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§1 Introduction

The r-Stirling numbers represent a certain generalization of the regular Stirling numbers,
which, according Lo Tweedic [26], were so named by Nielsen[18] in honor of James Stirling,
who computed them in his “Methodus Differentialis,” [24] in 1730. In fact the Stirling nurnbers
of the first kind were known Lo Thomas Herriot [15]; in the British Muscurn archive, there is a
manuscript (7] of his, dating from around 1600, which contains lhc expansion of the polynomials
(2) for k < 7. Good expositions of the properties of Stirling numbers arc found for example
in [4, chap. 5],[9, chap. 4], and [22].

In this paper the (signless) Stirling numbers of the first kind are denoted [:1], they are
defined combinatorially as the number of pcrrnutalions of lhc set { 1,...,n}, having m cycles.
The Stirling numbers of the second kind, dcnoled {;}, are equal to the number of partitions
of the set {1,...,n} into m non-empty disjoinl sets. The notation [] and {} seems to be
well suited to formula manipulations. It was introduced by Knuth in [10,§1.2.6], improving
a similar notational idea proposed by I. Marx [20]. The r-Stirling numbers count, certain
restricted permutations and respectively restricted partitions and are defined, for all positive
r, as follows:

= having m cycles, such thatthe numbers 1,2,...,r are (1)

[nJ The number of permutations of Lhc set {1,...,n}
r in distinct cycles,

and

n The number of partitions of the set (1,. . . ,n} into
{ } = m non-cmpty disjoint subsets, such that the numbers (2)

m L
1,2,...,r are in distinct subsets.

There exists a onc- to-one correspondence between permutations of n numbers with m cycles,
and permutations of n numbers withm left-to-right minima. (This corespondence is itnplicd in
[22, chap. 8] and formalized and gencralized in [6].) ‘To obtain theimage of a given permutation
with m cycles put the minimurm number within each cycle (called the cycle leader) as the
first element of lhe cycle, and list all eycles (including singletons) in deercasing order of their
minimum clement. After removing parentheses, the resull is a permutation with m lelt-Lo-right
minima. If the nurnbers 1, ...,r arc in distinct ¢ycles in Lhe given permutation, then they
arc all cycle leaders andthe last rleft-to-right minima in lhc image permutationare exactly
r,r—1,..., 1. ‘T’hercforc wc have lhc alternative definition

The number of perrnutalions of the nurnbers 1,. . ., n
[ having m left-to-right minima such that the numbers (3)
qr = 1,2,...,r arc all left-to-right minima (or such that ‘
thenumbers 1, 2, ..., 7 occur in decreasing order).

Iiach non-emply subsct in a permutation of an ordered set has a tninirnal clement; a parlition
of the set {I,...,n} into m non-cmpty su bscts has m associated minimal elements. This
terminology allows thealternative definition

= into m non-empty disjoint subscts, such Lhat the num- (1)

{n} The number of ways Lo partition the set {1,..., n}
r  bers 1,2,...,7rarcall tninirnal elements.

m
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Note that the regular Stirling numbers can be expressed as

W=l =, 0
o S P o

Another construction that turns out to be equivalent to the r-Stirling numbers was recently
discovered by Carlitz[2],[3], who began from an entirely different type of gencralization,
weighted Stirling numbers. Also equivalent are the non-central Stirling numbers studied by
Koutrns [17] starting from operator calculus definitions (sec section 12). The simple approach to
be dcvcloped here leads to further insights about these numbers that appear to be of importance
because of their remarkable properties.

and also as

§2 Basic recurrences

The r-Stirling numbers satisfy the same recurrence relation asthe regular Stirling numbers,
except for the initial conditions.

Theorem 1. The r-Stirling numbers of the first kind obey the “triangular” recurrence
o
=0, n<r,
m
L Yy
-
n
= bpm,r, n =r, (7)
m
L'y
n ] n—1 n—1
=(n-1) + ) n>r.
m], . m | |m—1]
“Proofl: A permutation of the numbers I, . . ., n with m left-to-right rninima canbe formed from
a permutation of Lhe numbers 1, ..., n — 1 with mlcft-to-right minima by inserling the number
n after any number, or {rom a permutation of the numbers 1,. . . , n — 1 with m —1 left-to-right

minima by inserting the number n before all the other nurnbers. Ifor n > r this process doces
not change thelast r left-to-right rninima. R

Theorem 2. The r-Stirling numbers of the second kind obey the “triangular” recurrence

{n} =0, n<r,
m r

{n} =6m,r; n=r, (8)
m ,



Proof: A partition of thesct{l,...,n} into m non-empty subsets can be formed frorn a
partition of thesect (I,...,n — 1} into m non-empty subscts, by adding the number n to any
of the m subsets, or from a partition of theset{1,...,n—1}into m — 1 non-empty subsets,
by adding the subset {n}. Obviously, for n > r this process does not influence the distribution
of the numbers 1,...,r into different subsets. |}

The following special values can be easily computed:

- e

- e e

[:‘] :J, —(m—-1)n-2)..r=r"" a2 (11)

v

{n}, =", n>r. (12)

r

The r-Stirling numbers form a natural basis for all sets of numbers {an,} that salisfy the
Stirling recurrence except for a,,. That is, the solution of the Stirling recurrence of the first
kind

An k=10 n 0
k ] < YU (13)
Ap k= (n - l)a'n——l,k + Apn—1,k—1, k # n,n 2 0)

is

U = Z [:]r(ar,r — Gy, p—1)- (14)

r

Sirni larly, the sol u tion of

bn,k - 0, n < 0,
bk == kbn 1k + bn_ k-1, k#n, n20,

(15)

is

bk = 3 {Z}(b S —— (16)

r

IPor concrctencss, the following tables were compuled using lhe recurrences (7) and (8).
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m“ k=1k=2 k=3 k=4 k=5 k=6 QL k=1k=2 k=3k=4k

n=1 1 n = 1

n 2 1 1 n=—2 1 1

n 3 2 3 1 n=3 1 3 1

n=4 6 11 6 1 n=4 1 7 [ 1

n=35 24 50 35 10 1 n = 1 15 25 10

n==~6 120 274 225 85 15 | n==56 1 31 90 65
Table 1. r=1

ﬂw k=2 k=3 k=4 k=5 k=6 k=7 {sz=2k=3k=4k=5

n 2 1 n =2 1

n 3 2 1 n=3 2 1

n 4 6 N 1 n=4 4 5 1

n=235 24 26 9 | n=2>5 8 19 9 1

n==6 120 154 71 14 1 n==56 16 65 55 14

n=17 720 1044 580 155 20 | n=17 32 211 285 125

Table 2. r =2

(] [k=3k=1k=5 k=6 k=7 k=3 (i} [k=8 k=1 k=5 k=5

n=3 1 n=3 1

n= 3 | n=4| L

n=2>5 12 7 | n=>5 9 7 L

n==6 60 47 12 1 n =26 27 37 12 1

n=:7 360 342 19 L8 I n=717 81 175 97 18

n=8| 2520 2754 1175 245 25 L n=2_§ 243 781 660 205
Table 3. r =3



§3 “Cross” recurrences

The “cross” recurrences relate r-Stirling numbers with different r.

Theorem 3. The r-Stirling numbers of the first kind satisfy
o " " >r>1 (17)
m|, ~ r—1 m—-1],_, [m-1] /) nar ) '

Proof: An alternative formulation is -

'__[n n
r_ m—lr—l m_lr.

The right side counts the number of permutations having m —1 cycles such that 1,...,7—1
arc cycle leaders but = is not. This is equal to (r—])[:,“]r since such permutations can be
obtained in r— | ‘ways [rom permutations having m cycles, with 1,. . . , r being cycle leaders,
by appending the cycle led by r at the end of a cycle having a smaller cycleleader. 1

n
m

¢ - )

Theorem 4. The r-Stirling numbers of the second kind satisfy

{Z}, : {Z},_l —(r- ”{n; l}r_l: n2rL (18)

Proof: The above equation can be written as

e-of" 2 ={h - n)h

The right side of the equation counts the number of partitions of (1,. . . , n} into m non-empty
_subsets such that 1, . .. ,r— 1 are minimalclements bul 7 is not. But this number is equal

< to (r — l){";;‘},_l because such partitions can be oblained in r— 1 ways from partitions of
{1,...,n} —{r} into m non-cmpty subscts, such that, 1, . . ., r— L arc minimal, by including 7
in any of the r — | subscls containing a smaller clement. |l

§4 Orthogonality

The orthogonality relation between Stirling numbers genceralizes to similar relations for
r-Stirling nurnbecrs.



Theorem 5. The r-Stirling numbers satisfy [2,eq.6.1]

St =07 (09

% 0, otherwise.

Proof: By induction on n. For n < r the equality is obvious. forn =7

r k k )T 1\
2 () - cole) - co
For n > r, using Theorem 1 and the induction hypothesis

k ' ~1
S8 o - e S o

k

and (assuming m>r) by Theorem 2 applied to the right sum, and the induction hypothesis

2 [ﬂ{ k},(‘”k-.-: (= Dty 1) = (1) = Gt (1)

p m
= On,m(—1)".
I
Ilence for each r,the r-Stirling numbers form two infinite lower triangular matrices satis-
fying
i ; d i
. ('—1) X . == 61.>75i,j( l) ] (20)
J1, 7).
where
1, i >
bi>; = , .
0, <]

_and we also have

Theorem 6.

S i} o= {(Ml)ném'm e 1)

0, otherwise.

These orthogonality relalions generalize as shown in sectionll.

§0 Relations with symmetric functions
The Stirling numbers of the first kind, [:1]: for lixed n, are theclemen tary sy mmetric

functions of the numbers 1, .. .,n(sce,e.g., [1] or [5]). The r-Stirling numbers of thefirst kind
arc the clementary symmetrie functions of Lhe numbersr, . .., n.

-



Theorem 7. The r-Stirling numbers of the first kind satisfy

" = Z t1%e. . . i, n,m > 0. (22)

n - m . . .
Lr r<t; <tz <ty <n

Proof: Consider a permutation of the nurnbers 1, ..., n having n— m left-to-right minima.
How many such permutations arc there that have a given set of minirna? Denote the numbers
that are not rninima by 2j,%g,...,%,, Where 73 <13 <...< 1, < n. A perrnutation with

the prescribed set of left-to-right minima can be constructed as follows: write all the minima
in decreasing order; insert ¢y after any of the ¢; — 1l minima less than ¢;; insert ¢g after any
of the 73 — 2 minima less than ig, or after z;; etc. Clearly there arc iy — 1 ways of inserting
11, 12 — | ways of inserting 79, and so on. Hence the total nurnber of permutations with the
given minima is (¢3—1)(g— 1). .. (i, — 1). Il the numbers1,..., 7 arc minima, then 7y > r.
Surnming over all possible sets of left-Lo-right minima we get

[ 1 = 3 (G =1@E—1)... G- D
n - ’ e ;

r<y <tz <ip<n n’m>— 0
— E 1112 . . . i,

<y <ig <t <n

The above theorem can also be proved by induction, but, it is more interesting Lo sec the
combinatorial meaning of each term in the sum. Tts counterpart for r-Stirling numbers of the
second kind is

Theorem 8. The r-Stirling numbers of the second kind satisfy

+ . . ,
{n m} = Z T112. . . Tm, n,m> 0. (23)

n
r<i < <im<n

Proof: Count the number of” partitions of theset {1,..., n + m} into » non-empty subscts, when
the n minimal clements are (ixed. Denote Lthe elements Lthat are n o minimal by =y,. . . , Tr,
whore zy < ... <uxy,. I1T7 weleld; be the number of minimal clements less than x5, then
1 Lig <+ <im < n. Clearly z; can belong only losubsels having a minimal elerment
less than it, so that therc are 2; ways Lo placeit. Ilence the total number of partitions with a
given sct of minimal elements is 2172.. . i,. If the numbersl, . .. » arc all minimal clements,
then ¢y >r. Summing up over all possible sets of minimal elements completes Lhe proof. |

Therefore Lhe r-Stirling numbers of the second kind, {"tm}', arc the monomial symmetric
functions of degree m of theintegers T, . . ., n.
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§6 Ordinary generating functions

Corollary 9. The r-Stirling numbers of the first kind have the ‘horizontal” generating
function

Z(z+r)(z+7r+1)... (z+n—1), n>r2>0;

Z[Z}g" ={ | (24)

0, otherwise,

Corollary 10. The r-Stirling nymbers of the second kind have the “vertical” generating
function [2,eq.3.10]

Z'm.

Z{k} ;U= =( D7) (=mz ™=2720 (25)
P m ,
: 0, otherwise.

The above identities follow immediately from equations (22) and (23).

§7 Combinatorial identities

Lemma 11.

vV

=

v
o

(26)

n| n—r\ln—p—k %
MR (o iy I

Proof: To form a permutation with m cyeles such thatl, ..., r are cycle leaders first choose
"k numbers to be in theeyelesled by 1, . . ., p and construct these cycles; this can bc done in
(“5>[“a”], ways. The remaining n-p-k numbers must form m-p cycles such that p+1,..., 7

—p—k

arc cycle leaders, which can be clone in ™
m-—p

]r_p ways. Usingequation (11)and summing for

all k£ completesthe proof. g

Inparticular for p = » we oblain a definition of r-Stirling numbers of the first kind interms
of regular Stirling numbers of the first kind [2, eq. 5.3],

Mg Py s oy Ml S

This shows that [;ﬁ',]r, for m,n > 0 is a polynomial of degreen —m in r with leading

cocllicient (:L) and Lemma 1 t can be generalized to a polynomial identitity in p and r:

L9 _



Theorem 12.

= e ”
1

For p = r— 1 we get another ‘“cross” recurrence

M () i (29)

k

Recall that [;]1 = ["]0 for n > 0, so that

m

R () U o

k

an identity that appears in Comtet [4, eq. 5.6¢|, and also in Knuth [10, eq. 1.2.6(52a)).

Lemma 13.

S G

k

Proof: By combinatorial arguments analogous to the proof of Lemma 11. §

The counterpart of cquation (27) is (2, cq. 3.2]

nf, =2 (Nt S 52

which shows that {:zi"}r, for m, n > 0'is also a polynomial of degrec n-m in r, whose leading

cocllicient is (::;) Asdexfre this implies a generalization of Lemma 13:
Theorem 14.
n+r n\fn—k+p k
= —p)~. 33
{m+r}r zk:(k){ m+p }p('r ) (33)
]

The counterparts of cquations (29) and (30) are

AT > | et SIS o1 (| vt BRI
{::t} - Xk: (n k 1){mli 1}’ " .> 0, (35)

which is a well known expansion.

and
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§8 Exponential generating functions

Theorem 15. The r-Stirling numbers of the first kind have the following “vertical” exponen-
tial generating function

Z[’”"] 2 %(l-l—z)r(ln(l_l_;))m’ m 20 (36)

- m+r| k!

0, otherwise.

Proof: The above exponential generating function can be decomposed into the product of two
exponential generating functions, namely

() =Sl

and

Their product is

by equation (27). K
The above theorem’irnplics the double generating function (2,eq.5.3]

’ k r+t
Z k+r Z—t’": 1_ . (37)
m+r] k! 1 -2z

k,m

Theorem 16. The r-Stirling numbers of the second kind have the following exponential
. generating function [2,eq. 3.9]

k o rz(,z g \m >0;
TS (39

m+r) k!
k ' 0, otherwise.

Proof: Similar to the the proof of Theoremll, using the expansions

k
rz __ k?
e ——E e —,
k!
k

and

| m k) 2"
m!(e -1 _;{7n}7c—!’

together with cqualion (32). |




The double generating function for r-Stirling numbers of the second kind is

m+4r

k.m

E{ k+ r} %:t"‘ = exp(t(e* — 1) -i;rz). (39)

§9 Identities from ordinary generating functions

Theorem 17. The r-Stirling numbers of the first kind satisfy

o -Shrdl,, e

Proof: From equation (24)

Express the product
n -
Zr—P(Z+'r)...(Z‘l‘p—l)zp_"'-(z+p)..'(Z+n—1)=zk:[n_k]z k

as the convolution of the two generating functions and equate the coefficient of z™~™ on both
sides. 1N

Theorem 18. The r-Stirling numbers of the second kind satisfy

D o L e (1)

- Proof: From (25)

1 _ n+k S
(1 =r2)...(A—=p2)(I—(p +1)2). ..(1 —nz) ;{ k } '

r

Expressing this product as a convolution wc obtain

AR A R

and thetheorem follows by suitable changes of variable.
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Theorem 19. The r-Stirling numbers of the first kind satisfy

(_1)'[;], = [m _': N k]p{f: :}P(—l)", n>r>p >0 (42)

k

Proof: From equation (24)

N, Z(z+p)... (2+n—1)
= —1)=
E[m1z 2Z(z+7r)... (z+n—1) GCip) . (zrir=1)’ n>r>p>0.

m
Let t = -1/z. Then

2TP

] r—1 v i
(zt+p) .. (z+r—1) (=pi).. . U=(r=10)) (—2) Z:{T_]}P(—-z)

by equation (25). Hence™

2": [Z]zm B Z {ri 1} (=)t }; [?Lza'
BLE SR DLt § I (15

’p
|

In particular for p = 0 we have an alternative expression for the r-Stirling numbers of the
first kind in terms of regular Stirling numbers of both kinds,

(—1)'[:;]r =3 IR (O (13)

k

This, combined with (27), gives an identity involving only regular Stirling numbers

0 e o A e S R

*
The last equation is a polynomial identity in r.Forr = 1, we obtain equation (30) again.

Theorem 20. The r-Stirling numbers of the second kind satisfy

o —r+k
(=1) {m} =2 a0, }(—l)", S n2r2p>0 (45)
r k P

- 18 -



Proof: The ordinary generating function of the r-Stirling numbers of the second kind can be
rewritten as

zm _Z™M1—p2)...( —-(r—l)z)'

(1—72)... (0 —mz2) (1—p2)...(1 —mz)
Putting t = —1/z
r .
- o= (r - =P~ " - = —z)
(1 —pz)...0 — (r —1)2) (t+p)...(t+7—1) iEL,L( 2%,

so that

o} -l o)

m

and the result follows by equating the cocflicient of 2™ on both sides. §

The counterpart of equations (43) and (44) is obtained by making p = 0 in (45). We get

oS e e

k

the alternate expression for r-Stirling numbers of the sccond kind in terms of regular Stirling
numbers of both kinds. This formula combined with (32),gives an identity in regular Stirling

numbers only:
S =i e w2

k k
which is a polynomial identity in 7.For 7 =1, this is equation (35).

Theorem 21. The r-Stirling numbers of the first kind have the ‘horizontal” generating
function (2, eq. 5.8]

(x +7)" = Z[:::] z*, n > 0. (48)
K r .

Proof: Replacing in equation (24) n by n + r and z by X, we obtain

n+r ’ -
Z[ P Jr:zk'—-—'x(:v+r) )

and the result follows. J

Note the equivalent formulation of Theorem 48

(z—r)*= ;[:_:Irl(—l)"_kzk, n>o. (19)

~ 14 -



Theorem 22. The r-Stirling numbers of the second kind have the ‘horizontal” generating
function [2, cq. 3.4]

(z+7)" = ;{"“} ) (50)

k+r),

Proof: Usc the identity

e(z+f)t — ert(l + (et_ 1))77 _ th (e _1

k>0

and Theorem 12, to obtain

T+ +
DI B A B

n>0
i -

The equivalent forrn of Theorem 50 is

(z—r)=> {n * 'r} (—1)"kzF,  n>0. (51)
k

k+r],

§10 Identities from exponential generating functions
The following two theorems are an immediate consequence of the generating functions (36)

and (38).

Theorem 23. The r-Stirling numbers of the first kind satisfy

l+m n+r+s _Z n\k+7r]|n—k+s (52)
m 'l+m+'r+sr+_,_ kJil+r],l m+s 3°

k

Theorem 24. The r-Stirling numbers of the second kind satisfy [2,eq.3.11]
l+m n+r+s __Z n\[k+7r] [n—k+s (53)
m JU+m+r+sf = \kJU+r) L m+s [

_ 15 -



These theorems have also a combinatorial interpretation. For Theorem 23 consider per-

mutations of the set (1,. . ., n + r+ 8} such that 1,.. ., + s are in distinct cycles, each cycle is

colored cither red or green, the cycles containing 1,. . . , r arc all green, and the cycles containing

r+1,...,r+s arc all red. The total number of such permutations with [+ 7 green cycles and
. I+m n4r+s . .

m + sred cycles is ( ™ )[l+m+f+-!]r+3 because each permutation with {4+ m + 7 + s cycles can

be colored in (ltnm) ways. On the other hand, we can first decide which k elerncnts, besides
ly..., 7, should be in the !+ r green cycles; the remaining n — k + 8 elements must form the
m + 8 red cycles. Theorem 24 has a similar intcrprctation.

§ 11 Generalized or thogonality

Theorem 25. The r-Stirling numbers satisfy (2, eq. 6.3]

ShrfEe co=con(R)e - (54

k

2 [:l:i],,{: : :}r(”l)k = (“1)'"(:1)(7 —-p)" ™ (55)

k

Proof: By (48) and (51)

oo g oS b B o

Equation (54) is obtained by comparing the coeflicient of z™ on both sides. Similarly, consider
the identity (from (50) and (49))

e-per =137} et =) Sl o

k k X

- and equate the coefficient of z™ on both sides to obtain (55). 1

§ 12 The r-Stirling polynomials

We have seen that the r-Stirling numbers are polynomials in 7. The r-Stirling polynomials
are defined for arbitrary x as

— k] =
Ry(n,m, ) = Z (:)[n }zk integer m,n > 0, (56)
k

m

- 16 -



and

Ro(n, m,z) = Z (Z){n B k}zk integer m,n > 0. (57)

p m
In particular, by equations (27) and (32), when r is a positive integer, Ryi(n, m, r) = [2*"] and

m-+r
n+r}.

Ra(n, m,7) = {717

The r-Stirling polynomials have a combinatorial significance given by the following two
theorerns.

Theorem 26. The polynomial Ry (n, m, x) enumerates the permutations of the set
{1, ..,n +1} having m+1 left-to-right minima by the number of right-to-left minima different
from L.

Proof: Expanding raising powers, we get

winm = LB =T

1 e

All the left-to-right minima except 1 must occur at the left of 1, while all right-to-left minima
except 1 must occur at the right of 1. Hence the number of permutalions having m + 1 left-
to-right minima, ¢ + 1 right-to-left rninima, and k elements at the right of lis (’kl [";k][ﬂ

Note that by Theorern 23 used in the above expansion we obtain

) m”)[ n ]x". (58)

m m+ 1

Theorem 27. The polynomial Re(n,m, x) enumerates the partitions of the set {I,. .., n +1}
into m non-empty subsets, by the number of elements different froml, in the set containing 1.

Proof: Obvious, from decfinition (57). 1

The r-Stirling polynomials have remarkably simple expressions in operator notation, which
generalize the well known formulae for regular Stirling numbers.

Theorem 28.

1 o™ _
Ity (n,m, o) = — ——-u". 5)
1(n,m, 2) m! dz™ v ()
Proof: From (48)
am - om
m!Ry(n,m,z) = ;—-;l—(x + ) P

Jdy ] az™

- 11 -



Theorem 29.

Ry(n, m, x) = #Amz". (60)

Proof: Similar to the proof of Theorem 28. A direct proof is based on combining (8) and (18)
to obtain
n+r n+r—1 n+7r—1
=(m+1) .+
m+r), m+r ),_, m+r—1) _,

ARy(n, m — 1, x) = mRz(n, m, z)

-

which implies

and thercfore

A™z™ = A™Ry(n, 0, X) = m!Ra(n, m, x).

Corollary 30 (2, cq. 3.8]

Ry(n, m, z) = % Z (T)(— )™ *(z + k)™ (61)
"k

Proof: Use the formal expansion

A™ = (E - 1)™ = ; (1:)(~’l)"‘"’°E",

where E is the shilt operator, Ef(z) = f(z +1). 1

Because of these properties the r-Stirling polynornials, especially the r-Stirling polynomials
of the second kind, were studied in the framework of the calculus of finite differences. Nielsen
[19, chap. [2]developped a large number of formulae relating Rg(n, m, x) to the Bernoulli
~and Euler polynomials. (Nielsen’s notation is A 2 (z) = m!Ra(n, m, x).) Carlitz[3] showed
- by different means that the 7-Stirling polynomials arcrclated to the Bernoulli polynomials of
higher order and also studicd the representationof 12y(n, n — &, x) and of Ry(n,n — k, x) as ~
polynomials in n. ‘The asymptotics of t h e numbers {:::er}, were derived in [8]. Broder [1]
obtained several formulas relating 7-Stirling polynomials of the second kind to A belian sums
[23,§1.5], for example

> (n)( FRFP(y F k)= : x4y + n)" *Ro(k+p, k%),  p>o0. (82
k k 0
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$13 T-Stirling numbers of the second kind and Q-series
Knuth defined' the Q-series as

Qn(al,az, el ) = Z (n)k!n_kak.

(63)
k>1 k
For a certain sequence al, ag,. .., this function depends only on n. In particular, Q.(1,1,1,...)
is denoted Q(n).

Q-series arc relevant to many problems in the analysis of algorithms [13], for instance

representation of equivalence relations [16], hashing [ 12, §6.4], interleaved memory [ 15}, labelled
trees counting [21], optimal cacheing[13], p ¢rmutations in situ [25], and random mappings [11,
§3.1].

It can be shown that the Q-series satisfy the recurrence

Qn(aly2‘12;3‘13:'-- ) = nQﬂ(“l:“Z —al7a3_a2"")- (64)
Theorem 31.
h h+1 . nnt
(i} "3} )=

Proof: Note that from (8)

k+h k+h—1 k+h—1}
— =k
k J, - k-1 J, k ,

for all k > 0if h > 0. Applying this together with (64) » — 1 times, we obtain

h h+1 A1 1 2
e = 2
R T B (H I
_—_n"“'Qn(612,,2622,,...)
One more application of (64) for r > O results in

h S ATV
n"Qn(b1,r,02,r,...) =n"—

nT
and for r = 0 results in

n"Q.(1,0,0,...)=n"
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Corollary 32. Let

1(k) = Za'{k+:—1}r’

r

where a, depends only on r. Then
Q'n(f(l)) 2f(2)) 3f(3)) L ) = nh(Q'n(ah az,asg,. . ) - aO)- (66)
|

In [13] Knuth introduced the half integer Stirling numbers {”+,:/2}.Thcse numbers satisfy

the recurrence
n+1/2
{ k/}=m n<b

{" +n1/ 2} = n, n >0, (67)

{n fkl/2} _ k{" —k1/2} N {nkf{?}, k£n,n >0,

which has the form of (15) and therefore has the solution

{n +k1/2} B> {:}r (68)

r>1

Hence, by Corollary 32

Qn({h +11/2}, 2{h TL23/2}, N ) — n*Qu(1, 1,...) = n*Q(n), (69)

which is in fact the equation used to define the half-integer Stirling numbers in [L3].
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