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The Sandwich Theorem

Donald E. Knuth

Abstract: This report contains expository notes about a func-

tion ¥(G) that is popularly known as the Lovasz number of a

graph G. There are many ways to define ¥(G), and the surpris-

ing variety of different characterizations indicates in itself that

Y(G) should be interesting. But the most interesting property

of ¥(() is probably the fact that it can be computed efficiently,

although it lies “sandwiched” between other classic graph num-

bers whose computation is NP-hard. I have tried to make these

notes self-contained so that they might serve as an elementary

introduction to the growing literature on Lovasz’s fascinating

function.
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The Sandwich Theorem

It is NP-complete to compute w(G), the size of the largest clique in a graph G, and it is

NP-complete to compute X((G), the minimum number of colors needed to color the vertices

of G. But Grotschel, Lovasz, and Schrijver proved [5] that we can compute in polynomial

time a real number that is “sandwiched” between these hard-to-compute integers:

w(G) < HG) < x(G). (+)

Lovasz [ 13] called this a “sandwich theorem.” The book [7] develops further facts about the

function 6(G) and shows that it possesses many interesting properties. Therefore I think

it’s worthwhile to study ¥(G) closely, in hopes of getting acquainted with it and finding

faster ways to compute it.

Caution: The function called ¥(G) in [13] is called ¥(G)in [7] and [12]. T am following

the latter convention because it is more likely to be adopted by other researchers—|[7]is a

classic book that contains complete proofs, while [13] is simply an extended abstract.

In these notes I am mostly following [ 7] and [12] with minor simplifications and a few

additions. I mention several natural problems that I was not able to solve immediately

although I expect (and fondly hope) that they will be resolved before I get to writing

this portion of my forthcoming book on Combinatorial Algorithms. I'm grateful to many

people-especially to Martin Grotschel and Laszlo Lovasz—for their comments on my first

drafts of this material.

These notes are in numbered sections, and there is at most one Lemma, Theorem,

Corollary, or Example in each section. Thus, “Lemma 2” will mean “the lemma in sec-

tion 27.

0. Preliminaries. Let's begin slowly by defining some notational conventions and by

stating some basic things that will be assumed without proof. All vectors in these notes

will be regarded as column vectors, indexed either by the vertices of a graph or by integers.

The notation x > y, when x and y are vectors, will mean that z,>y, for all v. IfA 1s a

matrix, A, will denote column v, and A,,,, will be the element in row u of column v. The

zero vector and the zero matrix and zero itself will all be denoted by O.

We will use several properties of matrices and vectors of real numbers that are familiar

to everyone who works with linear algebra but not to everyone who studies graph theory,

so it seems wise to list them here:

(i) The dot product of (column) vectors a and bis

a-b=a'b; (0.1)
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the vectors are orthogonal (also called perpendicular) if a -b = 0. The length of vector a is

all = Va a. (0.2)

Cauchy’s inequality asserts that

a-b< [laf |b]; (0.3)

equality holds iff a is a scalar multiple of b or b = 0. Notice that if A is any matrix we

have
T T

(ATA)yy = > (AT ur Ako = > ApuAro = A, © 4, (0.4)
k=1 k=1

in other words, the elements of ATA represent all dot products of the columns of A.

(ii) An orthogonal matrix is a square matrix Q such that QQ is the identity ma-

trix I.” Thus, by (0.4)) Q 1s orthogonal iff its columns are unit vectors perpendicular to

each other. The transpose of an orthogonal matrix is orthogonal, because the condition

QT Q =1 implies that QT is the inverse of Q, hence QQ? =1.

(iil) A given matrix A is symmetric (i.e., A = AT) iff it can be expressed in the form

A = QDQ?* (0.5)

where Q is orthogonal and D is a diagonal matrix. Notice that (0.5) is equivalent to the

matrix equation

AQ =QD, (0.6)

which is equivalent to the equations

AQy = Quis

for all v, where A, =1),,. Hence the diagonal elements of D are the eigenvalues of A and

the columns of Q are the corresponding eigenvectors.

Properties (1) , (ii), and (iii) are proved in any textbook of linear algebra. We can get

some practice using these concepts by giving a constructive proof of another well known

fact:

Lemma. Given k mutually perpendicular unit vectors, there is an orthogonal matrix

having these vectors as the first k columns.

Proof. Suppose first that £ = 1 and that x is a d-dimensional vector with [|z|=1.If

z1=1 we have z9=... =2x4 = 0, so the orthogonal matrix Q = [I satisfies the desired

condition. Otherwise we let

UY) = V(1—1z1)/2, yi = —x;/(2y1) for 1 < 3< d. (0.7)
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Then 5 X X
ce l—x 1 —x

T,—ll2 — 22 + 2 a ls RT te) WES

And x is the first column of the Householder [8] matrix

0 =1-2yy", (0.8)

which is easily seen to be orthogonal because

QTQ=Q* =1 —4dyy” + dyyTyy" =I

Now suppose the lemma has been proved for some £> 1; we will show how to increase

k by 1. Let Q be an orthogonal matrix and let x be a unit vector perpendicular to its first

k columns. We want to construct an orthogonal matrix Q’ agreeing with Q in columns 1

to kK and having x in column Kk + 1. Notice that

0

Ql x — .
0 |

Y

by hypothesis, where there are 0s in the first k rows. The (d — k)-dimensional vector y has

squared length

yl? = Qfz-QTz = 27QQ%z = 27x = 1,

so it is a unit vector. (In particular, y # 0, so we must have k£ < d.) Using the construction

above, we can find a (d —k) x (d- k) orthogonal matrix R with y in its first column. Then
the matrix

I

Q-q| + 0
- 1

0 R

does what we want. []

1. Orthogonal labelings. Let G be a graph on the vertices V. If u and v are distinct

elements of V, the notation u —v means that they are adjacent in G; u —~ v means they

are not.

An assignment of vectors a, to each vertex v is called an orthogonal labeling of G if

a, +a, = 0 whenever u —~wv. In other words, whenever a, is not perpendicular to a,

in the labeling, we must have u — v in the graph. The vectors may have any desired

dimension d; the components of a, are aj, for 1 <3<d. Example: a, = 0 for all v always

works trivially.
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The cost c(a,) of a vector a, in an orthogonal labeling is defined to be 0 if a, = 0,

otherwise ) )
clay) = Meww
Cold? al + + ag,

Notice that we can multiply any vector a, by a nonzero scalar ¢, without changing its

cost, and without violating the orthogonal labeling property. We can also get rid of a zero

vector by increasing d by 1 and adding a new component 0 to each vector, except that

the zero vector gets the new component 1. In particular, we can if we like assume that all

vectors have unit length. Then the cost will be a? .

Lemma. If§ CV is a stable set of vertices (i.e., no two vertices of S are adjacent) and

ifa is an orthogonal labeling then

| Yclay) <1. (1.1)
vES

Proof. We can assume that ||ay|| = 1 for all v. Then the vectors a, for v € S must

be mutually orthogonal, and Lemma O tells us we can find a d x d orthogonal matrix Q

with these vectors as its leftmost columns. The sum of the costs will then be at most

gh+qia + + qq = 1. 0

Relation (1.1) makes it possible for us to study stable sets geometrically.

2. Convex labelings. An assignment x of real numbers x, to the vertices v of G is

called a real labeling of G. Several families of such labelings will be of importance to us:

The characteristic labeling for U CV has x, = { I if v el;0 ifvgl.
A stable labeling is a characteristic labeling for a stable set.

A clique labeling 1s a characteristic labeling for a clique (a set of mutually adjacent

vertices).

STAB(G) is the smallest convex set containing all stable labelings,

i.e., STAB(G) = convex hull {x| x is a stable labeling of G }.

QSTAB(G) = {z > 0] D veQ ZT,< 1 for all cliques Q of G }.

TH(G)={z > 0 | 2 ve c(ay)T,< 1 for all orthogonal labelings a of G }.

Lemma. TH is sandwiched between STAB and QSTAB:

STAB(G) CTH(G)CQSTAB(G). (2.1)

Proof. Relation (1.1) tells that every stable labeling belongs to TH(G). Since TH(G) is

obviously convex, it must contain the convex hull STAB(G). On the other hand, every
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clique labeling is an orthogonal labeling of dimension 1. Therefore every constraint of

QSTAB(G) is one of the constraints of TH(G). UW

Note: QSTAB first defined by Shannon [18], and the first systematic study of STAB was

undertaken by Padberg[17]. TH was first defined by Groétschel, Lovasz, and Schrijver in [6].

3. Monotonicity. Suppose G and G’ are graphs on the same vertex set V, with G C G’

(1.e., u — v in G implies u — v in G’). Then

every stable set in G’ is stable in G, hence STAB(G) DSTAB(G');

every clique in G is a clique in G’, hence QSTAB(G)D QSTAB(G');

every orthogonal labeling of G is an orthogonal labeling of G’,

hence TH(G)D TH(G').

In particular, if G is the empty graph Kj, on |[V| = mn vertices, all sets are stable and all
cliques have size < 1, hence

STAB(K,) = TH(K,)= QSTAB(K,) = x | 0<z,< 1 for all v}, the n-cube.

If G is the complete graph K,,, all stable sets have size < 1 and there is an n-clique, so

STAB(K,) = TH(K,) = QSTAB(K,) = {x > 0 1D, r,<1}, the n-simplex.

Thus all the convex sets STAB(G), TH(G),QSTAB(G) lie between the n-simplex and the
n-cube.

Consider, for example, the case n = 3. Then there are three coordinates, so we can

visualize the sets in 3-space (although there aren’t many interesting graphs). The QSTAB

of a is obtained from the unit cube by restricting the coordinates to x + y < 1 and
y + 2< 1; we can think of making two cuts in a piece of cheese:

001

|
|

2000

100 h 010

The vertices (000, 100, 010,001, 101} correspond to the stable labelings, so once again we

have STAB(G)= TH(G)= QSTAB(G).

4. The theta function. The function ¥(G) mentioned in the introduction is a special

case of a two-parameter function ¥(G,w), where w is a nonnegative real labeling:

Y(G,w)=max{w-z| x € TH(G) }; (4.1)

0(G) = 9(G,1) where 1 is the labeling w, = 1 for all v. (4.2)
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This function, called the Lovdsz number of G (or the weighted Lovdsz number when w#1),

tells us about l-dimensional projections of the n-dimensional convex set TH(G).

Notice, for example, that the monotonicity properties of §3 tell us

G CG = 9G w)> HG,w) (4.3)

for all w> 0. It is also obvious that ¥ is monotone in its other parameter:

w<w= 9G, w) <IHG,w') . (4.4)

The smallest possible value of 9 is

V(Kp,w) = max{wy,...,w,}; Y(K,)=1. (4.5)

The largest possible value is

IK, w)=w1+ Fwy; YK) =n. (4.6)

Similar definitions can be given for STAB and QSTAB:

a(G, w) = max{ w-x|x € STAB(G) }, a(G) = a(G,1); (4.7)

k(G, w) = max{ w-x |x €EQSTAB(G)}, k(G) = k(G, 1). (4.8)

Clearly a(G) is the size of the largest stable set in G, because every stable labeling x

corresponds to a stable set with 1. x vertices. It is also easy to see that x((G) is at most

X(G), the smallest number of cliques that cover the vertices of G. For if the vertices can

be partitioned into k cliques Q1,..., Qk and if x EQSTAB(G), we have

1 z= > Ty +e > z, <k.
vEQR VEQ Kk

Sometimes K(G) is less than X(G). For example, consider the cyclic graph C,, with

vertices {0,1,...,n—1}and u — viffu =v + 1 (mod 1). Adding up the inequalities

ro +T1 <1,..., Zn 2+ Tpn-1<1,2n_1 + 20<1 of QSTAB gives 2(zo +++ Tp_1)< n,

and this upper bound is achieved when all x’s are 5; hence k(Cy) = %,ifn > 3. But X(G)
is always an integer, and X(Ch)= [2] is greater than k(C,) when n is odd.

Incidentally, these remarks establish the “sandwich inequality” (x) stated in the in-

troduction, because

a(G) <9(G) < k(G) < X(G) (4.9)

and w(G) = a(G),X(G) = x(G).



5. Alternative definitions of ¥. Four additional functions ¥1,v2,93,04 are defined

in [7], and they all turn out to be identical to ¥. Thus, we can understand ¥ in many

different ways; this may help us compute it.

We will show, following [7], that ifw is any fixed nonnegative real labeling of G, the

inequalities

IC, w) <D1(G, w) < 92(G, w)<P3(G,w)< 94(G,w) <IHG, w) (5.1)

can be proved. Thus we will establish the theorem of [7], and all inequalities in our proofs

will turn out to be equalities. We will introduce the alternative definitions Ux one at a

time; any one of these definitions could have been taken as the starting point. First,

91(G,w) = min max(w,/c(ay)), over all orthogonal labelings a. (5.2)
a v

Here we regard w,/c(a,) =0 when wy = c(a,) = 0; but the max is oo if some w, > 0 has

c(a,) = 0.

Lemma. 9(G,w) <V1(G, w).

Proof. Suppose x € TH((G) maximizes w- x, and suppose a is an orthogonal labeling that

achieves the minimum value ¥1(G, w). Then

VG, w)=w- z= > wy, < (max —= > c(ay)m, < max — = U1(G,w).- “Tv cay) & vo cay)

Incidentally, the fact that all inequalities are exact will imply later that every nonzero

weight vector w has an orthogonal labeling a such that

Wy
c(@y) = ———— for all v. 5.3

We will restate such consequences of (5.1) later, but it may be helpful to keep that future

goal in mind.

6. Characterization via eigenvalues. The second variant of ¥ is rather different; this

is the only one Lovasz chose to mention in [13].

We say that A is a feasible matrix for G and wifA is indexed by vertices and

A is real and symmetric;

A, = wy, for all v € V;

A,, =+w,w, whenever u + v in G (6.1)
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The other elements of A are unconstrained (i.e., they can be anything between —0O and

IfA is any real, symmetric matrix, let A(A) be its maximum eigenvalue. This is well

defined because all eigenvalues of A are real. Suppose A has eigenvalues {A1,..., An}; then

A = Qdiag(Ai,...,A\n)Q7T for some orthogonal Q, and ||Qz| =||z|| for all vectors x, so

there is a nice way to characterize A(A):

A(A) = max{ ztAz|||z| = 1}. (6.2)

Notice that A(A) might not be the largest eigenvalue in absolute value. We now let

¥2(G,w) = min{ A(A) | A is a feasible matrix for G and w }. (6.3)

Lemma. 9:(G, w) <92(G, w).

Proof. Note first that the trace trA = >w,> 0 for any feasible matrix A. The trace

is also well-known to be the sum of the eigenvalues; this fact is an easy consequence of the

identity
m i!

tr XY =) Y zryej=tr YX (6.4)
1=1 k=1

valid for any matrices X and Y of respective sizes m xn and nxm. In particular, ¥2(G,w)

is always > 0, and it is = 0 if and only if w = 0 (when also ¥1(G,w) = 0).

So suppose w# 0 and letA be a feasible matrix that attains the minimum value

AA) = 92(G,w)=A > 0. Let

B=X1I-A. (6.5)

The eigenvalues of B are A minus the eigenvalues of A. (For ifA = Q diag(Aq, Cee An) QT

then B = Qdiag(A—Aq, .. LA=AR) QT) Thus they are all nonnegative; such a matrix B
is called positive semidefinite. By (0.5) we can write

B =XTX, i.e., Byy = Ty . To, (6.6)

when X = diag(+/A = A1,.... VA = X,)Q7".

Let a, = (Wy, T1v,-. . , Try)?.Then clay) = wy/||av ||? = wo /(wy + 22, +--+ + 22)

and 2% + ...+ x2 = By, = A—w,, hence c(ay) = wy/A. Also if u £4 v we have
Quy * Ap = VWyuWy + Ty + Ty = VWuWy + Buy = Vw,w, — A,, = 0. Therefore a is an

orthogonal labeling and max, wy,/c(a,) = A>91(G, w). OI

7. A complementary characterization. Still another variation is based on orthogonal

labelings of the complementary graph G.
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In this case we let b be an orthogonal labeling of G, normalized so that > oo lbu]] ‘=A,
and we let

V3(G, WwW) = max » (VWa, bu) : (Vw, by)
u,v

b is a normalized orthogonal labeling of c | . (7.1)
A normalized orthogonal labeling b is equivalent to an nxn symmetric positive semidefinite

matrix B, where By, = b,.b, is zero when u — v, and where tr B = 1.

Lemma. ¥2(G,w)<93(G, w).

This lemma is the “heart” of the proof that all Js are equivalent, according to [7]. It

relies on a fact about positive semidefinite matrices that we will prove in §9.

Fact. IfA is a symmetric matrix such that A .B > 0 for all symmetric positive semi-

definite B with By, = 0 for uw— v, then A = X + Y where X is symmetric positive

semidefinite and Y is symmetric and Yi, = 0 for all v and Yy, = 0 for u —# v.

Here C'- B stands for the dot product of matrices, i.e., the sum > Cup B.,. , which can
also be written tr CTB. The stated fact is a duality principle for quadratic programming.

Assuming the Fact, let W be the matrix with Wy,= Vw, w,, and let ¥3= J3(G, w).

By definition (7.1)) if b is any nonzero orthogonal labeling of G (not necessarily normalized),
we have

> (Vw by) + (VWs by) <3 > [I (7.2)
u,v v

In matrix terms this says W-B <(v¥3l).B for all symmetric positive semidefinite B with

B,, = 0 for u — v. The Fact now tells us we can write

v3 —-W=X+Y (7.3)

where X is symmetric positive semidefinite, Y is symmetric and diagonally zero, and

Y., = 0 when u —4 v. Therefore the matrix A defined by

A=W+Y =93I1-X

is a feasible matrix for G, and A(A) <¥3. This completes the proof that ¥2(G,w) <

Y3(G, w), because A(A) is an upper bound on UJ; by definition of J.
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8. Elementary facts about cones. A cone in N-dimensional space is a set of vectors

closed under addition and under multiplication by nonnegative scalars. (In particular, it

is convex: If ¢ and ¢’ are in cone C and 0 < ¢ < 1 then tc and (1 — t)c’ are in C, hence

tc + (1 — t)c Cc C.) A cbsd cone is a cone that is also closed under taking limits.

F1l. If C is a closed convex set and x & C, there is a hyperplane separating x from C.

This means there is a vector y and a number b such that c-y <b forall c €C but z-y > b.

Proof. Let d be the greatest lower bound of ||[z—cl||? for all ¢c € C. Then there’s a

sequence of vectors Ci with |z — cx? < d + 1/k; this infinite set of vectors contained in the

sphere {y|||lz—y||?<d +1} must have a limit point Cs, and ce€ C since C is closed.

Therefore ||2 —cool|2> d; in fact || — cool? = d, since ||2— coo || < |Z — ck + llc — Cool]

and the right-hand side can be made arbitrarily close to d. Since x ¢ C, we must have

d>0Nowlety=2 —coo and b=co-y. Clearlyz-y =v .y + b > b. And if ¢ is any

element of C and € is any small positive number, the vector EC + (1 — €)Coo 1s in C, hence
2

|z — (ec + (1 —€)coo) || >d. But

2

|z— (c+ (1 — €)Coo) | —d =||z = coo —€(c — coo)||* — d

= —2ey - (c — Coo) + € lc — cool?

can be nonnegative for all small € only if y . (¢ —Cx)< 0, ie., cy <b. []

IfA is any set of vectors, let A* ={b|a.b > 0 for all cLEA }.

The following facts are immediate:

F2. A CA’implies A* DO A™

F3. A C A**

F4. A#* is a closed cone.

From F1 we also get a result which, in the special case that C = { Ax |x >0} for a
matrix A, 1s called Farkas’s Lemma:

F5. If C 1s a closed cone, C = C**

Proof. Suppose x €C** and x ¢ C, and let (y, b) be a separating hyperplane as in F1.

Then (y, 0) is also a separating hyperplane; for we have x . y > b > 0 because 0 € C, and

we cannot have ¢ -y > 0 for c € C because (Xc) . y would then be unbounded. But then

c-(-y) > 0 for all ¢c € C, so —y€ C™*; hence x - (-y) > 0, a contradiction. []

IfA and B are sets of vectors, we define A + B={a+b|a€A and b EB }.
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F6. If C and C’ are closed cones, (C NC')* = C*+ C™*.

Proof. IfA and B are arbitrary sets we have A* + B* C (A MN B)* forifx € A* + B*

and y EANBthen x*y=a.y+b:-y>0.IfA and B are arbitrary sets including 0 then

(A + B)* CA*N B* by F2, because A + B 2 A and A + B OD B. Thus for arbitrary A

and B we have (A* + B*)*C A** NN B**, hence

(A* + B*)** D (A** NN B**)*,

Now let A and B be closed cones; apply F5 to get A* + B* DO (A N B)* []

F7. If C and C’ are closed cones, (C + C')* = C*N C* (I don’t need this but I might

as well state it.) Proof. F6 says (C*NC™)* = C*+ C"*; apply F5 and * again. [J

F8. Let S be any set of indices and let Ag={a|a, =0 forall s€ S}, and let S be all
the indices not in S. Then

AL = As.

Proof. If bs = 0 for all s¢ S and a, = 0 for all SE §, obviously a-b = 0; so AgC A%.
If bs# 0 for some s¢ S and a; = 0 for all +t #s and a, = —bs then cLE Ag and a . b < 0;

sob ¢ Ag, hence Ag 2 A%. J

9. Definite proof of a semidefinite fact. Now we are almost ready to prove the result

needed in the proof of Lemma 7.

Let D be the set of real symmetric positive semidefinite matrices (called “spuds”

henceforth for brevity), considered as vectors in N-dimensional space where N = s(n+1)n.
We use the inner product A:-B = tr ATB; this is justified if we divide off-diagonal elements

by v2. For example, if n = 3 the correspondence between 6-dimensional vectors and 3 x 3

symmetric matrices is

a d/V2 e/V2

(a,b,c,dye, f) «| d/vV2 b  f/V2

e/V2 f/V?2 C

preserving sum, scalar product, and dot product. Clearly D is a closed cone.

F9. D* = D.

Proof. IfA and B are spuds then A = XY?X and B=Y?Y and A-B =tr XTXYTY=

trXYTYXT = (YXT). (YXT)> 0; hence D C D*. (In fact, this argument shows that

A .B = 0iff AB = 0, for any spuds A and B, since A = AT.)
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IfA is symmetric but has a negative eigenvalue A we can write

A=Q diag (A, Ag, ... An) QF

for some orthogonal matrix Q. Let B = Q diag (1,0, ..., 0)Q7; then B is a spud, and

A .B=t AB = tr Qdiag (X, 0,.. .,00QT =X <0.

So A is not in D*; this proves DD D*.

Let E£ be the set of all real symmetric matrices such that Eu, = 0 when u — v in a

graph G; let F be the set of all real symmetric matrices such that Fy, = 0 when u = v or

u fv. The Fact ts 4 ed in Section 7 is now equivalent in our new notation to

Fact. (D NE)* CD + F.

But we know that

(DNE)* =D *+E * by F6

=D+F by F9 and F8. []

10. Another characterization. Remember ¥,¥1,vs, and ¥3? We are now going to

introduce yet another function

V4(G,w) - max > c(by) ws b is an orthogonal labeling of J (10.1)(

Lemma. 93(G, w)<94(G,w).

Proof. Suppose bis a normalized orthogonal labeling of G that achieves the maximum U3;

and suppose the vectors of this labeling have dimension d. Let

Tk =) brov/Ws for 1 <k<d:; (10.2)
v

then

V3(G,w) = > V Wy by + by VW, = > V Wy Wy bi bry = 3» 7.
U,V u,v, k k

Let Q be an orthogonal d xd matrix whose first row is (x1 /vVPF3,...,2q/V/03)7, and let
b, = Qb,. Then bl, -b =blQTQb, =blb,=by,.b,,s0 b’ is a normalized orthogonal
labeling of G. Also

I = > by Vs — > Qijbivvws
v v,J

VU k= 1;

; 0, k > 1.
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Hence by Cauchy’s inequality

2 b/22

G0) = (Sth) < (Se) (3 pie)(

v ’ b, £0

_ > c(by, wy, < 94(G, w) (10.4)

because Do,[10 [1° = 3, [1b] = 1. O

11. The final link. Now we can close the loop:

Lemma. 94(G, w) <9(G,w).

Proof. If bis an orthogonal labeling of G that achieves the maximum V4, we will show

that the real labeling x defined by x, = c¢(b,) is in TH(G). Therefore ¥4(G, w) = w . Xx is

< IG, w).

We will prove that if a is any orthogonal labeling of G, and if bis any orthogonal

labeling of G, then

> clav)edn) _ (11.1)

Suppose a is a labeling of dimension d and bis of dimension d’. Then consider the d xd’

matrices

A, = a,b} (11.2)

as elements of a vector space of dimension dd’. Ifu# v we have

A, A =u AYA =u balabl =u ala bib, =0, (11.3)

because ala, = 0 when u —* v and bib, = 0 when u — v. If u = v we have

AyAv = lao [16s]

The upper left corner element of A, is @14b1v, hence the “cost” of A, is (a14,010)%/|| Av]? =

c(ay)c(by). This, with (11.3), proves (11.1). (See the proof of Lemma 1.) [J

12. . The main theorem. Lemmas 5, 6, 7, 10, and 11 establish the five inequalities

claimed in (5.1); hence all five variants of 6 are the same function of G and w. Moreover,

all the inequalities in those five proofs are equalities (with the exception of (11.1)). We

can summarize the results as follows.

14



Theorem. For all graphs G and any nonnegative real labeling w of G we have

IG, w) = 91(G, w) = 92(G, w) = I3(G, w) = 94(G,w). (12.1)

Moreover, ifw # 0, there exist orthogonal labelings a and b of G and G, respectively, such
that

clay) = wy /9; (12.2)

»clay)e(by) = 1. (12.3)

Proof. Relation (12.1) is, of course, (5.1); and (12.2) is (5.3). The desired labeling b is

what we called bo’ in the proof of Lemma 10. The fact that the application of Cauchy’s

inequality in (10.4) is actually an equality,

i 2 bi
9 = (Stuy ) _ » Io] ) (3 Hw), (12.4

v v by £0 v

tells us that the vectors whose dot product has been squared are proportional: There is a

number ¢ such that

hiv VW

1b,|| = HT if by # 0; [byl] = 0 iff bryv/wy = 0. (12.5)
The labeling in the proof of Lemma 10 also satisfies

> Ibo|® = 1; (12.6)

hence t=+1/v19.

We can now show

c(by) = ||bu]? 9/ws, when wy, #0. (12.7)

This relation is obvious if ||b,|= 0; otherwise we have

by = Po _ bul?
v EE £24,

by (12.5). Summing the product of (12.2) and (12.7) over v gives (12.3). []

13. The main converse. The nice thing about Theorem 12 is that conditions (12.2)

and (12.3) also provide a certificate that a given value ¢ is the minimum or maximum

stated in the definitions of 6, ¥1,v9,¥3, and V4.

15



Theorem. Ifa is an orthogonal labeling of G and b is an orthogonal labeling of G such

that relations (12.2) and (12.3) hold for some 9 and w, then 9 is the value of 9(G, w).

Proof. Plugging (12.2) into (12.3) gives »_ wyc(by)=, hence ¥ <¥4(G, w) by definition

of U4. Also,

max —— = 1
v cay)

hence ¥>9:(G, w) by definition of ¥;. [J

14. Another look at TH. We originally defined 9(G, w) in (4.1) in terms of the convex
set TH defined in section 2:

HG,w)=max{w-z |x € TH(G) }, when w > 0. (14.1)

We can also go the other way, defining TH in terms of 9:

TH(G) ={z>0|w-z<I(G,w) forallw > 0}. (14.2)

Every x € TH(G) belongs to the right-hand set, by (14.1). Conversely, if x belongs to the

right-hand set and if a is any orthogonal labeling of G, not entirely zero, let w,= c(a,),

so that wx =) c(a,)x,. Then

91 (G,w) < max(w,/c(a,)) = 1
»

by definition (5.2), so we know by Lemma 5 that > c(a,)z,< 1. This proves that x

belongs to TH(G).

Theorem 12 tells us even more.

Lemma. TH(G) = {x >0]9(G,z) <1}.

Proof. By definition (10.1),

V4 (G, Ww) = max > c(a,)w,| a is an orthogonal labeling of a | (14.3)
Thus x € TH(QG) iff 94(G,z)< 1, when x > 0. [J

Theorem. TH(G) = {x | z, = c(by) for some orthogonal labeling b of G }.

Proof. We already proved in (11.1) that the right side is contained in the left.

Letx € TH(G) and let 9 = (CG, x). By the lemma, ¥ < 1. Therefore, by (12.2) there
is an orthogonal labeling b of G such that c(by) =x, /9>x, for all v. It is easy to reduce

16



the cost of any vector in an orthogonal labeling to any desired value, simply by increasing

the dimension and giving this vector an appropriate nonzero value in the new component

while all other vectors remain zero there. The dot products are unchanged, so the new

labeling is still orthogonal. Repeating this construction for each v produces a labeling with

c(by) = Ty. C1

This theorem makes the definition of ¥4 in (10.1) identical to the definition of

in (4.1).

15. Zero weights. Our next result shows that when a weight is zero, the corresponding

vertex might as well be absent from the graph.

Lemma. Let U be a subset of the vertices V of a graph G, and let G’ = G/U be the graph

induced by U (i.e., the graph on vertices U with u — vin G iff u— v in G). Then if w

and w’ are nonnegative labelings ofG and G’ such that

Wy = W, when ve U, Wy = 0 when v ¢U, (15.1)

we have

HG, w) =9(G', w) . (15.2)

Proof. Let a and b satisfy (12.2) and (12.3) for G and w. Then c¢(a,) = 0 for v €U, so

alU and b|U satisfy (12.2) and (12.3) for G’ and w’. (Here a|U means the vectors a, for

v € U.) By Theorem 13, they determine the same ¥.[]

16. Nonzero weights. We can also get some insight into the significance of nonzero

weights by “splitting” vertices instead of removing them.

Lemma. Let v be a vertex of G and let G’ be a graph obtained from G by adding a new

vertex v’ and new edges

u —v iff u-v. (16.1)

Let w and w’ be nonnegative labelings of G and G’ such that

Wy - W,, when u #v; (16.2)

W, = w!) + w,, : (16.3)

Then

HG, w) = HG, w) . (16.4)

Proof. By Theorem 12 there are labelings a and b of G and G satisfying (12.2) and

(12.3). We can modify them to obtain labelings a’ and 5’ of G’ and G’ as follows, with the

17



vectors of a’ having one more component than the vectors of a:

I Ay b b ]a={ 4) = bu, when u #v; (16.5)

/ Ay / Ay w,, w,,
ay = al’ Ayr = ye 3 a = w! lay ||, p= w!, ay]; (16.6)

by, = bl, =b, . (16.7)

(We can assume by Lemma 15 that w, and w,, are nonzero.) All ort hogonality relations

are preserved; and since v 4 v’ in G’, we also need to verify

al - al, = |la,|f— af = 0.

We have )
ry _ c(av) Jay | c(ay) c(a. wy, wy,

clay) == 5  —~— =
lay||2 +0? = 14+w, /w, = w, VU

and similarly c(a,,)=w,,/¥; thus (12.2) and (12.3) are satisfied by a’ and b’ for G’ and w’'.
cl

Notice that if all the weights are integers we can apply this lemma repeatedly to

establish that

HG, w) = 9G"), (16.8)

where G’ 1s obtained from G by replacing each vertex v by a cluster of w, mutually

nonadjacent vertices that are adjacent to each of v’s neighbors. (Recall that ¥(G’) =

Y{(G', 1), by definition (4.2).) In particular, if G is the trivial graph Ko and if we assign
the weights M and N, we have (Ka, (M,N)T) = U(K pn) where Kpny denotes the
complete bipartite graph on M and N vertices.

A similar operation called “duplicating” a vertex has a similarly simple effect:

Corollary. Let G’ be constructed from G as in the lemma but with an additional edge

between v and v’. Then ¥(G, w) = ¥(G', w’) if w’ is defined by (16.2) and

wy, = max(w,, ww.) . (16.9)

Proof. We may assume that w,= w, and w., # 0. Most of the construction (16.5)-

(16.7) can be used again, but we set a = 0 and b/, = 0 and

Wy — W,,
B=4| = lla.

Ww,

18



Once again the necessary and sufficient conditions are readily verified. [J

If the corollary is applied repeatedly, it tells us that ¥(G) is unchanged when we

replace the vertices of G by cliques.

17. Simple examples. We observed in section 4 that ¥(G, w) always is at least

VD,.., = HKn,w) = max{wi,...,wn} (17.1)

and at most

Umax = (Kn,w)=w1 +--+ wy. (17.2)

What are the corresponding orthogonal labelings?

For K, the vectors of a have no orthogonal constraints, while the vectors of » must

satisfy by, .b, = 0 for allu # v. We can let a be the two-dimensional labeling

V Wy
a, — 9 h— Yimin 17.3

so that ay ||? = 6 and c(a,) = Wy /V as desired; and b can be one-dimensional,

1 ifv =v

b, = { )> me (17.4)(0), if v # Umax

where Umax 1S any particular vertex that maximizes w,. Clearly

(Ay,,,,) Wy
clay)c(by) = —2xs= max _3 clan)e(by) = Steet = 2

For K, the vectors of a must be mutually orthogonal while the vectors of b are

unrestricted. We can let the vectors a be the columns of any orthogonal matrix whose top

row contains the element

Vw, [9 J = Jpnax (17.5)

in column v. Then [lay]? = 1 and c¢(ay,)=w,/¥. Once again a one-dimensional labeling
suffices for b; we can let b, = (1) for all v.

18. The direct sum of graphs. Let G = G’ + G” be the graph on vertices

V=vVuv” (18.1)

where the vertex sets V’ and V” of G' and G” are disjoint, and where u — v in G if and

only if u,v€ V’and u — v in G’, or u4,v€ V” and u — v in GG”. In this case

HG, w) = HG, w') + 3G", w”), (18.2)
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where w’ and w” are the sublabelings of w on vertices of V’ and V” We can prove (18.2)

by constructing orthogonal labelings (a, b) satisfying (12.2) and (12.3).

Suppose a’is an orthogonal labeling of G’ such that

lal||? = a}, = Vw, (18.3)

and suppose a” is a similar orthogonal labeling of G”. If a’ has dimension d’ and a” has

dimension d”, we construct a new labeling a of dimension d =d’+ d” as follows, where 7’

runs from 2 to d’ and j” runs from 2 to d

iftveV’ itveV”

Aly = V Wy = a7, , Aly = V Wy = af,

ary = 9/9 a}, . ary = 0, (18.4)

adr +1)0 = /9"w,[9 Ad +1) = — Vw [9

Ad! +5") — 0, Ad! +5" = 0/9" alin, .

Now if u, v € V’we have

! ney 4 / / ! oad 9" TE) v / /
Qy * Ay = \/ WW, + 9 (al, cq, — Vwl,wl) + 5 WW, = 9 QQ; (18.5)

thus a,. a, = 0 when a, -a, = 0, and

v
2 2

aul = = lab? = 9. (18.6)

It follows that c( a, )= w,/¥ as desired. A similar derivation holds for u, v € V”. And if
ueV, ve V’ then

Ay + Ay = VJ WLW — Jwi wl! =0. (18.7)

The orthogonal labeling b of G’+G" is much simpler; we just let b, = b) for v € V’

and b, = bY for v€ V”. Then (12.2) and (12.3) are clearly preserved. This proves (18.2).

There is a close relation between the construction (18.4) and the construction (16.6),

suggesting that we might be able to define another operation on graphs that generalizes

both the splitting and direct sum operation.

19. -The direct cosum of graphs. If G” and G” are graphs on disjoint vertex sets V’

and V7 as in section 18, we can also define

G=G FG" «<—=G=0G+G". (19.1)
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This means u — v in G if and only if either u — v in G’ or u — v in G” or u and v

belong to opposite vertex sets. In this case

9G, w) = max (3G, w), 3G", w”)) (19.2)

and again there is an easy way to construct (a, ») from (a’, »’) and (a”, b”) to prove (19.2).

Assume “without lots of generality” that

HG, Ww) >IG", w) (19.3)

and suppose again that we have (18.3) and its counterpart for a” Then we can define

iftveV itveV”

Aly = VWy = al, Aly = V Wy = ay, )

Ajry =r, aj, = 0, (19.4)

ad +1) = 0, aa 1) = (= )wll [9

A(d' +35" )v = 0, A(d' +45") = VU [9 Zi, :

Now a, is essentially unchanged when v € V’; and when u, v € V”we have

— Tr VY Hany! A " 1" Hall y — ¥’ 1 1
Ay Ay = JW!w! + ri 1) w/w! + = (al, - ay — Jwlw!!) = or uy (19.5)

Again we retain the necessary orthogonality, and we have c(ay)= w,/¥ for all v.

For the b’s, we let b,=b) when v € V’and b, =0 when v € V”

20. A direct product of graphs. Now let G’ and G” be graphs on vertices V’ and V”

and let V be the n = nn” ordered pairs

V=V XV". (20.1)

We define the ‘strong product’,

G =G xG" (20.2)

on V by the rule

u,u’) —(v,v’) or @,u’)=((,v’) in G

> UW —vVvoru =v in G) and @ —v’oru” =v"in G”). (20.3)

In this case we have, for example, K,/x K,» = K,,» and KoyxKyi=K, nm.
More generally, if G’ is regular of degree r’ and G” is regular of degree r", then G’ x G”

is regular of degree (r+ 1) (r” + 1) —=1=rr" +r +r”.
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I don’t know the value of ¥(G, w) for arbitrary w, but I do know it in the special case

[ T

Wp! uM) = Wor Woy . (20.4)

Lemma. IfG and w are given by (20.2) and (20.4), then

IG, w) =9(G', w) IG", w). (20.5)

Proof. [12] Given orthogonal labelings (a’, b’) and (a”, b”) of G’ and G", we let a be the

Hadamard product

Ar gyn) = Gry, 1<F<d, I< < dn, (20.6)

where d’ and d” are the respective dimensions of the vectors in a’ and a”. Then

Ay! ul) . Ay! v") = > 1041 Q11 011 O01 A 11,0
3',3"

Thus lar vy]? = lal, 11% [lal ||? and

The same construction is used for b in terms of b’ and b”.

All necessary orthogonalities are preserved, because we have

(uw, uu”) — (v’, v’) and (u’, u”) # (v’, v’) in G

= Ww —vand uv” #v in G’) or (W” — v” and u” # v” in G”)

= bur) Ow oy = 0;

(u’, u”) —~ (v’, v’) and (u’, u”) # (v’, v’) in G

= uw £4 v and u'# v’ in G’) or (u” —4 v” and u” # v” in G”)

— Au! u') . Ay! 0") -0.

(In fact one of these relations is <>, but we need only = to make (20.7) zero when it needs

to be zero.) Therefore a and b are orthogonal labelings of G that satisfy (12.2) and (12.3).

cl

21. A direct coproduct of graphs. Guess what? We also define

G=GC%G" << G=G" x G". (21.1)
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This graph tends to be “richer” than G’ x G”; we have

(uw, u”) — (v’, v’) and (u’, u”) #((’,v’)in G

&— (uw —v and © # vin G) or @W’ — v’ and u” #v’ in G”). (21.2)

Now, for instance, if G’ is regular of degree r’ and G” is regular of degree r’”, then

G’ % G” is regular of degree nn” — (n' —r'}(n" =r") =7r'n" + rn" —2'r".

(This is always > rr” +r’ +r" because r’'(n"— 1 —r”) + r"(n'—1—r) >0.) Indeed,

Gx G” OG’ x G” for all graphs G’ and G”. The Hadamard product construction used

in section 20 can be applied word-for-word to prove that

IG, w) =9(G", w) IG", w) (21.3)

when G satisfies (21.1) and w has the special factored form (20.4).

It follows that many graphs have identical ¥’s:

Corollary. If G *G” CG CG’ *¥ G” and w satisfies (20.4), then (21.3) holds.

Proof. This is just the monotonicity relation (4.3). The reason it works is that we have

Ay pv) * Au p'") = b(u 0) Our wry = 0 for all pairs of vertices (u’, u”) and (v’, v’) whose
adjacency differs in G” * G” and G” x G”. [J

Some small examples will help clarify the results of the past few sections. Let Pj be

the path of length 2 on 3 vertices, #—e—, and consider the four graphs we get by taking

its strong product and coproduct with K; and Ko:

u v w

_ *r—1—0

Ky x Py = 9 = max(u + W, v) + Max(T + 2, Y)
0

X Y A

(Since P53; may be regarded as KoFK; ana Ko is Ki + Ko, this graph 1S

((K4 + K) + K) + ((K2 + Ky) + Ki)
and the formula for ¢ follows from (18.2) and (19.2).)

U Vv Ww

Ky % Py = XX V = max(u + w+ x + 2, v + Y)
X Y z
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(This graph is Ko F K4; we could also obtain it by applying Lemma 16 three times to Pj.)

U Vv Ww

Ko x Py = XIX ¥ = max(max(u, x) + max(w, z), max(v, vy)
X Y z

Ko x Pg = RD ¥ = max(max(u + w, x + x), max(v, y))

If the weights satisfy u = Xx, v = Ay, w = Xx for some parameter A, the first two formulas

for 9 both reduce to (1+A) max(u + w, v), in agreement with (20.5) and (21.3). Similarly,

the last two formulas for 9 reduce to max(1,\) max(u + w, v) in such a case.

22. Odd cycles. Now let G = C), be the graph with vertices 0, 1, ..., n— 1 and

u-v<u—v==xl (modn), (22.1)

where n is an odd number. A general formula for ¥(C,, w) appears to be very difficult;

but we can compute ¥(C},) without too much labor when all weights are 1, because of the

cyclic symmetry.

It is easier to construct orthogonal labelings of C,, than of C,, so we begin with that.

Given a vertex v, 0 <v <n, let b, be the three-dimensional vector

a

by, =| cosvyp |, (22.2)

sin UV

where a and ¢ remain to be determined. We have

bu - by = 0% + cos up cos vp + sin wp sin Vv

=a’ + cos(u —v)p. (22.3)

Therefore we can make b, .b, = 0 when u =v £ 1 by setting

Tn —1

a’ = — cos, © = mn— 1 (22.4)
n

This choice of ¢ makes ny a multiple of 27, because n is odd. We have found an orthogonal

labeling b of C,, such that
2

e! cos T/n
clby) =z——— = —— 22.5(6) 1+ a? = 1l+cosm/n (225)
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Turning now to orthogonal labelings of C,, we can use (2n — I)-dimensional vectors

ao

1 cos VP

(1 SIN VQ

(2 COS 2VY
(l =

v (vg sin 20 (22.6)

Q,_1 cos(n — Lv

ay,1 sin(n —1)vp

with ¢ = m(n —1)/n as before. As in (22.3)) we find

n -1

aya =» of cos k(u—1v)p; (22.7)
k=0

so the result depends only on (u — v) mod n. Let w = e'¥. We can find values of ay such

that a, . Gy = T(y—v)modn by solving the equations

n -1

xj = > owt (22.8)
k=0

Now w is a primitive nth root of unity; i.e., wk =1iffk is a multiple of n. So (22.9) is

just a finite Fourier transform, and we can easily invert it: For 0 <m <n we have

n—1 n-1 n-1

> wz; = > of > Ww Fm) — na?
j=0 k=0  j=0

In our case we want a solution with x9=23=... = £,_9 = 0, and we can set Zg = 1,

Tn_1=T1=2Z,sowe find

2 __ —k k _
nap =To+w "T1+W Tn_1=1 + 2x coskyp.

We must choose x so that these values are nonnegative; this means 2x <—1/ cos , since

cos ko is most negative when k£ = 1. Setting x to this maximum value yields

1 1 1+ cosm/n

cay) = af = = (1 —) = 1+ cosm/n : (22.9)n COS n.cosw/n

So (22.5) and (22.9) give

>clay)e(b,) =» Un = 1. (22.10)
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This is (12.3)) hence from (12.2) we know that ¥(C,)= A. We have proved, in fact, that

5 1) ncosm/n—_————— 22.11(Crs 1+ cosm/n’ ( )
— l +cosm/n

HCp, 1) = I+cosm/n (22.12)
cosT/n

When n = 3, Cp,= K,, and these values agree with 9(K3) = 1, 9(K3) = 3; when n = 5,
Cs is isomorphic to Cs so 9(C5s) = v5; when n is large,

3(Ch) nm O(n=%) I(Cr)=2 + ia + O(n™*) (22.13)== —— + Un ; = — n : :
"2 8n " 2n?

Instead of an explicit construction of vectors a, as in (22.6)) we could also find WC)

by using the matrix characterization v5 of section 6. When all weights are 1, a feasible

A has 1 everywhere except on the superdiagonal, the subdiagonal, and the corners. This

suggests that we look at “circulant” matrices; for example, when n = 5,

1 l+z 1 1 I1+x\

I1+x 1 1 +x 1 1

A = 1 142 1 14z 1 =J+zP+ xP, (22.14)
1 1 I1+x 1 1+

+x 1 1 l1+z 1

where J is all I's and P is the permutation matrix taking j into ( + 1) mod n. It is well

known and not difficult to prove that the eigenvalues of the circulant matrix agl +a; P +

coi + a,_1 P71 are

d wha, 0<k<n, (22.15)
0<5<n

where w = 27/7 (Indeed, it suffices to find the eigenvalues of P itself. This w is a

different primitive root of unity from the w we used in (22.8).) Hence the eigenvalues of
(22.14) are

n+2z, rzw+w?l), zw +w?), ..., z+). (22.16)

We minimize the maximum of these values if we choose x so that

n + 2x = —2xcosmw/n;

then

AA) = -2 / n cos m/n 22.17= -2x cos w/n = ———— :

1 + cos m/n ( )

26



1s the value of 9(G).

Ifn is even, the graph C), is bipartite. We will prove later that bipartite graphs are

perfect, hence ¥(Cr)=n/2 and ¥9(C,) = 2 in the even case.

23. Comments on the previous example. The cycles C, provide us with infinitely

many graphs G for which HG) G) = n, and it 1s natural to wonder whether this is true
in general. Of course it is not: If G = K+ Kym then G =K,,+ Kp—m, hence we know
from Lemmas 18 and 19 that

HG) =m + 1, I(G) =max(l,n —m). (23.1)

In particular, we can make ¥(G)9(G) as high as n%/4 + n/2 when m =|n/2].

We can, however, prove without difficulty that Y(G)9(G)> n:

Lemma.

HG, w)I(G,w) >w ww, (23.2)

Proof. By Theorem 12 there is an orthogonal labeling a of G and an orthogonal labeling b

ofG such that

cay) = wy, /9(G, w), c(by) = wl, /9(G, w) . (23.3)

By (11.1) we have

> clay)c(by) <1. (23.4)

QED. []

24. Regular graphs. When each vertex of G has exactly r neighbors, Lovasz and

Hoffman observed that the construction in (22.14) can be generalized. Let B be the

adjacency matrix of G, i.e., the n x n matrix with

B 1, ifu—wv; 24.1)
“To ,ifu=wvoru—w.

Lemma. If Gis a regular graph,

nA(-B

HG) < __rACE) : (24.2)
A(B) + A(-B)

Proof. Let A be a matrix analogous to (22.14))

A=J+zB. (24.3)
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Since G is regular, the all-I’s vector 1 is an eigenvector of B, and the other eigenvectors

are orthogonal to 1 so they are eigenvectors also of A. Thus if the eigenvalues of B are

r= AB) = \>X>...>\,=-A(-B) , (24.4)

the eigenvalues of A are

n+ 7rr,TA,..., TA. (24.5)

(The Perron-Frobenius theorem tells us that Ay=r.) We have Aj +--+ A, = tr(B) = 0,

sO Ap, < 0, and we minimize the maximum of (24.5) by choosing n + rx = TA,; thus

—nA
A(A) =zhp=—"77,

r— Ap

which is the right-hand side of (24.2). By (6.3) and Theorem 12 this is an upper bound

on ¥. []

Incidentally, we need to be a little careful in (24.2): The denominator can be zero,

but only when G =K,.

25. Automorphisms. An automorphism of a graph G is a permutation p of the vertices

such that

p(u) — p(v) iffu-v. (25.1)

Such permutations are closed under multiplication, so they form a group.

We call G vertex-symmetric if its automorphism group is vertex-transitive, i.e., if

given u and v there is an automorphism p such that p(u) = v. We call G edge-symmetric

if its automorphism group is edge-transitive, i.e., if given u — v and vw’— 2’ there is an

automorphism p such that p(u) =u’ and p(v) =v’ or p(u) =v’ and p(v) = u’

Any vertex-symmetric graph is regular, but edge-symmetric graphs need not be reg-

ular. For example,

pe is edge-symmetric, not vertex-symmetric;

Xi 1s vertex-symmetric, not edge-symmetric. (] is a maximal clique)
The graph C, is not edge-symmetric for n > 7 because it has more edges than automor-

phisms. Also, C, has no automorphism that takes 0 — 2 into 0 — 3.

Lemma. If G is edge-symmetric and regular, equality holds in Lemma 24.

Proof. Say that A is an optimum feasible matrix for G if it is a feasible matrix with

AA) = ¥(G)
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as in section 6. We can prove that optimum feasible matrices form a convex set, as follows.

First, tA + (1 — ¢)B is clearly feasible when A and B are feasible. Second,

A(tA + (1 —t)B) <tA(A) + (1 — t)A(B), 0<t<l1 (25.2)

holds for all symmetric matrices A and B, by (6.2) ; this follows because there is a unit

vector x such that A(tA+ (1 — 1)B) = 27 (tA + (1 — 1)B)x = tzTAz + (1 —¢t)z"Bz <
tA(A) + (1 —t)A(B). Third, if A and B are optimum feasible matrices, the right side of

(25.2) is B(G) while the left side is >¥(G) by (6.3). Therefore equality holds.

IfA is an optimum feasible matrix for G, so is p(A), the matrix obtained by permuting

rows and columns by an automorphism p. (I mean P(A)uv = Ap(u)p(v)-) Therefore the
average, A, over all p is also an optimal feasible matrix. Since p(A)= A for all automor-

phisms p, and since G is edge-symmetric, A has the form J + zB where B is the adjacency

matrix of G. The bound in Lemma 24 is therefore tight. []

(Note: If p is a permutation, let Py, = 1 ifu = p(v), otherwise 0. Then (PTAP)y, =

The argument in this proof shows that the set of all optimum feasible matrices A

for G has a common eigenvector x such that Ax = ¥(G)z. The argument also shows

that, if G has an edge automorphism taking u — v into u’ — Vv’, we can assume without

loss of generality that A,, = Ay In an optimum feasible matrix. This simplifies the

computation of A(A), and justifies our restriction to circulant matrices (22.14) in the case

of cyclic graphs.

Theorem. If G is vertex-symmetric, 9(G)9(GG) = n.

Proof. Say that bis an optimum normalized labeling of G if it is a normalized orthogonal

labeling of G achieving equality in (7.1) when all weights are I:

9 => by by, > bol? = 1, b,.b,=0 when u —v. (25.3)
u,v v

Let B be the corresponding spud; i.e., By, =by.by, and ¥ =) By,. Then p(B) is also
equivalent to an optimum normalized labeling, whenever p is an’automorphism; and such

matrices B form a convex set, so we can assume as in the lemma that B = p(B) for all

automorphisms p. Since G is vertex-symmetric, we must have B,,= 1/n for all vertices v.

Thus there is an optimum normalized labeling 5b with 164] =1/n, and the arguments of
Lemma 10 and Theorem 12 establish the existence of such a b with

c(by) = HG)/n (25.4)
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for all v. But b is an orthogonal labeling of G, hence

91( G, 1) <n/Y(G)

by the definition (5.2) of ¥;. Thus ¥(G )I(G)< n; we have already proved the reverse
inequality in Lemma 23. []

26. Consequence for eigenvalues. A curious corollary of the results just proved is

the following fact about eigenvalues.

Corollary. If the graphs G and G are vertex-symmetric and edge-symmetric, and if the

adjacency matrix of G has eigenvalues

AL ZA 2 0 2 Ap, (26.1)

then

(A =A )(n =A + A) =—An(A2 + I)n. (26.2)

Proof. By Lemma 25 and Theorem 25,

nA(—B nA(—B

AB) + A(B)A(B) + A(—B) =

where B and B are the adjacency matrices of G and G, and where we interpret O/ O as 1.
We have

B=J-1-B. (26.4)

If the eigenvalues of B are given by (26.1)) the eigenvalues of B are therefore

no—1—A>-1-A,> >—1— A. (26.5)

(We use the fact that G is regular of degree Xi.) Formula (26.2) follows if we plug the

values A(B) = Aj, A(-B) = =A, AB) =n —1—A1, A(-B) = 1 + Ag into (26.3). [J

27. Further examples of symmetric graphs. Consider the graph P(m,1, gq) whose

vertices are all sd; Jebs tofcardinality ¢ of some given set S of cardinality m, where

uv- v <> luNv|=gq. (27.1)

We want 0 <g <tand m > 2t — g, so that the graph isn’t empty. In fact, we can assume

that-m > 2t, because P(m,r, g) is isomorphic to P(m,m —t,m— 2t + gq) if we map each
subset u into the set difference S \ u:

(S\Nuw) N(S\v)| = |S] = [ub] = |S] = Jul =v] + [un vl. (27.2)
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The letter P stands for Petersen, because P(5,2,0) is the well known ‘<Petersen graph” on

10 vertices,

12

15 23 (27.3)

These graphs are clearly vertex-symmetric and edge-symmetric, because every permutation

of S induces an automorphism. For example, to find an automorphism that maps u —v

into u' — v',letu = (wvNw Ud,v=wNv)U 73, v'=>@nNv)U 2, vV=>@nNv)U&, and

apply any permutation that takes the g elements of u Mv into the g elements of u” N Vv, the
t — q elements of #4 into the t — g elements of u’, and the t — g elements of ¥ into ©’. Thus

we can determine 3 (P(m, t, q)) from the eigenvalues of the adjacency matrix. Lovész [12]
discusses the case g = 0, and his discussion readily generalizes to other values of g¢. It

turns out that I (P(m, t, 0) = (™h. This is also the value of a(P(m, t, 0)), because the
(mH vertices containing any given point form a stable set.

The special case £t = 2, g = 0 is especially interesting because those graphs also satisfy

the condition of Corollary 26. We have

m m - 2

2 2

and (26.2) does indeed hold (but not “trivially”). It is possible to cover P(m,2,0) with

disjoint maximum cliques; hence k(P(m,2,0)) = EIE 2[Z]— 1. In particular,
when G is the Petersen graph we have a(G) = 0(G) = 4, k(G) = 5; also a(G) = 2,

Val Val 5JG) = (GG) = 3.

28. A bound on ¥. The paper [12] contains one more result about © that is not in [7],

so we will wrap up our discussion of [12] by describing [12, Theorem 11].

Theorem. IfG has an orthogonal labeling of dimension d with no zero vectors, we have

HG) < d.

Proof. Given a non-zero orthogonal labeling a of dimension d, we can assume that

[lJ = 1 for all v. (The hypothesis about zeros is important, since there is trivially an
orthogonal labeling of any desired dimension if we allow zeros. The labeling needn’t be
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optimum.) Then we construct an orthogonal labeling a” of dimension d?, with c(a’)=1/d
for all v, as follows:

Let a’, have d® components where the (j, k) component is jy0ky- Then

a. a = (a, . ay) (28.1)

as in (20.7). Let Q be any orthogonal matrix with d? rows and columns, such that the

Gi, k) entry in row (1,1)is1/v/d for j= k, 0 otherwise. Then we define

a! = Qa, . (28.2)

Once again a.-a. = (ay -ay)?%, so a” is an orthogonal labeling. We also have first component

Le = 2 TA Ske = 2 TAT TE (28.5)
j,k Vu ko Vu VU

hence c(a!’)=1/d. This proves 9(G)< d, by definition of ¥;. U

This theorem improves the obvious lower bound a(G) on the dimension of an optimum

labeling.

29. Compatible matrices. There’s another way to formulate the theory we’ve been

developing, by looking at things from a somewhat higher level, following ideas developed

by Lovédsz and Schrijver [15] a few years after the book [7] was written. Let us say that

the matrix A is X-compatible with G and w ifA isan (n + 1) x(n + 1) spud indexed by

the vertices of G and by a special value 0, having the following properties:

. Ago = A

. A,, = Ay, =w, for all vertices v;

. Ayu = 0 whenever u 4 v in G.

Lemma. There exists an orthogonal labeling a for G with costs c(a,)=w,/A if and only

if there exists a matrix A that is X-compatible with G and w.

Proof. Given such an orthogonal labeling, we can normalize each vector so that ||a,|=
w,. Then when w,# 0 we have

2

Wa ai,
— = cla, ) = —,A (av) Wey

SO we can assume that aj, = Wy [VA for all v. Add a new vector ag, having ag = VA
and ajo = 0 for all j > 1. Then the matrix A with A,, =a, .a, 1s easily seen to be

X-compatible with G and w.
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Conversely, if such a matrix A exists, there are n + I vectors Gg, ..., a, such that

Ayuy = Gy. Gy; In particular, lag]? = A. Let Q be an orthogonal matrix with first row

al / V/A, and define a, = Qa, for all v. Then aj, = vA and sg = 0 for all 7 > 1.
Also al -al =a, - a =A, for all u and v. Hence VAa), =a).al, = Ag, = w, and
la! |P = a, + a, = Ayy = Wy, for all v € G, proving that ¢(a,) = w,/A. Finally a’ is an

orthogonal labeling, since a, .a, =A, = (0 whenever uv. i

Corollary. x € TH(G) iff there exists a matrix l-compatible with G and x.

Proof. Set A = 1 in the lemma and apply Theorem 14. [J]

The corollary and definition (4.1) tell us that IG, w) 18 max (wi 1 +... + Win Tp)

over all x that appear in matrices that are l-compatible for G and x. Theorem 12 tells

us that ¥(G, w) is also the minimum A such that there exists a X-compatible matrix for

G and w. The “certificate” property of Theorem 13 has an even stronger formulation in

matrix terms:

Theorem. Given a nonnegative weight vector w = (wy, .. . , wy) T, let A be X-compatible

with G and w, where Ais as small as possible, and let B be l-compatible with G and x,

where W1T1 ++. + WpZTy is as large as possible. Then

ADB =0, (29.1)

where D is the diagonal matrix with Dgg = -1 and Dy, = +1 for all v #% 0. Conversely,

ifA is X-compatible with G and w and if B is l-compatible with G and x, then (29.1)

implies that A= wix1+ -. + Way = HG, w).

Proof. Assume that A is X-compatible with G and w, and B is l-compatible with G

and x. Let B' = DBD, so that B' is a spud with Bly =1, By, = Bg = —%», and

B!= By, when u and v are nonzero. Then the dot product A - Bis

A—WIT]— + —WnpTp— WIT] — * — WnpTp + WIT] + F Wp Ty, = A— (W121+--+Wn Ty),

because A,, By, = 0 when u and v are vertices of G. We showed in the proof of F9

in section 9 that the dot product of spuds is nonnegative; in fact, that proof implies

that the dot product is zero if and only if the ordinary matrix product is zero. So A =

WIT] + + + WpLy= WG, w) iff AB’ = 0, and this is equivalent to (29.1). 4

Equation (29.1) gives us further information about the orthogonal labelings a and b

that appear in Theorems 12 and 13. Normalize those labelings so that lal? = w, and

33



|b||* = z,. Then we have

> wy (bs - by) =vx,, (29.2)
teG

> (a; + Gy) = Wy, (29.3)
teG

> (as ca,) (by by) = wu, , (29.4)
teG

for all vertices u and v of G. (Indeed, (29.2) and (29.4) are respectively equivalent to

(AB')gy = 0 and (AB), = 0; (29.3) is equivalent to (B'A)g, = 0.) Notice that if A and

B are the n x n spuds; obtained by deleting row 0 and column O from optimum matrices

A and B, these equations are equivalent to

Bw = dx : Az = w, AB = wT. (29.5)

Equation (29.1) is equivalent to (29.5) together with the condition W1Z1+ ...+ WT, =.

Since AB’ = 0 iff BA = 0 when A and B’ are symmetric matrices, the optimum

matrices A and B’ commute. This implies that they have common eigenvectors: There is

an orthogonal matrix Q such that

T T

A = Qdiag (Mo,...,A) Q", B’ = Q diag (po,...,pn) @" . (29.6)

Moreover, the product is zero, so

Aoptg = "++ = Apltn = 0. (29.7)

The number of zero eigenvalues Agisn + 1 —d, where d is the smallest dimension for which

there is an orthogonal labeling a with A,, = a, -a,. A similar statement holds for B’ since

the eigenvalues of B and B’ are the same; y is an eigenvector for B iff Dy is an eigenvector

for B’ In the case G = C,, studied in section 22, we constructed an orthogonal labeling

(22.3) with only three dimensions, so all but 3 of the eigenvalues ux were zero. When all

the weights w, are nonzero and 6(G) is large, Theorem 28 implies that a large number of

Ax must be nonzero, hence a large number of ur must be zero.

The “optimum feasible matrices” A studied in section 6 are related to the matrices A
of (29.5) by the formula

9A = ww? — 9 diag (ws, ...,w,) — diag (Vw, . .., Vn ) Adiag (Vwi, .. ., Vn ), (29.8)

because of the construction following (6.6). If the largest eigenvalue A(A) = vy ofA occurs

with multiplicity r, the rank of YI— A will be n —r, hence A will have rank n —7 or

n —7 + 1, and the number of zero eigenvalues Ag in (29.6) will be 7 + 1 or 7.
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30. Antiblockers. The convex sets STAB, TH, and QSTAB defined in section 2 have

many special properties. For example, they are always nonempty, closed, convex, and

nonnegative; they also satisfy the condition

O0<y<za n dreX=yclX. (30.1)

A set X of vectors satisfying all five of these properties is called a convex corner.

If X is any set of nonnegative vectors we define its antiblocker by the condition

ablX ={y>0|x-y<1forall x eX}. (30.2)

Clearly abl X is a convex corner, and abl X Dabl X’ when X C X'.

Lemma. IfX is a convex corner we have abl abl X = X.

Proof. (Compare with the proof of F5 in section 8.) The relation X C abl abl X is

obvious by definition (30.2), so the lemma can fail only if there is some z€ abl abl X with

z¢ X. Then there is a hyperplane separating z from X, by F1; i.e. there is a vector y

and a number b such that x -y<b for all x € X but 2-y > b. Let 3 be the same as y but

with all negative components changed to zero. Then (y, bh) is also a separating hyperplane.

| Proof: If x€ X, let x’ be the same as x but with all components changed to zero where
y has a negative entry; then x’ € X, and x -y’ =x" -y <b. Furthermore z-y’>2-y > b.]

If » = 0, we have Xy’ €ablX for all A > 0; this contradicts z . Xy’ < 1. We cannot have

b < 0, since 0 € X. Hence b > 0, and the vector yy’ /b€ablX. But then z-(y'/b) must be

< 1, a contradiction.

Corollary. IfG is any graph we have

STAB (c) =ablQSTAB(G), (30.3)

TH(G) = abl TH(G), (30.4)

QSTAB(G)= abl STAB (G) . (30.5)

Proof. First we show that

abl X = abl convex hull X (30.6)

The left side surely contains the right. And any element y € abl X will satisfy

(az + + ogz®). y <1

when the a’s are nonnegative scalars summing to 1 and the 2) are in X. This proves

(30.6), because the convex hull of X is the set of all such az + + ark)
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Now (30.6) implies (30.5), because the definitions in section 2 say that

QSTAB(G) = abl { x| x is a clique labeling of G}

— abl { x| x is a stable labeling of G },

STAB (G) = convex hull {x|x is a stable labeling of G }.

And (30.5) is equivalent to (30.3) by the lemma, because STAB (G) is a convex corner. (We

must prove (30.1) and it suffices to do this when y equals x in all but one component; and

in fact by convexity we may assume that y is 0 in that component; and then we can easily

prove it, because any subset of a stable set is stable.)

Finally, (30.4) is equivalent to Theorem 14, because TH(G) = abl { x |x, = c(a,) for

some orthogonal labeling of G }. [J

The sets STAB and QSTAB are polytopes, i.e.,, they are bounded and can be defined

by a finite number of inequalities. But the antiblocker concept applies also to sets with

curved boundaries. For example, let

X={z>0]|=z|| <1} (30.7)

be the intersection of the unit ball and the nonnegative orthant. Cauchy’s inequality

implies that x +y < 1 whenever ||z||< 1 and ||y||< 1, hence X C abl X. And ify € ablX

we have y € X, since y # 0 implies ||y||=v-(v/||y||)< 1. Therefore X = abl X.

In fact, the set X in (30.7) is the only set that equals its own antiblocker. If Y = abl Y

and y € Y we have y . y <1, hence Y C X; this implies abl Y OD X

31. Perfect graphs. Let w(G) be the size of a largest clique in G. The graph G is

called perfect if every induced subgraph G’ of G can be colored with w(G"’) colors. (See

section 15 for the notion of induced subgraph. This definition of perfection was introduced

by Claude Berge in 1961.)

Let GT be G with vertex v duplicated, as described in section 16. This means we add

a new vertex v’ with the same neighbors as v and with v.— Vv’.

Lemma. If G is perfect, so is G7.

Proof. Any induced subgraph of G* that is not G7 itself is either an induced subgraph

of G (if it omits v or v’ or both), or has the form Gt for some induced subgraph G’ of G

(if it retains v and v’). Therefore it suffices to prove that GT can be colored with w(GT)
colors.

Color G with w(G) colors and suppose v is red. Let G’ be the subgraph induced

from G by leaving out all red vertices except v. Recolor G” with w (G’) colors, and assign a
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new color to the set GT\G’, which is stable in GT. This colors G* with w(G’) + 1 colors,

hence w(GT)<w(G') + 1.

We complete the proof by showing that w(G1)=w(G’) + 1. Let Q be a clique of size

W(G") in G.

Case 1. v&€ Q. Then Q U {v’'} is a clique of Gt.

Case 2.v zqQ). Then Q contains no red element.

In both cases we can conclude that w(GT)>w(G') +1. Ud

Theorem. If G is perfect, STAB (G) = QSTAB(G).

Proof. It suffices to prove that every x € QSTAB(G) with rational coordinates is a member

of STAB (G), because STAB (G) is a closed set.

Suppose Xx € QSTAB(G) and gz has integer coordinates. Let G1 be the graph obtained

from G by repeatedly duplicating vertices until each original vertex v of G has been replaced

by a clique of size qx,. Call the vertices of that clique the clones of v.

By definition of QSTAB(G), if Q is any clique of G we have

> Ty, < 1.
ve)

Every clique Q’ of G* is contained in a clique of size D 0e0 qx, for some clique Q of G.
(Including all clones of each element yields this possibly larger clique.) Thus w(G1)< q,

and the lemma tells us that G1 can be colored with ¢ colors because GV is perfect.

For each color k, where 1 <k< gq, let iF) = 1 if some clone of v is colored k, otherwise
2M) = 0. Then z*) is a stable labeling. Hence

Lm- Y «¥ e stAB(G) .
q k=1

But every vertex of GT is colored, so 53 gf) = qx, for all v, so a> 7, zk) = x. [J

32. A characterization of perfection. The converse of Theorem 31 is also true; but

before we prove it we need another fact about convex polyhedra.

Lemma. Suppose P is the set {x>0|x-2<1for all z€Z}=ablZ for some finite

set 4 and suppose y € abl P, i.e., y is a nonnegative vector such that x -y <1 for all

x € P. Then the set

Q={zePlz-y=1} (32.1)

is contained in the set {x|xz-z=11} for some 2€Z [unless Q and Z are both empty).

Proof. This lemma is “geometrically obvious”-it says that every vertex, edge, etc., of

a convex polyhedron is contained in some “facet’‘-but we ought also to prove it. The
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proof is by induction on |Z|.IfZ is empty, the result holds because P is the set of all

nonnegative X, hence y must be 0 and Q must be empty.

Suppose z is an element of Z that does not satisfy the condition; i.e., there is an

element x € P with x . y = 1 and z.2%# 1. Then x . 2 < 1. Let Z'=7Z \ {x} and

P’=ablZ’. It follows that x’ . y <1 for all x’ € P’. For if x’. y > 1, a convex combination

zr" = ex + (1 —e)x’ will lie in P for sufficiently small €, but x” -y > 1.

Therefore by induction, Q° = {x€ P’| xy =1} is contained in {x|{x.2' =1} for

some z'€Z’, unless Q’ is empty, when we can take 2’ =z. And Q C Q’, since P C P’ [

Theorem. G is perfect if and only if STAB(G) = QSTAB(G).

Proof. As in section 15, let G|U be the graph induced from G by restriction to vertices U.

If X is a set of vectors indexed by V and if UC V, let X|U be the set of all vectors indexed

by U that arise from the vectors of X when we suppress all components Z, with v ¢U.
Then it is clear that

QSTAB(G|U) = QSTAB(G)|U , (32.2)

because every x €QSTAB(G|U) belongs to QSTAB(G)ifwe set x, = 0 for v €U, and every

x €QSTAB((G) satisfies D veQ Ty <1 for every clique Q C U. Also

STAB(G|U) = STAB(G)|U, (32.3)

because every stable labeling of G|U is a stable labeling of G if we extend it with zeros,

and every stable labeling of G is stable for G|U if we ignore components not in U.

Therefore STAB(G) = QSTAB(G) iff STAB(G')= QSTAB(G') for all induced graphs. By

Theorem 31 we need only prove that STAB(G) = QSTAB(G) implies G can be colored with

w(G) colors.

Suppose STAB(G) = QSTAB(G). Then by Corollary 30,

STAB(G) = QSTAB(G) (32.4)

Let P = STAB(G), and let y = 1/w(G). Then x.y < 1 whenever x is a clique labeling

of G, i.e., whenever x is a stable labeling of G; so Xx .y <1 for all x € P. Let Z be the

set of all stable labelings of G, ie., clique labelings of G. Then P = QSTAB(G) = ablZ
and Z is nonempty. So the lemma applies and it tells us that the set Q defined in (32.1)

is contained in {x|x-z=1} for some stable labeling z of G. Therefore every maximum

clique labeling x satisfies T-2z2 = 1; 1.e., every clique of size w(G) intersects the stable set S

corresponding to z.So w(G') = w(G) — 1, where

G=G|(V\S). (32.5)
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By induction on |V| we can color the vertices of G* with w(G') colors, then we can use a

new color for the vertices of S; this colors G with w(G) colors. []

Lovasz states in [13] that he knows no polynomial time algorithm to test if G is perfect;

but he conjectures (“guesses”) that such an algorithm exists, because the results we are

going to discuss next suggest that much more might be provable.

33. Another definition of 6. The following result generalizes Lemma 9.3.21 of [7].

Lemma. Let a and b be orthogonal labelings of G and G that satisfy the conditions of

Theorem 12, normalized so that

lay [2s]? = woe(by), ay > 0, and ~~ by, > 0, (33.1)

for all v. Then

> aubrey = V WG w), ifj=k=1 (33.2)
- 0, otherwise.

Proof. Let ag = (V9,0,. .. ,0)1 and by = (—1,0,. .. ,0)T. Then the (n+ 1) x(n +1)
matrices A = ala and B = bT'b are spuds, and A-B = 0. (In the special case ||ay]|?= wy,

|b)= e(by), matrix B is what we called B’ in the proof of Theorem 29.) Therefore

0 =trATB = tra’ ab?b = tr ba’ ab? = (ab?) (ab), and we have ab? = 0. In other words

a;obro + > Aubry = 0

for all § and k. []

We now can show that 6 has yet another definition, in some ways nicer than the one

we considered in section 6. (Someday I should try to find a simpler way to derive all these

facts.) Call the matrix B dual feasible for G and w if it is indexed by vertices and

B is real and symmetric;

By, =w, for all v € V;

B., = 0 whenever u —£ v in G; (33.3)

and define

. Y¢(G, w) = max{ A(B) |

B 1s positive semidefinite and dual feasible for G and w } . (33.4)

(Compare with the analogous definitions in (6.1) and (6.3).)
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Theorem. ¥(G,w) = 9(G, w).

Proof. IfB is positive semidefinite and dual feasible, and if A is any eigenvalue of B,

we can write B = QDQT where Q is orthogonal and D is diagonal, with Dj; = A. Let

b =+v/D QT; then b is an orthogonal labeling of G with ||by||?= w, for all v. Furthermore

c(by) = b3, Jw, = Aq? /wy, where (qi1,...,qn1) is the first column of Q. Therefore

Yo, clby)wy, = AD, q>, = A, and we have A<9Y4(G,w) by (10.1). This proves that
9 < 0.

Conversely, let a and b be orthogonal labellings of G and G that satisfy the con-

ditions of Theorem 12. Normalize them so that la, || = c(b,) and 16, || = W,. Then

a2, = c(ay)c(by,) = wye(by)/Y9 =b2,/9. The lemma now implies that (b11,..., bin)? is an
eigenvector of bh, with eigenvalue ¥. This proves that 9<d¢. [J

Corollary. 6(G) = 1 + max{ A(B)/A(—B)|B is dual feasible for G and 0}.

Proof. IfB is dual feasible for G and 0, its eigenvalues are A\;>..->A, where

A1 = AB) and A, = -A(-B). Then B’ =1 + B/A(—B) has eigenvalues 1 —A1/Ap,...,

1 — X,/X, = 0. Consequently B’is positive semidefinite and dual feasible for G and 1,

and 1 + A(B)/A(—B) = A(B") <94(G).

Conversely, suppose B’is positive semidefinite and dual feasible for G and 1, with

A(B')=19 = 6(G). Let B = B’— 1. Then B is dual feasible for G and 0, and 0 <

A( — B) <1 since the sum of the eigenvalues of B is tr B = 0. It follows that ¥—1 =

A(B) < A(B)/A(~B). O

34. Facets of TH. We know that TH(G) is a convex corner set in n-dimensional space,

so it is natural to ask whether it might have (n — l)-dimensional facets on its nontrivial

boundary--for example, a straight line segment in two dimensions, or a region of a plane

in three dimensions. This means it has n linearly independent vectors z*) such that

> zFe(ay) =1 (34.1)

for some orthogonal labeling cL of G.

Theorem. If TH(G) contains linearly independent solutions x1)...z{™ of (34.1), then
there is a maximal clique Q of G such that

1, vedQ;
clay) = 4.2(av) {o vd 0. (34.2)

Proof. Theorem 14 tell us that every zk) TH(G) has ro) = c(bS) for some orthogonal
labeling of G. Set wy,= c(a,); then ¥(G, w) = 1, by Theorem 13. We can normalize the
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labelings so that ||a||® = a1, = wy, and 1557) 1|2 = pb!) =z) Hence, by Lemma 33,

1

0

Y ala, =|. [=e (34.3)
- :

0

Let

Q={vian#0}={v|cla,)#0} (34.4)

and suppose Q has m elements. Then (34.3) is equivalent to the matrix equation

Az®) = (34.5)

where A is a d xm matrix and 2%) has m components zi one for each v € Q. By
hypothesis there are m linearly independent solutions to (34.5), because there are n linearly

independent solutions to (34.3). But then there are m — 1 linearly independent solutions

to Ax = 0, and it follows that A has rank 1: Every row of A must be a multiple of the top

row (which is nonzero). And then (34.5) tells us that all rows but the top row are zero.

We have proved that

clay) # 0 = clay) = 1. (34.6)

Therefore if u and v are elements of Q we have a, . a, # 0, hence u — v; Q is a clique.

Moreover, Q is maximal. For if v ¢ Q is adjacent to all elements of (), there is a k

such that 2M) > 0. But the characteristic labeling of Q U {v} is an orthogonal labeling a’
such that ) 2 e(al)) = 1 +z > 1, hence zB)¢ TH(G). O

Conversely, it is easy to see that the characteristic labeling of any maximal clique Q

does have n linearly independent vectors satisfying (34.1)) so it does define a facet. For

each vertex u we let 2 = 1, and zi) = 0 for all v # u except for one vertex v € Q
with v —~ u (when u ¢€ Q). Then z(*) is a stable labeling so it is in TH(G). The point

of the theorem is that a constraint )_  Z,c(a,)< 1 of TH(G) that is not satisfied by all

x € QSTAB(G) cannot correspond to a facet of TH(G).

Corollary.

TH(G) is a polytope <= TH(G) = QSTAB(G)

<= TH(G) = STAB(G) <= G is perfect.

Proof. If TH(G) is a polytope it is defined by facets as in the theorem, which are nothing

more than the constraints of QSTAB((); hence TH(G)= QSTAB((G). Also the antiblocker of
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a convex corner polytope is a polytope, so TH(G) is a polytope by (30.4); it must be equal
to QSTAB(G). Taking antiblockers, we have TH(G) = STAB (G) by (30.3). The converses

are easy since STAB and QSTAB are always polytopes. The connection to perfection is an

immediate consequence of Theorem 32 and Lemma 2. []

We cannot strengthen the corollary to say that J (G) = a(G) holds if and only if

Y(G) = k(G); the Petersen graph (section 27) is a counterexample.

35. Orthogonal labelings in a perfect graph. A perfect graph has

HG,w) = a(Gw)= max{x . w | x is a stable labeling of G} (35.1)

and Theorem 12 tells us there exist orthogonal labelings of G and G such that (12.2)

and (12.3) hold. But it isn’t obvious what those labelings might be; the proof was not

constructive.

The problem is to find vectors a, such that a, . a, = 0 when u —+ v and such that

(12.2) holds; then it is easy to satisfy (12.3) by simply letting bo be a stable labeling where

the maximum occurs in (35.1).

The following general construction gives an orthogonal labeling (not necessarily op-

timum) in any graph: Let g(Q) be a nonnegative number for every clique Q, chosen so

that

YQ) = wy. for all v . (35.2)
veQR

Furthermore, for each clique Q, let

an. = 4 V9(Q), if ve;Qu = (35.3)
0, otherwise.

Then

a, © ad, = > 9(Q) 3
{u,v}CQ

hence a, - a, = 0 when u —~ v. If we also let ago =+/9(Q) for all Q, apg=0, we find

ag: a, = a, * a, =) 9(Q) = ws.
vEQ

We have constructed a matrix A that is X-compatible with G and w, in the sense of
section 29, where

A=ag-a0 =) 9(Q). (35.4)
Q
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An orthogonal labeling with costs c(a,)= w,/A can now be found as in the proof of
Lemma 29.

The duality theorem of linear programming tells us that the minimum of (35.4) subject

to the constraints (35.2) is equal to the maximum value of w-x over all x with > veqTu<1
for all Q. When x maximizes w . x, we can assume that x > 0, because a negative x, can

be replaced by 0 without decreasing w . X or violating a constraint. (Every subset of a

clique is a clique.) Thus, we are maximizing w .x over QSTAB(G); the construction in the

previous paragraph allows us to reduce A as low as «(G, w). But k(G,w) = ¥(G, w) in a

perfect graph, so this construction solves our problem, once we have computed g(Q).

The special case of a bipartite graph is especially interesting, because its cliques have

only one or two vertices. Suppose all edges of G have the form u — v where u €U and

v € V, and consider the network defined as follows: There is a special source vertex s

connected to all u €U by a directed arc of capacity w,, and a special sink vertex ¢

connected from all v € V by a directed arc of capacity w,. The edges u — v of G are also

present, directed from u to v with infinite capacity. Any flow from sto? in this network

defines a suitable function g, if we let

g({u,v}) = the flow in u > wv,

g({u}) = wy, minus the flow in s—>u,

g({v}) = w, minus the flow in v — 1,

for all u €U and v € V. Let S be a subset of U U V. If we cut the edges that connect s

or t with vertices not in S, we cut off all paths from sto ¢ if and only if S is a stable

set. The minimum cut (i.e., the minimum sum of capacities of cut edges) is equal to the

maximum flow; and it is also equal to

> w, in > w, — max{w CX | x 1s a stable labeling} = > w, + > w, — aC, Ww) .
uel veV uel veEV

Thus the value of A= 2.0 g(Q) 1s > weU Wy— {flow from s} + vev w,— {flow to t+
{flow in u — v arcs} = a(G, w) = ¥(G, w) as desired.

For general perfect graphs G, a solution to (35.4) with A=9Y(G, w) can be found in

polynomial time as shown in equation (9.4.6) of [7]. However, the methods described in

[7] are not efficient enough for practical calculation, even on small graphs.

36. The smallest non-perfect graph. The cyclic graph Cs is of particular interest

because it is the smallest graph that isn’t perfect, and the smallest case where the function

Y(G, w) is not completely known.

The discussion following Theorem 34 points out that TH(G) always has facets in com-

mon with QSTAB(G), when those facets belong also to STAB(G). It is not hard to see that
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QSTAB(C5) has ten facets, defined by Z; = 0 and Tj + Tjmods = 1 for 0 <J < 5; and

STAB(C'5) has an additional facet defined by Xo + ZT; + T2+ 3+ Z4 = 2. The weighted

functions a and k of section 4 are evaluated by considering the vertices of STAB and QSTAB:

Ty (36.1)a(Cs, {wo, . + - , wa} ) = max(wo + wa, w1 + ws, We + Wy, W3 + Wo, Ws + Wi);

Where these functions agree, they tell us also the value of v.

For example, let f(x)=49(Cs, {x, 1, 1, 1, 1, 131). Relations (36.1) and (36.2) imply
that f(x) = x + 1 when x > 2. Clearly f (0) = 2, and section 22 tells us that f (1) = V5.

Other values of f(z) are not yet known. Equation (23.2) gives the lower bound f(x)?>
z? + 4. Incidentally, the a vectors

VI Vz 1 1 NE
1 1 Vz —Vz 1
0 vr+1 0 0 —vx +1

0 V(x —2)(x +1) 0 0 0
0 0 0 0 0 (r —2)(z +1)

and b = (1) (0) (0) (0) (0) establish f(x) for x > 2 in the fashion of Theorems 12 and 13.

Let @ = (1+5)/2 be the golden ratio. The matrices A and B’ of Theorem 29, when
G=Csandw = 1, are

vs 1 1 1 1 1

| 1 o—1 0 0 od —1

A= | ¢— 1 1 o—1 0 0
- | 0 do —1 1 ¢—1 0

| 0 0 ¢o—1 1 ¢o—1

| ¢g—1 0 0 ¢—1 1

vi —1 —1 —1 —1 ~1

—] 1 0 op—1 o—1 0

B — 1 —1 0 1 0 o—1 ¢—1
NG —1 ¢o—1 0 1 0 ¢o—1

—1 ¢o—1 ¢—1 0 1 0

—1 o—1 ¢o—1 0 |

They have the common eigenvecto]

V5 V5 0 0 0
1 - 1 | 0 1 0
1 1 A) b —¢ 1
1 - 1 1 0) —@
| - 1 —1 —1 0,

| - 1 —@ 0 —1
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with respective eigenvalues (Ag, ..., As) =(2v5,0, vV5/6,v5/$,0,0) and (po, - . . , fis) =
(0,2,0,0,1/0,1/0). (Ct. (29.6) and (29.7).)

37. Perplexing questions. The book [7] explains how to compute ¥(G, w) with given

tolerance €, in polynomial time using an ellipsoid method, but that method is too slow

and numerically unstable to deal with graphs that have more than 10 or so vertices. For-

t unat ely, however, new “interior-point methods” have been developed for this purpose,

especially by Alizadeh [ 1,2], who has computed ¥(G) when G has hundreds of vertices

and thousands of edges. He has also shown how to find large stable sets, as a byproduct

of evaluating ¥(G, w) when w has integer coordinates. Calculations on somewhat smaller

cyclically symmetric graphs have also been reported by Overton [16]. Further computa-
tional experience with such programs should prove to be very interesting.

Solutions to the following four concrete problems may also help shed light on the

subject:

P1. Describe TH(C5) geometrically. This upright set is isomorphic to its own anti-

blocker. (Namely, if (xg,z1,Z2,z3,24)€ TH(CS5), then so are its cyclic permutations

(21, Ta, T3, Tq, Tg), etc., as well as the cyclic permutations of (zo, T4,T3,T2,T1); TH(C'5)
contains the cyclic permutations of (zg, 2,4, 1,3) and (zg, Z3,T1,T4,T2).) Can the

values f(x) = ¥(Cs, (x, 1,1,1,1}1), discussed in section 36, be expressed in closed form
when 0 < x < 2, using familiar functions?

P2. What is the probable value of ¥(G, w) when G is a random graph on n vertices,

where each of the (5) possible edges is independently present with some fixed probability p?
(Juhasz [9] has solved this problem in the case w = 1, showing that ¥(G)/+/(1 —p)n/p

lies between . and 2 with probability approaching 1 as n — 00.)

P3. What is the minimum d for which G almost surely has an orthogonal labeling

of dimension d with no zero vectors, when G is a random graph as in Problem P27 (Theo-

rem 28 and the theorem of Juhasz [9] show that d must be at least of order vn. But Lovasz
tells me that he suspects the correct answer is near n. Theorem 29 and its consequences

might be helpful here.)

P4. Is there a constant c¢ such that VG) < c&a(G) for all n-vertex graphs G?

(This conjecture was suggested by Lovasz in a recent letter. He knows no infinite family

of graphs where ¥(G)/a(G) grows faster than O(v/n/ log n). The latter behavior occurs

for random graphs, which have a(G) = log; /pn with high probability [4, Chapter XI.)

Another, more general, question is to ask whether it is feasible to study two- or three-

dimensional projections of TH(G), and whether they have combinatorial significance. The

function ¥(G, w) gives just a one-dimensional glimpse.

Lovasz and Schrijver have recently generalized the topics treated here to a wide variety
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of more powerful techniques for studying O-1 vectors associated with graphs [15].In

particular, one of their methods can be described as follows: Let us say that a strong

orthogonal labeling is a vector labeling such that ||a,||* = ¢(a,) and a, . a, > 0, also

satisfying the relation

clay) + clay) + clay) — 1 < ay» ay + ay + ay < clay) (37.1)

whenever u —+ w. In particular, when w = v this relation implies that a: a, = 0, so the

labeling is orthogonal in the former sense.

Notice that every stable labeling is a strong orthogonal labeling of G. Let S be a
stable set and let u and w be vertices such that u — w. If u and w are not in S, condition

(37.1) just says that 0 <c(a,)< 1, which surely holds. If u is in S, then w ¢ S and (37.1)

reduces to c(a,)<c(ay)<c(ay); this holds even more surely.

Let

TH_(G) = {x | z,= ¢(b,) for some strong orthogonal labeling of G }. (37.2)

(This set is called N; (FR(G))in [15].) We also define

J_(G,w)=max{w-xz|x €TH_(G) }. (37.3)

The argument in the two previous paragraphs implies that

STAB(G) C TH-(G) CTH(G),

hence

a(G,w) < V_(G,w)<I(G,w). (37.4)

The authors of [15] prove that ¥_(G, w) can be computed in polynomial time, about as

easily as J(G, w); moreover, it can be a significantly better approximation to a(G, w).

They show, for example, that TH-(G) = STAB(G) when G is any cyclic graph C),. In fact,

they prove that if x €TH_ (G) and if vg— vi, V1 —vg,..., Uap— Vg 1S any circuit

or multicircuit of G, then Z,, + xy, +... + Zy, <n. This suggests additional research

problems:

P5. What is the smallest graph such that STAB(G) #TH_(G)?

P6. What is the probable value of ¥_(GWwhen G is a random graph as in Prob-
lem P27

A recent theorem by Arora, Lund, Motwani, Sudan, and Szegedy [3] proves that there

is an € > 0 such that no polynomial algorithm can compute a number between a(G) and
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nfa(G) for all n-vertex graphs G, unless P = NP. Therefore it would be surprising if

the answer to P6 turns out to be that ¥_(G) is, say, O( log mn)? with probability — 1 for

random G. Still, this would not be inconsistent with [3], because the graphs for which

a(G) is hard to approximate might be decidedly nonrandom.

Lovasz has called my attention to papers by Kashin and Konyagin [10,11], which

prove (in a very disguised form, related to (6.2) and Theorem 33) that if G has no stable

set with 3 elements we have

9(G) < 223p13 and 9(G) = Q(n'/3/\/logn). (34.5)

Further study of methods like those in [15] promises to be exciting indeed. Lovasz

has sketched yet another approach in [14].
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