)—E—Ba‘)Q.
%

y
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Letting x = By,

(1)
glb(A) . [lub(B) - el < y—('a'é% . [1ub(B) - €]

A% X
o vy o) gy
N C) N O

(1) (45
v (iéu

v

IN

lub (AB)

IN

Simlarly, Ve >0y #4:

(3)
glb(B) - e 2%—?—%

v y

Letting x = By,

lub(A) + [glb(B) - €] >~

(1) (15

v y

> glb(AB) .

QED.

Note that in the proof of the preceding theorem it would not have been
possible to vary x first since there mght not exist ay such that
BY = x . However,

Theorem |If B is surjective, then (16.14)

lub(AB) > 1lub(A) glb(B)

glb(AB) < glb(A) 1ub(B) .

In the case where A and B are both endonorphisnms, the last pair of
inequalities always hold: for if Bis nonsingular, then B is surjec-
tive; and if Bis singular, then AB is also singular and glb(B) =

glb(AB) = O .
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W nmay define a second partial conposition, addition, between the elenents
of a half-category of homonorphisms. The sum of two hononor phi sms A and
Bis just

(a+B) (x) := A(x) + B(x),

provi ded the domains and ranges of A and B coincide. The resulting
al gebraic structure is called a CATEGORY. A subadditive, submultiplica-
tive, definite functional on a category is a MJLTIPLI CATIVE NORM on that
category. Restating several earlier results ((12.5) and (16.6)):

Theorem lub is a nultiplicative normon the category of (16.15)
honomor phi sns corresponding to a famly of vector spaces.

Exanpl es:
(i) The set of all finite matrices is a category with the usual
definitions of addition and multiplication. The mapping

A= |A] where A = (a.ij and [A] = (Iaijl) (16.16)

is a lub subordinate to the modulus norm and therefore a multipli-
cative norm the MODULUS NORM on the category of finite matrices.

(ii) On the category of finite matrices' the mapping

Il - (

is a miltiplicative norm the FROBENNUS NORM  This normis not a
Lub-NORM subordinate to two vector norns and indicates that not all
mul tiplicative norns are so generated.

-

lawlg) , A e Hom(R",R™ (16.17)
1

T
7 e

(iti) If the famly of vector spaces {Véi)}.l€I consi sts of only one
vector space UK’ then the corresponding set m of hononorphisns
is a set of endonmorphisms. Thus addition and nultiplication are
defined for any pair of elenents of . Considered as a half-
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category, Mm is a semgroup. Considered as a category, Mmis a
ring since nultiplication distributes over addition .

Henceforth we shall restrict our attention to scalar (real-val ued)
miltiplicative norns |l...]| over a ring R with identity. W define

[A] := |l (16.18)
ro, if Ahas a right zero divisor (16.19)
Al := 16.19
14] ine{|aY]™Y: A is a left inverse of A,
ot herwi se

where we have assuned in addition that ® satisfies

“If A has no right zero divisors, then (16.20)
A has at |east one left inverse.

To further sinplify matters, we al so assune that

-1 .
a (unique) two-sided inverse A~ for A exists (16.21)
% A has no right zero divisors.

In this case, (16.19) becones

IIA'lH'l, if ol exists

Al = (16.19)"

o , if Ahas aright zero divisor.
* Theorem

14 - BBl < [&+B] < [A] + [Bl (16.22)
la] - 13| < [a+n] < |a] + T5] (16.23)
Ta] - 8] < [AB] < [A] - [B] (16.2k)
lal - (B) < laBl < lal - [5] (16.25)
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Proof :
(i) (16.22) follows from the subadditivity of |...| and a systematic
change of variables (see (10.3)).

(ii) Assume that Al and (A+B)'l “exi st. Then

-1

A (A+B) '1(1 + BA"l)

= (A+B) -l (A+B) “lpa~t
a7 < I (aeB) M- @+ I3l aTHD

[ e e T

la+B| < [a] + [B] .

+ 3

-

Assune t hat (A+:B)'1 exi sts and A'1 does not exist. Then A
has a right zero divisor (X #£0: AX=0) and

X = (A+B) 'l(A+B)x

(A+B) ~Lpx

Il < Il (a+B) Bl 1l

IN

I(arB) Mt < I8l since x £ o > x| £ o
A+B| < [B]
A+B| < |A] + [B] since (4] = o .
Assune that (A+B)-l does not exist. Then |A+B| = 0 and the
preceding inequality is again vaild. The left hand side of (16.23)

is obtained by a systematic change of variables (see(10.3)).

(i1i) The right hand side of (16.24)follows fromthe subnultiplicativity
of || ...l . Assune that Bl exists. Then
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-1

A=AB -+ B
-1
lall < llagll . 377l
‘ -1 -1
Al 377 7 < llas]
[al . (8] < [aB] .
Assune that B'1 does not exist. Then [B] = 0 and the preceding
inequality is still satisfied.
(iv) Assune that (AB)'1 exists. Then Al also exists and
At = B(AB)'l
-1 -1
a1 < I3l Il (aB) 7l
~ -1y - ~1 -
I (aB) M < a7 e
laB| < 4] [B]
Assune t hat (AB)'l does not exist. Then [AB] = 0 and the pre-
ceding inequality again holds. Assune that 2l and B! exist.

Then (AB) 1 _5al exists and

I (as) “Hl < 37 . a7
(7 R e P V- (e
lA] - [B] < |aB]

Assune that A'1 does not exist. Then (AB) L does not exist and
la] = [aB] = 0, whence the preceding inequality is trivially satis-
fied. A simlar situation occurs when B'1 does not exist.

QED.

The followi ng inequalities are proved in an anal ogous mnanner:

la| - TBI < [aB]
las] < [a] [8] .

(16.26)
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Exanpl e:

I nequal ities (16.22) - (16.26) are valid for any real -valued multipli-
cative normon a finite matrix ring.

The question naturally arises as to whet her the functionals ] and
| | as defined by (16.18) and (16.19) are upper and |ower bound mappings

respectively in the sense of (11.4) and (11.7); that is, whether there
exi sts a normed vector space V. such that for every AeR, Ais an

endonor phi sm of U, and [A] and |A| are an upper and lower bound for

the mapping distortion. For the case where R is a ring over sonme field
K (i.e., an algebra), the answer is given by

Theorem Let R be a ring over the field K and let V. be (16.27)

R (taken additively) or sone proper left ideal of R . Define

anormon V.. by v(X) = x| . Then

and
W< @ x o,
Pr oof :

The first assertion is an immediate consequence of the fact that
multiplication on the left by an element of ® is an endomorphi sm
of any left ideal of R (R is itself a left ideal of R) . From

v(ax) = [laxll < llajl [Ix] = TA] v(x)

we obtain

Ax
Sy

1

provided v(X) #0 (X # 0) . Assunme that A"~ exists. Then
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-1
v(X) = [|A7Ax||
-1
< [la™ | - |lax]]

a7 < ax) /v (x)
lal <X " x40)

Assune that A'1 does not exist. Then |A = 0 and the preceding
inequality is trivially satisfied.

QED.

Henceforth we shall assune that R is a ring over the field K. For
any non-zero ideal 4 of R we nay define VA ¢ R:

Il ax]
lubJ(A) = sup{——: Xed, X#£0 (16.28)

(1]

o llax]]
glbg(A) : = inf{——: Xed, X #£0) . (16.29)

I

Cearly,

Theor em (16.30)

[l < glbg(A) < 1uby(a) < [A] .
Moreover, as a consequence of Lenma (9.2),

. Theorem If cﬁlC =92 are left ideals of R, then (16.31)

lubg (A) < luby (A
1 2
gleZ(A) < gle1 (a) .

Finally,

Theorem  luby is a nmultiplicative normon R. (16.32)
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Pr oof :

Subadditivity and subnultiplicativity are inherited from |...|l; the
proof is analogous to that of Theorens (12.5) and (16.6) and may be

carried out for lubg for any non-zero ideal 8 . Definiteness is
also inherited from |...]: --
|AX
lubg(A) = 0 > —— =0 VXeR, X #£0
|1
> Jlax|] = 0 VXeR
> AX =0 VXeR
> A=0.

The last step is not in general valid for a proper nonzero ideal d

so that although luby is subadditive and submultiplicative, it is
not usually a multiplicative norm
QED
Theorem l/lubR(A-l), if A7l exists. (16.33)
glbg (A) 0 , otherwise.
Proof :
| f A'1 exists, then the proof is the same as that of Theorem (12.14).
Gherwise, A has a right zero divisor and the infimumis zero.

As a consequence of the preceding theorens,

i nequalities

QED.

lub
(16.22) - (16.26).
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Appendi x;  Historical and Bibliographical Notes

The concept of norns cane up around the turn of the century in algebra
for a sumof squares (rather than the square root of it). In vector
spaces and functional spaces, 0. Holder used it for the first time in a
wi der sense--to include the Euclidean and the Tschebyscheff norm (which
had been used somewhat inplicitly by Tschebyscheff.) These norms, anong
others, have the property that lxil < |lxll, and the Tschebyscheff norm
is the best among themin the sense that these inequalities are sharp
for at least one i . Later, abstract properties of norms have been
used to define them mainly in connection with netric topol ogi es

(Li ndenbaum Banach in the twenties). See

S. Banach. Théorie der Qperations linéaries. Wrszawa 1952.
For a modern treatnment, in particular of the topological side, see

Kelly, Nam oka.

A topology that has a special connection with norns, the weak topology,
has been introduced by Tychonoff. Norms were introduced into nunerical

anal ysis by Faadeva and, nore systematically, by Householder. In Banach
spaces, partial ordering has been studied by

L. Kantorovitch. in Mat. Shornik N S .44 121 - 168 (1937).
Further details, in particular about positivity cones, can be found in

M G Krein and M A Rutman. Linear operators |eaving invariant a
cone in a banach space (1948). English translation in Amer. Math.
Soc. Transl. Series I, 10.

From a nore al gebraic side, partially ordered groups and vector spaces
have been studied by Freudenthal (1936), inspired by Riesz. Stone,

Bi rkhoff and Lorenzen have devel oped the theory further. See chapters
XV, xv of

G Birkhoff, Lattice Theory. Revised ed. Providence 1961 (a new
edition is in preparation).

133




and

H Cericke. Theorie der Verb&de. Minnhei m 1963.

Questions of inbedding in direct products of linearly ordered lattice
groups have been studied by Mannos and Lorenzen. Rudinentary steps were
al ready taken by Dedekind in 1897,

A. Dedekind. Werke, Vol. 2, 103 -148.

Vectorial norms seemingly were first considered by Kantorovitch ("spaces
normal with the elenents of a sem-ordered space"). See

L. Kantorovitch. The nethod of successive approxinations for
functional equations. Acta Math. 71,62-97 (1939)

The first published results on bounds are due to Fiedler and Ptak (1960):

M Fiedler and V. Ptak. Generalized norms of matrices and the
| ocation of the spectrum Czech. Math. J. 1-2, 558-571 (1962).

More work on bounds has been done by Ostrowski (1960 Madi son Report No. 138)
and by Robert (to appear in Num Math.). Mmatrices, which show up in this
connection, were studied by Fan, Kotelyanskii and in particular by Fiedler
and Ptak in 1960:

M Fiedler and V. Ptak. On matrices with non-positive off-diagonal
el ements and positive principal mnors. Czech. Math. J. 12, 302 -
400 (1962).

A-wide class of matrices was introduced by Hans Schneider in 1964:

H Schneider. Positive operators and an inertia theorem Num. Math.
1, 11 - 17 (1965).

Mil tiplicative norns have been studied by Gastinel, Focke and Stoer.

Stoer has in particular characterized matrix norms which are also |ub
nor ns:
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J. Stoer. On the characterization of |east upper bound norns in
matrix space. Numer. Math. 6, 302 -314(1964).

Further concepts in a conprehensive theory of norms woul d include:

Condi tion nunbers: based on norns. These have been introduced by

Househol der and Bauer. Their relation to certain matrix transformations
has been investigated in

F. L. Bauer. Optimally scaled matrices. Numer. Math. 5,73-87
(1963) .

Fields of values: Connected with the support tangents to a field of
values is a functional which turns out to be a directional derivation
of the lub . _See

F. L. Bauer. On the field of values subordinate to a norm Nuner.
Math. L4, 103 - 113 (1962).

and

N. Nirschl and H Schneider. The Bauer fields of values of a matrix.
Nurrer. Math. 6,355-365(1964).

Conposite norms: A variety of nultiplicative norns, defined by sone

conposi tion, have been studied by

A M Ostrowski. Uber Normen von Matrizen. Math. Z. 63, 2 -18
(1955) .

Mre recently, Mitre (to appear in Nuner. Math.) has obtained nore
results in this direction.

Unitarily invariant norns: Miltiplicative norms which are invariant
under two-sided unitary transformations were studied by J. von Neumann.

Absol ute norms:  Absolute norns are norns which depend only on the abso-
lute values of the coordinates. See

F. L. Bauer, J. Stoer, C. Wtzgall. Absolute and nonotonic norns.
Nuner. Math. 3 257 - 264 (1961).
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and nore recently
D. Gies. Uver einige Kl assen von Normen. Thesis. Minich, 1966.

who al so discusses fields of values.

Most of the nornms used in practice are absolute, and this has an inportant
consequence: the lub of a diagonal matrix is equal to the nmaxi mum of
the absolute values of the diagonal elenents. For Holder norns, which
are absolute, Stoer has given an abstract characterization:

J. Stoer. A characterization of Holder norns. J. Soc. Indust.
Appl . Math. 12,634- 648 (1964).

In the theory of partially ordered vector spaces, sone recent devel opnents
due to Birkhoff, Hopf and Ostrowski have led to an interesting submultipli-
cative functional or non-negative mappings which is honogeneous of degree
zero. Connected with this is a bound for the oscillation of a vector.

This and other concepts playing a role in this connection deserve great
attention. See

F. L. Bauer. An elenentary proof of the Hopf inequality for positive
operators. Nuner. WMath. 7,331- 337 (1965).

Related to this theory is the generalization of the Perron-Frobenius
theoremto a large class of positivity cones (Krein-Rutman). See

H Schneider. Positive operators and an inertia theorem  Nuner.
Math. 7, 11 - 17 (1965).
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