
Report No. STAN-CS-85-1068A I
ugust 1965 Also numbered KSL-85-20

GUIDON-WATCH:

A Graphic Interface for Viewing
A Knowledge-Based System

. by

Mark H. Richer

William J. Clancey

Department of Computer Science

Stanford University
Stanford, CA 94305

A$5” 4 a)
i Z| a A:: =| L = ’ 5 :

= Naz ET NA

Leanizeo SF

GUIDON-WATCH:

A GRAPHICS INTERFACE FOR VIEWING

A KNOWLEDGE BASE

Mark H. Richer

William J. Clancey

Stanford Knowledge Systems Laboratory
Department of Computer Science

701 Welch Road, Building C
Palo Alto, CA 94304

The studies reported here were supported (in part) by:

The Office of Naval Research

Personnel and Training Research Programs,
Psychological Sciences Division.
ContractNo.N00014-85K-0305

The Josiah Macy, Jr. Foundation
Grant No. B852005

New York City

The views and conclusions contained in this document are those of the authors and should not be

interpreted as necessarily representing the official policies, either expressed or implied, of the Office of
Naval Research or the U.S. Government.

Approved for public release; distribution unlimited. Reproduction in whole or in part 1s permitted for
any purpose of the United States Government.

|

I

Abstract

This paper describes GUIDON-WATCH, a graphic interface that uses multiple windows and

a mouse to allow a student to browse a knowledge base and view reasoning processes during

diagnostic problem solving. Methods are presented for providing multiple views of hierarchical

structures, overlaying results of a search process on top of static structures to make the strategy

visible, and graphically expressing evidence relations between findings and hypotheses. This

work demonstrates the advantages of stating a diagnostic search procedure in a well-structured,

rule-based language, separate from domain knowledge. A number of issues in software design

are also considered, including the automatic management of a multiple-window display.

l

1. Introduction

An increasing number of Artificial Intelligence (AI) programs are implemented on high

performance workstations with a bitmap display, a mouse, and a keyboard. The programming

environment (usually a dialect of LISP) generally provides support for displaying multiple

: windows and using menus that can be selected with a mouse. Importantly, a programmer can

also specify arbitrary regions of a window (e.g., text items) to be selectable with the mouse.

This means that a user can invoke an action by pressing or releasing a mouse button while the

mouse cursor 1s in a selectable region. These features make it possible to create a user

interface that 1s efficient and easy to use for viewing and browsing a complex system.

The GUIDON project at Stanford University 1s investigating how knowledge-based systems

can provide the basis for teaching programs. NEOMYCIN (Clancey and Letsinger, 1984), a

medical consultation system, has been developed for this purpose. This paper describes

GUIDON-WATCH, a graphic interface to NEOMYCIN that uses multiple windows and the

mouse to allow a user to browse the NEOMYCIN knowledge base and view reasoning processes

during a consultation. The results reported include methods for providing multiple views of a

data base, techniques for illustrating dynamic processes including a search strategy, and some

conclusions regarding automatic management of a multiple window display.

The paper 1s organized into the following sections:

Project Goals and Results to Date

The Development of NEOMCYIN

Description of GUIDON-WATCH

. . Prior and Related Work in Graphic Interfaces

Future Work

« Conclusions

2. Project Goals

The ability to display and select information in several windows allows people to control and

observe the behavior of an application program more easily. A graphic interface to a

knowledge-based system can serve different kinds of users, including system designers,

implementers, domain experts, students, and other end users.

In the GUIDON project, the end users will be medical students. @ We are currently

collaborating with physicians and medical students to adapt NEOMYCIN, GUIDON-WATCH,

3

and other programs for medical instruction. However, when this work began better tools were

also needed to maintain the NEOMYCIN knowledge base and to debug program behavior. As

a result, GUIDON-WATCH evolved into a tool for both programmers and medical students to

use. We are just starting to make a clean separation between the functionality that is useful

for students versus programmers. We plan to develop user profiles that determine the interface |

behavior in a given situation. The current prototype can only be customized by making

changes at the programming level.

GUIDON-WATCH 1s based on established principles for designing user interfaces on

graphical workstations (Ingalls, 1981, Tesler, 1981, Foley and Van Dam, 1982, Card, et al., 1983,

Foley, et al., 1984). The design criteria for GUIDON-WATCH emerged from the conventional

wisdom on the subject. The user interface 1s viewed as a conversation consisting of two

languages (Foley, et al., 1984): (1) the language in which the user retrieves or requests

information (with the mouse), and (2) the program’s display and its interpretation. With

regard to both languages we aim to maximize expressiveness, understandability, and efficiency.

The user should be able to retrieve all information through one interface that 1s easy to

understand and efficient to use. The display should include all relevant information, be easy

to interpret, and update quickly when a user makes a request.

Several GUIDON-WATCH users have found the interface simple, consistent, and easy to use.

However, those unfamiliar with NEOMYCIN have difficulty realizing exactly how and when

the display can be useful. We have found that the display 1s the best means we have for

explaining NEOMYCIN. Therefore, an on-line introduction to GUIDON-WATCH and

NEOMYCIN 1s planned.

Informal evaluation with Stanford University medical students 1s scheduled for the fall of

1985. Students will watch NEOMYCIN diagnose one or more patients. Data records of actual

patients will be stored in files that can be accessed by NEOMYCIN during its questioning

phase. A student will use GUIDON-WATCH to observe NEOMYCIN’s reasoning processes

during the consultation. NEOMYCIN will be able to explain in English why it asked a

question (Hasling, 1984). Eventually, students will assist NEOMYCIN during a diagnosis in an

apprenticeship setting.

The major results to date are summarized below:

« Multiple windows can provide several concurrent views of a knowledge-based

system. They help users cope with the complexity of the system by highlighting

and summarizing important reasoning events during a problem-solving session.

« Several methods for highlighting facts and events were found effective. These

include using different font styles, reverse video, boxing, flashing, and graying

regions. Using these techniques, dynamic information associated with a given

patient can be overlaid on top of static structures such as a disorder tree or a table

of evidence.

« Early results indicate that both programmers and medical users prefer to have

GUIDON-WATCH manage screen space automatically. This includes the sizing,

placing, and closing of windows. It is not trivial to do this with a large number of

windows, particularly during development when changes to the system are frequent.

A knowledge-based approach to window management 1s suggested.

3. The Development of NEOMY CIN

The GUIDON project evolved from the MYCIN experiments (Shortliffe, 1976, Buchanan and

Shortliffe, 1984) of the 1970s. MYCTN 1s a rule-based consultation program that recommends

drug therapy for certain infectious diseases (e.g., meningitis). Because much of the

functionality (e.g., the inference mechanism) of MYCIN does not depend on medical

knowledge, it was possible to develop a domain-independent shell called EMYCTN (Van Melle,

1981). MYCIN now consists of EMYCIN plus the MYCIN medical knowledge base. EMYCIN

was used to develop several other knowledge-based systems, and 1s the basis for several

commercial products.

In 1979 Clancey completed GUIDON (Clancey, 1983), an intelligent tutoring system that

interfaces with EMYCIN. GUIDON can interactively present the rules in an EMYCIN

knowledge base to a student. However, Clancey found that the MYCIN rules were often

difficult to understand because they combine a diagnostic procedure with medical facts in an

opaque manner (Clancey and Letsinger, 1984). In a MYCIN rule the ordering of conjunct

clauses in the premise might implicitly contain a strategy. For example, a rule might only

apply if the patient 1s an alcoholic. One MYCIN rule premise begins with “if the patient 1s

over 18 years of age and an alcoholic.” The strategy that 1s implicitly represented in this rule

premise 1s “don’t ask a patient under 18 years of age if they are alcoholic.” As a result,

students would not understand many MYCIN rules nor the diagnostic strategy that MYCTN uses

NEOMY CIN——»HERACLES—»GUIDON2

MYCIN———® EMYCIN— GUIDON

Figure 3-1: The evolution of a knowledge-based system

MYCIN evolved into EMYCIN, a domain-independent shell for building
knowledge-based systems. The GUIDON tutoring system is a separate module that
could be used with any EMYCIN system. EMYCIN was not found to be an
adequate foundation for an instructional program. Therefore, EMYCIN and the
MYCIN knowledge base were reconfigured into NEOMYCIN, a medical consultation
system which is designed for enhanced explanation and tutoring capabilities. The
domain-independent shell that NEOMYCIN is built with is called HERACLES.
NEOMYCIN is the basis for GUIDON2, a tutoring system now in development.

implicitly.

° GUIDON demonstrated that satisfying the requirements for expert performance are not

necessarily sufficient for the purpose of explanation and tutoring. Therefore, MYCTN was

significantly reconfigured into a new program called NEOMYCIN (Clancey and Letsinger,

1984) that represents a diagnostic strategy separately from medical facts. For example, the

diagnostic strategy used in NEOMYCIN explicitly states to check for conditions that would

make a question inappropriate. The knowledge base has also been expanded to include diseases

that can be confused with meningitis (this is important for instruction). NEOMYCIN 1s the

foundation for GUIDON-2, a new series of instructional programs. GUIDON-WATCH 1s the

first component of the GUIDON-2 system. Importantly, interactive graphics makes knowledge

and reasoning visible only to the extent that the knowledge 1s represented explicitly in a

program. The well-structured and explicit design of NEOMYCIN provides many opportunities

6

for exposing the program’s reasoning to students and other users.

KNOWLEDGE

BASE

CONSULTANT EDITOR

/ \

|

| Jo
|| |
| |

) | TUTOR |
¥ | |
| a

| 1 GUIDON-WATCH :
| | 1 |

|| |] |
CLIENT STUDENT KNOWLEDGE ENGINEER

Figure 3-2: The HERACLES architecture.

The relationship between GUIDON-WATCH and three primary system modules is
illustrated above. A consultation system consists of HERACLES, a know ledge base,
and GUIDON-WATCH. For instructional use, the GUIDON2 module (now in
development) can be added. GUIDON-WATCH provides an interface for
instructional use, to run consultations, and to edit the knowledge base. Although
there are differences in the interface for each kind of user, in general, the
interface is very similar and represents a single program with several modes of
behavior. (The graphic editor is not described in this paper because that interface
has not been completey integrated with HERA CLES.)

NEOMYCIN has led to a domain-independent system called HERACLES. HERACLES 1s to

NEOMYCIN as EMYCIN is to MYCIN (Figure 3-1). In other words, NEOMYCIN consists of

HERACLES and a medical knowledge base (Figure 3-2). HERACLES 1s a software tool

applicable to diagnostic problems in many domains. For example, HERACLES was used to

7

develop a knowledge base for cast iron fault diagnosis (Thompson and Clancey, 1985). The

HERACLES program includes a diagnostic procedure represented in a rule-based declarative

language, rule interpreters, a set of domain relations (e.g., causes, subtype, suggests), various

software tools for developing knowledge-based systems (many derived from EMYCIN), an

explanation facility, and GUIDON-WATCH. To construct a specific consultation program, the

system designer adds a knowledge base of facts and rules. All the examples in this paper use

the NEOMYCIN knowledge base, but GUIDON-WATCH will work with any HERACLES

knowledge base.

4. Description of the GUIDON-WATCH display
The windows and menus used in GUIDON-WATCH are described in detail in this section.

First, the programming environment 1s briefly described to show what tools we started with.

Second, an overview of the interface 1s provided. The third section describes the display

facilities in detail. ~

4.1. Programming Environment

*GUIDON-WATCH 1s implemented on XEROX 1100 Series workstations running

INTERLISP-D. The black and white display screen 1s 1024 pixels wide by 808 pixels high,

which provides approximately 75 pixels per inch resolution. INTERLISP-D provides a window

package that supports multiple overlapping windows, scroll bars, and other window

operations (Sannella, 1983). Many graphics primitives are provided for drawing lines and

curves, manipulating bitmaps, filling and manipulating regions, checking the state and position

of the mouse, etc. In addition, a menu package, a grapher package (e.g., to display trees), and

several default window functions (e.g., scrolling by repainting) are provided. It required only a

page of code to implement a simple pull-down menu package using the window primitives.

4.2. Overview of the User Interface

Pull-down menus and a Prompt Window are at the top of the GUIDON-WATCH display.

(Figure 4-1). The Prompt Window 1s a standard part of the INTERLISP-D user interface and

1s used to print messages. Currently there are three pull-down menus of interest to a medical

student: KB (Knowledge Base) Windows, Consult, and Help. The KB Windows pull-down

menu displays a list of windows that can be opened for browsing the knowledge base or

viewing a consultation. The Consult menu 1s used to start and quit a consultation. The Help

menu allows the user to obtain information on the contents of a window.

a } EE Prompt window Copyrighl +c) by aerox Corporation 18-Mar-05 14:98:57 MEER
WKB Windows | Consult | Hep |GN EN SE

i Hypotheses | bn Just type a carriage return.) | ESOSSeg1hules B ICR
{ [Tasks Continue Till Next? Continue Till a Certain 2},haiaWa
| {Relations Continue Thru Last? Userexec LeiuiCausah Association Network)| 10:12:08] Pageheight 0 Resize GsRsK | ' : 1 i ia a Sn ialry az1 IMetaStratec » QUIt re Explain Laii

tf Taxonom y---- Explanation Window : ENCIELE iDifferential |i
fHypotheses-With-Evidence about the patient. ie. WHY are we asking whether Mary has a fever?] }

: TaskStack oT Age Sex fie Ye are trying to decide whether Mary has infection. }{fDynamic Ta ree }
3 Took Histo | whether Mary has a fever is strongly associated with infection. §

; ic. WHY are we trying to decide whether Mary has infection?] :
2) Please describe the chief complaints: 1 {

4 2) Jaoase d P 4[5.0] ve are trying to get a general idea of the problem: categorize it 2
{** STIFF-NECK-ON-FLEXION | into one of several pathogeneric classes or disease locus, or both. i
1** NAUSEA ! i

{3) For how long has Mary’s headache lasted? 4 {
** 18 DAYS H ;

|4) How severe is Mary's headache (on a scale of B to 4 i 3
{ with 8 for very mild and 4 for very severe)? } :
*e 3 § i

x 3

| DIFFERENTIAL : ‘ :
1 (VIRAL-MENINGITIS 288) (CHRUNIC-MENINGITIS 288) 1 :

15) Does Mary have a fever? :
LN] 3 i

BE Evidence tor INFECTIOUS-PROCESS a CB RULE 423 gt Ditferential i gut gh
+{_FINDING RULE(S) WAXCF MWINCF [4 If: The patient has a fever A HYPOTHESIS ee —— CF___CUMCF |:

+ of puns RULE3S@ 500 id suggestive evidence (.7) 0 i
¥ BANDS RULE3S@ 5@0 i that the underlying be n
Ep ib etiology of the patient's od i
¥ ¥ 11lness is infectious- \ i
4 i process i i

¥ & i Hypotheses With Evidence SORE |}
hf 8 i] HYPOTHESIS CF___ CUMCF |i
gt EM MENINGITIS 500 600 fig
4 RB +1 INFECT OUSRROCESS< -— 6808 |i]
t 3 a {ICHRONIC-BENINGITIS 209 a

i i J ACUTE-MENINGIT -—- 200 [3X

- Figured4-1: A GUIDON-WATCH display during a consultation.
The user is running a consultation and the system has paused at question 5. The

user has opened several windows to get information about the hypotheses that are
being considered at this time. The use of pull down menus is also illustrated: the

user has selected the KB Windows menu and moved the mouse over the menu item

+ Taxonomy. [If the user releases the mouse button now, the Taxonomy Window will
be displayed.

9

4.2.1. Use of the mouse

XEROX 1100 computers can be used with either a two or three button mouse (selecting the

left and right button at the same time on a two button mouse 1s equivalent to pressing the

middle button on the three button mouse). In GUIDON-WATCH, the mouse is used in a

simple and consistent way. The left button is used to select all menu items and text items in a

window. For example, in a window that displays a list of diseases, the user can select the

name of a disease using the left button. A pop-up menu is displayed that allows a user to get

more Information in another window (Figure 4-2). Only those items that are currently relevant

appear in the pop-up menu.

UsSdl hetations vvaindows ----PTdirectly to the left, AGERESMA PUS — EAA Aa of) node on tne 1eh, pe ——————

INTRACRANIAL -PUS pd EPI-SUBDURAL-EMPYEMA ——— = omcarm ansoT METASTATIC-TUMOR CHRONIC-EAR-INFECTION
INTRACRANIAL -PRESSURE {INTRACRANIAL -MASS -LESION — INTRACRANIAL: TUMOR <<. PRIMARY-TUMOR

nSpoct alliiEldidaltes EPI-SUBDURAL-HEMATOMA ~—— EP -SUBDURAL -HEMORRHAGE HEADTRAUMA

gausal Relations INTRACEREBAAL-HEMATOMA — INTRACEREBRAL ~HEMORRHAGE HVPERTENSION
=a ” TT

SUBARACHNOID -HEMORRHAGE —_— m=~~CONGENIAL-ANEURYSMAV-MALFORMATION onium ~— MYCOTIC INFECTION

Figure 4-2: The Causal Relations Window.

The user has selected the node SUBARACHNOID-HEMORRHAGE with the left
button and a pop-up menu is displayed with items for displaying additional
information. This graph was automatically generated from the NEOMYCIN
knowledge base, edited by hand to fit on the screen, and then stored on a file. If

) the user wished to display the graph with a different root node GUIDON-WATCH
dynamically generates the graph at runtime.

It has not been decided whether or not students will be asked to use more than the left

button. In our current programming environment, the right button is used in the default

manner provided by INTERLISP-D, to manipulate windows (e.g., reshaping, closing). The

middle button is sometimes used to display a pop up menu with items that apply to the entire

data structure in a window. For example, a user may want to highlight those items in a

window that all have a certain property. We are considering the use of icons in a window for

operations besides selecting menu or text items (e.g., closing a window). Therefore, the student

10

interface may only use one button.

4.2.2. On-line Help

If the user selects Help window from the HELP pull-down menu, then a HELP icon attaches

to the mouse cursor. The user can get help about a window by moving the HELP icon into a

window and buttoning the window. A message associated with the selected window is printed

in a special help window.

4.2.3. Management of windows

The INTERLISP-D graphics package provides functions for prompting users to position a

ghost image of a window or to a shape a window. These prompts can be confusing to novices

and distract from the task at hand. If it 1s possible to make a good decision regarding the size

and position of a window, then we can free the user from this chore. In addition, an

automatic window management system can often optimize the use of screen space better than a

user. This is true in GUIDON-WATCH because there are a known set of windows whose

contents are constrained to a certain form (e.g., a table).

To manage the window display, the screen is divided into logical units. The GUTDON-

WATCH screen consists of a top, middle, and bottom section. The top section contains the

pull-down menus and the Prompt Window. The bottom and middle sections display knowledge

base structures and have well-defined lower borders. Another logical division of the GUTDON-

WATCH display provides vertical boundaries. For example, the width of the screen can be

divided into equal or unequal regions. The current prototype uses three regions with two equal

and one slightly wider than the other two. Furthermore, you can have a hierarchy of

. subdivisions (i.e., regions) Each window in GUIDON-WATCH 1s associated with one or more

regions where it can be displayed.

GUIDON-WATCH decides where to place a window based on several considerations: (1) the .

default region of the window, (2) the other windows that are displayed and their position, and

(3) the set of windows that the user would mostly likely prefer to remain in view. While the

current window management system 1s effective, we would like to extend the flexibility of the

interface. This would require a more complex scheme. It might be necessary to consider

moving or reshaping windows that are already on the screen. Note that window systems that

provide this capability do not consider the semantics of the contents of windows. Therefore,

algorithms for scaling pictures and changing the font size of text are not sufficient when you

have to decide where windows should be placed and which windows should be closed or

11

covered.

Although flexibility and control are relinquished by the user, the benefits of automatic screen

management seem to outweigh potential disadvantages. Automatic window management saves

the user time and maximizes the use of screen space. It 1s possible to allow the user to turn

off automatic features, change defaults, or allow the user to use the move and reshape facilities.

Furthermore, menus or icons can be used to allow the user to choose from a predefined set of

sizes, positions, fonts, etc., but then the implementation of the automatic window manager

becomes increasingly complex. In our current implementation, when a window 1s displayed, a

complex conditional in the window’s display function is evaluated. This code is difficult to

understand and modify. In addition, the situation has been complicated by the need for

different user profiles. We are considering an approach where the behavior of the interface is

specified separately and declaratively using knowledge representation formalisms (e.g. rules)

and object-oriented programming.

4.2.4. Dynamic updating of the screen display

Displaying dynamically changing information presents problems that are not unique to our

. application. For example, how often do you update the screen? Do you gray out regions that

are out of date or immediately update them? Our philosophy is that users should be able to

open and close windows at any time and that the display should accurately reflect the current

state of the system or gray out regions that are not continuously updated. Regions that are

grayed out can either be automatically updated at specified intervals or manually updated by

having the user simply button the window to redisplay itself.

" 4.3. The GUIDON-WATCH windows

This section describes many of the windows available to the GUIDON-WATCH user and

addresses the following important issues: What information in a HERACLES knowledge base

is most important to display? For programmers? For medical students? How can dynamic

information be displayed? In the first subsection below, the focus is on static knowledge

structures and how they are displayed in GUIDON-WATCH. Subsequent subsections discuss

the display of dynamic consultation knowledge.

12

4.3.1. What is there to display in a knowledge base?

A HERACLES knowledge base (e.g., NEOMYCIN medical knowledge base) includes findings,

hypotheses, rules, tasks, and relations among theses. Findings are data that can be requested or

inferred from rules. Generally findings can be observed or measured. Hypotheses can only be

inferred from rules. In NEOMYCIN, hypotheses include diseases and pathophysiological states.

Relations refer to predicate calculus relations and in HERACLES include subtype, causes, etc.

Static knowledge includes facts about findings and hypotheses as defined by relations (e.g.,

meningitis 1s a subtype of infection, headache 1s a finding, etc.). It also includes the diagnostic

procedure and domain rules (e.g., if the patient has double vision, then there is suggestive

evidence for intracranial pressure). Dynamic knowledge is situation specific and refers to

information that becomes known only during a problem solving session (e.g., “Mary’s

temperature 1s 102 degrees.*).

NEOMYCIN uses a diagnostic strategy known as heuristic classification (Clancey and

Letsinger, 1984). Given an enumerated set of solutions (e.g., diseases or possible diagnoses),

NEOMYCIN heuristically maps a set of findings onto one or more possible solutions. This

diagnostic procedure 1s provided by HERACLES (Heuristic Classification Shell). It is

represented as tasks, which are procedures that are stated in a declarative rule-based language

(Figure 4-3). When a task is invoked, one or more of its metarules are applied (Figures 4-4,

4-5). Metarules in HERACLES are similar to conditionals in a procedure, but they are

expressed as abstract rules.

Windows that display static knowledge include the task and metarule windows in Figures 4-3,

4-4, and 4-5. They also include the Findings, Hypotheses, and Relations windows, which

© simply display an alphabetical ordering. Other windows display a graph to show the

relationships between groups of objects. The Causal Relations Window (Figure 4-2) 1s a lattice

with causal and subtype links between findings and hypotheses; the Diagnostic Strategy window

(Figure 4-6) shows the calling structure of the diagnostic tasks; and the Taxonomy window

(Figure 4-7) represents a subtype hierarchy of disorders. In all of these windows the user may

select an item to get more information.

4.3.2. Reifying the process

The windows described below all display dynamic information during a consultation.

The Taxonomy and Causal Relations Windows. An important concept in medical diagnosis is

the differential, the set of competing hypotheses currently being considered. The etiological

13

Task PURSUE-HYPOTHESIS

ENDCONDITION: STOP-PURSUING

T&SK-TYPE: SIMPLE

TASKGOAL: PURSUED

FOCUS : CURFOCUS

TASK-TRY-ALL?: T

ACHIEVED-BY: (RULE171 RULEBS8)

LOCALYARS: ($BETTERHYP)

Figure 4-3: The Task Property Window.

Above the properties and values of the task Pursue-Hypothesis are displayed.

taxonomy is a tree of possible diagnoses or solutions in NEOMYCIN. The differential

represents a cut through this solution space. Boxing the hypotheses in the Taxonomy Window

that are on the differential 1s a simple way to make this cur visible (Figure 4-7).

Flashing and boxing nodes in the Taxonomy and Causal Relations Windows emphasize the

dynamic search strategy. Whenever a hypothesis 1s added to the differential, its corresponding

node ~ label is flashed and then boxed. = Whenever the hypothesis is removed from the

differential, the box 1s redrawn with lighter lines, so that the hypotheses that had been

considered previously are still highlighted, but the ones currently on the differential are more

prominent (Figure 4-7). A student can observe NEOMYCIN looking up the disorder tree to

group and compare categories of disorders before looking down to refine hypotheses.

Conclusions in a HERACLES consultation are associated with certainty factors that represent

a degree of belief. They are not probabilities. In HERACLES, each hypothesis has both a

certainty factor (CF) and a cumulative certainty factor (CUMCEF). The CF represents the

14

‘Metarules for PURSUE-HYPOTHESIS |

PURSUE-HYPOTHESIS

RULE171 RULE590

TEST-HYPOTHESIS REFINE-NODE

Figure 4-4: The Metarules Window.

Above the metarules that the task Pursue-Hypothesis calls are displayed.

combined certainty of all rules that have concluded directly about the hypothesis. The CUMCF

represents a combination of the CF of a given hypothesis (which may be zero) with CFs of its

descendants in the disorder taxonomy. For example, evidence for meningitis (a positive CF)

* increases the CUMCEF of infectious process because meningitis 1s a subtype of infectious

process. (To be exact, negative CFs of ancestors are also combined; therefore, evidence against

infection can decrease the CUMCEF of meningitis.)

When the CF or CUMCEF is updated for a hypothesis, new values are printed below the node

label corresponding to the hypothesis. The CF is printed on the left, the CUMCEF on the right

if it differs. The figures in this paper show the CFs printed as integers from -1000 to +1000;

this 1s how they are represented internally. These numbers are far from precise and should be

interpreted as falling in several categories: definite, strongly suggestive, suggestive, weakly

suggestive or no evidence for (or against) a hypothesis. For students the internal CF values

will not be printed; instead a graphic notation, such as zero to four pluses or minuses could be

15

|

CONDITION: (REFINABLE? CURFOCUS)
ACTION: (TASK REFINE-NODE CURFOCUS)

Figure 4-5: The Rule Window displaying a metarule of the task
Pursue-Hypothesis.

used to indicate the degree of belief.

In the case in which a hypothesis window 1s not open, the printing, boxing and flashing of

nodes 1s not done immediately. However, whenever the Taxonomy or Causal Relations window

1s opened during a consultation, the window 1s updated so that all the hypotheses are

appropriately boxed, and certainty factors are printed. Therefore, the user is free to open these

windows at any time. Below we describe several other windows that display dynamic

information.

The Consultation Typescript. The Consult window (Figure 4-1) 1s opened when a user starts a

consultation using the Consult menu. This window displays the questions that are asked during

a consultation. Each question is followed by a response that is either supplied by the user or

is retrieved automatically from a patient data file. Before an answer is retrieved the program

pauses. The user can then use the mouse to select items or open any windows. A menu 1s

provided that allows a user to proceed one or more questions further, receive textual

explanations, resize the consultation window, etc.

16

Diagnostic Task Trae ’ .

oho

eR — =
[I _ - Iie Stati REVIEW-ON FERENTIAL GENERATE -QUESTIONS PROCESS -HARD -DATA
ASK -GIMERAL -QUES TIONS ELABORATE -DATUM APPLYRULES FORMERD -REASON GROUP -AND -DW FERINTIATE IASK -
a IN neiI | -QuESTIONS on oe

FrIOOUT TORHARO Refson EER FORHARD REASON
»Ii} TEST -HYPOTHESIS Pe
ne I REFINE -OM FERENTIAL
ad | REFINENyFIRENTIAL

I

| ar |

Figure 4-6: The Diagnostic Task Tree Window.

When a task is selected in this window, a menu pops up that allows the user to
display either the properties of the task in the Task Property window (Figure 4-3)
or the metarules that a task applies in the Metarules window (Figure 4-4). During
a consultation the user can also choose to see dynamic information about task calls.
This is described in the section Dynamic Task Windows.

Evidence Window. This window can be displayed without running a consultation. However,

during a consultation dynamic information is overlaid onto static knowledge structures to show

- the current evidence relations between findings and hypotheses (Figure 4-8). All potential

evidence for a hypothesis is displayed as a table in this window. The first column lists

findings and hypotheses that suggest a hypothesis. The second column lists the rules that use

these findings or hypotheses to conclude about the hypothesis. The third column shows the

maximum CF in the rule’s action, and the fourth column shows, if different, the minimum CF

in the rule’s action.

During a consultation, additional information is provided to the user through the use of bold

fonts and graying over regions. A finding with a positive value is printed in bold; a negative

finding is grayed over. Analogously, rules that have succeeded are printed in bold; rules that

have failed are grayed over. Findings and rules that appear in normal print have not been

investigated yet. This simple notation 1s an effective means of providing a great deal of

17

ANY =DISORDER

TOXIC-DISORDER VASCULAR-DISORDER AUTOIMMUNE -DISORDER INFECTTOUS-PROCESS TRAUMATIC -PROCESS CONGENITAL-DISORDER NEOPLASTIC PSYCHOGENIC

TT 560 T——
LEAD-ENCEPHALOPATHY CLUSTER-HEADACHE MIGRAINE : — HEADTRAUMA PIMARY “TUMOR ™,_TENSION-HEADACHE

OTITIS -MEDIA Neocron NL METASTATIC -TUMOR
CHRONIC -LUNG INFECTION JCEPHALITIS CONGENITAL-ANEURYSM AV-MALFORMATION

CELLULITIS -

MASTOIITIS rnone Na CONGENITAL-HEART-DISEASE
BRAIN-ABSCESS CHRONIC -EAR =INFECTION

oo ACUTE -MENINGITIS

_— oe
ACUTE-BACTERIAL -MENINGITIS MYCOBACTERIUM -TB-MENINGITIS FUNGAL -MENINGITIS PARTIALLY -TREATED -BACTERIAL -MENINGITIS

or Te

Figure 4-7: The Taxonomy Window.

The boxing, flashing, and printing techniques used in this window make the
dynamic search strategy visible by displaying dynamic information on top of a static
knowledge structure, in this case the etiological taxonomy. The differential shown
here is NEOMYCIN’s internal differential and may not correspond precisely to a
physician’s differential. The differential shown to a student may differ from
NEOMYCIN’s internal list. This graph was generated, edited, and stored in the
same manner as the graph in Figure 4-2. Note that Figures 4-7 through
4-10 correspond to the same state of the consultation as displayed in Figure 4-1.

information in a concise and understandable manner. Furthermore, it illustrates how dynamic

information can be displayed on top of static knowledge structures that are displayed in a table

format.

Positive Findings Window. The Positive Findings Window (Figure 4-10) displays all the

findings that have a positive value (1.e., the value 1s “yes”, a number, or symbolic). Findings

are printed in the first column, values in the second column, and CFs in the third (printed

only if less than 1000). Findings are selectable, and when buttoned a pop-up menu 1s

displayed. For example, a user may want to select a finding to find out which hypotheses the

finding may suggest.

In this window items are printed incrementally during a consultation. If the Positive

Findings window 1s open, then new positive findings are printed in the window as soon as they

18

Evidence for MENINGITIS

FINDING RULE{S) MAXCF MINCF
TENSE-FONTAMEL|RULEGE® 800
SEIZURES|RULEGEE 8089
REDFLAG-CHS~FIMDI | RULE323 700
STIFF-NECK-ON-FLE | RULE424 500

RULE183 500

HEADACHE RULE424 500
EONATE RULE183 500

¥BC RULE131 -700
CSFCELLCOUNT RULE131 -700

RULE117 -800

CSFPROTEIN RULE117 -800

Figure 4-8: The Evidence Window.

The findings and hypotheses displayed in this window are ordered so that the
ones that may be most suggestive (have the highest MAXCF) are on top. The user
may have selected Meningitis in the Taxonomy Window because it is on the
differential with a positive CF, and then displayed this Evidence Window. The
user may then display a rule that succeeded or failed in the Rule Window. For
example, RULE424 is printed in bold in the Evidence Window above showing that
the rule succeeded. This rule is then displayed in the Rule Window (Figure 4-P).

are known. If the window 1s closed, then the whole list of positive findings 1s printed when

the window is opened. This feature provides flexibility for the user, who can open or close

the window at any time during a consultation.

Differential and Hypotheses With Evidence Windows. Hypotheses on the differential are

boxed when they appear in certain windows. However, the differential is such an important

structure that a special window 1s provided for its display (Figure 4-11). However, not all

hypotheses for which there 1s positive evidence are on the differential at a given time. Another

important class of hypotheses are all those for which there 1s belief. This includes hypotheses

for which there 1s direct evidence (i.e., at least one rule concluded the hypothesis) and those

for which there 1s belief when propagation is included (i.e., the CUMCF 1s above a certain

19

RULEd424

If: 1) The patient has astiff neck
on flexion, and

2) The patient has a headache
Then: If you are considering

infectious-process, there
1s suggestive evidence
(.5) that the patient's
infection is neningitis

Figure 4-9: The Rule Window displaying a domain rule.

threshold). These are displayed in a separate window (Figure 4-12).

In both the Differential and Hypotheses-With-Evidence windows, hypotheses that have direct

evidence supporting them are printed in bold. These windows also contain columns for CF

and CUMCEF values. As usual, the hypotheses are selectable. These two windows, as well as the

-Taxonomy and the Causal relations windows, illustrate how GUIDON-WATCH provides

multiple views of the same knowledge structures.

Dynamic Task Windows. These windows provide users with dynamic views of the diagnostic

strategy as it is instantiated during a consultation. This 1s a challenging presentation problem

because the abstract nature of the diagnostic procedure as it is represented in the task and

metarules 1s not nearly as intuitive to people as are disorder hierarchies, causal networks,

domain rules, and lists of findings. Although the goal 1s to provide a view of NEOMYCIN’s

reasoning that 1s understandable to medical students, the model of the diagnostic strategy is in

the form of a complex procedure that 1s intimately tied to basic concepts of computing. For

example, task calls are very similar to procedure calls; a task may have a focus and local

variables. A focus consists of one or more findings, hypotheses, or rules depending on the task.

20

Positive Findings

FINDING VALUE CF

AGE 42

SEX FEMALE

RACE LAT IMO

HEADACHE YES
STIFF-NECK-ON-FLEXION YES

MAUSEA YES
HEADACHE-DURATION 10
HEADACHE-SEVERITY 3

CHS-FIMNDING YES
STIFF-NECK-SIGNS YES
HEADACHE-CHRONICITY CHRONIC 800

] SUBACUTE 300
UNS-FINDING-DURATION 10

nnn

Figure 4- 10: The Positive Findings Window.

For example, Test-Hypothesis may have meningitis as a focus in NEOMYCIN. Tasks invoke

other tasks in a chain, similar to procedure calls.

The three windows described below each provide a different view of the dynamic diagnostic

strategy by using three different graphic formats: a stack, a tree, and a table. Although it has

- not yet been decided how they will be adapted for instruction, they are already very useful for

programmers trying to debug or understand NEOMYCIN’s behavior. Programmers can use

these windows to find out exactly what NEOMYCIN 1s doing or has done at a detailed

strategic level. Consistent with Model’s (Model, 1979) recommendations, these windows provide

monitoring and debugging tools at a level that corresponds to the program’s design (e.g., tasks

and metarules). This is a great improvement over examining the low-level LISP stack which

reflects the strategy only in a very indirect way.

Task Stack Window. This window displays the current stack of task calls, which 1s similar to

a stack of procedure calls (Figure 4-13). The task calls are printed from in the order that they

were called, with the first task printed at the top of the window. If the task has a focus, then

it 1s printed in square brackets after the task. The metarule that the task successfully applied is

21

Differentia

|FUHBAL=MEMINGITIS

FARTIALLY-TREATED-BACTERIAL-MENINGITIS

Figure 4-11: The Differential Window.

This is the differential several questions after the point shown in Figure 4-1.
Subsequent figures all show windows as displayed at this later point.

printed below the task. Metarules are attached to the task they invoke by a vertical line.

‘Different font faces are used to distinguish tasks, metarules, and foci from one another. Every

rule, finding, and hypothesis in the Task Stack Window 1s selectable so that the user can

quickly get more detailed information on an item of interest.

The Task Stack Window provides a view of the current path through the diagnostic tree with

metarules and foci instantiated. By examining the task stack, the user can understand the

reason for the current strategy. For example, the user may be interested in why a question is

being asked. Students will be able to get textual explanations that should satisfy their needs

(Figure 4-1), but programmers may want to examine the task stack to understand the

computational reasons for a data request at the task and metarule level. By examining the task

stack in Figure (4-13) the user can see that NEOMYCIN 1s testing the hypothesis

Mycobacterium-TB-Meningitis. As a result, a rule that was applied led to a series of calls to

22

Hypotheses With Evidence |
HYPOTHESIS CF CUNCF

INFECTIOUS-PROCESS 700 880
MENINGITIS 500 600
CHRONIC-MFNINGITIS

[VIRAL-MENINBITIS | 200 20
ACUTE-MENIN --- 200

Figure 4-12: The Hypotheses With Evidence Window.

the task Findout. The last call, with the focus “compromised,” finally resulted in the question

“Is Mary a compromised-host?,” which the user would see in the Consultation Typescript

Window.

Dynamic Task Tree Window. This window displays a graph that shows all or part of the

"dynamic history of task calls (Figure 4-14). This allows a user to view the overall structure of

the diagnostic strategy that NEOMYCIN is using during or at the end of a consultation. This

1s useful because the static Diagnostic Task Tree Window (Figure 4-6) shows all possible paths

in the task tree; this window shows only the paths that are part of an actual diagnosis and

reveals patterns of multiple calls of the same task.

Task History Window. This window contains a table of all the invocations of any given task

during the consultation (Figure 4-15). More or less, it provides an alternate view (for a given

task) of the information displayed in the Dynamic Task Tree Window. In the first column,

the invocation number of the task 1s printed, with “1” meaning the first time the task was

called. In the second column, the focus of the task call is printed; in the third column, the

metarule that invoked the task 1s printed; and in the fourth column, the calling task is printed.

23

MAKE-DIAGNOSIS[]

RULES84
COLLECT-INFO[]

RULEO62
ESTABLI:SH-HYPOTHESIS-SPACE |]

RULES86

EXPLORE-AND-REFINE []

RULEA63
PURSUE-HYPOTHESIS |
MYCOBACTERIOM- TB-MENINGITIS]

RULE171
TEST-HYPOTHESIS [
MYCOBACTERNUM- TB-MENINGITIS]

RULEGO0S
APPLYRULES [AULESE6 RILESOF RILESOY
RULEQOZ RULESZS

RULEO94
APPLYRULE![AULESZ0S]

RULEQ95

FINDOUT [STEROIDS]

RULE1 53

FINDOUT [IMMUNOSUPPBESSED]

RULE 53
FINDOUT [SYSTEMIG-COMPEROMISED]

RULE153

FINDOUT [COMPROMISED]

RULE169

Figure 4- 13: The Task Stack Window.

As usual, rules, findings, hypotheses, and tasks are selectable. Additionally, the user can select

an invocation number in order to display more information on the history of that task call,

including a dynamic task tree with the chosen task invocation as the root or any metarules that

succeeded during the task call.

Together, the three dynamic task windows provide a powerful aid for inspecting the current

Dynamic Taskiree Window - } FOLTEBRILE | — 05 : LL Lo -

TH[INFECTIOUS-PROCESS]-AR 4 frieAR! [RULE423] FR PH[INFECTIOUS-PROCESS] -AER[INFECTIOUS-PROCESS]

_ ant [RULE261) I
PF [TEMPERATURE] ARAL RI [RULE 276] — FR« PFILOV-GRADE-FEVER]

sib AR | [RULE323]— FO[REDFLAG-CNS-F INDING] PF[HIGH-GRADE-FEVER]
: 4 AR[RULE@6@]—FO[SEIZURES]

THIMENINGITIS4 AR! [RULE@6@] R!'[RULEB78]

THIMENINGITIS] MAR—ARI[RULE 189]—FOINEONATEI< ,0, (0 £007 ce or {NEONATE]—ARD— ARI [RULE 83]
TH[ACUTE-MENINGITIS]—AR—AR |[RULE352]— FO[PHOTOPHOB IA]— FO[VISUAL -PROBLEMS]—Q7

Figure 4- 14: The Dynamic Task Tree Window.

The node labels of tasks in this tree are abbreviated, but the user can see the
full name expanded when a node is selected. TH is short for Test-Hypothesis in
this tree. The figure above illustrates how the user can see multiple calls of a
task and the resulting events in the Dynamic Task Tree Window.

and past diagnostic strategy used during the consultation. It is clear that medical students

would need some instruction in these concepts before the dynamic task windows would be

meaningful to them. Part of the problem is that many of the task names are not commonly

used 1n medicine. It 1s hoped that some of the problem can be alleviated by choosing names

" for the diagnostic tasks that are more familiar to students. Additionally, some tasks may be

hidden from a student’s view because they involve computational details of interest to a

programmer only.

5. Prior and Related Work in Graphic Interfaces

GUIDON-WATCH was influenced by a diverse collection of work stretching back to

Vannevar Bush’s seminal article, in which a desk-sized, electronic information device called a

“memex” was proposed (Bush, 1945). Doug Engelbart and his colleagues pioneered much of the

early work on information handling systems and provided the basis for the user interfaces

commonly found on today’s workstations (Engelbart, 1963, English and Engelbart, 1967,

Engelbart, 1970, Engelbart, 1982). Alan Kay led the Learning Research Group (LRG) at

25

NO. FOCUS CALLER METARULE |

1 INFECTIOUS-PROCESS G&D RULE393

2 MENINGITIS G&D RULE480

3 MENINGITIS G&0 RULE480

4 ACUTE-MENINGITIS G&D RULE400

5 CHRONIC-MENINGITIS PUH RULE171

Figure 4-15: The Task History Window.

XEROX PARC that brought similar ideas to fruition on personal workstations. (Kay, 1977)

Engelbart’s group and the LRG shaped a view of the computer as a communications medium

by which a user can store, retrieve, manipulate, and transfer information with ease. The LRG's

vision of a dynabook (Goldberg, 1979, Borning, 1979, Weyer and Borning, 1984, Gould and

Finzer, 1984) stills remains an exciting dream in the spirit of Bush’s memex.

The 1970s also brought many advances in Artificial Intelligence including the development of

knowledge-based systems such as MYCIN. Starting from a different point of view, Seymour

Papert led a group at M.I.T. that explored the use of computer languages such as LOGO to

teach subjects such as geometry and physics in a new way (Papert, 1980). Papert offers a

provocative view of Al and computers in education; he influenced us to consider how we can

provide students with conceptual and software tools to explore computational models (Papert,

1980). John Seely Brown further inspired us to understand the potential of these ideas; his

discussion of reifying the process of problem solving (Brown, 1983) is particularly relevant to

GUIDON-WATCH. To reify means to make real or concrete, or to materialize something that

1s abstract. GUIDON-WATCH makes the abstract diagnostic procedure used in NEOMYCIN

26

more concrete and visible.

Partly because bit-mapped raster displays have only recently been integrated with Al

programming environments, little has been written about graphic interfaces in Al programs.

Some notable exceptions include Model (Model, 1979), AIPS (Zdybel, et al., 1981), the

ONCOCIN project (Tsuji and Shortliffe, 1983, Tsuji and Shortliffe, 1985, Lane, et al., 1985),

and the STEAMER project (Hollan,et al., 1984, Stevens, et al., 1983). Model demonstrated that

graphic displays can facilitate the monitoring and debugging of complex programs (he used

MYCIN for an early demonstration of his work). Tsuji and Shortliffe investigated this idea

further by implementing several graphic tools for constructing, monitoring, and debugging

ONCOCIN's knowledge base and inference procedures. (ONCOCIN is a system that helps

physicians administer experimental cancer therapy.) The ONCOCIN groups strong

commitment to the use of interactive graphics has resulted in several graphic interfaces,

including the ONCOCIN Interviewer (Lane, et al., 1985), a program that helps physicians enter

patient data. a

STEAMER, an instructional program about power plant operation, uses interactive color

graphics in a knowledge-based simulation. It is interesting to compare the use of interactive

graphics in STEAMER and GUIDON-WATCH. STEAMER emphasizes the construction of a

visible, interactive, and inspectable simulation. It displays the complex physical processes of a

steam propulsion plant. NEOMYCIN, on the other hand, 1s a computational model of

diagnostic reasoning. GUIDON-WATCH provides a user with a visible, interactive, and

inspectable model of NEOMYCIN’s reasoning processes.

Several knowledge-base browsers similar to GUIDON-WATCH were developed more or less

" concurrently. For example, ART, KEE, SRL+, LOOPS, S.I, and STROBE provide interactive

graphic displays that allow programmers to browse class hierarchies and other general data

structures (Stefik, et al. , 1983, Kunz, et al., 84, Williams, 1984, Richer, 1985). Sophisticated

graphic editors may be provided; for example, STROBE has an excellent knowledge base

editor (Schoen and Smith, 1983). However, the browsers provided in these systems are very

general and are too complex for end users, requiring an understanding of the underlying

knowledge representation framework. On the other hand, KEE and LOOPS do provide support

for creating end-user iconic displays. These can be very useful for displaying the state of a

complex device.

GUIDON-WATCH differs from other browsing programs because it is tuned to display

27

specific kinds of knowledge structures (e.g., those found in a HERACLES system). For

example, GUIDON-WATCH can display disease taxonomies, causal networks, evidence for a

hypothesis, and positive findings in a way that 1s appropriate for end users such as medical

students. Graphic techniques described in this paper illustrate an abstract diagnostic procedure

during its actual use. To paraphrase, if a knowledge base 1s written for HERACLES, then an

effective user interface 1s provided automatically.

6. Future Work

A continuing decrease in the price of hardware will provide more opportunities to use higher

resolution screens, interactive pictures, color, animation, and interactive video. Certainly, we

have only touched the surface in using graphics for viewing a knowledge-based system.

Interactive and animated pictures can illustrate facts and processes. However, implementing

interactive graphic displays is time-consuming. There is a need for high-level user interface

kits that provide most of the common features that developers now have to implement over

and over again. It 1s probable that an object-oriented programming system will be adopted as

an extension to the Common Lisp standard (Bobrow, et al. , 1985, Steele, 1984). This could

‘provide the basis for a generic interface shell for lisp environments. Two examples of

interface packages that successfully use the object-oriented approach include MacApp (Tesler,

1985) and EzWin (Lieberman, 1985); the latter is written in flavors, the object-oriented

language within Zetalisp (Weinreb and Moon, 1981).

The discussion so far has focused on what interactive graphics can provide for Al systems.

However, Al technology can contribute directly to more intelligent graphic interfaces. Current

-research topics include user modeling, intelligent presentation, and declarative languages for

describing graphical interaction. Mackinlay (Mackinlay, 1983) is investigating some of these

issues. For GUIDON-WATCH, we decided how to present information and hand-coded it.

Instead, Mackinlay’s program reasons on its own about how to present information. For

example, it can decide to present data as a bar chart, a pie chart, a plot chart, a table, or a

graph. It can also design several alternative sophisticated presentations from simpler ones and

then use heuristics to choose one to display to the user.

Another important aspect of Mackinlay’s work 1s that it uses a knowledge-based approach.

Therefore, its reasoning 1s represented in an explicit, declarative language and not in opaque

code. The use of a declarative representation results in programs that are easier to modify and

understand. We found that the parts of our display code that are trying to be smart, such as

28

the management of windows, are poorly represented in LISP. The code fails to make the

underlying reasoning explicit, and it is difficult to modify. Another advantage of using a

declarative representation is that it can be used in multiple ways. Mackinlay’s current work

addresses only the intelligent presentation problem, but eventually programs may be able to

explain why a particular presentation was chosen. The graphic designer using an intelligent

computer aid would want a justification for some design decisions. In intelligent tutoring

systems, 1t would be useful if a program could automatically generate questions regarding a

presentation on the screen.

The problems involved in developing intelligent interfaces are certainly very difficult, but if

they are going to be solved, it seems likely that user interface behavior must be represented

separately in a declarative language or a data base. Because the user interface 1s becoming an

increasingly complex and important component of a software system, there are compelling

reasons to make a clean separation between the user interface and the rest of a software

system (Zdybel, et al., 1981, Smith, et al., 1984, Ciccarelli, 1984). There are several reasons to

support such highly modular systems:

. they are easier to maintain and debug

. they can be customized more easily

« domain independence 1s possible

. an intelligent reasoning component can be interfaced with less difficulty

In general, programs can be more attuned to individual users. Some users may prefer

different configurations of the screen. The size of the fonts chosen in a window may be too

small for some users. Optimizing screen space must not interfere with other concerns such as

"readability of the screen. Future versions of GUIDON-WATCH should allow users to

customize the display to their liking while still providing automatic window management

facilities. User models can play a role in smart interfaces that infer a user’s preferences.

However, a program must have an explicit model of the user in order to reason about the

user’s preferences. We believe that a knowledge-based approach (i.e., using declarative

representations) 1s necessary 1f a intelligent interface must combine general knowledge about

presentation with specific knowledge about a user. This 1s an area for long-term

interdisciplinary research in several areas of computer science, psychology, linguistics,

communications, education, and graphic design.

29

7. Conclusions

GUIDON-WATCH allows a user to view a knowledge-based consultation system efficiently.

The program demonstrates how multiple windows, menus, and a mouse can be used to achieve

this goal. It also demonstrates that stating a diagnostic procedure in a well-structured rule-

based language facilitates developing a graphic interface for viewing and inspecting diagnostic

problem-solving behavior. The most important principles learned from this effort are as

follows:

« Providing multiple views of the same knowledge or behavior can help a user

understand a complex system. Tables, trees, pictures, animation, and other graphic

formats can offer these different views. The current prototype of GUIDON-

WATCH has made extensive use of trees and tables to display information in

multiple, meaningful ways. Hierarchical relationships are naturally represented as

trees, and lists of records with several fields are displayed as tables effectively.

There are several- important events in NEOMYCIN such as changes in the

differential, conclusions about findings and hypotheses, and the task calls. Several

windows with different formats can provide different views of these events.

However, different classes of users may vary with regard to what constitutes an

effective user interface.

« The use of bold fonts, boxing and graying items, and other graphic techniques can

maximize information content and highlight facts and events in a way that is quickly

understandable. The use of these simple techniques in the Taxonomy and Evidence

windows illustrates their effectiveness (Figures 4-7 and 4-8).

. In well-constrained situations it is possible to manage the display and placement of

windows automatically. Screen space is a precious resource, and each window must be

‘designed, sized and placed to use space efficiently. However, this is a job that can

be cumbersome for a user. Additionally, we want to avoid having a user concentrate

on the motor activity of using the mouse to move and place windows on the screen.

We believe that there is a fundamental difference between the information retrieval

task that GUIDON-WATCH 1s designed for and more creative and open-ended

tasks such as programming or writing. For the latter category, the availability of

overlapping windows that are usually shaped and positioned under the user’s control

may be more desirable.

30

By displaying information in multiple ways and allowing a user to interactively browse the

dynamic state of a consultation, we have taken a first step towards reifying the process of

reasoning during a NEOMYCIN consultation. Subsequent instructional programs now under

development will ask students to explain, debug, and augment their own and program-generated

problem-solving behavior. They will use graphic displays like GUIDON-WATCH to compare

and contrast alternative solutions to problems.

Acknowledgements

Diane Warner Hasling, Julie Thompson Richer, Ted Crovello, and the CG&A reviewers

contributed valuable comments to earlier drafts of this paper. Dr. Curt Kapsner and John

Macias are helping us adapt NEOMCYIN and GUIDON-WATCH for use with medical

students. Their feedback is helping us determine how GUIDON-WATCH and other programs

can best benefit medical students.

This research has been supported in part by ONR and ARI Contract N00014-79C-0302 and

more recently by the Josiah Macy, Jr. Foundation (Grant No. B852005). Computational

resources have been provided by the SUMEX-AIM facility (NIH grant RR0O0785).

31

References

Bobrow, D.G., Kahn, K., Kiczales, G., Masinter, L., Stefik, M., and Zdybel, F. COMMONLOOPS
-- merging COMMON LISP and Object-Oriented Programming. Technical Report
ISL-85-8, XEROX Palo Alto Research Center, August 19835.

Borning, A. Thinglab -- a constraint-oriented simulation laboratory. Technical Report
SSL-79-3, Xerox Palo Alto Research Center, July 1979.

Brown, J.S. Process versus product--a perspective on tools for communal and informal
electronic learning, In Education in the Electronic Age, July, 1983. Proceedings of a
conference sponsored by the Educational Broadcasting Corporation, WNET/Thirteen
Learning Lab, NY, pp. 41-38 .

Buchanan, B.G. and Shortliffe, E.H. Rule-Based Expert Systems. Reading, MA: Addison-
Wesley 1984.

Bush. As we may think. Atlantic Monthly, July 1945, 176, 101-108.

Card, S.K., Moran, S.K., and Newell, A. The Psychology of Human-Computer Interaction.
Hillsdale, NJ: Lawrence Erlbaum Associates 1983.

Ciccarelli, E. Presentation based user interfaces. Technical Report AT-TR-794, Artificial
Intelligence Laboratory, Massachusetts Institute Technology, August 1984.

Clancey, W.J. Overview of Guidon. Journal of Computer-Based Instruction, Summer 1983,
10(1 & 2), 8-15. (Also in The Handbook of Artificial Intelligence, Volume 2, eds. Barr
and Feigenbaum, Kaufmann, Los Altos, CA, 1982, pp. 267-278.).

Clancey, W. J. and Letsinger, R. NEOMYCIN: Reconfiguring a rule-based expert system for
application to teaching. In Clancey, W. J. and Shortliffe, E. H. (editors), Readings in
Medical Artificial Intelligence: The First Decade, pages 361-381. Addison-Wesley,
Reading, MA, 1984.

Engelbart, D.C. A conceptual framework for the augmentation of man’s intellect. In Howerton
and Weeks (editors), Vistas in Information Handling, pages 1-29. Spartan Books,
Washington, D.C., 1963.

. Engelbart, D. Advanced intellect-augmentation techniques. SRI project 7079, final report,
Stanford Research Institute, July 1970.

Engelbart, D.C. Toward high-performance knowledge workers, in Proceedings of the AFIPS
Office Automation Conference, pages 279-290, April, 1982.

English, W.K. and Engelbart, D.C. Display-selection techniques for text manipulation. /EEE
Transactions on Human Factors in Electronics, March 1967, HFE-8(1), 5-15.

Foley, J.D. & Van Dam, A. Fundamentals of Interactive Computer Graphics. Reading, MA:
Addison-Wesley 1982.

Foley, J.D., Wallace V.L., and Chan, P. The human factors of computer graphics interaction
techniques. IEEE Computer Graphics and Applications, November 1984, 4(11), 13-49.

Goldberg. Educational uses of a dynabook. Computers & Education, 1979, 3, 247-266.

Gould, L. and Finzer, W. Programming by rehearsal. Technical Report SCL-84-1, Xerox Palo

32

Alto Research Center, May 1984.

Hasling, D. W., Clancey. W. J., and Rennels, G. Strategic explanations for a diagnostic
consultation system. International Journal of Man-Machine Studies, 1984, 20, 3-19.

Hollan, J. D., Hutchins, E. L., and Weitzman, L. STEAMER: An interactive inspectable
simulation-based training system. The AI Magazine, 1984, 5(2), 15-27.

Ingalls, D.H.H. Design principles behind smalltalk. Byte, August 1981, 6(8), 286-298.

Kay, A. Microelectronics and the personal computer. Scientific American, September 1977,
237(3), 230-244.

Kunz, J.C., Kehler, T.P. and Williams, M.D. Applications development using a hybrid Al
development system. AI Magazine, Fall 84, 5(3), 41-54.

Lane, C., Differding, J., and Shortliffe, E. Graphical access to medical expert systems: II.
Design of an interface for physicians. Technical Report KSL-85-15, Knowledge Systems
Laboratory, Stanford University, July 1985.

Lieberman, H. There’s more to menu systems than meets the screen. Computer Graphics, July
1985, 19(3), 181-189.

Mackinlay, J. Intelligent presentation: the generation problem for user interfaces. Technical
Report HPP-83-34, Computer Science Department, Stanford University, March 1983.

Model, M. Monitoring system behavior in a complex computation environment. Technical Report
STAN-CS-79-701, Computer Science Department, Stanford University, January 1979.

Papert, S. Mindstorms: Children, Computers, and Powerful Ideas. New York: Basic Books,
Inc. 1980.

Richer, M.H. Evaluating the existing tools for developing knowledge-based systems. Technical
Report KSL-85-19, Knowledge Systems Laboratory, Stanford University, May 19835.

Sannella, M., ed. Interlisp Reference Manual. Palo Alto, CA: Xerox Corporation 1983.

Schoen, E. and Smith R.G. Impulse, a display-oriented editor for Strobe, In Proceedings of

the National Conference on Al, pages 356-358, AAAI, August, 1983.

Shortliffe, E. H. Computer-based medical consultations: MYCIN. New York: Elsevier 1976.

Smith, R.G., Lafue, G.M.E., Schoen, E. and Vestal, S.C. Declarative task description as a user-
interface structuring mechanism. Computer, September 1984, 17(9), 29-38.

Steele, G.L. Common LISP -- the language. Burlington, MA: Digital Press 1984.

Stefik, M., Bobrow, D.G., Mittal, S. and Conway, L. Knowledge programming in loops: report
on an experimental course. The AI Magazine, Fall 1983, 4(3), 3-13.

Stevens, A., Roberts, B., and Stead, L. The use of a sophisticated graphics interface in
computer-assisted instruction. IEEE Computer Graphics and Applications, March/April
1983, 3(2), 25-31.

Tesler, L. The smalltalk environment. Byre, August 1981, 6(8), 90-147.

Tesler, L. MacApp, Release 0. I. Cupertino, CA: Apple Computer, Inc. 1985.

33

Thompson, T.F. and Clancey, W.J. The CASTER system: an experiment in knowledge
acquisition within a generic expert system shell. Technical Report KSL-85-32, Knowledge
Systems Laboratory, Stanford University, August 1985.

Tsuji, S. and Shortliffe, E. Graphical access to the knowledge base of a medical consultation
system, 1n Proceedings of AAMSI (American Association for Medical Systems and
Informatics) Congress 83, pages §51-555, May, 1983.

Tsuji, S. and Shortliffe, E.H. Graphical access to medical expert systems: I. Design of a
knowledge engineer's interface. Technical Report KSL-85-11, Knowledge Systems
Laboratory, Stanford University, July 1985.

Van Melle, V. System Aids in Constructing Consultation Programs. Ann Arbor, Michigan:
UMI Research Press 1981.

Weinreb, D. and Moon, D. Lisp Machine Manual. Cambridge, MA: Symbolics, Inc. 1981.

Weyer, S. and Borning, A. A prototype electronic encyclopedia. Technical Report 84-08-01,
Computer Science Department, University of Washington, August 1984.

Williams, C. Software tool packages the expertise needed to build expert systems. Electronic
Design, August 1984, 153-167.

Zdybel, F., Greenfield, N., Yonke, M. and Gibbons, J. An Information Presentation System, In
Proceedings of the Seventh International Joint Conference on Artificial Intelligence,

pages 978-984, August, 1981.

