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Abstract

With the ever increasing volumes of information generation, users of information systems are

facing an information overload. It is desirable to support information filtering as a complement
to traditional retrieval mechanism. The number of users, and thus profiles (representing users’

long-term interests), handled by an information filtering system is potentially huge, and the

system has to process a constant stream of incoming information in a timely fashion. The

efficiency of the filtering process is thus an important issue.

In this paper, we study what data structures and algorithms can be used to efficiently perform

large-scale information filtering under the vector space model, a retrieval model established as

being effective. We apply the idea of the standard inverted index to index user profiles. We
devise an alternative to the standard inverted index, in which we, instead of indexing every term

in a profile, select only the significant ones to index. We evaluate their performance and show

that the indexing methods require orders of magnitude fewer I/Os to process a document than
when no index is used. We also show that the proposed alternative performs better in terms of

I/O and CPU processing time in many cases.

1 Introduction

Information is increasingly available in electronic form. The number and size of full text document

databases are rapidly increasing. Users of such database systems are facing an information over-

»
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Figure 1: Information Filtering Server(s)

load; it is becoming difficult for users to rely solely on traditional retrospective search and retrieval
mechanisms to keep themselves apprised of new documents that are relevant to their interest. As
a complement to conventional search mechanism, information systems can provide an information
filtering mechanism, through which a user subscribes profiles, or queries that are continuously eval-
uated, to represent his long-term interests, and then passively receives information filtered by the
system according to the profiles.

Research in information filtering has received a lot of attention lately. However, previous work
has focused on the effectiveness (precision and recall) of the filtering, and little has been done to
address the efficiency (performance) aspect of the problem. We believe that information filtering 1s
going to be used on a large scale and hence the efficiency issue must be addressed. In this paper,
we present data structure and algorithms to support information filtering.

Wide area information retrieval 1s now a reality; large-scale world-wide information filtering is
also foreseeable. Consider a population of users and a number of information sources in a networked
information filtering environment. The filtering can be done either at the information sources, at
the user sites, or at an intermediate information fillering server (Figure 1). Relying solely on user
filtering is expensive since network bandwidth is wasted to transmit irrelevant information and a lot
of wasteful local processing is done. Relying on filtering at the sources themselves is also expensive
since users need to replicate their profiles at all possible sources. The information filtering server 1s
a good compromise. It collects information from a set of sources and toutes it to interested users. Of
course, there can be multiple information filtering servers on the network, each servicing a different
set (maybe overlapping) of users and information sources.

In this paper, we focus on one information filtering server and consider what data structure
and algorithms it can employ to speed up the filtering process. This is important because, firstly,
the number of users and profiles a server has to handle is potentially huge. Secondly, as the rate
of information generation is high, a filtering server will have to process a large number of new ’
documents everyday, especially if the server collects information from a number of sources. Thirdly,
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it is important to deliver relevant information to users in a timely fashion for such a service to

be useful. In summary, information filtering servers will have to handle huge number of profiles

and process a constant stream of incoming documents in a timely fashion. Thus, to develop efficient

processing methods for a single filtering server can be seen as the first but important step in achieving

efficient filtering on a global scale.

| To further motivate the need for efficient information filtering methods, let us look at a popular

information source today — Netnews. The study [11] reports that, as of January 1993, the total

Netnews readership worldwide is estimated to be 1.9 million. The estimates for the average traffic

are 49.5 MB and 19,210 messages per day (counting cross-posted messages only once). If we consider

a Netnews filtering server that serves a small fraction (say 5%) of this user population, and each

user has say five profiles, the server will have to handle hundreds of thousands of profiles. To match

this large number of profiles against a daily influx of tens of thousands of documents in a timely
fashion, it is apparent that efficient data structures and algorithms are needed. Furthermore, keep
in mind that these Netnews numbers are for a single information source today. In the future, one

would expect many more sources with even higher volumes.

Netnews does support a rudimentary filtering mechanism by categorizing articles into newsgroups

and allowing users to subscribe to newsgroups of interest. However, a finer granularity of information

need matching, by means of information retrieval techniques, will cater much better to individual
interests. Research in information retrieval has given rise to many retrieval models, notably the

boolean model, the vector space model, and the probabilistic model, that are applicable to infor-

mation filtering [1]. Reference [18] presents data structures and algorithms for information filtering
under the boolean model. In this paper, we consider the vector space model (VSM), which is widely

~ recognized as an effective retrieval model. It uses a natural language interface, which makes it easy
to use. A well-known technique, called relevance feedback, provides an easy way to improve retrieval
effectiveness. Some of the ideas in the VSM have been implemented in the WAIS system [8]. The

popularity of WAIS demonstrates the appeal of the VSM. Our methods are thus for documents and

profiles represented in the VSM.

Our algorithms make use of an inverted indez to speed up the filtering process. Inverted indexes
have been used by information retrieval systems to facilitate traditional retrospective search, namely

by building an index of documents. In this paper, we investigate how the idea of an inverted index
can be used to speed up profile processing. Specifically, we propose to use an inverted index of

. profiles. 1 In the information retrieval scenario, a user query is matched against a document index.

TTOther retrieval methods (c.g., signature files [4]) can also be used to speed up filtering (c.g. building a signature
y file of profiles). In this paper, we focus on inversion-based methods. Further work would need to be done to compare
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Here, an incoming document is matched against a profile index. We investigate what modifications
need to be made, and what alternatives are feasible.

Incidentally, we have implemented two experimental filtering servers at Stanford to disseminate .
Netnews articles and computer science technical reports. The reader is encouraged to try out these
services. For instructions on how to use these services, send an electronic mail message to either ‘

elibQdb.stanford.edu (for technical reports) or netnews@db.stanford.edu (for Netnews) with
the word “help” in the message body. Instructions will be returned automatically. The current
version of these servers is not efficient (it uses the Brute Force method described later on). However,

as more users subscribe to our servers, there is an obvious need for an efficient implementation, and |
this motivated the work reported in this paper.

The rest of the paper is organized as follows. In Section 2, we give a brief summary of the VSM,

as applied to information filtering. In Section 3, we present three methods to process profiles. Details
of the analysis and simulations used to evaluate the performance of the methods are described in
Section 4. The results of the evaluation are presented in Section 5. Section 6 is a survey of related
work and Section 7 is for conclusion.

2 VSM Applied to Information Filtering

In this section, we give a brief summary of the VSM as used in information filtering. The purpose of
this is to explain some terminology and assumptions necessary for the exposition of our algorithms in
Section 3. For an in-depth introduction to the VSM and information filtering the reader is referred

to [12] and [1] respectively.

2.1 Document and Profile Vector

In the VSM, we identify a document by a set of terms. Weights are assigned to terms as statistical
importance indications. If m distinct terms are available for content identification, a document D
can be conceptually represented as an m-dimensional vector, D = (wi, ..., Wm), Where w; 1s the
weight assigned to the i-th term and is 0 for terms not present in D. To compute the vector
representation of a document, usually these steps are followed. First the individual words occurring
in the document are identified. Words that belong to the stop list, which is a list of high-frequency

words with low content discriminating power, are deleted. Then a stemming routine is used to

reduce each remaining word to word-stem form. For each remaining word stem (a term), a weight is ]

assigned in an attempt to represent how “important” that term is. One common way to compute the

the performance ofsignature-basedand inversion-based methods for information filtering.
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weight of a term 1s to multiply the term frequency (tf) factor with the inverse document frequency
(idf) factor. The tf factor 1s proportional to the frequency of the term within the document. The
idf factor corresponds to the content discriminating power of the term: a term that appears rarely in
documents (e.g., “queue”) has a high idf, while a term that occurs in a large number of documents
(e.g., “system”) has a low idf. 2 (See Section 4.1.1 for examples of formulas used to calculate these
factors.)

As profiles in the VSM are expressed in natural language, we can represent profiles just like
documents. A profile P appears as P = (ui, Um) Sometimes we follow the convention of
writing a document or profile vector as a vector of (term, weight) pairs; those terms not listed
have weights equal to O. Thus, a profile P with p non-zero weighted terms can be written as
P = ((1, 1), ---» (¥ps tip). For instance, in the profile P = ((“queune”, 0.93), (“system”, 0.37)), term
“queue” has a weight 0.93, “system” has 0.37, and all other terms have a zero weight. The weights
again describe the “importance” of each term.

2.2 Similarity Measure

We can measure the degree of similarity between a document-profile pair based on the weights of
the corresponding matching terms. The cosine measure has been used for this purpose; given a
document D = (wy, -.., Wm) and a profile P = (41, -.., Um), the cosine similarity measure is:

m

sim(D,P) = THT =eRi=1 Wi Zasi=1 Mi

In this paper we assume that the document and profile vectors are normalized by their lengths; thus
the above simplifies to: _

sim(D,P)=D-P= y win.
i=1

2.3 Relevance Threshold

In an information retrieval setting, a query is run against a database of documents, and the relevant

| documents are returned to the user, ranked by their scores, i.e., the similarity between the query
and the documents. In an information filtering setting, a profile is compared with a single document
or a small number of documents. It is undesirable to filter documents based on the ranks among a

oo small batch of documents. In [5], a fixed number of top ranked documents is returned over a certain

SE inverse document frequencies within the batch may not be the most reliable. Instead, we may extract the idfs froma pre-existing reference corpus of text, as is done in [5].
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period of time. This is only possible if the period is long enough to allow a significant number
of documents to be collected to make the ranking meaningful; and in doing so, the timeliness of
the documents is sacrificed. Also, the filtering effectiveness (precision and recall) depends on the
particular set of documents received during a period. If all documents are relevant, then some will be
missed (low recall). If few documents are relevant, then some documents delivered will be irrelevant .
(low precision). Reference [5] indeed reports such drawbacks.

An alternative, as suggested In [5], is to allow the user to specify some kind of absolute relevance
threshold — documents above the threshold are considered relevant, and those below are not. With
this strategy, instantaneous processing of documents is possible (i.e., a document can be processed
one at a time, as soon as it is received). Also, the precision and recall of the filtering are independent
of when it is performed. Interestingly, such relevance threshold can also be used in conventional in-
formation retrieval; [13] describes such an experiment. We sum up this discussion with the following
definition.

Definition 1: Given a profile P and a relevance threshold 6, a document D is relevant to P if
sim(D, P) > 0. 0

2.4 Relevance Feedback

A well-known technique used to improve the effectiveness of retrieval is relevance feedback. This
technique can be applied to information filtering as well. In essence, a profile vector can be au-
tomatically reformulated by adding to it relevant document vectors (as judged by the user) and
subtracting from it irrelevant document vectors. A variety of adjustment formulas have been stud-
ied; for example, one variety, called Ide Regular [14], can be applied to information filtering as

pitn—pd 4 YY D- >, D (1)
D relevant D irrelevant

where P() is the profile vector after the i-th feedback iteration. In this paper, we are not concerned
with which exact adjustment formula is used. Our methods do not depend on which formula is used
(or if relevance feedback is used at all). In one of our simulation experiments, we investigate the
impact on the performance of our profile processing methods when relevance feedback 1s used.

2 Data Structures and Algorithms

In this section we describe three methods that match a document against a number of profiles and
determine the profiles to which the document is relevant. We assume that a document is processed .
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one at time, as soon as it arrives. Our methods can easily be extended to handle the case when a
number of documents is batched together for processing, but we do not address this here.

In two of the methods, we make use of an inverted index. In an index, for each term z, we

collect profiles that contain it to form an inverted list. > The mapping from terms to the location
of their inverted lists on disk is implemented as a hash table, called the directory. We assume that

the inverted lists are stored on disk while the directory fits in main memory.

Our focus in this paper is on efficient VSM filtering algorithms. The issue of how to efficiently
update profiles in the data structures is not addressed. We assume that such updates are batched and
are periodically installed. However, in the evaluation of our indexing methods, we do consider two |
options of storing inverted lists on disk. One option is to pack all the lists into contiguous blocks, and
the other is to store each list individually in an integral number of blocks. While handling updates

in the first option requires reading and writing all the lists, it is much easier in the second option.
On the other hand, the storage space requirement for the first option is higher. In our evaluation
we examine the trade-off involved.

3.1 Brute Force (BF) Method

If we store profiles sequentially on disk without any index structures, then all profiles must be
evaluated when a new document is received. This is the Brute Force (BF) method.

When a document arrives, we first compute its vector representation as described in Section 2.

Then we examine each profile in turn. For each (term, weight) pair (2, u) in a profile, we find z’s

weight w in the document vector, and calculate the product w Xx wu. The sum of such products is
the cosine similarity measure. The document is relevant to a profile if the cosine measure is greater
than the relevance threshold associated with the profile.

We store a profile on disk as a variable-length record with these fields: the profile identifier, the
length - i.e., the number of terms in the profile, the (term, weight) pairs, and finally the relevance
threshold.

| 3.2 Profile Indexing (PI) Method
To reduce the number of profiles that must be examined, we build an inverted index of profiles. We

call this the Profile Indezing (PI) method. For each term z, we collect all the profiles that contain

. it to form its inverted list. The list is made up of posting; each contains the identifier of a profile
involving « and the weight of z in it. Thus, an profile with p terms will be found in p postings; each

oo “3 as deteiled later, we may collect all or some of the profiles that contain a term to form it inverted list.
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posting in a different List. When processing a document D, we only need to examine those profiles |
in the inverted lists of the terms that are in D.

To match a document against these profiles, we need two (main memory) arrays, THRESHOLD :
and SCORE. (This method and the next use more main memory than the BF method.) The number
of entries in each array is equal to the number of profiles the system handles. Each profile has an .
entry in each array: the THRESHOLD entry stores the relevance threshold, and the SCORE entry
is used to keep the score of the profile.

When a document D arrives, we initialize the SCORE array to all 0's. For each term z with

weight w in the document, we use the directory to retrieve z’s inverted list. Then we process each
profile P in the list. That is, if the weight of z in P is u, we increment SCORE/[P] by the product
of w x u. After all document terms are processed, a profile whose SCORE entry is greater than the
THRESHOLD entry matches the document.

To illustrate, consider three profiles:

P; = ((a, 0.46), (b, 0.14), (c,0.17), (d, 0.62),(e, 0.59)) 6, = 0.25
P, = ((a, 0.95), (b, 0.30)) 6, = 0.20
Ps = ((c, 0.14), (¢, 0.49),(f, 0.17), (9, 0.42), (h, 0.11), (5, 0.10), (4, 0.72)) | 85 = 0.25

The inverted index for these profiles is shown in the right-hand side of Figure 2. For example,
: the a list contains the postings for P; and P;. The 0.46 value in the first entry in this list is the

weight of a in P;. Now suppose this document arrives:

| D = ((b, 0.15), (d, 0.32), (f, 0.21), (h, 0.14), (3, 0.90).

To process this document, first we read the b list, and increment the SCORE entries of P; and P;
by 0.15 x 0.14 = 0.021 and 0.15 X 0.30 = 0.045 respectively. The lists of d, f, h, and j are processed
similarly. The final values of the SCORE array are as shown in the figure. This document is relevant
to Ps.

Notice the PI method is almost symmetrical to the method used in information retrieval to match

a query against a database of documents with an index of documents, with the roles of documents
and queries (profiles) reversed. The difference is that the THRESHOLD array is not used; instead,
after the computation of similarities, the SCORE array is sorted to find the rank of the documents.
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Figure 2: Data Structures for Profile Indexing

3.3 Selective Profile Indexing (SPI) Method

In the PI method, we index a profile by all its terms. In this subsection we investigate an alternative
in which we only select a number of terms for indexing.

Consider the term bin P; in our running example. Suppose a document arrives and it does

not contain the terms a, c, d, or e. The maximum score P; could have against this document is

0.14 (if b's weight in the document 1s the highest possible, 1.0), which is less than the threshold
specified. At a threshold of 0.25, the term b is insignificant in that it alone cannot produce enough
score for a document to be relevant. Thus, we may choose not to index the profile with the term

b — a document that contains only b and no other terms in the profile will not be relevant anyway.

However, a document that contains b and another term in the profile may be relevant; so we need

to duplicate (b, 0.14) in the postings of the other terms in their respective lists. (Since we assume
that the inverted lists are stored on disk, it is better to duplicate the pair than to store it elsewhere

and keep a pointer in the postings to reference it (extra I/Os will be needed to look it up). If the
entire index fits in main memory, it is better to use the pointer option. See comments in Section 7.)

Similarly, consider the subvector ((k,0.11),(3,0.10)) in Ps. Suppose a document arrives that
does not have the other terms in P3. Then an upper bound to the similarity between P3 and this

document is 0.11 + 0.10 = 0.21 (we can actually find a tighter upper bound, by a theorem proved

below). Again, with a threshold of 0.25, the subvector is insignificant. In this case, we may choose
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not to post the profile in the inverted lists of kh and 7 and duplicate the pairs in the postings of the
other terms in the profile. These observations lead us to this definition.

Definition 2: Given a profile vector P = ((y1, ¥1)y +r (Ups up), 2 subvector Py, = (Hips %iy)s eos .
(¥i,,ui,)), 1 <4 <...< i, < p, is insignificant at a threshold of 8 if for any document D,
sim(D,P,) <6. O |

Given a profile like Ps, there may be several insignificant subvectors (e.g., ((k, 0.11), (3, 0.10)) is
one, ((c, 0.14), (4, 0.10)) is another). Which subvector should we use to reduce the number of index
postings? One idea is to use the subvector that contains the most low-idf terms. Low-idf terms
occur more frequently in documents; thus, by not posting these terms we expect to save the most |
lookup work.

Definition 3: Given a profile vector P = ((y1, 1) +s (yp, Up)), a subvector P, = ((Yiy, iy) or |
(vi, ui,))h 1 Su <...< i, <p, is most insignificant at a threshold of if it has the largest number
of lowest idf terms among the insignificant subvectors at a threshold of 6. 0

Assuming idfs are distinct, a profile vector has a unique most insignificant subvector at a given
threshold. We need a way of checking whether a subvector is the most insignificant subvector and
this requires the ability to compute the maximum possible similarity between a profile subvector
and any document vector. Intuitively, we can see that the similarity between a profile subvector
and any unit document vector is highest when the document vector is “in the same direction” as
the profile subvector. And if that happens, the similarity is given by the magnitude of the profile
subvector. This is formally stated and proved as follows.

Theorem 1: For any P and any D, ||D|| <1, sim(D, P) <||P]||-

Proof: This follows easily from the Cauchy-Schwarz Inequality [6]:

sim(D,P)=D-P<|D-PI<|D|IP]| < [IP]. =

To find the most insignificant subvector of a profile vector, we can sort the terms by idf and
include as many terms as possible. For example, consider P3 again. We assume that the term
weights are directly proportional to the idfs (which is true if the tf components are the same). As

1((c, 0.14), (kh, 0.11), (3, 0.10))|| = 0.2042 < 0.25, and

1((£,0-17), (c, 0.14), (h, 0.11), (3, 0.10))|| = 0.2657 > 0.25,

((c, 0.14), (h, 0.11), (2, 0.10)) is the most insignificant subvector of Ps at a threshold of 0.25. This also
shows that Theorem 1 is stronger than the naive way of finding an upper bound by simply adding

10
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Figure 3: Data Structures for the SPI Method

the weights, as we have done earlier.

With this knowledge, we can indeed index the profiles selectively. For each profile, we find the

most insignificant subvector at the threshold specified. The profile is then posted in the inverted lists

of the significant (relative to the most insignificant subvector) terms. In each posting, we include

the insignificant terms and their weights; i.e., they are duplicated in the lists of all the significant
terms. This is called the Selective Profile Indezing (SPI) method.

Each posting contains the profile identifier, the weight of the term indexed, the number of

insignificant pairs, and the pairs of insignificant terms and weights. Postings in the same list are
stored sequentially in blocks.

We also require the THRESHOLD and SCORE arrays as in the PI method. When a document

comes along, we construct its vector representation. Next we initialize the SCORE array to all 0’s.
Then we index the directory to retrieve the inverted lists of each term. Suppose we are processing

the term z with weight w in the document. For each profile P in the z list, suppose the weight of z in

P is u, and the insignificant pairs are (vi,,ui,), + (vi,,ui,). We examine P’s SCORE entry. There
are two cases: if the SCORE entry is zero, we first add the product w x u. Then we look up each

- term y;; in the document vector. Suppose its weight in the document is w;;. We add the product
wi; X ug; to the SCORE entry. In the second case, the SCORE entry is not zero, meaning that we

: "have already added the contribution of the insignificant terms in some earlier computation. Thus

11
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we only add the product w X u. After all document terms have been processed, a profile matches
the document if its SCORE entry is greater than the THRESHOLD entry.

Figure 3 shows the index for our running example. For instance, suppose we are processing the .
first pair (b, 0.15) from the document vector. The list of b has only one posting, that of P;. We add
the product 0.15 x 0.30 = 0.045 to P's SCORE entry. As there is no insignificant subvector, we .
are done with this posting and also with the b list. Next we process the pair (d, 0.32). Only P's
posting is in the d list. First we add the product 0.32 x 0.62 = 0.1984 to SCORE[P;]). Then we
process the insignificant subvector ((b, 0.14), (c, 0.17)). To do this, we look up the term b in the
document vector, getting a weight of 0.15. Thus we increment SCORE[P:] by the product 0.15 x
0.14 = 0.021. Next, we look up c, which is not in the document vector. We are now done with this
list. The other pairs are processed similarly. The final values for SCORE are as shown in the figure.

4 Performance Evaluation

4.1 Models

We use analysis and simulations to evaluate the performance of the methods. To allow flexibility
in our performance evaluation, we use synthetic document and profile models. To make them
realistic, we base our models on properties of a database of Netnews (text) articles received by our
Department’s Netnews host during the period of April 22 to April 29, 1993. A total of 212,972
articles were collected, making up a 550MB database. Below we describe our models.

4.1.1 Document Model

The following steps were carried out to study the occurrence frequency of terms in the database.
First, a lexical analysis screened out all non-alphabetical characters from the documents (i.e., arti-
cles). Then a stemming routine (Porter’s algorithm [10]) was run to reduce the remaining words to
word-stem form. Each stem thus obtained is a term. Next we measured the occurrency frequency
of each term in the database, obtaining the plot shown in Figure 4 (note the log/log scale). The
x-intercept (i.e. size of the term vocabulary, which we denote by v) is found to be 521,915. The
straight line in the graph was derived by curve fitting using [17]. We can see the database does
demonstrate Zipfian characteristics [19]. Also, the average number of words per document (denoted
by d) is found to be 323.

Hence, we come up with the following probabilistic document model. The terms in a document
come from a vocabulary V of size v. Each term is uniquely represented by an integer z, 1<z<w.
The probability that any term appears is described by the probability distribution Z. We rank the .

12
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Figure 4: Term Rank vs Term Frequency Graph for Netnews Database

terms in non-increasing order of frequencies, i.e., Vz,y,1 <2 <y < v, we have Z(z) > Z(y); for

convenience, we use the rank to identify the terms. We assume the frequency distribution follows

Zipf’s Law; i.e,
1

Z(z) ==

A document has d term occurrences and is generated by a sequence of d independent and identically

distributed trials; each trial produces one term from V according to the distribution Z. The most

frequent s terms form the stop list; stop-listed terms are deleted from a document before its vector
representation is computed. We choose s to be 100 in the evaluation.

Finally, the vector representations of the documents are computed as described in Section 2. The
exact formulas used to compute the weight of a term z; are from [13], which have been empirically
found to be effective:

_ fiify = 0.5+0.5%X —, and
maxf;

J

idf; = log(1/fraction of documents with z;),

where f; is the frequency of the term z; in the document. We analytically compute the fraction in
idf as the probability that z; appears in a document.

13
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4.1.2 Profile Model

Looking at our database, we find that a large fraction of the terms in the vocabulary occur very
infrequently. Those terms are mostly from misspellings, typos, or self-invented words. We do not
expect these terms to appear in profiles, which represent long term interests. We model this by
assuming that profile terms are chosen from the set Q = {s+1,...,q}, called the queried vocabulary, )
out of the vocabulary V = {1,...,v},¢ <v. (Recall that we are identifying terms by their ranks.) A
base value of 50000 is chosen for gq, covering more than 97% of the total occurrences of terms in the
Netnews database.

We assume that each term in Q is equally likely to be chosen for a profile. This uniform distri-
bution is justified as queries tend to use a mix of frequent and relatively infrequent words [16]. Also,
terms rarely occur more than once in a profile [12]; thus we assume that a profile is a set of p terms
chosen randomly without replacement from the queried vocabulary Q.

The number of profiles in the system is n. To simplify the study of the effect of profile size on
performance, we assume all profiles have the same length, i.e., p is fixed for all profiles.

Some of these assumptions may not be valid when relevance feedback is used. In the evaluation of
the methods under relevance feedback, we modify our profile model in the evaluation of the methods
under relevance feedback.

4.1.3 Choice of Relevance Threshold

It is hard to model the relevance threshold distribution. For a user, a suitable relevance threshold
for his profile depends on the individual profile terms (their idfs), the degree of correlation among
the terms, the amount of relevant, as well as irrelevant, information in the incoming stream, and his
desired level of precision and recall (is it crucial to receive all possibly relevant documents, or 1s 1t
more desirable to receive those that are likely to be relevant?)

Instead of deriving a complicated model of relevance threshold, we assume the relevance threshold
is fixed for all profiles. This allows us to study clearly its impact on the methods. A reasonable base
case value was found by the following procedure. First a random document was generated. Then a
profile was created to contain a number of overlapping terms, randomly selected from the document.
The similarity between the document and the profile was computed. The procedure was repeated a
large number of times. For a base case profile length of 5, we found that a profile with 4 or more
matching terms has an average similarity of about 0.2. Thus we use this as the base value of the
relevance threshold for our evaluation. Of course, this is not saying that the relevance threshold ’
simply translates to the number of matching terms. We are merely settling with a reasonable starting
point in our evaluation. In Section 5.6, we vary the threshold over the entire range of possible values :
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from 0 to 1 and examine its effect on the performance.

ee

521915 size of vocabulary

Co. 4d | 323 # term occurrences per document
|10 [end ofsiop ls
gq 50000 end of queried vocabulary

300008

[5| # tems per profs
0| 02 relevance threshold
i [4 # bytes for profile identifier
2# bytes to represent length of profile
Ct | 4 # bytes to represent a term
fF | 4 # bytes to represent a floating point number
[512| # bytes ina disk block
1 > ir -

Table 1: Summary of Parameters Used in Performance Evaluation

Table 1 summarizes the parameters used in the models, together with some parameters that

specify the sizes of various fields in the data structures, and the disk block size. Keep in mind that
the base values shown are simply starting points for our evaluation. We explore different sets of

values in our experiments — Section 5 shows some of the results.

4.2 Metrics

We compare the methods with respect to their space and time requirements. For space requirement,

we look at how much disk space each structure takes. (Although main memory space requirements

of the methods differ, we assume they fit in main memory.) We study two ways of storing the

inverted lists in the indexing methods: the first is to pack all hsts contiguously into sequentially

blocks, leaving no disk space in between lists; the second way is to store each list in an integral

number of blocks, allowing easy list expansions. By comparing the space requirement for these two

options, we can see the amount of internal fragmentation the second option produces.

For time requirement, in an I/O bound system, the critical measure is the number of I/Os to

process a document; in a CPU bound system (including the case when a large portion of the data
structures can be cached in main memory), the amount of computation is the critical component.

Hence, we look at both aspects in our comparison. For the CPU computation, we count the num-

) ber of floating-point multiplications each method requires to process a document. The number of

multiplications is one of the major computation costs in processing a document, so we believe 1t is

| a good measure of CPU cost.

15
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In summary, we look at these metrics:

eo the expected total disk space required in number of blocks (with contiguous allocation and
fragmented allocation for indexing methods), )

eo the expected number of disk reads needed to match a document, and

e the expected number of floating point multiplications performed to process a document.

4.3 Analysis and Simulations |

Except those for the SPI method, the results in the Section 5 were obtained by deriving analytical
solutions and then numerically evaluating the expressions. This subsection contains the details of
the analysis.

4.4 Brute Force (BF) Method |

The space requirement for the BF method is simply the number of profiles times the size of each
record; and as all profiles are read to process a document, the number of blocks read per document
is the same:

n(i+ f+ 1+ p(t +

Ter = Rr = aha adis al)
Next, we derive an useful expression for later analysis: the number of distinct terms in a document

D that fall in the queried vocabulary. This can be derived as follows. For any term in the queried
vocabulary, the probability that a term in Dis z is equal to Z(z). So the probability that it 1s not
z is 1 — Z(z). The probability that z does not appear in D is (1 — 2(z))¢. Finally, the probability
that z does appear in Dis 1 — (1 — Z(z))%.

The expected number of distinct terms in D that are in the queried vocabulary is

} q

d = ) Pr(zisin D)
T—8

q
d

T=8

The total number of terms examined per document is np. Fraction 4 of them are expected to
occur in the document. Thus, the expected number of multiplications performed is: i

d
Mgr =npX ——.

q— Ss )
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4.5 Profile Indexing (PI) Method

oo . Assuming the lists are packed contiguously, the total disk space required for the PI method is:
np(i + f)

7g, = PEt,

Now if we assume that lists are not packed, we have to calculate the length of each list. We

consider the question: given A postings, each of size R, that are to be placed in a number of hsts,
what is the expected number of blocks in a certain list, if the block size is B and the probability
that a posting falls in this list is P? Let us denote this expression by L(N,P,R,B).

Intuitively, we can compute the expected number of postings in the hist as NP and compute the

expected number of blocks as
NPR

However, this is incorrect as it neglects the internal fragmentation that results when the postings
do not fully occupy an integral number of blocks. The formula

NPR

is incorrect also, as it always overestimates the number of blocks required. (For example, if P 1s
|

very very small, the expected number of blocks should be small (less than 1), yet the formula gives
1 no matter how small P is. )

Let us now derive a correct expression for the value. Let random variable H be the number of
|

postings in the list. H follows the binomial distribution Bin[A,P]. Let random variable J be the
number of blocks in the list. H and J are related by

RH
J=|—|.2

|

We want to find E[J]. First we compute the following probability.

RH.

Prid=j} = Pr{[—1=J}
RH

= Pr{j-1<—5 <7}
(j —1)B jB

= Pr{*——<H<L—

: | {= <HsR)
= > Bin[h; NV, P).
Elan

.
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To efficiently evaluate the last sum, we use the normal approximation when appropriate, and the
poisson approximation when that is not applicable. Finally, the expression that we are after is thus

LN,P,R,B) = E[J]

= YjPr{I=3j} :
320

= > (i 3" Bin[kN,7P)).

Now we proceed with the analysis of the PI method. For a particular list, the maximum number
of postings that can be placed in it 1s 7. (Although the total number of postings in the index
structure is np, at most only n of them can be on the same list.) The probability that a posting
is in a list 1s part The profile identifier and term weight is kept In a posting, so the posting size 1S
i + f. The expected number of blocks in each list is thus £(n, reve i+ f,b).

The expected total size is then

F _ pp.

Tp; = Ln, ——»i+ £0) X (9 — s).

The expected number of lists read is d, so the expected number of blocks read per document is

_ p_. 7
Rpr = L(n,7fs b) x d.

The number of multiplications is the same as that of the BF method — any multiplication that
must be done in the BF method must still be done in the PI method. Thus, we have |

d
Mpr=npX —.

g—s

4.6 Simulations

Simulations were conducted to obtain the results for the SPI method. We also constructed simula-
tions to validate the analysis. The simulation results did match the analytical ones.

We wrote our simulation program in C. The program first generates n profiles according to
the profile model, and then computes the size of the index structures needed to store the profiles.
Next the simulation program generates a document according to the document model and counts the
number of disk reads and multiplications needed to match it against the n profiles. For each scenario
we have tested, the program is run enough times (with different random number generator seeds)
to make sure that the results are within +5% of the true values, with a 90% level of confidence. .
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5 Results

oo 5.1 Base Case Results

The results for the base case are given in Table 2. In the case when the inverted lists of the

) indexing methods are packed contiguously, the total space requirement for the three methods are

roughly comparable. PI is better than the BF method, since the threshold values are stored in

main memory. The SPI method requires more space than PI, because some (term, weight) pairs are

duplicated in a number of lists in the index.

When the inverted lists are not packed, but are stored individually in an integral number of

blocks, internal fragmentation leads to an increase in total space requirement of about 68% for SPI

to 113% for PI. The split-list strategy allows for easier updates, but we have to pay the price of

higher total space requirement.

For the number of disk reads performed per document, we see orders of magnitude improvement

of the indexing methods over the BF method. The SPI method is best, due to the fact that certain

frequent terms in a profile are not indexed. For this same reason, the number of multiplications for

SPI is lower than that for BF and PI (the latter two perform the same number of multiplications;

see the analysis).

Method | Size (Blocks) | Size (Blocks) | Reads | Multiplications

BF | 29207 [  - [20207] 4314

SPT | sesso | 4osoi | 17 | 3438

Table 2: Results for the Base Case

In what follows, we describe several sensitivity studies in which we vary the parameter values.

5.2 Size of Queried Vocabulary

The first parameter that we exercise is g, which controls the size of the queried vocabulary. Figures

5 to 7 show the results.

In Figure 5, the total space requirement for the BF method, as well as the indexing methods

when the contiguous-list strategy is used, is insensitive to g. However, when the split-list strategy

is used for the indexing methods, their space requirement does vary with q. The fluctuations in the

graph for SPI can be explained as follows. When gq is 20000, each inverted list occupies 2 blocks.

As g increases, the number of lists increases, and so the total size increases. At the same time, the
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number of postings in a lists decreases, since they are distributed over a larger number of lists. At
some point (around g¢ = 30000), the lists begin to <hrink in size to 1 block, and this explains the
drop in total size. Thereafter, the total space requirement increases linearly with g, as each list fits
in 1 block. The same reasoning can be applied to the fluctuations in the graph of PL. |

Figure 6 shows the results for the number of blocks read per document. The number of blocks
read for the BF method is constantly equal to its total space requirement, and thus the graph 1s
omitted to show the variations in the other methods better. The sharp drop in the number of I/Os
required corresponds to the shrinking of the list length (from 2 blocks to 1 block). Thereafter, the
number of I/Os increases, as the number of lists read per document increases (due to the increase
in the queried vocabulary size). The rise is more prominent in PI than in SPI.

For the number of multiplications per document (Figure 7), SPI is better throughout than the
other methods. The trend is downward for all methods, as more infrequent terms appear in profiles.

5.3 Profile Length

The next parameter that we vary is the profile length. Figures 8 to 10 show the results.
For contiguous allocation, we see the total.space requirement grows with p for all methods (Figure

8). For fragmented allocation, with a small p, the inverted lists each fit in one block, so the size
remains constant at the queried vocabulary size. With larger p, the lists grow in length, so the total
space requirement grows also. The SPI method grows at a faster rate than the PI method.

The number of disk reads required by the SPI method initially decreases as p 1s increased from
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1 (Figure 9). This is because it becomes more likely that a profile includes infrequent terms and
is thus indexed by those terms. With the longer lists at larger p (greater than 7), its performance

| deteriorates and then stabilizes. On the other hand, for the number of multiplications, SPI is always
better than the two other methods (Figure 10).

5.4 Number of Profiles

We vary the number of profiles from 100000 to 800000. For the total space requirement (results
shown in Figure 11), we have a similar graph as that for p. For contiguous allocation, the space
requirement grows linearly with n. For fragmented allocation, the space required is at first constant
and then increases. Each inverted list fits in 1 block at the beginning, but as n increases, 2 blocks

are needed to hold a list. The lists grow at a faster rate in the SPI method initially, but PI soon

catches up with it.

Figure 12 shows the results for the number of disk I/Os required per document. Those for the
BF method are omitted. We see there is a range of n values where SPI requires more I/Os per

document; this happens when an SPI inverted list grows faster than a PI list. When the list length
becomes the same in both methods, SPI again becomes better PI.

In terms of number of multiplications per document, all methods scale proportionally to the

: number of profiles, with the SPI method always better than the other two methods. Due to space
considerations, we omit the graphs here.

Co
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5.5 Relevance Threshold

The next parameter that we vary is the relevance threshold. Although it may not make sense to

have threshold value of 0 or 1, we study the entire range of possible values to confirm our intuition

about the SPI method. The other methods are insensitive to the relevance threshold.

With 6 increasing, we expect a more substantial portion of a profile to be insignificant and be

duplicated in the lists of significant terms in SPI. Thus the total index size increases, but as 6

increases further, the insignificant portion is posted in fewer lists (the number of significant terms

decreases). Thus, a certain maximum would be reached somewhere in the range. This is indeed the

case for our results shown in Figure 13.

Although the total size increases and then decreases with increasing 6, the number of I/Os is

always decreasing (Figure 14), because profiles are indexed in fewer lists of lower frequency terms.

Similarly, the number of multiplications decreases also (Figure 15).

The relative performance of SPI against the other two does not vary much with different values

of 8. For the space requirement, it almost always requires more space that the other two, except

when 8 is close to 1. For the time requirement, it is always no worse than the other methods.

5.6 Document Size

’ The size of documents only affects the two time requirement metrics. The performance of the

methods with respect to both metrics scales proportionally to the document size, with no change in

| relative performance.
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5.7 Relevance Feedback

We perform simulations to evaluate the methods when relevance feedback is used. First we describe
the setting of our parameters to model the effects of relevance feedback.

As relevant document vectors are added to the profile vector, new terms are introduced to

the profile vector. Potentially, the number of terms in a profile becomes arbitrarily large. This
is expensive in terms of both profile storage and document processing time. As shown in [14], a
compromise is to expand the profile vector up to a certain maximum number of terms. Terms with
low weights are discarded. This may result in a slight drop in retrieval effectiveness, but is important

in keeping down the storage and processing costs [14]. Thus, in our simulations, we assume that the
length of a profile (p) is fixed at 40.

Another effect from relevance feedback is that, as relevant document vectors are added to and

irrelevant document vectors are subtracted from a profile vector, the “interesting” terms in the profile

vector will accumulate high weights, while the other not so relevant terms will have lower weights.

To illustrate, consider a user who subscribes a profile on say “information filtering.” After receiving

and reviewing filtered documents, he modifies his profile by relevance feedback. The modified profile
is expected to have high weights for words “information” and “filtering,” as well as related words on
the same topic, such as “selective,” “dissemination,” “alert,” and so on. Other words in the profile
are somewhat related, but not as important, for example “retrieval” or “document.” i

Using the feedback formula (1) in Section 2.4, the modified weight of a term z; (before normal-
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ization) is

adf; x ( > tfii— 3 tfr.i)s (2)
D; relevant D; irrelevant

where tf;; (or tf) is the term frequency factor of term z; in document D; (or Di). Let us call
the expression inside the parentheses in (2) the cumulative term frequency (ctf) of the term z;.

To keep the simulations simple, we make the assumption (based on the discussion above) that the
terms in a modified vector fall into two categories: interesting and non-interesting; in each category,

the ctf’s of the terms are roughly equal. In other words, we assume the non-interesting terms all
have a ctf of say «, and the interesting terms have a ctf of say ra (i.e., they are r times larger).

To form a profile in our simulations, we fix the number of “interesting” terms to 5. Then we
randomly select p = 40 terms from the queried vocabulary Q. Out of these terms, we randomly
select five of them to be the “interesting” terms. The non-interesting terms are given weights equal

to their idf’s, and the interesting terms are given weights r times their idf’s. Then the vector is
normalized. (We do not need to pick a value for a, as it would be normalized out anyways.) We
vary the extra weight factor (r) from 1 to 30 in the simulations.

The results of the simulations are shown in Figures 19-21. We observe that with a large profile

. size, the SPI Method takes up a lot more space than the BF and PI Methods. This is because of
the replication of the insignificant terms in the lists for the significant terms. This also leads to

, | more I/Os per document matched. On the other hand, in terms of the number of multiplications
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per document, the SPI Method is a lot better than the other two methods.

Only the SPI Method is sensitive to the extra weight factor r. In Figure 19, we see that the total

size of the SPI index increases with r. As more and more weight is given to the “interesting” terms,

they become more and more significant. Finally, when r is about 10, the only significant terms are

) the “interesting” terms. Thus, the size of index becomes constant. The same reasoning explains the

shape of the SPI graphs in Figures 20 and 21.

6 Related Work

References [2, 5, 9] investigate the effectiveness of different retrieval models applied to information

filtering.

In [18], we study what index structures can be used to speed up information filtering under the
boolean model. The PI and SPI methods presented in this paper can be seen as generalizations of

the Counting and Key methods in [18]. |

Terry et al. [15] propose the notion of continuous queries in relational databases. Users issue

continuous queries, which are rewritten into incremental queries and run periodically. Their work

concentrates on relational databases, while ours is concerned with the dissemination of unstructured

data (documents) using information retrieval techniques.

Related to the idea of a profile index is that of the “segment tree” presented in [3]. There, Danzig

et al. present a distributed indexing scheme as a way to provide efficient retrospective search of a

large number of retrieval systems. Special sites, called index brokers, maintain indexes of remote

retrieval systems. They subscribe “generator queries” that keep them informed of changes in these

systems. The segment tree is proposed to index numerical generator queries over Library of Congress

numbers (e.g., all new items in the range QAT76 to QA77). Index structures for general profiles are
not addressed.

7 Conclusion

In this paper, we study what data structures and algorithms can be used to facilitate large-scale

information filtering under the VSM. We apply the idea of the standard inverted index to index

user profiles (we call this the PI method) and show that only slight modifications are needed to use

. the index to speed up filtering. We devise an alternative, called the SPI method, to the standard
inverted index — instead of indexing every term in a profile, we select only the significant ones to

index. We evaluate their performance, together with the BF method which uses no profile index.
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In summary, we see that the three methods require approximately the same disk space when
inverted lists are packed into contiguous blocks. When lists are stored individually in an integral
number of blocks, the indexing methods require more disk space than the BF method. On the other .
hand, when we compare the time requirement, the BF method is the clear loser. The indexing
methods require fewer number of I/Os to match a document by orders of magnitude. Among the PI .
and SPI methods, SPI is always better in terms of CPU processing. It can also improve the number
of I/Os required in many cases, depending mainly on the profile length and the number of profiles.

Although in those cases where SPI wins, the difference may appear small, we should remember
that the results shown are for processing a single document. An information server will be doing
this matching day in and day out, and the difference will be magnified. Another observation is that
as SPI is always the best in CPU processing, when main memory is large enough to hold the entire
index, SPI is the clear choice. In that case, instead of duplicating insignificant terms in lists of
indexed terms, we can just use a pointer to reference the insignificant terms, stored separately.
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