
0ct

obe )
| »1987

19 |AD-A198 |

"”= aa |

| L]

G C u n po ]0 T

WwW |
E AY 3 “~D ; x Rus dge ey _—0

61

nd

ed |

— asafu | |
¥

Din a i Mi S A iod 0 n n t : i: N t am

RR 11

| fi
i

5 be! ub TE ~ta afa U k po m 8| LL WV or U P oy, oh ut 0 ~ar e 2)a
Re

| 9 Si S i
ii.' ‘ H

3 - : e MN ; i5 f n ey 3
2 i

X e a1) VK a R{AH : /Fi

thoh TH

7 ¢ iaat es . :

3 b

A Ne '3 | % of Ry| os * J; ho ya! i ,Ny ii n
i

(3 0N »
i 4 i

ad fihW uly ohn P AN * ony ' Wh 3BO . nh20pt NS1 Wn i
i By

i i
RRR i\i: USad |



K

Re| Y
”

bg || LITA;| -re || :ato

riim

)

:

WwW a

R | | nam

EE |p—

Iti :

C E _ |

87

Ww oe |0 Stan .

a

S 0 f c E miT rd ° ie M 3 oeD A , rd n M "5ig T C ce S i Wh 4, A : 0 E e oO i thme w Alai ninsit A i" s 0 o ip ST y e T 0 Ko| es C rk ’ m E 9 n 0 i ry: : M 4 t R he| . Ww a n 3 oR : "W| i t S (11 Y i. n Cc Ss r 0 hiWt, py u ni r N A he otJy ND 1 P G he .
i 5

oOE ra IN oi 2i emsAp 94 tio E ® a| oo N A oe ON XeNY gi -7 G oC eres ht :
- e iA T Si ot AO

i (4 ’ B P T IS 10 HeI, r] [0] A U iC n 00KIN 8 in C IS oy CR or ry ii 8g oO t i ' A oy .
: ii 0 A & \ W re

» 0 ps ) ic | :oF tr D ‘ n I 0 ‘J U ! C ! fa
‘ 83 il

y D ibe > iy ed a k ;oxi ig by ol -- :the 26 A | i — OC X pe. » _ dl - -.- 1 - - - gy :oy E 85 1-/ | Jed - "ry itoe od c fi] Er +|| | ¢ : ] Re aN () m 0 } ! % / : ;| : A nie
: ) )

a XK| | ) =| : SR :Re> 4 wn \
X ' hy

» i“» | 2[ AY :
Xx J GsLid"{i&



N Looe Cadld gatas, LT. ab ad a val al da tT ba tah al uh aap v Vif vg.¥2h Sab “ad GR byl ah ¥ 5a Ug Wal Kol Wolk v8 4 6 gh 400 tal nite) as oe m »
NN
ou!

Fhe ANSE 3

Ny Abstract | ihPo. “rThis paper documents the results obtained 10d the lessons wh leared in the
design, implementation, and executjon of a simulated real-time application on a simulated Ci
parallel processor. Specifically, parallel program ran 100 times faster on a 100- th
processor multiprocessor compared to a 1-processor multiprocessor. N3

. The machine architecture is a distributed-memory multiprocessor. The target 0
machine consists of 10 to 1000 processors, but because of simulator limitations, we ran +
simulations of machines consisting of 1 to 100 processors. Each processoris a computer A

. with its own local memory, executing an independent instruction stream. There is no er
global shared memory; all processes communicate by message passing. The target oi
programming eavironment, called Lamina, encourages a programming style that stresses ty
performance gains through problem decomposition, allowing many processors to be oN
brought to bear on a problem. The key is to distribute the processing load over replicated hy
objects, and to increase throughput by building pipelined sequences of objects that handle

We focused on a knowledge-based application that simulates real-time 0
understanding of radar tracks, called Aiftrac. This paper describés a portion of the Airtrac he
application implemented in Lamina/and a set of experiments that we performed. “We—"2. lye!“S— confirmed the following hypothesesy 1) Performance of program improves L

“with additional processors, and thereby attains a significant level of speedup. 2) »

Correctness ofod coneurTet program can be maintained despite a high degree of problem 0decomposition highly overloaded input data conditions. (1c) o.
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| 1. Introduction .
$

This paper focuses on the problems confronting the programmer of a concurrent 4
| program that runs on a distributed memory multiprocessor. The primary objective of our |

experiments is to obtain speedup from parallelism without compromising correctness.
| Specifically, our parallel program ran 100 times faster on a 100-processor multiprocessor .
i compared to a 1-processor multiprocessor. The goal of this paper is to explain why we y,
) made certain design choices and how those choices influence our result. iy

| A major theme in our work is the tradeoff between speedup and correctness. We y
attempt to obtain speedup by decomposing our problem to allow many sub-problems to be

| solved concurrently. This requires deciding how to partition the data structures and
procedures for concurrent execution. We take care in decomposing our problem, to a first \

: approximation, more decomposition allows more concurrency and therefore greater A
speedup. At the same time, decomposition increases the interactions and dependencies 1

: between the sub-problems and makes the task of obtaining a correct solution more difficult. \

! This paper focuses on the implementation of a knowledge-based expert system in a .
] concurrent object-oriented programming paradigm called Lamina {Delagi 87a). The target g
h is a distributed-memory machine consisting of 10 to 1000 processors, but because of ¢
g simulator limitations, our simulations examine 1 to 100 processors. Each processor is a t
: computer with a local memory and an independent instruction stream.! There is no global \

| shared memory of any kind. :

A Airtrac is a knowledge-based application that simulate< real-time understanding of 5
‘ radar tracks. This paper describes a portion of the Airtrac application implemented in d
: Lamina and a se: of experiments that we performed. We encoded and implemented the ]
- knowledge from the domain of real-time radar track interpretation for execution on a v

distributed-memory message-passing multiprocessor system. Our goal was to achieve a -
o significant level of problem-solving speedup by techniques that exploited both the 3
p characteristics of our simulated parallel machine, as well as the parallelism available in our )
h problem domain. |

The remainder of this paper is organized as follows. Section 2 introduces p
D defini.. .ns that we use throughout the paper. Section 3 describes the model of the parallel |

machine that we simulate, and the model of computation from the viewpoint of the 2
programmer. Section 4 outlines a set of principles that we follow in our programming
effort in order to shed light on why we take the approach that we do. Section 5 describes '
the signal understanding problem that our parallel program addresses. Section 6 describes ,
the design of our experiments, and Section 7 presents the results. Section 8 discusses a "

D number of design issues, and Section 9 summarizes the paper.

2
J

(1
Eee ennee §

) lEach processor is roughly comparable to a 32-bit microprecesser-bascd system equipped with a :
multitasking kernel that suppons interprocessor communication and restartable processes (as opposed to
resumable processes). The hardware system is assumed to support high-bandwidth, low-latency inter- 0
processor communications as described in Byrd et.al. [Byrd 87). :
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2. Definitions Xo
| i

Using the definitions of Andrews and Schneider [Andrews 83], a sequential 1.
program specifies sequential execution of a list of statements; its execution is called a y
process. A concurrent program specifies two or more sequential programs that may be a
executed concurrently as parallel processes. th

| oe

We define Sp, im Speedup as the ratio sr, where T, denotes the time for a given nl
n Si

task to be completed on a k-processor multiprocessor. Both T and T_ represent the same ne!
m n 0

concurrent program running on m-processor and n-processor multiprocessors, os
respectively. When we compare an n-processor multiprocessor to a 1-processor Womultiprocessor, we obtain a measure for Sp/1 speedup, which should be distinguished on

. T* : :

from true speedup, defined as the ratio s—, where T* denotes the time for a given task to “ot
n wt

| completed by the best implementation possible on a uniprocessor. In particular, T* 3
excludes overhead tasks (e.g. message-pa-sing, synchronization, etc.) that T, counts. L

We define correctness to be the degree to which a concurrent program executing on ®,
a k-processor multiprocessor obtains the same solution as a conventional uniprocessor- nh
based sequential program embodying the same knowledge as contained in the concurrent Ie
program. We call the latter solution a reference solution. We use a serial version of our ty
system to generate a reference solution, to evaluate the correcmess of the parallel ot
implementation.’ ou

MacLennan [MacLennan 82] distinguishes between value-oriented and object- ne
oriented programming styles. A value has the following proper:ies: ise,

* A value is read-only. el
o A value is atemporal (i.e. timeless and unchanging). =

* A value exhibits referential ransparency, that is, there is never the danger of one i
expression altering something used by another expression. 2

These properties make values extremely attractive for concurrent programs. Values —e
are immutable and may be read by many processes, either directly or through “copies” of os
values that are equal; this facilitates the achievement of correctness as well as concurrency. uth
A well-known example of value-oriented programming is functional programming Re
[Henderson 80]. Other examples of value-oriented programming in the realm of parallel hy
computing include systolic programs [Kung 82] and scalar data flow programs [Arvind 83, a
Dennis 85], where the data flowing from processor to processor may be viewed as values ° 5
that represent abstractions of various intermediate problem-solving stages. TR

: tg
{

2A 1-processor multiprocessor executes the same parallel program that runs on a n-processor Re
multiprocessor. In particular, it creates processes that communicate by sending messages, as opposed to hr
sharing a common memory. 0

X

3Unfortunately, our reference program is not a valid producer of T* estimates. and we cannot use it ®
to obtain true speedup estimates. Project resource limitations prevented us from developing an optimized XXX)
program to serve as a best serial implementation. a

2 Wo
®
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| In contrast, MacLennan dctinés objects in computer programming to have one or
hore of the following properues:

« An object may be created and destroyed. :
dy

« An object has state. 2
§
2

1 « An object may be changed. a

An object may be shared. i
o ' WC

Computer programs often simulate some physical or logical situation, where objects 0)
| represent the entities in the simulated domain. For example, a record in an employee 9)

database corresponds to an employee. An entry in a symbol table corresponds to a variable y!
in the source text of a program. Variables in most high-level programming languages i

? represent objects. Objects provide an abstraction of the state of physical or logical entities,
and reflect changes that those entities undergo during the simulation. These properties i

i make objects particularly useful and attractive to a programmer. 3
¢ NX
X Objects in a concurrent program introduce complications. In particular, many pe

parallel processes may attempt to create, destroy, change, or share an object, thereby bh!
: causing potential problems. For instance, one process may read an object, perform a
: computation, and change the object. Another process may concurrently perform a similar h:
i sequence of actions on the same object, leading to the possibility that operations may 3
3 interleave, and render the state of the object inconsistent. Many solutions have been "

proposed, including semaphores, conditional critical regions. and monitors; all of these ¢
techniques strive to achieve correctness and involve some loss of concurrency. J

: Our programming paradigm, Lamina, supports a variation of monitors, defined as a
X collection of permanent variables (we use the term instance variables), used to store a ks
: resources state, and some procedures, which implement a set of allowed operations on the o

resource [Andrews 83]. Although monitors provide mutual exclusion, concurrency o
considerations force us to abandon mutual exclusion as the sole technique to obtain i

) correctness.

‘ We classify techniques for obtaining speedup in problem-solving into two .
| categories: replication and pipelining. Replication is defined as the decomposition of a v

‘ problem or sub-problem into many independent or partially independent sub-problems that
may be concurrenty processed. Pipelining is defined as the decomposition of a problem or 4
sub-problem into a sequence of operations that may be performed by successive stages of a _
processing pipeline. The output of one stage is the input to the next stage. 3

t

3. Computational model

3.1. Machine model ;¢
Our machine architecture, referred to as CARE [Delagi 87a), may be modeled as an

asynchronous message-passing distributed system with reliable datagram service :
) [Tanenbaum 81]. After sending a message, a process may continue 0 execute (i.e. "

message passing is asynchronous). Arrival order of messages may differ from the order in ,
which they were sent (i.e. datagram as opposed to virtual circuit). The network guarantees ,
that no message is ever lost (i.e. reliable), although it does not guarantee when a message y

3 )

;

AA RSSRRSA ASRRR



4 i AINSI NISC ET A FL SUA Mt ERA LN EA BARA BN IEEEN & Nu TE OU TP TPT ESR IO TUTE Ors “Rat g 0 WEY NTR VINE TE VUE

y ¢

5 will arrive. Each processor within the distributed system is a computer that supports .
| interprocessor communication and restartable processes. Each processor operates on its ‘

own instruction stream, asynchronously with respect to other processors.

: In synchronous messagepassing, maintaining consistent state betweencommunicating processes is simplified because the sender blocks until the message is
received, giving implicit synchronization at the send and receive points. For example, the
receiver may correctly make inferences about the sender's program state from the contents Co
of the message it has received, without the possibility that the sender program continued to

B execute, possibly negating a condition that held at the time the originalmessage was sent.
5 In asynchronous message passing, the sender continues to execute after sending a

message. This has the advantage of introducing more concurrency, which holds the !
; promise of additional speedup. Unfortunateiy, in its pure form, asynchronous message :

passing allows the sender to get arbitrarily far ahead of the receiver. This means that the :
contents of the message reflects the state of the sender at the time the message was sent, ’

2 which may not necessarily be true at the time the message is received. This consideration ;
y makes the maintenance of consistent state across processes difficult, and is discussed more ¢
« fully in Section 4. :
4
i, |

3.2. Programmer model

'y Our programming paradigm, Lamina, provides language constructs that allows us
£ to exploit the distributed memory machine architecture described earlier [Delagi 87b]. In \
: particular, we focused our programming efforts on the concurrent object-oriented pro- 5
> gramming model that Lamina provides. As in other object-oriented programming systems, '
| objects encapsulate state information as instance variables. Instance variables may be
i accessed and manipulated only through methods. Methods are invoked by message- ,
KX

of However, despite the apparent similarity with conventional object-oriented systems, &
pr programming within Lamina has fundamental differences: .

. + Concurrent processes may execute during both object creation and message
‘ sending.

% The time requir=d to create an object is visible to the programmer.

‘ » The time required to send a message is visible to the programmer. -

y « Messages may be received in a different order from which they were sent. n\}
» {

' These differences reflect the song emphasis Lamina places on concurrency. While 0)
) all object-oriented systems encounter delays in object creation and message sending, these LK
) delays are significant within the Lamina paradigm because of the other activities that may ”

proceed concurrently during these periods. Subtle and not-so-subtle problems become ~
apparent when concurrent processes communicate, whether to send a message or to create a CM

3 new object. For instance, a process might detect that a particular condition holds, and ~
X respond by sending a message to another process. But because processes continue to :
§ execute during message sending, the condition may no longer hold when the message is hod

received. This example illustrates a situation where the recipient of the message cannot :
| correctly assume that because the sender responds to a particular condition by sending a >

message, that the condition still holds when the message is received. Ny
J
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Regarding message ordering, partly as a result of our experimentation, versions of a
Lamina subsequent to the one we used provide the ability for the programmer to specify i
that messages be handled by the receiver in the same order that they were sent [Delagi 87c¢].
Use of this feature imposes a performance penalty, which places a responsibility on the w)
programmer to determine that message ordering is truly warranted. In the Airtrac
apolication, we believed that ordering was necessary and imposed it through application Ww
level routines that examined message sequence numbers (time tags) and queued messages 3
for which all predecessors had not already been handled. y

In Lamina, an object is a process. Following the definition of a process provided ur
earlier, we make no commitment to whether a process has a unique virtual address space 2
associated with it. Each object has a top-level dispatch process that accepts incoming We
messages and invokes the appropriate message handler; otherwise, if there is no available 2
message, the process blocks. Sending a message to an object corresponds to oy
asynchronous message-passing at the machine level. A method executes atomically. Since -
each object has a single process, and only that process has access to the internal state Be
(instance variables), mutual exclusion is assured. An object and its methods effectively 2
constitute a non-nested monitor. 0

Our problem-solving approach has evolved from the blackboard model, where
nodes on the blackboard form the basic data objects, and knowledge sources consisting of 4
rules are applied to ransform nodes (i.e. objects) and create new nodes [Nii 86a, Nii 86b]. "
Browa et. al. used concepts from the blackboard model to implement a signai-interpretation oN
application on the CARE multiprocessor simulator {Brown 86]. Lamina evolved from the x
experiences from that effort. In addition, lessons leamed in that earlier effort have been the
incorporated into our work, including the use of replication and pipelining to gain ON
performance, and improving efficiency and correctness by enforcing a degree of consis- A
tency control over many agents computing concurrently. ",

a
»

4. Design principles 4

Lamina represents a programming philosophy that relies on the concepts of org
replication and pipelining to achieve speedup on parallel hardware. The key to successful | S,
application of these principles relies on finding an appropriate problem decomposition that ‘
exploits concurrent execution with minimal dependency between replicated or pipelined bi
processing elements. a

The price of concurrency and speedup is the cost of maintaining consistency among >
objects. When writing a sequential program, a programmer automatically gains mutual “7
exclusion berween read/write operations on data structures. This follows directly from the aN

: fact that a sequential program has only a single process. a single process has sole control ae
over reads and writes to a variable, for instance. This convenience vanishes when the ‘
programmer writes a concurrent program. Since a concurrent program has many .

| concurrently executing processes, coordinating the activities of the processes becomes a J
significant task. oN

In this section, we develop the concept of a dependence graph program to provide a gh!
framework in which tradeoffs between alternate problem decompositions may be ")
examined. Choosing a decomposition that admits high concurrency gives speedup, but it Lo
may do so with the expense of higher effort in maintaining consistency. We introduce 0

dependence graph programs to make the tradeoffs more explicit. : :
3
XR

s 2
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4.1. Speedup od

| Researchers have debated how much speedup is obtainable on parallel hardware, on oH
both theoretical and empirical grounds; Kruskal has surveyed this area [Kruskal 85]. We ®
take the empirical approach because our goal is to test ideas about parallel problem solving 0
using multiprocessor architectures. Our thinking is guided, however, by a number uf a
principles describing how to decompose problems to obtain speedup. oy

Ne !

4.1.1. Pipelining | us
Consider a concurrent program consisting of three cooperating processes: Reader, L.

Executor, and Printer. The Reader process obtains a line consisting of characters from an a,
input source, sends it to the Executor process, and then repeats this loop. The Executor 3X)
performs a similar function, receiving a line from the Reader, processing it in some way, 1

and sending it to the Printer. The Printer receives lines from the Executor, and prints out nhthe line. These processes cooperate to form a pipeline; see Figure 1. By using S
asynchronous message passing, we obtain concurrent operation of the processes; for ®
instance, the Printer may be working on one line, while the Executor is working on MN
another. This means that by assigning each process to a different processor, we can obtain es
speedup, despite the fact that each line must be inputted, processed, and output x
sequentially. By overlapping the operations we can achieve a higher throughput than is

possible with a single process performing all three tasks. a
tlhe

A
A

0
44
lt
ht

Figure 1. Decomposing a problem to obtain pipeline speedup. ®

By decomposing a problem in sequential stages, we can obtain speedup from pipelining. NR

4.1.2. Replication 4

Consider a variation of Reader-Executor-Printer problem. Suppose that we are able ®_
to achieve some overlap in the operations, but we discover that the Executor stage a!
consistently takes longer than the other stages. This causes the Printer to be continually ok
starved for data, while the Reader completes its task quickly and spends most of its time 0)
idle. We can improve the overall throughput by replicating the function of the Executor Cok WN
stage by creating many Executors. See Figure 2. By increasing the number of processes KW
performing a given function, we do not reduce the time it takes a single Executor to Sy
perform its function, but we allow many lines to be processed concurrently, improving the Be,
utilization of the Reader and Printer processes, and boosting overall throughput. This oy
principie of replicating a stage applies equally well if the Reader or the Printer is the ty
bottleneck. alt
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2 Figure 2. Decomposing a problem to obtain replication speedup.
Lo By duplicating identical problem solving stages, we can obtain speedup from replication.
ry

! 4.2. Correctness
Ww 4.2.1. Consistency
5 . . . :

io In order to achieve speedup from parallelism, we decompose a problem into smaller
K sub-problems, where each sub-problem is represented by an object. By doing this, we

. lose the luxury of mutual exclusion between the sub-problems: because of interactions and
nt dependencies that typically exist between sub-parts of a problem. For example, in the
u Reader-Executor-Printer problem, the simplest version is where a line may be operated
hd upon by one process truly independently; we might want to perform ASCII to EBCDIC
eK character conversion of each line, for instance. We organize the problem solving so that
a the Reader assembles fixed-length text strings, the Executor performs the conversion, and

Vig the Printer does output duties. This problem is well-suited to speedup from the simple |
2 pipeline parallelism illustrated in Figure 1. In MacLennan'’s value/object terminology, a
Ey “fixed-length text string” may be viewed as a value that represents the i-th line in the input
hat text; the text string is read-only and it is atemporal. The trick isto :w the ASCII and
vr EBCDIC versions of a text strings as different values corresponding to the i-th line; the
= Executor’s role is to take in ASCII values and transform them into EBCDIC values of the

o same line. As we will see, value passing has desirable properties in concurrent message-
ol passing systems.
i

0 In 2 more complicated example, we might want to perform text compression by
a) encoding words according to their frequency of appearance, where the Reader process
E counts the appearance of words and the Executor assigns words to a variable length output
on symbol set. The frequency table is a source of trouble; it is ~n object which the Reader
or writes and updates, and which the Executor reads. Unfortunately, the semantics we
ne impose on the text compression task requires that the Reader complete its scan of the input
, text before the Executor can begin its encoding task. This dependency prevents us from
on exploiting pipeline parallelism.

> As another example, we might want to compile a high-level language source
a program text (e.g. Pascal, Lisp, C) into assembly code. Suppose we allow the Reader to
b build a symbol table for functions and variables, and we let the Executor parse the
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tokenized output from the Reader, while the Printer outputs assembly code from the ¢
| Executor's syntax graph structures. In the scheme outlined here, the symbol table resides 3

with the Reader, so whenever the Executor or Printer needs to access or update the symbol
table, it must send a message to the Reader. Consistency becomes an important issue a

| within this setup. For instance, suppose that the Executor determines on the basis of its il
parse. that the variable x has been declared global. Within a procedure, a local variable also Ey
named x is defined, which requires that expressions referring to x within this procedure use of

| a local storage location. Suppose the end of the procedure is encountered, and since we C0
want all subsequent occurrences to x to refer to the global location, the Executor marks the -
entry for x accordingly (via a message to the Reader). When the Printer sees a reference to

| X, it consults the symbol table (via a message to the Reader) to determine which storage Co
location should be used; if by misfortune the Printer happens to be handling an expression {
within the procedure containing the local x, and the symbol table has already been updated, M

| incorrect code will be generated. The essential point is that the symbol table is an object; as ih
we defined earlier, it is shared by several parallel processes, and it changes. A number of -

: fixes are possible, including distinguishing variables by the procedure they are occur os
within, but this example illustrates that the presence of objects in concurrent program raises ‘
a needto deal with consistency. 2

k ON

Consistency is the property that some invariant condition or conditions describing Ne
correct behavior of a program holds over all objects in all parallel processes. This is 3
typically difficult to achieve in a concurrent program, since the program itself consists of a .
sequential list of statements for each individual process or object, while consistency applies o,

| to an ensemble of objects. The field of distributed systems focuses on difficulties ansing )
| from consistency maintenance {Comafion 85, Weihl 85, Filman 84). Smith [Smith 81) ¢
| refers to this programming goal as the development of a problem-solving protocol. i

at

The work of Schlichting and Schneider [Schlichting 83] is particularly relevant for -
: our situation: they study partial correctness properties of unreliable datagram asynchronous nt

message-passing distributed systems from an axiomatic point of view. They describe a he
number of sufficient conditions for partial correctness on an asynchronous distributed i:
system: ho

monotonic predicates, i
%

» predicate transfer with acknowledgements. oH
oe

An predicate is monotonic if once it becomes true, it remains so. For example, if "
the Reader process maintains a count of the lines in the variable totallines, and it aN

| encounters the last line in the input text, as well having seen all previous lines, then it might )
send the predicate P, “cotaliines = 16,” to the Executor and to the Printer. The Printer ~d
process might use this information even before it has received all the lines, to check if Ss
sufficient resources exist to complete the job, for instance. Intuitively, it is valid to assert on
the total number of lines in the input text because that fact remains unchanged (assuming =
the input text remains fixed for the duration of the job). Formally, the Reader maintains the Nl
following invariant condition on the predicate P: CB

) ¥

Invariant: “message not sent” or “P is true” R
In contrast, an assertion that the current line is 12, as in “currentLine = 12,” changes as NM]
each line is processed by the Reader. The monotonic criterion cannot be used to guarantee
the correctness of this assertion. "

3
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A technique to achieve correctness without monotonic predicates is to use he
acknowledgements. The idea is to require the sender to maintain the truth condition of a wh
predicate or assertion until an acknowledgement from the receiver returns. In the Reader- LW
Executor-Printer example, the Reader follows the convention that once it asserts oe
“currentLine = 12,” it will refrain from further actions that would violate this fact until it ne
receives an acknowledgement from the Executor. This protocol allows the Executor to th,
perform internal processing, queries to the Reader, and updates to the Reader, all with the Lu
assurance that the current line will remain unchanged until the Executor acknowledges the Ci
assertion, thereby signalling that the Reader may proceed to change the assertion. 2)
Formally. the Reader and Executor maintain the following invariant condition on the Pe

eb

Invariant: “message not sent” or “P is true” or “acknowledgement received” Ny
Na

Note that the each techriique has drawbacks. despite their guarantees of correctness. x)
For the mc-otonic predicate technique, the challenge is to define a problem decomposition
and solution protocol for which monotonic predicates are meaningful. In particular, if a ho
problem decomposition truly allows transfer of values between processes, then by the oe
semantics of values as we have defined them, values are automatically monotonic. This Hi
explains in formal terms why a “data flow” problem decomposition that passes values (i
avoids difficult problems related to consistency. For the predicate acknowledgement ie
technique, we may address problems that do not cleanly admit monotonic predicates, but a»
we lose concurrency in the assert-acknowledge cycle. Less concurrency tends to translate a

| into less speedup. In the worst case, we may lose so much concurrency in the assert- XX
acknowledge cycle that we find that we have spent our efforts in decomposing the problem hy
into sub-problems only to discover that our concurrent program performs no faster than an Pay
equivalent sequential program! Ly

| Throughout the design process. we are motivated by a desire to obtain the highest ASH
possible performance while maintaining correctness. For tasks in the problem whose Re)
durations impact the performance measures, we take the approach of looking first for 6
problem decompositions that allow either value-passing or monotonic predicate protocols. i:

| Where neither of these are possible, we implement predicate acknowledgement protocols. ALS
In the implementation of Airtrac-Lamina, we did not have to resort to heuristic schemes that -
did not guarantee correcmess. 0

der

For initialization tasks, the time to perform initialization tasks (e.g. creating Ure
manager objects and distributing lookup tables) is not counted in the performance metrics, ON
but correctness is paramount. Since initialization requires the establishment of a consistent ARN
beginning state over many objects, we use the predicate acknowledgement technique to 2
have objects initialize their internal state based on information contained in an initialization wa
message, and then signal their readiness to proceed by responding with an a

: acknowledgement message. 0
ti

4.2.2. Mutual exclusion NX

Lamina objects are encapsulations of data, together with methods that manipulate si)
the data. They constitute monitors which provide mutual exclusion over the resources they she
encapsulate. These monitors are “non-nested” because when a Lamina method (i.e. Ne
message handler) in the current CARE implementation invokes another Lamina method, it oo
does so by asynchronous message passing (where the sender continues executing after the ht
message is sent), thereby losing the mutual exclusion required for nested monitor calls. In »
retum, Lamina gains opportunities to increase concurrency by pipelining sequences of ao
operations. oo|XY

a
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Within the restriction of non-nested monitor calls, the programmer may use Lamina Xl]
monitors to define atomic operations. If correctness were the sole concem, the AN
programmer could develop the entire problem solution within a single method on a single hs
object; but this is an extreme case. The entire enterprise of designing programs for >
multiprocessors is motivated by a desire for speedup, and monitors provide a base level of eh
mutual exclusion from which a correct concurrent program may be constructed.

3)

The critical design task is to determine the data structures and methods which WY
deserve the atomicity that monitors provide. The choice is far from obvious. For example, i
in the ASCII-to-EBCDIC translator example, we assumed the Executor process y
sequentially scanning through the string, translating one character at a time. We see that the BR
translation of each character may be performed independently, so a finer-grained problem ER
decomposition is to have many Executor processes, each translating a section of the text i
line. In the extreme, we can arrange for each character to be translated by one of many 0
replicated Executor processes. Choosing the best decomposition is a function of the (
relative costs of performing the character translation versus the overhead associated with ’

| partitioning the line, sending messages, and reassembling the translated text fragments (in oo
the correct order!). The answer depends on specific machine performance parameters and Hh
the type of task involved, which in our example is the very simple job of character HE

| translation, but might in general be a time-consuming operation. Unfortunately, the th
programmer often lacks the specific performance figures on which to base such decisions, NE
and must choose a decomposition based on subjective assessments of the complexity of the »
task at hand, weighed against the perceived run-time overhead of decomposition, together o
with the run-time worries associated with consistency maintenance. On the issue ofhow to ty

| choose the best “grain-size” for problem solving, we can offer no specific guidance. o
However, since the CARE-Lamina simulator is heavily instrumented, it lets the 4
programmer observe the relative amount of time spent in actual computation versus aL!
overhead activities. D,

i

In addition to providing mutual exclusion, Lamina also encourages the structured i]
programming style that results from the use of objects and methods. In particular, mutual XQ
exclusion may be exploited without necessarily building large, monolithic objects and a,
methods that might reflect poor software engineering practice. Since Lamina itself is built &
on Zetalisp’s Flavors system [Weinreb 80], it is easy for the programmer to define object
“flavors” with instance variables and associated methods to be atomically executed within a KN
Lamina monitor. This can provide important benefits of modularity and structure to the to!
software engineering effort. ey

"i

To summarize, Lamina objects and methods may be viewed as non-nested monitor 4
constructs that provide the programmer with a base level of mutual exclusion. The Ne
potential for additional concurrency and problem-solving speedup increases as finer oe)
decompositions of data and methods are adopted. However, these benefits must be oy
weighed against the difficulties of maintaining consistency between objects in a concurrent Lh
program. Two techniques for maintaining consistency have been described, differing in ne
their applicability and impact on concurrency. AN

a

4.3. Dependence graph programs os
| The previous sections have defined concepts relevant to the dual goals of achieving oi

speedup and correctness. This section builds upon those concepts to provide a framework oy
in which tradeoffs between speedup and correctness may be examined. A dependence J
graph program is an abstract representation of a solution to a given problem in which
values flow between nodes in a directed graph, where each node applies a function to the ht
values arriving on its incoming edges and sends out a value on zero or more outgoing oN
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edges. The edges correspond to the dependencies which exist between the functions i
[Arvind $3). A pure dependence graph program is one in which the functions on the nodes oe
are free from side effects; in particular, a pure dependence graph program prohibits a 4
function from saving state on any node. (Note that this definition does not preclude a
system-level program on a node from handling a function £ (x, ¥) by saving the value of x Ny
if the value of x arrives before the value for ¥. Strictly speaking, an implementation of an £ we
function node must save state, but this state is invisible to the programmer.) A hvbrid iN
dependence graph program is one in which one or more nodes save state in the form of es
local instance variables on the node. Functions have access to those instance variables. all

: Gajski et. al. [Gajski 82] summarize the principles underlying pure data flow ae
computation: Lo

- ¢ ;.

» asynchrony ot
Cis

« functionality. 4

Asynchrony means that all operations are executed when and only when the required
operands are available. Functionality means that all operations are functions, that is, there ot
are no side effects. ! .

Pure dependence graph programs have two desirable properties. First, consistency 9
is guaranteed by design. As we have defined it, there are only values and transformations wo
applied to those values. There are no objects to cause inconsistency problems. Second, ih
we can theoretical.y achieve the maximal amount of parallelism in the solution, and if we poe
ignore overhead costs, maximize speedup in overall performance. This follows from the hy
asynchrony principle, which means that in the ideal case. we can arrange for each wi

computation on a node to proceed as soon as all values on the incoming edges are available. Ey
i

Hybrid dependence graph programs allow side effects to instance variables on ne
nodes, thereby making it more convenient and straightforward to perform certain i",
operations, especially those associated with lookup and matching. This immediately Ie
introduces objects into the computational model, and raises the usual concerns about I
consistency and correctness. -

We will use dependence graph programs to serve two purposes. First, we depict 5
the dependencies contained within a problem. Second, we explain why we made certain ho
design decisions in solving the Airtrac problem; in particular, we show why we impose Pei:
certain consistency requirements on the problem solving protocol. A dependence graph pl
serves as an abstract representation of a problem solution, rather than a blueprint for actual -~
implementation. Specifically, we want to avoid the pitfall of using a dependence graph x
program to dictate the actual problem decomposition. Overhead delays associated with 2,
message routing/sending and process invocation degrade speedup from the theoretical ideal wv
if the actual implementation chooses to decompose the problem down to the grain-size i
typically found in a dependence graph representation. Given an arithmetic expression, for -

: instance. it may not be desirable to define the grain-size of primitive operations at the level w
of add, subtract, and multiply. This may lead to the undesirable situation where excessive 0
overhead time 1s consumed in message packing, tagging, routing, packing, matching, Sy
unpacking, and so forth, only to support a simple add operation. ol

Wy
Consider the following numerical example from Gajski et. al. {Gajski 82]. The oi

pseudo-code representation of the problem is as follows:

Jt
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© input d,e,f i
for i fzam 1 to 8 do :

2 = dy Jey e

autput a,b,c

0
. [) IY

Xi

One possible dependence graph program for thisproblem is shown in Figure 3. This is the iy
same graph presented by Gajski et. al. They assume that division takes three processing i
units, multiplication takes two units, and addition takes one unit. As noted in their paper, Lr
the critical path is the computational sequence aj, by, €1, €3, €3, 4, C5, 6, €7, Cg; the
lower bound on the execution time is 13 time units. os

dl,e1 d2,e2 d3,e3 dd eé d5,e5 dB, e8 d7.e7 dB, e8 | RE
1 2 3 14 ts t6 17 te <

0 oY:
ht

‘

al a2 a3 a a5 ae a7 a8 ty
Cle] Ll] Le] bel] belt] Le] bel 3

b1 b2 b3 ba bs b6 b7 be a

c0 c1 c2 c3 c4 cS cB + c7 cB 5i

Figure 3. A dependence graph program for a simple numerical computation. ) .\J

0
1] . - LJ L] A L

A possible concurrent program implementation would be to assign eight processes a
to compute the quantities by,...,.bg, and 2 ninth to combine the b; and output cy,...,c§. i
Such an arrangement maximizes the decomposition of the problem into sub-problems that -
may run concurrently, while minimizing the communication overhead. For instance, there > :
is no loss in combining the computation of ¢y,...,cg into a single process because of the 0
inherently serial nature ofthis particular computation. ap

0

Another concurrent program might choose a slightly different decomposition and oe
partition the computation of ¢;,...,.Cg into, say, three processes: ¢-c9-¢3, C4-C4-Cg, and
cq-cg. This arrangement uses 11 processes versus the 9 processes in the previous I:
example. While this leads to no improvement in the lower bound of 13 time units for a 0
single computation with d, e, and f, it shows an improvement with repeated computations Wy
with different values of the input arrays, d, ¢, and f. For instance, this allows one we
computation to be summing on the c9-cg process while another is summing on the c4-c5-Cg Ji
process. Depending on the compiexity of the computation relative to the overhead costs, it 8
might even be worthwhile to define one process for each of the cy,...,.cg, giving 16 NX
processes overall. This illustrates two points. First, a strictly sequential computation gives RY
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an opportunity for pipeline concurrency if many such computations are required. Second, pa’\ . .  e . y §

given a dependency graph, many possible problem decompositions are possible. on)

Gajski et. al. also present a different dependence graph program that is optimized to
| eliminate the “ripple” summation chain by a more efficient summation network. The Ny
| dependence graph program for this scheme is shown in Figures 4 and 5. Figure 4 is the oil

“top-level” definition of the program. We use the convention of using a single box, i
optimized summation, in Figure 4 to represent the subgraph that performs the more 0
efficient summation. Figure 5 shows the expansion of that box as a graph. Showing a ES
dependence graph program in this way is merely a convenience; one should envision the “
subgraphs in their fully expanded form in the top-level dependence program definition. he

v 6%
_ oye v . « . 2605

The associative property of addition is used to derive the optimized summation he
funcdon. For instance, the computation of cg is rewritten as follows: XHbe

®

| Cs we¥s
= (((((({((cO + by) + by) + b3) + by) + bg) + bg) + by) + by) 8
= (0 + ((b; + by) + (by + by))) + ((bg + bg) + (bq + bg)) We

JO

By regrouping the addition operations, this dependence graph program has more »
. ’ . . . 1

parallelism, and reduces the lower bound on execution time from 13 to 9 execution time es
units. It is important to realize that the second program is truly different from the first; it (4
cannot be obtained from the first by graph transformations or syntactic manipulations that $5:

| do not rely on the semantics of the functions on the nodes. Ju

di, e1 d2, 2 ds, e3 d4, e4 dS, eS d6. e8 dz, e7 ds, «8
1 2 t3 t4 £5 6 t7 8 on

by»

| wy:
NN

a1 a2 a3 “ a5 a6 a? a8 }
Fy

I Bn I Bn Fn I i fo
bi b2 b3 bé bs bé b7 b8 vhe's

:

a!

. 3
ct c2 c3 cd cS c6 c? c8 oF

hy

: Figure 4. A dependence graph program for the simple numerical computation. hoX
This uses optimization of the recurrence relation using the associative property of a
addition. This represents the “top-level” definition of the solution. The optimized XN
summation subgraph is shown bere a single box, and is shown in expanded form in 0
Figure §. We
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optimized summation is defined 2s... ;
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Figure 5. Definition of the “optimized summation” subgraph. 0
J

i!

This example highlights several points. First, a given problem may have more than y
one valid dependence graph program. In the example presented here, the use of knowledge N
about the underlying semantics of the addition function allows more parallelism. Second, i
the dependence graph program serves as a intermediate representation from which the
solution may be defined for a parallel machine. Third, the dependence graph program does N
not necessarily make a commitment to the form of the concurrent program. Fourth, for
convenience we may describe a dependence graph program as a top-level graph, together ]
with several subgraph definitions. i

§. The Airtrac problem i

In Airtrac, the problem is to accept radar track data from one or more sensors that N
are looking for aircraft. Figure 6 depicts a region under surveillance as it might be seen on Xd
a display screen at a particular snapshot in time. (Whereas Figure 6 shows many reported
sightings, an actual radar would probably show only the most recent sighting.) Locations a!
are designated as either good or bad, where a bad location is illegal or unauthorized, and a i
good location is legal. The “X" and “Y” symbols represent locations of a good and bad )
airport, respectively. The locations of radar and acoustic sensors are also shown. The a
small circles represent track reports that show the location of a moving object in the region at
of coverage. ix}

$2

Track reports are generated by underlying signal processing and tracking system, x
and contain the following information: '_
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* location and velocity estimate of object (in x-y plane) oh
R
fe A

14 N
)
ny



RN)

he,
LX)

oy
@

Wh
we

. . : : AWK)
* location and velocity covanance z

| te
« the time of the sighting, called the scantime a
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* track id for identification purposes. ot
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We would like to answer the following questions in real-time:

: « Is an aircraft headed for a bad destination? pyih
J!. . . . =» t

e Is it plausible that an aircraft is engaged in smuggling? vel

By “smuggling” we mean the act of transporting goods from a region or location desig- Py
nated as bad to another bad location. For instance, flying from an illegal airstrip and We
landing at another illegal airstrip constitutes smuggling. oy
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Figure 6. Input to Airtrac. 0d
This shows the inputs that the system receives. The small circles represent estimated 2
positions of objects from radar or acoustic sensors tagged by their identification aumber )

and observation time; the goal of the system is to use the time history of those sightings oN
to infer whether an aircraft exists, its possible destinations, and its strategy. wh

This paper describes our implementation of a solution of a portion of the Airtrac 8
problem. We refer to this portion as the data association module. Figure 7 depicts the N

desired output of the data association Step: groupings of reports with the same track id into RHstraight-line, constant-speed sections. se are called Radar Track Segments, and have
four properties: o

of

o If the Radar Track Segments contains three or more reports, a best-fit line is Co b
computed. If the fit is sufficiently good, the segment is declared confirmed. |

XN

« If a best-fit line has been computed, each subsequent report must fit the line Ry
sufficiently closely. If so, the Radar Track Segments remains confirmed. il
Otherwise, the report that failed to fit (call it the non-fitting report) is treated ly
specially, and the track is declared broken. A

®

* A broken track causes the non-fitting report and subsequent reports to be used to XR
form a new Radar Track Segment. 2
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« The last report for a given track id defines that a track is declared inactive. J]

The remaining parts of the Airtrac problem have not yet been implemented as of this -
writing, but are described more fully elsewhere [Minami 87, Nakano 87]. 0
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Figure 7. Grouping reports into segments in data association. 8
; \

| This shows the first step in problem solving, grouping the reports into straight-line sec- h
tions called Radar Track Segments. n

N

: 5.1. Airtrac data association as dependence graph "
\j

Figure 8 shows the Airtrac data association problem as a dependence graph f
: program. On a periodic basis, track reports consisting of position and velocity information (x

for a set of track ids enters the system. Two operations are pertormed. First, the system %
checks if a track id is being seen for the first time. If so, a new track-handling subgraph is o
created. A track-handling subgraph is shown in Figure 8 as a functional box labeled
“handle track i,” which expands into a graph as shown in Figure 9. Second, the system 0
checks if any track id seen in a previous time has disappeared. If so, it generates an u
inactivation message for the handle track subgraph for the particular track id that \

‘S disappeared. If the track id has been seen previously, then it is sent to the appropriate y
handle track subgraph. Y

yr We distinguish between pure functional nodes, shown as rectangles, and side-effect i
nodes, shown as rounded rectangles. One use of side-effect nodes is to keep track of %
which track ids have been seen at the previous time. For instance, by performing set 3
difference operations against the current set of track ids, it is possible to determine the X

: disappeared and new tracks: Gi

| disappearedTracks = previousTracks - currentTracks
4

“
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y newTracks = currentTracks =- previousTracks

| One way to implement this scheme is to have the ids disappeared? and id previously
seen? nodes update local variables called previousTracks and currentTracks, as

| successive track reports arrive.
: t

. ptt IIIRARRRRRRRRRRTTIYYON STTTTEEEN )
N [Y \ ] :

. [Y \ \ , . i
N . inactivate \ \ .

: track report | de track \ \ \
g disappeared? \ N :
: \ (remember id) N \ handle 'y | k

‘ N \ \ track i |}
" 'y {

N send report to R1, RZ RS, ... R N \
\ appropriate \ inactivate \ ® ’

. \ yes track \ message . o .
’ N \ \ ‘ 1
¥ v id previously \ . .
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! Figure 8. Dependence graph program representation of Airtrac data association. :

| The dashed boxes indicate the problem decomposition used .o the Lamina
implementation.

, Besides detecting new and disappeared tracks, side-effect nodes are used to create a 5
: new track-handling subgraph, and maintain the lookup table between track id and the

message pathway to each track-handling subgraph. New track creates a new track handler A

subgraph. Whenever a new track is encountered, send report to appropriate track: is notified, so that subsequent reports will be routed correctly. This arrangement requires
; that one and only one track handler exist for each track id. Send report to y
y appropriate track saves the handle to the track handler created by new track, sorts
: the incoming reports, and sends reports to their proper destinations. :

}

» »  ] » i
In this abstract program, we implicitly assume that only one track report may be

: processed at a time by the four side-effect nodes in Figure 8. If we allow more than one 2
X track report to be processed concurrently, we may encounter inconsistent situations that 5
! allow, for instance, a track id to be seen in one track report, but the send report to J
I appropriate track node does not yet have the handle to the required track handler |
3 subgraph when the next track report arrives. We define the program semantics to avoid 3

these situations. |
'

Handle track receives track reports for a particular id, as well as an inactivation .
, message if one exists. It is further decomposed into a subgraph as shown in Figure 9. The t

4A handle is analogous to a mail address in a (physical) postal system: a Lamina object may use
another object’s handle 10 send messages to that object. Since the message passing system utilizes dynamic

‘ routing and we assume that an object remains stationary once created, the handle does not need to encode x
any information about the particular path messages should follow. y

| .
¥
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nodes in the handle track subgraph pass a structured value between them, called track
segments. A track segment has the following internal structure:

» report list (a list of track reports, initially empty)

« best-fit line (a vector of real numbers describing a straight-line constant-velocity |
path in the x-y plane)

Each node may Transform the incoming value and send a different value on an outgoing
edge. Add appends a report to the report list of a track segment. Linefit computes the -

- best-fit line, and if the confirmation conditions hold, sends the track segment to confirm. "
| Confirm declares the track segment as confirmed, and passes the list to check fic. If by

linefit fails to confirm, the earliest report in the list is dropped by drop, and another 0
add, linefit box awaits the arrival of the next report to restart the cycle. The o
inactivate function waits until all reports have arrived before declaring the track inactive. X
Conceptually, we view the operations of confirm and inactivate as being monotonic "

: assertions made to the “outside world,” rather than value transformations to the track )
| segment. i
$ 3g

; “handle traci’ is defined as... A
- oF aN )

\ Ried, Ried, ... \ C
\ | ay
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Figure 9. Decomposition of the “handle track” sub-problem. !
(

The dashed boxes indicate the problem decomposition used in the Lamina 4
| implementation.
) .

Check fit itself is further decomposed into more primitive operations, as shown
in Figure 10. The Linecheck operation is similar to the 1:inefit function previously

19
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described, except that it compares a new report against the best-fit line computed during the i

linefit operation: if the new report maintains the fit, the report list is sent to the ox box, and Bsthis cycle is repeated for the next report. If the linecheck operation fails, then the track is y
declared broken, a new track segment is defined. This track segment is sent the report thatfailed the linecheck operation, in addition to all subsequent reports for this particular track ho
id. The track handling cycle is repeated as before. 2

»
be
A

“check fit* is defined as... Ni
0’ 4

etTTTYIITETEREE SESS T EEE SEERA Y RS RRTERRE Ir)
Rist = N >

Ri \ oy
. pass linecheck N 3
. | El [= fail linecheck . i

confirm —_l 800, pass linecheck break, new | Ri+1 N
. linecheck segment : "i
N fail linscheck \ a

N break, new Ri+2, Ri+3, ... . Wh
, segment \ 2
\ L] LN
\ LJ

N Ri+1, Ri+2, ... ”y
\ Radar Track Segment o Xx
Nhe % % athe han ete n%%hth RR. Ts aeeaceaswsascsasaas® i!

4h

Figure 10. Decomposition of the “check fit” sub-problem. |
ag¥

The dashed boxes indicate the problem decomposition used in the Lamina W
implementation. oN

a!

=
A number of observations may be made about the dependence graph program 2

described in this section. First, the sequence of the reports matters. The graph structure >
clearly depicts the requirement that the incorporation of the Ri-th report into the track vil
segment by the add operation must wait until all prior reports, R1,..., Ri-1, have been Io!
processed. This is true for the 1inefit, linecheck, and inactivate functions. 2
Second, this program avoids the saving of state information except in the operations that XA
must determine whether a given track id has been previously seen, and in the sorting WN
operation where track reports are routed to the appropriate rack handler. Except for these, »
we find that the problem may be cast in terms of a sequence of value transformations. od
Third, the program admits the opportunity for a high degree of parallelism. Once the track 0
handler for a given track id has been determined, the processing within that block is a
compietely independent of all other tracks. Fourth, the opportunity for concurrency within 0%
the handling of a particular track is quite low, despite the outward appearance of the at
decompositions shown in Figures 8 and 9. Indeed, an analysis of the dependencies shows Ex
that reports must be processed in order of increasing scantime. Fifth, unlike certain 0
portions of the dependence graph that have a structure that is known a priori, the track WN
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, handler portions of the graph have no prior knowledge of the mack ids that will be
y encountered during processing, implying that new racks need to be handled dynamically. )

X 5.2. Lamina implementation

. In this section, we express the solution to the data association problem as a set of
3 Lamina objects. together with a set of methods on those objects which embody the abstract |
I. solution specification presented in the previous section.

: Figure 11 shows how we decompose the Airtrac problem for solution by a Lamina
a concurrent program. We define six classes of objects: Main Manager, Input Simulator,
be Input Handler, Radar Track Manager. Radar Track, and Radar Track Segment. Some

objects, referred to as static objects, are created at initialization time, and include the /
Bh following object classes: Main Manager, Input Simulator, Input Handler, and Radar Track

Manager objects. Others are referred to as dynamic objects, are created at run-time in
N response to the particular input data set, and include the following object classes: Radar
4 Track and Radar Track Segment.

“ radar reports Armatio: in periodi RT-1 RTS-1-1 con n, |

g inputHandler RadarTrack RT-2 RTS-2-1 RTS-2-2 |—®

' -1 \f Manager-1
A | ) o °

& /\ ° ® °oe InputHandier RadarTrack RT-n RTS-r-1 RTS-n-2 |=®
% - k Manager-m

9 adispatch create, son
h) reorder, create reorder, reorder,
i) detect breaks, detect breaks,

; / /create managers create crate !

" Figure 11. Object structure in the data association module. ,
3
{f

SI. Each object is implemented as a Lamina object, which in Figure 11 corresponds to a !
i separate box. The problem decomposition seeks to achieve concurrent processing of

independent sub-problems. The Lamina message-sending system provides the sole means |
K of message and value passing between objects. Wherever possible, we pass values
thy between objects to minimize consistency problems, and to minimize the need for protocols
" that require acknowledgements. For example, we decompose our problem solving so that
I we require acknowledgements only during initialization where the Main Manager sets up
X the communication pathways between static objects. \

With respect to the dependence graph program, the Lamina implementation takes a 9
straightforward approach. All of the side-effect functions contained in Figure 8, together
with some operations to suppor replication, reside in the Input Handler and Radar Track
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Manager object classes. Objects in these two classes are static; we create a predetermined ‘

number of them at initialization time to handle thepeek load of reports through the system.| Replication is supported by partitioning the task of recognizing new and disappeared track
. ids among Radar Track Managers according to a simple modulo calculation on the track id.

: Given the partitioning scheme, each Radar Track Manager operates completely ;
) independently from the others. Thus, although it needs to maintain a set of objects (e.g. :

the current tracks, previous tracks), the objects are encapsulated in a Lamina object.
} Access to and updating of these objects is atomic, providing the mutual exclusion required 1

to assure correctness as specified by the dependence graph program.
3 ¢

0 Functions in Figures 9 and 10 reside mostly in objects of the Radar Track Segment I
: class, with the inactivation function being performed by objects of the Radar Track class. !

: Objects of these two classes are dynamic: we create objects at run-time in response to the; specific track ids that are encountered. For any particular track id, one Radar Track object :
together with one or more Radar Track Segment objects are created. A new Radar Track
Segment is created each time the track is declared broken, which may occur more than once

[ for each track id. Unlike the dependence graph program where we postulate a track x
A segment as a value successively transformed as it passes through the graph, the Lamina g
3 implementation defines a Radar Track Segment object with instance variables to represent x
: the evolving state of the track segment. We implement all the major functions on track y
: segments as Lamina methods on Radar Track Segment objects. Again, Lamina objects
3 provide mutual exclusion to assure correctness. .

A

| Although nothing in the problem formulation described here indicates why we \
h create multiple Radar Track Segments for a given track, we do so in anticipation of adding $.

functionality in future versions of Airtrac-Lamina. From examination of Figure 10, we see '
: that given any sequence of reports Ri, and any pattern of broken tracks, we obtain no

additional concurrency by creating a new Radar Track Segment when a track is declared \

y broken. This is because in the dependency graph program oresented here, no activity \
A occurs on one Radar Track Segment after it has created another Radar Track Segment. J
! However, we anticipate that in subsequent versions of Airtrac-Lamina, a Radar Track
! Segment will continue to perform actions even after a track is declared broken, such as to y

respor to queries about itself, or to participate in operations that search over existing J
Radar [rack Segments. n

Logically, the semantics of the dependency graph program and the Lamina program 4
, are equivalent, as they must be. The difference is that the former requires a graph of \
[ inde ‘nite size, where its size corresponds to the number of reports comprising the track. $

The .atter requires a quantity of Radar Track Segment objects equal to one plus the number |
of times the track is declared broken. Although we can easily conceptualize a graph of Q

i indefinite size in a dependency graph program, we cannot create such an entity in practice. Y
‘ Because object creation in Lamina takes time, we try to minimize the number of objects that v
‘ are created dynamically, especially since their creation time impacts the critical path time. A )
h poor solution is to dynamically create the objects corresponding to an indefinite-sized graph Ch
- as we need them. A better solution is to create a finite network of objects at initialization
; time, with an implicit “folding” of the infinite graph onto the finite network, thereby +
: avoiding any object-creation cost at run-time. Our Lamina program, in fact, uses a hybrid 4
2 of these two approaches, folding an indefinite “handle track” graph onto each Radar Track ~
) Segment object, and creating a new Radar Track Segment object dynamically when a a 3
y track is declared broken. By this mechanism, we model transformations of values between
‘ graph nodes by changes to instance variables on a Lamina object. The effect on

: performance is beneficial. Relative to the first solution, we incur less overhead in message x
sending between objects because we have fewer objects. Relative to the second solution, .

| we create objects that correspond to track ids that appear in the input data stream as they are v
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| needed, which has the effect of bringing more processors to bear on the problem as more ie
tracks become visible. vr..

Both the Radar Track and Radar Track Segment collect reports in increasing dl
scantime sequence. They do so because of the ordering dictated by the dependence graph ;i
program, and because the Lamina implementation at the time the expeniments were 4
performed did not provide automatic message ordering. Moreover, we know that simply oN
collecting reports in order of receipt leads to severe correctness degradation. For instance, oe
if the scantimes are not contiguous, the scheme by which a Radar Track Segment computes so
the line-fit leads to nonsensical results because best-fit lines will be computed based on Nn

| non-consecutive position estimates, leading to erroneous predictions of aircraft movement. io
To circumvent these problems, we use application-level routines to examine the scantime RES

| associated with a report, and queue reports for which all predecessors have not already nh
| been handled. These routines effectively insulate the rest of the application from message 0

receipt disorder, and allow the Lamina program to successfully use the knowledge i
embodied in the dependency graph program.

To indicate the size of the problem, a typical scenario that we experimented with te
contained approximately 800 radar track reports comprising about 70 radar tracks. At its A

| peak, there is data for approximately 30 radar tracks arriving simultaneously, which XE
roughly corresponds to 30 aircraft flying in the area of coverage. LL

The correspondence between the Lamina objects in the implementation presented oN
here and the primitive operations embodied in the dependence graph program is shown in Ne
the Table 1. The functions described in the dependence graphs are implemented on Radar eg
Track Manager, Radar Track, and Radar Track Segment objects. The Main Manager and ee
Input Simulator perform tasks not mentioned in the dependence graph program. Their -
tasks may be viewed as overhead: the Main Manager performs initialization, and Input on
Simulator simulates the input data port. The Input Handler's job is to dispatch incoming he
reports to the correct Radar Track Manager, thereby supporting the replication of the Radar I
Track Manager function across several objects. In this way the task of the Input Handler ax
may be viewed as a functional extension of the Radar Track Manager tasks. a
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Table 1. Correspondence of Lamina objects with functions in the dependence graph
program 3

4

Main Manager -none- . X
(Create the manager objects in the system at initialization v

bi

. ppd
Input Simulator ~~ -none- : oo

(Simulate the input data port that would exist in a real OX
| system. This function is an artifact of the simulation.) -

Input Handler -none- 9
(Allows replication of the Radar Track Manager objects; this oo
may be viewed as a functional extension of the Radar Track oD
Manager.) A

Radar TrackManager ids disappeared?, id previously seen?, new track, bes
send report to appropriate track a2

it

Radar Track add, inactivate :

Radar Track Segment add, 1linefit, confirr. drop, inactivate, $x
linecheck, OK, break, new :2gment er

oh
io

Table 1 also shows that we decompose the problem to a lesser extent than might be 0
suggested by the dependence graph program, but the overall level of decomposition is still ne
high. We “fold” the dependence graph onto a smaller number of Lamina objects, but we =
nonetheless obtain a high degree of concurrency from the independent handling of separate 0
tracks. Additional concurrency comes from the pipelining of operations between the XN

following sequence of objects: Input Handler, Radar Track Manager, Radar Track, and 4Radar Track Segment. o
J

0

6. Experiment design i"
fi

Given our experimental test setup, there are a large number of parameter settings, oh
including the number of processors, the choice of the input scenario to use, the rate at AL
which the input data is fed into the system, the number of manager objects to utilize; for a a
reasonable choice of variations, trying to run all combinations is futile. Instead, based on hy
the hypotheses we attempted to confirm or disconfirm, we made explicit decisions about a
which experiments to ry. We chose to explore the following hypotheses: NN

ay

« Performance of our concurrent program improves with additional processors, hy
thereby attaining significant levels of speedup. ow

ih
(AX
ye
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» Correctss of our concurrent program can be maintained despite a high degree of
problem decomposition and highly overloaded input data conditions. he

| « The amount of speedup we can achieve from additional processors is a function .
of the amount of parallelism inherent in the input data set. 5

Long wall-clock times associated with each experiment and limited resources forced i
us to be very selective about which experiments to run. We were physically unable to x
explore the full combinatorial parameter space. Instead, we varied a single experimental :

| parameter at a time, holding the remaining parameters fixed at a base setting. This strategy
relied on an intelligent choice of the base settings of the experimental parameters. i

| We divided our data gathering effort into two phases. First, we took measurements g
to choose the base set of parameters. Our objective was to run our concurrent program on ;
a system with a large number of processors (e.g. 64), picking an input scenario that feeds
data sufficiently quickly into the system to obtain full but not overloaded processing | x
pipelines. We used a realistic scenario that has parallelism in the number of simultaneous "
aircraft so that nearly all the processors may be utilized. Finally, we chose the numbers of )
manager objects so the managers themselves do not limit the processing flow. The goal h

: was to prevent the masking of phenomena necessary to confirm or disconfirm our
hypotheses. For example, if we failed to set the input data rate high enough, we would not -
fully utilize the processors, making it impossible that additional processors display .
speedup. Similarly, if we failed to use enough manager objects, the overall program 2
performance would be strictly limited by the overtaxed manager objects, again negating the y
effect of additional processors. 3' H,

i}

Based on measurements in phase one, we chose the fo owing settings for the base "
: set of parameter settings: p

: * 64 processors, ;
» Many-aircraft scenario (described more fully below), 0

Four input handler objects, !

; Four radar track manager objects, a
) H

+ » Input data rate of 200 scans per second. y

) These settings give system performance that suggests that processing pipelines are 2
¢ full. but not overloaded, where nearly all of the processing resources are utilized (although
3 not at 100 percent efficiency), and the manager objects are not themselves limiting overall y
y performance. :
N 4

The input data rate governs how quickly track reports are put into the system. As
y reference, the Airtrac problem domain prescribes an input data rate of 0.1 scan per second }

(one scan cvery 10 seconds), where a scan represents a collection of track reports fl
; periodically generated by the tracking hardware. For the purpose of imposing a desired Y
: processing load on our simulated multiprocessor, our simulator allows us to vary the input s
’ data rate. With a data rate of 200 scans per second, we feed data into our simulated ‘

multiprocessor 2000 times faster than prescribed by the domain to obtain a processing load
; where parallelism shows benefits. Equivalently, we can imagine reducing the performance ¢
: of each processor and message passing hardware in the multiprocessor by a factor of 2000 :

M
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| to achieve the same effect, or with any combination of input data rate increase and hardware ,
speed reduction that results in a net factor of 2000. i

In the second phase, we vary a single parameter while holding the other parameters :
| fixed. We perform the following set of three experiments:

| « Vary the number of processors from 1 to 100.

| » Vary the input scenario to use the one-aircraft scenario. I

e Vary the number of manager objects. CB

Figure 12 shows how the many-aircraft-and one-aircraft scenarios differ in the 3
number of simultaneous active tracks. In the many-aircraft scenario, many aircraft are ;

| active simultaneously, giving good opportunity to utilize parallel computing resources. In :
contrast, the or.. -aircraft scenario reflects the extreme case where only a single aircraft flies

through the coverage area at any instant, although the total number of radar track reports is ¢
similar between the two scenarios. Although broken tracks in the one-aircraft scenario may .
give rise to multiple track ids for the single aircraft, the resulting radar tracks are non- !
overlapping in time. "
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Figure 12. Comparison of the number of active tracks in the many-aircraft and one- EN

This shows the number of active tracks versus the scan. The scar number corresponds to a)
scenario time in increments of 0.1 seconds. ® |

7. Results als

7.1. Speedu 2«1. P oy
Our performance measure is latency. Latency is defined as the duration of time 2)

from the point at which the system receives a datum which allows it to make a particular 0|
conclusion, to the point at which the concurrent program makes the conciusion. We use Nelatency as our performance measure instead of total running time measures, such as “total A \
time to process all track reports,” because we believe that the latter would give undue o

weight to the reports near the end of the input sequence, rather than weigh performance on nd
all rack reports equally. pu

: : Ce ob
We focus on two types of latencies: confirmation latency and inactivation latency. He

Confirmation latency measures the duration from the time that the third consecudve report ni]
| is received for a given track id, to the time that the system has fitted a line through the ®
| points, determined that the fit is valid, and it asserts the confirmation. Inactivation latency NS

measures the duration from the time that the system receives a track report for the time ot
following the last report for a given track id, to the time when the system detects that the ok
track is no longer active, and asserts the inactivation. Since a given input scenario contains ¢
many track reports with many distinct track ids, our results report the mean together with hh
plus and minus one standard deviaton.

LC

. . . . » . K) N
Figures 13 and 14 show the effects on confirmation and inactivation latencies, XN

respectively, from varying the number of processors from 1 to 100. Boxes in the graphs 0
0’.
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; Figure 14. Inactivation latency as a function of the number of processors. ]

This measures the duration from the time that the system recei2s a track report for the ‘
I time following the last report for a given track id. to the time ‘then the system detects |

gE that the track is no longer active, and asserts that conclusion. N
¥ $

| 7.2. Effects of replication |
5 By replicating manager nodes, we measure the impact of the number ofmanager |
4 objects on performance. as measured by the confirmation latency. In one experiment we
gh fix the number of Radar Track Managers at 4 while we vary the number of Input Handlers. 3

In the other experiment we fix the number of Input Handlers at 4 while we vary the number y
5 of Radar Track Managers. }

! Figures 15 and 16 show the results. We plot the confirmation latency versus the
K number of managers, instead of against the number of processors as done in Figures 13
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. Figure 15. Confirmation latency as a function of the number of radar track J
managers. ¢

, We see that replicating Radar Track Manager objects improves performance; this is
3 because increasing the number of processors does not improve performance in the single ji
ge Radar Track Manager case, but does in the 4 and 6 Radar Track Managers cases (see '
d Figure 16). Put another way, if we had not used as many as 4 Radar Track Manager ;

objects, then our system performance would have been hampered, and might even have
- precluded the high degree of speedup displayed in the previous section. Comparing
R Figures 15 and 16, we also observe that using more Radar Track Managers helps reduce
A confirmation latency more significantly than using more Input Handlers. )
¥ :

y An interesting phenomenon occurs in the 16-processor case. Although the N
b conclusion is not definitive given the size of the error bars, increasing the number of both
% types of managers from 2 to 4 and 6 increases the mean latency. The likely cause is the ”
0 current object-to-processor allocation scheme: because each manager object is allocated to a \
o distinct processor, increasing the number of manager objects decreases the number of 4
5 processors available for other types of objects. Given our allocation scheme (described fh
. more fully in Section 8.2), using more managers in the 16-processor case may actually :
) impede speedup. |
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Figure 16. Confirmation latency as a function of the number of input handlers. it3,
4

The optimal number of manager objects appears to sometimes depend on the 2
number of processors. For Radar Track Managers, 2 or 4 managers is best for the 16- KX
processors array, and 4 or 6 managers is best for the 36 and 64-processor arrays. For Aa
Input Handlers, the number of managers does not appear to make much difference, which ol
suggests that Input Handlers are less of a throughput bottleneck than Radar Track ¢
Managers. This suggests that in practice it will be necessary to consider the intensity of the 2
managers’ tasks relative to the total task in order to make a program work most efficiently. oH
Overall these experiments confirm that replicating objects appropriately can improve fe
performance. xt

7.3. Less than perfect correctness

Our Lamina program occasionally fails to confirm a track that our reference solution XN
properly confirms. This arises because the concurrent program does not always detect the N
first occurrence of a report for a given track in the presence of disordered messages. We iH
notice the following failure mechanism. Suppose we have a track consisting of scantimes 0
100, 110, 120, ..., 150. Suppose that the rate of data arrival is high, causing message vr
order to be scrambled, and that reports for scantimes 110, 120. and 130 are received before
the repont for 100. As implemented, the Radar Track object notices that it has sufficient XN
number of reports (in this case three), and it proceeds to compute a straight line through the
reports. When a report for scantime 140 or higher is received, it is tested against the &
computed line to determine whether a line-check failure has occurred. Unfortunately, when 2
the report for scantime 100 eventually arrives, it is discarded. It is discarded because the "A

track has already been confirmed, and confirmed tracks only grow in the forward direction. -

Ne
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Fi Yand : s discrepancies between the Lamin rar iesa d the referenof serial program: the handle track operation in the Lamina program iso rehe bet reports compared to the reference program, leading to a diffe 1s given Neone 2 ing computed. To be certified as correct, we require that the reports conta: best-fit oidi: irmed Radar Track Segment must be identical between the Lamina soluti ined in a heerence solution. a solution and the 'AN
The lesson here is that me : : so, message disordering does occur : : Bhd

comecess. that rely on strict ordering of track reports. in ro. JoeS disrupt | ilatency irreinfrequently. See Figure 17. We believe that with minimal mast on reSd ctness imin : Ady [experimental results. can be eliminated without significant change to the XS. | OKb
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Figure 17. Correctness oh:ooe-aircraft and many-sircraf Plonied 1s a function of the number of processors for the 2®

.4. Varying the input data set a
The results from using th : yemeasuring performance of a real im one-aircraft scenario highlight the difficulties in | Wein a batch. Before experime -time system where inputs arrive over an interval instead of wospeedup from additixpel ntation began, wehypothesized that the amount of achievable xed processors is a function of the amount of parallelism i BYe input data set. The results relati : parallelism inherent in L001the confirmation latency agai ve to this hypothesis are inconclusive. Figure 18 plots htmany-aircraft scenario 30 tracks oan od of processors for two input soenarios, the 0one-aircraft scenario (1 track per scan). £0
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Figure 18. Confirmation latency as a function of the number of processors varies 3
with the input scenario. "
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| The one-aircraft scenario displays two distinct operating modes ne in which processor i
| availability and waiting time determines the latency, and anothcr in which data can be x

processed with little waiting. x

The one-aircraft scenario displays interesting behavior: see Figure 18. While the M
confirmation latency decreases from the 1-processor to 4-processor case, just as in the :
many-aircraft scenario, there is distinctly different behavior for 16, 36 and 64 processor or

: cases, where the average latency is constant over this range. The key to understanding this WV)
' phenomenon is to realize that inputs to the system arrive periodically. The many-aircraft A

scenario generates approximately 800 reports comprising 70 radar tracks over a 200 X
: miliisecond duration. In contrast, the one-aircraft scenario generates approximately 1500
. reports comprising 70 radar tracks over an 8 second duration. Thus, although the volume 2
- of reports is roughly equivalent (804 versus 1300), the duration over which they enter the -
: system differs by a factor of 40 (0.2 seconds versus 8 seconds). In terms of radar tracks a
, per second, which is a good measu:> of the object-creation workload, the many-aircraft
. * : * » »  }

‘a. scenario produces data at a rate of 0 tracks per second, while the one-aircraft scenario MN
; produces data at a rate of 8.8 tracks per second. This disparity causes the many-aircraft fn

scenario to keep the system busy, while the one-aircraft scenario meters a comparable
EE inflow of data over a much longer period, during which the system may become quiescent ”

while it awaits additional inputs. \
i

L} .

: The one-aircraft scenario displays two distinct operating modes: one in which
3 processor availability and waiting time determines the latency, and another in which data Oy
: can be processed with little waiting. For the 1-processor and 4-processor cases, the system

cannot process the input workload as fast as it enters, causing work to back up. This .
explains why the average confirmation latency for the 70 or so radar tracks is nearly as long !
as the scenario itself: most of the latency is consumed in tasks waiting to be executed. In X
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contrast, for the 16-processor, 36-processor and 64-processor cases, there are sufficient "

| computing resources available to allow work to be handled as fast as it enters the system. X
This explains why the average latency bottoms out at 18 milliseconds, and also tends to
explain the small variance. .

j Recalling that this particular experiment sought to test the hypothesis that the te
amount of achievable speedup from additional processors is a function of the amount of «
parallelism inherent in the input data set, we see that these experimental results cannot 9
confirm or disconfirm this hypothesis. The problem lies in the design of the one-aircraft :

input scenario. The reports should have been arranged to occur over the same 20 o
millisecond duration as in the many-aircraft scenario, instead of over an 8 second duration. Cu
Had that been done, the two scenarios would present to the system comparable workloads

| in terms of reports per second, but would differ internally in the degree to which sub-parts A
of the problem can be solved concurrently. “

The distinction between the one-aircraft and many-aircraft scenarios can be
described in Figure 19. This graph is an abstract representation of Figure 12 presented 0
earlier, and plots the input workload as a function of ime. The many-aircraft scenario pre- A
sents a high input workload over a very shert duration, while the one-aircraft scenario x
presents the same total workload spread out over a much longer interval. If we imagine the "
dashed lines to represent the workload threshold for which an n-processor system is able to %
keep up without causing waiting times to increase, we see that the many-aircraft scenario :
exceeded the ability of the system to keep up even at the 100-processor evel, but the one- ’
aircraft scenario caused the system to transition from not-able-to-keep-up to able-to-keep- %
up somewhere between 4 and 16 processors. A more appropriate one-aircraft scenario, 0
then, is one that has the same input workload profile as the current many-aircraft scenario. ob
Such a scenario would allow an experiment to be performed that fixes the input workload
profile, which our experiment inadvertently varied, thereby contaminating its results. .
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8. Discussion ‘

” This section discusses how we achieved our experimental results using the concepts
\ developed in Section 4. Specifically, we focus on the relationships between problem u

decomposition, speedup, and achievement of correctness. \
4 ’ oe [
’ 8.1. Decomposition and correctness ‘

L]

In this section we analyze the problem solving knowledge embodied in the data
I association module. We use the dependence graph program to represent inherent \
n dependencies in the problem. This is contrasted with the Lamina implementation to shed J
; light on the rationale behind our design decisions. The goal is to identify the general "
t principles that govern the transition from a dependence graph program to a runnable W
\ Lamina implementation. N
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N 8.1.1. Assigning functions to objects

: We obtained speedup from both independent handling of tracks, and possibly from
pipelining within a track, without the necessity to decompose the problem into the small |

y functional pieces suggested in Figures 9 and 10. One might be tempted to believe that a g
L direct translation of the nodes and edges of the dependence graphs into Lamina objects and v

methods might yield the maximal speedup, but careful studyof the dependencies in Figures .
9 and 10 reveals that there is very little concurrency to be gained. '

’ In Figure 9, the entire graph is dependent on the arrival of report Ri. For instance,
" before a track is declared broken, the top-level “handle track” graph requires the arrival of :
3 reports R1, R2,....Rlast. The leftmost add node needs R1, and the remainder of the graph ON
i is dependent on this node. The add node to the right of this one is dependent on the arrival v
0 of R2, and the remaining right-hand subgraph is dependent on this node. This pattern y

holds for the entire graph, implying that computation may only proceed as far as :
consecutive reports beginning with R1 have arrived. Thus, little concurrency may be

s gained from the “handle track” operation; in particular, no pipelining is possible because the !
5 entire graph receives only one set of reports, R1,...,Rlast. Figure 10 is similarly i

dependent on sequential processing of reports. We conclude that lumping all of the }
« functions of Figures 9 and 10 into a small number of objects does not incur a great expense 2
‘ in concurrency. Given the overhead costs associated with message sending and process 2
; invocation, we speculate that one or two objects might yield the best possible design. In |
N fact, our design uses k+2 objects, where k is the number of times a track is declared
N broken; k is typically fewer than three, giving us fewer than five objects for each “handle :
4 track” graph. ¢, 1
R | :

+ The dependence graph program provides several usef.i insights regarding a good )
problem decomposition. First, it justifies @ decomposition that meats the “handle track”

i function as primitive function, rather than a finer-grained decouposition. Second, it clearly J
Ix shows the independence between tracks, suggesting a relatively painless problem by
> decomposition along these lines. Third, it shows the need (0 maintain consistent state "
+ about which tracks have been seen, and those which have not, suggesting a decomposition J
' according to track id number, which is the approach that our Lamina program takes. %

; 8.1.2. Why message order matters \
3 A significant part of the Lamina concurrent program implements techniques to allow :
“ a Lamina object receiving messages from a single sender to handle them as if they were ’,
& received in the order in which they were orginally sent, without gaps the in the message \

sequence. By doing this, we incur a performance cost because the receiver waits for arrival d
A of the next appropriate message. rather than immediately handling whatever has been ‘“
i received. )
b ¢

\ The dependence graphs help to justify such costs because the dependencies imply |
¢ ordering. Indeed, in preliminary work in a different framework. one author discovered that a.

when no explicit ordering constraints were imposed during Airtrac data association
y processing, and :iher additional heuristics nor knowledge was used, incorrect oq
) conclusions resulted in cases when the input data rate was high. The incorrect conclusions ,
g arose from performing the line-fit computation on other reports different from the first three "
) consecutive reports. As such, the incorrectness reflected an interaction between message i)

disordering arising in CARE and the particular Airtrac knowledge, rather than the specific 0
problem solving framework. We believe, for instance, that similar incorrect conclusions

would arise in a Lamina program that did not explicitly reorder reports. 3

"
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We emphasize that although the particular problem that we studied showed strong oe
correctness benefits from imposing a strict ordering of reports, this should not be Ui
interpreted as a claim that all problems need or require message ordering. As the n

| dependence graphs make strikingly clear, the very knowledge that we implement dictates or
ordering. Another problem may not require ordering, but require a strict message tagging tah
protocol, for instance. As a general approach, we believe that the programmer should ha
represent the given problem in dependence graph form, preferably explicitly, to expose the no

. required set of dependencies, and let the overall pattern of dependencies suggest the kinds 44
of decompositions and consistency requirements that might prove best. ht

hv

8.1.3. Reports as values rather than objects oH
In the dependence graph program we represent reports as values sent from node to a

node. Similarly, in the Lamina implementation, we use a design where reports are values eh
sent from object to object. This works well because reports never change, enabling us to Xo
treat reports as values. The cost of allowing an object to obtain the value of a report is a ®
fairly inexpensive one-way message, where value-passing is viewed as a monotonic “3
transfer of a predicate. This approach works because we know ahead of time which XL
objects need to read the value of a report, namely the objects that constitute the processing oy!

pipeline. iA%
Consider a second design where reports are represented as objects. In this scheme, ®

instead of a report being a value passing through a processing pipeline, we arrange for read oh
operations to be applied to an object. Conceptually these are identical problems, the only MEY
difference being the frame of reference. In the first case, the datum moves through et
processing stages requiring its value. In the case being considered here, the datum is AEX
stationary, and it responds to requests to read its value. This is attractive when it is not ou
known in advance which objects will need to read its value. The penalty is an additional | ®
message required to request the object’s value, and the associ..ted message receipt system KY
overhead. Nig

hi
A third design represents reports as objects, but replaces the read message in the hi

previous design with a request to perform a computation, and uses the object’s reply hs
message to convey the result of the computation. By arranging a set of reports in a linear ® |
pipeline, we can allow the first report to send the results of its computation to the second KRM
report, and so forth. This design is the dual of the first design because in this design we ot
send a sequence of computation messages through a pipeline of report objects, whereas in Kd

| the first design we send a sequence of report value messages through a pipeline of wo
computing objects. The designs differ in the grain-size of the problem decomposition; va
since our problem has a small number of computations and a large number of reports, the ®
first design yields a small number of computing objects with many reports passing J
through, whereas the third design yields a large number of objects with a small number of nt
computation messages passing through. | 0

: ") (

In our design, namely the first design discussed, we choose to represent reports as oo
values sent to successive objects in a processing pipeline because our problem |
decomposition tells us in advance the objects in a pipeline. Using this design minimizes the he
number of messages required to accomplish our task, and uses a larger grain-size compared re
to its dual. ig

APN
8.1.4. Initialization 3

Our approach to initialization embodies the correctness conditions of Schlichting A
and Schneider. Formally, we combine the use of monotonic predicates and predicate Ww
transfer with acknowledgement. Ne
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During initialization of our application, we : : 2: : , We create many objects, typically manag WyAt run-time, these objects communicate among themselves which re ares th 4 lec: 2es d Crear 4 distri >S, W q at we collect brhand uring creation, and distribute them after all creation is complete. Specifically, the Joain Manager collects handles during the creation phase; in essence, each created object J
sends a monotonic predicate to the Main Manager asserting the value of its handle The (INinvariant condition may be expressed as follows: ne

Invariant (asserting own handle): “handle not sent” or “my handle is X” 8

The Main Manager detects the fact that all creation is complete when each of thepre jetertin number of objects respond; at this point, it distributes a table containing all heandles to each object. It waits until an acknowledgement is received from each object gh
before initiating subsequent problem solving activity. This is important because if the 3ain Manager begins too soon, some object might not have the handle to another object
that it needs to communicate with. In essence, the table of handles is asserted by MLpredicate transfer with acknowledgement. The invariant condition is described as follows: : o

LJ - | - ' wInvariant (distributing table of handles): Reoy! :

“table not sent” oyuh
or “problem solving not initiated” )JEN

or “all acknowledgements received” afn
JX

EN i

return mht
initiate | : own handle |nput-simulnode put-simulator .

. creation I]
i

input-handier-1 input-handier-m Wig
LL A R

oe
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Figure 20. Creating static objects during initialization. ¢
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using an initialization protocol that is guaranteed to be correct, these problems may be 2
avoided. i

)

| 8.2. Other issues »

| 8.2.1. Load balance |

| We define load balance as how evenly the actual computational load is distributed A
over the processors in an array over time. Processing load is balanced when each
processor has a mix of processes resident on it that makes all the processors equally busy. '
If a balanced processing cannot be achieved, the overall performance of a multiprocessor '\
may not reflect the actual number of processors available to perform work due to poor load 8)
balance. In our experimentation, we discovered the critical importance of a good nad fe

| balance algorithm.
A

We encountered two kinds of problems. The first problem deals with where to .
pla.. a newly created object. Since we want to allocate objects to processors so as to oN
evenly distribute the load, and because we want to avoid the message overhead associated ¢

: with a centralized object/processor assignment facility, we focused on the class of 2
algorithms that make object-to-processor assignments based on « cal information available

> to the processor creating the object. The second problem deals with how objects share y
limited processor resources. It turns out, for instance, that extremely computation-

; intensive objects can severely impair the performance of all ~-her objects that share its ty
i processor. 2
! J

: At one point in our experimentation, for instance, we observed a disappointing 3
value of unity for the Sgq/16 speedup factor, where we insi:ad expected a factor of 4. 4
Moreover, we noticed an extremely uneven mapping of processes to processors: the

‘ approximately 200 objects created during the course of problem solving ended up crowded i
: on only 14 of the 64 available processors! The culprit was the algorithm that decided v

which neighboring processor should be chosen to place a new object. The algorithm ag
worked as follows. Beginning with the first object created by the system, a process-local 3
data structure, called a locale, is created that essentially records how many objects are i
already located at every other processor in the processing array. When a new process is

: spawned, the locale data structure is consulted to choose a processor that has the fewest (A
: existing processes. This scheme works well when a single object creates all other objects '

, in the system; unfortunately in Airtrac many objects may create new objects. o
¢ v

Given the locale for any given process, when the process spawns a new process, )
we arranged for the new process to inherit the locale of its parent. The idea is that we want
the new process to “know” as much as its parent did about where objects are already placed A

J in the array. This scheme fails because of the wee-like pattern of creations. Beginning with )
: the initial manager object at the root of the tree, any given object has inherited a locale v
‘I through all of its ancestors between itself and the root. Therefore the locale on a given "
. object will only know about other objects that were created by the ancestors of the object x
: before the locale was passed down to the next generation. Put another way, the locale on a
‘I. given object will not reflect creations that were performec 'n non-ancestor objects, or v
. creations that were performed on ancestor objects after the lc. ale was passed down. This
: leads to extremely poor load balance. gt

) The same problem occurs even if we define a single locale for each processor that is y
shared over all processes residing on that processor. Unfortunately, that locale will only
know about other objects that were created by objects residing on that processor. That is, y

t
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: the locale on a given processor will not reflect creations that were performed by objects that
a reside on other processors.

: In contrast, ideal load balance occurs when each object knows about zl] creations |
that have taken place in the past over the entire processing array. This ideal is extremely

. difficult to achieve. First, we want to avoid using a single globally-shared data structure.
3 Second, finite message sending time makes it impossible for many objects performing
i simultaneous object creation to access and update a globally-shared structure in a perfectly |

consistent manner.

i We changed to a “random” load balance scheme which randomly selected a ]
- processor in the processing array on which to create a new object [Hailperin 87]. Running
; the base case on a 64 processor array with approximately 200 objects, we managed to use
; nearly all the available processors. Processor utilization improved dramatically.

N Random processor allocation gave us good performance. In fact, we can argue
p from theoretical grounds that a random scheme is desirable. First, we deliberately
i constrain the technique to avoid using global information that would need to be shared. d
K This immediately rules out any cooperative schemes that rely on sharing of information. ‘
g Second, any scheme that attempts to use local information available from a given number of \

close neighbors and performs allocations locally faces the risk that some small 2
. neighborhood in the processing array might be heavily used, leaving entire sections of the :
v array underutilized. We are left therefore, with the class of schemes that avoids use of
= shared information but allows any processor to select any other processor in the entire !
Be array. Given these constraints, a random scheme fits the criteria quite nicely and in fact
) performed reasonably well. y

I Further experimentation revealed more problems. Manager objects have a
i! particularly high processing load because a very small number of objects (typically 5 to 9) )
i handles the entire flow of data. When a non-manager objects happens to reside on the )
i same processor as a manager object, its performance suffers. For example, a Radar Track {
by object is responsible for creating a Radar Track Segment object, and the time taken for the

Create operation affects the confirmation performance. Unfortunately, any Radar Track /
N object that happens to be situated on the same processor as a manager object (e.g. Input
ik Handler, Radar .rack Manager) gets very little processor time, and thereby contributes 2

significant creation times to the overall latency measure. N

2 Whereas in the random scheme the probability that a given processor will be chosen &

for a new object is L for n processors, our modified random scheme does the following:
" « If there are fewer static objects (e.g. managers) than processors, then place static
+ objects randomly, which can be thought of as sampling a random variable withous 'S
1 replacement. Place dynamically created objects uniformly on the processors that CM

| have no static objects, this time sampling with replacement. .

g » If there are as many or more static objects than processors, then place roughly |
equal numbers of static objects on each processor in the array. Place dynamically
created objects uniformly over the entire array, sampling with replacement.

p This scheme keeps the high processing load associated with manager objects from
degrading the performance of non-manager objects. This scheme performs well for our
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cases. We typically had from 5 to 9 static objects, approximately 150 d ic obj he| ; , amic objects tyfrom 1 to 100 processors in the array. d jects, and i| "ht

There are other considerations that might lead to further improvement in load od
balance performance that we did not pursue. These are listed below: Hy |

hy

« Account for the fact that not all static objects need a dedicated processor. (In our ho
scheme, we gave each static object an entire processor to itself whe : 08
ble.) never possi- Fay

: e Account for the fact that a processor that hosts one or m ) ) i: ore static objects ma oestall be a desirable location for a dynamically created object, although less 50 than Ky
a processor without any static objects. (In our scheme, we assumed that any ae
processor with a static object should be avoided if possible.) orAN
» Relocate objects dynamically based on load information gathered at run-time. >

AHN

8.2.2. Conclusion retraction olLy.
This section explores some of the thinki i ueCti0 ing behind our approach toward ps

consistency, which is to make conclusions (e.g. confirmation, inactivation only when they 0
were true. This is an extremely conservative stance, and possibly incurs a loss in >
concurrency and speedup. An alternative approach which might allow more concurrency is oe
to make conclusions that are not provably correct: the programmer would allow such RUS
conclusionsto be asserted, retracted and reasserted freely until a commitment regarding that i
conclusion is made. Jefferson has explored this compuational paradigm, known as virtual a,
time [Jefferson 85]. The invariant condition describing the truth value of a conclusion P Nunder such a scheme is shown below: pu

Invariant: “no commitment made” or “P is tue”

[] L) [] + # u .In essence, this invariant condition says that the program may assert that P is true, but there 0
isnoSuaranice that P is true unless it is accompanied by a commitment to that fact. The henefits of such an approach is that assertions may precede their corresponding :
commimments by some time interval. This interval may be used 1) by the user of the system hitn some fashion, or 2) by the program itself to engage in further exploratory computation potatmay be beneficial, perhaps in reducing computation later. In Airtrac-Lamina, we did he
not investigate the benefits from exploratory computation. teode

For the user of the system, he or °: ‘ she must decide how and when to act upon i
uncommitted assertions rendered by the system. On one hand, the user could view om
asseruons as true statements even before a commitment is made, with the anticipation that a oe

| retraction may be forthcoming. On the other hand, the user could vic . an assertion as true oNonly when accompanied by a commitment; this later approach places emphasis on the 0
commitment, since only the commitment assures the truth of the conclusion. tier

. * . » . @
We decided against using the scheme outlined here. As a technique to allow Ne

concurrent programs to engage in exploratory computations, there might be some merit if iye power of such computations can be exploited. As a logical statement to the user of the 0
system, such an uncommited conclusion is meaningless, since it may later be retracted. As iy
a probabilistic statement to the user of the system, a conclusion without commitment might we
indicate some likelihood that the conclusion is true. However, we believe that a better way ®to handle probabilistic knowledge is to state it directly in the problem rather than in the nh
consistency conditions that characterize the solution technique. This unclear separation oo‘W,

ty
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between domain knowledge and concurrent programming techniques steered us away from &
the approach of making assertions with the possibility of subsequent retraction. i

{

'

N
%

9. Summary d
\,

Lamina programming is shaped by the target machine architecture. Lamina is ¢
designed to run on a distributed-memory multiprocessor consisting of 10 to 1000 proces- .
sors. Each processor is a computer with its own local memory and instruction stream. Pd

| There is no global shared memory; all processes communicate by message passing. This CR
target machine environment encourages a programming style that stresses performance oN
gains through problem decomposition, which allows many processors to be brought to %
bear on a problem. The key is to distribute the processing load over replicated objects, and od
to increase throughput by building pipelined sequences of objects that handle stages of 2

problem solving. 3
For the programmer, Lamina provides a concurrent object-oriented programming 2

| model. Programming within Lamina has fundamental differences with respect to con-
| ventional systems:

» Concurrent processes may execute during both object creation and message -

The time required to create an object is visible to the programmer. k

The time required to send a message is visible to the programmer. 3
» Messages may be received in a different order from w hich they were sent.

| The many processes which must cooperate to accomplish the overall problem- i
solving goal may execute simultaneously. The programmer-visible time delays are RS
significant within the Lamina paradigm because of the activities that may go on during these -
periods, and they exert a song influence on the programming style. "s

This paper developed a set of concepts that allows us to understand and analyze the or
lessons that we learned in the design, implementation, and execution of a simulated real- di

time application. We confirmed the following experimental hypotheses: 0
« Performance of our concurrent program improves with additional processors, we L

| attain significant levels of speedup.
0

* Correctness of our concurrent program can be maintained despite a high degree of
problem decomposition and highly overloaded input data conditions. .

An inappropriate design of our one-aircraft scenario precluded us from confirming \
or disconfirming the following experimental hypothesis: Co

“Wl

* The amount of speedup we can achieve from additional processors is a function Ny
of the amount of parallelism inherent in the input data set. WY

In building a simulated real-time application in Lamina, we focused on improving oy
performance of a data-driven problem drawn from the domain of real-time radar track i”
understanding, where the concern is throughput. We leamed how to recognize the Oo
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