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§1 Introduction

} The r-Stirling numbers represent a certain generalization of the regular Stirling numbers,
which, according Lo Tweedic [26], were so named by Nielsen [18] in honor of James Stirling,
who computed them in his “Methodus Differentialis,” [24] in 1730. In fact the Stirling nurnbcrs
of the first kind were known Lo Thomas Herriot [15]; in the British Muscurn archive, there is a
manuscript [7] of his, dating from around 1600, which contains lhc expansion of the polynomials
(7) for k < 7. Good expositions of the properties of Stirling numbers arc found for example
in [4, chap. 5],[9, chap. 4], and [22].

In this paper the (signless) Stirling numbers of the first kind are denoted [2]; they are
defined combinatorially as the number of pcrrnutalions of lhe set { 1,...,n}, having m cycles.
The Stirling numbers of the second kind, dcnolcd {-}, are equal to the number of partitions
of the set {1,...,n} into m non-empty disjoinl sets. The notation 1 and {} seems to be
well suited to formula manipulations. It was introduced by Knuth in [10,§1.2.6), improving
a similar notational idea proposed by I. Marx [20]. The r-Stirling numbers count, certain
restricted permutations and respectively restricted partitions and are defined, for all positive
r, as follows:

” The number of permutations of Lhe set {l,...,n}

| = having m cycles, such that the numbers 1,2,...,r are (1)lr in distinct cycles,

and

n The number of partitions of the set (1,. . . ,n} into

: = m non-cmpty disjoint subsets, such that the numbers (2)
r 1,2,...,r are in distinct subsets.

There exists a onc- to-one correspondence between permutations of n numbers with m cycles,

and permutations of n numbers withm lell-to-right minima. (This corespondence is itnplicd in

[22, chap. 8] and formalized and generalized in [6].) ‘To obtain theimage of a given permutation
with m cycles put the minimum number within each cycle (called the cycle leader) as the

lirst element of lhe cycle, and list all cycles (including singletons) in decreasing order of their
minimum clement. After removing parentheses, the resull, is a permutation with m left-to-right

- minima. If the nurnbers 1, ...,r arc in distinct cycles in Lhe given permutation, then they

arc all cycle leaders andthe last 7 left-to-right minima in lhc image permutationare exactly

r,r—1,..., 1. ‘Thercforc wc have lhc alternative definition

The number of pcrrnutalions of the nurnbers 1,. . . , n

1 having m left-to-right minima such that the numbers (3)= 12,...,r arc all left-to-right minima (or such that )
thenumbers 1, 2, ..., 7 occur in decreasing order).

Iiach non-emply subset in a permutation of an ordered set has a tninirnal element; a partition

of the set {I,...,n} into m non-empty su bscts has m associated minimal elements. This
terminology allows the alternative definition

n The number of ways Lo partition the set {1,..., n}
| = into m non-empty disjoint subsets, such that the num- (4)Jr bers 1,2,...,rareall tninirnal elements.



Note that the regular Stirling numbers can be expressed as

7n n n n

m mj, m)  \m),

and also as

n n n n

m mf, m mj,

Another construction that turns out to be equivalent to the r-Stirling numbers was recently

discovered by Carlitz[2],[3], who began from an entirely different type of generalization,
weighted Stirling numbers. Also equivalent are the non-central Stirling numbers studied by

Koutrns [17] starting from operator calculus definitions (sec section 12). The simple approach to
be dcvcloped here leads to further insights about these numbers that appear to be of importance

because of their remarkable properties.

§2 Basic recurrences

The r-Stirling numbers satisfy the same recurrence relation asthe regular Stirling numbers,

except for the initial conditions.

Theorem 1. The r-Stirling numbers of the first kind obey the “triangular” recurrence

n

m
,

n

| | = Om,r, n =r, (7)m Tr

n n—1 n—1

= (n — 1) + , n> r.
mj. m | m— 1]

“Proof: A permulation of the numbers I, . . . , n with m left-to-right minima canbe formed from
a permutation of Lhe numbers 1, . .., n — 1 with m left-to-right minima by inserting the number

n after any number, or {rom a permutation of the numbers 1,. . . , n — 1 with m —1 left-to-right

minima by inserting Lhe number n before all the other nurnbcrs. IFor n > r this process does
not change thelast r left-to-right rninima. |B

Theorem 2. The r-Stirling numbers of the second kind obey the “triangular” recurrence

n

| = 0, n <r,m r

n

| = Om,r) n=r, (8)mj

=m + ; n >r.
m). m J m—1},
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Proof: A partition of theset{l,...,n} into m non-empty subsets can be formed frorn a
partition of thesct (1,..., n — 1} into m non-empty subscts, by adding the number n to any
of the m subsets, or from a partition of theset{l,...,n—1} into m — 1 non-empty subsets,
by adding the subset {n}. Obviously, for n > r this process does not influence the distribution

of the numbers 1,...,r into different subsets. §

The following special values can be easily computed:

n=l =n ez (9n T n r

mj. mj

n| n

e— —1 —2)...r=or""" > 1; 11HE CE EE AT (11)

{1} =r a> (12)Tr r

The r-Stirling numbers form a natural basis for all sets of numbers {ant} that salisfy the
Stirling recurrence except for a, ,. That is, the solution of the Stirling recurrence of the first
kind

Ani = 0 n <0
A CY (13)

Ankt = (n — l)a,—1k + An—1,k—1) k = n,n > 0,

is

} An, k — > " (a, rr Qy| r—1)- (14)
H - k . H tr

Sirni larly, the sol u tion of

bp = 0 n )
CT (15)

bok == kbp 1, + bn k-1, k# n,n 20,

1s

n

bn,k — 2en } br—1,r—1)- (16)
I'or concrctencss, the following tables were compuled using lhe recurrences (7) and (8).
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8 k—=1k=2 k=3 k=4 k=05 k=286 {i}, k=1k=2 k=3k=4k=5k=28
n=1 1 n = | |

n=—2 | 1 n=—2 1 1

n=23 2 3 n=~3 3

n=4 6 11 6 n = 4 7 6

n==5 24 50 35 10 n=>5 15 25 10

n=286| 120 274 225 85 5 n==6 31 90 65 15

TableI. r=1

1, k=2 k=3 k=4 k=5 k=26 k=1 {} k—=2 k=3 k=414k=5 k=6 k=12 2

n=—2 I n= 2 |

n=3 2 | n=>3 2 |

n=4 6 5 n=4 4 5

H=5 24 26 9 n=>5 3 19 9

n==86| 120 154 71 14 n==6 16 65 55 14 {

n=7| 720 1044 580 155 20 n="17 32 211 285 125 20

Table2. vr = 2

[1] k=3 k=4 k=5 k=6 k=17 k—8 {"} |k=8 k=4k=5k=6k=7 k=383 k’3

n=—=3J3 I n=—3 1

n—4 3 l n=414 3 1

n—=—25 12 7 | n ==9 9 7 |

n == 6 60 47 12 n =6 27 37 12 |

n=:7 360 342 119 18 n=7 81 175 97 18

n=28| 2520 2754 1175 245 25 { n=28| 243 781 660 205 25 1

Table3. r = 3
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' §3 “Cross” recurrences

: The “cross” recurrences relate r-Stirling numbers with different r.

| Theorem 3. The r-Stirling numbers of the first kind satisfy

n 1 n n

= — — 1. A) n>r>l1. (17)
mf r—1I\|m—-1],_, m — 1 —_ ,

Proof: An alternative formulation is -

nl n n

mj, m— 1] _; m— 1]

The right side counts the number of permutations having m —1 cycles such that 1,...,r—1

arc cycle leaders but r is not. This is equal to (r—1)[ 1], since such permutations can be
obtained in r — | ‘ways [rom permutations having m cycles, with 1,. . . , r being cycle leaders,

by appending the cycle led by r at the end of a cycle having a smaller cycle leader. §

; Theorem 4. The r-Stirling numbers of the second kind satisfy

n n n—1
_ —(r—1) : n>r > 1. (18)

mj, m r—1 m r—1

Proof: The above equation can be written as

n— | n 7

mJ, mj,—1 Ut),

The right side of the equation counts the number of partitions of (1,. . . , n} into m non-empty

subsets such that 1, . .. ,r— 1 are minimal clements bul = is not. But this number is equal

to (r — 0{".'}._, because such partitions can be oblained in r — 1 ways from partitions of
{1,...,n} —{r} into m non-empty subsets, such that, 1, . . ., r— | arc minimal, by including r
in any of the r — | subscls containing a smaller clement. §

§4 Orthogonality

- The orthogonality relation between Stirling numbers generalizes to similar relations for

r-Stirling nurnbcrs.
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Theorem 5. The r-Stirling numbers satisfy [2,eq.6.1]

n k k (—1)"6.m,n, n > Ty
rP UTH), 0, otherwise.

Proof: By induction on n. For n < r the equality is obvious. orn =r

r k r
—1)F = (-1)7 = (1) 6pm,S05)ff 0 = Cr} = Cr

For n > r, using Theorem 1 and the induction hypothesis

— — (mn —=1)bp—1.m{(—1)" —-1SE cr c= voncrr SET 0) 05k r r k r r

and (assuming m>r) by Theorem 2 applied to the right sum, and the induction hypothesis

n k _ B an

- lm) us

= On,m(—1)".

I

ITence for each r,the r-Stirling numbers form two infinite lower triangular matrices satis-

fying

() j fz .
Gre 53] = fer tvr} aJl, iJ,

where

Lo i220
0i>5 = : :

0, I< J.

_and we also have

Theorem 6.

kl {m (—1)"0m,n, n>; |

>| | Ue) (1) = (21): oe LT, r 0, otherwise.
| |

These orthogonality relations generalize as shown in sectionLl.

§o Relations with symmetric functions

The Stirling numbers of the first kind, 12], for fixed n, are the clemen tary sy mmetric
functions of the numbers 1, ...,n (sce, e.g., [1] or [5]). The r-Stirling numbers of the first kind
are the elementary symmetric functions of thenumbersr, . . . | n.

A



Theorem 7. The r-Stirling numbers of the first kind satisfy

= ) 1122. . . i, n, m > 0. (22)
n - my . . .

r r<t; <tg---<<ty, <n

Proof: Consider a permutation of the nurnbers 1, ..., n having n— m left-to-right minima.

How many such permutations arc there that have a given set of minirna? Denote the numbers

that are not rninima by 21,%g,...,%,, Where 2; <129 <...< 2, < n. A perrnutation with

the prescribed set of left-to-right minima can be constructed as follows: write all the minima

in decreasing order; insert2; after any of the 7; — Ll minima less than 2;; insert zg after any
of the 19 — 2 minima less than tg, or after zy; etc. Clearly there arc 1;— 1 ways of inserting

21, 12 — 1 ways of inserting 29, and so on. Hence the total nurnber of permutations with the

given minima is (¢;—1)(¢g— 1)... (i, — 1). If the numbers1,...,r arc minima, then 7 > r.
Surnming over all possible sets of left-Lo-right minima we get

| z= > (3p—)(Ga—1)...G, — 1)no - r Ch ChereTg
TSS m=" n,m2> 0

ry<tr<i <n

i

The above theorem can also be proved by induction, but, it is more interesting Lo sec the

combinatorial meaning of each term in the sum. Tts counterpart for r-Stirling numbers of the
second kind is

Theorem 8. The r-Stirling numbers of the second kind satisfy

n+ m . :

| = > 1122. . . Tm, n,m> 0. (23)

Proof:Count the number of” partitions of theset {1,..., n + m} into » non-empty subsets, when
the n minimal elements are fixed. Denote the elements that are nor minimal by z,. . . , Tm,

whore zx <...<z,. IT7 welel i; be the number of minimal clements less than x5, then
1 S12 <+- <_im <n. Clearly z; can belong only Lo subsels having a minimal element
less than it, so thal there are 2; ways Lo place it. Ilence the total number of partitions with a
given sct of minimal elements is 2329... 1,. If the numbers, . . . 7 arc all minimal elements,
then zy>. Summing up over all possible sets of minimal elements completes Lhe proof. J

Therefore Lhe r-Stirling numbers of the second kind, "tm, arc the monomial symmetric
functions of degree m of theintegersT, . . ., n.

- 8 -



§6 Ordinary generating functions

Corollary 9. The r-Stirling numbers of the first kind have the “horizontal” generating

function

>] . Z(z+r)(z+r+1)..(2+n—1), n>r > 0; (24)FANE 24

k kl, 0, | otherwise,

1

Corollary 10. The r-Stirling nymbers of the second kind have the “vertical” generating

function [2,eq. 3.10]

zm

rE eT SYa m > r > 0;

>d=) (UL =r2)(l = (r+ D2)...(1— m2)’ ==" (25)mj.
k. 0, otherwise.

|

The above identities follow immediately from equations (22) and (23).

§7 Combinatorial identities

Lemma 11.

n n—r\ln—p—=k T

MISES rl a IIT) (26)m k m-—p |
r k r—p

Prool: To form a permutation with m cycles such thatl,..., r are cycle leaders first choose

“k numbers to be in theeyelesled by 1, . . . | p and construct these cycles; this can bc done in
(“;>[“a”], ways. The remaining n-p-k numbers must form m-p cycles such that p+1,..., r

arc cycle leaders, which can be clone ina ways. Using equation (11)and summing forr—p

all & completesthe proof. @

In particular for p =r we oblain a definition of r-Stirling numbers of the first kind interms

of regular Stirling numbers of the first kind (2, eq. 5.3],

n n—r\|ln—r—Fk| ¢ n—r k —
= rt = rE, 27

r k k

This shows that i]s for m,n> 0 is a polynomial of degreen —m in r with leading
cocllicient (7) and Lemma Lt can be generalized to a polynomial identitity in p and 7:

9 _



Theorem 12.

n+r n\ln—k+p ry
= | —p)~. 28el, =Zw en a

| _

For p = r— 1 we get another “cross” recurrence

n — —1—-k

MED(ag) tiny BC (0mj, - k m—1 [_,

Recall that I] = MR for n > 0, so that

n n—1\ln—1—-k
= k!MEM) Py LES 2

an identity that appears in Comtet [4, eq. 5.6¢], and also in Knuth [10, eq. 1.2.6(52a)].

Lemma 13.

n _ n—r\[n—p—k k

= SCOn sn rzeze a
Proof: By combinatorial arguments analogous to the proof of Lemma 11. J

The counterpart of equation (27) is [2, cq. 3.2]

x k

nf, =Z(t om k m—T
r k

which shows that a for m, n > 0is also a polynomial of degree n-m in r, whose leading

coefficient is (2). As dexfre this implies a generalization of Lemma 13:

Theorem 14.

n+r| n\|{n—k+p k

+ + 2 (X m+ p jo Pp)" (33)
B

The counterparts of cquations (29) and (30) are

n n—r\fn—1I1—k n—r\[r—1+k)

ADI (a) rd SES 3 (ag rs EEEmj - m—1 J_ r k m—1 }

and

n n—1 k

== 0 35

which is a well known expansion.

— 10 --



§8 Exponential generating functions

Theorem 15. The r-Stirling numbers of the first kind have the following “vertical” exponen-

tial generating function

tf 1 Y 1 \\
k —{ —— 1 | In| —— > 0;> kr 2 = (6) (+) m=" (36)

~ m+], k!
0, otherwise.

Proof: The above exponential generating function can be decomposed into the product of two
exponential generating functions, namely

1 1 \\ kz
“A1nl —— — c_

and

— prs VANES ro —.
} — |(; z P k eo k!

Their product is Co

| Zz" n\| k| ——% ZV n+

EDM) bE |
by equation (27). 1 ;

The above theorem’irnplics the double generating function [2,eq. 5.3]

k rt

Sle m=) (37)— m+], k! I — 2

Theorem 16. The r-Stirling numbers of the second kind have the following exponential

_ generating function 2, eq. 3.9]

|

3 k +r CA RewL (e )™, > 0; (38)m+r)_ k!
k r 0, otherwise.

Proof: Similar to the the proof of Theoremll, using the expansions

k

rz ___ k<
r= rt

k

and

1 k) 2"
—fp® — 1 m — —m! (€ ) 2- k!’

together with cquation (32). |
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The double generating function for r-Stirling numbers of the second kind is

> kt 2 im = exp(t(e* — 1) 12). (39)m+) ki
k.m y

§9 Identities from ordinary generating functions

Theorem 17. The r-Stirling numbers of the first kind satisfy

n p n

MI SIN | kJ, =P = (40)

Proof: From equation (24)

: 277P(z+r).  (2+p—1)= >| P |) — |p — k

Express the product

_ —n n —~k

2’ Plz +7). (2 +p —1)zP (2 +p)... (z +n —1) 5 Ri
as the convolution of the two generating functions and equate the coefficient of z™™™ on both

sides. [|

Theorem 18. The r-Stirling numbers of the second kind satisfy

+ k — k

hx {r Hr } , r<p<nm. (41)mj . p J. Um J

- Proof: T'rom (25)

| ED ih(1 —r2)...(I=pz)(I—(p +1)2). ..(l— nz) - k J),

[Expressing this product as a convolution wc obtain

n+m p+ k| [n+m— k

SA AED YSn r k p r n p+l1

and Lhe theorem follows by suitable changes of variable.

19 —



Theorem 19. The r-Stirling numbers of the first kind satisfy

In n k—1
1)" — —1)k >rial I Eh ) n2r>p20 (42)

Proof: From equation (24)

Nm, 2 (z+p)... (z+n—1)
z 7 =20z+r)... (z+n—-1)=—— 2+ 7° > > 0.

: Lett =-1/z. Then

FAL I ?
—=ee= — r—1 — —1(z+p)... (z+r—1) (1=pt)...({=(r—1)t) (—2) LEN J 2)

by equation (25). Hence™

m ~ |r— 1 ~ | 9
m 1 p ) p

k n i i

(=1) 2. 2 r—1) Im—r+1+k (=1)
m 2 Spe +p

|

In particular for p = 0 we have an alternative expression for the r-Stirling numbers of the
first kind in terms of regular Stirling numbers of both kinds,

i (-1| "| = > " b= (—1)* n>r>1 (43)
mj - m—r+kjlr —1 ’ = =

This, combined with (27), gives an identity involving only regular Stirling numbers

n\| k| —% n+r |[k+1r—1 k
T == — > :2. (le) 2 . +r + i r— 1 b 1" "2 0r2l (14)

The last equation is a polynomial identity in r.For+»= 1, we obtain equation (30) again.

Theorem 20. The r-Stirling numbers of the second kind satisfy

An —r+k

(=1) | =D ( } (1%  n2r>p > (15) :mj. Pp m >

_ 18 _



Proof: The ordinary generating function of the r-Stirling numbers of the second kind can be
rewritten as

z™ _2™(1—pz)...q —(r—1)z)
(1—72)...0—-mz)  (—-pz2)...(01—mz)

Putting t =—1/z

(1 =p2)...0 —(r—=12)=tP"(t+p)..(t+7r—1) = MU (—2)"%,7 Lp

so that

AR {aba>. £ = Y . (—2) ' 22,m tn r 1 Lp 2 mip
and the result follows by equating the coefficient of 2™ on both sides. J

The counterpart of equations (43) and (44) is obtained by making p = 0 in (45). We get

- n rifn —r+ k k

the alternate expression for r-Stirling numbers of the second kind in terms of regular Stirling

numbers of both kinds. This formula combined with (32), gives an identity in regular Stirling
numbers only:

which is a polynomial identity in r.For # =1, this is equation (35).

Theorem 21. The r-Stirling numbers of the first kind have the “horizontal” generating

function (2, eq. 5.8]

) warpr=3 "TT z* n>0 (48)
k k+r r — .

Proof: Replacing in equation (24) mn by n + r and 2 by X, we obtain

n+r =

>| k | ot =a"(z + 1),k r

and the result follows. [|

Note the equivalent formulation of Theorem 48

n nor \n—k _kTr — Tr) = —1 > 0. 19orp = SN Er, az (19

~ 14 -



Theorem 22. The r-Stirling numbers of the second kind have the “horizontal” generating

function [2, cq. 3.4]

(+r = S47 TLE, a0 (50)
—~\k+r), -

Proof: Usc the identity

ett= emt(1+ (ef — 1)” =e) —
k>0

and Theorem 12, to obtain |

A n+r

SEED OED NV Eoe = TT.
!

n>0 Uk k+r),

1 -

The equivalent forrn of Theorem 50 is

@—rr=" CRF, a>. (51)
—~ lk+r)," —

§10 Identities from exponential generating functions

The following two theorems are an immediate consequence of the generating functions (36)
and (38).

Theorem 23. The r-Stirling numbers of the first kind satisfy

| 0% n+r+s = n\lk+7r|in—k+s (52)m Jll+m+r+s| —\kJll+7]l m+s |,

|

Theorem 24. The r-Stirling numbers of the second kind satisfy [2,eq.3.11]

(rr n+r+s 3 n\[k+7)] (n—k+s | (53)m l+m+r+s),., - kJUU+r) | m+s J,

_ 15 -



These theorems have also a combinatorial interpretation. For Theorem 23 consider per-

mutations of the set (1,. . ., n + r+ s} such that 1,..., 7 +s are in distinct cycles, each cycle is
colored either red or green, the cycles containing 1,. . . , r arc all green, and the cycles containing

r+1,...,7 +s arc all red. The total number of such permutations with {+r green cycles and

m + sred cycles is (7) Isl,+s because each permutation with {+ m + 7 + 8 cycles can
be colored in (+m) ways. On the other hand, we can first decide which k elerncnts, besides
l,..., 7, should be in the [+4 r green cycles; the remaining n — k + 8 elements must form the

m + 8 red cycles. Theorem 24 has a similar intcrprctation.

§ 11 Generalized or thogonality

Theorem 25. The r-Stirling numbers satisfy [2, eq. 6.3]

n+r| [k+0p k n proms
—1 — (—1\™ Yn—mD0] HAR Sd J i (i (54)r P

ho for) . (7) _—1)*F = (-1)™ r—op)" Tm. 55DIRARFR EEE El (EE (55)
Proof: By (48) and (51)

I n k n +r k + Pp k—t 1
Ir — = _— = —-1 t,.}SLED > i SCRE I HOHIp SR 4 [Ee

Equation (54) is obtained by comparing the coefficient of z™ on both sides. Similarly, consider
the identity (from (50) and (49))

: i n+ r k n+r k+p k—i, a
— p+ — — ne — —1 1,1SRR RH LS bolHBi [ae

- and equate the coefficient of £™ on both sides to obtain (55). [|

§ 12 The r-Stirling polynomials

We have seen that the r-Stirling numbers are polynomials in r. The r-Stirling polynomials
are defined for arbitrary x as

Ry(n,m, x) = > n\n =k z integer mn > 0 (56)
J } } - k m > tli >

_ 16 —



and

n\[n—k

Ra(n, m, x) = > (iN i. bat integer m,n > 0. (57)
In particular, by equations (27) and (32), when r is a positive integer, Ri(n, m, r) = [or] and

The r-Stirling polynomials have a combinatorial significance given by the following two
theorerns.

Theorem 26. The polynomial Ry (n, m, x) enumerates the permutations of the set

{1, ..,n +1} having m +1 left-to-right minima by the number of right-to-left minima different
from 1.

Proof: Expanding raising powers, we get

n\n —k| © n\n —k kl .
Ri(n, oo fk — xtm= SQ p=
2-201 k

All the left-to-right minima except 1 must occur at the left of 1, while all right-to-left minima

except 1 must occur at the right of 1. Hence the number of permutations having m + 1 left-

* to-right minima, # + 1 right-to-left rninima, and k elements at the right of Iis CH F(5]- -
Note that by Theorern 23 used in the above expansion we obtain

m+ 1 n :
Rn T) = * 58

i |

Theorem 27. The polynomial Re(n,m, x) enumerates the partitions of the set {I,..., n + 1}
into m non-empty subsets, by the number of elements different froml, in the set containing l.

Proof: Obvious, from definition (57). |

The r-Stirling polynomials have remarkably simple expressions in operator notation, which

generalize the well known formulae for regular Stirling numbers.

Theorem 28.

1 o™

12 (n,m, r) = x”, (52)
m! dz™

Proof: From (48)

am - a™ -

m!Ry(n, m,z) = oy + Y) = oa”
_

~ 17 -



Theorem 29.

L

Ran, m, x) = — AT", (60)m!

Proof: Similar to the proof of Theorem 28. A direct proof is based on combining (8) and (18)
to obtain

n+r [n+ r—1 n+r—1
= (m +1) + ,

m+r), m+r ), _, m+r—1)__,

which implies

ARg(n,m — 1, x) = mRy(n, m, z)

and therefore

A™z™ = A™Ry(n, 0, x) = m!Ra(n, m, Xx).

|

Corollary 30 2, cq. 3.8]

I m
R _ : 1ym—k n :o(n, m, x) — 2 (7) L)™ (x + k) (61)

Proof: Use the formal expansion

™m

A" = (E — 1)"= ~1)" EX© m= 3 (Jom
where E is the shift operator, Ef(z) = f(z +1). |

Because of these properties the r-Stirling polynornials, especially the r-Stirling polynomials
of the second kind, were studied in the framework of the calculus of finite differences. Nielsen

[19, chap. [2]developped a large number of formulae relating g(n, m, x) to the Bernoulli
and Euler polynomials. (Nielsen’s notation is A 2(x) = m!Re(n, m, x).) Carlitz[3] showed
- by different means that the 7-Stirling polynomials arcrelated to the Bernoulli polynomials of

higher order and also studied the representationofl I2y(n, n — k, x) and of y(n, n — k, x) as ~

polynomials in nm. The asymptotics of t h e numbers Sas were derived in [8]. Broder [1]
obtained several formulas relating r-Stivling polynomials of Lhe second kind to A belian sums

[23, §1.5], for example

n n— _

(1) FREY =k) T=) Pky +n) Rak pi kE) p> 0. (52)x C0

— ]8 -



$13 T-Stirling numbers of the second kind and Q-series

Knuth defined the Q-series as

n —k

Qnlay,az,...) = > (sn ag. (63)
k>1

For a certain sequence al, ag,. .., this function depends only on n. In particular, Qn(1,1,1,...)
1s denoted Q(n).

Q-series arc relevant to many problems in the analysis of algorithms [13], for instance
representation of equivalence relations [16], hashing [ 12, §6.4], interleaved memory [15], labelled
trees counting [21], optimal cacheing{13], p ¢rmutations in situ [25], and random mappings [11,

It can be shown that the Q-series satisfy the recurrence

. Qnl(ai,2a9,3a3,... ) = nQn(ay, az — ay, a3 —ag,...) (64)

Theorem 31.

h h +1 hE"
ce =n" —. 65

Proof: Note that from (8)

k+h k+h—1 = fFkJ, k—1 J, kJ,

for all k > 0if A > 0. Applying this together with (64) h — 1 times, we obtain

h h+1 he | 1 2
cee |= n , 2 yooa) ft) al) of)

— ph! Qn(b1>r, 202 >, eo .)

One more application of (64) for r > 0 results in

nt

n*Qu(b1,r, b2,ry-..) = 0" =
n

and for r = 0 results in .

n"Q.(t, 0, 0,...)= nh”

19 -



Corollary 32. Let

k+h-—1

BE CEOMC a §
where a, depends only on r. Then

| i

In [13] Knuth introduced the half integer Stirling numbers {ntl2}. These numbers satisfy
the recurrence

n+ 1/2

C= neo
n+ 1/2

An + 1/2 n—1/2 n—1/2
{ b= bd oY h k#£ n,n > 0,

which has the form of (15) and therefore has the solution

_ A (68)
k - r>1 k r

Hence, by Corollary 32

[h + 1/2 h+3/2 A | h
Qn | y 2 J" oon |=0"Q0(1, 1...) =n"Qn), (69)

which is in fact the equation used to define the half-integer Stirling numbers in [13].
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