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| | | ABSTRACT :

The universal relation model aims at achieving complete access path independence by relieving the
user of the need for logical navigation among relations. It assumes that for every set of attributes
there is a basic relationship that the user has in mind. Two fundamentally different approaches to

the universal relation model have been taken. The first approach sees the universal relation as a |
user view, about which he poses queries. Specifically, a representative instance is constructed, and .

queries are answered based on its non-null part. The second approach sees the model as having
query-processing capabilities that relieve the user of the need to specify the logical access path. The
relationship between the user’s view and the computation answering a query is a central issue that

| systems supporting a universal view of data must handle,

We introduce “lossless” and “monotone” expressions and show that the representative instance
construction has these properties. Also, every lossless monotone expression produces a result that is
a subset of what the representative instance produces. We show that the existence of any first-order
formula to simulate the representative instance is equivalent to a “boundedness” condition on the

dependencies defining the database scheme. In addition, whenever there is a first-order formula to

simulate the representative instance, then we can do so with an expression of simple form: the union |
of tableau mappings. We close with a discussion of some of the problems with the representative

K instance approach that suggest better universal relation models may be possible.

I. Underlying Assumptions oo |

We assume the reader is familiar with relational database terminology to the extent covered in <Mal, Ul>

and with the idea of implementing a universal relation view of data as discussed in those works and <KS§,

MW, M*, U2>. , |

Goals of Universal Relation Database Systems

A primary justification used by Codd for the introduction of the relational model was his view that earlier

models were not adequate to the task of boosting the productivity of programmers <C1, C2>. One of his |

stated motivations was to free the application programmer and the end user from the need to specify access |

paths (the so-called “navigation problem”). A second motivation was to eliminate the need for program

modification to accommodate changes in the database structure, i.e., to eliminate access path dependence:

. of programs. |
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| | Though being a significant step forward, the relational model by itself fails to achieve complete freedom

from user-supplied navigation and from access path dependence. That is, the relational model was successful
in removing the necd for physical navigation; no access paths need to be specified within the storage structure .
of a relation. However, the relational model has not yet provided independence from logical navigation, since

access paths among the relations must still be specified. -
| For example, consider a database that has relations ED(Employee, Department) and DM(Department,

| Manager). If we are interested inthe relationship between employees and managers through departments,
then we have to specify the natural join of the KD and DM relations, projected onto I’M. This expression

is an access path specification, and if the database were reorganized to have a single relation FDM, then
the program would have to be modified accordingly. | |

The universal relation model aims at achieving complete access path independence by letting us ack
the system in an appropriate language “eive me the relationship between employees and their managers,”

expecting the system to figure out the correct access path for itself.t Of course, we cannot expect the system
always to select the correct relationship between employees and managers automatically, because the user

might have something other than the simplest connection, through departments, in mind, e.g., the manager

of the manager of the employee, or the manager(s) of all departments that come alphabetically later than the
departinent of the employee. We shall, in a universal relation system, have to settle for eliminating the need

for logical navigation along the most direct paths, while: allowing the user to navigate in more convoluted }

ways explicitly. Co

Unlike the relational model, the universal relation model was not introduced as a clearly defined model,
bul rather evolved during the 1970’s through the independent work of several researchers. Moreover, these

researchers were not only concerned with the universal relation as a data model, but some, like <B> and

| <BBG>, saw the concept primarily as a vehicleto discuss interrelational data dependencies. The issues :
of dependency satisfaction are rather different from those of supporting a user view, and the multiplicity of
assumptions led to considerable confusion and to some attacks on the universal relation model (<K, AP>)

that we regard as not germane to the subject. | - } |

Synopsis of Paper | |

We shall try in this paper to unify and clarify the various “universal relation assumptions,” as they pertain

to data modeling and the support of a user view. We first indicate the assumptions that are so fundamental ,
to the aniversal relation model that they are common to all the different approaches to the model. Then,

t A similar approach was taken in the RENDEZVOUS system, which generates possible access paths and lets the user choose .
the desired one <C*>. : oo | |



| we consider what we regard as the two basic approaches to the model. The first approach sees the universal
‘relation as a user view, about which he poses queries. Thus, in order to answer those queries we must first

- define the semantics of this user view. The second approach sees the model as having a query processing
ability that enables the user to pose ‘queries about the actual database relations (rather than some abstract

] ‘universal relation), without specifying an access path. Thus, in order to answer queries, we must first define
a computational procedure that produces the desired answer; that procedure includes inferring the access

path. | | | |
The main technical contribution of this paper is an exploration of the relationship between these two

basic approaches. We establish broad conditions under which the approaches are the same, i.e., the result

of the query on the abstract universal relation is equivalent to a computation in relational algebra.

~ The Universal Connection Assumption | | |

Perhaps the most basic assumption is that there is a universal relation scheme, a set of attributes about
‘which queries may be posed. Further, attributes in this set are assumed to play only one “role,” and puns

are not allowed. Thus, an attribute like NAME cannot stand for names of employees, customers, suppliers,
] and managers in the same universal relation scheme.

_ A seldom acknowledged assumption, but one that underlies all known universal relation systems, is that

query processing consists of two steps. | | | | .
1. Binding. I'rom the set of attributes X mentioned in the query, form a relation [X], called the connection

of X, over set of attributes X Technically, [X] is a function from database states d to relations [XId).

We shall use [X] to stand for the relation [X](d) when the database state d is understood or irrelevant.
We allow the possibility that [X] is the empty function, i.e., no connection over set of attributes X is

2. Evaluation. Whatever operations must be applied to answer the query are then applied to [X].

The binding and evaluation phases are independent. Different functions [X] can be used to produce different

| relations over X, without changing the way evaluation works on the resulting relation, although the answer
may, of course, be changed. | | SE | } |

For example, the queries | Lo

‘ retrieve (EMP) |

where MGR="Jones” |



retrieve (MGR) oo

where EMP= “Smith” | | | |

are each answered by forming from the database some relation r over (EMP, MCR) in the binding phase.
Tor the evaluation phase, in the first case, we select from r those tuples with MGR= “Jones” and project .
onto EMP. In the second case, we select forEMP= “Smith” and project onto MGR.

Underlying the assumptions that queries may be answered in this two step way is the assumption that
for all sets of attributes X (or at least for many of them) there is a unique relationship on this set X

that the user has in mind. That does not mean there can be only one relationship on X, but rather, one
relationship is the most basic one, so we can assume that this relationship is what the user has in mind unless

he explicitly specifies otherwise. In the above example of employees, departments and managers, the most

basic relationship between managers and employees is that of “manages,” while the relationship “manages
the manager of” we intuitively feel is less basic. This underlying assumption is called the relationship
uniqueness assumption. The origin of the concept is in the “window” concept of <Ma2>.

In practice, systems such as <U2, KS, MW, M*> that support a universal relation view of data permit

queries with several tuple variables, each of which may range over a separate “copy” of the universal relation.

In that case, there is one set of attributes associated with each tuple variable, and for each such set, X, we

allow the corresponding tuple variable to range over [X]. - |

The One Flavor Assumption |

There is another rather fundamental assumption that underlies much of the work on universal relation

systems. Untortunately, this assumption seems impossible to derive from more basic principles. It has
roughly the intellectual status of a belief like “entity-relationship diagrams are adequate to model the real

: world.” That is, there is substantial empirical evidence for the assumption, but we know of no deep reason

why it must be valid. |

Our assumption, called the one flavor assumption, is that all tuples in [X] represent the same “flavor”

of relationship among the attributes in X. That is, the meaning to the user of the fact that tuple ¢ is in [X]
‘does not depend on the details of the construction that put it in [X]. Another way to statc this assumption

is that we must, when selecting the attributes in the universal relation scheme and picking an algorithm to

compute [X], arrange that the same attribute docs not play two different “roles” in one relation [X]. |

Evidently, “flavor” and “role” are defincd only intuitively. We regard it as a fundamental hypothesis of

universal relation systecins that it is always} possible to rename attributes so that the single-flavoredness of| .
1 or at least sufliciently often that it is worth trying to implement a universal relation support system.



any relationship will be apparent to the user. Perhaps an example will make these ideas clearer. |

Example 1: Suppose we have a universal relation scheme ABC with relations AB, BC, and AC. According

) to the functional dependencics assumed, different systems such as <U2, KS> would make different responses

_ to a query with X = AB. The two responses we are most likely to get from a universal relation system are
1) Apply the query to the AB relation; that is, [AB] is simply the relation AB.

tz) Take the anion of the connection in AB and the connection through C, that is,
- [AB] = AB U ma5(AC ba BC) | | ~ |

It appears that neither is right all the time, and the question of which is right hinges on whether tuples

in AB are of the same “favor” as tuples n mAB(AC >< BC). We shall consider two interpretations for ABC,
and try thereby to illustrate the distinction. |

Suppose that A = COURSE, B = STUDENT, and C = ENROLLMENT. That is, we may imagine that

a relation (COURSE, STUDENT), representing graduate courses, was at some time merged with a network
database representing the many-many relationship between undergraduate courses and students by means

of dummy ENROLLMENT records, each of which is owned by a STUDENT record and a COURSE record.

) Then we intuitively feel that the student-course pairs obtained from the (STUDENT, COURSE) relation
are of the same flavor as pairs that are related via the (STUDENT, ENROLLMENT) and (ENROLLMENT,

. COURSE) relations. That is, whichever the source, the student is taking the course. Thus, in this case we
| would prefer interpretation (27) in response to a query like oo |

retrieve (COURSE) | |

| where STUDENT == “Jones” : |

The response according to choice (#7) would be all courses taken by Jones, not just the graduate courses.
- Now consider an interpretation of ABC where A = STUDENT, B = LEVEL, and C = COURSE. The

(STUDENT, LEVEL) relation gives the level (Freshman, etc.) of each student, the (STUDENT, COURSE) |
relation tells what courses the student is taking, and the (COURSE, LEVEL) relation gives the nominal level |
of each course. | | | | |

Here, we believe that the proper response to the query |

retrieve (LEVEL) | | | |

BE where STUDENT = “Jones” |

. is given by (2), that is, just tell what level Jones is on, not the set of levels of Jones and all his courses.

. | Note that the two queries above arc both of the same form: retrieve (B) where A = constant. We feel
the difference in proper interpretation is due to the fact that (student, level) pairs meaning the student is



at that level are not of the same flavor as pairs meaning the student is taking a course at that level. In
more conventional terms, the attribute LEVEL is “semantically overloaded,” and should be split into two

attributes, say STUDENT LEVEL and COURSE LEVEL. [J oo | .

| The oné flavor assumption isa eéneralization of an assumption made by <B> to the effect that attribute
names were split adequately so that there would not be two different functional relationships between sets ) |
of attributes. That is, if a functional dependency X~+Y holds in a database scheme, and different ways of |

deriving this dependency yield different values yi and ye for the attributes of Y¥ associated with value z for
the attributes of X, then surely the tuples zy; and zy. over the set of attributes XY cannot be regarded as

of the same flavor in any reasonable sense. However, there could be one-flavor violations that do not involve
FD’s. For example, the (COURSE, LEVEL) relation in Example 1 could allow courses to be at several levels,

such as Senior/Grad. The FD COURSE—LEVEL disappears, but the one-flavor violation remains.

II. Universal Relations as the User View Co

The other notions that have at times been referred to as “the universal relation assumption” fall into two

categories. First come assumptions that imply data is treated as if it were all in a single relation over all |

the attributes. Presumably, [X] will be the projection of this relation onto X. The second group consists of n

various assumptions about how [X] is to be calculated, without explicit reference to a universal relation. The

relationship between the two forms of definition is important because the first aroup, defining a user view, is ’
intellectually justifiable, while the second group provides the efficient computation needed to respond to the

user in the way he expects based on his view. In general, computing the view explicitly is far too cxpensive,
and we must resort to computing [X] only in response t> a query about X. oo

| We shall deal with the first group in this section. Historically, the first “assumption” in this class was
| the pure universal relation assumption. By this approach , we restrict ourselves to cases where there exists

a relation u over the universal set of attributes U,such that, for every relation scheme R in the database
scheme, the current relation for Ris wr(u). In this case we take u as the user view, and [X] is simply wr{u).

| | | : This approach has the advantage that we can view the database as a physical representation of a single

universal relation, and it facilitates dealing with the semantic constraints on the database. In fact, it was
exactly for that reason that the pure universal relation was implicitly taken for the first time by Bernstein
<B>, when he developed a design theory for relational databases with FD’s. : |

a Clearly, in order for this approach to work, we have to ensure that the universal relation isunique, and i

that we have an effective way of computing it, These issues were investigated in <BR, MMSU, Ri, Vi>,
However, even with these issues solved, it was widely accepted that the pure universal relation approach is



not widely enough applicable <BBG>. Iu fact, in <HLY> it is shown that testing whether a database |

satisfies the assumption or whether an update maintains the assumption is NP-complete, i.e., probably
. exponential in the size of the database. |

A much more promising assumption, which has become known as the weak universal relation assumption,

} is that an appropriate universal relation to serve as a useg view is any rclation 4 over U such that

1. wu satisfies whatever dependencies are aiven, and | | |
2. wg(u) is a superset of the current relation for R in the database, for each relation scheme R.

Since we cannot know which of the infinity of weak universal relations truly represents the “real world” |

at any given moment, one assumes that the only facts that can be deduced about the universal relation from

the given relations of the database are those that hol in all weak universal relations. That is, we take the

user’s view to be a collection of sets of tuples, one for each set of attributes X. Let Sx be the set of tuples |

for set of attributes X. In Sx appear exactly those tuples ¢ such that for every weak instance u, there is a

tuple t/ in u that agrees with ¢t on X.

| Weak instances were first studied by <H> as a means to define satisfaction of functional dependencies
by a collection of relations. They have since been studied by <Me> as a way to define information content.

. in relational database schemes and by <Sal, Sa2, Y > as a model of what the user should see as the universal
relation about which he is to pose queries. | .

) An important property of weak instances is that as long as the dependencies are of a type for which the
chase process (<ABU, MMS>) is a partial decision procedure, even dependencies as general as embedded

implicational dependencies <F, BV, YP >, we can construct from a set of database relations a single relation

| that embodies the information present in all weak instances. The desired relation, which is the relation Sx
mentioned above, is constructed as follows. to

1. | We construct a relation u over U. To begin, for each relation r over one of the database relation schemes,
| say I, and for each tuple ¢ in r, place in a tuple that agrees with t on the attributes of R, and that

in the other attributes has a new “null” symbol appearing nowhere else. We use | ; for nulls.

2. Apply dependencies to “chase” u, that is, generate new tuples and equate symbols, as required by the

dependencics. However, when equating a null and nonnull symbol, replace the null by the nonnull. For
certain kinds of dependencies, in particular full dependencies, where no new symbols are generated by

the chase, this step terminates. However, we introduce new nulls when embedded dependencies are
- applied, so the process may not terminate if there are embedded dependencies. In this case the result

| of the present step should be taken as the infinite relation that results from chasing “forever.” oo
.

3. If during the chase process, we are ever forced to equate two symbols, neither of which is null, then

7



the process stops. We interpret this situation as saying that the actual relations in the database do
not satisfy the given dependencies. To be exact, in this case there is no universal relation that satisfies
the dependencies and produces supersets of the database relations when projected onto the schemes of .

those relations; that is, there is no weak instance. |

The relation constructed as above from a list of database relations r;,...,ry,, is called the representative )

instance for these relations (with respect to the given dependencies), and we denote it by RI(r;,...,r,). The

weak universal relation assumption says that the representative instance is a suitable model of the data

as stored in one relation. The representative instance differs from a pure universal relation in that the
latter consists only of total tuples. ‘In contrast, the representative instance extends tuples of one relation

to have nonnull values in whatever components are justified by the dependencies. However, in general, the

representative instance consists of relationships defined on subsets of the universal set of attributes—subsets

that are as large as make sense. | | .
Whenever a tuple of u has nonnull symbols in the components for set of attributes X, these values are

presumed to be related in a significant way, and therefore belong in [X]. Put another way, if we let wig(u)
stand for the projection of u onto R after throwing away all tuples that have nulls in one or more of the

components corresponding to the attributes in R, then the weak universal relation assumption says that .

[X| = mix(u), where u is the representative instance defined above. We call =| the restricted projection.

| As this way of defining connections is only one of many possibilities, we should, strictly speaking, use
a special notation for this definition. We shall use [X]2 to denote the set of tuples obtained by computing

the representative instance using set of dependencies A, and then performing the restricted projection onto
X. A fundamental property of the representative instance is that it always produces the intersection of all

‘the weak instances, that is, the sets Sx consisting of those tuples that are in the projection.of every weak

‘instance onto X. While this relationship is generally believed, we provide a proof in the following theorem.

“Theorem 1: For all X, [X]® = Sx.

Proof: Since RI{ry,...,ry) is a weak universal relation, it is clear that Sx C [X]A. It remains to prove

‘the other direction. | | |

Let u be the universal rclation constructed in the beginning of the construction of the representative

‘instance. That is, u is constructed by taking all tuples in the database and padding them with distinct nulls.

Now let v be any weak universal relation for the database. That is, v satisfics the dependencies in A, and )
wr(u) is a superset of the current relation for R in the database for each relation scheme RE. It is casy to
see that we can define a mapping kh on the entries in u that is the identity on all entries that come from the

8 |



E CC D M

Jones Ann 11 ls |

| Jones Jim ds |] da
] Green Sue 1s ls

Jones EK: Shoes 1s
Smith Le Toys dio
111 112 | Toys Green

Fig. 1. Initial table. ~~ |

database (i.e., the non-null entries), such that h(u) C v. Now we can show by induction on the chase steps,
asin <BV, SU, MMS >, that application of the dependencies preserves this statement. That is, let u’ be a

universal relation in an intermediate step of the algorithm. Then we can define a mapping h on the entries
in u' that is the identity on all entries that come from the database, and such that h{u’) Cv.

It follows that we also have such a mapping hk for which A(RI(r,,.. ., rn)€ v. Now let ¢ be a tuple in

RI(ry,. .., rn») with non-null entries in the components corresponding to attributes in X. Then we have that
: h(t) is in » and h(t)[X] = t[X]. It follows that ¢[X] is in Sx. Thus, [X]2 C Sx. [J

. Example 2: Suppose we have attributes I (employce), C (child), D (department), and M (manager), with

relation schemes EC, ED, and DM with current values | | | )

| Jones ‘Ann Jones Shoes . Toys .t Green a Co
| Jones | Jim Smith | Toys |

oo | Green | Sue - =. | . -

Suppose that the given dependencies are E—C; E—D, and D— M.t The initial value of u constructed by
step (1)above is shown in Fig. 1. N |

| | ~ We could apply E—C to deduce that the tuple oo
; (Jones, Ann, Ls, 14) ) | | |

was in u. However, we would later discover that this tuple contains the same information as the first tuple
in Fig. 1, so we shall instead apply the FD’s, discovering after we do that the MVD E—~( is satisfied as a

‘result (which must be the case because the two FD’s logically imply the MVD here). Thus, E—D applied

. to rows I, 2, and 4 of Fig. 1 tells us that | y = | 3 = Shoes. Then D—M tells us that] jo = Green,
+ The first of these is redundantand is included only to illustrate a point. -

oo



E | CC D M

Jones Ann Shoes | _|a2

Jones |. Jim | Shoes IK .

Green Sue 1s Ls |

Jones 17 Shoes 12

Smith | |g _ Toys Green

lu die Toys Green

. Fig. 2, The representative instance. |

and |g = |4 = ls; we shall replace them all by | 2. At this point no further changes can be made.
No nonnull syinbols were equated, so the data is deemed to satisfy the given dependencies. Figure 2 shows

the resulting representative instance. It serves as an adequate universal relation, telling us all the facts that

can be deduced from the given data and the dependencies. For example, we know that Ann is the child of

someone in the Shoe Department, because [CD] = {(Ann, Shoes), (Jim, Shoes) }. L]

Representative Instances and Logical Theories | oo

Another way to look at the weak universal relation approach is to view the database as a-logical theory. |
From this point of view (<GaMi, Ko, Re>) a database is a set of sentences in a first order language without

function symbols, whose relation names denote the relations of the database and whose constants denote

| the elements of the domain of the database. Let T be such a theory. Then, in answer to a query about a
relation R, we must produce the set of tuples {t | T |= L(t) }, i.e. the set of all tuples whose membership

| in the relation for R is implied by the theory. This approach has the advantage of working even in the case
that the given constraints are not dependencies, so the chase would not applicable.

Let us now see what the theory 7 is in our case. Our construction is similar to the construction in
<GrMe>, though they had a somewhat dillerent intention in mind. The language we use has a relation

‘name X for every attribute set X. In particular, it has a relation name R for every relation scheme R in
the database scheme, and it has the universal relation name U. For constants we usc the clements of the
database, which denote themselves. : | |

The theory has five kinds of scntences. First, we have a set DB of atomic sentences describing the

relations in the database. That is, for every tuple ¢ in some relation r over relation scheme 2, we have in DB )

the sentence R(t). Secondly, we have a set INc of sentences saying that the relation r for a relation scheme ,
R is included in the projection ofthe universal relation on R. For example, suppose that U= ABCD and
oo 10 |



R = BCD. Then put in INC the sentence”

(Vb)(Ve)(Vd)(3a) R(b, c,d) — Ula, b,c, d)) |

Thirdly, we have a set CON of sentences saying that the relation z for an attribute set X“contains the

) projection of the universal relation on X. In the above example we have the sentence

oo (Va)(Vb)(Vc)(Vd) (Ua, b, c,d) — R(b, c,d) oo

In addition we have the set DIS stating that all elements are distinct, i.e, for each pair of distinct elements

a and b we have the sentence a # b. Finally, we have A, which is the given set of dependencies written as

~ first-order sentences (<BV, F>) with the universal relation name as the only relation name. The theory T

is taken to be the union | | Ce
DBUINCUCONUDISUA’ | | |

| | Consider now a model of this theory. Since all constants must be interpreted as distinct elements (by

the sentences in DIS), we can assume that they are interpreted as themselves. Let r be a relation in the

database for the relation scheme R, and let +’ be the interpretation of R in the model. For every tuple ¢ in r

we have a sentence R(t) in DB, so t must belong to +’. Let u be the interpretation of the universal relation

- U. By the sentences in INC, we have ' C ng(u), and consequently, r C wr(u). Also, u satisfies A. It

follows that u is a weak universal relation for the database. Conversely, given a weak universal relation u

for the database, we can construct a model for the theory, by taking u as the interpretation of U, and by

taking mx(u) as the interpretation of X for each attribute set X. We have just proven: |

Theorem 2: A database satisfies the given dependencies if and only if its theory is satisfiable. [1

Now, given an attribute set X, we define [X]r to be {t | T |= X(t)}. The next theorem shows that

[Xr is the desired relation. : | ’

Theorem 3: [X]r = Sx. - : | |

Proof: We have seen that every model of.T corresponds to a weak universal relation for the database and

vice versa. Let t be a tuple in Sx. Then in every weak universal relation u.there is a tuple ¢’ such that

t = t/[X]. Thus, in every model of T there is such a tuple ¢’. By the scntences in CON, in every model of

T, t is contained in the interpretation of X. Thus, T |= X(t), and ¢ is in [X]7. The opposite direction is

similar. [] | |

. III. Computational Definitions of the Universal Relation | |

Now we come to a varicty of assumptions that start from the point of view that the user may query about

|



any set of attributes X, and the system will perform some computation on the relations of the database

to compute [X]. This approach was originally taken by <B>, where it is implicitly assumed that [X]

is computed by joins simulating functional dependencies. It was taken again in <ABU>, where it was .
assumed that [X] should be computed by a natural join. There, the notion of a “correct join” was identified

with the notion of lossless join; in fact the lossless join seems to be the basic computational procedure in all .

works taking the computational approach. | | |
The first implemented system to bchave this way, the UNIX command q <Ah>, uses a list of sets of

attributes; the list is established once and for all, for each database. [X] is computed by searching the list

for the first set of attributes Y that includes X, computing a relation over Y in some specified way, and

projecting onto X. If no set on the list is found, then the join of all the relations is taken and projected.
Several papers have investigated ways to find “correct” joins, and if possible, “optimal” joins to compute
[X] for a given attribute set X. See for example <Ar, L, V2>.

Most other proposals compute [X] by taking the union of one or more terms, each of which is a lossless

join. (In practice, the sets of relations on the list in a gq application are likely to be lossless as well.) For
example, <0, Sal, Sa2, KS> discuss taking the union of extension joins as a way to compute [X]. The

paper <MU?> proposes taking the union of joins each of which lives inside some “maxi al object,” where |

the join is not only lossless, but where the losslessness follows from particular rules, like the FD or MVD
rules for testing lossless joins. Variants of this approach have been implemented in System /U <U2> and _
PITS <MW, M*>. oo |

The idea of using for [XI a union of projections of lossless joins can be generalized considerably. For
example, the System/U algorithm, since it requires a lossless join of “objects,” which may be proper subsets
of relations, really uses a union of projections of lossless joins of projections of relations. |

Lossless Expressions - : | | |

Suppose E(Ry,..., Ry) is any expression whose operands are relation schemes R;,..., R, that are subsets
of some universal scheme U. Suppose also that the result of IV is a relation over set of attributes X CU.
We say If 18 lossless with respect to a set of dependencies A if for cach relation u over U that satisfies A,
when we substitute for each operand R of E the relation 7r:(u), the value of F is a subset of wx (u). Tor
the usual sorts of expressions we deal with, such as joins and the “tableau mappings” to be defined formally

later, it is easy to show that containment always holds in the opposite direction, so “is a subset of” could be ]
replaced by “equals” in the definition of losslessness. | | | |

Example 3: Suppose we have a universal relation scheme FDOP, representing employees, departments,



offices and phones. We shall assume the FD E—D, but no other dependencies except the join dependency
| (ED, EO, EP, OP) |

* | that we suppose corresponds to the formal definition of the universal relation according to the style of
| <FMU>. We shall, for this example, take the relation schemes to be EDP, EO, and OP. |
| BN Suppose we take X = DO, that is, we are interested in the department-office relationship. One lossless

~ expression we might use is the join of all the relations projected onto DO, that is

rpo(EDP <i EO bd OP) | | | |

The losslessness of this expression follows from the given join dependency. |

A simpler lossless expression is tpo(EDP p< LO). The losslessness of this expression follows from the |
FD E—D, and it is important to note that FDP >< EO is not a lossless join. That is, to test the losslessness
of mpo(EDP <1 EO) we must check whether it is contained in the expression wpo(L DOP), using the test

| of <ASU>. The tableaux for the two expressions are |
| : 'E D oO P | |

| : | d 0 : :

. . | . o | E |

“ and | |

E D O P | |

respectively. We here and throughout the paper use blanks for symbols that appear nowhere else in.the

given tableau. | | | | |

The first of these tableaux can be “chased” using the FD E—D, yielding | a
oo oo | E D 0 P |

oo | . d 0 | | |

| | e d p |

| | e dd o oo

whereupon the containment Tpo(EDP © EO) C npo(EDOP) follows, since the row of| the tableau for
: -mpo(LLDOP) can map into the second row of the above tableau. |

. | A third lossless expression we might use is mpo(wpp(ZDP) >< EQ). We can show this expression to be |
lossless by an argument similar to the one used above. []

13 |



| | In fact, we shall later prove a general rule for testing the losslessness of expressions, such as those in
Example 3, that are representable as tableaux. Simply chase the tableau, and see if a row with all the

distinguished symbols is created. Note how this rule generalizes the lossless join test of <ABU>, since N
+ there we want a row with the distinguished symbol in every column. In the present case, we do not care

| about symbols not in the Xx-columns, where X is the scheme for the result of the expression. | )

B Monotone Expressions | | | :

There is another condition on expressions that plays a role in characterizing computational ways to define
universal relations. Say an expression E(R,,... , Ry) is monotone if whenever r; C 3; for 1 < 1 < n,

it follows that E{ry,...,rn) C E(sy,... ) Sn). For example, all expressions of relational algebra using the
operators select, project, Cartesian product, and union, i.e., all those that do not involve set difference, are

monotone. | | :

| Motivation for Losslessness and Monotonicity | |

There is a natural motivation for restricting our attention to lossless, monotone expressions. Let us first

consider losslessness. | | .
Suppose that the user actually has a universal relation u in mind. Then he would like to have [X] =

mx (uw). However, because of the structure of the database, the user cannot store u, and he is forced instead )

| to store its projections ng, (u),..., nr, (u) onto the relation schemes of the database scheme. Thus, he would.
like the function f that computes [X] to be such that f(7, (w), eo., mr, (4) = mx(u). Well, perhaps asking

for “the whole truth” is tco much, because the database scheme may not support the reconstruction of

certain connections in the universal relation. But surely the user would like “nothing but the truth”; that
- is, f(wgr,(u),...,7r (2) C wx(u). In other words, f should be lossless. | |

Indeed, the functionf defined by the representative instance is lossless. To see informally why this is

so, suppose we start with a universal relation u, satisfying a set of dependencies A, and we project u; onto
some relation schemes to get relations ry,...,7x. Whatever the chase process for the dependencies in A is, |
we expect that no combination of nonnull syinbols will be generated by the chase unless it is a consequence

of A. Since u; has all the combinations of symbols found among the tuples in the ri’s and satisfies A, every
combination found in the result, ug, of the chase, will be found in uy. Thus |

| mix (uz) C mix (uy) = mx(u;) : Lo -

which proves that the representative instance construction is lossless. = | | ,

~ Note that we cannot in general prove that cquality holds, since u; may contain tuples in its projection
| 14 |



onto X that cannot be reconstructed by the chase. However, there is a broad class of dependencies for which ~
we can almost prove equality. An implicational dependency is said to be typed if symbols do not appear

- in more than one column. That is, the domains for the various attributes are regarded as disjoint, and

dependencies can neither be predicated on the same value appearing in more than one column, nor can they
* infer the presence in one column of a symbol appearing in another. - | |

Theorem 4: Let A be a set of typed implicational dependencies, 4; a universal relation satisfying A, and
” the result of projecting u; onto relation schemes Ry,..., R, and constructing the representative instance
from these projections. Then myx(uz) is either empty or is exactly mx (uy). The latter occurs exactly when

the expression mx(, 09 R;) is lossless with respect to A. | :
Proof: We argued above why xix (uz) C mx(u1). Conversely, suppose mix (uz) is not empty. Then, A
allows us to infer, from the fact that certain tuples are in the relations over the R;’s, that some tuple t with
non-null components for X exists in the representative instance ug. | CL

. Now consider any tuple 8 In uy, and consider its projection onto the relation schemes. Since the
dependencies in A are typed, all equalities that A requires to infer ¢ are satisfied by the projectionsof s,

since all these projections agree in components that they have in common. Therefore, A will imply the

existence in uy of some tuple with non-null components for X, and these components must agree with the

. corresponding components of s, since A is typed. Thus, 3[X] is in myx(uz). Also, taking the projections of a
tuple on Ry;,... R,, padding them with nulls, and chasing them with A, is exactly the test for losslessness

of the expression mx(, D9 R;). Since we showed that we get a tuple with non-null components for Xy 1
follows that the expression is lossless. | Co |

Finally, if the expression is lossless, then the losslessness test will produce a tuple with non-null |

components for X, and that means that, starting with a tuple 8 from u;, we get wx(s) in -x (uz). n =

Corollary 1: Let A be a set of implicational dependencies, 14; a universal relation satisfying A, and wu,
| the result of projecting u; onto relation schemes I%y,..., R, and constructing the representative instance

| from these projections Then mlx (u2) == mx (ui) if and only if the expression mx( on) R;) is lossless with
respect to A. : So oo | oo |

Proof: The proof is similar to the proof of the theorem. [] -

A When the dependencies are not typed, then Theorem 4 does not necessarily hold, as the next example

shows. oo Co | Co

Example 4: Let the universal relation scheme be ABCD and the relation schemes be AB, AC, and AD.



|

Suppose we have the following implicational dependency.
oo | "A B © D

: a b ¢ d | - .

I | EE Co |
: | ’

oo That is, whatever symbols appear together in the A and D components must also appear together in the B

and C components. ) |

| Then consider the following universal relation u.
| | a, bad |

: | a a dy dy oo

| Let X = BC, so the projection of u onto X is {b1c1,a1d; }. If we project u onto AB, AC, and AD and
chase the representative instance, we can infer the existence of a buple with middle components a;d;, but

| not the existence of one with middle components bc. [1 |

The motivation for monotonicity comes from our hope to duplicate by an expression the connection {X] |

defined by the representative instance, and from the fact that the function defined by the representative

instance is monotone.} It is straightforward to show, whenever the representative instance is defined for the

two databases (ry,...,7x) and (sy,..., 8x), i.e, both databases satisfy the given dependencies A, that the )

condition 7; c s; for all 1 implies [X]2(r1y-.-,7k) C [X]?(81,...,9%). Thus [X] defined by the restricted ]
projection of the representative instance has the monotonicity property. |

IV. Representative Instances, Lossless-Monotone Expressions, and Tableau Mappings

The broadest obscrvation we can make is that the lossless, monotone expression approach to defining [X] can

only produce tuples that we get from the representative instance. In this section we also introduce tableau
expressions and explore their relationship to the representative instance.

Containment of Lossless-Monotone Expressions within Representative Instances

Theorem 5: Let F be an expression that is monotone, lossless with respect to some set of dependencies A,

“and produces a relation over X. We do not constrain A, except that it must consist only of dependencies for

which the “chase” process succeeds in producing a (finite or infinite) representative instance that satisfies A,

e.g., the implicational dependencies. Then if tuple t is in E{ry,..., ry), it follows that ¢ is in mix (u), where ;

§Anothersuch property, which does not play a role here, is the containment condition, which says that if X and Y are two
sels of attributes, and X CY, then for all database states d, mx ([Y]{d)) C [X](d). That is, whatever connection among the ’
attributes of Y is represented by the database, the connection for X is an essential part of it.

| 16



Proof: Let R; be the relation scheme for r;, and let 3; = wr,(u). Then r; C s;, since u is Rl(ry,..., rn).

‘ "By monotonicity, t is in E(sy,...,8,). As E is lossless with respect to A, and u satisfies A, t must be in

A mx (u), and since has no null’ symbols, it is in wyx(u). J

Tableau Mappings oo | | | | | |

: We wish to deal with the question of when there is an expression, particularly a first-order formula (i.e.,

an expression of relational algebra), to simulate the effect of the representative instance.t To make this
characterization we need to introduce two concepts. The first is tableau mappings, which are expressions
that can be denoted by tableaux as in <ASU>, and the second, which we call “bounded” database schemes,

involves a strong limit on the length of the chase needed to deduce that a particular tuple is in [X] during
the construction of the representative instance. |

Yor our purposes, both tableaux and (embedded) implicational dependencies will be represented in the

same notation, (t,...,tx)/t, where the ¢;’s and t are rows of abstract symbols. The components of these rows

. correspond in a fixed , understood order, to the attributes of the universal relation scheme. The positions of
t are either blank or are symbols that appear at least once among the ¢;’s. If a dependency is represented,

. t could alternatively be an equality a == b. between two symbols appearing among the ¢;’s. If a tableau is
represented, then the #;’s could be tagged by relation schemes or relation names; we write ¢; (R;) to indicate

that row ¢; is tagged by relation R;. In that case, we expect that every position of ¢; that does not correspond
to an attribute in the relation scheme for R; will have a unique symbol, one that appears nowhere else in

the tableau. Normally,we represent unique symbols by blanks. Co

-. As dependencies, we call the t;’s hypothesis rows and t the conclusion row. The notation being used
here, and the meaning attributed to these dependencies is defined further in <SU, Ul>, and in <BY, F> ,
although different notation is used in the latter papers. Roughly, the dependency says that whenever we

see tuples that look like the hypothesis rows, in the sense that there is a mapping of symbols that makes
all the hypothesis rows become tuples of the relation, then there is also some tuple in the relation that is

the conclusion row after mapping of the symbols, with blank positions mapped to arbitrary symbols; if the

conclusion is a = b, then instead we require that this arbitrary symbol mapping has In fact mapped a and

A b to the same symbol, because the relation allowed no other possibility. = =. | | |
As an expression, the ¢;’s are called rows, and t is called the summary. The meaning of such a mapping

4 tNotethat there is always a second-order formula to simulate the representative instance, since we may thus express the
condition that a relation with the propertics of the representative instance exists. | : | |
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Fig. 3. A tableau expression or implicational dependency.

is described in <ASU>.. Informally, it means that the result of the mapping applied to a universal relation
u is found by taking each possible mapping of symbols that makes each row a tuple in u and placing in

the result the tuple that is formed by applying this symbol mapping to the summary. We can also apply a

tableau mapping not to the universal relation but to a collection of relations ry,..., r, over relation schemes

'Ry,...,R, that are each subsets of the universal relation scheme. In this case we require that for each TOW

ts, tagged by some relation R, we have R = R; for some 1, 1 < { < n, and that the symbol mapping sends

ti, restricted to R;, to some tuple of r;. oo | | | oo

Lemma 1: Let E = (ty,...,t,)/t be a tableau expression, and A a set of implicational dependencies. Then
E is lossless with respect to A if and only if A |= F, when FE is treated as an implicational dependency. )

Proof: E is lossless if and only if it is contained in the expression that is the projection onto those attributes g
in which ¢ has a nonblank, that is, in the result of the tableau mapping t’/t, where t' is t with blanks replaced

by new symbols. By the test of <ASU>>, this containmént holds only if, after chasing {¢1,...,%,} by the
dependencies in A, t can map to one of the resulting rows. But that is exactly the condition under which

AEE O a

Example 5: In Fig. 3 we see an expression or dependency based on the database of Example 3. We follow

the convention of using blanks not only in the summary/conclusion, but everywhere that a symbol appearing
| only once is found. As a tagged tableau mapping, it produces the natural join of the three relations EDP,
EO, and OP, projected onto DO. As a dependency, it says that d and o appear together in a tuple of each

universal relation in which for somee and p, there is a tuple in which e, d, and p appear together, another
tuple in which e and o appear, and a third in which o and p appear, all in their appropriate columns. As a

consequence of this dependency, the above expression rpo(t< (EDP,EO,OP)) is lossless. [J

Bounded Database Schemes | E

A database scheme is a finite set of relation schemes and a finite sct of dependencies that apply to the



universal relation scheme that is the union of the given relation schemes. We denote the database scheme
by D=(A,{Ry,...,R,}), where A is the dependencies and R, y+ ++, Rp the relation schemes. We say that

- | two database schemes are equivalent if SE 3
| 1. their relation schemes are the same, and | :

) 2. their dependencies are logically equivalent, i.e., the same universal relations satisfy both sets of depen-

| dencies. NB | | oC | |
Let D = (A, (R,, ...y Rn }) be a database scheme, We say D is k-bounded (for set of attributes X)

if for any relations Ti,...,7n over the Rs, if v = RI(ry,...,rs), and t is in 7x (u), then we can deduce
that fact by a sequence of at most k applications of dependencies in A, starting with the rs (padded with
blanks as in Fig. 1). D is bounded if it is k-bounded for some k. Note that “bounded” says more than that

the chase terminates in a finite relation for any r;’s. It says that sequences of k dependency applications
- suffice independently of the initial r;’s. As we shall see, “bounded,” “k-bounded,” and “l-bounded” all are
equivalent statements, in the sense that any bounded database scheme is equivalent to a 1-bounded scheme.

V. Lossless Tableau Mappings and Representative Instances

. We shall now develop our characterization of when the representative instance can be simulated by a first-
order formula. In particular, we show the equivalence of the following three statements about a database

) scheme D, whose dependencies are implicational, and a set of attributes X. Co

1. Dis bounded for X (and in fact 1-bounded).

2. There is a first-order formula that computes i(Rr, ..+yTn)), i.e., there is an expression of relational
algebra Jhat simulates the representative instance.

3. wix(RIry,...,r,)) is computed by a finite union of tableau mappings. CL

Theorem 6: Let D = (A, {R, y+-+y Bn }) be a database scheme, where A is a set of implicational depen- |
dencies. Then there is, for each set of attributes X, a finite set of lossless tableau expressions whose union

yields the same relation as wyx(u), where u is RI(ry,...,7,) if and only if D is equivalent to some bounded

scheme. : | . |

Proof: | | | | |

If: We may as well assume that D itself is bounded. Let k be the bound on the number of dependencies

’ that need to be applied, and let m be the maximum number of hypothesis rows in any member of A. Then
. | consider every tagged tableau expression IY whose summary has nonblanks exactly in the positions for the

attributes in X, and that has at most km rows. Depending on the equalitics of various symbols among the
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Fig. 4. Chase of unbounded length.

rows of the tableau, FF may or may not be guaranteed to produce tuples over X that will be produced when

the representative instance is chased by A. If A = E, then we have such a guarantee; if not then we don’t.

Moreover, since D is bounded, all tuples found to be in the representative instance projected onto X ’

will be generated by some such expression that is logically implied by A when the expression is treated as a

dependency. Also, there is evidently only a finite number of such dependencies. We thercfore can compute

mix(u) by taking the union of all those expressions whose tableaux’ summaries have distinguished symbols

in exactly the columns of X, and that are logically implied by A, when treated as dependencies. | |

Only if: Suppose that there is a lossless expression Ex that is the finite union of tableau expressions and

produces the same result as 71x(u). Convert the set of Ex’s to a set of dependencies, say A . Since the
Ex’s are lossless, A |= A’. It follows that A is equivalent to A U A’. |

} | Clearly, one step of dependency application using A’ serves to obtain enough tuples in u to prove that
mix(u) will contain whatever Ex produces, as D is 1-bounded. [1 | } |

Example 6: Consider the database scheme 0 = ({A—B,C—B}, {AB,AC}). We claim that D is not |
bounded, and therefore the universal relation defined by its representative instance cannot be simulated by

any finite union of lossless tableau expressions. To see informally why D is not bounded, consider the relations |

{a, by} for AB and {ajc;,az2c1,a2¢2,83¢2,...,8i{Ci—1,8iCi,...,QnCp} for AC. The initial representative *

instance is shown in Fig. 4(a), and the chased version in Fig. 4(b). Note that deleting any tuple from AC ,
mcans that a, bic, will no longer appear in the chase, | : . |

oo | . 20 oo



oo . Suppose now that Dis bounded. Whatever set of dependencies equivalent to { A—B, C—B} we choose, |
the existence of a tuple a,bic,, will have to be inferred from only a finite number of the tuples in AC.

- However, by making n large enough, we can force the inference to be made without looking at some aici.

Then, by deleting this tuple from AC, we can force a situation where the dependencies { A—+B,C—B }
) "no longer imply the presence of tuple a,byc,, yet the chase using the equivalent set of dependencies still

produces that tuple. [1EE | oo
| : Now let us turn our attention to the second equivalence, that between arbitrary first-order formulas and

| finite unions of lossless tableau mappings. h | k :

Theorem 7: Let D = (A,{Ry,...,Rx 1 be a database scheme, where A is a set of implicational depen-

dencies, and let X be a sct of attributes. Then mix(RI(r1,...,7s)) is expressed by a first-order formula if
and only if it is expressed by some finite union of lossless tableau mappings.

Proof: The “if” portion is trivial. For the “only if” part, we observe that every time we add a tuple in the
chase, we can find a tableau mapping that yields the projection of this tuple onto X. We find this tableau by
first expressing as an implicational dependency the fact that this tuple is inferred from a finite set of tuples
of the original relations. The hypotheses of this dependency will each have a particular relation scheme in

| whose columns all the nonunique symbols appear; thus it can be viewed as a tagged tableau mapping. By

. Lemma 1 , the losslessness of this mapping follows from A. It follows that there is some (possibly infinite)

set of lossless tableau mappings whose union yields mx(RI(ry,.. y rm) |
Let these mappings be Ti,7s,..., and let @Q,;,@32,... be the relations over X produced by these

mappings.} We know that Q; U Q2 U --- is equal to =}x(RI{ry,...,74)). There is an unexpected difficulty
here because we cannot refer to this infinite union by a first-order sentence. However, we can say that the

relation R is a superset of this union .by using an infinite set of sentences. In what follows, we useR; as
a relation symbol that stands for the it* relation in the database scheme, and we use R as an arbitrary

relation over X. BE . - Cl oo
By <GV> , We can find a (possibly infinite) set of implicational dependencies A’ over Ry,...,R,

asserting that these relations are consistent, in the sense that when we chase these relations, we do not
| | attempt to equate two different nonnull symbols, and thiercfore, the representative instance exists. Further,

we can construct for each I; a first-order formula Wilt, Ry, ‘eo , R,) that asserts that tuple ¢ is in 0;. Let
#(t,Ry,..., Rn) be the hypothetical first-order formula that says of tuple t that t is in 7} x (u), where u is the

‘representative instance constructed from the relations for which the R;’s stand. Then we have the following

. t The reader should be aware that in this proof, we represent relations by sredicate symbols, Q’s and R's. Thus, Q really
stands for the predicate Q(t) that is true if and only if tuple ¢ is in the relation we call @. We shall continue to treat such
predicate symbols as if they were relations, e.g.,by applying algebraic operators to them.



Jogical implication. Co :

Co AU{RE)[= 1,2, b= (V4 R()

| The reason that this implication holds is as follows. In a model of the left-hand side, the relations TlyesvyTh *

for Ry,..., R, constitute a database that has a weak universal relation, and the relation for R contains all |

the Q:'s. Thus it contains n}x(RI(ry,...,rs)), and therefore it contains the relations produced by ¢. Thus
the model satisfies Vi(¢ — R(t). | ) |

| By compactness, there is a finite subset of the v;’s,} which we may take to be y,..., 9, such that

CAMU{(—RE), (Rr RE) E (VER)

© Now let R be Q1 U---u @ x, that is, the union of the results of applying the k tableau mappings to the
given relations. Thus R(t) is logically equivalent to @1B) Ve Vv x(t). Then ¥:(t, Ry,...,Ry) R(t) is

surely true for 1 <1 < k, so
- A" = (Vi)(6(t, Ry, ooo Bn)=(@u(E) V ++ V Qi(2)))

That is, mix(u) C(Q1U- . U Qk), where u is, as before, the representative instance constructed from the

~ relations of the database. -

Containment in the opposite directior is obvious, since the T;’s were constructed to mimic what the. .
chase does, and each Q); is the result of applying T; to the relations of the database. Thus for all database

relations ry,...,r, that satisfy A’ (i.e., we can successfully chase the ri’s to constructa representative *

instance u) we have that mix(u) equals the union of the tableau mappings T4,..., Tk applied to ry,..., 7s.

Query Optimization, | | | | |

Our main interest in the computational approach to the universal relation model comes from a practical
consideration of computational efficiency; we do not want the expressions computing the [X]’s to be too |

| complicated. Thus, naturally, the issue of optimizing the expression to compute [X] is of paramount interest.
For example, Sagiv <Sal, Sa2> takes only minimal extension joins to produce the answers to queries, and
in limited cases, proves that these simple expressions suffice to compute [X]2.
oo An interesting consequence of Theorem 7 is that we can use the weak optimization technique of <ASU>
to optimize our expression. By that theorem, we have to deal only with unions of lossless tableau mappings.

LetT be such a tableau. We can view T' as a tagged tableau that defines a mapping on relations over *

Ry,...,R,, as an untagged tableau that defines a mapping on universal relations, or as a dependency on ,
t andincidentally, a finite subset of A’: |

| 22 | |



universal relations. Suppose that 7’ is another tagged tableau, obtained by removing some of the rows of

| T, that is weakly equivalent to T'. That is, 7" is equivalent to T when T and T” are considered as untagged
" tableaux. Clearly, T is contained in T' when they are considered as tagged tableaux; i.e., when applied to

| relations over Ry, oo 'R., T' produces all tuples that T produces. Now, T is lossless with respect to the set
* : of dependencies A, so AR T, when T is considered as a dependency, and consequently, A |= T", when T"

is considered as a dependency. Thus, T as a tagged tableau produces only tuples that are produced by the
| representative instance. As a consequence, T’ can replace T in the union of tableau mappings. |
Co Weakly optimized joins on maximal objects are used in System/U in order to compute connections
<U2>. The motivation there is given by appealing to the way dangling tuples are treated; this argument

. is intuitively reasonable but without mathematical foundations. | Co oo :

) Storage of Query Interpretation Information | | |

) Naturally, we do not wish to store, for the current database state d, all the views [X)}(d), where X ranges
over all sets of attributes. However, might it be feasible to store expressions for calculating {X](d) from d for

all X? The implication of our developments is that if any first-order way of computing connections exists,
i then we can establish for each set of attributes X a finite set of tableaux whose mappings together produce

[X]. However, if there are, say, 100 attributes in the universal scheme, it does not secm realistic to store all
’ the expressions needed to reconstruct the [X’s. - | oo

Existing universal relation systems have mechanisms for constructing the expressions for [X] “on the.
fly.” For example, System/U <U2> stores only the maximal objects, and obtains [X] by reductions of the
expressions for the maximal objects. | oo | | | oo
It appears that we can take something like this approach in general. If connections are defined ‘by

the representative instance, then for any set of attributes X and attribute A not in X, [X] € mx ([X A):

Thus, {X] is at least the union of the projections of all [X AJ's. Ir [X] is exactly equal to the union of these
projections, then we need not store an expression for [X]. The only Xs for which we need to store a formula

arc those for which [X] is a proper superset of Ua nx ([X A]); these were called implicit objects in <Mal>,
| because they generalized the idea of constructing maximal objects as in <MU>. |

VI. Concluding Remarks - : | | | | |

¢ We have explored computational methods that might be used to simulate the effect of the representative |

. “instance. Three overlapping classes of expressions were considered as possible computation methods:
1. monotone, | oo | | : |



| 2. Jossless, and : Lo | |

3. first-order. |

We also identified a class of expressions that is in the intersection of all three of these classes: unions of .
Jossless tableau mappings. I | | : |

| 3 We showed that monotonicity and losslessness are properties that we should expect of any computational ’
~ method that simulates the representative instance, for the simple reason that the representative instance has

these properties. If we want a first-order method, i.e., an expression of relational algebra, then we find. that

we need only consider finite unions of lossless tableau mappings, since all first-order methods are equivalent
to one of these. As a consequence, condition (3) above implies (1) and (2).

We would like to close by pointing out three shortcomings of the theory. First, though we have identified

the class of database schemes where the representative instance can be simulated by a first-order expression,

our characterization, the boundedness condition, is not effective; we do not know how to test whether a
schema is bounded or not. In fact, we do not even know whether this problem is solvable at all, even in
simple cases where only functional dependencies are given. | | | : Co

| Secondly, in showing that if there is any first-order expression then it must be a union of lossless tableau

- muppings (Theorem 7), we used the compactness theorem. But in order to use compactness, we have to take .

into account both finite and infinite databases. What happens if we restrict ourselves to finite databases?
Conceivably, there could be a first-order expression that is equivalent to an infinite union of lossless tableau )

| mappings, but is not equivalent to any finite union of such. In some limited cases, such as Example6, we
can show that this is not the case by more involved arguments, But these arguments do not lead themselves
to generaliza’ion. | |

‘Third, there are reasons why the represcntative instance approach does not support all the semantics
that we might wish for in a universal relation system, and we doubt that it will serve as the “ultimate” |
“universal relation model. Some problems that we see as forcing awkwardness in the way universal relation
systems are uscd are the following. | |

- 1. : A representative instance system answers queries by intersecting the weak instances, and then applying

oo the query (Theorem 1). However, if the weak instances are all the possible universal relations that the
| user might see, it may make more sense to apply the query to all the weak instances, and then take the

intersection of the results. This approach cannot produce more than the method of query interpretation
in which we compute the representative instance first, but there are examples where it produces less, *

notably when a join on “not equal” is involved in the query. | _
2. The representative instance allows us to infer equalities among nulls, but, since nulls are projected out



~~ before we compute the answer to the query, these equalities cannot influence the answer. For example,

| we might deduce that employees Smith and Jones have the same manager because they are in the same

_— | ; department, yet not know their manager, because the information is not in the database. In answer to

| the query “list pairs of employees with the same manager,” we would not list the pair (Smith, Jones).

3. The representative instance approach supports only qne notion of nulls, generally referred to as “missing

value nulls.” We might wish to restrict the ability assumed in the representative instance approach

| to extend any tuple in any relation of the database to the universal set of attributes. Perhaps it is |

© better to extend tuples only in limited ways, leaving certain positions in tuples “blank” and allowing

~ no dependency applications at all involving blanks. The effect of this restriction is that the universal

relation is split into several relations with overlapping, but distinct sets of attributes. Loe |

| We hope to discuss these issues and propose an “improved” representative instance that supports many |

~- of the concepts developed here in a forthcoming paper <MUV >.
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