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The Sandwich Theorem

Donald E. Knuth

Abstract: This report contains expository notes about a func-
tion ¥(G) that is popularly known as the Lovdsz number of a
graph G. There are many ways to define ¥(G), and the surpris-
ing variety of different characterizations indicates in itself that
Y(G) should be interesting. But the most interesting property
of 9(G) is probably the fact that it can be computed efficiently,
although it lies “sandwiched” between other classic graph num-
bers whose computation is NP-hard. I have tried to make these
notes self-contained so that they might serve as an elementary
introduction to the growing literature on Lovasz’s fascinating

function.
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The Sandwich Theorem

It is NP-complete to compute w(G), the size of the largest clique in a graph G, and it is
NP-complete to compute x(G), the minimum number of colors needed to color the vertices
of G. But Grotschel, Lovasz, and Schrijver proved [5] that we can compute in polynomial

time a real number that is “sandwiched” between these hard-to-compute integers:
w(G) < V(G) < x(G). ()

Lovasz [ 13] called this a “sandwich theorem.” The book [7] develops further facts about the
function 6(G) and shows that it possesses many interesting properties. Therefore I think
it’s worthwhile to study ¥(G) closely, in hopes of getting acquainted with it and finding

faster ways to compute it.

Caution: The function called ¥(G)in [13]is called ¥(G)in [7] and [12]. I am following
the latter convention because it is more likely to be adopted by other researchers—[7]is a

classic book that contains complete proofs, while [13] is simply an extended abstract.

In these notes I am mostly following [ 7] and [12] with minor simplifications and a few
additions. I mention several natural problems that I was not able to solve immediately
although I expect (and fondly hope) that they will be resolved before I get to writing
this portion of my forthcoming book on Combinatorial Algorithms. I'm grateful to many
people-especially to Martin Grotschel and Ldaszlé Lovész--for their comments on my first

drafts of this material.

These notes are in numbered sections, and there is at most one Lemma, Theorem,
Corollary, or Example in each section. Thus, “Lemma 2” will mean “the lemma in sec-

tion 2”7 .

0. Preliminaries. Let’s begin slowly by defining some notational conventions and by
stating some basic things that will be assumed without proof. All vectors in these notes
will be regarded as column vectors, indexed either by the vertices of a graph or by integers.
The notation z> y, when = and y are vectors, will mean that z,>y, for all v.If A is a
matrix, A, will denote column v, and A,,,, will be the element in row u of column v. The

zero vector and the zero matrix and zero itself will all be denoted by 0.

We will use several properties of matrices and vectors of real numbers that are familiar
to everyone who works with linear algebra but not to everyone who studies graph theory,

so it seems wise to list them here:

(i) The dot product of (column) vectors a and b is

a-b=aTbh; (0.1)



the vectors are orthogonal (also called perpendicular) if a -b = 0. The length of vector a is
lall = Va-a. (0.2)

Cauchy’s inequality asserts that

a-b< |jall [b]l; (0.3)
equality holds iff a is a scalar multiple of b or b = 0. Notice that if A is any matrix we
have

n n
(ATA)uv = Z(AT)ukAkv = Z AguAky = A, A, (04)
k=1 =1

in other words, the elements of ATA represent all dot products of the columns of A.

(i) An orthogonal matrix is a square matrix Q such that QT Q is the identity ma-
trix 1.” Thus, by (0.4)) Q is orthogonal iff its columns are unit vectors perpendicular to
each other. The transpose of an orthogonal matrix is orthogonal, because the condition
QT Q =1 implies that QT is the inverse of Q, hence QQT =1I.

(iii)) A given matrix A is symmetric (i.e., A = AT) iff it can be expressed in the form
A = QDQT (0.5)

where Q is orthogonal and D is a diagonal matrix. Notice that (0.5) is equivalent to the

matrix equation

AQ =QD, (0.6)
which is equivalent to the equations

AQy = QuAy
for all v, where Ay = D,, . Hence the diagonal elements of D are the eigenvalues of A and

the columns of Q are the corresponding eigenvectors.

Properties (i) , (ii), and (iii) are proved in any textbook of linear algebra. We can get
some practice using these concepts by giving a constructive proof of another well known

fact:

Lemma. Given k mutually perpendicular unit vectors, there is an orthogonal matrix

having these vectors as the first k columns.

Proof. Suppose first that K = 1 and that x is a d-dimensional vector with |z|=1.If
r1=1 we have xz9=... =4 = 0, so the orthogonal matrix Q = I satisfies the desired

condition. Otherwise we let

Y1 =/ (1 — $1)/2, Y; = —mj/(2y1) for 1< ]S d. (07)
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Then

2 2 2
T 2 2 .’L‘z e :Ed 1 - 331 1 —.’131
y=lyl* =91 + == + L.
Y ! v 2 20-m) =
And x is the first column of the Householder [8] matrix
0=1-2yy", (0.8)

which is easily seen to be orthogonal because
QTQ=0Q%* =1 —4dyy" +4yy"yy" = 1.

Now suppose the lemma has been proved for some k> 1; we will show how to increase
k by 1. Let Q be an orthogonal matrix and let x be a unit vector perpendicular to its first
k columns. We want to construct an orthogonal matrix Q’ agreeing with Q in columns 1

to k and having x in column Kk + 1. Notice that

0

by hypothesis, where there are 0s in the first kK rows. The (d — k)-dimensional vector y has

squared length
Iyl = QTz-Q"z = 27 QQTx = 2Tz = 1,

so it is a unit vector. (In particular, y # 0, so we must have k < d.) Using the construction
above, we can find a (d —k) x (d- k) orthogonal matrix R with y in its first column. Then

the matrix
|

Q-q| 0

does what we want. [J

1. Orthogonal labelings. Let G be a graph on the vertices V. If u and v are distinct
elements of V, the notation u — v means that they are adjacent in G; u —~ v means they

are not.

An assignment of vectors a, to each vertex v is called an orthogonal labeling of G if
a, *a, = 0 whenever u -741). In other words, whenever a, is not perpendicular to a,
in the labeling, we must have u — v in the graph. The vectors may have any desired
dimension d; the components of a, are aj, for 1 <j7<d. Example: a, = 0 for all v always

works trivially.



The cost c(av) of a vector a, in an orthogonal labeling is defined to be 0 if a, = O,

otherwise ) )
a’lv alv

)

Notice that we can multiply any vector a, by a nonzero scalar ¢, without changing its

cost, and without violating the orthogonal labeling property. We can also get rid of a zero
vector by increasing d by 1 and adding a new component O to each vector, except that
the zero vector gets the new component 1. In particular, we can if we like assume that all

vectors have unit length. Then the cost will be aZ,,.

Lemma. If S CV is a stable set of vertices (i.e., no two vertices of S are adjacent) and

if a is an orthogonal labeling then

Zc(av) <1. (1.1)

vES

Proof. We can assume that ||a,|| =1 for all v. Then the vectors a, for v € S must
be mutually orthogonal, and Lemma O tells us we can find a d x d orthogonal matrix Q

with these vectors as its leftmost columns. The sum of the costs will then be at most

Gr+dia +  + g = 1. O
Relation (1.1) makes it possible for us to study stable sets geometrically.

2. Convex labelings. An assignment x of real numbers x, to the vertices v of G is
called a real labeling of G. Several families of such labelings will be of importance to us:
1 if v eU;

0 ifvgl.

A stable labeling is a characteristic labeling for a stable set.

The characteristic labeling for U CV has x, = {

A clique labeling is a characteristic labeling for a clique (a set of mutually adjacent
vertices).

STAB(G) is the smallest convex set containing all stable labelings,
i.e., STAB(G) = convex hull {X| x is a stable labeling of G }

QSTAB(G) = {z>0| ZvEQ Z, < 1 for all cliques Q of G }.

TH(G) ={z>0] > ,cy c(ay)z,< 1 for all orthogonal labelings a of G }.

Lemma. TH is sandwiched between STAB and QSTAB:

STAB(G) CTH(G)CQSTAB(G). (2.1)

Proof. Relation (1.1) tells that every stable labeling belongs to TH(G). Since TH(G) is
obviously convex, it must contain the convex hull STAB(G). On the other hand, every



clique labeling is an orthogonal labeling of dimension 1. Therefore every constraint of
QSTAB(G) is one of the constraints of TH(G). U

Note: QSTAB first defined by Shannon [18], and the first systematic study of STAB was
undertaken by Padberg[17]. TH was first defined by Grotschel, Lovdsz, and Schrijver in [6].

3. Monotonicity. Suppose G and G’ are graphs on the same vertex set V, with G C G’
(i.e., u — v in G implies u — v in G’). Then

every stable set in G’ is stable in G, hence STAB(G) D STAB(G');

every clique in G is a clique in G’, hence QSTAB(G)DQSTAB(G');

every orthogonal labeling of G is an orthogonal labeling of G’,

hence TH(G)D TH(G').

In particular, if G is the empty graph K., on |[V| = n vertices, all sets are stable and all
cliques have size < 1, hence

STAB(K,) = TH(K,) = QSTAB(K,) = {x | 0<z,< 1 for all v}, the n-cube.
If G is the complete graph K, all stable sets have size < 1 and there is an n-clique, so

STAB(K,) = TH(K,) = QSTAB(K,,) = x > 0 |Zv Z, <1}, the n-simplex.
Thus all the convex sets STAB(G), TH(G),QSTAB(G) lie between the n-simplex and the
n-cube.

Consider, for example, the case n = 3. Then there are three coordinates, so we can

visualize the sets in 3-space (although there aren’t many interesting graphs). The QSTAB
Y z., . . A .
of e—e—e is obtained from the unit cube by restricting the coordinates to x + y < 1 and

y + 2< 1; we can think of making two cuts in a piece of cheese:
001

101

100
The vertices (000, 100, 010,001, 101} correspond to the stable labelings, so once again we
have STAB(G)= TH(G) = QSTAB(G).

4. The theta function. The function ¥(G) mentioned in the introduction is a special

case of a two-parameter function ¥(G,w), where w is a nonnegative real labeling:
Y(G,w)=max{w x| x € TH(G) }; (4.1)
0(G) = ¥(G,1) where 1 is the labeling w, = 1 for all v. (4.2)



This function, called the Lovdsz number of G (or the weighted Lovdsz number when w#1),

tells us about l-dimensional projections of the n-dimensional convex set TH(G).

Notice, for example, that the monotonicity properties of §3 tell us
G CG = 9(G,w)>IG, w) (4.3)
for all w> 0. It is also obvious that ¥ is monotone in its other parameter:
w<w = 9G, w) <IG,w) . (4.4)
The smallest possible value of 9 is
Y Kn,w) = max{wy,...,w,}; Y(Kp,)=1. (4.5)

The largest possible value is

WK, w)=wy + - +wy; I(K,)=n. (4.6)
Similar definitions can be given for STAB and QSTAB:

a(G, w) = max{ w - x| x € STAB(G) }, a(G) = a(G,1); (4.7)

k(G, w) = max{ w-x|x €EQSTAB(G)}, k(G) (4.8)

1l
X
—~~
«
=
~—

Clearly a(G) is the size of the largest stable set in G, because every stable labeling x
corresponds to a stable set with 1 . x vertices. It is also easy to see that x(G) is at most
X(G), the smallest number of cliques that cover the vertices of G. For if the vertices can
be partitioned into k cliques Q1,...,Qk and if x EQSTAB(G), we have

1-z= Z Ly + -+ Z T, <k.

vEQL vEQK

Sometimes K(G) is less than X(G). For example, consider the cyclic graph C,, with

vertices {0,1,...,n—1}and u — v iffu =v+£ | (mod 1). Adding up the inequalities

To+21<1,..., 2 2+ Tp_1<1,Zpn_1+ 29 <1 of QSTAB gives 2(zg+ -+ Tpn_1)< n,
_n

and this upper bound is achieved when all x’s are %; hence k(Cyr) = %,if n > 3. But X(G)
is always an integer, and X(Cp)= [%1 is greater than k(Cp) when n is odd.

Incidentally, these remarks establish the “sandwich inequality” (%) stated in the in-
troduction, because

a(G) <I(G) < (G) < X(G) (4.9)

and w(G) = a(G),X(G) = x(G).



5. Alternative definitions of . Four additional functions ¥1,92,93,94 are defined
in [7], and they all turn out to be identical to ¥. Thus, we can understand ¥ in many

different ways; this may help us compute it.

We will show, following [7], that if w is any fixed nonnegative real labeling of G, the

inequalities
19(G= W) S 7-91(G: W) S 792(G1 w) S 193(G1 ’LU) S 194(G; ’lU) S ﬁ(Ga ’LU) (51)

can be proved. Thus we will establish the theorem of [7], and all inequalities in our proofs
will turn out to be equalities. We will introduce the alternative definitions Y% one at a

time; any one of these definitions could have been taken as the starting point. First,
(G, w) = min max (wy/c(ay)), over all orthogonal labelings a. (5.2)

Here we regard w,/c(ay) =0 when w, = ¢(a,) = 0; but the max is oo if some w, > 0 has
c(ay) = 0.

Lemma. 9(G,w) <¥1(G, w).

Proof. Suppose x € TH(G) maximizes w- X, and suppose a is an orthogonal labeling that

achieves the minimum value ¥1(G, w). Then

NG w)=w-z= Zwvxv < (max &)) Zc(av)mv < max Do _ 9 (G,w). O

c(ay c(av)

Incidentally, the fact that all inequalities are exact will imply later that every nonzero

weight vector w has an orthogonal labeling a such that

Wy
c(av) = m for all v. (53)

We will restate such consequences of (5.1) later, but it may be helpful to keep that future

goal in mind.

6. Characterization via eigenvalues. The second variant of ¥ is rather different; this

is the only one Lovdsz chose to mention in [13].

We say that A is a feasible matrix for G and wif A is indexed by vertices and

A is real and symmetric;
A,, = wy, for all v € V;

A,, =+\/wyw, whenever u - v in G (6.1)



The other elements of A are unconstrained (i.e., they can be anything between —00 and
+00).

If A is any real, symmetric matrix, let A(A) be its maximum eigenvalue. This is well
defined because all eigenvalues of A are real. Suppose A has eigenvalues {A1,..., A }; then
A = Qdiag(Ay, ..., A,)QT for some orthogonal Q, and ||Qz||=]|z| for all vectors x, so

there is a nice way to characterize A(A):
A(A) = max{zTAz|||z| = 1}. (6.2)
Notice that A(A) might not be the largest eigenvalue in absolute value. We now let

J2(G,w) = min{ A(A) | A is a feasible matrix for G and w}. (6.3)

Lemma. 9,(G, w) <92(G, w).

Proof. Note first that the trace tr A=) w,> 0 for any feasible matrix A. The trace
is also well-known to be the sum of the eigenvalues; this fact is an easy consequence of the
identity

m n

tr XY :szjkykj: tr YX (6.4)

i=1 k=1
valid for any matrices X and Y of respective sizes m x n and mxm. In particular, 92(G,w)
is always > 0, and it is = 0 if and only if w = 0 (when also ¥1(G,w) = 0).

So suppose w# 0 and let A be a feasible matrix that attains the minimum value
A(A) = 92(G,w) =X > 0. Let

B=XI-A. (6.5)
The eigenvalues of B are A minus the eigenvalues of A. (For if A = Q diag(\1,..., ) Q7T
then B = Qdiag(A—Aq,.. .,)\—/\n)QT.) Thus they are all nonnegative; such a matrix B

is called positive semidefinite. By (0.5) we can write

B =XTX, ie., Byy = Ty . Ty, (6.6)

when X = diag(v/A = A1, ..., VA= ,)QT.
Let a, = (v/Wy,Z10,-. ., Trp)L . Then c(ay) = wy/ ||aw||? = wo/(wy + 22, + -+ + 22,)
and x2,+ ...+ 32, = Byy = A—w,, hence c(a,) = wy/\. Also if u 4 v we have

Qu " Ay = VWyuWy + Ty * Ty = V/WuWy + Byy = VwWy,w, — A,, = 0. Therefore a is an

orthiogonal labeling and max, wy,/c(ay) = A>9:1(G, w). O

7. A complementary characterization. Still another variation is based on orthogonal
labelings of the complementary graph G.



In this case we let b be an orthogonal labeling of G, normalized so that Zvasz =1,

and we let

93(G, w) = max {Z (Vwy by) - (Vwy by)
b is a normalized orthogonal labeling of E} . (.0

A normalized orthogonal labeling b is equivalent to an nxn symmetric positive semidefinite

matrix B, where By, = b, . b, is zero when u — v, and where tr B = 1.
Lemma. Y92(G,w)<9Y3(G, w).

This lemma is the “heart” of the proof that all ¥s are equivalent, according to [7]. It

relies on a fact about positive semidefinite matrices that we will prove in §9.

Fact. If A is a symmetric matrix such that A . B >0 for all symmetric positive semi-
definite B with Byy = 0 for u — v, then A = X+ Y where X is symmetric positive

semidefinite and Y is symmetric and Yy, = 0 for all v and Yy, = 0 for u — v.

Here C- B stands for the dot product of matrices, i.e., the sum Zu vC'm, B, , which can

also be written tr CTB. The stated fact is a duality principle for quadratic programming.

Assuming the Fact, let W be the matrix with Wy, = Vw,w,, and let ¥3 = 93(G, w).
By definition (7.1)) if b is any nonzero orthogonal labeling of G (not necessarily normalized),

we have

> (Vwaby) - (Vs by) <953 by |7 (7.2)

uU,v

In matrix terms this says W -B <(¥3I).B for all symmetric positive semidefinite B with

B,y =0 for u — v. The Fact now tells us we can write
vl —W=X+Y (7.3)

where X is symmetric positive semidefinite, Y is symmetric and diagonally zero, and
Yuv = 0 when u -4 v. Therefore the matrix A defined by

A=W+Y =931 - X

is a feasible matrix for G, and A(A) <¥3. This completes the proof that ¥2(G, w) <
¥3(G, w), because A(A) is an upper bound on Y3 by definition of ¥5.[]

10



8. Elementary facts about cones. A cone in N-dimensional space is a set of vectors
closed under addition and under multiplication by nonnegative scalars. (In particular, it
is convex: If ¢ and ¢’ are in cone C and 0 < ¢ < 1 then 7¢c and (1 — t)c’ are in C, hence

tc+ (1 —t)c € C.) A cbsd cone is a cone that is also closed under taking limits.

F1. If C is a closed convex set and x ¢ C, there is a hyperplane separating x from C.

This means there is a vector y and a number b such that c-y <b forallc €C butz-y > b.

Proof. Let d be the greatest lower bound of ||z —c||? for all ¢ € C. Then there’s a
sequence of vectors ¢k with ||z —ck||> < d + 1/k; this infinite set of vectors contained in the
sphere {y||z—y||?<d + 1} must have a limit point Cs, and Coo € C since C is closed.
Therefore || —coo|?> d; in fact ||z —cool? = d, since |T— coo || < |7 — ckll + llcx — Cool|
and the right-hand side can be made arbitrarily close to d. Since x ¢ C, we must have
d>0. Nowlet y =2 —coo and b = coo -y. Clearly z-y =y .y + b > b. And if ¢ is any
element of C and € is any small positive number, the vector EC + (1 —€)co is in C, hence
|z —(ec+ (1 —e)coo)||22d. But

lz = e + (1 =€)ew) || = d = o = coo = elc = coo) > = d

= - 263/' (C_ Coo) + 62 ||C— coon
can be nonnegative for all small € only if y . (¢ —Cx)< 0, ie., c -y < b. [J

If A is any set of vectors, let A* ={b|a.b>0forallcLeA }.

The following facts are immediate:
F2. A CA’implies A* D A%
F3. A C A**
F4. A*is a closed cone.

From F1 we also get a result which, in the special case that C = { Ax |x >0} for a

matrix A, is called Farkas’s Lemma:
F5. If C is a closed cone, C = C*¥

Proof. Suppose x €C* and x ¢ C, and let (y, b) be a separating hyperplane as in F1.
Then (y, 0) is also a separating hyperplane; for we have x . y > b > 0 because 0 € C, and
we cannot have ¢ -y > 0 for c € C because (Xc) . y would then be unbounded. But then
c- (-y) > 0 for all ¢ € C, so —y€C*; hence x - (-y) > 0, a contradiction. []

If A and B are sets of vectors, we define A + B={a+b|a€A and bEB }.

11



F6. If C and C’ are closed cones, (C NC')* = C*+ C'™*,

Proof. If A and B are arbitrary sets we have A* + B* C (A N B)* forif x € A* + B*
and y EANBthen x-y=a.y+b-y>0.If A and B are arbitrary sets including 0 then
(A + B)* CA* N B* by F2, because A + B D A and A + B D B. Thus for arbitrary A
and B we have (A* + B*)*C A** N B** hence

(A% + B*)*% D (A*% N B*™)*.
Now let A and B be closed cones; apply F5 to get A* + B* D (A N B)* [J

F7. If C and C’ are closed cones, (C + C')*=C*N C* (I don’t need this but I might
as well state it.) Proof. F6 says (C*NC™)* = C* + C"™*; apply F5 and * again. [J

F8. Let S be any set of indices and let Ag={a|a, =0 for all s € S}, and let S be all

the indices not in S. Then

Proof. If by =0 for all s¢ S and a, = 0 for all SE S, obviously a-b = 0; so Ag C A%.
If bs7# 0 for some s¢ S and a; = O for all t #5 and a, = —bs then cL€ Agand a . b < 0;
so b ¢ A%, hence Ag D A%. (|

9. Definite proof of a semidefinite fact. Now we are almost ready to prove the result

needed in the proof of Lemma 7.

Let D be the set of real symmetric positive semidefinite matrices (called “spuds”
henceforth for brevity), considered as vectors in N-dimensional space where N = %(n-{-l)n.
We use the inner product A-B = tr AT B; this is justified if we divide off-diagonal elements
by V2. For example, if n = 3 the correspondence between 6-dimensional vectors and 3 x 3

symmetric matrices is

a d/V2 e/V2
(a,b,c,dye, f) < | d/vV2 b f/V2
e/V2  fIV2 ¢

preserving sum, scalar product, and dot product. Clearly D is a closed cone.
F9. D* = D.

Proof. IfA and B are spuds then A = X7 X and B=Y?Y and A-B =tr XTXYTY =
tr XYTY XT = (YXT) . (YXT)> 0; hence D C D* (In fact, this argument shows that
A .B =0iff AB = 0, for any spuds A and B, since A = AT.)

12



If A is symmetric but has a negative eigenvalue A we can write
A = Q diag (Mg, ..., An) QT
for some orthogonal matrix Q. Let B = Q diag (1,0, ... ,O)QT; then B is a spud, and
A .B=tr ATB = tr Qdiag (X, 0,. . .,0)QT =X < 0.
So A is not in D*; this proves DD D*.

Let E be the set of all real symmetric matrices such that E,, =0 when u — v in a
graph G; let F be the set of all real symmetric matrices such that Fy, =0 when u = v or

u f v . The Fact ts 4 ed in Section 7 is now equivalent in our new notation to

Fact. (D NE)*CD + F.

But we know that
(DNE)* =D *+E * by F6
=D+ F by F9 and F8. [J

10. Another characterization. Remember 9,991,952, and Y37 We are now going to

introduce yet another function

94(G,w) - max { Zc(bv)wv

v

b is an orthogonal labeling of @_} . (10.1)

Lemma. 93(G,w)<Y4(G,w).

Proof. Suppose b is a normalized orthogonal labeling of G that achieves the maximum Us;

and suppose the vectors of this labeling have dimension d. Let

T = Zbkv\/wv, for 1 <k <d; (10.2)

then

193(G,’U)) = Z\/@bubv\/'UTv = Z VW Wy brybry = in

u7v7k k

Let Q be an orthogonal d xd matrix whose first row is (z1/v/J3,...,zq/v/J3)T, and let
b, = Qb,. Then b, - b, = bTQTQb, =bLb,=by.by,s0 b’ is a normalized orthogonal
labeling of G. Also

T = bV, = > Qrjbjuvwy
v v,J

Vi3, k=1,
=" Qujz; = { ’ (103)
7 0, k> 1.

13



Hence by Cauchy’s inequality

76w = (% v < (S (3 itz )

b, %0

=) et )wy < 94(G, w) (10.4)

14

because 3o, 16,[17 = 32, 1Bol* = 1. O
11. The final link. Now we can close the loop:
Lemma. 94(G, w) <G, w).

Proof. [Ifbis an orthogonal labeling of G that achieves the maximum 94, we will show
that the real labeling x defined by xy = ¢(by)is in TH(G). Therefore V4(G, w) = w . x is
< (G, w).

We will prove that if a is any orthogonal labeling of G, and if bis any orthogonal
labeling of 6, then

> ca)e(by) _ | (11.1)

Suppose a is a labeling of dimension d and b is of dimension d’. Then consider the d xd’

matrices

A, = a,bl (11.2)
as elements of a vector space of dimension dd’. If u # v we have
A, A =t ATA, =t byata,bl = tr a¥a,blb, =0, (11.3)

because agav = 0 when u - v and vabu =0 when u — v. If u = v we have

Av- Ay _ lay]* (1o |1*

The upper left corner element of A, is @141y, hence the “cost” of A, is (a1,010)%/ || As||? =
c(ay)c(by). This, with (11.3), proves (11.1). (See the proof of Lemma 1.) [J

12. . The main theorem. Lemmas 5, 6, 7, 10, and 11 establish the five inequalities
claimed in (5.1); hence all five variants of 6 are the same function of G and w. Moreover,
all the inequalities in those five proofs are equalities (with the exception of (11.1)). We

can summarize the results as follows.

14



Theorem. For all graphs G and any nonnegative real labeling w of G we have
G, w) = 91(G,w) = 92(G, w) = ¥3(G, w) = J4(G,w). (12.1)

Moreover, if w # 0, there exist orthogonal labelings a and b of G and G, respectively, such
that

clay) = wy /Y5 (12.2)

> clay)e(by) = 1. (12.3)

Proof. Relation (12.1) is, of course, (5.1); and (12.2) is (5.3). The desired labeling b is
what we called b’ in the proof of Lemma 10. The fact that the application of Cauchy’s
inequality in (10.4) is actually an equality,

2 2
¥ = (wa\/iTv-) = (Z ||bv||2) ( Z ”bi’l’lz wv>, (12.4)
v v b;;éo

tells us that the vectors whose dot product has been squared are proportional: There is a

number ¢ such that

bl'v\/'w_'v
by|| = VW
LY

The labeling in the proof of Lemma 10 also satisfies

> lIbol* = 1; (12.6)

14

Vif by # 0 ; ool = 0 iff bryv/wy = 0. (12.5)

hence t = :}:1/\/13.

We can now show
c(by) = |boll2 9/wy,  when wy#0. (12.7)

This relation is obvious if ||by||=0; otherwise we have

B, _ bl
I~ w,

c(by) =

by (12.5). Summing the product of (12.2) and (12.7) over v gives (12.3). [J

13. The main converse. The nice thing about Theorem 12 is that conditions (12.2)
and (12.3) also provide a certificate that a given value ¥ is the minimum or maximum
stated in the definitions of 6, ¥1,93,73, and Vq4.

15



Theorem. If a is an orthogonal labeling of G and b is an orthogonal labeling of G such
that relations (12.2) and (12.3) hold for some ¥ and w, then ¥ is the value of 9(G, w).

Proof. Plugging (12.2) into (12.3) gives Y wyc(b,) =13, hence 9 <Y4(G, w) by definition
of ¥4. Also,

max —— =19,
v
hence 9 >v1(G, w) by definition of ¥;. [

14. Another look at TH. We originally defined ¥(G, w) in (4.1) in terms of the convex

set TH defined in section 2:
Y G, w) =max{w -z |z € TH(G) }, when w > 0. (14.1)
We can also go the other way, defining TH in terms of 9:
TH(G) ={z>0|w- -z <I¥G,w) forallw>0}. (14.2)

Every x € TH(G) belongs to the right-hand set, by (14.1). Conversely, if x belongs to the
right-hand set and if a is any orthogonal labeling of G, not entirely zero, let w, = c(ay),
so that w-x =), ¢(ay)T,. Then

Y1 (G, w) < m&x('wv/c(av)) =1

by definition (5.2), so we know by Lemma 5 that Y c(a,)z, < 1. This proves that x
belongs to TH(G).

Theorem 12 tells us even more.
Lemma. TH(G) = {x >0|9(G,z) <1}.
Proof. By definition (10.1),

94(G, w) = max { Z ¢(ay)w, | a is an orthogonal labeling of G} . (14.3)

v

Thus x € TH(G) iff 94(G,x)< 1, when x > 0.
Theorem. TH(G) = {x | z, = c(by) for some orthogonal labeling b of G }.

Proof. We already proved in (11.1) that the right side is contained in the left.

Letx € TH(G) and let ¢ = 19(@, x). By the lemma, ¥ < 1. Therefore, by (12.2) there
is an orthogonal labeling b of G such that ¢(b,) =z, /9>, for all v. It is easy to reduce

16



the cost of any vector in an orthogonal labeling to any desired value, simply by increasing
the dimension and giving this vector an appropriate nonzero value in the new component
while all other vectors remain zero there. The dot products are unchanged, so the new
labeling is still orthogonal. Repeating this construction for each v produces a labeling with
c(by) = Ty C 1

This theorem makes the definition of ¥4 in (10.1) identical to the definition of ¥
in (4.1).

15. Zero weights. Our next result shows that when a weight is zero, the corresponding

vertex might as well be absent from the graph.

Lemma. Ler U be a subset of the vertices V of a graph G, and let G’ = G/ U be the graph
induced by U (i.e., the graph on vertices U with u — v in G’ iff u— v in G). Then if w

and w’ are nonnegative labelings of G and G’ such that
Wy = W, when v €U, Wy = 0 when v ¢U, (15.1)

we have

G, w)=9(G,w). (15.2)

Proof. Let a and b satisfy (12.2) and (12.3) for G and w. Then c¢(a,) = 0 for v ¢ U, so
a|lU and b|U satisfy (12.2) and (12.3) for G’ and w’. (Here a|U means the vectors a, for
v € U.) By Theorem 13, they determine the same 9¥.[]

16. Nonzero weights. We can also get some insight into the significance of nonzero

weights by “splitting” vertices instead of removing them.

Lemma. Let v be a vertex of G and let G’ be a graph obtained from G by adding a new
vertex v’ and new edges
u—2ov iff u-v. (16.1)

Let w and w’ be nonnegative labelings of G and G’ such that

Wy - Wi, when u #v; (16.2)
wy, = w, + W, . (16.3)

Then
G, w) =9G', w’) . (16.4)

Proof. By Theorem 12 there are labelings a and b of G and G satisfying (12.2) and
(12.3). We can modify them to obtain labelings a’ and b’ of G’ and G’ as follows, with the

17



vectors of a’ having one more component than the vectors of a:

o, = (aou) , b, =b,, whenu#v; (16.5)

a a w! w)
a- () = (") a= Bl 5 = [Ejals aes

b, = b, =b, . (16.7)

(We can assume by Lemma 15 that w; and w,, are nonzero.) All ort hogonality relations

are preserved; and since v —4~ v’ in G’, we also need to verify

al - aby = |lay|P— aB = 0.
We have ) .
(a) = c(av) |lav || c(av) clan)w,  w,
Vet e = 14wy /w, = w, 9’

and similarly c(a,,)=w,, /¥; thus (12.2) and (12.3) are satisfied by a’and b’ for G’ and w'.
cl
Notice that if all the weights are integers we can apply this lemma repeatedly to

establish that
¥ G, w) = 9(G), (16.8)

where G’ is obtained from G by replacing each vertex v by a cluster of w, mutually
nonadjacent vertices that are adjacent to each of v’s neighbors. (Recall that 9(G’) =
J(G’, 1), by definition (4.2).) In particular, if G is the trivial graph K5 and if we assign
the weights M and N, we have ﬁ(Kz,(M,N)T)= Y(Kp,n) where Kpr v denotes the
complete bipartite graph on M and N vertices.

A similar operation called “duplicating” a vertex has a similarly simple effect:

Corollary. Let G’ be constructed from G as in the lemma but with an additional edge
between v and v’. Then (G, w) = 9(G’, w’) if w’ is defined by (16.2) and

wy, = max(w,, wh,) . (16.9)

Proof. We may assume that w, = w, and w,, # 0. Most of the construction (16.5)-

(16.7) can be used again, but we set a = 0 and b, = 0 and

Wy — W
g = \/% av]|-
w!,

18



Once again the necessary and sufficient conditions are readily verified. []

If the corollary is applied repeatedly, it tells us that ¥(G) is unchanged when we

replace the vertices of G by cliques.

17. Simple examples. We observed in section 4 that ¥(G, w) always is at least
V... = V(Kyp,w) = max{wy,...,w,} (17.1)
and at most
Omax = (Kn,w)=w1+ -+ wp. (17.2)

What are the corresponding orthogonal labelings?

For K, the vectors of a have no orthogonal constraints, while the vectors of b must

satisfy by .b, = 0 for allu # v. We can let a be the two-dimensional labeling

a :( R ”_”w) . 0= Ymin (17.3)

so that [|(LU||2 = 6 and c(ay,) = Wy /Y as desired; and b can be one-dimensional,

b _{(1), ifV = Unmax
Y(0),  if v # Umax

where Umax 1S any particular vertex that maximizes w,. Clearly

(17.4)

cavmax VUmax
S clau)e(py) = Altmae) _ Vomas

\4

For K, the vectors of a must be mutually orthogonal while the vectors of b are
unrestricted. We can let the vectors a be the columns of any orthogonal matrix whose top

row contains the element

Vw, /9, 9= na (17.5)

in column v. Then |la,||? = 1 and c(a,)=w,/Y. Once again a one-dimensional labeling

suffices for b; we can let b, = (1) for all v.

18. The direct sum of graphs. Let G = G’ + G” be the graph on vertices

V=v'uv” (18.1)
where the vertex sets V’and V” of G’ and G” are disjoint, and where u — v in G if and
only if u,v€ V’and u — v in G’, or w,v€ V”and u — v in G". In this case

HG, w) = 9(G,w'") + HG", w”), (18.2)
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where w’ and w” are the sublabelings of w on vertices of V’and V”. We can prove (18.2)

by constructing orthogonal labelings (a, b) satisfying (12.2) and (12.3).

Suppose a’is an orthogonal labeling of G’ such that

lay||? = 9" alf, = Vwl, (18.3)

”

and suppose a” is a similar orthogonal labeling of G”. If a’ has dimension d’and a” has
dimension d”, we construct a new labeling a of dimension d =d’+ d” as follows, where j’

runs from 2 to d’ and j” runs from 2 to d’:

ifveVv ifveVv”
[ A ! n o S
A1y = ’w,,, - a]_’u ) A1y = \/ wv - alv y

ajro = \/0[V af, . ajry =0, (18.4)
Ad'+1)v = ,/19”11){,/19’, Ad' +1)v = —\/W,

A(d' +5'"v = 0 ) A(d' 45"y = \/’19/19” a;',//v .

Now if u, v € V’we have

) 9 9
Ay * Gy = \/w,{tw{,—kw(a;-a;—\/w;w{,)-l—w w{tw{,:@a;-a:,; (18.5)
thus @, . a, = 0 when a,-al = 0, and
)
lawl* = = llayl* = - (18.6)

It follows that ¢(a, )= w, /¥ as desired. A similar derivation holds for u, v € V” And if
ueV,veV’” then

Qo * Gy = JWLw! — Jw,wl! =0. (18.7)

The orthogonal labeling b of G’ + G” is much simpler; we just let b, = b}, for v € V’
and bv=b;,’ for v € V. Then (12.2) and (12.3) are clearly preserved. This proves (18.2).

There is a close relation between the construction (18.4) and the construction (16.6),
suggesting that we might be able to define another operation on graphs that generalizes

both the splitting and direct sum operation.

19. -The direct cosum of graphs. If G’ and G” are graphs on disjoint vertex sets V'’

and V” as in section 18, we can also define
G=GCFC" < G=G+G". (19.1)
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This means u — v in G if and only if either u — v in G’ or u — v in G” or u and v

belong to opposite vertex sets. In this case
I(G, w) = max(H(G', w’), 9(G", w”)) (19.2)

and again there is an easy way to construct (a, b) from (a’, b’) and (a”, b”) to prove (19.2).

Assume “without lots of generality” that
(G, w) > G, w” (19.3)

and suppose again that we have (18.3) and its counterpart for a¢” Then we can define

ifveV’ ifveVv”
A1y = VWy = allva A1y = VWy = alllv s
Ajry =, aj, =0, (19.4)
A(d'+1)v = 0 s A(d'+1)v = \/(19/ _ 19”)7%//79” ’

Nz

Now a, is essentially unchanged when v € V’; and when u, v € V”we have

a(d,_,_ju)v = 0, a’(d’+j”)1)

¥ ¥ ¥
_ 1,01 _ 1o "o Wopll Y — "o on
Ay - ay = Jwiw!! + (—19” 1 wiw!! + 57 (al, - ay) wiw! ) = 57 G " Oy - (19.5)

Again we retain the necessary orthogonality, and we have ¢(ay)=w,/d for all v.

For the bs, we let b, =b) when v € V’and b, =0 when v € V"

20. A direct product of graphs. Now let G’ and G” be graphs on vertices V’and V”

and let V be the n = nn” ordered pairs

V=V XV’ (20.1)
We define the ‘strong product’,
G =G xG" (20.2)
on V by the rule
w,u”) —,v’) or (@,u”)=((,v’) in G
< @ —vVvoru =vinG) and @ —v’oru’=9"in G") . (20.3)
In this case we have, for example, Ky *x Kp» = K,pn and fn:*Fnuzfn:nn.

More generally, if G’ is regular of degree r’and G" is regular of degree 7", then G’ * G”

3 .

is regular of degree (r’ + 1) (r” + 1) =1=rr"+ 1 + r”
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I don’t know the value of J(G, w) for arbitrary w, but I do know it in the special case

t]

[ 1
’U)(v/,v//) = Wy Wy (204)

Lemma. If G and w are given by (20.2) and (20.4), then

G, w) =9(G", w) IG", w”). (20.5)

Proof. [12] Given orthogonal labelings (a’, b’) and (a”, b”) of G’ and G", we let a be the
Hadamard product

A1) (o) = G, ISP, 1< < a7, (20.6)

where d’ and d” are the respective dimensions of the vectors in a’and a”. Then

! 1 ! 1"
a(u’,u") . a(,v/’,vu) = E a,j/u/aj//uua/j/v/aj//vu

WA

Y/
= (G,LI . a,lv/ ) (CI,Z,, . a,IUI// ) . (20 7)
Thus [la v |? = oy, [1* [l [|* and
C(a(vlvll)) = C(a,’vl)C(a:)lu) . (208)

The same construction is used for b in terms of b’ and b”.

All necessary orthogonalities are preserved, because we have
(u’, u”) — (v’, v’) and (u’, u”) # (v, v’) in G
=@ — v and v # v’ in G’) or (W — v’ and u” # v’ in G”)
= beurury by = 0
(u’, u”) 4~ (v’, v’) and (u’, u”) # (v’, v’) in G
= (W 4 v’ and u'# v’ in G’) or (W -~ v” and u” # v’ in G”)
= Q' ) " Oty =0 .

(In fact one of these relations is <, but we need only = to make (20.7) zero when it needs

to be zero.) Therefore a and b are orthogonal labelings of G that satisfy (12.2) and (12.3).

cl

21. A direct coproduct of graphs. Guess what? We also define
G=G%G" < G=G x G". (21.1)
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This graph tends to be “richer” than G’ * G”; we have
(u’,u”) — (v, v’)and (u,u”) # (v ,v’)in G
< W —v and " # v’ in G) or (W’ — v” and u” # v’ in G”) . (21.2)

Now, for instance, if G’ is regular of degree r’and G” is regular of degree r”, then

I : P} 11 ", 1 1 1
G’ x G” is regular of degree nn” — (n' —r"Y(n" —r")=r'n" + "' —1'r" .

(This is always > rr” + r’ + 7", because r'(n”" — 1 — r”) + ("= 1—17r)>0.) Indeed,
G’ ¥ G” 2 G’ * G” for all graphs G’ and G”. The Hadamard product construction used

in section 20 can be applied word-for-word to prove that
I(G, w) =9(G', w) I(G", w”) (21.3)

when G satisfies (21.1) and w has the special factored form (20.4).

It follows that many graphs have identical ¥’s:
Corollary. If G *G>CGC G’ % G” and w satisfies (20.4), then (21.3) holds.

Proof. This is just the monotonicity relation (4.3). The reason it works is that we have
A ') " Ou w)y = Bur vy * Durrwrry = 0 for all pairs of vertices (u’, u”) and (v’, v”) whose
adjacency differs in G* * G” and G” * G”. [

Some small examples will help clarify the results of the past few sections. Let Ps3 be
the path of length 2 on 3 vertices, #—e—e, and consider the four graphs we get by taking

its strong product and coproduct with Ky and Ko:
FZ*PSZ ’l9=max(u+’w,v)+maX($+Z,y)

(Since P; may be regarded as Ko+ K1 and Ko is K1 + K2, this graph Is

(Kr+ KD F K)o, (By ey i)

and the formula for ¥ follows from (18.2) and (19.2).)

u v W
F2IP: 7.9=max(u+w+x+z,v+'y
3
X Y z
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(This graph is Eg 1?4; we could also obtain it by applying Lemma 16 three times to Pj.)

u v w
Ky x Py = ¥ = max(max(u, x) + max(w, z),max(v, y))
X Y z
u v w
Ky x Py = ¥ = max(max(u + w, x + x), max(v, y))
T Y z

If the weights satisfy u = Xx, v = Ay, w = Xx for some parameter A, the first two formulas
for ¥ both reduce to (1+A) max(u + w, v), in agreement with (20.5) and (21.3). Similarly,

the last two formulas for ¥ reduce to max(l,)\) max(u + w, V) in such a case.
22. Odd cycles. Now let G = C,, be the graph with vertices 0, 1, ..., n— 1 and
u-v<u—v=xl (modn), (22.1)

where n is an odd number. A general formula for ¥(C,, w) appears to be very difficult;
but we can compute ¥(C},) without too much labor when all weights are 1, because of the

cyclic symmetry.

It is easier to construct orthogonal labelings of C,, than of Cn, so we begin with that.

Given a vertex v, 0 <v <n, let b, be the three-dimensional vector

a
b, =| cosvyp |, (22.2)
sin v

where a and ¢ remain to be determined. We have

bu-by = a? + cos up cos v + sin up sin vy

= a? + cos(u —v)p. (22.3)

Therefore we can make by .b, = 0 when u =v £ 1 by setting

9 w(n—1)

a” = —cosyp, p= (22.4)

n

This choice of ¢ makes my a multiple of 27, because n is odd. We have found an orthogonal
labeling b of C, such that

a? cos T™/n

>(by) = = .
e(b) 1+a2 = 1+4cosm/n

(22.5)
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Turning now to orthogonal labelings of C,, we can use (2n — 1)-dimensional vectors
([

a1 cos VY
a1 Sin v
Qa2 cos 2V

Qs sin 2vp (22.6)

Qp—1 cos(n —1)vp

Q-1 sin(n —1)vep

with ¢ = m(n —1)/n as before. As in (22.3)) we find

=

-1
ai cos k(u—v)p; (22.7)
k=0

so the result depends only on (u — v) mod n. Let w = €Y. We can find values of ay such

that a, . Gy = T(y—v)modn by solving the equations
-
xj = Z a%w’k . (22.8)

Now w is a primitive nth root of unity; i.e., Wk = 1iffk is a multiple of n. So (22.9) is

just a finite Fourier transform, and we can easily invert it: For 0 <m <n we have

n—1 n-1 n-1
— y 1 (k—

E w m’wj:E aig wik=m) — a2

j=0 k=0  j=0
In our case we want a solution with Z9=23=... = ,_9 = 0, and we can set Zg = 1,
Tp_ 1=Z1=2Z,sowe find

2 _ —k k _

Nog =Tog+wW "T1+W Tn_1= 1+ 2z coskyp.

We must choose x so that these values are nonnegative; this means 2x <—1/ cos ¢, since

cos ky is most negative when k = 1. Setting x to this maximum value yields

1 1 1+ cosm/n

2

v) = - (1= — .

clay) = ap = ( > cos 7/ (22.9)

> clay)e(b,) =D Un = 1. (22.10)



This is (12.3)) hence from (12.2) we know that ¥(C,)=A. We have proved, in fact, that

9(C. 1) = ncosm/n |
e G210
9(Chn, 1) = 1+ cosm/n (22.12)

cosT/n

When n = 3, Cp, = K, and these values agree with 9(K3) = 1, 9(K3) = 3; when n = 5,
C5 is isomorphic to Csso 9(Cs) = V/5; when n is large,

71.2 2

n — s
ICp)==—=— +0n73); ICn)=2+-—+0(n"?). 22.13

Instead of an explicit construction of vectors a, as in (22.6)) we could also find 19(Cn)
by using the matrix characterization ¥ of section 6. When all weights are 1, a feasible
A has 1 everywhere except on the superdiagonal, the subdiagonal, and the corners. This

suggests that we look at “circulant” matrices; for example, when n =35,

1 1+z 1 1 1+xz
4z 1 14z 1 1

A = 1 14z 1 14z 1 =J+zP+zP !, (22.14)
1 1 14+z 1 1+z
l+z 1 1 14z 1

where J is all I's and P is the permutation matrix taking j into (j + 1) mod n. It is well
known and not difficult to prove that the eigenvalues of the circulant matrix agl +a; P +
et ap_1 P71 are

> whay, 0<k<n, (22.15)

where w = 2™/ (Indeed, it suffices to find the eigenvalues of P itself. This w is a
different primitive root of unity from the w we used in (22.8).) Hence the eigenvalues of

(22.14) are
n+2z, zlwt+wl), zw+w ), .., zw 40l (22.16)
We minimize the maximum of these values if we choose X so that

n +2x = —2xcosm/n;

then
n cos m/n

A(A) = -2x cos 7r/n = (22.17)

1 +cos m/n
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is the value of 9(G).

If n is even, the graph C, is bipartite. We will prove later that bipartite graphs are

perfect, hence ¥(Cy)=n/2 and 9(C,) = 2 in the even case.

23. Comments on the previous example. The cycles C, provide us with infinitely
many graphs G for which 9(G)¥( G )= n, and it is natural to wonder whether this is true
in general. Of course it is not: If G = K+ Kpm then G = K,, ¥ K;,—m, hence we know

from Lemmas 18 and 19 that
HG) =m + 1, 9(G) =max(l,n —m). (23.1)

In particular, we can make 9(G)9(G ) as high as n%/4 + n/2 when m =|n/2].

We can, however, prove without difficulty that 3(G)3( G)> n:

Lemma.

G, w) (G, w) >w-w'. (23.2)

Proof. By Theorem 12 there is an orthogonal labeling a of G and an orthogonal labeling b
of G such that
c(ay) = wo/V(G w),  clby) =w,/9(G,w). (23.3)

By (11.1) we have
> c(ay)e(by) < 1. (23.4)
QED. [

24, Regular graphs. When each vertex of G has exactly r neighbors, Lovasz and
Hoffman observed that the construction in (22.14) can be generalized. Let B be the

adjacency matrix of G, i.e., the n x n matrix with

1, ifu—w;
Buy - . (24.1)
0 ,ifu=wvoru—+w.

Lemma. If G is a regular graph,

9(G)< —ACB) (24.2)
A(B) + A(-B)
Proof. Let A be a matrix analogous to (22.14))
A=J+zB. (24.3)
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Since G is regular, the all-I's vector 1 is an eigenvector of B, and the other eigenvectors

are orthogonal to 1 so they are eigenvectors also of A. Thus if the eigenvalues of B are
7=A(B) =A\>A>...>)\,=-A(-B) , (24.4)
the eigenvalues of A are
n+Trr,rAs,. .., TA,. (24.5)

(The Perron-Frobenius theorem tells us that Ay=r.) We have A1 +---+ A, = tr(B) = 0,

s0 Ap < 0, and we minimize the maximum of (24.5) by choosing n + rx = zA,; thus

—nA,

A(A) =zhn =",

which is the right-hand side of (24.2). By (6.3) and Theorem 12 this is an upper bound
on v. J

Incidentally, we need to be a little careful in (24.2): The denominator can be zero,
but only when G =K,.

25. Automorphisms. An automorphism of a graph G is a permutation p of the vertices
such that
p(u) — p(v) iffu-v. (25.1)

Such permutations are closed under multiplication, so they form a group.

We call G vertex-symmetric if its automorphism group is vertex-transitive, i.e., if
given u and v there is an automorphism p such that p(u) = v. We call G edge-symmetric
if its automorphism group is edge-transitive, i.e., if given u — v and u'— ' there is an
automorphism p such that p(u) = u’ and p(v) = v’ or p(u) = v’ and p(v) = u’

Any vertex-symmetric graph is regular, but edge-symmetric graphs need not be reg-

ular. For example,

'/I\' is edge-symmetric, not vertex-symmetric;

g is vertex-symmetric, not edge-symmetric. (I is a maximal clique)

The graph C, is not edge-symmetric for n > 7 because it has more edges than automor-

phisms. Also, C'7 has no automorphism that takes 0 — 2 into 0 — 3.

Lemma. If G is edge-symmetric and regular, equality holds in Lemma 24.

Proof. Say that A is an optimum feasible matrix for G if it is a feasible matrix with
AA) = J(G)
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as in section 6. We can prove that optimum feasible matrices form a convex set, as follows.
First, tA + (1 — 1)B is clearly feasible when A and B are feasible. Second,

A(tA + (1 —t)B) < tA(A) + (1 - t)A(B), 0<t<1 (25.2)

holds for all symmetric matrices A and B, by (6.2) ; this follows because there is a unit
vector x such that A(tA + (1 — ¢t)B) = xT(tA +(1 — t)B)x = tzTAz + (1 —t)zT Bz <
tA(A) + (1 —t)A(B). Third, if A and B are optimum feasible matrices, the right side of
(25.2) is B(G) while the left side is >9(G) by (6.3). Therefore equality holds.

If A is an optimum feasible matrix for G, so is p(A), the matrix obtained by permuting
rows and columns by an automorphism p. (I mean p(A)m,=Ap(u)p(v).) Therefore the
average, A, over all p is also an optimal feasible matrix. Since p(fi) = A for all automor-
phisms p, and since G is edge-symmetric, A has the form J + 2B where B is the adjacency
matrix of G. The bound in Lemma 24 is therefore tight. [J

(Note: If p is a permutation, let Py, = 1 if u = p(v), otherwise 0. Then (PTAP)y, =
2Pl A Pio= Ap(uyp(v); S0 P(A) = PTAP.)

The argument in this proof shows that the set of all optimum feasible matrices A
for G has a common eigenvector x such that Ax = ¥(G)x. The argument also shows
that, if G has an edge automorphism taking u — v into u’ — v’, we can assume without
loss of generality that A,, = A, in an optimum feasible matrix. This simplifies the
computation of A(A), and justifies our restriction to circulant matrices (22.14) in the case

of cyclic graphs.
Theorem. If G is vertex-symmetric, 9(G)9(G) = n.

Proof. Say that b is an optimum normalized labeling of G if it is a normalized orthogonal

labeling of G achieving equality in (7.1) when all weights are 1:

9= bu-by, D> |Ib]>=1,  by.b,=0whenu —v. (25.3)
u,v v

Let B be the corresponding spud; ie., Byy=by.b, and ¥ =),  By,. Then p(B) is also
equivalent to an optimum normalized labeling, whenever p is an’automorphism; and such
matrices B form a convex set, so we can assume as in the lemma that B = p(B) for all
automorphisms p. Since G is vertex-symmetric, we must have By, =1/n for all vertices v.
Thus there is an optimum normalized labeling b with ||b,||?=1/n, and the arguments of

Lemma 10 and Theorem 12 establish the existence of such a » with

c(by) = HG)/n (25.4)
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for all v. But b is an orthogonal labeling of G, hence

by the definition (5.2) of ¥1. Thus 9(G )9(G)< n; we have already proved the reverse
inequality in Lemma 23. [J

26. Consequence for eigenvalues. A curious corollary of the results just proved is

the following fact about eigenvalues.

Corollary. If the graphs G and G are vertex-symmetric and edge-symmetric, and if the

adjacency matrix of G has eigenvalues
AL 2 A2 2 2 Ag, (26.1)

then
(A= 2A)(n— A1 + A2) = —An(A2 + 1)n. (26.2)

Proof. By Lemma 25 and Theorem 25,

nA(—B) nA(-B)

_. n,
A(B) + A(—B)A(B) + A(-B) = (26.3)

where B and B are the adjacency matrices of G and 6, and where we interpret O/ O as 1.

We have
B=J-I1I-B. (26.4)

If the eigenvalues of B are given by (26.1)) the eigenvalues of B are therefore
n —l=M2>2-1-A, > 2> —1- ). (26.5)

(We use the fact that G is regular of degree Xi.) Formula (26.2) follows if we plug the
values A(B) = A1, A(-B) = —Ap, A(B) =n — 1 —A1, A(-B) = 1 + Ag into (26.3). [J

27. Further examples of symmetric graphs. Consider the graph P(m,t, q) whose

vertices are all s@’?éebs tofcardinality ¢ of some given set S of cardinality m, where
v - v < |Uﬂ1)‘:q (27.1)

We want 0 < g <tand m > 2t — g, so that the graph isn’t empty. In fact, we can assume
that-m >2t, because P(m,r, ¢q) is isomorphic to P(m, m —t,m— 2t + q) if we map each

subset u into the set difference S\ u:
((S\u)N(S\v)| =|S] —|lulv| =S| —|u] —|v] +|un v|. (27.2)

30



The letter P stands for Petersen, because P(5,2,0) is the well known ‘<Petersen graph” on

10 vertices,

12
34 45
r\
15 23 (27.3)

These graphs are clearly vertex-symmetric and edge-symmetric, because every permutation
of S induces an automorphism. For example, to find an automorphism that maps u —v
into ' — v/ letu = wNw Ut,v=@Nv)U T, u=@Nv)Ud, v=>@nv)U v, and
apply any permutation that takes the g elements of u M v into the g elements of u’ N V’, the
t — g elements of @ into the ¢ — ¢ elements of u’, and the ¢ — g elements of v into ¥’. Thus
we can determine 19(P(m, t, q)) from the eigenvalues of the adjacency matrix. Lovdsz [12]
discusses the case ¢ = 0, and his discussion readily generalizes to other values of g¢. It
turns out that 9(P(m, 1, 0)) = (T’__ll). This is also the value of a(P(m, 1, 0)), because the

(T__ll) vertices containing any given point form a stable set.

The special case £ =2, g = 0 is especially interesting because those graphs also satisfy

the condition of Corollary 26. We have

-2
n=(1;>, ,\1=<m2 ) Ay = 1) A =3—m, (27.4)

and (26.2) does indeed hold (but not “trivially”). It is possible to cover P(m,2,0) with
disjoint maximum cliques; hence H(P(m,Z,O)):(?)/L%J:Zf%}— 1. In particular,
when G is the Petersen graph we have a(G) = 0(G) = 4, k(G) = 5; also a(G) = 2,
¥(G) = k(G) = 2.

28. A bound on ¥. The paper [12] contains one more result about ® that is not in [7],

so we will wrap up our discussion of [12] by describing [12, Theorem 11].

Theorem. If G has an orthogonal labeling of dimension d with no zero vectors, we have

Y(G) < d.

Proof. Given a non-zero orthogonal labeling a of dimension d, we can assume that
LI = 1 for all v. (The hyp othesis about zeros is important, since there is trivially an

orthogonal labeling of any desired dimension if we allow zeros. The labeling needn’t be
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optimum.) Then we construct an orthogonal labeling a” of dimension d?, with c(all)=1/d

for all v, as follows:

Let a have d? components where the (j, k) component is QjyQky- Then
a,.al = (a, . a,)? (28.1)

as in (20.7). Let Q be any orthogonal matrix with d? rows and columns, such that the
G, k) entry in row (1,1)is 1/v/d for j = k, 0 otherwise. Then we define

ar = Qal . (28.2)

Once again al-a! = (ay-ay)?, so @’ is an orthogonal labeling. We also have first component

7 N [.7 = Ig] ' N aizcv 1
1,10 = L — 75 Gk T L = T (28.3)
gk VY r V& o va

hence c(al)=1/d. This proves 9(G)< d, by definition of ¥;. U

This theorem improves the obvious lower bound a(G) on the dimension of an optimum

labeling.

29. Compatible matrices. There’s another way to formulate the theory we’ve been
developing, by looking at things from a somewhat higher level, following ideas developed
by Lovdsz and Schrijver [15] a few years after the book [7] was written. Let us say that
the matrix A is X-compatible with G and w if A isan (n + 1) x (n + 1) spud indexed by

the vertices of G and by a special value 0, having the following properties:
Ago = A
A,, = Ay, =w, for all vertices v;

Ayy = 0 whenever u — v in G.

Lemma. There exists an orthogonal labeling a for G with costs c¢(a,)=w,/A if and only

if there exists a matrix A that is X-compatible with G and w.

Proof. Given such an orthogonal labeling, we can normalize each vector so that |[a,]|? =

Wy. Then when w,7# 0 we have

2
Wy ai,

— = c(ay,) = —,
A (a) Wy
SO we can assume that @i, =wv/\//_\ for all v. Add a new vector ag, having ajg = \/X
and ajo = 0 for all j > 1. Then the matrix A with A,, =a, .a, is easily seen to be

X-compatible with G and w.
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Conversely, if such a matrix A exists, there are n + [ vectors @g, ..., a, such that
Ayuy = Gy . Gy; in particular,
ag/ﬁ, and define a, = Qa, for all v. Then a)y = VX and a;o =0 for all 7 > 1.
Also al,-a! =a, - a = A, for all u and v. Hence VAa}, = a}.al, = Ag, = w, and

lao||?* = A\. Let Q be an orthogonal matrix with first row

lal|P = al - al, = Ay = wy, for all v € G, proving that ¢(al)=w,/\. Finally a’ is an

orthogonal labeling, since a,.al, =A, =0 whenever u—/v.
Corollary. € TH(G) iff there exists a matrix l-compatible with G and x.
Proof. Set A =1 in the lemma and apply Theorem 14. [J

The corollary and definition (4.1) tell us that 19(6', w) is max(wlxl + ...+ wnxn)
over all x that appear in matrices that are l-compatible for G and x. Theorem 12 tells
us that 9(G, w) is also the minimum A such that there exists a X-compatible matrix for
G and w. The “certificate” property of Theorem 13 has an even stronger formulation in

matrix terms:

Theorem. Given a nonnegative weight vector w = (wy,...,wy)T, let A be X-compatible
with G and w, where A is as small as possible, and let B be l-compatible with G and x,

where W1T1 + - .+ WnpTy is as large as possible. Then
ADB =0, (29.1)

where D is the diagonal matrix with Dgg = -1 and Dy, =41 for all v # 0. Conversely,
if A is X-compatible with G and w and if B is l-compatible with G and x, then (29.1)
implies that A= w11+ .  + Wpy = G, w).

Proof. Assume that A is X-compatible with G and w, and B is l-compatible with G
and x. Let B" = DBD, so that B is a spud with B{, =1, B{, = B,y = —,, and
B! ., = By, when u and v are nonzero. Then the dot product A - B’is

A—UWT)] — = WpTp —WITL — - — WpTp +WIT1 + FWnTpy = A— (w0121 + -+ WpTy)

because A,, By, = 0 when u and v are vertices of G. We showed in the proof of F9
in section 9 that the dot product of spuds is nonnegative; in fact, that proof implies
that the dot product is zero if and only if the ordinary matrix product is zero. So A=
wLry + -+ ’wnmn=19(G, w) iff AB’ = 0, and this is equivalent to (29.1). u

Equation (29.1) gives us further information about the orthogonal labelings a and b

that appear in Theorems 12 and 13. Normalize those labelings so that ||a||? = w, and
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|6]|> = x,. Then we have

> wy (b by)<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>