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ABSTRACT

The universal relation model aims at achieving complete access path independence by relieving the
user of the need for logical navigation among relations. It assumes that for every set of attributes
there is a basic relationship that the user has in mind. Two fundamentally different approaches to
the universal relation model have been taken. The first approach sees the universal relation as a
user view, about which he poses queries. Specifically, a representative instance is constructed, and .
queries are answered based on its non-null part. The second approach sees the model as having
query-processing capabilities that relieve the user of the need to specify the logical access path. The
relationship between the user’s view and the computation answering a query is a central issue that
systems supporting a universal view of data must handle.

We introduce “lossless” and “monotone” expressions and show that the representative instance
construction has these properties. Also, every lossless monotone expression produces a result that is
a subset of what the representative instance produces. We show that the existence of any first-order
formula to simulate the representative instance is equivalent to a “boundedness” condition on the
dependencies defining the database scheme. In addition, whenever there is a first-order formula to
simulate the representative instance, then we can do so with an expression of simple form: the union
of tablean mappirgs. We close with a discussion of some of the problems with the representative
instance approach that suggest better universal relation models may be possible.

I. Underlying Assumptions

We assume the reader is familiar with relational databaséierininology to the extent covered in <Mal, U1>

and with the idea of implementing a universal relation view of data as discussed in those works and <KS,

MW, M*, U2>.

Goals of Universal Relation Database Systems

A primary justification used by Codd for the introduction of the relational model was his view that earlier
models were not adequate to the task of boosting the productivity of programmers <C1, C2>. One of his
stated motivations was to free the applica't.ion programmer and the end user from the need to specify access
paths (the so-called “navigation problem”). A second motivation was to climinate the need for program
_ modification to accommodate changes in the database structure, i.e., to eliminate access path dependence”

of programs.

‘'t Supported by NSF grant IST-81-04834 and AFOSR grant 80-0212 in accordance with NSF agreement IST-80-21358. Some.
. of this material was developed while the first author was at SUNY, Stony Brook.
$ Supported by AFOSR grant 80-0212 in accordance with NSI agrecement 1ST-80-21358.
11 Supported by a Weizmann fellowship; a Fulbright award, and NSFF grant DCS-80-12907.
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Though being a significant step forward, the relational model by itself fails to achieve complete freédom
from user-supplied navigation and from acce;ss path dependence. That is, the relational model was z;uccessfgl
in removing the necd for physical navigation; no access paths need to be specified within the storage structure
of a relation. However, the relational model has not yet provided independence from logical navigation, since
-access paths among the relations n}ust still be specified.

. For example, consider a database that has relations ED(Employee, Department) and DM (Department,
.- Manager). If we are interested in the relationship between employees and managers through departments,
then we have to specify the natural join of the ED and DM relations, projcctcd onto EM. This expreésion
is an acg:esé path specification, and if thg database were reorganized to have a single relation EDM, then
the program would have to be modified accordingly. |

The universal relé.tic_)xi model aims at. achieving complete access path independence by letting us ack
the system in an appropriate language “give me the relationship between employees and their managers,”
expecting the system to figure out ‘the correct access path fqr itself.} Of course, we cannot expect the system
always to select the correct relationship between employee.j and managers automatically, because the user
might have something other than the siri]piest connection, through departments, in mind, e.g., the manager
of the ruanager of the employee, or the managér(g) of all departments that come alphabetically later than tile
department of the employee. We shall, in a universal relation system, have to settle for eliminating the need
for logical navigation along the mos;t direct pathé, while- allowing the user to navigate in m<—)re convoluted
ways explicitly.

Unlike the relational model, the univérsal relation mo‘del was not introduced as a clearly defined model,
but rather evolved during the 1970’s through the independent work of several rescarchers. Morcover, these
}eseérchers were not only concerned with the universal relation as a data model, but some, like <B> and

- <BBG>, saw the cox;cept primarily as a vehicle to discuss interrelational data dependenciés. The issues
of dependency satisfaction are rather different from those of supporting a us‘er view, and the multiplicity of
assumptions led to considerable confusion 'fmd' to some attacks on the universal relation model (<K, AP>)

that we regard as not germane to the subject.

Synopsis of Paper

We shall try in this paper to unify and clarify the various “universal relation assumptions,” as they pertain
to data modeling and the support of a user view. We first indicate the assumptions that are so fundamental.

"to the universal relation model that they are common to all the different approaches to the model. Then,

t A similar approach was taken in j;hc RENDEZVOUS system, which generates possible access paths and lets the user choc;se
the desired one <C*>. ' : ‘
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we consider what we regard as the two basic appr(;aches to the model. The first approach sees the universal
“relation as a user view, about which he poses queries. Thus, in order to answer those queries we must first
define the semantics of this user view: The second approach sees the modei as having a query processipg.
ability that enables the user to pose ‘queries about the actual database relations (rather than some abstrac.t"
universal reiation), without specifying an access path. Thug, in order to answer quei'ies, We must first define
a computational procedure that produces the desired answer; that procedure inc]ﬁdes inferring the access
path. | .
The main technical contribution of this paper is an exploration of the relationship between these two
basic approaches. We establish broad conditions under which the approaches are the same, i.e., the result

of the query on the abstract universal relation is equivalent to a computation in relational algebra.

. The Universal Connection Assumption

Perhaps the most basic assumption is that there is a universal relation scheme, a set of attributes about
which queries may be posed. Further, attributes in this set are assumed to play only one “rolé,” and puns
are not allowed. Thus, an attribute like NAME cannot stand for names of employees, customers, supp.liers,

and managers in the same universal relation scheme.
A seldom acknowledged assumption, but one that underlies all known universal relation systems, is that

query processing consists Iof two st_éps. . .

1. Binding. From the set of attributes X mentioned in the query, form a relation [X], called the connection
of X, over set of attributes X .. Technically, [X] is a function from database states d to relations [X ](d)
We shall use [X] to stand for the relation [X ](d) when the database state d is understood or irrelevant.
We allow the possibility that [X] is the empty function, i.e., no connection over set of attributes X is
perr_nitbed. ‘ - |

2. Evaluation. Whatever operations must be appl'ied to answer the query are then applied to [x].

The binding and evaluation phases are independent. Different functions [X] can be used to produce diflerent
‘ rélation_é over X, without'changing thc way evaluation works on the resulting relation, although the answer

may, of course, be changed.

TFor example, the queries

retrieve (EMP)
where MGR="Jones”




retrieve (MGR)
' where EMP = “Smith”

are each ansvgere;i by forﬁing from the database some relation r over (EMP, MCR) in the binding phase.
For the evaluation phase, in the first case, we select from r those tuples with MGR= “Jox;es” and project
onto EMP. In the second case, we select for EMP=“Smith” and project onto MGR.

Underlying the assumptions that queries may be answered in this two step w;ly is the assumpi:ion that
for all sets of attributes X (or at least for many of them) there is a unique relationship on this s.et X
that the user has in mind. That does not mean theré can be only one relationship on X, but rather, one
relationship is the most basic one, so we can assume that this relationship is what the user has in mind 'unIess
he explicitly specifies otherwise. In the above example of employees, departments and managers, thevm(.mt
basic relationship betwéen .ma.nagers and employees is that of “maﬁages,” while the relationship “manages
the manager of” we intuitively feel is less basic. This underlying éssumption is called the relationship
uniqueness assumption. The origin of the concept is in the “window” concept of <Ma2>.

In practice, systems such as <U2, KS, MW, M*> that support a universal relation view of data pe.rmit
queries with several tuple variables, each of which .ma.y range over a separate “copy” of the universal relation.
In that case, there is one set of attributes associated with each tuple variable, and for each such set, X, we

allow the corresponding tuple variable to range over [X]. -

The One Flavor Assumption

There is another rather fundamental assumption that underlies much éf the work on universal rclabi.on
systems. Un{ortunately, this assumption seems impossible to derive from more basic principles. I.t has
roughly the intellectual‘sta.tus of a beliel like “entity-relationship diagrams are adequate to model the real
world.” That is, there is substantial empirical evidence for the assumption, but we know of no deep reason
why it must be valid.
Our assumption, called the one flavor assumption, is that all tuples in [X] represent the same “flavor”
" of relationship amoﬁg the attrib;xtes in X That is, the meaning to the user of the fact that tuple ¢ is in [X]
“does not depend on the details of the construction that put it in [X]. Another way to state this assumption
is that we must, when selecting the attributes in the universal relation scheme and picking an algérithm to
compute [X], arrange that the same attribute docs not play two different “roles” in one relation [X].
~ Evidently, “flavor” and “role” are defincd ronly intuitively. We regard it as a fundamental hypothesis of

universal relation systems that it is alwayst possible to rename attributes so that the single-flavoredness of

{ or at least sufficiently often that it is worth trying to implement a universal relation support system.
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any relationship will be apparent to the user. Perhaps an example will make these ideas clearer.

Example 1: Suppose we have a universal relation scheme ABC with relations AB, BC, and AC. According
to the functional dependencics assumed, different systems such as <U2, K§> would make different responses
. to a query with X = AB. The twe resbonses we are most likely to get from a universal relation system are
i) Apply the query to the AB relation; that is, [AB] is simply the relation AB.

1) Take the unioe of the conneetion in AB and the connection through C, that is,

[AB] = AB U m5(AC >4 BC)

It appears that neither is right all the time, and the question of which is right hinges on whether tuples
in AB are of the same “ﬂavqr” as tuples m waB(AC > BC')f We shall consider two interpretations for ABC,
and try thereby to illustrate the distinctio'n.

Suppese that A= COURSE, B = STUDENT, and C = ENROLLMENT. That is, we may imagine that
a relat';ion (COURSE, STUDENT), representing graduate coerses, was at some time merged with a network
database representing the many-many relationship between undergraduate courses and students by mecans
of dummy ENROLLMENT records, each of which is owned by a STUDENT record and a COURSE record.
Then we intuitively feel that the student—course palrs “obtained from the (STUDENT, COURSE) relation
are of the same flavor as pairs that are related via the (STUDENT, ENROLLMENT) and (ENROLLMENT,
COURSE) relations. That is, whxchever the source, the student is taking the course. Thus, i in this case we
would prefer interpretation (iz) in response to a query like

retrieve (COURSE) ' -
where STUDENT = “Jones”

The response accordmg to choice (i) would be all courses taken by Jones, not just the gra.duate courses.

Now consider an interpretation of ABC where A =S8TUDENT, B = LEVEL and C = COURSL‘ The
(STUDENT, LEVEL) relation gives the level (Freshman, etc.) of each student, the (STUDENT, COURSE)

; felation tells what courees the student is taking, and the (COURSE, LEVEL) relation gives the nominal level

of each course. o |

Ifere, we believe that the proper response to the query

retrieve (LEVEL)
where STUDENT = “Jones”

is given by (¢), that is, just ;,ell what level Jones is on, not the set of levels of Jones and all his courses.’

Note that the two queries above are both of the same form: retrieve (B) where A = constant. We feel

the diffcrence in proper interpretation is due to the facl that (student, level) pairs meaning the student is
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at that level are not of the same flavor as pairs ;ncaning the student is taking a course at that level. In
more conventional terms, the attribute LEVEL is “semantically overloaded,” and should be split into two
attributes, say STUDENT _ LEVEL ax.ld COURSE__LEVEL. [J | .

The one flavor assumption is a ge'neraliz-ation of an assumption made by <B> to the effect that attribute~
names were split adequately so that there would not be two different functional reiationships between seﬁ

of attributes. That is, if a functional dependency X —Y holds in a database scheme, and different ways of

: deriving this dependency yield different values y; and yp for the attributes of ¥ associated with value z for

the attributes of X, theq surely the tuples zy; and zy; over the set of attributes XY cannot be regarded as
of the same flavor in any reasonable sense. However, there could be one-flavor violations that do not involve
FD’s. For example, the (COURSE, LEVEL) relation in Example 1 could allow courses to be at several levéls,
such as Senior/Grad.. The FD COURSE%LEVEL disappears, but the one-flavor violation remains.

II. Universal Relations as the User View

The other notions that have at times been referred to as “the universal relabion assurﬁption” fall into two
categories. First come assumptions that ifnply data is treated as if it were all in 2 s'ingle relation over all
the attributes. Presumably, [X] will be the projection of this relation onto X. The second group consists of
various assumptions about how [X ] is to be calculated, without explicit reference to a universal relation. The
relationship between the.two forms of definition is important because the first group,' defining a user view, is
intellectua.llir justifiable, while the second group provides the efficient computatién needed to respond to the
user in the way he expects based on his view. In general,. ;omputing the view explicitly is far too cxpensive,

and we must resort to computing [X] only in response t> a query about X.

We shall deal with the first group in this section. Historically, the first “assumption” in this class was

' i:he pure universal relation assumption. By this approacli, we restrict ourselves to cases where there exists

a relatio_h u over the universal set of attributes U,.such that, for every relation scheme R in the database

scheme, the current relation for R is 7g(u). In this case we take u as the user view, and [X] is simply 7r(u).

. This approach has the advantage that we can view the database as a physical representation of a single
u;xiverszil 'rcllz?tion, and it facilitates dealing with the semantic constraints on the database. In fact, it was
exactly for that reason that the pure universal relation was implicitly tak;en for the first time by Bernstein
<B>, when he developed a 'design theory fo.r rclational. 'database:; with FD’s.

Clearly, in order for this approach to work, we have to ensure that the universal relation is unique, and
that we have an effective way of computing 1t These issues were iﬁvestigated in <BR, MMSU, Ri, Vi>.

However, even with' these issues solved, it was widcly accepted that the pure universal relation approach is
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not widely enough applicable <BBG>. In fa.'ct, in <HLY> it is shown that testing whecther a database
satisfies the assumption or whether an update maintains the assumption is N P-complete, i.e., probably

exponential in the size of the database.

-

A much more promising assumption, which has become known as the weak universal relation assumption,
is that an appropriate universal relation to serve as a user view is any rclation u over U such that
1. u satisfies whatever dependencies are giveh, and
2. 7g(u) is a superset of the current relation for R in.the database, for each relation scheme R.

Since we cannot know which of the infinity of weak universal relations truly represents the “real world”
at any given moment, one assumes that the only facts that can be deduced about the universal relation from
the given relations of the database are those that hold in all weak universal relations. That is, we take the
user’s view to be a collection of sets of tuples, one for each set of attributes X. Let Sx be the set of tuples
for set of attributes X. In Sx appear exactly those tuples ¢ such that for every weak instance u, thereis a
tuple ¢/ in u that agrees with ¢ on X.

Weak instances were first studied bf <H>> as a means to define satisfaction of functional dependencies
by a collection of relations. They have since been studied by <Me> as a way to define information co.ntent-

in relational databasc schemes and by <Sal, Sa2, Y> as a model of what the user should see as the universal

relation about which he is to pose queries.

An.important property of weak instances is that as long as the dependencies are of a type for which the
chase process (<ABU, MMS>) is a bartial decision procedure, even dependencies as general as embedded
implicational dependencies <F, BV, YP>, we caﬁ constrll.ct from a set of da.taba_;se relations a single relation
that émbodics t:he information present i all weak instances. The desired relation, which is the 1elation Sx
mentioned above, is constructed as follows.

1. | We construct a relation u over U. To begin, for each relation r over one of the database rclation schemes,
say I, and for each tuple‘t in r, place in.u a tuple that agrees with ¢ on the attributes of R, and thz;,t
in the othér attributes has a new “null” symbol appearing nowherc else. We use | ; for nulls.

2. Apply- dependencies to “chase” u, that is; gcnérat.e new tuples and equate symbols, as required by the
dcpendengic.s. However, when equatir'lg a null and nonnull symbol, replace the null by the nonnull. For
certain kin>ds of dependencies, in particuiar full dependencies, where no new symbols are generated by
the chase, this step terminates. However, we introduce new nulls when embédded dependencies are’
applied, so the process may not terminate if there are embedded dependencies. In this case the result

of the present step should be taken as the infinite relation that results from chasing “forever.”

3. If during the chase process, we are ever forced to equate two symbols, neither of which is null, then
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the process stops. We interpret this situation as saying that the actual relations in the database do
not satisfy the given dependencies. To be exact, in this case there is no universal relation that satisfies
the dependencies and produces supersets of the database relations when projected onto the schemes of

those relations; that is, there is no weak instance.

N

The relation constructed as above from a list of database relations ry,..., ry,, is called the representative
instance for these relations (with respect to the given dependencies), and we denote it by RI(ry,...,r,). The
ﬁeak universal relation assu.mption says that the representative instance is a suital;le model of the data
as stored in one relation. The representative instance differs from a pure uﬁiversal relation in tﬁa£ the

latter consists only of total tﬁples. ‘In contrast, the representative instance extends tuples of one relation
to have nonnull values in whatever components are justified by the dependenciés. However, in general, the
representative instan?e 'consis.ts of relationships defined on subsets of the universal set of attributes—subsets

that are as large as make sense.

Wh(;never a tuple of u has nonnull symbols in the components for set of attributes X, these values are
presumed to be related in a significant w;ay, and therefore belong in [X]. Put another way, if we let m|g(u)
stand for the projection of u onto R after throwing away all tuples that have nulls in one or more of ‘the
components corresponding to the attributes in R, th;an the weak universal relation assumption says that

[X] == mix(u), where u is the representative instance defined above. We call 7} the restricted proj'ection.

As this way of defining connections is only one of r;lany possibilities, we should, strictly speakiﬁg, use
a special notation for this definition. We shall use [X]® to denote the set of tuples obtained by computing
the representative instance using set of dependencies A, and thén pcrformiﬁg the restricted projection onto
X. A fundamental property of the representative instance is that it always produces the interscction .of' all
“the weak instances, that is, the séts Sx consisting of those tuples that are in the projection.of every weak

‘instance onto X. Whilé this'rciationship is generally believed, we provide a proof in the follovﬁng tﬁéorem.
"Theoreém 1: For all X, [X]4 = Sx.

Proof: Since R(ry,...,r,) is a weak universal relation, it is clear that Sx C [X]®. It remains to prove

the other direction.

Let u Bc the universal rclation constructed in the beginning of the construction of the representative
‘instance. That is, u is constructed by taking all tuples in the databasc and padding them with distinct nulls.
Now let v be any weak universal relation for the database. That is, v satisfics the 'dcpcndcncics in A, and
wr(u) is a superset of the current relation fot; R in the database for each relation scheme R. It is casy to

sec that we can define a mapping h on the entrics in u that is the identity on all entries that come from the
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E - C D M

Jones Ann 11 12
) Jones Jim 1 14
. ) Green . Sue s ds

Jones "1z Shoes 1s
Smith 1o Toys 1o
111 iRT Toys Green

"Fig. 1. Initial table.
~ database (i.e., the non-null entries), such that h(u) C v. Now we can show by induction on the chase steps,
as in <BV, SU, MMS>>, that application of the dependencies preserves this statement. That is, let u’ be a

universal relation in an intermediate step of the algorithm. Then we can define a2 mapping h on the entries

in u’ that is the identity on all entries that come from the databa.se, and such that h(u') Co.

It follows that we also have such a mapping h for which h(RI(rl ) ,rn)) Co. Now let ¢ be a tuple in

RI (1'1, .,7x) With non-null entries in the components corresponding to attrlbutes in X. Then we have that

. R{t) is i v and A(t)[X] = t[X]. It follows that ¢{X] is in Sx. Thus, [X]4 C Sx. (]
. Example 2: Suppose we have attributes E (employce), c (child), D (department), and M (manager), with
relation schemes EC, ED and DM with current values
E | D l M
Jones .Anl-m Toys .§ Green
Jones | Jim Smith | Toys

Green | Sue

Suppose that the given dependencxes are E—HC E—»D and D-M.} The initial value of u constructed by
step (1) above is shown in Fig. 1. .
~ We could apply E—C to deduce that the tuple
.(Johes, Ann, _]_3,. _L4) .

was in u. However, we wox.xld later discover §hat this"tuple. conﬁair}s the same information as the ﬁrs{t tuple
in Fig. 1, so we shall instead apply the FD’s, discovering after we do that the MVD E—~( is satisfied as a
_result (which must be the case because the two FD’s logically imply the MVD here). Thus, E—D applied
. to rows 1, 2, and 4 of I‘lg 1 tells us that | 1 = |3 = Shoes Then D—M tells us that _]_m = Grcen,

T The first of these is redundant and is included only to illustrate a point.
9



E | C D | M

Jones Ann Shoes | |2
Jonmes |- Jim | Shoes 12
Green Sue 1s ls

Jones 19 Shoes L2
Smith |~ g _ Toys Green
du - AR Toys Green

Fig. 2. The representative instance.
and | o= ] 4= '_Lg; we shall replace them all by | 2. At this point no further changes can be made.
No nonnull syinbols were equated, so the data is deemed to satisfy the given dependencies. Figure 2 shows
the resulting representative instance. It serves as an adequate universal relation, telling us all the facts that
can be deduced from the given data and the dependencies. For example, we know that Ann is the child of

someone in the Shoe.Depari';ment, because [CD] = {(Ann, Shoes), (Jim, Shoes) }. [

Representative Instances and Logical Theories

Another way to look at the weak universal relation approach is to view the database as a-logical theo}y.
From this point of view (<GaMi, Ko, Re>) a database is a st of scntences in a first order language without
function symbols, whose relation names denote the relations of the database and whose constants denote
‘ the elements of the domain of the database. Let T be such a theory. Then, in answer to a query about a
relation R, we must produce the set of tuples {¢ | T |= K(t)}, i.e., the set of all tuples whose membership

in the relation for R is implied by the theory. This approach has the advantage of working even in the case
that the given constraints are not dependencies, so the chase would not applicable.

Let us now see what the theory T is in our case. Our construction is similar to the construction in
< GrMé}, though they had a somewhat dillerent intention in mind. The language we use has a relation
name X fof every attribute set X. In particular, it has a relation name R for every relation scheme R in
the database sc]{eme, and it has the univ.crsal relation name U. For constants we usc the eleinents of the
-dataBase, which denote themselves.

The theory has five kinds of scntences. First, we have a set DB of atomic éentencgs describing the’
relations in the database. That is, for every tuple t in some relation 7 over relation scheme R, we have in DB
the sentence R(t). Secondly, we have a set JNC of sentences saying that the relation 7 for a relation scheme

R is included in the projection of the universal relation on R. TFor example, suppose that U = ABCD and
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R = BCD. Then put in INC the sentence
(vb)(Ve)(Vd)(3a)(R(b, ¢, d) — U(a, b, ¢, d))

Thirdly, we have a set CON of sentences saying that the relation z for an attribute set X "contains the

projection of the universal relation on X. In the above example we have the sentence
(Va)(Vo)(Ve)(Vd)(U(a, b, c,d) — R(b, c,d))

In addition we have the set DIS stating that all elements are distinct, i.e, for each pair of distinct elements

[}

a and b we have the scntence @ 7% b. Finally, we have A, which is the given set of dependencies written as

~ first-order sentences (<BV, F>) with the universal relation name as the only relation name. The theory T

is taken to be the union

" DBUINCUCONUDISUA

Consider now a model of this theory. Since all constants must be interpreted as distinct elements (by
the sentences in DIS), we can aséume that they are interpreted as themselves. Let r be a relation in the
database for the relation sche@e R, and let ' be the interpretation of R in the model. For every tuple ¢t in r
we have a sentence R(t) in DB, so t must belong to . Let u be the interpretation of the universal relation
U. By the sentences in INC, we have ' C wr(u), and consequently, r C wg(u). Also, u satisfies A. It
follows that u is a weak universal relation for the database. Conversely, given a weak universal relation u
for the database, we can construct ; mot.iel for the theory, by taking u as the interpretatim; of U, and by

taking mx(u) as the interpretation of X for each attribute set X. We have just proven:

Theorem 2: A database satisfies the given deben-dencies if and .only if its theory is satisfiable. (J

Now, given an attribute set X, we define [X]r to be {t | T = X(t)}. The next theorem shows_tl'la.t
X1z is the desired relation.

Theorem 3: [X|r = Sx.

i’roof : We have scen that every model of.T' corresponds to a weak universal relation for the databasc an(i
vice versa. Let ¢t be a tuple in Sx. Then in every weak universal relation ;4thcre is a tuple ¢’ such tha;t
t = ¢'[X]. Thus, in every model of T there is such a tuple ¢’. By the scnlences in CON, in .every model of
T, t is contained in the interpretation of X. Thus, T |= X(t), and ¢ is in [X]r. The opposite direction is

similar. [J
1. Computational Definitions of the Universal Relation

Now we come to a varicty of assumptions that start from the point of view that the user may query about
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any set of attributes X, and the system will per.form some computation on the relations of the database
to compute [X]. This approach was originally taken by <B>, where 1t is implicitly assumed that [X]
is computed by joins simulating functlonal dependencies. It was taken again in <ABU>, where it wasv
assumed that [X] should be computed by a  natural j join. There, the notion of a “correct join” was ldentlﬁed.
with the notion of lossless join; in fact the lossless join seems to be the basic compﬁtational procedure in all
works takmg the computational approach |

The first implemented system to bcha.ve this way, the UNIX command q <Ah> uses a list of sets of
attributes; the list is est:abhshed once and for all, for each database. [X] is computed by searching the list
for the first set of attributes Y that includes X, comiputing a relation over Y in some specified way, and
projecting onto X. If no set on the list is found, then the join of all the relations is taken and project;ad.

Several papers have inveétigabed ways to find “correct” joins, and if possible, “optimal” joins to compute
. . p

_[X] for a given attribute set X . See for example <Ar, L, V2>.

Most other proposals compute [X] by taking the union of onc or more terms, each of which is a lossless
join. (In practice, the sets'of relations on the list in a q application are likely to be lossless as well.) For
example, <0, Sal, Sa2, KS> discuss taking the union of extension joins as a way to compute [X]. The
paper <MU> proposes taking the union of joins each of which lives inside some "maxim:;] object,” w}iere
the join is not only lossless, but where the losslessness _follows from particular rules, like the FD or MVD
rules for testing losslegs : j;‘)ins. Variants of this apprbach have been implemented in Syst':em-/U <U2> and
PITS <MW, M*>. |

The idea of using for [X] a union of projections of lossless joins. can be generalized considerably. ,For
example, the Syétem / U aigorithm, since it requires a lossless join of “objccts,” which may be proper subsets

of relations, really uses a union of projections of lossless joins of projections of relations.

Losslesis 'Expressions

Suppos; E(Ry,...,R,) is any expression whose operand-s.are relation schemes Ry,..., R, that are subsets
of some universal scheme U. Suppose also that the result of I is a relation over set of att,ril;utes XCUu.
We say,'E is lossless with‘ respeet to a set of dependencies A if for cach relation u over U that satisﬁcs A,
when we substitute for cach operand R of E the £elation. 7r(u), the value of E is a subset of mx(u). For
the usual sorts of expressions we deal ‘with, such as joins and the ‘.‘tableau mappings” to be defined formally
later, it is casy to show that containment always holds in the opposite direction, so “is a subset of” could be

replaced by “equals” in the definition of losslessness.

Example 3: Suppose we have a universal relation scheme EDOP, representing employecs, departments,

12



offices and phones. We shall assume the FD E;-»D, but no other dependencies except the join dependency

> (ED, EO, EP,OP).

that we suppose corresponds to the formal definition of the universal relation according to the style of
| <FMU>. We shall, for this example, take the relation schemes to be EDP, EQ, and OP.
- Suppose we take X = DO, that is, we are interested in the department-office relationship. One lossless .
~ expression we might use is the join of all the relations projected onto DO, that is

1I'D0(EDP >t EO N OP)

The losslessness of this cxpr&sion follows from the given join dependency.
A simpler lossless expression is 7po(EDP <t EO). The losslessness of this expression follows from the
FD E—»D and it is important to note that EDP >t EO is not a lossless j Jom That is, to test the losslessness
of Tpo(EDP > EO) we must check whether it is contained in the expression 7po(EDOP), using the test
| of <ASU>. The tableaux for the two expressions are '
E D (0] P

d o

3 p .p

and

d o

d o

respeclively. We here and throughout the paper use blanks for symbols that appear nowhere else in.the

given tableau.

The first of these tableaux cén be “chased” using the FD E—D, yielding
' E D o0 P

o

d
e d P
e d o
whereupon the containment 7po(EDP o<t EO) C npo(EDOP) follows, since the row of the tableau for’
- mpo(LZDOP) can map into the second row of the above tableau. |

A third lossless expressioh we might use is mpo(rpp(EDP)>< EO). We can show this expreﬁsion to be

lossless by an argument similar to the one used above. [J
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In fact, we shall later prove a general tule for testing the ]osslcssness of expressions, such as those in
Example 3, that are representable as tableaux Simply chase the tableau, and see if a row thh all the
distinguished symbols is created. Note how this rule generalizes the lossless join test of <ABU>, since
there we want a row with the distinguisheé symbol in every column. In the present case, we do not care

about symbols not in the X-columns, where X is the scheme for the result of the expression.

Monotone Expressions

There is another condition on expressions that plays a role in characterizing i:(;mputational ways to déﬁne
universal relations. Say an ekpression E(Rl,..‘. , Ry) is monotone if whenever r; C s; for 1 < i < n,
it follows that E(ry,...,r,) C E(sy,... ,,g,,). For example, all expressions of relational algcbra using the
operators select, project;. Car;;csian product, and union, i.e., all those that do not involve set difference, are

monotone.

Motivation for Losslessness and Monotonicity

There is a natural motivation for restricting our attention to lossless, monotone expressions. Let us first
consider losslessness.
Suppose that the user actually has a universal relation u in mind. Then he would like o have X] =

1r_'>((u). However, because of the structure of the database, the user cannot store u, and he is forced instead

. to store its projections g, (u), ..., 7r,(u) onto the relation schemes of the database scheme. Thus, he would.

like the function f that computes [X] to be such that f(’ll:Rl (w), ..., 7R, (u)) = mx(u). Well, perhaps asking
for “the whole truth” is tco much, because the database scheme may not support the rcconstructlon of
certam connectxons in the universal relation. But surely the user would like “nothing but the truth”; that
is, f(mg,(u),..., 7R, (2)) C wx(u). In other words, f should be lossless.

Indeed, the function f defined by the representative instance is lossless. To see informally why this is

50, suppose we start with a universal relation u; satisfying a set of dependencics A, and we project u; onto

some relation schemes to get relations ry,..., 7. Whatever the chase process for the dependencies in A is,
we expect that no combination of nonnull symbols will be generated by the chase unless it isa consequence

of A. Since u; has all the combinations of symbols found among the tuples in the r;’s and satisfies A, every

combination found in the result, us, of the chase, will be found in uy. Thus

| mix(u2) C mix(u1) = wx(u1)

which proves that the repfescntative instance construction is lossless.

Note that we cannot in general prove that cquality holds, since u; may contain tuples in its projection
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onto X that canhoﬁ be reconstructed by the chase: However, there is a broad class of dependencies for which
we ca;n almost prove equality. An implicational dependency is said to be typed if symbols do not appear
in more than one column. That is, t:hc domains for the various a.ttl;ibutes. are regarded as disjoint, and'
dependencies can neither be predicated on thé same value appéaring in more than one column, nor can tliey-

infer the presence in one column of a symbol appearing in dnother.

Theorem 4: Let A be a set of typed implicational dependvencies, u; a universal relation satisfying A, ’and
ug the result of projecting u; onto relation'schemes Ry,..., R, and constructing the represcntative instance
from these projections. Then mix(uz) is cither empty or is exactly mx(u;). The latter occurs exactly when

the expression mx( D R;) is lossless with respect to A.
. 1<ign” ’

Proof: We argued above why mjx(us) C mx(u1). Conversely, suppose mix(uz) is not empty. Then, A
allows us to infer, from the fact that certain tuples are in the relations over the R;’s, that some tuple ¢ with

non-null components for X exists in the representative instance us.

Now consider any tup.le s in uy, apd consider its projection onto the ‘relation schemes. Since-the
dependencies in A are typed, all equalities that A requires to infer ¢ are satisfied by the projections of s,
since all these projections agree .in components that they have in common. T\herefore, A will imply the
existence in ug of some tuple with non-null components for X, and these components must agree with the
corresponding components of s, since A is typed. Thils, 8[X]is in m1x(u2). Also, taking t;he i)roject.ions of a
tuple on R;;... ,R,,; padding them with nﬁlls, and chasing them with A, is exactly the test for losslessness
of the expression 1rx(1 Din R;). Since we showed that we get a tuple with non-null components for X , it

follows that the expression is lossless.

Finally, if the expression is lossless, then the losslessness test will produce a tuple with non-pull

components for X, and that means that, starting with a tuple s from u;, we get 7wx(s) in 7} x(uz). O

Coroilary 1: Let A be a set of implicat.ioqal dépendenc_ies, u4; a universal relation satislying A, and u.

the result of projecting u; onto relation schemes Ry,..., R, and constructing the representative instance

from these projections. Then 7y x(u2) = mx(uy) if and only if the expression mx( ;i R;) is lossless with
. -0 g ) } 1<i<n

respect’to A.

Proof: The proof is similar to the proof of the theorem. [

When the dependcncies are not typed, then Theorem 4 does not necessarily hold, as the next example

shows.

Example 4: Let the universal relation scheme be ABCD and the relation schemes be AB, AC; .and AD.
- 15




Suppose we have the following implicational dépendency.

A B C D

That is, whaf,evcr symbols appear together in the A and D components must also appear together in the B
" and C components.
Then consider the following uﬂiversal reiation u.

aa b e d

ay ay dy dy

Let X = BC, so the projection of u onto X is {b1c1,a1d; }. If we proje.ct u onto AB, AC, and AD and
chase the representative instance, we can infer the existence of a t.uple with middle components a;d,, but
not the existence of one with middle components bycy. [J

The motivation for monotonicity comes from our hope to duplicate by an expression the connection [X]
defined by the repreéentative instance, and from the fact tl;at the function defined by the representative
instancé is monotone;f It is straightforward to show, whenever the representative instance is defined for the
two databases (ry,...,7x) and (sy,.. ._,.sk), ie., both databases satisfy the given dependencies A, that the
condition 7; g s; for all i implies [X]4(ry,...,7) C [X]%(s1,-.-,8k). Thus [X] defined by the restricted

projection of the representative instance has the monotonicity property.

IV. Representative Instances, Lossless-Monotone Expressions, and Tableau Mappings

The broadest obscrvation we can make is that the lossless, monotone expression approach to defining [X] can
only produce tuples that we get from the representative instance. In this section we also introduce tz}blea'u

expressions and explore their relationship to the representative instance.

Containment of Lossless-Monotone Expressions within Representative Instances

Theorem 5: Let E be an expression that is monotone, lossless with respect to some set of dependencies A,
and préduces a relation over X. We do not constrain A, except that it must consist only of dependencies for
which the “chase” process succeeds in producing a (finite or infinite) representative instance that satisfies A,
e.g., the implicational dependencies. Then if tuple ¢ is in E(ry,...,7y,), it follows that ¢ is in 7} x(u), where
mpmperty, which does not play a role here, is the containment condition, which says that if X and Y are two.

sels of attributes, and X C Y, then for all databasc states d, 7 x([Y](d)) C [X](d). That is, whatever connection among the
attributes of Y is represcented by the database, the connection for X is an essential part of it.
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u= Rl(rl,...,rn). .

Proof: Let R; be the relation scheme for 7, and let s; = ng,(u). Then r; C s;, since u is RI(ry,...,7,).
By monoto'nicity, tisin E(81,...,3n). As E is lossless with respect to A, and u satisfies A, ¢t must be in

nx(u), and since t has no null symbols, it is in wix(u). O

Tableau Mappings

Wé wiéh to deal with the question of when there is an expression, particularly a first-order formula (i.e.,
an expressioh of relational algebra), to simulate the effect of the representative instance.t To m.a.kc,this
cha.i-actérizatién we need to introduce tw.o concepts. The first is tableau mappings, wilich are expressions
that can be denoted by tableaux as in <ASU>, and the second, which we call “bounded” database schemes,
_involves a strong limit or; the length of the chase needed to deduce that a particular tuple is in [X] during

the construction of the representative instance.

For our purposes, both tableaux and (embedded) implit.:ational dependencies will be represented in the
same notation, (ty,...,2x)/t, where the ¢;’s and t are rows of abstract symbols. The components of these rows
correspond in a ﬁ)@d, understood order, to the attributes of the universal relation scheme. The positions of
t are either blank or are symbols that appear at least once among the t;’s. If a dependency is represented,
t could alternatively be an equality .a = .b‘betwee‘n two symbols appearing among the ¢;’s. Tf a tableau is
represcnted, then the #;’s could be tagged by relation schemes or relation names; we write ¢; (R:) to indicate
that row t; is tagged by ;elation Ri. In that case, we expect that every position of ¢; that does not correspond
to an attribute in the r.ela.tion scheme for R; will have a unique symbol, one that appears nowhere else.-in

the tablcau. Normally, we represent unique symbols by blanks.

As dependencies, 'we call the t;’s hypothesis rows and ¢ the conclusion Tow. The notati;)n being uéed
here, and the meaning attributed to these dependencies is defined further in <SU, Ul>, and in <BV, F>,
é,lthough different notation is used in the _latt.,er papers. Roughly, the dependency says that whenever we
see tuples that look liké the hypothesis rows, in the sense that there is a méppihg of symbols thé.t makes
all the hypothesis rows become tuples of the relation, then there is also sorme tuple in the relation that is
the conclusion row after mapping of the symbols, with blank positions mapped to arbitrary symbols; if the
conclusion is a = b, then instead we require that this arbitrary symbol mapping has in. fact mapped a and
b to the same symbol, because the relation allowed no other possibility.

As an expression, the t;’s are called rows, and ¢ is called the summary. The meaning of such a niapping

t Note that there is always a sccond-order formula to simulate the representative instance, since we may thus express the
condition that a relation with the properties of the representative instance exists.
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e d p (EDP)
e. o (EO)
‘ o p» (OP)
d o

Fig. 3. A tableau expression or implicational dependency.
is described in <ASU>..Informally, it means that the result of the mapping applied to a univérsal relation
‘u is found by taking each possible mappihg of symbols that makes each row a tuple in u and placing in
the result the tuple that is_r formed by applying this symbol mapping to the summary. We can also apply a
tableau mapping not to the universal relation but to a collection of relations ry,..., 7, over relation schemes
'Ry,..., R, that are each subsets of the universal relation scheme. In this case we require that for each row
t;, 'tagged by some relation R, we have R = R; for some %, 1 < i < n, and that the symbol mapping sends

t;, restricted to R;, to some tuple of r;.

Lemma 1: Let E = (t;,...,t,)/t be a tableau expression, and A a set of implicational dependencies. Then

E is lossless with respect to A if and only if A |= E, when E is treated as an implicational dependency.

-

Proof: E is lossless if and only if it is contained in the expression that is the projection onto those attributes
in which ¢ has a nonblank, that is, in the result of the tableau mapping #'/t, where ¢’ is ¢ with blanks replaced
by new symbols. By the test of <ASU>, this containmént holds onlj if, after chasing {#;,...,t, } by the

dependencies in A, ¢/ can map to one of the resulting rows. But that is exactly the condition under which

AE=E.O

) Example -5: In Fig. 3 we see an expression or dependeﬁc& based on the database of Example 3. We follow
the convfant%ion of using blanks not only in the summary/ cor.\clusion, but everywhere that a symbol appearing
. only‘ once is found. As a tagged tableau mapping, it produces the natural join of the three relations EDP,
EO_,- and OP, projected onto DO. As a dependency, it says that d and o appear together in a tuple of ea.ch
un:iversai relation in which for some‘c and p, there is a tuple in which e, d, and p appear together, another
tuple in whiclll. e and o appear, and a third in which o and p appear, all in their appropriate columns. As a

consequence of this dependenéy, the above expression wbo(bd (ED.P ,EO,OP)) is lossless. (1

Bounded Database Schemes

A database scheme is a finite set of relation schemes and a finite sct of dependencies that apply to the
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univers#l relat;ion scheme that is the union of the given relation schemes. We denote the database scheme
by D =(A,{Ry,...,Ra}), where A is the dependencies and Iél y+++y By the relation schemes. We say that
- two database schemes are equivalent if . '
1. their relation schemes are the same, and
2. their dependencies are logically equivalent, i.e., the same universal relations satisfy both sets of depen-
denéiw. | | | _ .
Let D = (A, {Rl,. .., Rn}) be a database schem;. We say D is k-bounded (for sct of attributes X)
if for any felations T1,...,7Tn over the R;’s, if u ‘= RI(r1,...,7a), and t is in w|x(u), then we can deduce
that fact by. a's‘equence of at fnost k applications of dependencies in A, starting with the r;’s (padded with
blanks as in Fig. 1). D is bounded if it is k-bounded for some k. Note that “bounded” says more than that
the chase terminates in a finite relation for any r;’s. It says that sequences of k dependency applications
- suffice independently of the initial r;’s. 1.\3 we shall see, “bounded,” “k-bounded,” and “l-bounded” all are

equivalent statements, in the sense that any bounded database scheme is equivalent to a 1-bounded scheme.

.

V. Lossless Tableau Mappings and Representative Instances

We shall now develdp our characterization of when the representative instance can be simulated by a first-
order formula. In particular, we show the equivalence of the following three statements about a database
scheme D, whose dependencies are implicational, and a set of attributes X.

1. D is bounded for X (and in fact 1-bounded).

2. There is a first-order formula that computes =y x(RI(r1,...,7mn)), i.c., there is an expression of relational

algebra that simulates the representative instance.

3. mx(RI(ry,...,7s)) is computed by a finite union of tableau mappings.

Theorem 6: Let D = (A, {VRI y+-+sRn}) be a database scheme, where A is a set of implicational depen-
dencies. Then there is, for each set of attributes X, a finite set of lossless tableau expressions whose union

yields the same relation as wyx(u), where u is RI(rq,...,r,) if and only if D is equivalent to some bounded

scheme.
Proof:

If: We may as well assume that D itself is bounded. Let k be the bound on the number of dependencies’
that need to be applied, and let m be the maximum number of hypothesis rows in any member of A. Then
consider every tagged tableau expression I whose summary has nonblanks exactly in the positions for the

attributes in X, and that has at most km rows. Depending on the cqualitics of various symbols among the
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Fig. 4. Chase of unbounded length.

rows of the tableau, F may or may not be guaranteed to produce tuples over X that will be prodﬁced when

the representative instance is chased by A. If A = E, then we have such a guarantee; if not then we don’t.

Moreover, since D is bounded, all tuples found to be in the representative instance projected onto X
will be generated by some such expression that is logically implied by A when the expression is trea.tgd as a
dependency. Also, there is evidently only a finite number of such dependencies. We thercfore can compute
mix(u) by taking the union of all those expressions whose tableaux’ summaries have distinguished symbols’

in exactly the columns of X, and that are logically implied by A, when treated as dependencies.

Only if: Suppose that there is a lossless expression Ex that is the finite union of tableau expressions and
-.produces the same result as wix(u). Convert the set of Ex’s to a set of dependencies, say A’. Since the

Ex’s are lossless, A = A’. It follows that A is equivalent to A U A,

Clearly, one step of dependency application using A’ serves to obtain enough tuples in u to prove that

“myx(u) will contain whatever Ex produces, as D is 1-bounded. (J

Example 6: Consi_det‘the database scheme D = ({A—B,C—B}, {AB,AC}). We claim that D is not
bounded, and thercfore the universal relation defined by its representative instance cannot be simulated by
.any finite union of lossless tableau expressions. To see informally why D is not bounded, consider the rclations |
{ay,b1} for AB and {aycy,azcy,a3¢2,a3¢2,...,8iCi—1,8:Ci,...,0nCn } for AC. The initial rcpresentativé
instance is shown in Fig. !i(a), and the chased version in Fig. 4(b). Note that deleting any tuple from AC

means that a,byc, will no longer appear in the chase. _
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Suppose_ now that D is bouhded. Whatever set of dependencies equivalent to { A»B, C—B} we choose,
the existence of a tuple a,.blc,; will have to be inferred from only a finite number of the tuples in AC.
However, by making n large enough, we can force the inference to be made without looking at some a;c;. ‘
" Then, by deletmg this tuple from AC, we can force a situation where the dependencies { A—+B, C—»B}.
" no longer imply the presence of tuple a,,b;cn, yet the chase using the equivalent set of dependencies still
produces tha.t tuple. D '

Now let us turn our attention to the second equlva]cnce, that betwcen arbltrary first-order formulas and

finite unions of lossless tableau mappings.

Theorem 7: Let D = (A,{Ry,...,Rn }) be a database scheme, where A is a set of implicational depen-
dencics, and let X be a set of attributes. Then wix(RI(r1,...,7y)) is expressed by a first-order formula if

and only if it is expressed by some finite union of lossless tableau mappings.

Proof: The “if” portion is trivial. For the “only if” part, we observe that every time we add a tuple in the

_chase, We can find a tableau mapping that yields the projection of this tuple onto X. We find this tableau by
first expressing as an implicational depenaency the fact that this tuple is inferred from a finite set of tuples
of the original relations. The hypotheses of this dependency will each have a particular relation schex.ne in
;.{'hose. columns all the nonunique symbols appea.r; thus it can be viewed as a tagged tableau mapping. By
Lemma. 1 the losslcssness of this mapping follows from A. It follows that there is some (possubly mﬁmte)
set of lossless tableau mappings whose union yields 7§ x(RI{ry,..., ).

Let these mappings be T1,T2,..., and let @1,@Q2,... be the relations over X produced hy these
mappings.} We know that @, U Q>2 U --- is equal to wix{RI(ry,.. .,r,,)_). There is an unexpected difficulty
here because we cannot refer to this infinite union by a first-order sentence. However, we can say. that the
relation R is a superset of Vthis union .by using an infinite set of sentences. In what follows, we use R; as
a relation symbol that stands for the it* relation in the database scheme, and we use R as en arbitrary
relation over X. ' ' |

By <GV>, we can ﬁnd a (pos,sibly infinite) set of implicational dependencies A’ over Ry,...,Rn
a.ssefting t;hat these relations are consistent, in the sense that when we chase these relations, we do not
atl,emp(. to equate two dlﬂ'erent, nonnull symbo]s, and thcrefore, the representative instance exists. Further,
we can construct for each T a first-order formula ¢,(t Rl,. .oy ,,) that asserts that tuple ¢ is in Q. Let
#(t, Ry, ..., R,) be the hypothetical first-order formula that says of tuple t that ¢ is in ] x(u), where u is the

representative instance constructed from the relations for which the R;'s stand. Then we have the following

t The reader should be aware that in this proof, we represent relations by predicate symbols, @’s and R's. Thus, Q really
stands for the predicate Q(2) that is true if and ‘only if tuplc ¢ is in the relation we call @. We shall continue to treat such
predicate symbols as if they were relations, e.g., by applying algebraic operators to them.
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ilogica] ixn;)lication.
A U{)SoRE) =12, } = (V)4 R()

The reason that this implication holds is as follows. In a model of the left-hand side, the relations ry,...,ry
for Ry,..., Ién constitute a database that has a weak universal relation, and the relation for R contains all _
the Q;’s. Thus it contains myx(RI(r(,...,7s)), and therefore it contains the relations produced by ¢. Thus
~ the model satisfies Vi(¢ — R(t)). |

By compactness, there is a finite subset of the ;’s,} which we may take to be 4,,...,9x, such that
AT U {(Yt) (1o R()), ., (VE) e~ R(2)) } = (V)6 E(2))

Now let B be @1 U -+ U Qy, that is, the union of the results of applying the k tableau mappings'to..the
given relations. Thus R(t) is logically equivalent to Q:1(t) v -+ Vv Qk(t): Then 9;(t, Ry, ..., Ra)—R(t) i;q
_surely true for 1 < ¢ < k, so0

A" k= (VE)(8(t, Ry, - -, Ba)=(Qu(E) V -+ V Qi(2)))

That is, w)x{u) C (@1 U - U @Qx), where w is, as before, the representative instance constructed from the
~ relations of the database.

Containment in the opposite directior is obvious, since the T;’s were constructed to mimic what the.
chase does, and éach Q; is the resuit of applying T; to the relations of the database. Thus for all database
relatipns T1,...,Tn that satiéfy A’ (i.e., we can successfully chase the r;’s to construct a representative

instance u) we have that m|x(u) equals the union of the tableau mappings T4, ..., Tk applied to ry,...,7n.

0 .

Query Optimization,

Our main interest in the computational approach to the universal relation model comes from a practical
consideration of computational efficiency; we do not want the expressions computing the [X]’s to be too
: cbxﬂplicated. Thus, naturally, the issue of optimizing the expression to compute [X] is of paramount interest.
For examplé, Sagiv <8al, 8a2> takes only minimal extension joins to produce the answers to queries, and
in limited cases, proves that these simple expressions suflice to compute x ]A.
- Aﬁ interesting conseqﬁence of Theorem 7 is that we can use the weak optimization technique of.<ASU>

to optimize our expression. By that theorem, we have to deal only with unions of lossless tableau mappings.-
Let T be such a tableau. We can view T' as a tagged tablcau that defines a mapping on relations over

Ry,...,R,, as an untagged tableau that defines a mapping on universal relations, or as a dependency on

t and incidentally, a finite subset of A’;
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‘universal .relations. Suppose that T’ is another tagged tableau, obtained by fcmoving some of the i'ov}s of
- T, that is wcaklyvequivalenl.; to T'. That is, T' is equivalent to T when T and T' are considcred as'untagg'e_d
tableaux. Clearly; T E contained m T \;/hen t.hey are considered as tagged tableaui; i.e., when applied to
' relations over R1 ) .. ,R,. , produces all tupies that T produces. Now, T is lossless with respect to the sét
of dependencles A, s0 A =T, when T is considered as a dependency, and consequently, A |=T', when T’
i is consudered as a dependency Thus, T’ as a tagged tableau produces only tuples that are produced by the
represent.atlve mstance Asa consequence, T’ can replace T i in the union of tableau mappmgs
Weakly optlmlzed joins on maximal objects are used in System/U in order to compute connect;ions
<U2>. The motivation there is given by.app-ealing to the way dangling tuplesiare treated; this argument

is intuitively reasonable but without mathematical foundations.

~ Storage of Query Interpretation Information

| Naturally; we do not wish to store; for the current database state d, all the views [X)(d), where X ranges
over all sets of attributes. However, might it be feasible to store expressions for calculating [X](d) from d for
.all X? The implication of our developn;;ents _is that if any first-order way of computing connections exists,
then we can establish for each set of attributes X a ﬁn.ite set of tableaux whose mappings together produce
[X]. Mowever, if there are; say, 100 attributes in tlhe- universal scheme, it does not seem realistic to store all
the expréssions needed to reconstruct the [X]’s. |
Existing universal relation systems have mechanisms for constructing the expresstons for [X] “on the.
fly.” For example, System/U <U2> stores only the ma.xnmal objects, and obtams [X] by reductions of the
expressions for the maximal objects. .
It appears that w;e can take Something like .this approach in general. If connections dre deﬁned by
_ the representative instance, then for any set of attributes X and attribute A not in X, x) € wx-([XA]).‘
Thus, {X] is at least the union of the projectif)ds of all [XAJs. If [X] is exactly equal to the union of these
projections, then we need not storé an expfession for [X]. The only X's for which we need to store a formulz;.
are those for which [X] is a proper supcrset of U4 x([X A]); these were called implicit objects in <Mal >,‘

because they generalized the idea of constructing maximal objects as in <MU>.

VL Concludihg Remarks

We have explored computational methods that might be used to simulate the effect of the representative

instance. Three overlapping classes of expressions were considered as possible computation methods:

1. monotone,




2, iossless, and

3. ﬁrst—order

We also identified a class of expressions that is in the 1ntersectlon of all three of these classes: umonQ of :
lossless tableau mappmgs.

We showed that monotonicity and losslessness are properties that we should expect of any computational
method that simulates the representativé instance, for the simple reason that the representative instance has
these properties. If we want a first-order method, i.e., an expression of relational algebra, then we find. that
we need only consider finite unions of lossless tableau mappings, since all first-order methods “are equivalent .
to one of these. As a consequence, condition (3) above implies (1) and (2).

We would like to closg by pointing out three shortcomings of the theory. First, though we have identified
the class of database schemes where the representative instance can be simulated by a first-order expression,
“our characterization, the boundedness condition, is not effective; we do not know how to test whether a

schema is bounded or not. In fact, we do not even know whether this problem is éolvable at all, even in
simple cases where only functional dependencies are given.
Secondly, in showing that if there is aﬁy first-order expression then it must be a union of lossless tableau

- muppings (Theorem 7), we used the compactness theorem. But in order to use compactness, we have to take

into account both finite and infinite databases. What happens if we restrict ourselves to finite databases?
Conceivably, there coulci'be a first-order expression that is equivalent to an inﬁnite union of lossless tableau
mappmgs, but is not equivalent to any finite union of such In some limited cases, such as Example 6, we
can show that this is not the case by more mvolved argumcnts But these arguments do not lead themselva
to generaliza’ion. .

Thll‘d there are reasons why the representative mstance approach does not support all the sem?mtxcs

\ that we mlght wish for in a universal relatxon system, and we doubt that it will serve as the “ultimate” _

'unlversal relation model. Some problems that we see as forcing awkwardness in the way universal relation
'systéms are used are the folloWing.

: 1 ) A repr.esent-,ative' instance system answers queﬁcs by intersecting the weak instances, and then appiy-ing
the qucry (Theorem 1). However, if ‘the weak instances are all the possible universal relations that the
user might sce, it ma& make more seﬁse to apply the query to all the -weak insfances, and then take the
intersectio‘n of the resull;s. This approac'h cannot pr;iduce mor‘e than the method of query interpretation -

_in which we compute the representative instance first, but there are examples where it produces less,
nétabl& when a join on “not equal” is involved in the query.. -

2. The representative instance allows us to infer equalities afnong nulls, but, since nulls are proj'ected out
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before we compute the answer to the duex'"y, these equalities cannot influence the answer. For example,

we might deduce that employees Smith and Jones have the same manager because they are in the same

" department, yet not know their manager, because the information is not in the database. In answer to

(AD]

[Ar]

(AT]

the query “lis_t pairs of employees with the same manager,” we would not list the pair (Smith, Jones).
The representative instance approach supports only qne notion of nulls, generally referred to as “missiag
value nulls.” We might wish to restrict the ability assumed in the represéntative instance approa.ch
to extend any tuple in a.ny relation of the database to the universal set of attributes. Perhaps it is
better to extend tuples only in limited ways, leaving certain positions in tuples “blank” and allowing
no dependency applications at all involving blanks. The effect of this restriction is that the universal
relation is split into several relations with overlapping, but distinct sets of attributes.

We hope to discuss these issues and propose an “improved” representative instance that supports many

- of the concepts developed here in a forti:coming paper <MUV>.
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