PB96-148523

— 19970409 017

DTIC* QUALITY INerEgYED R

- ROBOT MOTION PLANNING WITH UNCERTAINTY IN

CONTROL AND SENSING

NOV 89

U.S. DEPARTMENT OF COMMERCE
National Technical Information Service

DISTRIBUTION STATEMENT A |

Approved for public release;
Distribution Unlimited :




BIBLIOGRAPHIC INFORMATION
_ PB96-148523
Report Nos: STAN-CS-89-1292
Title: Robot Motion Planning with Uncertainty in Control and Sensing.
Date: Nov 89
Authors: J. C. Latombe, A. Lazanas, and S. Shekhar.

Performing Organization: Stanford Univ., CA. Dept. of Computer Science.

Sponsoring Organization: *Defense Advanced Research Projects Agency, Arlington, VA.
Contract Nos: DARPA-DAAAZ1-89-C-0002
Type of Report and Period Covered: Research rept.

NTIS F;e]d/Group Codes: 41C (Robotics/Robots), 62 (Computers, Control & Information
Theory

Price: PC AO3/MF AO1

Availability: Available from the National Technical Information Service, Springfield,
VA. ZZ1bl

Number of Pages: 48p

Keywords: *Robot control, *Trajectory planning, *Autonomous navigation, Robot
ynamics, Trajectory control, Dynamic control, Adaptive control, Trajectory analysis,
Robot sensors, Uncertainty, Two dimensional, Algorithms, Numerical methods and
procedures, Robots, Preimage computation.

Abstract: In this paper, we consider the problem of planning motion strategies in the
presence of uncertainty in both control and sens1nﬁ for simple robots described in a
two-dimensional configuration space. We consider the preimage backcha1n1n% agproach to
this problem, which was first proposed by Lozano-Perez, Mason and Taylor (19384).
Although attractive, the_approach raises several difficult computational issues. One -
of them, which is directly addressed in this paper, is preimage computation. We
describe two practical methods for computing preimages, which we_call backprojection
from sticking edges and backprojection from goal kernel. In the last sections of the
papeﬁ‘JE we discuss non-implemented improvements of this planner and present additional
results.



November 1989 Report No. STAN-CS-89-1292

[ ALV AR

PB96-148523

Robot Motion Planning with Uncertainty
in Control and Sensing

Latombe, Lazanas, and Shekhar

Department of Computer Science

Stanford University
Stanford, California 94305

REPRODUCED BY: NTIS

UU.S. Department of Commerce

Service




unclassified

e D D e
SECURITY CLASSIFICATION OF THIS PAGE

PBIG-148523
I E AR

REPORT DOCUMENTATION PAGE

Form Approved
OMB No.0704-0188

13. REPORT SECURITY CLASSIFICATION

b, RESTRICTIVE MARKINGS

‘ 2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT
: 2b. DECLASSIFICATION / DOWNGRADING SCHEDULE
" 4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
STAN-CS-89-1292
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(if applicable)

Stanford University

6¢c. ADDRESS (City, State, and ZiP Code)
Stanford, CA 94305

7b. ADDRESS (City, State, and ZIP Code)

8a. NAME OF FUNDING /SPONSORING - 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)
DARPA/SIMA IDAAA21-89-C-0002/SIMA Latombe

e —r——— T
8c. ADDRESS (City, State, and ZIP Code)

70 SOURCE OF FUNDING NUMBERS
L ———

PROGRAM
ELEMENT NO.

PROJECT
NO.

TASK
NO.

WORK UNIT
JACCESSION NO.

[777. TTLE (include Secun:ty Classification)
Robot Motion Planning with Uncertainty in Control and Sensing

12. PERSONAL AUTHOR(S)
Jean-Claude Latombe, Anthony Lazanas, Shashank Shekhar

lBlrEYgé af PORT

FROM TO

13b. TIME COVERED , 14, DATE OF REPORT (Year, Month, Day)

15. PAGiéOUNT

16. SUPPLEMENTARY NOTATION

17. COSATI CODES

FIELD GROUP

SUB-GROUP

— e —
18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

20, DISTRIBUTION / AVAILABILITY OF ABSTRACT
X UNCLASSIFIEDAUNLIMITED [ SAME AS RPT. [ DTIC USERS

22a. NAME OF RESPONSIBLE INDIVIDUAL
3ean- Taude Latombe

21. ABSTRACT SECURITY CLASSIFICATION
uncT%ss1?Hed

22b TELEPHONE (Include Area Code)

415-723-0350

22c. OFFICE SYMBOL

DD Form 1473, JUN 86

Previous editions are obsolete.

S/N 0102-LF-014-6603

SECURITY CLASSIFICATION OF THIS PAGE




Robot Motion Planning with Uncertainty
"in Control and Sensing

‘Jean-Claude Latombe, Anthony Lazanas, Shashank Shekhar
Robotics Laboratory

Computer Science Department, Stanford University
Stanford, CA 94305, USA

Abstract: One of the key topics in robot reasoning is motion planning. Most of the research in
this domain has focused on the topological and geometrical problem of finding a collision-free path
connecting two configurations of the robot among obstacles, by assuming complete and accurate
prior knowledge of the robot workspace and perfect control of the robot. But there exists a variety
of robot operations which cannot be achieved reliably by simply executing preplanned paths. These
operations require several kinds of uncertainty to be taken into account at the planning stage in
order to generate motion strategies, which typically combine motion and sensing commands. In
this paper, we consider the problem of planning motion strategies in the presence of uncertainty
in both control and sensing for simple robots described in a two-dimensional configuration space.
We consider the preimage backchaining apprdach to this problem, which was first proposed by
‘Lozano-Pérez, Mason and Taylor (1984). A preimage of a goal is a region such that if the robot
is in this region prior to the execution of a motion command, it is guaranteed that the robot will
be in the goal after the execution of the command. Backchaining consists of recursively treating
each computed preimage as an intermediate goal, until a computed preimage contains the region
in which the initial configuration of the robot is known to be. Although attractive, the approach
raises several difficult computational issues. One of them, which is directly addressed in this paper,
is preimage computation. We describe two practi'cal methods for computing preimages, which we
call backprojection from sticking edges and backprojection from goal kernel. Both methods proceed
by separating two basic issues in preimage computation: goal reachability and goal recognizability.
They both make use of the notion of backprojection, a concept developed by Erdmann (1984). The
second method presents significant advantages over the first, but the two methods can be combined
. in order to draw the best of each. The combined method is probably the most effective method
proposed so far for computing preimages. A motion planner embedding this method has been
implemented. In the last sections of the paper, we discuss non-implemented improvements of this
planner and present additional results.

Acknowledgements: This research was funded by DARPA contract DAAA21-89-C0002 (Army), and SIMA
(Stanford Institute of Manufacturing and Automation). The authors also thank Randy Wilson for useful

suggestions.

PROTECTED UNDER INTERNATIONAL COPYRIGHT
1 ALL RIGHTS RESERVED. -

NATIONAL TECHNICAL INFORMATION SERVICE

U.S. DEPARTMENT OF COMMERCE



1 Introduction

One of the ultimate goals of robotics research is to create easily instructable autonomous
robots. Such robots will accept high-level descriptions of tasks specifying what the user
wants done, rather than how to do it, and will execute them without further human assis-
tance. Progress toward this goal requires advances in many interrelated domains, including
automatic reasoning, perception, and real-time control. One of the key topics in robot rea-
soning is motion planning. It is aimed at providing robots with the capability of deciding
which motion commands to execute in order to achieve goal arrangements of physical ob-
jects. During the last ten years, it has emerged as a major research area with ramifications
in Artificial Intelligence [Brooks and Lozano-Pérez, 1983] [Donald, 1987a], Computational
Complexity [Reif, 1979] [Schwartz and Sharir, 1988], and Differential Geometry and Topol-
ogy [Schwartz and Sharir, 1983] [Canny, 1987.

Most of the research in robot motion planning has focused on the topological and geometri-
cal problem of finding a collision-free path connecting two configurations of the robot among
obstacles. Today, the mathematical and computational structure of the general path plan-
ning problem is reasonably well-understood and practical planners have been implemented
in more or less specific cases [Brooks and Lozano-Pérez, 1983) [Faverjon and Tournassoud,
1987] [Lozano-Pérez, 1987] [Barraquand and Latombe, 1989]. A major limitation of these
planners, however, is that they assume complete and accurate prior knowledge of the robot
workspace and perfect control of the robot. These assumptions are reasonable as long as the
errors in the planning models are small with respect to the tolerances of the task constraints.
This is the case, for instance, when the motions are performed in a relatively uncluttered
workspace and no delicate contact relation has to be made between objects. But there exists
a variety of operations — e.g., grasping a part, mating two mechanical parts, navigating ina
cluttered environment, docking and parking a vehicle — which cannot be achieved reliably by
simply executing preplanned paths. These operations require uncertainty to be taken into
account at the planning stage in order to generate motion strategies that combine motion
and sensing commands. At execution time, these commands interact and take advantage of
various sources of information to reduce uncertainty and lead the robot to the goal reliably.

During the past few years, a trend in Artificial Intelligence research on autonomous agents
interacting with a dynamic and/or uncertain external world has been toward “reactive plan-
ning”. This trend grew up in reaction to the more traditional approach to planning, which
tends to decompose planning and execution between two successive phases. An extreme
position related to this trend is to use almost no prediction of future states at all. However,
a fundamental difficulty of motion planning with uncertainty, including uncertainty in robot
control and sensing, is that uncertainty exists not only at planning time, but also at execu-
tion time. In most cases, this difficulty cannot be solved through simple reactive planning
schemes, since uncertainty is not simply eliminated at execution time, say, by reading sen-
sory inputs. It is necessary for the robot to reason in advance about the knowledge that will
be available during motion execution, in order to guarantee that executing the generated
plan will make enough knowledge available to either guide the robot toward the goal using
the current plan, or recognize failure and feedback pertinent data to the planner so that it

can amend the plan appropriately.




Figure 1: Simple Setting

A typical notion for planning with uncertainty is that of landmark, an element of the
workspace that can be identified reliably. Sometimes, a direct path to the goal may seem
attractive, but if it does not allow to identify enough landmarks on the way, the robot may
fail to attain the goal due to the errors in its planning models. Instead, a less direct path with
expected landmarks along its way may allow the robot to maintain sufficient knowledge on
its position relative to objects in the workspace and attain the goal recognizably. Identifying
landmarks, selecting motion commands that will make them perceptible to the sensors, and
combining these commands with appropriate sensing acts requires complex planning.

~ In this paper, we address a limited class of robot motion planning problems with uncertainty.
We assume that the robot is the only agent in a static workspace and that the geometry
of this workspace is completely and accurately known in advance. We thus assume that
the only errors are in robot control - i.e., the robot does not perfectly execute the motion
commands — and in sensing - i.e., the data returned by the sensors are not accurate. Given
an initial region (more precisely, a subset of configurations) in which the robot is known
to be prior to execution and a goal region (another subset of configurations), the planning
problem is to generate a motion strategy whose execution guarantees the robot to move from
inside the initial region into the goal region. We want the strategy to be successful whenever
the errors in control and sensing stays within some predefined uncertainty bounds!. As an
illustration, consider the simple setting of Figure 1. The robot is a point moving in the
plane. It is known to be in the region Z (top right) prior to execution, but we do not know
where in Z. We want it to move to a position (anyone) located in the obstacle’s edge G
(the black region depicts an obstacle). If the robot is commanded to move along a certain
path, it will follow this path only approximately. This uncertainty, combined with the
uncertainty in the robot’s initial position, makes a direct path to G unreliable. We assume
that the robot is instrumented with two sensors: a position sensor and a force sensor. The
position sensor returns the current position of the robot with some error. The force sensor
detects contact with the obstacle and measures the orientation of the contact edge, again
with some error. Planning a motion strategy requires to identify edges that can be attained
and recognized reliably — i.e., landmarks — and to select motion commands that will lead

1We think that it is critical for a planner to produce plans with such well-defined characteristics, so that
if execution turns out to fail, it may be possible to diagnose why by reviewing the assumptions made at
planning time.



the robot to make contact with these edges in order to acquire pertinent information?.

The most powerful known approach to this kind of planning problem is the preimage
backchaining approach originally proposed by Lozano-Pérez, Mason and Taylor [Lozano-
Pérez, Mason and Taylor, 1984] and later extended by various researchers [Mason, 1984]
[Erdmann, 1984] [Donald, 1987b]. Given a motion command, a preimage of a goal for that
command is defined as a subset of starting configurations of the robot from which the motion
command is guaranteed to reach the goal (“goal reachability”) and terminate in the goal
(“goal recognizability”). Preimage backchaining consists of iteratively computing preim-
ages of the goal, preimages of computed preimages taken as intermediate goals, for various
selected motion commands, until a preimage contains the initial subset of configurations in
which the robot is known to be when execution starts. This very general approach, however,
raises difficult computational issues, which still prevent its widespread application. In this
paper, we address some of these issues. The core part of the paper is a detailed description
of two practical methods for computing preimages in two-dimensional configuration spaces.
One method, which we call backprojection from sticking edges, was originated in Donald’s
work [Donald, 1987b]. The other, which we call backprojection from goal kernel, was origi-
nated in a preliminary version of this paper [Latombe, 1988]. Both methods proceed from
the same general idea introduced by Erdmann [Erdmann, 1984], which consists of consid-
ering the issues of goal reachability and goal recognizability separately and making use of
the notion of backprojection, a concept weaker than that of preimage. The second method
presents substantial advantages over the first because it usually computes larger preimages.
In some cases, however, the first method is preferable. Fortunately, the two methods can
be combined in order to draw the best of each. We have implemented a motion planner
based on these methods and we have experimented with it. In the paper, we also discuss
potential improvements of this planner. One improvement, related to goal recognition, is
aimed at computing larger preimages, so that the planner can solve more difficult problems
more efficiently. Another improvement, the generation of conditional strategies, is aimed at
solving trickier planning problems requiring to choose among multiple courses of actions at -
execution time. Although the detailed geometrical algorithms described in the paper require
the robot’s configuration space to be two-dimensional, the general concepts underlying our
presentation are more general. This does not mean however that extending the geometrical
algorithms to higher-dimensional configuration spaces is a simple matter. In fact, it would
require substantial additional work.

Although it describes results extending previous work, this paper is self-contained. Section
2 provides the reader with a broad background-of motion planning with uncertainty. Section
3 describes the modelling of a motion planning task in the robot’s configuration space, with
uncertainty in control and sensing. It constitutes a detailed formalization of the class of
planning problems addressed in the paper. Section 4 is a short overview of the preimage
backchaining approach. Section 5, which is the main section of the paper, develops the
two preimage computation methods cited above. It also shows how the two methods can
be merged into a more powerful one. Section 6 presents the implemented planner based
on these methods and analyzes some of the results obtained with it. The last two sections

2This example will be re-considered in more detail in Section 4.




discuss several potential improvements of the planner. Section 7 illustrates with a simple
example how goal recognition may be improved by embedding more knowledge in a motion
command. Section 8 investigates the generation of conditional strategies and extends the
methods of Section 5 accordingly. Both sections present novel results related to the preimage
backchaining approach.

2 Background

Research on robot motion planning has become active in the mid-seventies, when the goal
of automatically programming robots from a geometrical description of the task was first
considered attainable [Lozano-Pérez, 1976) [Taylor, 1976] [Lieberman and Wesley, 1977].
Since the early eighties, a great deal of effort has been devoted to this domain. Part of this
effort was motivated, on the one hand by the difficulties encountered in using explicit robot
programming systems [Latombe, 1984] [Latombe et al, 1984], and on the other hand by
the goal of introducing autonomous robots in hazardous environments (e.g., nuclear sites,
space, undersea, mines). Although automating robot programming has turned out much
more difficult than it first appeared, significant results with practical relevance have recently
been obtained. A nicely illustrated exposure of why robot programming is difficult can be
found in [Mazer, 1987).

During the last ten years, most of the effort has been oriented toward solving the path
planning problem, i.e. the problem of planning motions without uncertainty. Over the jast
few years, it has produced several major results, both theoretical and practical. Theoretical
results mostly concern lower and upper bounds of the time complexity of multiple variants
of the path finding problem (e.g., see [Reif, 1979] [Canny, 1987] [Schwartz and Sharir,
1988)). In particular, it has been shown that planning the motion of a robot with arbitrarily
many degrees of freedom is PSPACE-hard [Reif, 1979]. When the number of degrees of
freedom is fixed, algorithms have been proposed, whose time complexity is polynomial in
the number of algebraic surfaces bounding the objects and their maximal degree [Schwartz
and Sharir, 1983] [Canny, 1987]. Some path planning methods have been produced as a
side-effect of these results, but most of them involve very large constants and polynomial
exponents and have hardly been implemented. Another important result is the development
of the notion of Configuration Space [Arnold, 1978], both as a conceptual tool and as
a technique for exploring motion planning problems®. This notion was popularized by
Lozano-Pérez in the early 80’s [Lozano-Pérez, 1981] [Lozano-Pérez, 1983] and has given
birth to various techniques for computing collision-free paths among obstacles (e.g., [Brooks
and Lozano-Pérez, 1983) [Gouzénes, 1984] [Laugier and Germain, 1985] [Donald, 19872]
[Lozano-Pérez, 1987]). Finally, relatively fast path planning algorithms have been defined
and implemented. Although these algorithms are usually not complete (they may fail to
find a path while one exists), they can solve many practical problems. Lozano-Pérez et al.
[Lozano-Pérez et al, 1987] and Mazer [Mazer, 1987] described an impressive system, Handey,
capable of planning all the motions required for assembling simple parts, in the absence
of significant uncertainty. Faverjon and Tournassoud [Faverjon and Tournassoud, 1987]
reported on a system which uses an adaptation of Khatib’s Potential Field method [Khatib,

31t is interesting to note that Configuration Space also becomes a popular tool in Qualitative Reasoning.



1986] for planning the motion of a manipulator with eight degrees of freedom, operating
in the complex environment of a nuclear reactor. However, their planner requires human
interactive help when it gets stuck into dead-ends (concavities). More recently, Barraquand
and Latombe [Barraquand and Latombe, 1989] described another path planner combining
hierarchical bitmap representations and numerical potential field techniques. This planner,
which escapes local minima by executing Brownian motions, is quite fast in general and
solves tricky path planning problems for robots with 10 degrees of freedom. It is also
shown to be “probabilistically complete” (i.e., the probability to find a path, if one exists,
converges toward 1, when the computing time increases). These practical techniques could
bring substantial improvement to the programming of robot operations such as painting,
welding, and riveting.

The problem of planning motions in the presence of uncertainty is conceptually more difficult
than the path finding problem. It has attracted less attention so far, and less results have
been produced. Two approaches (at least) to this problem have been developed to some
extent, in addition to preimage backchaining. ‘

The first of these approaches was proposed independently by Lozano-Pérez [Lozano-Pérez,
1976) and Taylor [Taylor, 1976], and is known as the skeleton refining approach. It con-
sists of: first, retrieving a plan skeleton appropriate to the task at hand and taking it as
an initial plan; and second, iteratively modifying the skeleton by inserting complements
(typically sensor-based readings). Complements are decided after checking the correctness
of the skeleton, either by propagating uncertainty through the steps of the plan skeleton
[Taylor, 1976], or by simulating several possible executions [Lozano-Pérez, 1976]. Sub-
sequent contributions to the approach have been brought by Brooks [Brooks, 1982], who
developed a symbolic computation technique for propagating uncertainty forward and back-
ward through plan skeletons, and by Pertin-Troccaz and Puget [Pertin-Troccaz and Puget,
1987}, who proposed techniques for verifying the correctness of a plan and amending incor-
rect plans. Backward propagation of uncertainty in this approach can be regarderd as a
particular case of preimage backchaining with predetermined motion commands.

The second approach to motion planning with uncertainty has been proposed by Dufay and
Latombe [Dufay and Latombe, 1984], and is known as the inductive learning approach. It
consists of assembling input partial strategies into a global one. First, during a training
phase, the system uses the partial strategies to make on-line decisions and execute several
instances of the task at hand. Second, during an induction phase, the system combines the
execution traces generated during the training phase, and generalizes them into a global
strategy. In fact, the training phase and the induction phase are interweaved. The genera-
tion of a strategy for the task ends when new executions do not modify the current strategy.
A system based on these principles has been implemented, and experimented successfully on
several part mating tasks. Some aspects of this approach have been extended by Andreae

[Andreae, 1986].

Both the skeleton refining and inductive learning approaches deal with uncertainty in a
second phase of planning. The plan skeleton and the local strategies used during the
first phase could be produced using path planning methods assuming zero uncertainty.
The second phase takes uncertainty into account, either by analyzing the correctness of




the current plan, or by directly experimenting with the local strategies and combining
them into execution traces shaped by actual errors. In contrast, the rationale of preimage
backchaining is that uncertainty may affect the overall structure of a plan, in such a way
that a motion strategy may not be generated by modifying or composing plans generated
assuming no uncertainty. Preimage backchaining is also a much more rigorous approach
to motion planning with uncertainty than the other two approaches. In fact, the skeleton
refinement and inductive learning approaches are essentially architectural framework to plan
motions with uncertainty. Instead, preimage backchaining is a computational framework
that can also be regarded as a clean formulation of motion planning with uncertainty.

On the other hand, preimage backchaining raises difficult computational issues. While
there have been practical implementations of the skeleton refinement and inductive learning
approaches, preimage backchaining is less advanced in that respect. This does not mean
that the computational issues, which have to be faced with preimage backchaining, are
completely absent from the other approaches. Preimage backchaining only makes explicit
issues that are hidden in the other approaches because they are more ad-hoc. Solving these
issues is a prerequisite to implementing preimage backchaining, but not to implementing
the other aproaches. :

The preimage backchaining approach was first presented by Lozano-Pérez, Mason, and
Taylor [Lozano-Pérez, Mason and Taylor, 1984]. This early paper set up most of the basic
framework. Large portions of Sections 3 and 4 below are based upon it. Mason [Mason,
1984] investigated several control schemes for searching the graph of preimages, includ-
ing control schemes for generating conditional strategies, i.e. plans including conditional
branching statements. He also analyzed the correctness and the completeness of the frame-
work. Erdmann [Erdmann, 1984] [Erdmann, 1986] contributed to the approach in several
ways. In particular, he separated the problem of computing a preimage into two sub-
problems, reachability and recognizability. By considering reachability alone, he introduced
the notion of “backprojection”. (A backprojection of a goal for a given motion command is
a subset of starting configurations of the robot from which the motion command is guaran-
teed to reach the goal.) The two methods for computing preimages presented in this paper
draw upon Erdmann’s work. Donald [Donald, 1987b] [Donald, 1988a] extended the preim-
age backchaining approach by considering uncertainty in the initial model of the workspace.
The proposed extension consists of adding a dimension to the robot’s configuration space
for every parameter in the workspace whose value is not known accurately. The resulting
space is known as the “generalized configuration space”. Donald also introduced the notion
of Error Detection and Recovery (EDR) strategies. Unlike the strategies considered in this
paper, an EDR strategy is not guaranteed to succeed. However, it is guaranteed to either
succeed or fail recognizably. Buckley [Buckley, 1986] proposed an application, of preimage
backchaining to the analysis of the correctness of a given motion strategy. He also described
a procedure for planning motion strategies in the forward direction. This procedure is based
on the notion of “forward projection” (a more appropriate term would probably be “post-
image”). The procedure discretizes the robot’s configuration space into atomic regions
based upon the consistent sensory data they should generate, and builds a transition graph
between these regions. Buckley implemented a planner operating in a three-dimensional
configuration space corresponding to a robot with three translations. The generation of



sensorless motion strategies using techniques inspired from preimage backchaining has been
investigated by Erdmann and Mason [Erdmann and Mason, 1986]. Canny and Reif [Canny
and Reif, 1987] [Canny, 1987] proved ;hat the three-dimensional compliant motion plan-
ning problem (the kind of problem attacked by the preimage backchaining approach) is
non-deterministic exponential time hard (NEXPTIME-hard). Canny [Canny, 1989] gave an
algorithm that computes motion strategies using the preimage backchaining approach when
the envelope of the trajectories generatlled by the robot controller is described algebraically
(this excludes illimited rotations). However, the algorithm takes time double exponential
in the number of motion commands in the generated strategy. Donald [Donald, 1988b]
described a less general algorithm for planning motion strategies in the plane, which takes
time simple exponential in the number of commands.

In parallel to the research mentioned above, there has been an inicreasing interest in planning
motions of objects in contact with othelf objects (e.g., [Hopcroft and Wilfong, 1986] [Valade,
1984] [Laugier and Théveneau, 1986] | Youtsou, 1986]). Like the research on path planning
in collision-free space, most of this work|has assumed accurate and complete prior knowledge
of the workspace and perfect control ot the robot motions. Recently, however, some of the
methods developed for planning moticns in contact space have been extended to handle
_ some uncertainty [Desai, 1987] [Laugier, 1989], in a way similar to that introduced by
Buckley [Buckley, 1986].

3 Task Modelling

3.1 Configuration Space

We are interested in planning the motion of an object A — the robot — in a workspace W
populated by obstacles B;, i € [1,¢). A configuration of A is a specification of the position
of every point in A with respect to a coordinate system embedded in W [Arnold, 1978].
The configuration space of A, denoted by C, is the set of all the possible configurations

of A.

Each obstacle B; maps in C to the subset CB; of configurations where A has no intersection
‘with B;, i.e.:

CB; ={qeC/ A(Q)nB; #0}
where A(q) denotes the subset of W occupied by A at configuration q. The region CB; is
called C-obstacle.

In general, C is a curved manifold. For instance, if A is a rigid planar object moving freely
in W = R?, then C = R? x 57, where §* denotes the unit circle. If A is a rigid three-
dimensional object moving freely in W = R?, C = R® x 50(3), where 50(3) denotes the
Special Orthogonal Group of orthonormal matrices with determinant +1 [Arnold, 1978].

However, in the rest of the paper, things are much simpler from the geometrical point
of view. We assume that A is a two-dimensional object that can only translate in the
plane R?, e.g. an omnidirectional mobile robot that cannot rotate. A configuration is
represented as q = (z,y), where z and y are the coordinates of a specific point of A,
known as the reference point, with respect to the coordinate system embedded in W.

8




%///

NN

Figure 2: Peg-Into-Hole Task

Hence, both W and C are copies of RZ. Both A and the B;’s are modelled as polygonal
regular sets? with finitely many edges, A as a simple polygon, and each B; as a region
whose boundary is a simple polygonal (closed or open) curve. With these assumptions,
each C-obstacle CB; is a regular subset of R? whose boundary consists of finitely many
polygonal curves. Some B;’s (and the corresponding CB;’s) may not be compact (i.e., non-
bounded). The above assumptions are realistic for many in-door mobile robot problems In
addition, although they considerably simplify geometric subproblems, they do not denature
the broader problem of reasoning and planning with uncertainty.

Figure 2 illustrates the above concepts. A simple setting in the workspace is depicted in
the left-hand side of the figure. The moving object A is a rectangle and there is a single
polygonal obstacle B with a rectangular depression. The goal of the task is to insert A in
B’s depression (“peg-into-hole” task). The right-hand side of the figure shows the mapping
of this setting in .A’s configuration space. The moving object .A maps to the point denoted
by q. The obstacle B maps to the C-obstacle CB. The width of the rectangular depression
in CB is equal to the difference between the width of the depression in B and the width of
A. The edge G at the bottom of CB’s depression is the goal region, that is the goal of the
peg-into-hole task is to move q to any location in G.

We call free space and denote by Cree the complement of the C-obstacles in C, i.e.:
. .
Cfree = C - UCB;-
=1

We call contact space and denote by Ccontact the subset of configurations q where A(q)
intersects with obstacles without overlapping their interiors, i.e.:

Coontact = {a € C / A(q) | B: # 0 and int(A(@)) N Jint(B:) = 0}

*By definition, a point set is regulariff it equals the closure of its interior [Requicha, 1977].

9



where int(S) denotes the interior of the set 5.

We call valid space and denote by Cyaiia the union of Cfree and Ceontact- A valid path
between two configurations q; and qz in Cyaiid is a continuous map T : [0, 1] — Cyalig such
that 7(0) = q; and 7(1) = qa.

Cjree is an open subset of C, whose boundary, denoted by OCfree, is a finite set of polygonal
curves. Ceontact is also a finite set of polygonal curves. It can be shown that 8Csree C Ceontact
[Hopcroft and Wilfong, 1986]. In Figure 2, the strict inclusion of 8Cjree in Ceontact Would
oceur if A’s width was exactly equal to the width of B’s depression. Then, the depression in
CB would degenerate to a line segment contained in Ceontact, but not in ACgree. In the rest of
the paper, We also impose that each maximal connected subset of UY_,CB; be homeomorphic
to a closed disc, hence bounded by a simple curve [Massey, 1967) [Guillemin and Pollack,
1974]. This entails, in particular, that Ceontact = B(UI_,CB;) and Ceontact = OCsree- It also
excludes the case where several subsets of C-obstacles “touch” each other at isolated points.
More generally, it implies that Ceontact consists of a finite set of disjoint polygonal lines. We
_ call the ottgoing (resp. ingoing) normal of an edge of Ceontact the unit vector normal of that
edge pointing toward Cyree (resp. toward the interior of U7_,CB;).

Let n4 be the number of edges of A and ng the number of edges of all the obstacles. Ceontact
contains O(n%n%) edges, which can be computed in O(n}n}log nanp) time [Avnaim and
Boissonnat, 1987] [Sharir, 1987).

3.2 Motion Commands

We describe a motion command M as a pair (CS, TC). CS is called the control state-
ment. Given a starting configuration q,, it determines a nominal trajectory of A, i.e. a

curve:
T:t € [0,400) — 7(t) € Cyatid

with 7(0) = g, and t denoting time. TC is called the termination condition. The
controller stops the motion when TC evaluates to true. TC’s arguments may be sensory
inputs during the execution of the motion and the elapsed time since the beginning of the
motion. In the following, we assume that the controller continuously monitors TC during
execution and that the motion of A can be stopped instantaneously®.

We assume that A’s mode of control is “generalized damper” [Raibert and Craig, 1981)
[Mason, 1981]. This basically means that CS is parameterized by a unit vector v called
the commanded direction of motion® in R?. As long as A’s configuration is in the free
space, A moves along the direction v. When A’s configuration is in the contact space at
a point other than a vertex, it may move away from the edge, slide along it, or stick to it.
If v projects positively along the outgoing normal of the edge, it moves away. Otherwise,
assuming a frictionless contact space, A’s configuration slides along the pro jection of v on

5The fact that these requirements cannot be exactly met by a real system should be taken into account

in the specification of the uncertainty.
6 Actually, v represents the commanded velocity of A. But, for simplifying our presentation, we assume
that the magnitude of the velocity is 1 and that it can be attained instantaneously.

10




the edge if this projection is non-zero and sticks to the edge if v points perpendicularly to
it.

Friction in the contact space simply results in increasing the range of motion directions
that stick to edges. If the friction coefficient is 4 > 0 (Coulomb law) and assuming no
uncertainty in robot control, a generalized damper motion along v sticks to an edge if the
magnitude of the angle between —v and the outgoing normal of the edge is less or equal to
¢ =tan"'p (0 < ¢ < 1/2),i.e. if —v lies in the half-cone of angle 2¢ whose axis points
along the outgoing normal of the edge (this half-cone is called the friction cone). The
frictionless case corresponds to ¢ = 0. The representation of friction in higher-dimensional
spaces is investigated in [Erdmann, 1984).

Finally, for completeness, we must consider the case when A’s configuration is in the contact
space at a vertex. A has reached the vertex either by coming from the free space and directly
hitting the vertex, or by sliding along an edge abutting at the vertex. In the first case, A
behaves as if it had hit one or the other of the two edges abutting at the vertex; hence,
its motion may not be deterministic. In the second case, A moves (or sticks) as if its
configuration was in the other edge abutting at the vertex.

3.3 Uncertainty in Control

~ Uncertainty in control is modelled as follows. Let v be the commanded direction of motion.
At any instant during the motion, the actual direction of motion is a unit vector v*, such
that the magnitude of the angle between v and v* is less than a fixed angle § < 7/2. In
other words, v* lies in a half-cone of angle 20 whose axis points along v. This half-cone is
called the control uncertainty cone.

During motion, v* may vary arbitrarily between the two extreme orientations determined
by v and 8. Thus, if A is in the free space, it moves along a trajectory whose tangent at any
configuration is contained in the control uncertainty cone anchored at this configuration. If
A’s configuration is in the contact space, at a point other than a vertex, it may move away,
slide, or stick, depending on the actual direction of motion v* relatively to the contact edge.
In particular, if all unit vectors v* lying in the control uncertainty cone project positively on
the outgoing normal of the edge, then A is guaranteed to move away from the edge. Instead,
if the inverted control uncertainty cone is entirely contained in the friction cone, .4 sticks
to the edge; if it is completely outside the friction cone and all the vectors in the control
uncertainty cone project positively on the ingoing normal of the edge, A is guaranteed to
slide in the direction of the projection of v on the edge.

3.4 Uncertainty in Sensing

We assume that the robot A is instrumented with two sensors — a position sensor and a
force sensor — which we model below. Other sensors could be modelled in a similar fashion.

The position sensor measures the current configuration q of .A. The uncertainty in the
measurement is modelled as an open disc £(q,p) C R? of fixed radius p centered at the
measured configuration q. This means that if the position sensor gives q as the current con-

11



figuration of A, the actual configuration, denoted” q*, may be anywhere in the disc £(q, p).
Reciprocally, if the actual configuration is known to be q*, the measured configuration q
may be anywhere in the disc £(q*,p). X is called the position uncertainty disc. Note
that although q* can only be in Cyalid, the measured configuration q may be in C — Cyaiid-

The force sensor measures the reaction force exerted on A. Under the current assumption
that A can only translate, this force maps to an identical vector in C applied at the config-
uration of A. (See [Erdmann, 1984] for a discussion of the notion of force in configuration
space.) The force sensor is used to acquire information on whether A touches obstacles,
or not, and if it touches an obstacle, on the orientation of the outgoing normal of contact
space at the contact configuration. Thus, we assume that the output of the sensor at any
instant is either the null vector or a unit vector.

At a certain instant, let q* be the actual configuration of A and v* the actual direction of
motion. We denote by £2.(q*) the actual reaction force exerted on A at the same instant
and we model the physical reality by the following definitions:

- if @* € Cfree, then £5.(q*) = 0;

- if @* € Ceontact, * is in an edge E, not at a vertex, and v* projects positively on the
outgoing normal of E, then f7.(q*) = 0; -

- if q* € Ceontact, 4" is in an edge E, not at a vertex, and —v* lies in the friction cone at

the contact point, then fy.(q*) = —v*;

- if q* € Ceontact, 4* is in an edge E, not at a vertex, and —v* projects positively on the
outgoing normal of E, but lies outside the friction cone at the contact configuration, then
».(q*) = £*, with * being the solution of the following system of equations:

|angle(v,f*)| = ¢
v-*=v.(=v*)

sign(angle(v,f*)) = sign(angle(v, —v™))
where:

- v is the outgoing normal of E, .

- angle(ny, ;) denotes the angle between vectors n; and nz, '
- |a| denotes the magnitude of a,

- my - ng denotes the inner product of vectors ny and ng,

- sign(a) denotes the sign (—,0,+) of a.

- if @* € Ceontact and q* is at a vertex, then let f; and f; be the reaction forces that would
be generated by the two edges abutting at this vertex; v (q®) =7 + 5.

7Our convention is to denote a “nominal” quantity (e.g., 2 commanded direction of motion, a measured
position, a measured force) by a bold letter (e-g., v, q, f) and the corresponding actual quantity by the same
letter with superscript * (e.g., v*, q@*, f*).

12




Figure 3: Example of Preimage

Uncertainty in force sensing is modelled as follows:

- The force sensor measures f = 0 whenever ||f;.(q*)|| < w, where ||n|| denotes the magni-
tude of the vector n» and w is a constant modelling the sensitivity of the force sensor.

- The force sensor measures a unit vector f whenever ||f5.(q*)|| > w. In addition, in
this case, the magnitude of the angle between f and fj.(q*) is less than a fixed angle ¢
modelling the uncertainty in sensing force orientation. The half-cone of angle 2¢ whose
axis points along f is called the force uncertainty cone.

(We could have modelled uncertainty in force sensing in a slightly more involved fashion,
by considering two thresholds w; and w; (w; < wy), rather than a single one. With these
two thresholds, if w; < {|£3-(q")|] < we, the measured force F would undeterministically be,
either the null vector, or a unique vector.)

4 Preimage Backchaining

Let 7 be a subset of Cyaiiq in which it is known at planning time that A’s configuration
will be when the execution of the motion plan starts. Z is called the initial region of A.
Let G be another subset of Cyaiig input as the goal region of A. We want the planner to
generate a motion plan whose execution moves A from its actual initial configuration in
to a final configuration in G.

Let M = (CS, TC) be a candidate motion command considered by the planner in order to
make A achieve G. A preimage of G for M is defined as any subset P of C such that: if A’s
configuration is in P at the instant when the execution of M starts, then it is guaranteed
that A will both reach G (goal reachability) and be in G when TC terminates the motion
(goal recognizability).

13



Figure 3 illustrates the peg-into-hole task in the configuration space and shows an example
of preimage P (region with striped contour) of G (the bottom edge of CB’s depression)
for a generalized damper control statement with the commanded direction of motion v.
Execution of the motion command is guaranteed to generate a trajectory that is contained in
the control uncertainty cone, and to slide over any encountered edge which is not orthogonal
to a direction contained in the control uncertainty cone (we assume frictionless edges for
simplification). Thus, M is guaranteed to reach G whenever the initial configuration of A
is within the region P shown in the figure.

The te;'mina.tion condition TC is: ‘
[q(6t) € cylsphere(G, p)] A [langle(£(6t), ¥(G))] < €]

where:

- 6t denotes the elapsed time since the beginning of the motion,

- q(6t) denotes the configuration measured at instant ét,

- f(6t) denotes the vector measured at instant 6t,

- ¥(G) denotes the outgoing normal vector of the edge G,

- cylsphere(G,p) = G ®X(0,p) = {p1+ P2/ P1 € G ; P2 € 2(0,p)} = {p/ d(p,G) < p},
hence the edge G “grown” by p. (The symbol @ denotes the Minkowski’s operator for affine
set addition.) '

The second term in TC, [Jangle(£(6t),¥(G))| < €], guarantees that the motion will termi-
nate in contact with one of the three horizontal edges in C (we make the very reasonable
assumption that £ < w/4). The first term, [q(6) € cylsphere(G, p)], allows TC to distin-
guish between the bottom edge G and the two horizontal side edges bordering the entrance
of the hole (we make the assumption that the depth of the depression is greater than 2p).

Now, suppose that an algorithm is available for computing preimages. Given the initial and
goal sets of configurations, Z and G, preimage backchaining consists of constructing a
sequence of preimages Py, P, ..., Pp, such that:

- P;, Vi € [1,p], is a preimage of P;_; for a selected motion command M; (with Py = G);
_ICP,

If the backchaining process terminates successfully, the inverse sequence of the motion
commands which have been selected to produce the preimages, [Mp, Mp_1, ..., My, is the
generated motion strategy. This strategy is guaranteed to achieve the goal successfully,
whenever the errors in control and sensing remain within the ranges determined by the
uncertainty intervals.

Figure 4 illustrates preimage backchaining in the setting of Figure 1. First, a motion
direction v, is selected and the corresponding preimage P is computed. This preimage
does not contain Z and is taken as an intermediate goal. Second, a motion direction v2 is
selected and the preimage P; of P; for that direction is computed. Py is quite thin at one
end, so that the termination condition of this motion command can recognize reliably that
P, has been attained only by detecting (using force sensing) that contact has been made

14




Figure 4: Illustration of Preimage Backchaining

with the edge denoted by E, which is part of Py. Since P, contains Z, the planning problem
is solved with a sequence of two motions. Interestingly, the preimage backchaining process
has resulted in identifying and using E as an intermediate “landmark” to help the reliable
progression of the robot toward G. Adding other types of sensors than position and force
would make it possible to consider more landmarks.

The problem of generating the sequence of preimages can be transformed into the com-
binatorial problem of searching a graph by selecting motion commands from a discretized
set. The root of this graph is the goal region G, and each other node is a preimage region;
each arc is 2 motion command, connecting a region to a preimage for this command. The
construction of this graph requires the set of possible control statements to be discretized.
With generalized damper control, this means discretizing the set of motion directions.

Searching the graph of preimages introduced above leads to generate sequential motion
strategies, i.e. sequence of motion commands. In some cases, it is necessary or preferable
to generate conditional strategies. We will address this issue in Section 8.

It is interesﬁng to notice the relation between preimage backchaining and “goal regression”
a classical planning method [Waldinger, 1975] [Nilsson, 1980]. Both methods consist of
computing the precondition (ideally, the weakest one) whose satisfaction before executing
an action guarantees that some goal condition will be satisfied after the action is executed.
However, while preimage backchaining has a strong geometric flavor, goal regression is more
logic-oriented.

15



5 Computation of Preimages

In the following, the word “goal” designates either the goal region G of the motion planning
problem, or any preimage taken recursively as an intermediate goal. A goal is generically
denoted by 7.

5.1 Computational Issue

The notion of preimage combines two basic concepts, known as goal reachability and
goal recognizability [Erdmann, 1984].

Goal reachability concerns only CS and relates to the fact that any trajectory obtained
by executing CS from a preimage of a goal 7 should be guaranteed to reach 7. Due
to uncertainty in control, given a starting configuration, CS only specifies a nominal
trajectory, but any execution of CS will produce an actual trajectory that is slightly
different. The planner must be certain that all the possible actual trajectories consistent
with both CS and control uncertainty will traverse 7 at some instant.

Reaching 7, however, is not enough. The planner must also be certain that the termination
condition TC will stop A in 7 (goal recognizability). This is a much more subtle notion.
One can regard TC as an observer of the actual trajectory being executed. Since sensing is
imperfect, TC perceives the actual trajectory as an observed trajectory, which is most
likely to be neither the nominal one, nor the actual one. Thus, the problem for the planner
is to: (1) infer the set of all the possible actual trajectories from both CS and the specified
‘uncertainty in control; (2) infer the set of all the possible observed trajectories from both
the possible actual trajectories and the specified uncertainty in sensing; (3) verify that, for
every possible observed trajectory 7, TC becomes true at some instant and when TC first
becomes true, all the actual trajectories 7* consistent with 7 (i.e., the trajectories which
may be observed as 7) have reached the goal. Then, it is guaranteed that the execution of
M will terminate in 7.

Preimage computation has been investigated in depth in [Erdmann, 1984] and [Latombe,
1988]. For a given commanded direction of motion v, the ideal method would compute
the maximal preimage of 7, i.e. a preimage that is not contained in another preimage®
of T for v, and the method would also return the termination condition for the maximal
preimage. Indeed, intuitively, a large preimage has more chance to include the initial region
7 than a small one; in addition, if it is considered recursively as an intermediate goal, a large
preimage has more chance to admit large preimages than a small one (a goal which includes
another goal definitely has a bigger preimage). Thus, considering larger preimages may
reduce the size of the search graph; it may also produce “simpler” strategies, i.e. strategies
made up of less motion commands. However, Erdmann [Erdmann, 1984] showed that: (1)
there does not always exist a maximal preimage; (2) assuming there exists one, it may not
be unique; and (3) if there exists a unique maximal preimage, it may depend in a subtle
fashion on sensing history, the elapsed time since the beginning of the motion, and the
knowledge embedded in the termination predicate (the predicate of TC).

8By definition, any subset of a preimage is also a preimage of the same goal.

16




Most of the difficulties related to maximal preimages are due to the strong interdependence
between goal reachability and goal recognizability. One way to approach the preimage
computation problem is thus to consider these two issues separately. The basic idea is to
identify a subset of the goal whose achievement can be recognized independently of the
way it was attained. Then, it remains to compute the region from where the robot is
guaranteed to attain this subset. In the next subsections, we describe and compare two
methods for computing preimages using this general idea: backprojection from sticking
edges and backprojection from goal kernel. In general, none of these methods compute
maximal preimages (over all the possible termination conditions), but both of them are
easily implementable and have been used in an operational planner.

5.2 Backprojection from Sticking Edges

Given a commanded direction of motion v and a goal 7', backprojection from sticking edges
consists of®:

1. Determining the subset 7° of 7 in which motions commanded along v are guar-
anteed to stick.

2. Computing the maximal region, denoted by B(7°,v), such that a motion com-
manded along v and starting from within this region is guaranteed to reach 7°.

T is necessarily a set of edges contained in Ceontact- The determination of these edges is
simply done by comparing the relative orientation of each edge in 7 with v. 7° is made of
every edge E in 7T N Ceontact Such that:

langle(—v,v(E))| < ¢ -6

where v(E) denotes the outgoing normal of E. (Notice that guaranteed sticking is possible
only if ¢ > 6, i.e. the friction cone is larger than the control uncertainty cone.)

The computation of 7 is linear in the size of the description of 7.

Let us assume that 7° is not empty (otherwise, the constructed preimage is the empty
set). The termination condition that will recognize sticking in 7° can be constructed by
comparing the configurations of A at two instants of time'®. With our task modelling
assumptions, the minimal magnitude of the velocity of A is sin ¢, so that, during the time
interval 5p/sin¢, A travels at least 5p, if it does not stick. Hence, for any ét, if the
measurements q(6t) and q(8t — 5p/ sin ¢) are distant by, say, less than 2.5p, it means that
A is sticking. Indeed, if A is not sticking, the distance between q(6t) and q(ét — 5p/ sin @)
is at least 5p — 2p = 3p. If A is sticking, it cannot be greater than the position uncertainty,
i.e. 2p. Hence, the termination condition can be!!:

TC= [d(q(ét),q(ﬁt — 5p/ sin ¢)) < 2.5p]

9Most of the components of this method were previously introduced in [Erdmann, 1984] and [Donald,
1987b).

10Notice that sticking physically terminates the motion. It remains however for the robot controller to
recognize that the motion is sticking in order, say, to execute the next motion command in the strategy.

1Gimilar termination conditions could be built with other modelling assumptions.

17



Figure 5: Computation of a Backpro jection

where d denotes the Euclidean distance between two points in R2. The recording of position
measurements can be discretized by only considering the instants 6t = k(5p/ sin @), with
k=0,1,2,..., since sticking is a stationary situation.

The region B(7?,v) is called the maximal backprojection of 7° for v. Erdmann [Erd-
mann, 1984] gave the following simple algorithm to compute the maximal backprojection
of a single edge:

1. Mark every non-goal vertex such that at least one of the abutting edges is sticking
(for v). Mark every non-goal vertex such that A may slide non-deterministically
on any of the two abutting edges. Mark every goal vertex such that it is possible

_to slide away from the vertex on the non-goal abutting edge.

2. At every marked vertex erect two rays parallel to the edges of the inverted control
uncertainty cone. Compute the intersection of these rays among themselves and
with Ceontact- Interrupt each ray beyond the first intersection. '

3. Beginning at the goal edge trace out the backprojection region.

The operations of this algorithm are illustrated in Figure 5. There are three C-obstacles
and the goal is the edge denoted by 7°. The vertices marked at step 1 are depicted as thick
grey points. The computed backprojection is the region depicted with a striped contour.

The above algorithm can only construct simply connected backprojection region. This may
be a limitation. For example, consider Figure 6. The result of applying the algorithm to
the edge 7 is shown in 6.a. The maximal backprojection, which is not simply connected,
is shown in 6.b. Indeed, if the robot configuration reaches the vertex denoted by X, it
non-deterministically slides on one of the two edges abutting at X and, in both cases,
ultimately reaches 7°. An extension of Erdmann’s algorithm to handle this kind of situation
is presented in [Latombe, 1988].

Extending the algorithm to a collection of edges is not straighforward, because the union

18




Figure 6: Multiply-Connected Backprojection

of the maximal backprojections of several edges considered individually may not be the
maximal backprojection of the union of the edges, but a subset of it. Indeed, there may be
configurations from which a motion commanded along v is guaranteed to reach one of two
edges, without knowing which one in advance.

The above algorithm has been generalized by Donald [Donald, 1987b] to an algorithm that
generates the maximal backprojection of any region 7’ described as the union of segments
and polygonal regions in Cyqiiq. Donald’s algorithm first marks vertices in Ccontact as Erd-
mann’s algorithm does and then applies a line-sweep technique [Preparata and Shamos,
1985]. A line L is swept accross the plane, perpendicularly to v. The sweep starts at a
position of L where it is tangent to 77, with 77 entirely lying on the side of L pointed
by the vector —v. The sweep proceeds in the direction of the vector —v. During the
sweep, the algorithm maintains the “status” of the sweeping line - i.e., the description of
its intersection with Ceontact, 7' and the rays erected from the marked vertices. This status
changes qualitatively only at discrete positions of the line, called “events”. An event occurs
whenever the line passes through a vertex of Ceontact, a vertex of 77, the intersection of two
rays, the intersection of a ray and Ceontact, Or the intersection of a ray and 7'. At each
event, the algorithm updates the status of the line and the list of future events. Both the
status of the line and the list of events can be represented in height-balanced trees [Aho,
" Hopcroft and Ullman, 1983]. During line sweeping, the algorithm traces out the contour of
the backprojection (which does not have to be simply connected). Sweep stops when the
last point of the backprojection contour has been encountered (“closing event”).

The algorithm requires the backprojection to be bounded (so that the closing event ex-
ists). This is achieved by imposing Cjree or all the C-obstacles to be bounded. Since it
is monotonic, the algorithm also requires the actual direction of motion to never project
negatively on the v direction. This is achieved if ¢ > 6, an assumption previously made
so that guaranteed sticking be possible. Another algorithm is proposed in [Latombe, 1988],
which is computationally less efficient, but does not require that ¢ > 6.

The line-sweep algorithm computes B(7”,v) in time O((n+m)log(n+m)), where n denotes

19



the total number of edges in Ceontact and m denotes the total number of edges of 7’. The
contour of B(7",v) contains O(n + m) edges.

Therefore, if m is the size of 7, the computation of the preimage of 7 by backprojecting
from the sticking edges in T takes O((n + m)log(n + m)) time. In general, m < 7.

5.3 Backprojection from Goal Kernel

Given a commanded direction of motion v and a goal 7, backprojection from goal kernel
consists of:

1. Identifying the maximal subset of 7, denoted by xv(T), such that if it is attained
by a motion commanded along v then the achievement of 7 is recognizable by a
termination condition using instantaneous sensing only.

2. Determining the maximal region, denoted by B(xv(T),Vv), such that a motion
commanded along v starting from within this region is guaranteed to reach

xv(T).

The subset xv(7) is called the v-kernel of 7. The region B(xv(T),v) is the maximal
backprojection of xv(7T’) for v (see Subsection 5.2).

The formal definition of the notion of v-kernel requires the two notions of v-consistency
and v-distinguishability to be first introduced.

Let U(v) denote the control uncertainty cone for the commanded direction of motion v.
We denote by Fi(q*) the set of all the possible reaction forces that can be generated at
configuration q* when the commanded direction of motion is v. By definition:

Fgh)= |J ()
v*eU(v)

(f2.(q*) has been defined in Subsection 3.4.) A straightforward algorithm computes F3(q”)
in O(1) time. For example, let g* be in an edge E of Ceontact; let the angle o between —v and
. the outgoing normal of E be such that the friction cone and the inverted control uncertainty
cone at q*intersect, none of the two cones being fully contained in the other. The set 73(q")
includes all the unit vectors originating at q* and lying inside the intersection of the two
cones. It also includes vectors pointing along the ray of the friction cone which is closest from
the vector —v. These vectors have magnitudes comprised between max{0, cos(a+8)/ cos ¢}

and 1.

We say that a configuration q* € Cyalid is v-consistent with a position measurement q .
and a force measurement f iff, when the robot commanded along v is at configuration q~,
the measurements q and f are possible given the input workspace geometry and the model
of uncertainty. The direction v plays an important role in v-consistency because the force
that is measured in contact space depends on it. More formally, q* is v-consistent with q
and fiff q* € K%(q,f), where K3(q,f) is defined as follows:

- Iff =0, then:

20




"’/IIIIIIIIIIIIIIZ p

SN AAAR SN SRS AN

SIS ISITIII

Figure 7: A Goal and its v-Kernel

K3(a,£) = (5(a, )N Ciree) U{Q™ € B(a, ) N Ceontact /(3 € Fy(a NI < w]}-
(Le.: q* is distant from q by less than p, either in the free space, or in the contact space
at a point where the actual reaction force may be less than w.)
- If ||f|| = 1, then:
K5(a,f) = {@" € Ceontact N £(a, p) /(3F* € Fy(@NI(IF7(] > w) A |angle(f™, £)] < el}-

(Le.: q* is distant from g by less than p at a contact point that may generate a reaction
force f* whose magnitude is greater than w and angle with fless than €.)

Let q} and g} be two configurations in Cyalid, and v the commanded direction of motion.
q; and qj are said to be v-distinguishable iff:

{(a,T)/ ai,q; € Ki(a, 1)} = 0.

In other words, if two configurations q} and qj are v-distinguishable, then it is guaranteed
that during a motion commanded along v, there will be no instant when the position and
force measurements are v-consistent with both q} and q3. Two configurations q] and q;
which are not v-distinguishable are said to be v-confusable.

The v-kernel of 7 can now be formally defined as follows:

xw(T)={q* € T/ (Vq" € Coatia— T) [q* and q" are v_distinguishable]}.

21



The computation of xyv(7T) is detailed in the next subsection. We assume that 7 consists
of a finite collection of edges in Ceontaer and a finite collection of generalized polygons'? in
Cyatia. The v-kernel of such a goal is of the same general form, i.e. it is also made of finitely
many edges in Ceontact and generalized polygons in Cyalid- As an example, consider Figure 7.
The workspace contains a single rectangular C-obstacle. Figure 7.a displays a goal region
T consisting of a single rectangle whose boundary partly lies in the contact space. The
v-kernel for the vector v pointing downward is shown in figure 7.b. It is the region T UTy,
which consists of a portion (77) of an edge in the contact space and a generalized polygon
(T3). Indeed, based on position and force sensing, a configuration in 77 is v-confusable only
with configurations lying in the portion of C-obstacle edge contained in the goal; based on
position sensing only, a configuration in 77 is v-confusable only with configurations inside
the goal or inside the C-obstacle (but the latter are not achievable). Any configuration
outside 7/ U T is v-confusable with a configuration in Cyalia nOt located in the goal.

We can compute the backprojection B(xv(7T),v) using Donald’s line-sweep algorithm (see
Subsection_5.2). Since xy(7) may inlude regions bounded by both straight edges and
.circular ones, the only modification to the algorithm is to include the positions of the
sweep-line L where it is tangent to the circular edges as additional events.

A motion starting from within B(xv(7'),v) and commanded along v is guaranteed to reach
xv(T). By definition of xv(T), it is guaranteed that the condition K3 (q(ét), £(6t)) € 7 will
become true during the motion. Indeed, the condition will certainly be true when xv(7)
is attained, but it may become true before. When the condition becomes true, even if the
v-kernel has not been attained yet, the definition of Ky guarantees that the robot is in the
goal. Hence, B(xv(T), V) is a preimage of 7 for a motion commanded along v with:

TC = [K3(q(81),1(61)) € 7]

for termination condition.

Based on the definition of K% given previously, a straightforward algorithm computes the
region K%(q,f) in O(n) time. Thus, the termination condition TC is computable!® by
checking 7 for containment of K3,.

5.4 Computation of Goal Kernel

We now give an algorithm for computing the v-kernel of a goal 7. We assume that 7
consists of a finite collection of edges T2, i = 1,2, ..., in Ceontact 2nd 2 finite collection of
generalized polygons 7;”, 7 =1,2,...,in Cyatia- The T;’s are called goal edges. The 'If’s are
called goal polygons. The various goal edges and goal polygons are called goal components.
The input goal components are allowed to overlap. '

127 generalized polygon is a subset of R2 bounded by a simple closed curve made up of straight line

segments and/or circular arcs.

13 owever, the time taken by the evaluation of TC, which depends on the complexity of Ccontace and T,
is not constant. This might be a drawback since the termination condition should be monitored in real time
during motion. A possible improvement is to do as much precomputation as possible at planning time. But,
there seems to be no way of making TC into a “compiled” expression whose evaluation takes constant time.

22




7
7
/
4
T
s
4
/

I IIIIIIIS

Figure 8: Goal Components

The algorithm starts by making some cosmetic (but crucial for the rest of the algorithm)
changes to the input description of the goal. Basically, the input goal components are
transformed into a new set of goal components, such that no two of them overlap. First,
every edge F of every T" such that £ C Ceontact, is inserted in the collection of goal edges.
Second, if two goal edges overlap they are merged into a single one and if two goal polygons
" overlap, they are merged into a single one (we assume that this step produces only simple
polygons). Third, every extremity of every goal edge 7;%, which is not a vertex in Ceontact, 18
inserted as a new vertex of Ceontact. Finally, every vertex of Coontact that lies in an edge of a
polygonal goal Tp is inserted as a new vertex of '1"’ and every vertex of every goal polygon
’Z"p that lies in an edge of Ccontact 15 inserted as a new vertex of Ceontact-

For example, the goal region shown in Figure 7.a is input as a single goal polygon. It is
made into a goal edge and a goal polygon respectively denoted by 7; and 75 in Figure 8.

Let {71, ..., 7w} be the set of goal components after the above preprocessing. The algorithm
considers them successively:

- For every goal edge 7;, it computes the subset 7/ C 7; of configurations that
are v-distinguishable from the configuration in Cj. using force sensing only and v-
distinguishable from the configurations in Ceontact — 7 using both position and force sens-
ing.

- For every goal polygon T}, it computes the subset 7/ C 7; of configurations that are
v-distinguishable from the configurations in Cyaiig — 7 using position sensing only.

It is straightforward to verify that xv(7) = Uy, 7,. Figures 8 and 7.b illustrate these
computations, which we detail below.

5.4.1 Kernel in Goal Edge

Let us consider a goal edge 7;. We want to compute the subset 7}, as specified above. The
use of force sensing depends on the direction v.

23



Let us denote by Fyv(q*) the set of all the possible force measurements that can be obtained
at configuration q*, when the commanded direction of motion is v. This set can be derived
from Fy(q*) as follows:

- If F2(q*) contains a vector f* such that |I£*]| € w, then 0 € Fv(q*).

- Let f be a unit length vector. If Fy(q*) contains a vector f* such that ||f*}] > w and
|angle(f, £*)| < ¢, then f € Fv(q"). ‘

Although it is easy to construct Fv(q*) explicitly, we will see below that this is not necessary.

We denote by Fv(7;) the set Fy(q*) for any q* € Ti. A configuration in 7; is v-
distinguishable from a configuration in Cyree iff 0 ¢ Fv(T;). Hence, if 0 € Fv(T), T/ = 0.

Assume that 0 ¢ Fy(7;). Then, a configuration q* € T; is v-distinguishable from any
configuration in Cyree. It is v-distinguishable from a configuration ' contained in an edge

E C cContact iﬁ:
- either q’* ¢ £(q*,2p), i.e. the two configurations are sufficiently far apart,

- or Fy(E)N Fy(T;) = 0, i.e. the two edges have sufficiently different orientations.
Therefore, the algorithm for computing 7 is the following:

if 0€ Fv(T)
then return @;
else S« Tj;
for every edge E € Ceontact, £ ¢ T, do
if F(EYNF(T)#0
then S « S — cylsphere(E,2p);
endif;
enddo;
return S;
endif;

where cylsphere(E,2p) = {p / d(p, E) < 2p} (see Section 4).

The above algorithm does not require the explicit computation of Fy(7;). The test 0 €
Fy(T;) can easily be performed by computing the minimal force in F2(7;). The test Fy(E)N
Fv(T:) # 0 requires the cones spanned by the forces in Fy(E) and F3(T;) to be first
computed, next “grown” by &, and finally intersected.

7! is computed in O(n) time.

5.4.2 Kernel in Goal Polygon

Let us consider a goal polygon 7;. We want to compute the subset 7 of configurations that
are v-distinguishable from the configurations in Cyaiig — 7 using position sensing only.

24




Y
P \ [yrrI7777%) 11’
2p ‘]'],' | 7' g
J 4
']‘ ']' ,]- Crrrvrrrrdrs
j J j
a b c

Figure 9: Goal Polygon Adjacent to Contact Space

This computation is not as simple as it first seems. It is clear that a configuration in 7; is
v-distinguishable from any other configuration if the two configurations are distant by more
than 2p. However, this is only a sufficient condition, since it does not check whether the
second configuration is in Cyqlid, i-e. is achievable. Hence, if T; is adjacent to the contact
space, computing 7 by “shrinking” T; by 2p only produces a subset of the region we are
interested in. This is illustrated by Figure 9.a. In this figure, 7; is a rectangle, one side of
which is in contact space. Only the three edges of 7; which are not in the contact space
should be “shifted in” by 2p in order to get 7;. But shifting only the edges of 7; which lie '
in the free space does not always lead to the region we want. If the contact space is thiner
that 2p, the edge of 7; should be shifted in by 2p minus the thickness of the contact space
along that edge (see Figure 9.b). The region we obtain by doing so is safe, but may now be
too conservative. Indeed, it may happen that the other side of the C-obstacle region is also
part of 7 (see Figure 9.c), in which case the edge of 7; may not have to be shifted at all.

More generally, we can compute 7. using the following algorithm:

1. Construct the maximal connected polygonal region S as follows: 7; is first in-
cluded in S; then, every connected component of [J?_; CB; and goal polygon that
shares an edge with a region already in S is iteratively included in S.

2. §’ — S. For every edge E in the boundary of S do: S’ — §' — cylsphere(E,2p).
3. Return 7; N §". '

Figure 10 illustrates the operations carried out by this algorithm for the goal polygon 7,
shown in Figure 8. Figure 10.2 displays the region S computed at Step 1. The region S’

25



Pl )
) [ ’
7] J
; 2 /’II 7]

a b c
- Figure 10: Kernel in Goal Polygon

computed at Step 2 is shown in Figure 10.b. Finally, the returned region, 73, is shown in
Figure 10.c. ‘

The region constructed at Step 1 has O(n + m) edges, where m is the number of edges of
T;. Using a line-sweep algorithm, Step 2 can be performed in O((n + m + ¢)log(n + m))
time, where ¢ € O((n 4+ m)?) is the number of intersections of the cylspheres. 7, NS’ can
be obtained from the sweep algorithm with the same time complexity. ’

5.5 Combination

Backprojecting from goal kernel usually generates preimages which are significantly larger
than those produced by backprojecting from sticking edges. In particular, it can produce
preimages of goals made of regions lying in the free space and/or non-sticking edges in the
contact space. There are situations, however, where backprojecting from sticking edges
produces larger preimages. This is the case when the goal is a sticking edge E (for the '
commanded direction of motion v) and one of the two edges adjacent to E, or both, cannot
be v-distinguished from E using force sensing. In this case, the v-kernel of the goal is
obtained by shrinking E by 2p at both endpoints and the backpro jection of the shrunk edge
is smaller than the backprojection of the full edge.

Fortunately, it is easy to combine the two methods. This consists of: (1) computing the
union S C 7 of the sticking edges and the v-kernel for the selected commanded direction of
motion v; and (2) computing the maximal backprojection of 5 for v. This backprojection
is the computed preimage P. The termination condition of the motion command is the
disjunction of the two termination conditions given above, i.e.:

TC = [d(q(6%), (6t - 5p/ sin ¢)) < 2.5p] V [K3(a(62), £(60)) € T].

A motion starting from within P cannot terminate before the goal is reached, since it cannot
stick to an edge that is outside the goal. It is also guaranteed to terminate, since it will
either stick in a goal edge or reach the v-kernel of the goal.

Notice that the preimage computed by combining the two methods may be larger than
the union of the preimages separately computed by the two methods. Indeed, there may

26




exist starting configurations from where the motion commanded along v is guaranteed to
reach either a sticking edge in the goal or the goal v-kernel, without knowing which one in
advance.

6 Implementation and Experimentation

We have implemented a motion planner based on the preimage backchaining approach. This
planner computes preimages using either the backprojection-from-sticking-edge method,
the backprojection-from-kernel method, or the combination of the two. The user inputs
the description of the configuration space, the goal region G, and the initial region Z. If
successful, the planner returns a motion plan in the form of a sequence of commanded
directions of motion and the associated sequence of computed preimages. The method
used for computing the preimages determines the termination condition of every motion
command in the plan. The planner is implemented in Allegro Common Lisp on an Apple
Macintosh II computer. '

The planner constructs a graph of preimages by considering commanded motion directions
with the orientations {k7 /K }=o,....2k -1, where K is input by the user. In our experiments,
we used K = 2 or 4. The planner searches the graph in a breadth-first fashion, but various
(and probably better) other search techniques could have been used instead (e.g., A™).

The algorithms implemented in the planner are essentially those described above, with some
variations. In particular, the backprojection of a region is computed using an algorithm
similar to that described in [Latombe, 1988], rather than the line-sweep-based algorithm
(which would be faster). The planner also approximates conservatively the generalized
polygonal v-kernels by regular polygons. These changes have no major impact on the
visible operations of the planner.

Below we describe experimental results obtained with the planner. In this decription,
we call method 1 (resp. 2, 3) the backprojection-from-sticking-edges method (resp. the
backprojection-from-kernel method, the combination of the two methods). In all the exam-
ples shown, the initial region is a single point; in the figures it is the center of a disc that
depicts position uncertainty. The control uncertainty cone and force uncertainty cone are
not depicted. The figures are generated by the planner and are of a slightly different style
than the figures in the rest of the paper.

Figures 11.2 and 11.b illustrate motion plans generated by the planner, using method 1
and method 2, respectively. None of them shows the computed preimages. The goal is
the rectangular region G. The plan constructed using method 1 consists of 5 steps, defined
by the commanded directions of motion vy through vs. The corresponding sticking edges
are T; through 75. (More precisely, 7; is the intersection of the preimage of 7;4; and the
sticking subset of Ceontact. A motion along v; issued from within 7;_; is guaranteed to stop
in 7;, but some configurations in 7; may not be reachable.) The plan constructed using
- method 2 is simpler and only comsists of a single motion commanded along v.

Figure 12 shows an example where method 1 (Figure 12.a) produceds a simpler plan than
method 2 (Figure 12.b). Figure 12.b displays two intermediate preimages. The third preim-

27



Figure 11: Example 1

28




Figure 12: Example 2

29



Figure 13: Example 3

age, which includes the initial configuration of the robot, is not displayed.

Figure 13 shows a typical example where method 1 works well. This is when the robot can
“bounce” from one sticking edge into another. On the contrary, method 1 works poorly or
fails when the C-obstacles are far apart and when the goal mostly (or completely) lies in
the free space. Figure 14 displays an example with a single C-obstacle that method 1 failed
to solve. Using method 2, the planner generated the plan illustrated in the figure.

Figure 15 gives an example where method 3 resulted in a simpler plan than either method 1 -
or 2. Figure 15.a shows a 5-step plan generated using method 1. Figure 15.b shows a 3-step
plan generated using method 2. Figure 15.c shows a 2-step plan generated using method 3.
Method 3 is not strictly needed, since the motion along v; could have been generated using
method 2, and the motion along vz using method 1. However, it is much more efficient
to compute a single preimage for every goal and commanded direction of motion, using
method 3, rather than two preimages, using methods 1 and 2 separately.

All the examples given above were solved by the planner in a reasonable amount of time
_ a few minutes at worst. Nevertheless, the implemented software is far from optimal and
could definitively be made faster. Notice furthermore that many robotic tasks that require
uncertainty in control and sensing to be considered at planning time - such as part mating,
grasping, docking — involve a space of rather small volume. Hence, apart from the fact that
they are two-dimensional, the examples submitted to the planner are not unrealistically too

simple.

In the next two sections we describe non-implemented conceptual improvements of the
planner.

30




Figure 14: Example 4

7 On the Termination Predicate’s Knowledge

7.1 Purpose

Consider the problem of achieving a rectangular goal region 7 in an empty two-dimensional
configuration space, with a commanded direction of motion v perpendicular to one side of
the rectangle. The only available sensing is position sensing, since force sensing is irrelevant
in the absence of obstacle. We assume that both sides of the rectangular goal are longer
than 4p. Figure 16.a shows the v-kernel x of 7 and Figure 16.b the preimage P of 7
constructed by the backprojection-from-kernel method; the outlined region in Figure 16.c
depicts the set of position measurements for which the termination condition £*(q(ét)) C 7
(the force measurement f is irrelevant) evaluates to true. The knowledge embedded in the
predicate of this condition consists of the geometry of both 7 and Cy,iq and the direction
v (although in this particular example, the direction v plays no role in the condition).

In this section, we construct significantly larger preimages of 7 by making the termination
predicate know both the preimage, from which the motion starts, and itself. Knowing the
preimage allows the termination predicate to rule out interpretations of the sensory inputs
that suggest configurations of A which are outside the range of configurations reachable
from the preimage by a motion commanded along v. Knowing itself allows the termination
predicate to rule out interpretations of the sensory inputs that suggest configurations of A
which are beyond the limit where the motion would have been stopped by the termination
condition. The knowledge of both the preimage and itself clearly augments the “recognition
power” of the termination predicate’. As shown below, it leads to larger kernels, whose

1 An additional way of increasing the recognition power of the termination predicate, which is not explored

31



Figure 15: Example 5

32




., / ’,,'
7 7 %
7 A 7
H g ¢
2 i p ¢
14

7 2p g 7 P
g > 5 s
7 X 7 2
7 I /
']' TSI TIRIIIIIII IS4 4 fa

Figure 16: Rectangular Goal in Empty Configuration Space

backprojections form larger preimages.

The result that the recognition power of the termination condition depends on the knowledge
of the preimage is not new. It was first established in [Lozano-Pérez, Mason and Taylor,
1984). Its application to the above example led Erdmann [Erdmann, 1984) to construct a
preimage that is larger than that shown in Figure 16. However, we show below that, using
the same knowledge, a slightly larger preimage can be built (Subsection 7.2). On the other
hand, we believe that the fact that the recognition power of the termination condition is
augmented by making the condition predicate know itself has not been previously noticed.
In the considered example, we show that this additional knowledge results in a preimage
that is significantly larger than that constructed with the knowledge of the preimage alone
(Subsection 7.3).

Unfortunately, like in previous works on this matter [Lozano-Pérez, Mason and Taylor, 1984]
[Erdmann, 1984], our analysis of how the knowledge embedded in the termination predicate
affects preimage construction is very partial. The effective preimage construction results
presented below are specific to the example of Figure 16. The general problem of computing
“large” (perhaps maximal) preimages, when the termination predicate is allowed to know
both itself and the preimage from which the motion starts, is a very difficult recursive
problem, since both the preimage and the termination predicate then depend on themselves.
In some way, this is exactly what we tried to avoid in the methods of Section 5. It might
nevertheless be possible to identify useful particular cases and construct specific solutions
for them (exactly as we do below in one example). The planner would then select one such
specific solution whenever one is applicable; otherwise it would compute a preimage using
the more general methods presented in Section 3.

In [Lozano-Pérez, Mason and Taylor, 1984] and subsequent publications, a termination

in this paper, is to give it access (through its arguments) to the whole sensing history since the beginning
of the motion, not just instantaneous sensing (see [Erdmann, 1984] [Latombe, 1988]).

33



predicate embedding the knowledge of the preimage was called a termination predicate with
state. We refine this terminology as follows. We say that a termination predicate is with
initial (resp. final) state iff the knowledge of the preimage (resp. itself) is embedded in
it.

The following subsections first introduce the notions of termination conditions with initial
and final states in a general fashion. Then, they apply these concepts to the particular
example of Figure 16.

7.2 Termination Condition with Initial State

Let FPy(R) be the set of all the possible actual configurations which may be reached by
executing a motion commanded along v starting from within R C Cyatia- F Pv(R) is called
the forward projection of R [Erdmann, 1984] [Buckley, 1986). If Cyatic = C, as in the
example of Figure 16, FPy(R) is the union of all the control uncertainty cones anchored
in R.

We say that a configuration q* € Cyaiid is v-R-consistent with a position measurement
q and a force measurement f iff q* € K3(q,f) N FPy(R). In other words, if a motion
. commanded along v is known to start from within a region R, then, at any instant 6t
during the motion, the current configuration q* is known to be both in K3 (q(6t),f(6t)) and
- in FPy(R). We write:

Ky =(q,1) = Ky (q, £) 0 FPv(R).

Two configurations q} and q3 in Cyalid are said to be v-R-distinguishable iff:
{(a,f) / a5, a5 € K3 z(q,f)} = 0.
The v-R-kernel of 7 is defined as follows:

xvr(T) ={q" € T | (Vq" € Cyatia — 7T)[q" and q’* are v_R distinguishable]}.

When a preimage P of a goal 7 is constructed for a motion command M, it is known,
‘by definition of the preimage backchaining process, that the command M will be executed
from a starting configuration in P. (Indeed, if P is not a subset of the initial region Z, it is
the recursive responsibility of the backchaining process to find a way to achieve P.). Hence,
P can be computed as the backprojection of the v-P-kernel, i.e. B(xv,p(T),v), with:

TC = (K3 p(a(61),£(61)) C 7]

for M’s termination condition (with initial state). The problem, of course, is that both
P and TC are defined in term of the preimage P that we want to construct. Although
we do not know how to effectively use these recursive definitions in order to construct a
general algorithm for computing preimages, we think that they might at least be used in a
case-by-case fashion, as illustrated below.

Consider the example of Figure 16 again. The region whose contour is labelled
ABCDEFGH in Figure 17 is a generalized polygon constructed as follows. The straight

34




Figure 17: Using Initial State

35



Figure 18: Using Initial State (Other Example)

edge BC is at distance 2p from the top horizontal edge of 7. The circular edges AB and
C D are circular arcs of radius 2p centered at P and Q, respectively. P (resp. Q) are selected
in the top horizontal edge of 7 such that the intersection of 7 and a line passing through
P (resp. Q) and paralle] to the left (resp. right) side of the control uncertainty cone is a
segment PP’ (resp. QQ’) of length 4p. The circular edges AH and DF are circular arcs of
radius 2p with centers at P’ and Q’, respectively. The straight edge GF is at distance 2p
from the bottom edge of 7. The straight edges HG and EF are at distance 2p of the left
and right edges of 7, respectively. '

It is rather easy to verify that the region thus outlined is the kernel xv,p(T) with
P = B(xv»(T),v). In particular, assume that at some instant during the motion the
actual configuration is the extreme point marked A is the figure. All the possible position
measurements at this instant lie in the disc £(A4, p). If the forward projection is not taken
into account, the set of all the interpretations of all these measurements is the disc £(A4, 2p).
The intersection of this disc with the forward projection FPv(P) is completely contained
in 7. Hence, the point A and any configuration outside T are v-P-distinguishable, so that
A belongs to xv (7). The same kind of verification can be extended to the other vertices
B through H, the straight and circular edges connecting these points, and the interior of
the outlined area. The resulting preimage is larger that that shown in Figure 16.b. It seems
also slightly larger than that given in [Erdmann, 1984] (at the “corners” A and B), although
Erdmann’s construction is not precisely defined. The region outlined in dotted line depicts
the set of position measurements for which the termination condition Ky p(a(6t)) C T (f
is irrelevant) evaluates to true. '

Another example in which using a termination condition with initial state allows to construct
alarger preimage is shown in Figure 18. The configuration space contains a single C-obstacle
bounded by an infinite line (the contact space). The goal region is a segment included in
that line (Figure 18.a.) The preimages computed as the backprojections of the v-kernel and
the v-P,-kernel are shown in Figures 18.b and 18.c, respectively.

7 8  Termination Condition with Initial and Final States

Any termination condition TC divides a forward projection FPy(R) into three regions,
which we denote by Fj, F> and Fi:

36




- F consists of all the configurations q* such that, for every measurements (q,T) satisfying
q* € Ky z(q,f), TC evaluates to false.

- F, consists of all the configurations q* such that, for every measurements (q,f) satisfying
q* € Ky z(q,f), TC evaluates to true.

- F3 = FPy(R)— F1 — F, i.e. any configuration in F3 may non-deterministically produce
measurements for which TC evaluates to either true or false.

At every instant during a motion commanded along v and issued from within R, if the
current configuration is in Fj, the motion continues; if it is in F5, the motion stops; if it
is in F3, the motion may either continue or stop. In general, there exist subsets of F, Fp
and F3 that are inaccessible from R because reaching them would require to previously
traverse F,, where the motion would have been terminated. This is precisely why making
the termination condition know itself increases its recognition power.

Given a termination condition TC, a motion commanded along v and starting from within
R can attain a configuration q iff there exist a configuration q; € R and a valid path
compatible with v, which connects q* to q} without traversing F3, except at qg itself. Let
us denote by @} pc(R) € FPv(R) the set of all such configurations qj.

We say that a configuration q* € Cyaiid is v-R-TC-consistent with a position measurement
q and a force measurement fiff q* € K5 =(a,f)N Q5 pc(R). We write:

K3 rrc(a, ) = K§ =(a,f) N Q5 1c(R)-

Two configurations q} and q3 in Cyaiig are said to be v-R-TC-distinguishable iff:

{(a,f)/ a3, a5 € K§ =, vc(a: )} = 0.
The v-R-TC-kernel of a goal 7 is defined as follows:

xvrrc(T)={q" € T / (V9" € Coatia — T)[q" and q’* are v_.R_TC_distinguishable]}.

A preimage P of a goal 7 can be constructed as the backprojection of the v-P-TC-kernel,
with:
TC = [K] » mc(a(61),1(61)) € 7]

for termination condition (with both initial and final.states). The problem here is that TC
is defined by a recursive function of itself. But its application to a variety of particular
cases might be possible as illustrated below.

The region with striped contour shown in Figure 19 is a generalized polygon constructed as
follows. Let R (resp. §) the points in the top horizontal edge of T such that the intersection
of T and a line passing through R (resp. §) and parallel to the left (resp. right) side of
the control uncertainty cone is a segment RR’ (resp. SS’) of length 2p. The line R'S" that
forms the upper portion of the striped contour consists of two circular arcs of radius 2p, with
respective centers R and S, and a straight segment at distance 2p from the top edge of the

goal 7. The rest of the striped contour is the lower part of 7’s boundary. It is rather easy

37



e W e W E R RmEE W W™ R WwWw®™®ww®®www -
’

Figure 19: Using Initial and Final States

38




Figure 20: Point-onto-Hill Problem

to verify that the region thus outlined is the kernel xy » 1c(7) with P = B(xv,p(7),V)
and TC = [K] 5 pcl(a(62),1(61)) € T). The region outlined in dotted line depicts the set
of position measurements for which the termination condition evaluates to true. Assume
that at some instant during the motion the actual configuration is the point marked R’ is
the figure. All the possible position measurements at this instant lie in the disc Z(R', p). If
neither the forward projection nor the termination condition are taken into account, the set
of all the interpretations of all these measurements is the disc X(R’,2p). The intersection
of this disc with the forward projection FPy(P) contains a sector that is not contained
in 7. This sector (the striped area in Figure 19) can only be attained from P by crossing
the segment marked R'R". Since for any configuration in this segment the termination
condition evaluates to true, the sector cannot be attained. The preimage built in Figure

19 is substantially larger that that shown in Figure 17.

8 On the Generation of Conditional Strategies

The backchaining procedure presented in Section 4 can only generafe linear plans, i.e.
sequences of motion commands. However, as noticed in [Lozano-Pérez, Mason and Taylor,
1984] and [Mason, 1984], some planning problems only admit conditional strategies for
solutions. In this section, we show how the principles of the methods of Section 5 can be
extended in order to generate conditional strategies.

Consider the “point-onto-hill” example illustrated in Figure 20.a (this example was first
given in [Mason, 1984]). The configuration space contains a single, non-compact, C-obstacle

39



bounded by three edges, the top edge G, the left edge Ey and the right edge E; (both E,
and E, are semi-infinite lines). The goal region is the top edge G. The initial region 7 is
all Cyatig- We assume perfect control (i-e., 6 = 0, hence v* = v), no position sensing (i.e.,
p = 00), perfect force sensing (i.e., w = 0 and ¢ = 0), and frictionless edges (i.e., ¢ =0). A
motion commanded from any starting configuration in Z with a vertical commanded velocity
pointing downward and [|f(6t)|] > 0 for termination condition, is guaranteed to terminate
in one of the three edges G, Eq and Ej, but it is not possible to know which one in advance.
However, it is known in advance that the orientation of the measured force when the contact
is made will make it possible to know which edge has been hit. In addition, it is easy to
plan a motion that starts in Ey (resp. Es) and terminates in G. Hence, the point-onto-hill
problem admits a conditional strategy for solution.

Planning a conditional strategy requires the backchaining process to eventually consider any
set ST = {T, ..., T}, where T; (i € [1, s]) is either the original goal or a previously computed
preimage, and compute a preimage of it. (The 7;’s may not be disjoint.) Let M = (CS,TC)
be a motion command and RC;, i = 1,..., s, be conditions called recognition conditions.
A preimage of ST for M and the RC;’s is any subset P of Cyqria such that executing M
from a configuration q* € P is guaranteed to reach Ui, 7; and terminate in it, in such a
way that, when the motion terminates, at least one recognition condition evaluates to true
and, if the condition RC; (for any ¢ € [1, s]) evaluates to true, 7; has been achieved.

In the example of Figure 20, the backchaining process would ideally proceed as follows:

- First, it would successively generate two preimages of G, P, and Py, for two motion
commanded along v; and vy (see Figure 20.b), both with angle(f(6t),v(G)) = 0 for
termination condition. Notice that E; C P; and E; C Ps. )

- Second, it would generate a preimage of P of {G, Py, P} for a motion commanded along
v (see Figure 20.b) with ||f(62)|| > 0 for termination condition and the three conditions
angle(£(6t),n) = 0, with n = v(G), v(E;) and v(E2), for recognition conditions.

The preimage P is equal to Z = Cyatid, 50 that the generated strategy would be:

move along v until ||f(6t)]] > 0;
if angle(f(6t),v(G)) =0
then success; _
else if angle(f(6t),v(E1)) =0
then move along vy until angle(f(6t),v(G)) = 0;
else if angle(f(6t),v(E2)) =0
then move along v, until angle(f(6t),v(G)) = 0;

More generally, in order to generate a conditional plan, the backchaining procedure operates
as follows:

40




1. It creates a set of goals SG and initializes it to {G}.
2. It selects a subset ST of SG and computes a preimage P of S7.

3. If T C P, it exits with success. Otherwise, it inserts P in SG as a new goal and
goes back to step 2.

In theory, the algorithm should exit with failure when no new preimage can be constructed.
In practice, however, it should be terminated sooner, say, when SG reaches a prespecified
size.

It remains the problem of computing the preimage of a set of goals. To that purpose, we
adapt the two methods presented in Section 5. Let S7 = {Ti,...,T;}, with s > 1, and v be
the selected commanded direction of motion. The adaptation is as follows:

- Backprojection from sticking edges: The sticking edges are computed in every goal T7;,
i =1 to s. For every sticking edge E in T;, we only keep the subset E’ of configurations
that are not v-confusable with any configuration in the sticking edges of the goals 7j,
j=1,..,8,j #4i. (This is done by comparing the orientation of £ with the orientation
of every such edge F and, if the orientation are confusable under force measurement,
removing cylsphere(F,2p) from E.) A preimage of 7 is constructed as the backpro jection
of the union of all the remaining portions of the sticking edges in 7; through 7,.. The
termination condition is the sticking one (see Subsection 5.2). Let Ei,..., E] denote the
remaining portions of the sticking edges in 7;. The recognition condition RC; is:

\/ {a(8t) € culsphere(EL, p)] A llangle(£(5t), »(ER)| < e}
k=1

- Backprojection from goal kernel: The v-kernel xv(7;) of every goal 7;, i = 1,...,5, is first
computed. A preimage of ST is then constructed as the backprojection of the union
Ui; xv(7:). The recognition conditions are:

RC; = [K*(q(1), (1)) € T]
for i = 1 to s. The termination condition is V{-; RC;.
The two methods can be combined in a way similar to that described in Subsection 5.5.

If the initial region Z consists of several subregions that are distinguishable using position
sensing only, the planner should build separate motion strategies for every such subregions.
An initial conditional branching, based on the measurement of the initial configuration of
the robot, will select the appropriate strategy,

By associating the backchaining algorithm, the preimage computation methods, and the
previous remark, we have a computational framework for effectively planning conditional
strategies. However, as it is, this framework is probably very inefficient in practice, since
the number of goals ST that the backchaining algorithm may select at each iteration grows
exponentially with the number of preimages generated since the beginning of the process.
Additional techniques for guiding the search and pruning the set of potential goals remain
to be developed.

41



9 Conclusion

In this paper, we addressed the problem of planning motion strategies in a two-dimensional
configuration space in the presence of uncertainty in robot control and sensing. We estab-
lished a precise formalization of the problem and we considered the preimage backchaining
approach to this problem. In response to one of the main difficulties raised by this general
approach, we described in detail two effective methods for computing preimages: back-
projection from sticking edges and backpro jection from goal kernel. In general, the second
method computes larger preimages than the first. In fewer cases, however, it is the contrary.
The two methods can be combined into what we think is the most powerful effective method
developed so far for computing preimages. A motion planner based on these methods was
implemented and we experimented with it in simulation on reasonably simple problems. We
discussed two non-implemented improvements of the planner. One improvement consists
of increasing the recognition power of the termination predicate of a motion command by
embedding the knowledge of both the preimage and itself in it (termination predicate with
initial and final states). On a specific example, we showed how this knowledge makes it
possible to construct signiﬁcanty larger preimages. The other improvement extends the
preimage backchaining approach to the generation of conditional strategies. We proposed
a full computational framework for effectively planning such strategies.

An important shortcoming of the implemented planner is that it blindly discretizes motion
directions in order to build the preimage graph and that it uses mo heuristics to guide
the search of this graph. This is acceptable only for rather simple problems. Although
there exist some straightforward heuristics — e.g., move in priority in the direction of the
goal - they would probably be easily deceived (but we did not experiment with any of
them). Donald [Donald, 1988b] proposed a method based on the notion of “non-directional
backprojection” for computing a motion command whose execution is guaranteed to reach
a goal from a given region, if one such command exists. The method relies on the fact that
the topology of the backprojection of a region can change at a finite number of “critical”
orientations of the commanded direction of motion, and that the containment of the initial
region in a backprojection changes at a finite number of “pseudo-critical” orientations where
an edge of the current backprojection makes contact with the initial region. It computes the
backprojections at these critical and pseudo-critical orientations, and test the backprojection
for containment of the initial region at each pseudo-critical orientation. Briggs [Briggs,
1988] reduced the time complexity of Donald’s original algorithm to O(n%logn), where
n is the number of edges in the contact space (and assuming that the goal region has
constant size). The method can be used in' connection with the preimage computation
methods described in Section 5 in order to generate a 1-step motion strategy, without blind
discretization and search, whenever one exists. This is done by noticing that both the
set of sticking edges in the goal and the v-kernel of the goal change at a finite number
of orientations of the commanded direction of motion. Hence, one can compute all the
intervals of motion directions in which the sticking edges and the v-kernel remain constant,
and determine for each interval if there is a backprojection of the region formed by the
corresponding sticking edges and v-kernel, which contains the initial region. However,
extending the approach to r-step strategies would require to deal with (pseudo-)critical
(r — 1)-dimensional surfaces rather than orientations, which might be quite complex in

42




practice. Another interesting approach for constructing r-step strategies is proposed in
[Friedman, Hershberger and Snoeyink, 1989]. The approach basically consists of assuming
perfect control and determining the range of directions in which the robot should move from
an initial region in order to attain a goal in a single step. But, so far, the approach is only
applicable when the workspace is the interior of a simple polygon and the goal is an edge
or a vertex of this polygon.

Another major limitation of the planner is that it requires the robot’s configuration space
to be two-dimensional. The general principles of the planning methods immediately extend
to higher-dimensional spaces, but the detailed geometric algorithms do not. One can devise
“exact” algorithms in the vein of those described in [Schwartz and Sharir, 1983] and [Canny,
1987] ~ that is, reducing planning to an algebraic decision problem. Such algorithms will
certainly provide upper bounds for the complexity of motion planning with uncertainty,
but they are unlikely to be practical solutions to this problem (e.g., see [Canny, 1989)).
More pragmatic, but still systematic methods — perhaps in the vein of those described in
[Barraquand and Latombe, 1989] - remain to be developed.

References

Aho, A.V., Hopcroft, J.E. and Ullman, J.D. (1983) Data Structures and Algorithms, Addison-Wesley,
Reading, MA.

Andreae, P.M. (1986) Justified Generalization: Acquiring Procedures from Ezamples. Ph.D. Disser-
tation, Technical Report 834, Artificial Intelligence Laboratory, MIT.

Arnold, V1. (1978) Mathematical Methods of Classical Mechanics, Springer-Verlag, New York.

Avnaim, F. and Boissonnat, J.D. (1987) “Simultaneous Containment of Several Polygons,” Third
ACM Symposium on Computational Geometry, Waterloo, Canada.

Barraquand, J. and Latombe, J.C. (1989) Robot Motion Planning: A Distributed Representation
Approach, Report No. STAN-CS-89-1257, Department of Computer Science, Stanford University.

Briggs, A.J. (1988) An Efficient Algorithm for One-Siep Planar Compliant Motion Planning with
Uncertainty, Department of Computer Science, Cornell University, Ithaca, NY.

Brooks, R.A. (1982) “Symbolic Error Analysis and Robot Planning,” International Journal of
Robotics Research, 1(4), 29-68.

Brooks, R.A. and Lozano-Pérez, T. (1983) “A Subdivision Algorithm in Configuration .SpaJce for
Findpath with Rotation,” Eighth International Joint Conference on Artificial Intelligence, Karl-
sruhe, FRG, 799-806.

Buckley, S.J. (1986) Planning and Teaching Compliant Motion Strategies, Ph.D. Dissertation, De-
partment of Electrical Engineering and Computer Science, MIT, Cambridge, MA.

Canny, J.F. and Reif, J. (1987) “New Lower Bound Techniques for Robot Motion Planning Prob-
lems,” 27th IEEE Symposium on Foundations of Computer Science, Los Angeles, CA.

Canny, J.F. (1987) The Complezity of Robot Motion Planning, Ph.D. Dissertation, Department of
Electrical Engineering and Computer Science, MIT, Cambridge, MA.

Canny, J.F. (1989) “On Computability of Fine Motion Plans,” IEEE International Conference on
Robotics and Automation, Scottsdale, AZ, 177-182.

43



Desai, R.S. (1988) On Fine Motion in Mechanical Assembly in Presence of Uncertainty, Ph.D.
Dissertation, Department of Mechanical Engineering, University of Michigan.

Donald, B.R. (1987a) A Search Algorithm for Motion Planning With Siz Degrees of Freedom, Arti-
ficial Intelligence Journal, 31(3), 295-353.

Donald, B.R. (1987b) Error Detection and Recovery for Robot Motion Planning with Uncertainty.
Ph.D. Dissertation, Department of Electrical Engineering and Computer Science, MIT.

Donald, B.R. (1988a) “A Geometric Approach to Error Detection and Recovery for Robot Motion
Planning with Uncertainty,” Artificial Intelligence Journal, 37 (1-3), 223-271.

Donald, B.R. (1988b) “The Complexity of Planar Compliant Motion Planning Under Uncertainty,”
ACM Symposium on Computational geometry, Urbana, IL.

Dufay, B. and Latombe, J.C. (1984) “A Approach to Automatic Robot Programming Based on
Inductive Learning,” International Journal of Robotics Research, 3(4), 3-20.

Erdmann, M. (1984) On Motion Planning With Uncertainty, Technical Report 810, AI Laboratory,
MIT. :

Erdmann, M. (1986) “Using Backprojections for the Fine Motion Planning With Uncertainty,”
International Journal of Robotics Research (IJRR), 5(1).

Erdmann, M. and Mason, M.T. (1986) “An Exploration of Sensorless Manipulation,” IEEE Inter-
national Conference of Robotics and Automation, San Francisco, CA, 1569-1574.

Faverjon, B. and Tournassoud, P. (1987) “A Local Based Approach for Path Planning of Manipula-
tors with a High Number of Degrees of Freedom,” IEEE International Conference on Robotics and
Automation, Raleigh, NC, 1152-1159.

Friedman, J., Hershberger, J. and Snoeyink, J. (1989) “Compliant Motion in a Simple Polygon,”
ACM Symposium on Computational Geometry.

Gouzénes, L. (1984) “Strategies for Solving Collision-Free Trajectories Problems for Mobile and
Manipulator Robots,” International Journal of Robotics Research, 3(4), 51-65.

Guillemin, V. and Pollack, A. (1974) Differential Topology, Prentice-Hall, Englewood Cliffs, NJ.

Hopcroft, J.E. and Wilfong, G. (1986) “Motion of Objects in Contact,” International Journal of
Robotics Research, 4(4), 32-46.

Khatib, O. (1986) “Real-Time Obstacle Avoidance for Manipulators and Mobile Robots,” Interna-
tional Journal of Robotics Research, 5(1), 90-98.

Koutsou, A. (1986) Planning Motion in Contact to Achieve Parts Mating. Ph.D. Dissertation,
'Department of Computer Science, University of Edinburgh.

Latombe, J.C. (1984) “Automatic Synthesis of Robot Programs from CAD Specifications,” in
Robotics and Artificial Intelligence, edited by Brady, M., Gerhardt, L.A. and Davidson, H.F., NATO

ASI Series, Springer-Verlag, New York.

Latombe, J.C., Laugier, C., Lefebvre, J.M., Mazer, E. and Miribel, J.F. (1984) “The LM Robot
Programming System,” in Robotics Research, edited by H. Hanafusa and H. Inoue, MIT Press.

" Latombe, J.C. (1988) Motion Planning with Uncertainty: The. Preimage Backchaining Approach,
Report No. STAN-CS-88-1196, Department of Computer Science, Stanford University, Stanford,

CA.

44




Laugier, C. and Germain, F. (1985) “An Adaptative Collision-Free Trajectory Planner,” Interna-
tional Conference on Advanced Robotics, Tokyo, Japan. ’

Laugier, C. and Théveneau, P. (1986) “Planning Sensor-Based Motions for Part-Mating Using Ge-
ometric Reasoning Techniques,” European Conference on Artificial Intelligence, Brighton, UK.

Laugier, C. (1989) “Planning Fine Motion Strategies by Reasoning in the Contact Space,” Proeedings
of the IEEE International Conference on Robotics and Automation, Scottsdale, AZ, 653-659.

Liebermann, L.I. and Wesley, M.A. (1977) “AUTOPASS: An Automatic Programming System for
Computer Controlled Mechanical Assembly,” IBM Journal of Research and Development, 21(4),
321-333.

Lozano-Pérez, T. (1976) The Design of a Mechanical Assembly System. Technical Report AI-TR
397, Artificial Intelligence Laboratory, MIT, Cambridge, MA.

Lozano-Pérez, T. (1981) “Automatic Planning of Manipulator Transfer Movements,” IEEE Trans-
actions on Systems, Man and Cybernetics, SMC-11(10), 681-698.

Lozano-Pérez, T. (1983) “Spatial Planning: A Configuration Space Approach,” IEEE Transactions
on Computers, C-32(2), 108-120.

Lozano-Pérez, T., Mason, M.T. and Taylor, R.H. (1984) “Automatic Synthesis of Fine-Motion
Strategies for Robots,” International Journal of Robotics Research, 3(1), 3-24.

Lozano-Pérez, T. (1987) “A Simple Motion-Planning Algorithm for General Robot Manipulators,”
IEEE Journal of Robotics and Automation, RA-3(3), 224-238.

Lozano-Pérez, T. et al. (1987) “Handey: A Robot System that Recognizes, Plans, and Manipulates,”
IEEE International Conference on Robotics and Automation, Raleigh, North Carolina, 843-849.

Mason, M.T. (1981) “Compliance and Force Control for Computer Controlled Manipulators,” JEEE
Transactions on Systems, Man, and Cybernetics, SMC-11, 6, 418-432.

Mason, M.T. (1984) “Automatic Planning of Fine Motions: Correctness and Completeness,” IEEE
International Conference on Robotics and Automation, Atlanta, GA.

Massey, W.S. (1967) Algebraic Topology: An Iniroduction, Springer-Verlag, New York.

Mazer, E. (1987). Handey: A Planner for Task-Level Robot Command. Thesis Dissertation, Uni-
versity of Grenoble, France.

Nilsson, N.J. (1980) Principles of Artificial Intelligence, Morgan Kaufmann, Los Altos, CA.

Pertin-Troccaz, J. and Puget, P. (1987) “Dealing with Uncertainty in Robot Planning Using Program
Proving Techniques,” Robotics Research, edited by Bolles, R.C. and Roth B., MIT Press, 455-466.

Preparata, F.P. and Shamos, M.I. (1985) Computational Geomelry: An Introduction. Springer-
Verlag, New York.

Raibert, M.H. and Craig,J.J. (1981) “Hybrid Position/Force Control of Manipulators,” Journal of
Dynamic Systems, Measurement and Control, 102.

Reif, J.H. (1979) “Complexity of the Mover’s Problem and Generalizations,” 20th Symposium on
the Foundations of Computer Science (FOCS), 421-427.

Requicha, A. (1977) Mathematical Models of Rigid Solid Objects, Technical Memo No. 28, Produc-
tion Automation Project, University of Rochester, Rochester, NY.

45



Sharir, M. (1987) “Efficient Algorithms for Planning Purely Translational Collision-Free Motion in
Two and Three Dimensions,” IEEE International Conference on Robotics and Automation, Raleigh,
. NC, 1326-1331.

Schwartz, J.T. and Sharir, M. (1983) “On the Piano Movers’ Problem: I. The Case if a Two-
Dimensional Rigid Polygonal Body Moving Amidst Polygonal Barriers,” Communications on Pure
and Applied Mathematics, 36, 345-398.

Schwartz, J.T. and Sharir, M. (1988) “A Survey of Motion Planning and Related Geometric Algo-
rithms,” Artificial Intelligence Journal, 37(1-3), 157-169.

Taylor, R.H. (1976) Synthesis of Manipulator Control Programs from Task-Level Specifications,
Ph.D. Dissertation, Department of Computer Science, Stanford University, CA.

Valade, J. (1984) “Automatic Generation of Trajectories for Assembly Tasks,” Sizth European Con-
ference on Artificial Intelligence, Pisa, Italy. .

Waldinger,R. (1975) “Achieving Several Goals Simultaneously,” in Elcock, E. and Michie, D. (edi-
tors.), Machine Intelligence 8, Ellis Horwood, Chichester, UK.

46




s
=T
Q.E
- = )
=32
=T
2"" n Q.
oo 8 ¥
}-%3 )
SEg’T
7)) 2302
= . |
-
D I
o >
:'E L
P QGH
EET
) E" S
=Exg
[ ] Q:c
E Y o.=
- S =
Q2 0T
=) - =
L
p—
=<Es
.= B
=508
ET E
Ny &=
oy
= =E7
.
Z 8.2

Reproduced by NTIS

National Technical Information Service
U.S. Department of Commerce
Springfield, VA 22161

This report was printed specifically for your
order from our collection of more than 2 million
technical reports.

For economy and efficiency, NTIS does not maintain stock of its vast
collection of technical reports. Rather, most documents are printed for
each order. Your copy is the best possible reproduction available from
our master archive. If you have any questions concerning this document
or any order you placed with NTIS, please call our Customer Services
Department at (703) 387-4660.

Always think of NTIS when you want:

« Access to the technical, scientific, and engineering results generated
by the ongoing multibillion dollar R&D program of the U.S. Government.
» R&D results from Japan, West Germany, Great Britain, and some 20
other countries, most of it reported in English.

NTIS also operates two centers that can provide you with valuable
information:

« The Federal Computer Products Center - offers software and
datafiles produced by Federal agencies.

« The Center for the Utilization of Federal Technology - gives you

- access to the best of Federal technologies and laboratory resources.

For more information about NTIS, send for our FREE NTIS Products

and Services Catalog which describes how you can access this U.S. and
foreign Government technology. Call (703) 487-4650 or send this

sheet to NTIS, U.S. Department of Commerce, Springfield, VA 22161.
Ask for catalog, PR-827.

Name
Address

Telephone

- Your Source to U.S. and Foreign Government
Research and Technology



U.S. DEPARTMENT OF COMMERCE
Technology Administration
National Technical Information Service
Springfield, VA 22161  (703) 487-4650




