‘October 1982 o e ' Report No. STAN-CS-82:939
7A Iso numbéred HPP-82-21 @‘ﬂ)

FILE CORY
(Dat
_: "

{S — 020% e

Planning and Problem Solving

AD-A222 298

by

Paul R. Cohen

DTIC

ELECTE ppm
JUNO 51330 f K

@@D

Department of Computer Science

Stanford University
‘Stanford, CA 94305

Approvad lor pubhc xelecsq
oo Dumouuon Unlimited

[Dlmmu'rvon STATEMENT A j
4

A

Abstract:

p This report is reproduced from Chapter XV, “Planning and Problem
Solving,” of the Ilandbook of Artificial Intelligence (Vol. 111, edited by Paul R.
Cohien and Fdward A. Feigenbaum). The chapter was written by Paul R.
Cohien, with contributions by Stephen Westfold and Peler Fricdland. Intended
as an cxlension of Chapter Il in Volnme [on search, this chapter reviews
nonhicrarchical planning and continues on to discuss hicrarchical and least<
commitment planning and the refinement of skeletal plans.

Accesion For

NTIS cra&l X,
DTIC Ta8 .
Unannounced 0

o . Justification .
STATEMENT "A" per Fred Koether : -

DARPA Library, 1400 Wilson Blvd. By .
Arlington, VA 22209-2308 o uﬂom-‘_?.!—_ﬁeg-c-......
TELECON 6/5/90 VG A

Availability Codes

. Avatt andior

: A’i’, ;-%:c»al
R

UNCLASSIFIED
SECURITY CLASSIFItATION OF THIS PAGE {When Date- Entered) R .
“ REPORT DOCUMENTATION PAGE BERORE COBPL e ONS it
1. REPORT NUMBER ; "] 2. GOVT ACCESSION NO. | 3. RECIPIENT'S CATALOG NUMBER
|STAN-CS-82-939; HPP-82-21) ’

4, TITLE (anc Subtitie) 5. TYPE OF REVPORT & PERIOIS:CO\;EHED 18

Planning and Problem Solving technical, July 1982 . ?

& FERFORMING ORG. REFORT NUMBER
STAUTHORTS S o T : -1 STAN-CS-82-939; HPP-82-21

‘ 8. CONTRACT OR GRANT NUMBERIS)
Paul R. Cohen MDA 903-80-C-0107

(edited by Paul R. Cohen and Edward A. Feigenbaum)

5. PERFORMING ORGANIZATION NAME AND ADDRESS 1770, PROGRAM ELEMENT, PROJECT, TASK
Department of Computer Science AREA & WORK UNIT NUMSERS .
Stanford University
Stanford, California 94305 U.S.A.

7. CONTROLLING OFFICE NAME AND ADDRESS 12, REPORT DATE | 13. NO. OF PAGES
Defense Advanced Research Projects Agency July 1982 _ 61
Information Processing Techniques Office | 18- SECURITY CLASS. (of shit teport]

1400 Wilson Avenue, Arlington, VA 22209 { Unclassified

14, "MONITORING AGENCY NAME & ADDRESS (if diH. from Controlling Oﬂ»co)
Mr. Robin Simpson, Resident Representative , . .
Office of Naval Research, Durand 165 . V8. DECLASSIFICATION/DOWNGRADING
. Stanford University ’ ' :

16. DISTRIBUTION STATEMENT (of this report)

roduction in whol in part is permitted TOr—any-puepasg
of ¢ S: Gov‘ev ent. Diptribution authorized to U. ‘S; Government

ag
123

. DISTR!BUTlON STATEMENT (of the" abnrut.

18. SUPPLEMENTARY NOTES = @ "2 - " -0 == 7

. ‘Do'bbj':.sa.a.s 3[:8/87

T 19. KEY WORDS (Continue on reverse-side if necessary and identify by block numborv)) S T N —

1 20. ABSTRACTV(Commue on reverse side-if ncccmry snd identify by: block
. This. report. is. reproduced. from Chaprt‘:e'r"}‘(y ”Placnr? ﬂ’é’ and ,P‘rho_blem Solving,' of the

Handbook of Artificial Intelligence (Vol, III, edited by Paul R. Cohen and Edward A. |
Feigenbaum) The chapter was written by Paul Cohen, with contributions by ‘Steve
Westfold and Peter Friedland. This. chapter, intended as an extension of Chapter II
in Volume I on search, reviews.nonhierarchical planning and coiitinues on. to discuss
hierarchical and 1east-conunitment planning and_the refinement of skeletal plans.

DD 152:%3]473 - R UN({LfAsgltgmp S mr— —

EDITION OF Y NOV-65 IS OBSOI,ETE SECURITY CLASSIFICATION 6F ~?H|s PA&E (When 6019 Emcu:d)

R L. . - ;’ J}

SECURITY CLASSIFICATION OF THIS PAGE

-(When Datas Entered) . N . . , L

19. KEY WORDS (Continued)

.20 ABSTRACT (Continued)

—’DD1 523’3;1473‘8“'2’

EDITION OF 1.NOV-65 IS OBSOLETE

Planning and Problem Solving
by

Paul R. Cohen

Chapter. XV-of Volume 1P of the
‘Handbook of Artificial Intelligeiice

cdited by
Paul R.-Cohien snd Edward A. Feigenbaum

This rescarch was supported by both the Defease Advanced Research Projects
Agency (ARPA Order No. 3423, Contract No. MDA 803-80-C-0107).and the SUMEX-
AIM -Compuler Project. under the National Institutes’ of: (Tealth (Grant No. NI
RR-00785). The views and conchisions of this document sliould not.be interpreted.
as necessarily representing the official -policies, either-expressed or implied, of the
Defense Advanced Rescarch Projects Agency, tie-National Institutes of Health, or
the United States Covernment.

© 1982 by William Kaufmann, In¢: All rights reserved. No part of this publication

may be reproduced, stored in a-retricval system, or-bransmitted, in any form oe by -

any means, clectronic, mechanical, photocopying, recording, or otherwise, withont

Llic prior writlen perimission of the publisher. However, this work may lie reproduced

in whole or in pnﬂ.‘for» the oflicial use of Lthe U.S. Government on the-condition that
-copyright-noticeiw-incmded.with-gnch-officisl.reproduetjon. .Forfurtherinformation, - - .- - R
write to: Persnissions, William Kaufmann, Ine., 95 First Strect, Los Altos, CA 91022,

CHAPTER XV: PLANNING AND PROBLEM SOLVING

A. Overview /515
B. STRIPS and ABSTRIPS / 528
C. Nonhierarchical planning / 581
D. Hierarchical platiners / 541
1. NOAH / 541
2. MOLGEN / 551
E. Refinement of skeletal plans / 557

FOREWORD

The Handbook of Artificial Intelligence was conceived in 1975 by Prol'cesor
Ldward A. Fclgcnbaum as a compendium of knowlcdge of ‘Al and. its ap-
plications. In the ensuing years, students and Al researchers at Stanford’s
Departinent of Compuler Science, a major center for Al' rescarch, and at
universilics and Iaboratorics across the nation have contributed to the project.

The scope of.the-work is broad: About 200 short articles cover most of the im-

portant ideas, techniques, and systems developcd during 25 years of research
in AL

Overview arlicles in each ch.xptc.r describe the basic issucs, alternative
approaclies, and unsolved -problems that characterize areas of Alj they are
the best critical discussions anywhere of activity in.the field, These, as well
as the more technical articles, are carefully edited to remove confusing and
unessential jargon, key concepts are introduced with thorough explanations
(usually in the overview articles), and the three volumes are completely in-
dexed and cross-referenced to make- it clear how the important ideas of Al
relate to each other. Finally, the Ilandbook is organized hierarchically, so
that readers can-choose how decply. into the detail of each chapter they wish
to penetrate,

This technical report is reproduced from Chapter XV, *“Planning.and
Problem Solving,” of the landbook (Vol. ml, edited by Paul R. Cohen and
‘Tidward A. I'eigenbaum). The chapter was writien by Paul R. Cohen: Stephen
Westfold wrote an-early version of the NOAH atticle, and Peter Friedland
wrote the article on the refinement of skeletal-plans. Intended as an extenaion
of Chapter II'in Volume I 6n search, this-chapter rcviews nonhierarchical plan-
ning.and continucs on to discuss hierarchical and least-commitment planmng
and:the refinement of skeletal plans.

’

A. OVERVIEW

PROBLEM SOLVING is the process of developing a
achieve s goal. This broad definition admits all goal
to the ranks of problem solvers: for example, MYCIN fﬂer%rtmle-\’m—m,

s solves the problem of determining a bacterdmia infection. HARPY

7,,—(:*ﬂ1cie‘V"C‘Tj‘in~\-el-A-)-~ol\ es the problem-of understanding speech signals. and
AST(ATOcle XIv solves the problem of filling in slo§s in its representations
of conceptz It follows that this chapter is not about problem solvers—the
entire Handbook: is about problem solvers. This eh-ser)hke the chapter on
search (Chap. 11, in Vol. 1).Yis about problem-solving techniques. In particular,
it is about planning.

In evervday terms, planning means deciding-on a course-of action before
acting. This definition accurately describes the planning systems of this
chapter. so we will adopt it. A plan is, thus, a representation of a course
of action. It can be an unordered list of goals, such as a grocery llst but
usually a plan has an implicit ordering of its goals; for example,.most people
plan to get dressed to go to the theater, not the other way around. Many
plans include steps that are vague and require further specification. These
serve as placeholders in a plan; for example, a daily plan includes the goal
eat-lunch, although the details—where to eat, what to eat, when to leave—are
not specified.; The detailed plan associated with éating lunch-is a subplan of
the overall daily plan. Most plans have a-rich subplan structure; each goal-in
a plan can He replaced by a more-detailed subplan to achieve it. Although
a finished plan is a linear or partial.ordering of problem-solving operators,
the goals acljeved by the operators often have a hierarchical structure:(see
Fig. A-1). This aspect of plans prompted one of the earliest definitions:

‘APlanis any hiegarchical process in the organism that can control the order
in which a sequence of* s is'to be performed (Mﬂler, Galanter, and
Pribram, 1960, p. 16).

Planning and Problem Solving (kﬁ) &

Failure to-plan can result in less than optimal problem solving; one may
go.to the library twice, for example, having failed to plan to borrow a book
and return another at the same time. Moreover,.in cases where goals are-not
independent. failing to plan before acting may actually preclude a solution to
the problem. For example, the goal of building a.house includes the subgoals
of installing a dry wall and installing électrical wiring, but these goals are riot
independent. The wiring must be instailed first:-otherwise, the-dry wall will ~
be in the way.

(53]
-t
o

516 Planning and Problem Solving v

Plans can 'be used to monitor progress during problem -solving and to
catch errors befure they do too much harm. This is especidlly important if the
problem solver is not the only actor in the problem solver’s environment and.
if the environment.can change in unpredictable ways. Consider the example
of a roving vehicle on a distant planet: It must be able to plan a route
and then replan if it finds that the state of the world is not as it expected.
Feedback about the state of the world is compared with what is predicted by
the plan. which can-then be modified in the event of discrepancies. This topic
is discussed more fully in Sacerdoti (1975). The benefits of planning can be
summarized as reducing search. resolving goal conflicts. and providing a basis
for error recovery. These will be discussed in detail in the remainder of this
chapter.

Approaches to Planning

Four distinct approaches to planning are discussed-in this volume. They
are nonhierarchical planning, hierarchical planning. script-based planning,
and opportunistic planning. Here we must resolve a confusing ambiguity
in the word hierarchical. The vast majority of plans have nested subgoal
structures—hierarchical structures—as shown in Figure A-1. However, the
word has another interpretation, one that provides the basis for. distinguish-
ing hierarchical from nonhierarchical planning. The distinction is-that hierar-
chical planners generate a hierarchy of representations of a.plan in which
the highest is a simplification, or abstraction, of thé plan and the lowest

l Plan for the day 1]
| |]
'Lmo%ning -subplan I | lunch sgbp}m\l I afternoon subglaril
1 | | N
-go to work l;ead articlel l?at. s’indﬁ‘ch‘i lread] "rriié_] ’go homé:
I 1 |
buy | | drive | | find quiet Ibuy sin&w:{chl get find Idrivol

place to work paper | | a free
- © | terminal

H

get cash

go to bank

Hy

Figure A-1. Plan for a day, illustrating the hierarchical stfuéture of sub-

plans.

A Qverview 517

is a detailed.plan, sufficient to solve the problem. In contrast, nonhierar-
chical planners have only one representation of a-plan. Both kinds of plan.
ners generate plans with hierarchical subgoal structures, but, only hierarchical
planners utilize a hierarchy of represematlons of the plan. This distinction is
discussed further in Article Xv.B, in which STRIPS (a nonhierarchical planner)
and ABSTRIPS (the hierarchical extension of STRIPS) are compared.

Nonhierarchical planning.corresponds roughly to the-colloquial meaning
of planning; that is; a nonhierarchical planner develops a sequence of problem:
solving actions to achieve each of its goals. It may reduce goals to simpler
ones, or it may use means-ends analysis to reduce the differences between
the current state of the world and that would hold after the problem has
been solved. Examples of nonhierarchical planner= are STRIPS (Article X\.B).
HACKER Hmcle XV.C)..and INTERPLAN (also in Article XV.C).

The major disadvantage of nonhierarchical planning is that it does-not
distinguish between problem-solving. actions that are critical to the:success
of a plan and those that are simply details. As a result, plans developed by
nonhierarchical planners get. bogged down in unimportant details. In any-plan
there are.levels of detail that are too picky or too vague and alevel of detail
that is appropriate for the problem; for example, a too-detailed plan for dinner
starts with Go to the table, sit down, unfold the napkin, pour a glass of water,
find matches, light the candles.:. A toosvague plan is Sit down someuhere,
have food. Planning with too many details is a waste of* eﬁ'ort, but plans-that
are too vague do not specify whxch problem—solvmg operators should: be used;
a balance between these extremes is necessary for efficient planning.

To this end; thé method of hierarchical planning has:been implemented
in & number of planning systems. The method is first to sketch a plan
that is complete but too vague and then to refine the vague parts of the
plan into more detailed subplans until finally the plan has:been refined to a
complete sequence of detailed problem-solving operators. The advantage:of
this approach-is that the plan is first developed at a level at which the details.
are not computdtionally overwhelming.

Hierarchical planning also takes several forms in these systems. One
approach, typified by the ABSTRIPS program (Article 1.D6, in Vol. I), is to.
determine which subgoals are critical to the suécess of the plan and to ignere,
at least initially, all‘others. (In ABSTRIPS, 2 detail is a subgoal for which 8
subplan can be found if plans have been found to accomplish-gosls that are
not details.) For -example, the problem. of buying a piano canhot be solved
unless two subgoals are accomplished, namely, Locate piané-and Get money.
Thus, an initial plan for buying a.piano might simply be Lécate piano, get
money, buy piano. Subsequently, this plan can be reﬁned with: inessential
details, such as Drive to the storé and Select piano. ABSTRIPS plans in a
hierarchy-of -abstraction spaces, the ‘highest of which contains a plan devoid
of &ib uﬁnupﬁftaﬁ\. dv‘uaxls aﬁd the-lowest of-w ‘hich:contains a Cvnuynctc‘"an .
detailed sequence of problem-solving operators. The advantage of considering

518 Planning and Problem Solving a

the critical subgoals before the details is that it reduces search: By ignoring
details. one effectively reduces the number of subgoals to be accomplished in
any given absiraction space.

Hierarchical planning was implemented in its earliest form by Newell and
Simon (1972, pp. 429-433) in their GPS model of theorem proving in logic. The
GPS approach was slightly diflerent from that of ABSTRIPS. In ABSTRIPS,
a hierarchy of .abstraction spaces is defined.by treating some goals as more
important than others, while in GPS there was a single abstraction space
defined by treating one representation of the problemn as more general than
others, GP32 planned in an abstraction space defined by replacing all logical
connectives by a single abstract svmbol. The original problein space defined
four logical connectives. but many problem-solving operators were applicable
tc any connective. Thus. it could be treated as a detail and abstracted out of
the formulation of the problem. A problem could be solved.in the abstraction
space. the space with only one connective. and the solution could be mapped
back into the original four-connective space.

Subsequent implementations of the hierarchical planning approach such
as NOAH (Article XVv.D1) and MOLGEN (Article XV.D2) are. again, slightly
different from cither ABSTRIPS or GPS. ABSTRIPS abstracted.critical goals,
and GPS$ absiracted a more general representation of an aspect. of its prob-
lem space. NOAH abstracts problem-solving-operators; it plans initially with
generalized operators that it later refines to problem-solving operators given
in its problem space. MOLGEN goes one stép further, abstracting both the
operators and the objects in its problem space. In all cases, however, hierar-
chical planning involves defining and plannifig in one or more abstraction
spaces. A plan is first generated in the highest, most abstract space. This
constitutes the skeleton onto which detail¢ are-fleshed out in l6wer-abstraction
spaces. Hierarchical planning provides a- means of ignoring the details that
obscure or complicate a solution to a problem.

A third approach to planning also makes use of skeleton plans but, un-
like hierarchical planning, these skeletons are récalled from a store of plans
instead of generated. This approack was-adopted in one of the MOLGEN sys-
tems (Article XV.E). The stored plans contain the outlines for-solving many
different inds of problems. They range in detail from extremely spécific plans
for cominon problems to very general plans for broad classes of problems.
The planning process proceeds in two steps: First a skeleton plan is found
that is applicable to the given problem and then the abstract steps-in the
plan are filled in with-problem-solving operators from-the particular problem
eontext. This instantiation process involves large amounts of demain-specific
knowledge. often working through several levels of generality until a problem-
solving operator is found to accomplish each skeleton-plan step. If a suitable
instantiation is found for each abstracted-step, the plan as a whole will be
suceessiul. - ’

A Overview 519

This approach has much in common with that of Schank and his col-
leagues (see Article I\F6, in Vol. I). Their approach to natural-language
understanding is to use stored scripts (and other, more sophisticated.struc-
tures) to provide top-down expectations about the course of a story.

A fourth approach to planning has been found by Hayes-Roth and Hayes-
Roth in human planning (see Article X1.C). It is described as opportunistic
ond is characterized by a more flexible control strategy than is found in
the other approaches. The Hayes-Roths have adopted a blackboard control
structure to model human planning. The blackboard is a “clearinghouse”
for suggestions about plan steps, suggestions that are made by planning
specialists. Each specialist. is designed to make-a particular kind of planning
decision. Specialists do not operate in any partictlar order; the asynchrony
of planning décisions that are made only when there is reason to do so gives
rise to the term opportunistic. In the Hayes-Roths’ model, and apparently
* in human planning, the ordering of operators that characterizes a plan is
developed piecewise—the plan “grows out” from concrete clusters of problem-
solving operators.

Opportunistic planning includes a bottom-up component, since it is driven
by opportunities to include detailed problem-solving.actions in the develop-
ing plan. It contrasts with the top-down refinement process characteristic
of hierarchical planning, in which detailed problem-solving actions are not
decided until the last possible moment in developing the plan. Another
difference between opportunistic planning and other forms is that it can
develop islands of planning actions—parts of a-plan—independently, while
hierarchical planners try to develop an entire plan at each level-of abstrac-
tion. (See Chap. Vv, in Vol. 1, for a discussion of island driving in speech
understanding.)

The Hayes-Roths’ model is-discussed in-Chapter XI, on models of cogni-
tion, since it is intended as a model of human planning-abilities:

Search and the Problem.of Interacting Subproblems

Two major, interrelated issues will keep reappearing:in this chapter. They
are the problem of limiting search and the problem of interacting subproblems.
The problem of search is to find an ordering-of problem-solving-actions that
will achieve a goal when there are a huge number of-orderings possible, most
of which will not achieve the goal. This problem has been called combinatorial
ezplosion, since the number of combinations of problem-solving operators
increases-exponentially with the number of operators (see Chap. 11, in Vol. 1).
The problem of interacting subproblems arises whenever a problem has a
conjunctive goal, that is, more than one condition to be satisfied. The order
in which conjunctive goals are to be achieved is sometimes not specified in the
problem. but it can be critical to finding a solution. Sometimes interactions

520 Planning and Problem Solving Xy

of this sort prevent any solution;.for example, if a-conjunctive goal is to paint
a ladder and paint a ceiling, the second. godl must.-be achiéved. before .the
first, because one cannot stand.on a freshly painted ladder to paint ». ceiling,
Unfortunately, this mformat)on is sometimes not given in-the problem but
must be inferred.

The problem of séarch is related to the problem of interacting subproblems
because additional searchresults from premature commitment to an arbitrary
ordering of interacting subgoals. In the ladder example, a planner that arbi-
trarily decided to paint the ladder first would needto backtrack and change its
plan when it discovered it could not paint the ceiling. Backtracking involves
replanning from the choice point that failed, in this case, the choice between
painting the ceiling and painting the ladder. Backtracking can be very costly.

Interactions between subgoals have been called constraints (Stefik, 1980;
see also Article XV.D2). They can be inferred from the preconditions of
operators if the preconditions are explicit. For example, if the operator Paint
cetling has several. preconditions such-as Heve paint, Have brush, and Have
ladder, an intelligent planner will infer from these that painting the ladder
cannot précede.painting the ceiling. A less- mt,elhgent planner may construet
a plan to paint the ladder first and then realize that it cannot continue; it
may then attempt to reorder its actions.

Some of the earliest planners generated initial plans that violated ordering
-constraints and then tried to go back and fix the plan. They include HACKER,
INTERPLAN, and Waldinger’s system; -all discussed in Article XV.C. These
systems applied. a powerful -heuristic called the linear assumption, namely,
that

subgoals are independent and thus can’be sequentially achieved in an arbi-
trary order. (Sussman, 1973, p. 59)

In a historical perspective, this can be seen to be an important heuristic.
The number of orderings of problem-solvmg operators is the factorial of the
nurhber of operators, so it is obvious that a:problem solver cannot successfully
examine all order:ngs in the hope of-finding one that-does not fail because of
interacting operators. The linear assumption says that in the absence of any
knowledge about orderings-of operators, assume that one- ordering is as good
as any other and-then fix any interactions that emerge. The three programs
mentionéd above all fix plans by reprdgrmg the component operators.

The linear assumption is used in cases where there’isno a priori réason to
order one operator ahead.of another. An alternative assumption is that it is
better not to order opérators than to order them arbitrarily. This assumption
arises in slightly different forms in the NOAH planning system.(Article Xv:D1)
and one of the MOLGEN systems (Article XV.D2). NOAH'establishes partial
orders of - problem solving -operators :by-considering their precondmons For
exampie, it may-know-that the-goal-of buying-coffee-beans-hge- *h°~eub°oals
Go to coffee store and Get money, but initially it-does not commit itself. to an

A Overview 921 ;

ordering of these operators. However, when it expands-each of these goals, it
notices that a precondition of -getting money, Be at bank, interferes with the
goal of being at the coffee store; thus, it decides to get.money ‘before it goes
to the coffee store. NOAH -orders operators only to eliminate problems: that
might arise from picking an arbitrary ordering. MOLGEN also will not order
operators until constraints are available to guide it; furthermore, MOLGEN
avoids committing itself to using operators or objects without constraints
because premature-commitment may conflict with other parts of.its plan.

The least-commitment approach of NOAH and MOLGEN contrasts with
the linear assumption. which says. Commit yoursélf to any orider of operators
and then fiz it. This approach works because NO.;‘\H and MOLGEN are able
to infer-constraints that hold-between operators. An important aspect of the
approach is that it is constructive; since planning decisions are made-only
when the planner is sure they will not interfere with past-or/future decisions;
the planner need never backtrack and undo a bad decision. In fact, both
of these planners do make bad.decisions and can: :backtrack. but the major
research effort has been to avoid backtracking.

Interestingly, humaun planners do, not. always use the ledst-commitment
strategy and. consequently;-they must sometimés backtrack. Humans oppor-
tunistically plan to execute an operator-when it is convenient to do-so, For
example, a human may plan to pick up groceries on-the way to a football
game becausé it i convenient-to do so. Later he (or she) will realize that the
groceries will wilt.during the game-and he will have to replan to avoid tliis.

Conclusion

We have discussed the structure of plans, concentrating especially on
the hierarchical relation between goals-and subgoals. When problem solving
is discussed in terms of search, it becomes evident that. although finished
plans are usually linear or partial orders of problem-solving operators, the
cearch spaces in which the plans ar» developed are hierarchical. This is.
because problem-solving operators have preconditions that are subproblems:
with preconditions of theit own, and so on. The term- hierarchical was shown:
to refer to two related concepts: Most plans have a-hierarchical structure, but;
only hierarchical planners use a hierarchy of abstraction . spaces to develop a:
pian.

We have introduced four approaches to planning: nonhierarchical plan-
ning as practiced by STRIPS-and HACKER; hierarchical planning of the soft
done by ABSTRIPS, NOAH, and MOLGEN,; script-based planning; and oppor-
tunistic planning. Most will be discussed in-subsequent articles, although
opportunistic planning is covered in Chapt,er X1, on models of cognition.

Nonhierarchical planners are discussed in Artitle XV.C after a comparison

of hierarchical and nonhierarchical planning illustrated by ABSTRIPS and

[44]
[B
| B

STRIPS in Article XV.B: NOAH-is discussed in Article XV.D1; andithe last two
articles afe devoted to the MOLGEN systems (Articles XV:D2.and XV.E).

The major issue for any planning system isreducing search; instrumental’

in this are methods for minimizing the effects of inberactin_g subproblems.
In particular, the least-commitment approach that derives from hierarchical
planning is-constructive, that is, it requires little or no backtracking.

References

‘Sacerdoti (1979)-is an interesting overview and. attempt to taxonomize
planning methods. Stefik’s (1980) doctoral thesis discusses and compares
mizny planning svstems and methods. The.references mentioned.in this article
are representative of the planning literature.and provide a readabie histori-
cal background; one important reference that was not mentioned earlier is
Bobrow and Raphael’s (1974) revi¢iv of Al programming languages. Planning
has received some attention in cognitive science, and human planning has been
examined in Al References include Schank and Abelson’s.(1977) book -on
seripts and plans. Feitelson and Stefik’s.(1977) study of human- experiment-
planning. Friedland’s (1979)-doctoral dissertation on script-based planning,
and the research of Barbara-and Frederick Hayes-Roth on opportunistic plan-
ning (Haves-Roth. 1980).

‘Planning and Problem Solving X\

B. STRIPS AND ABSTRIPS

HIERARCHICAL PLANNING in the conteéxt-of the.STRIPS and ABSTRIPS
planners’is the subject of ‘this article’(see-also Fikes and Nilsson, 1971; F 1l\es.
Hart, and Nilsson, 1972; Sacerdoti, 1974; Articles I:D5 and ILD8, in Vol. I).
The two systéins are virtually idéntical except that STRIPS plans in a.single
gbstraction space while ABSTRIPS plans in.a hierarchy .of ‘them. We:present.
here .a single problem—getting,a cup of coffee—and show how each of the
systems would.solve it.

Let us first -characterize .2 problem solver as a program that e\plore~
the statés that arise from the application of problem-=ol"mg operators im
search of one that-qualifies as 2.solution-to the problem. (Other characteriza-
tions of search in problem $olving are possible; see Articles I1.B1: and ILB2; in-
Vol. 1, for a discussion of state-space and-problem-reduciion sgarch) The first
State examined by ‘a problem-solver is the starting. staté, and:if the problem

solver is successful, the last state examined will be:the .goal state.

Problem solvers have available a set -of; problem—colx ing operators and
obJecfs When problem-solving -operators are executed, 2hey, bring about
changes in the state of the world. Consider now the- problem of getting &
cup of coffee. You go to theikitchen and-if coffee is-made. you pour some. If
not, you meke Some or go outito buy some. If"you- declde toi make some, but
there are no coffee beans or ground coffee, you go to. the store to get.some.
If vou, have mo money, you.go to the-bank first. Thé 're'~+ant opéerators and:

.objects are:.

Operator Objéct
Boil water boiling water.
Pour X kitchen
Buy. X coffee-bean storé
Make coffee coffee bearis
Go.to X brewéd-coffee storé
Get, money bank

money

Each operator-has preconditions that must.bé true before that operatorcan
be executed—for example, if thére is no coffée.to pour, you. must make somne.
‘Making a precondition triie-i5.a-subproblem. Because pr oblein-solvi ing.oper-
ators.usually have preconditions, a developing.plan usually has a_hierarchical
structure. ’ ’

The operators for this problem can ‘be represented: in .such a way that

‘f.}\n;r—nrcnnhrlif:rxn’e-onaanﬁ'on!e-oﬁn.ivp“n;f‘-. e e e e e e e e e

B g At S E RS2 R -t T e e S A

524 Planning and f?roblem Solving e

Operator Precondition Effect)
Pour coffee Have:brewed. coffee Problem solved _
Make coffee {{ave beans Have brewed coffee

Have.grinder
Have boiling water
Be in thé kitchen:
Buy something Be at store Have something'
Have morniey

Go someplace Place exists Be-at place
Not-at.any: other place

Get money Be at bank Have money

Boil water Be in the:kitchen Have-boiling-water

The —star.ting state and. goal 'state -of the problem can be .expressed.in these
terms-also:

Starting state. ‘Goal state
Not have brewed coffee ~ Have brewed coffée
In kitchien Inkitchen
Have grinder ‘Have grinder
Have money Have monéy
Have boiling water Have boiling water

If-a problem solver knows how: each problem-solving operator-changes the
state of-the world and knows the preconditions for-an operator to-be executed,
it can apply a technique called means-ends analysis to solve problems (see
Article ILD2, in Vol. I, and Article X1.B).. Briefly, this techniqué invVolves-iooking
for a-differénce:between- the current state of: the world and-a desxred state afid’
trying:to find a-problém-solving operator that will reduce the: dzﬁ‘erence Thls
continueés recursively- uptil:the ‘desired staté-of the world has-been. achieved.
STRIPS and ABSTRIPS .and*most. other plannérs;.use means-ends -analysis.

The next few paragraphs illustrate. how'STRIPS:inight solve-the problerii
of getting.a-cup:of coflee. First, it compares. the starting state.and the.goal
statecand immediatelv finds a dxﬁ'erence' Have brewed coffee. ‘So‘it: looks for
an operator that has Huve Srewed: coﬂ'ee in its list ofeflects. It finds:two:. Makc
coﬁ'ee and Buy something, whers: sorné?hing is instantiated with brcwed»coﬁcc
STRIPQ must choosé.one of them;-choosing the first makes-the. example méfe
intefesting, so- we will assume-it doés:that.

To make- coﬁ'ee, the'four. precondmons of thé Make .coffee operator-must
be fulfilled. STRIPS coimpares the current state of the-world: (the starting
state) with the first precondltion and 1mmed1atel} finds. a. dxﬂerence, Have
‘beans. Concequently, it goes back and tries to eliminate this- difference by

searching Tor an- operator- hut Tiassas its-effect Hos'beans: Ou!\ 2oREOPerator s e

s it b g me .‘n

T

B STRIPS and ABSTRIPS 525

.applies, numely. Buy something, where something is:instantiated with beans.
Once again. STRIPS .compares the preconditions. of the. proposed operator
with the-currént state-of the world. It-notes that the condition Be at store'is
not satisfied. so it must repeat the search once again and find an operator that
will get it to the st ire. There is such:an operator, Go-to someplace, with-the
single precondition that the place exist; since the store is-one of the.objects
available t6'STRIPS, the operator can be executed.

At this point, a plan for solving:the problem weculd ‘have the {following
bierarchical structure:

| (Pour coffée)
'Preconditions:
Have brewed coffee

or

=y = —
(Make coffee) (Buy brewed coffee)
Preconditions: | |Preconditions:
[Have beans, ... 1.
(Buy beans)
Preconditions: | .

i| Be at store,...

(Go to store)
Preconditions:
Store exists

['rruc ia iorldfiogél.l

Note that executing the operator Go-to store changes oné-aspéct of thé state
of the world. The starting state.is-In- the kitchen, but .Go tg store changes:
this to At the store, This change satisfies one of the- precondiuons of the Buy
beans operator; STRIPS checks the other precondition, Have: money Since this
precondition is true in the current state of thé world, STRIPS is free.to execute
the Buy. beans- operator. Its execution fulﬁllu the first precondmon of the
Make coffee operator. Furthermore, STRIPS ‘firids the next.two preconditions,.
Haz,e .grinder and.Havé boiling water, true in-the current. state:of the: ivorld:

Howev er, the last precondition, Be in-kitchen, has-been: rhade false by’ going
to the store, so before making coffee, STRIPS must find an operator with

the-effect of-making Be in kitchen: },rue again. This-is simply ‘Ga to kitéheén,

526 Planning and Problem Solving x\

and since it has no preconditions it is-immediately applicable. Its execution
fulfills all the preconditions of Make coﬂ'r.e, consequently, that operator can
be execcuted. fulfilling the single'precondition of Pour coffee-and solving the
problem

The final plan for getting coffée:is, thus, Go to the store, buy beans, go to
the kitchen, make coffee, pour coffee. ‘

Means-ends analysis is a powerful problem-solving method becaiise it
reduces the amount.of search done by a problém solver. At any point prior to
solving a problem. one or more goals'must be satisfied. Means-ends analysis
recognizes only one type of goal, namely, to reduce a diflference ‘bétween
two-states. Morcover. an assumption .of the method is that problem-solving
operators can be classified according to the kinds of differences they reduce.
Consequently., only a fraction of the available operators-will be applicable to
anv-given goal. and search among the operators for an appli¢able one will be
reduced.

Seareh and éackiracking

One difficulty with.means-ends analysis is-that it can still develop. large
search spaces. Althougn it festricts the number of operators that apply t6 a
goal. there.may st..} be several-applicable operators and no a priori basis for
selecting one. Moreover, there:is no way of krnowing whether the subgoals of
an operator can be.satisfied or“whether their evaluation may. eventually lead
to a-dead end. that is, to-a subgoal that cannot be satlsﬁed For examp]e, if
the Go to someplace operator had a.precondition Have-cér but no car-existed.
all- of the processing that led to that operator would have been in vain.and
the: problem solver would have hiad to backtrack to- find an:alternate path. In

the example above, the-only other-path. involves tryifig to Buy brewed-coffee,

and it. too. will fail for the same reason. In more complicated problems,.one

‘might expect to’find-several-alternative-paths that migh’t accomplish:a given
'subgoal, and a substantial amount of backtracking, ‘may be needed to-solve.

the problem. Backtrackmg can be very éxpensive, 50 recent planners have
been designed-to avoid-it- -as.much as:possible.

Backtracking arises from premature commitmeiit to a problem-solving
path. As an illustration.. consider- -again the.problem.of 'getting coffee. Assume
for a-moment that the- -objects that.are-available to 'STRIPS-are kitchen, bank,
coffee-bean store; - ‘brewed-cqffee store. The grinidér and'the. grinder store are
missing. To-solve ‘the probiem, STRIPS builds.a search trée;, as -¢héwn -in
Figure B=1.

Briefly. *TRIPS would feason that to pour coffée, it muét make-some or
buy some. It opts to-make some. To- do so, it needs:beans, for which-it. needs

hank fmast exist. Smce a bank doee exist, STRIPS. plans fo go there and get

money. It then explores the possibility of going to-a Lean. store; since such

nmoney ard a bean store. To get-money, it must get to-a bank, for-which a2

T e v

B ‘STRIPS and' ABSTRIPS 527 oy
| (Pour zoffes) SR
‘Preconditions:]
Have brawed coffee |
- e
or
(Make ccffes) ‘ ‘ (Buy. brewed co:fcaﬂ k
Preconditions: | |Preconditions: |
Have-beans, Have grinder,... : 1
B !
(Buy beans) (Buy grinder)
.Preconditions: ' Preconditions:
Have money, At bean store | Have money, At grinder store
; (Get money) (Go to- store). lTRUEl (Go to store) .
iPreconditions: Preconditions: |. ’ A'Precéndj.x.ions:
(At bank | |Store exists . liStore éxists
| (Go to bank) .TRUE | F‘AlSE-'I
Preconditions: ’ ’
Bank exists
— .

"

Figure'B-1. A search tree:for'the problem.of pouring. coffee.

a.store exists, STRIPS» can go there Both preconditions for buying beans
are fulﬁlled,ﬁso it plans: to buy. them:and then.goes.on-to consider ‘the- next
‘precondition- of -making coffee; which is having a grinder. Since.it does*not
have one, it decides to.buy. one,,fox which the’ preconditions- are»havmggmonev
and being:ata grmder store. Tt-has money from its previous visit-to the bank,
50-it -plans to-go to the grinder store: Urfortunatelv, no. such :store -exists.
All of -this processing hias been in-vaii—STRIPS cannot possibly-make coffee.
Its only option is to backtrack-to-a.choice point in-the:plan afid try andther
path. In this case, it.can try.to.buy-some brewed coffee: This part of the:plan
is not Jllu~traued but:it will suéceed.since a brewed-coffee store éxists. . }
Part:of: the- -expense of backtracking in the previous. example-derives froft -] R
‘planning:séveral operations that are actually unimportait détails. Intuitively, .
.. ODE. v.qulduexnect,“STRIPSfbo have.checked.. much_earlier_in .the.. piaf-to:ge0-. . el Ll

i ol - - ~

whether a.gfinder store-existed. ermlarl\ if STRIPS: kne“ that eertain- =tore=

>

528 Planning and Problem Solving X

existed, it should:not ‘have worried about how to get to theri until Jater in.

the plan: getting toyplaces séems like a detail. One would expect a planner
first to plan to do all the important steps in a plan and then to fill in: the
less important ones after it ha¢ sketched out the others. Iii fact, this.method
is called hierarchical planning; the first planner to use it was an extension of
STRIPS called ABSTRIPS. We will now briefly descrxbe how it works.
ABSTRIPS plans in a hierarchy of abstraction spaces. An ABSTEI?’S
abstraction space contains all of the objects and-operators, given in thé:initial
specification of the problem (callpd the ground:space), but some preconditions

.of some.cperators are judged-to: ‘be.more important than others. For-example,

Have boiling water-seems like an unimportant precondition of .making coffee
because it is so easy to accomplish. Other preconditions such as Grinder
ctore -ezists seem very important, bécause if they are not true in‘the ground
space; there is no operator that.the problem solver-can exécuteto make them
true. Preconditions aré-assigned importarnce; jevels, called 2riticalities. When
ABSTRIPS starts. plannmg, it plans to achieve only- those preconditions:that
‘have the maximum. (‘:riticé.lit3 —just those preconditions that are-critical to
the success of the plan. It plans in the hzghest abstiaction space. Next, it
vlans to achievé the preconditions of'the steps.in-its high-level plan that have
the next-criticality level, and so on, until all the preconditions in a plan have
been achiéved. »

The first step in this process.is assighing criticalities. The method used
in ABSTRIPS is-for a.himan to- draw up.a partial ordermg of precondmons,

by mtuxtwely judging their 1mportance, then ABSTRIPS follows an- algonthm
to adjust the-criticalities: further. One \mu,ht guess that the ‘most,_important
precondition is thata place exist, since if‘jt.does not, operators that .depend

on its existence cannot be used-in a plan. Ohe.might judge having sométhirg

as the next most important precondition and ‘being sofhewhere the least
important:

Precondition Intuitive criticality

Place existé 3
‘Have something 2 v
Be. soméwhere 1 -

ABSTRIPS adjusts these-criticalities as follows All precondmons whose
truth values cannot be changed by any operafor are>givén a maximum-eriti-
cahty For each of the other preconditions, if a-short .plan can-be-found-to
.achieve it—assuming the previous-preconditions-ate true—itis assumed to-be
a detail and is:given a-criticality equal to. that:spécified'in the partlal ordermg
If no such plan can-be-found, it is given a-criticality greater than the highest
one.in'thé partial-order. .

The.nreconditions Bank-exists; Bean store-exists; ewed=c
ezists are al! assigned 2 maximum value,'say, 5, becausé their truth cannot-be

s._and. Brmunrl-roﬁ'fhuctnf&xm -

B STRIPS and ABSTRIPS 529

changed by any operator. The.four Have something preconditions are Have

beans, Have grinder, Have boiling watcr, and Have money; three of them

can be achieved by a short plan, given that the previous-preconditions are
true. For example, given that the bank exists, a short plan-can be found-to
achieve the precondition Have money. These three preconditions are therefore
assigned their partial-order rank of 2, and the fourth, Have grmdcr, which

cannot be achieved by a simple plan because no grmder store exists, is-givén-

the rank of 4, higherthan any partxal-order rank, Lastly, the Be somewhere
preconditions are ranked, and since they can all be achieved by simple plans,
they are assigned their partial-order rank of 1:

Precondition Criticality

Bean store exists
Brewed-coffee store exists 5
Bank éxists 5
Have grinder 4
2
1

c Ot

Have beans, boiling. water, mﬂ"ey
Be at brewed-coffee store, :=dn store, bank

ABSTRIPS now formulatés 4 plan in .an abstraction space of critical-
ity-5. This means'that at this level; any. precondmon of an-operator that has
a smaller criticality value is assumed to be true. At this level, A.BSTRIPS ﬁnds
two-plans to get coffee: Make coffee.and Buy:brewed coffee. It then- expands
the Make coffee plan in an abstraqtlon space.of criticality 4, since the que
grinder precondition emerges at this level. ABSTRIPS tries-to find a subplan
for getting a grinder but cannot. Consequently, ‘it recognizes immediately
that itslevel 5 plan to make coffee will fail. It-backs up tolevel 5 again,:picks
the.alternative plan to buy brewed coffe¢, -and pursues it. Figure B-2 shows
a trace of its operation in-the-five abstraction-spaces.

In this trace, ABSTRIPS first plans t6 make coffee, but this plan.fails.in
the abstraction space of level 4. Thus, it-backtracks to: le\el 5 and plans to
buy brewed coffee. This plan is not expanded’ further until‘level 2, when. the
precondition of having money becomes-apparent. At level 1, a,precond;t;on
of getting money is found, namely, Be-at bank, and a.precondition of buying
-coffee is found, niamely, Be at store. ABSTRIPS plans to go to these placés;
its final plan is Go to bank, get:money, go-to-coffee-store, buy brewed coffee.

ABSTRIPS solves problems with much ‘less .séatching and backtracking
than STRIPS because it is a hierarchical planner. It generates a. hierarchy
of plans in which. the highest level plans are very sketchy and the.lowest

level .plans are detailed. Since a complete plan is:formulated' at each level

of abstractinn before the.next.level is considered, ABSTRIPS can find dead
ends early, as it did with the problem of: ﬁndmg a coffee, grinder. The details
of-the other-patts of the plan to- makg cgﬁ'ee, for e\tample, \boﬂmg \sater and

Level-5:

Level 3:
Level 2:

Level 1:

References

.

Level 4:

Planning and-Problem Solving

E(ﬁake cottee)
iNo preconditions
of criticality §-
\Precoﬁdit;ons:
Have grinder

(Buy grinder)
j Precotditions:
: Be at grinder store.

[,

| Preconditions:
Grinder store exists

(Go- to krindgr store)

or

FALSEE“{gpu}hjtcglﬂYil;§J‘

Figure -B-2.

(Cet money)
Preconditions:
'Be at bank

(Go_to bazk)

(Buy breved coffee)

No preconditions
of criticality §

No' preconditions

‘0. criticality 4

No preconditions

rof eriticality 3

Preconditions:
Have money,

-Be .at .coffes store |

(Go, to stere) |

A trace of ABSTRIPS in five abstraction spaces.

buyi ing beans, wére-never considered because ABSTRIPS quickly detected that
an important precondition of making coffee- could not be satisfied.

STRIPS is discussed. in Fikes and Nilsson (1971); in Fikes, -Hart, and
Nilsson- (1972), and in Articlé D5 in Volume:1 of the Handbook. ABSTRIPS
is discussed in Sacerdoti‘(1974) and-in Article 1.D6 (also in Vol. 1).

U

L SR TRRP Y S S

C. NONHIERARCHICAL PLANNING

NONHIERARCHICAL approaches to planning order operations at a-single level
of abstraction. in contrast to hierarchical planners. which develop entire:plans
at multiple levels of abstraction. A:nonhierarchical planner typically deveiops
a hierarchy of subgoals. but they are.all at the same level of abstraction.
The systems discussed in this article are HACKER, INTERPLAN. and
the planner developed by Waldinger. They: are three attempts to solve the
difficult planning task of achlgy ing conjunctive subgoals that are not indepen-
dent. Many problems are formulated as a conjunction of' goals; for example,
spring cleaning may involve sweeping, washing the floor, washing the windows,
beating the rug, and.so-on. However, these goals-are not independent: they
cannot be achieved in-an arbitrary order. Washing the floor before sweeping
it u dosmed-and grubby operation;a precondition of washing the floor is-that
it:be.swept clean of loose dirt. Similarly, oné- should not-beat the rug after
sweeping, because dragging a dusty rug outside will- make the floor dirty and
ruin the effect of sweeping. In thetermiiology of this chapter, ‘beating the rug
after sweebing wotld constitute a violation of a protected goal, the goal. bemg
a freshly swept house. Similarly, achieving some goals can- actually prévent
the accomplishment of others, as when washing the floor prevents one’from

‘walking across it or using it for any other purpose until it is dry. To any
‘person with minimal housecleaning -experience, it will be obvious how and

why spring-cléaning tasks must be ordered to avoid their mutual interference.
‘but simple planning programs do'not. have a priori’know ledge about-the.order
in which goals should be accomplished. Thé problem for these planners is
tc construct, in the absence of ‘this. knowlecge, an efficient plan for achieving
conjunctive goals that are not.independent.

The approach takén by HACKER .and INTERPLAN is to formulate plans
that are flawed by interferences bétween. subgoals afid then to- fix them by
reordering problem-solving operations in the-plan. Walding~r's system is more
constructive: Instead of reordering operations:in a:flawea plan, it develops
the plan by -inserting operations one by one, checking each for potential
interference with established.operations.

HACKER -and INTERPLAN-apply-a simplifying heuristic called the linear
assumption to restrict-the number of goal orderings that it considers. It was
originally formulated by Sussman.(1973) in these terms:

Subgoals are independent and thus can-be séquentially achieved.in an erbi-
traty order. (p. 39).

DA AR PR P T

531

L T T o)

(433
(9%
(]

Planning and Problem Solving xv

Of course, this assumption is false for many problems, but.it does avoid
the problem of searching for an ordering of:subgoals in which noneinterferes,
The search space of. orderings can-be enormous, since it grows with the fac..
torial of the numbér of subgoals in a plan; for example, there are over.3 million
distinct orders in which-10 conjunctive subgoals can be achieved. The linear
assumption commits-the plaiiner to an arbitrary ordering of sutgoals rather
than searching for'an optimal one and, in the event that the ordering is sub-
optimal. the planner tries to fix it. (For an alternative, least-coramitment,
approach. see the following two articles.)

HACGKER

HACKER was developed as a-model of skill acquisition by Gerald Sussman
at M.I.T. Sussman defines skill as a set of procedures, each of which .solves
a certain kind of problem from the domain-of the skill. If a skill does-not
include a procedure to solve a problem, a new procedure must be designed:
Typically, it impleinents old. procedures:-as:a means of achieving subgoals of
the new problem. New procedures can turn out to have “bugs” and nét work
in all the situations for which they are designed. in.which case they can be
patched to make them work. Often, bugs can be-abstracted: that is, within.
the domain of a skill there-are common bugs that show up in many procedures.
One very general bug, the one addressed by all ‘the systems:in this article, is
found in cases in which- conjunctive subgoals are'to be achieved: Achieving one
subgoal -may prevert the. a"comphshment of another. ‘Sussman reasons that
this bug (and others) i§-s6 co.amon that .a model- of skill acqulsmon should
know how to debug the procedures it designs. HACKER is.ableto do s0-in
many cases.

Although HACKER: was designed as a model of skill acquisition, it is
interesting in the context-of planning because-the procedures-it develops.for
solving probleins are plans and because the debugging of plans was considered
a useful problem-solving technique. For the-pufposes.of this chapter, we> will
ignore what HACK:IR contnbutes to the subject of learning (for this; see
Article XIv.Dsc) and concentrate on-those.aspects-of skill acquisition that aré
relevant to plannmg

HACKER was writtén at a-{ime wheh procedural representations of knowl-
edge-were popular (see-Chap. IH, in Vol..1, on knowledge representation): ‘One
result of this is that HACKER's various functions are difficult to separate.
Rather than.explain their extensive interactions, the.functions and the knowl-
edge that supports them are described here in general terms. Those of
immediate interest are the ansiwer library, which-contains problem-solving
procedures; the knowledge hibrary, which contains facts about the -domain;
the programining-technigues library, which.is used 'to'propose problem-solving
-procedures-when-appropriate-oncs-are-not-found in-the answer-library;- and

.several libraries of-bugs-and-appropriate patches.

C Nonhierarchical Planning 533

Problem solving in HACKER would be'much like that in PLANNER (see
ArticleV1.A, in Vol. 1T) were it not-for the need to debug plans. FL ANNER<had
only one mechanism for recovering from a‘flawed plan, namely, backtracking.
This was very expensive in terms of search time. In contrast, HACKER
proposes-a plan and then corrects errors in it .with programs that are experts:
in debugging, rather than by backtracking to the point of failure in-a plan
and blindly trying-another problem-solving.operation.

The bug:that concerns us here is called prerequisite-clobbers-brother-goal
by Sussman: it arises from the linearity assumption. There are often interac-
tions between goals-such that achieving the:prerequisités-for one goal prevents
the accomplishment of-another. HACKER can solve some of these.interaction
problems, but sometimes the solution is not optimal. A popular:problem for
planners.is shown in Figure C-1.

HACKER attempts to solve this problem by finding a procedure in its
answer library that matches the.pattern of the goal: (MAKE (ON B €)). It finds
a procedure that says,

(TO. (MAKE (ON“X'Y))
(PUTON (X'Y))) ;

that is, to get block B on block C, execute-the simple procedure PUTON with
B and C'as arguments. When it simulates-the execution of this program, it
discovers-that it fails, because A is on B. A-bug in the proposed plan has been
found; HACKER now- attempts to-patch it-up. First, a library of .types of bugs‘
is consulted, from which HACKER concludes that the-bugis a PRI-:REQUISITE—
MISSING type. We-will not go into the details of this clasexﬁcatlon HACKER
knows that a prerequisite to one of its planned actions is missing, but it
does.not know which. prerequisite. In its knowledge library it finds several
potentially pertinent facts. One.is

(FACT (PREREQUISITE (PUTON (X'Y) (PLACE-FOR X Y)))) .

4
{

" ‘Figureé CX1. A planning problem: Get block B from under A .
and put it-on block C.

e A e s s A8

RRE| Planning and Problem Solving Xv

That is. to put X on Y ‘there must be a place on ¥ for X to rest. It
checks to see whether there is a.place on-C for B; since there is, this is:not
the missing prerequisite. The next fact is-more enlightening:

(FACT (PREREQUISITE (EXPRESSION (CLEARTOP OBJECT))
(MAVE (). (MOVES EXPRESSION OBJECT)))) .

It sayvs that a prerequisite for moving an-object is that the object have a clear
top. Since A is stacked on B, this prerequisite is-not met for B.

HACKER has discovered' the identity of the bug that spoiled its initial
plan for-getting B on C. It now uses this information to modify the plan,
applying geneml methods for fixing bugs-that.it has cncoumored before. One

such method says that. to patch a PREREQUISITE-MISSING bug. a procedure:
for attaining the prerequisite should-be inserted into the plan before-the pre-

requisite is needed. The prerequisite to be:achieved is (CLEARTOP B). HACKER
treats this as a subgoal and returns-to the beginning of its problem-solving
cyele: it looks in the answer library for-a-procedure that-will achieve the pre-
requisite. We will assume that this procedure exists; if it did not. HACKER
would construct.it with the-help of-its-programming-techniques library.

To summarize, HACKER solves problems by searching for a procedure:

known to-be appropriate-for such problems. If it find$ oné-but the-procedure
does not achieve the goal as éxpected, the reasons for the failure are formalized
as bugs. Efforts are then initiated to debug the procedure. At any time during

problem solving, HACKER -may be requitred to write procedures to achieve

certain goals. These are then ‘tested and. debugged -éxactly like procedures
found in the.answer library.

There are-problems-for which HACKER cannot generate an optimal plan.
One-such problem.is'shown in Figure C-2-and is discussed in the “Anomalous
Situations” -chapter of Sussiman’s thesis(1973).

Figure C-2. A problem for which HACKER cannot 'provide
an optimal'solution. Thé proper goal sequence is
(CLEAR A), (ON B.C), (ON A B).. .

P

U T

C Nonhierarchical Planning 535

HACKER knows from previous experience that it is wise to build from the
ground.up; therefore, for the problem.in.Figure-C-2,.it constructs a plan.to

((ACHIEVE (ON B C))
(ACHIEVE (ON A B)))

But when it simulates execution of this plan, it notices that, after putting
B on C, it must take it off again, and take-C off A, in order to clear A for
putting A-on B. This constitutes a protection violation of the previously
achieved goal. namely, (ON B ¢). HACKER treats protection violations as
bugs: unfortunately. -this one cannot be fixed simply by reordering its goals. If
HACKER tries to solve the problem by achieving (ON A B). and then (ON B ©).
it finds that, after -achieving (ON A B), another protection violation results
from trying to (CLEAR B) to put it on C. Regardless of the order in which
HACKER attempts to achieve the goals of the problem, a protection violation
oceurs. The only alternative is: suboptlmal—to permit the violation and then
to achicve the violated goal again at a later time, for example, by putting
B on C, then taking it off again, taking C off A, putting B back on C, and
‘finally putting A4 on top.

‘\When HACKER discovers a protection violation, it tries to reorder the
operations in its plan. However, it is limited to reordering operations at
one particular level of the plan; in the previous-example it tried to reorder
the initial- goals. To solve the.problem, it is necessary to reorder goals-at
different-levels of the plan. HACKER néed not reorder the goals (ON B) and
(ON A B), but-it must achieve a subgoa! of (ON A B),namely, (CLEAR A),'before
it achieves- (ON-A B). This kind of reordering of levels of goals is too subtle
for HACKER. However, another program called INTERPLAN does consider
these more complex reorderings.

INTERPLAN

INTERPLAN was developed by Austin Tate at the University of Edinburgh-
in 1974. It employs a convenient declarative representation called a tick- list
to allow protection violations to be detected-easily-and to give the system the
relevant information for recovery (Tate, 1975a). In:the event of a protection
violation, INTERPLAN first tries the same reorderings as HACKER; namely,

goals-are reordered at a single level of the subgoal hierachy. But if this fails, ,

it considers more-general reorderings. In particular, the subgoal at which
failure occurred is‘promoted, that is, moved before its superordinate goal, and
possibly before other goals as well:

The space of goal orderings considered by INTERPLAN is thus.larger than
that considered by HACKER, but for this-added: effort it gams the ablht) to

-optimize-plans-that-HAGKER-could-not-optimize, . - .-

.. It has tried_the two-possible ordermgs of

536 Planning and Problem Solvirig 7 XV

Consider ‘the problem.from Figuré C-2. INTERPLAN mma.lv proceeds\

like HACKER!
Goal or action State
o B |
ACHIEVE (ON A B): I. :
ACHIEVE (CL A) C ;,;:' Bl
APPLY (Cléar A) 2.
1A
o . Cill B
APPLY (Puton A ‘B) 3. 11
ACHIEVE (ON'B¢) . .
ACHIEVE -(CL B) Allsllct
APPLY (Clear B) 4, S

% (1) Protection violation-with state 3: Reorder

c|
.) B
'ACHLEVE (ON B C) 1.
é”v
=
N o A
APPLY. (Puton B-C) 5.
ACHIEVE (ON A B) L)
ACHIEVE (CL A) Allsilcl
APPLY (Clear A) 6. i |

» (2) Protection violation. with state 5:

At this point in the problem, HACKER résigns itself to a suboptimal plan.
the goals (ON A B) and (ON B ©),.

and neither: of them produces plans free-of protectlon violationis: In order to
solve the problem, & subgoal of one of the main goals must:be achieved: before:

C Nonhierarchical Planning 537

either.of the main goals. HACKER is not capable of reordering goals. be(;ween~
levels, but INTERPLAN is. It decides to. promote the subgoal that caused:

the:protection \lo]atxon, it returns.to the starting state. oﬁ the probléem and
immediately tries to achieve (CL.A):

Goal or action State
‘G
PROMOTE (CL A) | B
ACHIEVE (CL A). : 1. I | S
AllBllc
APPLY (Clear A) 7. :
|B
ACHIEVE (ON B'C) 1allc
APPLY (Futon B“C) 8. :
Al
s
ACHIEVE (ON A .B) 1co.
APPLY (Puton A B) 9. —

* (3) Goal achieved

Subgoal promotion is thus-a useful' meéthod for. réordering goals when they
interfere with each other. The: method and the tick-list data-structure that
facilitates it are discussed:in-detailiin Tate’ (1975b). -

‘Goal Regression

HACKER and-INTERPLAN backtrack when- they.find a protection viola-
tion; they reorder a- couple of.goals.afid then:start planmng to achieve-them
in‘the new order. :For simple prablems like:the previous example, this method:
will sufﬁce, but if there are several conjurictive goals, and many -or- most
goal orderings producesubgoal iriteractions, ‘the method.is very inefficient.
Moreover, when these planners.reorder-their goals. all goals affected. by the
reordering must be. achieved: again. This can: Jead to:the same solution being

achieved for a subgoal a- number of times because: superordmate goals inter-

acted vuth each othér.

538 Planning-and:Prohlem Solving X\
Nes?

An alternative approach is-to construct-a plan by solving-one ¢onjunctive
subgoal. at a-timé, .checking-that-each- solution: does..iot ‘interfere-with-other-
goale that have already been achieved' and moving the offending goal to a
differént place in the plan if it does. A planner that works this way was
dev eloped by Richard Waldinger- -(1977). He introduced the “oncept of goal
regression to handle interférence between goals:

At any point in-a plan a-goal:may have been<achievéd, but after another
step it may have-been violated. This was illustrated earlier-in the problem
in Figure C-2: after (ON B C) had beén achieved; it was violated to-achieve
(CLEAR' A). “Waldinger notéd that for any 0'oal G'and operation O, there is-no
guarantee that ‘G- will be true after O; but that a new goal. G":can-be found
such-that if.G’ holds before 0, G will'hold.after 0. Finding this new goal G/
i¢ goal regression,.oF passing the goalibatk over f.he .Bpérator. ‘Goal regression

can be used-to guarantee that.goals-that haveébéen~'a¢hie\'ed'ér‘”gvnot violated
by subsequent operations. The basic planning algorithm- is-to achieve the
first of the.conjunétive subgoals of the problem and then expand:the plan by
rregressing subsequent subgoals from the end of the plan-+6.a point in.the plan
wheré their accomplishment w xll not violate-those previously .achievéd.

Consider again the- three-blocks: probler. Waldinger’s-system-can- solve
the problem regardless of ihe order in which it .approaches- the subgoals, but
we will illustrate:it planning to achieve (ON-A:B) before (ON B:C). First, the:
systém removes block C from atop. A in-orderto-clear A. The plan looks like
this:

Goal or.action State
1C
: Al B’
L :
ACHIEVE (ON A B) C lA: B
(Clear A) 2. S |

Now the system puts A-on B:

lc]

(Put A on B) "~ 8.

The plan consists of two-actions, (Clear A), (Put A on B). The system
now aétempts its second-goal, appending it to the end of:the-plan. However, it

firds:that. a\.-hu';\ ingonc vf WoTPE vwcnd:t:cns, {Clzar n\ wiglates-the. “""’“"fpd

rtélation A is on B. Rather than reordering the conjumtwe goals-of the plan,

C Nonhierarchical Planning 539

as’HACKER and INTERPLAN do, the system:simply -passes.the offending.goal

back-over previously -achieved.subgoals-until'it-finds a piac¢ in.the-plan where-
the goal will' n6t interfere with any others. In this:case, the goal (0N B C) is.

moved in front of the action (Put A én B). The .plan now looks like this:

Goal or action ‘State
=i
G .
Falig]
1. i
ACHIEVE (ON A B) C | A, B
(Clear A) 2, —
B
ACHIEVE. (ON B C) clla
(Put B on C) 3.)
A
| o
(Put A on B) 4 L.l

When a proposed- operator causes a protectlon violation, an attempt is
thade to insert it at earlier -points in the plan, ¢hecking to-see-whether the
interaction is avoided and to see that no hew :protection violations occur.
Ho“ever. the choxce of “here to insert the neu operator 1s not .guided bv
at- each posmon to see- if 1t is suxtable Waldmger s.system does nét check
whéther a later-step is made redundant by the insertion:of the operator, soa
less than: optimal plan‘may be produced.

The main advantage of Waldinger’s approach 1is-that it is constructive:
Plan steps aré:added-one by-one, and-the only difficulty is finding:out where
they should go-in the plan. This -can involve a considerable amount of
searching, -but it avoids the inefficient repeated achieving of subgoals that
HACKER and INTERPLAN mustdo-after réordering,

‘Conclusion

\"-l~

Vé hiaveé discussed Tiere. tiirée nonhierarchical appr -oaches to planning:
I-IACKER INTERPLAN, and\V;]dmger s system. Each suffers from interacting

R

540 Planning,and Problem Solving XV

subproblems; the first two systems are-forced to backtrack.and reorder sub—
goals. and Waldinger's-system, though.it avoids backtrackmg by constructive
goal regression. must evaluate tha consequence= of putting, a subgoal at a
proposed place in a:plan. In- the remaining articles of this chapter, e w ill

.consider hierarchical and- script-based -planning -as alternatives to nonhierar-

chical planning.

References

HACKER is. discussed in Sussman'’s doctoral thesis (1973; also. Sussman,
1975). INTERPLAN is.discussed in Tate’s thesis (197 '5b), although his JJCAT

afticle (1975a) i¢ more- accessible. See Waldinger (1977) for a presentation of

hissystem.

D. HIERARCHICAL PLANNERS
Dr. NOAH

IN NOAH. Earl-Sacerdoti made some significant advances in problem solving
and planning. NOAH (Nets of Action Hierarchies) was desighed-as part-of the
Computer-based Consultant projeét at SRI International, Inc., around 1973
(see Article VILD2, in Vol. m). It uses a representationcfor plans: calléd the
procedural-net, which-has.a richer structure than previous problem.solvérs. In
contrast to these-earlier efforts, the- procedural net represents both procedural
.and declarative knowiedge about problem solving. The- -procédural knowledge
(also called domain knowledge) includes finctions that.expand stateménts of
goals.into subgoals and that simulate the actions of operators that transform
one state-into.another. Declarative, or plan, knowledge:represents- the effects
.of ‘executing these functions; for- -example, if a procedureis executed. that. puts
oné block on top of another, NOAH records that the-supporting' biock no

longer has a:clear top surface. Because the effects:of actions are represented’

explicitly, NOAH can reason about them. In fact; NOAH emplovs a set of
procedures called ¢ritics that are sensitive to those effects of actions :that

would jeopardize the success of theplan. Critics are used'to detect; and:correct:

interactions,-eliminate ‘reduhdant‘opé_ratipns, -and'so<forth,
Problem-solving in NOAH is accomplished by developing the procedural

net. From a single-node thut represents the goal to be -achieved, .4 -hierarchy -

of nodes is developed that represents levels of subgoals:to- ‘be. achieved ‘before
the original goal can be accomplished. The original goal node - contains &
pointer to a set of functions that expand' goals into- subgoals: When one

or more of thesé functions are éxecuted, subgoal nodes are added to the

procedural net. They ae linked to- the ongmal goal——-thelr parent—and to
each. other, -and, like the-r parent, they contain pointérs.-to functions that

expand goals to subgodls. In addition, ‘the-nodes representing the- subgoals.

include a declarative representation of thé: effects, if any, of executing the
functions.

After the original goal node-has been -expanded, ‘there-are two levels of
representatxon of the problem, the: ﬁrst of which is the:goal node. The second:
is a series of subgoals-that, when achieved, will have the eflect of achieving

the.original goal. These nodes are themselves expanded as thei; parent was.
NOAH ‘continues to add nodes. to- the procedural net' that are more speclﬁc

Yergions of the’ goals represented Dy melr parent., hvemuauv the orlgmal goal -

of the problem is replaced by several levels of‘more detalled goals and, finally,

541

3,

542 Planning-and Problem Solving XV

by a level of goalstthat.cah be immediately attained by simple problem-solvi ing
operators.

Thus, NOAH plans by developing a hierarchy of subgoals. These will-

sometimes be called abstract operators: A distinction is.-made heré, as else-
where in this.chapter, between the simple problém-solving operators specified
in-the problem space and abstract operators that will eventuallv be expandéd
to problem-solving operators. Abstract operators are:goals, and their expan-
sions are subgoals. in the sense-that such operators specify abstract.actions
that the planner-would like to execute but that it cannot execute until thay
are expanded to subgoals attainable by problemi-solving operators.

In addition to.abstract and problem:solving operators, NOAH has plan-
ning actions. These include the functions that expand goals into subgoals and
the actions-of various .critics. They are not.part of the emerging plan but,
rather. are the actions by which NOAH develops the-plan.

Note that whenever NOAH expands a goal to-subgoals, it runs the risk
-of creating interacting- subproblems (see Article Xv.C). This problem -arises

when a planner commits itself to an arbitrary-order for achieving conjunective

goals. NOAH avoids the problem in two ways:-first, by not ordering subgoals
until there is some reason to do so and, second, by continually examining
the developing plan for potential subgoal-interactions and correcting them
before they arise. This allows NOAH to solve-interaction problems-construe-
tively: Operators are not-ordered until a potential interaction is detected, and
thén they are ordered to avoid the interaction. This contrasts with the-plan-
ners’in the previous article; those planners ordered operators arbitrarily, and,
if an interaction emerged, they backtracked and replanned to try to avoid
the interaction: These planners are said to overconstrain a.plan by commit-

ting themselves to orderings arbitrarily; NOAH 'is said to underconstrain-a.

‘developing plan by -not committing itself to any-orderings except to avoid an
interaction.

Appiication

NOAH was applied in the domain of assembly-tasks, and it proved useful
and powerful. It provided instructions. to a huinan apprentice, who then
carried out NOAH’s plan. The procedural net was well suited to this task,
because it allowed a plan to be specified at any of several levels of detail;
for example, NOAH éould instruet a trained engineer to bolt the mounting
bracket.to the frame—a high:level instruction—but it could tell a novice how
to accomphsh this goal'in- -detail if necessary. The.procedural net also made.it
easier to monitor the-execuition of the plan. If an unexpected situation-arose,
NOAH could replan-by patching the procedural'net. The building of the-plan

was.kept.distinct.from.its.execution, but.eontrolcould- paqe.from.,the.nlannen._ .

to the execution monitor at.any stage.

D1 NOAH 543

The Structure. of the Procedural Net

The procédural net contains several lévels of representation ofa.plan, each
level more detailed than the previous one. Each consists of a partjally ordered
sequence of nodes that représent goals-at-some level of abstraction. To avoid
overconstraining the order in which goals are achieved, NOAH assumes they
can-be attained in parallel until it has some reason to put.one before or after
another,

Each node.in the procedural net is attached to its more detailed expansion.

in the next.level; for example, the node representing the-abstract goal Meke
coffce may be expanded to a handful of more detailed gcals, such as Grind
coffee, Boil water, Put the coffee.in.a filter, Pour the water through it. NOAH
will not commit itself to any particular ordering-of these operators until it
‘has reason to do so.

‘The statement of the problem goal is the top-levél node, representing a
plan.at a very: hxgh level. A simple example of the structure of the net. with
‘two levels is given in Figure D1-1. The S and J nodeés represent split and join,
réspectively;-they are dummy nodes:that bound actions that are assuried-to
be e\:ecutable in-parallel. NOAH uses this formalism to represent-operations
for which it has not chosen-an ordering.

NOAH expands a single goal node in the procedural net-into a-hierarchy
of plans at various levels of abstraction. To do this; it uses procedures ‘that

expand abstract operators into more detailed ones. Much:domain knowledge.

is implicit in these procedures; for example, one such procedure might.be:

If the abstract operator ts' (MAKE COFFEE),
then:ezpand it to-the- operators (BOIL WATER), (GRIND COFFEE),
(PUT COFFEE IN FILTER), (POUR WATER THROUCH).

The problem that NOAR is to solve détermines what knowledge:will -be
represer .ed-in these procedures;-the preceding procedure may be.appropriate

Level i: Achieve (ON A jn
((?LV%ARv A
Level 2:] 3 ‘ APul f on8
g (Eéggaafa) ‘ :

Figure D1-1 An -action hxerarchv (in-a blocks world)

544 Planning and Problem Solving xn

for the coffee domain but not for.any-other. ‘Since these proceédures.contain:so
much knowledge about the problem domain, they are called SOUP functions,
for. Semantics of User Problem. They are-written in an extension.of QLISP.

Ezpanding the Procedural Net-with SOUP-Functions

Consider again the simple blocks-world action hierarchy in-Figure D1-1,
To achieve it, and to solve simple blocks problems, two SOUP functions are
required. One, shown in Figure D1-2, expands any goal of the form (ACHIEVE.
(ON X Y)), and the.other expands.any goal-of the form (CLEAR X) (these are
the only functions required). The main goal of-the problem is associated: with
both functions, since at-the outset of the problem.it is not known: which will
apply. However, only (PUTON X Y) matches the pattern of the ‘main goal, so
only it is applied. (See Article VI.A, in Vol. 1, for a discussion of pattern-
directed invocation of procedures in PLANNER.):
~ Applying (PUTON X Y) to the main goal of the problem generates three
subgoals. The'PGOAL forms the basis for constructing subgoals; when a PGDAL
is activated, a-néw riode is generated-at the next.levelin the net whose’name,
is the PGOAL’s first argument, for example, (CLEAR X). The three PGOALs in.
PUTON create the nodes.(CLEAR A), (CLEAR-B), and (Put A on B). The first.two
are conjunctive, as.is specified by the “AND” in- thie-funétion. NOAH.: does not
choose -an-order to attain-'them but assumes they may be attained'in parallel
and thus-surrounds them with split and join:nodes.
The function (PUTON X Y) also specifies the effests of achieving. these-sub-
goals. The eflects of applying-CLEAR to X.6r Y.is to assert CLEARTOP for that

e

(PUTON
(QLAMBDA (ON' +X «Y)
(PAND
(PGOAL (Clear X)
(CLEARTOP- X).
APPLY
(CLEAR))
(PGOAL (Cleir Y)
(CLEARTOP Y)
APPLY:
(CLEAR)))
(PGOAL (Put. X o top of Y)
ON.X' 1)
APPLY*NIL)

(PDENY (CLEARTOP ¥))))

Flgure D1-2 soup code f‘or the blocks problem

D1 NOAH - 545

block, and the effect cf puttifig X on Y-is to DENY the assertion of (CLEARTOP Y).

These effects.are represented:declaratively in-the-add-list and-deleté list-of. a.

node. The add list is-a list of propositions that become true.after the goal
is achieved, and the delete list represents the propositions that are.no longer
true after the goal is-achieved.

Finally, the SOUP fundtion specifies which other SOUP functions. should
be applied to expand the subgoals it has just created. It suggests-that the
appropriate function for the subgoal-of clearing A or B is CLEAR. It makes-no
such suggestion for the third subgoal, Put A on B. because this goal can be
accomplished by a single problem-solving opefator and need'-not be further
expanded. This mechanism increases the efficiency of problem solving and
helps to avoid backtracking. Several SOUP functions might apply to a node
in the procedural net, but the parent of the node can specify, at the time
the node is created; which function is-to be used to expand it. This reduces
search. (However, the'user may explicitly cause NOAH to considér alternatives
by using a POR {unction inside a SOUP procédure. In this casé, alternative
expansions are generated-in parallel until one-is:seen to be simpler than the
other.)

The Concept of “State” in-NOAH

Problem solvers are typically regarded as searching through a space of

states for one that qualifies'as a solution. One conception of astate'in problem:

solvers like STRIPS and'GPS is that a state is a collection of propositions. New
states are-generated from old ones by the application of operators; that is,
operators-make some-old propositions false and add new true propositions.

Eventually, and depending on the power of the problem solver, a state will be-

generated -that includes-just the propositions required for the problem to<be
solved.

NOAH can also be characterized in this way, but-the knowledge that makes
up a state.in NOAH is:quite distributed. Some know ledge—that which will
never have its truth valve changed—is represented in a world model. This
includes the:state of the world-that holds when problem solving starts, When
some aspect.of that state is changed, the proposition describing:it is removed
from the world.model. The changed state of the world is represénted by thé
‘propositions added to the add list or delete list of the operator that changed
the state. Thus, NOAH knows which aspects of its: world have: not changed—

they are represented .in the world model—and it distributes its records-of:

changes.throughout:-the-procedural net.

Changes:are summarized at éach level in the net by a table of multiple
effects (TOME), which contains an entty for every proposition that was asserted
or denied by more than one node at that level in the net. TOMEs are uséd’
to-check for interactions.between goals; if a single proposition has its valie

changed by-more than one action.in.a.plan, there.is.a possibility of interference..

between the-actions.

o

516 Planning and Problem-Solving e

NOAH uses programs called critics to check for interferences. A eritic
simply .checks a TOME for the kinds of conflicts it is designed to correct.
When a conflict is.found. the critic has a limited number (usually only one)
of corrective actions it can take. If all of the critics can successfully eliminate
any conflicts found, the next level is expanded. There is presently only a
limited ability to backtrack on failure. Three critics are described heére.

The RESOLVE-CONFLICTS critic. This examines conjunctive goals
that are to be achieved in parallel. If an acticn taken to achieve one goal
removes a precondition of an action in the-other, the critic attempts to order
the actions so that neither violates a precondition of the other. This eritic
is similar to the debugging procedure in HACKER for reordering conflicting
goals. The important difference ‘isthat HACKER backtracks and reorders
arbmanlv ordered operations, while this critic constructively orders goals
that were previously unordered.

The ELIMINATE-REDUNDANT-PRECONDITIONS critic. Sometimes
during planning, the same operation gets specified twice when-it need be done
only once. This critic.fixes the problem.

The USE-EXISTING-OBJECTS critic: Formal objects. essertially: place-
holders, are used whenever there is:not a clear choice of what value to.give
a variable. This critic will substitute a value when a clear choice becomes

ssible at a lower lével of planning.

There are other critics.in the system; some have-a general purpose like
thosé above, while-others are specifically designed for a given domain. More
can be-added at any time. The ecritics described ‘here are sufficient for the
following example.

Planning in NOAH

The planninig algorithin- of NOAH operates repeatedly on. the current
lowest level of the procedural net. Initiglly, a node is constructed for the
goal NOAH is given as-its'task. All SOUP procedures are available to expand
this node; expanded nodes are assosiated with a much smaller set of SOUP
procedures by the procedure that generated them. Once all the nodes in the
current level have been expanded to produce a new level, critics check for
interactions before-another level of expansion.is tried.

An Ezample

This example shows NOAH solving the three-blocks.problem that was so
difficult for the planners in the previous article.
NOAH’s world model-contains the propositions:

(ON C A)
(CLEARTOP ‘B)
‘(CLEA’RTO? 0

D1 NOAH 547
This constitutes the starting state of the problem. The goal is-also written as
a proposition:

(AND (ON A B) (ON B O)):.
Graphically, the:starting state and the goal look like this:

B c

t

The PUTON and CLEAR functions discussed earlier are used in this-problem.
The first.node in the procedural net is:

Level 1: Achieve (AND (ON A B) (ON B C).)

This is expanded to two parallel actions by merit of NOAH’s policy about
conjunctive goals: They-are not ordered until there is-sorne reason:to:do so.

Achieve (ON-A B)-|'

Leve! 2:, S J

Achieve (ON h,C) 1

This is a simple:expansion; the critics-can find: nothing to criticize-about it.
The PUTON function is now used to expand each of the nodes at-level 2. (Refer-
- back to Figs. D1-1 and D1-2 for an-explanation of how this works.) The
result is shown in Figure D1-3.

The RESOLVE-CONFLICTS critic notices that-node 3 will delete & precon-
dition, of node 6, namely, that. B is clear (node- 4), because node 3 adds-a
statement to-its delete list that DENYs (CLEARTOP B). When a table of multiple
.effects is compiled for this level, NOAH notices that (CLEARTOP B)-is implicated
in the .effects of both nodes-4 and 8. Since NOAH has not commiitted itself
to achlevmg any of its goals in a partxcular order, it need not backtrack to
modify its-piah ih any destructive way. Instead, it uses this-conflict as-an™
opportunity to introduce constructively-a partial ordering of goals It decides

548 Planning and Problem Solving xXv

1| (CLEARA))
s | 9 F———4 Putacne
2| (cLeAR B)
s. o J
’ 4| (CLEARB)
N 6
s 1 o F———rutBonc
5| (CLEARC)

Figure D1-3. Level 3 before criticism, with nodes. numbered for reference.

to accomplish node 3 after it has done everything else. Figure D1—4 shows
this reordering.

Next, the REDUNDANT-PRECONDITIONS -critic observes-that nodes 2 and
4 are redundant and eliminates node 2. This step-is.shown in Figure D1-5.

NOAH next expands the (CLEAR-A) goal-at level 3. Actually, that is the
only goal that remains to be expanded, since B.and C have been clear from
the start of the problem, and the (Put X on Y) gdals are-achieved-by-simple
problem-solving operators. To.achieve (CLEAR:A), NOAH needs to move C
off of it and put C someplace; it -does niot know where, so it makes up a
placeholdér. Block C:cannot be moved unless it is clear;.so.the final sequence

1| (cLear)|

3-

1sk 14 ——— PutaonB

2 | (CLEAR B)

-

(CLEAR B}

‘8§ J p=————d'Put Bon C -~

5’| (CLEARC)

Figure D1-4. Level 3 after the RESOLVE-CONFLICTS ¢riticism.

)

-

. P

D1 NOAH 549

‘| (CLEAR A)

s [J:]-——- PutAonB

(CLEAR B)

-~

6 A -

S- J p—— PutBonC

5] (CLEARC)

Figure D1-5. Level 3 after all criticism.

that NOAH plans-in order to clear: A-is (CLEAR C) (Put C on Objecti). This
is illustrated in Figure D1-6.

NOAH. notices that node 6 may interfere w1th its latest goal, so the
RESOLVE-CONFLICTS critic decides to order node 6 after it has achieved
(Put C on Object1). See Figure D1-7.

Finally, the ELIMINATE-REDUNDANT-PRECONDITIONS critic notices that
(CLEAR C)-is-mentioned twice-in the plan. It eliminates one of the'-nodes. The
final plan is shown in Figure D1-8:

(CLEAR C) — Put C on Objectt

5' E.D—— Put Aor; B
(CLEAR B) ’

E

6

-8 J —tpuiBonc|

(CLEAR C) |

o

Figure D1-6. Level 4 before criticism.

550 Planning and Problem'Solving xv

(CLEAR) +——=——1' Put C on Objectt f—t—

4| (CLEAR B)

‘6

we s

s J PulBonC |- Put'Aon B

5.|:(CtEAR C)

Figure-D1-7. Lével4 after the RESOLVE-CONFLICTS criticism.

Conclusion

NOAH plans with a combination of procedural and declarative knowledge.
Initially, all NOAH}s knowledge is in procedural form—local domain knowl:
edge=in the SOUP ode.and global' knowledge in the critics. At the outsét of
pla'mmg, NOAH.is given a world model and a goal that it develops-into a
hierarchical-pro.'edural net. As it plans, it.records.in a déclarative form—in.
add lists and"delete -lists—knowledge to help it.avoid interaction problems.
To reason.about. interactions and possible orderings of goals, this.information.
is summarized in a-table-of multiple effects. Critics consult these tables after
each level has been; expanded; they-order and alter the plan constructively.

References

NOAH-is discussed in detail"in Sacerdoti’s doctoral-dissértation (printed
as an SRI technical note, 19/5) NOAH has been extended by Tatz(1976), end
a distributed implementation is discussed by Corkill-(1979). .

~ L PutCon -
(CLEAR C)|— Object

3 ’ 19 "Put Bon C |——] PutAonB

£ pe

|(CLEAR B) —/ .

FigureDl-’S. Level 4, final plan.

D2. MOLGEN

THE PREVIOUS articles have demonstrated the utility of problem-reduction
in_planning—dividing a problem into subproblems that are more easily-solved.
But problem reduction has an associated liability, namely, that subproblems
aré rarely independent. Solving one may prevent solving another. A number
of approaches to this problem have-been presented in the previous .articles.
HACKER and INTERPLAN used-destructive reordering of subgoals: Walding-
er's system employed a more constructive goal-regression. method (see Article
XV.C). In NOAH (Article XV.D1), the conceptual leap was to avoid linear
orderings of subproblems as long as possible and to plan initially with:abstract
goals that were refined in-such a way-as to avoid subproblem interactions.

In this article, we discuss the MOLGEN system—a knowledge-based pro-
gram that assists molecular geneticists in planning experiments, There are
actually two MOLGEN planners. one developed by Friedland (1979; sée also
Article X\'E) and another, the one this article is sbout. by Stefik (1980).
MOLGEN extends the work on hierarchical planning to include a layered con-
trol structure for meta-planning, Plans are constructed in-one layer, deci-
sions about the design of the plan are made in-a higher layer, and strategies
that dictate- the design decisions are inade. at a still’ higher level. A key idea
in MOLGEN is to represent the interactions-between subproblems explicitly
and- declaratively, so that MOLGEN- can reason-about them and use them to
guide its planning. The structure that represents.an interaction-is.called a
-constraint.

Levels of Planning

Control of planning in MOLGEN switches between three-layers, or spaces.
The lowest layer, called the planning:space; contains a hierarchy of operations
and objects typical in a gene-splicing-experiment. At the lowest level-of this
layer are bacteria, drugs; and laboratory operations, which are represented
by knowledge structures called units (Stefik, 1979); generalizations of these
include the general objects gene, organism, and plasmid and the -general
laboratory operations merging, -amplifying, reacting, and sorting. Initially,
MOLGEN. plans experiments with these abstract objects and operators. As it
chooses specific operators or objects to replace the abstract ones, jt introduces
constraints into its plan. For example, it plans at an abstract level to sort
two kinds of bacteria. At a later time, sort is replaced by screen. which sorts
baecteria by killing one group of them with an antibiotic. This decision results
in-the constraint that the-antibiotic be potent against one kind of bacterium
but not the other.

o
Ut
-t

(1]
ot
o

Planning and Problem Solving XV

The utility of hierarchical planning-is illustrated by the preceding exam-
ple. It shows that although a planning decision to use a-particular operation
affects later decisions about the kinds of objects to use, this interaction is
absent as long as the plan is formulated at an abstract’levél. Using hierarchical
planning, a complete, abstract plan is constructed without attention:to these
interactions. Then, as steps.in the plan are refined, the interactions that
arise are explicitly represented as constraints and are resolved. The act.of
refining plan steps involves replacing an.abstract operator with a more specific

one or replacing an abstract object with a more specific one. Af hierarchical

planning were not used, every planning-decision would introduce interactions;
each decision would affect the decisions following it. Earlv planners like
those discussed in Article Xv.C produced: initial plans that were erippled

by interactions and then attempted to reorder planiiing steps to alleviate:

them. These planners were said to overconstrain their plans; in contrast,
MOLGEN and NOAH (see Article Xv.D1) produce underconstrained plans and
add constraints constructively.

The middle layer at which MOLGEN: plans is called the design space: At
this level. MOLGEN makes decisions about how its.plan is to develop. The
operators of the design space:-dictate:steps taken in-the design-of a-plan, for
example, proposing a goal-or refining an-operator. The objects.in this space
include.goals and constraints. MOLGEN-reasons about-plans with the objects
and:operators in the design space, just as it reasons about molecular genetics
with the objects and operators.in-the planning space. '

The top laver of planning.for MOLGEN, the strategy space, includes four
very general operators-that dictate planning strategy. These are FOCUS -and
RESUME, which together propose new planning steps-and. reactivate old ones
that have been “put on hold,” and GUESS and“tiNDQ, which make planning
decisions heuristically when there is not sufficiént information to focus or to
resume. UNDO is a backtracking operator that undoes decisions that have
overconstrained a plan. Much-of the research effort in MOLGEN has gone

into.avoiding backtracking by developing underconstrained plas, but.in the

rare cases where a guess must be made about a plan step (e. g.» choosing the
identity of a bacterium), the unforeseen constraints introduced’ by the choice
may force backtracking and-a different choice.

Of -the three layers of planning in MOLGEN, only-the planning space is

unique to-a domain, in this case, molecular genetics. Thg,desivgn’and strategy
spaces contain objects and operators-that apply to planning in any domain.

Control of Planning in MOLGEN

The three Jayers discussed aboveé constitute a hierarchically organized con-
trol structure for MOLGEN. At-the highest level, the strategy space, decisions
ate made abouti ihe styie oi pianfing. “Two §iyies.are avaijable, ieast com-
mitment and heuristic, During the‘least-commitment cycle, MOLGEN sends

D2 MOLGEN 553

a message to the désign operators in the design space asking whether they

can suggest any tasks to. do. Tasks include-proposing-a-goal (after noticing:

a difference between the current state and the goal state), refining an object
or an operator, and formulating a constraint. MOLGEN may fail ‘to: find a
task for which it has the-constraints to proceed successfully; for example, it
may propose to refine an object—a bactérium—to a particular §pecies of bac-
terium, but it may lack the guarantee that this refinement will not interfere
with later steps in the plan. In this case, it will suspend.this step and look for
another. If MOLGEN cannot find any design steps to execute immediately, it
checks whether any previously suspended steps can be executed; information
may have become available since their suspension that justifies their reactiva-
tion. The least-commitment cycle oscillates between finding a-planning step
to execute and reactivating suspended- steps in the light of new information.
It is called least commitment because it will not commit itself to a plan step
that might have to be abandoned. at some later point in the development of
the plan. If MOLGEN cannot find a plan step that satisfies the requirements
of the least-commitment cyele. it switches to the heuristic cyele-in which-it
guesses a-plan step.

MOLGEN uses three kinds of operations on constraints. The first, called
constraint formulation, involves identifying interactions between solutions-for
goals. Often the goals are to refine abstract objects or operators; for example,
the goal of sorting two kinds of bacteria is achieved by screening one of them
with an antibiotic. When this solution is proposed, a constraint is formulated,
saying that the choice-of bacterium.and antibiotic is now constrained by the
réquirement that one kind of bacterium should be susceptible to the antibiotie.

The second operation with constraints is called .constraint propagation.
This is the creation of new constraints from old ones, which helps refine
abstract parts of a plan. For example. the single constraint described sbove
reduces the number of bacteria or antibiotics that MOLGEN is considering,
because not all bacteria are susceptible to.all antibiotics. Constraint propaga-
tion collects other constraints on the ‘bacterium and antibiotie, formulated
perhaps in-other parts-of the plan. As a result of constraint propagation,
abstract plan steps that might have been refined in dozens-of ways are con-

strained to have a relatively small number- of potential refinements. Often,.

individual subproblems are constrained to some extent, but-not enough to nar-
row down the space of solutions significantly. However, when the individual
constraints on individual subproblems are propagated, the sum of the con-
straints often eliminates one or more solutions. For example, during a day,
a person-may have two goals: to get some exercise and to-get to school in a
short-time for a class. The first problem, to get exercise. is constrained-only
by the requirement-that it is energetic; the second problen, to get to school,
is coustrained only by the requirement that it take a short time. Propagating
these- constraints leads-to the obvious sofution that one should run or ride-a
bike to school.

554 Planning and Problem Solving xXv

Following constraint formulation and. propagation, MOLGEN seeks: to
satisfy constraints. In the domain of molecular -genetics, this-often involves
replacing.an abstract object with a particular one that satisfies the constraints
put on it. For example, it may involve replacing the object bacterium with
e. coli and replacing the object aniibiotic with fetracycline. Whatever the
tesults of constraint satisfaction, it is facilitated by constraint formulation
and‘propagation, which together narfow down the space of refinements that
is considered for each subproblem.

The formulation-propagation-satisfaction cycle is a constructive process;
abstract parts of plans usually are refined only when there are constraints
=pec1f\ ing the refinement. The antithesis-of this constructive cycle-is found
in rare cases in which MOLGEN lacks the constraints:needed to refine a plan
stzp. It guesses a refinement that may be shown at.a later time to interfere
with-other parts of the plan, in which case the refinement is abandoned for
anothier. This process.is destructive, since it may involve throwing away o]d
planning decisions.

An Ezample

MOLGEN has been used to find plans for the “rat-insulin -experiment
(Stefik, 1980) Many organisms produce insulin that is biologically active
in humans but can sometimes cause allergic reactions, An- alternative to
extracting insulin from thé pancreas of animals'is to design-a:-bacterium that
produces insulin. No bacteria are known<to-produce.insulin naturally, so one
must be created. To do this, the gene coding for insulin production-in rats was
spliced into hacteria, altering the genetic.makeup of the bacteria and causing
thera to produce insulin. This axperiment.was done in 1977; it was selected
as a test case for MOLGEN, ivhich succeéssfully-designed four different plans
for the experiment.

The major steps in'the experiment involved finding a medium in which to
embed the insulin gene, allowing some bacteria to.absorb this medium. killing
off*the bacteria-that did not absorb the-medium, and growing the culture of
those that did. The plan is simple at this abstract level—that is the advantage
of hierarchical planning. Thé complete-plan is actually quite-complicated and
involves many constraints,

MOLGEN. represents the godl of ‘the experiment using the most abstract
objects it knows of. The goal is to obtain a culture with

ORGANISMS = (A Bacterium with
EXOSOMES = (A Vector with
GENES = (RAT-INSULIN))).

Planning.in. MOLGEN. is: driven. by. medns-ends. analysis, which.is to sy
that. at each step of-the planning.process, MOLGEN seeks operators that will

4

D2 MOLGEN 355

reduce the differences between the current state of the plan and its goal.
In this case. MOLGEN makes a very abstract plan to build, from .available
objects, the organism specified in the geal. It plans two. merges of objects
to achieve.its goal. The first merge involves the -insulin gené and a vector (a
meditum for carrying the gene into the body of a bacterium), and the second
merge involves the results of the first merge and the bacterium:

Plasmid (a Vector) Rat-lasulin Gene

l Merge
A |
Bacterium (Object 1)

1

l Merge

(Goai)

Next. MOLGEN refines the two abstract merges to more specific-operations.
The second merge, by which a bacterium absorbs a plasmid carrying new
genes. corresponds to a laboratory step called a transformation. But, MOLGEN
knows that not all plasmids are absorbed by-all bacteria. so.it formulates the
.constraint that the3 be corirpatible. MOLGEN .also knows that:transformation
operators work by mixing plasmids and bacteria together-in a-solution and
that some bacteria will not absorb the plasmid. This leads to a difference
between the goal of the experiment and the state resulting from-the plan: The
goalsisto have a single culture of bacteria carrying a pa;ticular’gehe,,but;t.he
plan-results in a culture of bacteria-in-which some.bacteria do not carry the
gene.

Since planning is driven-by-differences between the current state-and the
goal, MOLGEN tries %o solve the problem. of getting rid of ‘the unwanted
bacteria. To do this, it proposes to sort the culture. So#t is an. abstfact
operator that is next refined to screening the bacteria with-an antibiotic. Note
that the antibiotic is not specified because the bacterium is not. However, the
refinement of sort to screen resilts-in two constraints: that the bacteria that
absorb the plasmid should resist-the-antibiotic and that the bacteria that do
not absorb-the plasmid should perish from the antibiotic.

At this point, MOLGEN propagates the constraints about. antibiotic. resis-
tance. The result of the propagation.is-that both constraints:on-the bacteria
are replaced by a single constraint on the plasmid itself. The reasoning is
that, &ince the only difference.between the two kinds of bacteria.is that one
carriestthe psaauud, ui€ pxﬁauud jtsell “UsY coner"lmmumw to-the QJIUUIUUL.
Notice that this reasoning does not.change any of the plan steps that have

556 Planning and Problem Solving puY

already taken place. but it-does constrain MOLGEN to include a resistance
gene for an antibiotic in the plasmid.

So far. MOLGEN. has done a little bit of planning at an abstract level
and a lot of reasoning about how to refine the abstract plan into a detailed
one. It has proposed a merge of a gene and a plasmid, a transformation

-of that result into-two bacteria, and a screening of the bacteria to obtain

the desired one. The -identities of the bacteria, the screéning agent, the
resistance gene, and the-plasmid that will carry the genes are unknown, but
MOLGEN knows some things about these objects in thé form of constraints.
For example, the resistance gene and the antibiotic must be compatible, and
the plasmid must be compatible with the bacterium. As MOLGEN continues
to plan. particularly to plan how to insert the desired genes in a plasmid,
other constraints will be-formulated.

Eventually, MOLGEN will be able to satisfy constraints., By then, it will
have refined- the plan to 2 point where the only bacterium that it knows
will satisfy all the constraints is e.coli. Similarly, it will have found just
one method of inserting genes into a plasmid (though this was not done
through constraint-propagation but because MOLGEN knows of only-one such
method). It will have found two antibiotics—tetracycline and-ampicillin—and
four plasmids that satisfy the-¢onstraints. Thus, it finds four solutions:to the
rat-insulin problem.

MOLGEN's solution to the rat-insulin.experiment was.more complex-than
the abbreviated version presented here. In-all, a dozen constraints emerged
during :ihe planning process. The development of the plan was complex,
requiring about 30 pages of printout to document.

Conclusion

We have seen that MOLGEN can develop a complex plan without éver
undoing a planning decision. Its least-commitment strategy dictates that it
aefer decisions for which it lacks constraints, and, thus, it rarely comrﬁi&s
itself to a decision that it must later undo.)

MOLGEN plans at different levels of abstraction, and it also works at.
three levels of planning actions to accomplish meta-planning: At the highest
level it makes strategy decisions, at the middle level it makes design decisions,.
and .at the lowest level-it-decides how to instantiate its design.

References

Stefik’s MOLGEN system is discussed in his doctoral dissertation (1980).

E. REFINEMENT OF SKELETAL PLANS

ONE WAY to develop methods for Al systems is to observe the methods
that humans use. Such an approac?’ is typically taken by cognitive scien-
tists (see Chap. XI)-to develop models of cognition. This article describes a
molecular genetics (MOLGEXN) planning system developed by Peter Friedland
after studying human experiment-planning behavior. The major observation
of the study was that scientists rarely invent from scratch the plan for an
experiment. Most often, they begin with an abstract. or skeletal. plan that
contains the basic steps. Then they .instantiate each of the plan steps by
a method that will work within the environment of the particular problem.
Skeletal plans range from general to specific, depending on the experimenter
and -the problem. This MOLGEN gystem is one of two such systems devel-
oped at Stanford University; the other, by Mark Stefik, is discussed in-Article
X\.D2,

This article gives an example of skeletal plans in the laboratory and
discusses the implementation of the method in thee MOLGEN:system for the
design: of experiments in molecular biology.

Two Examples of Andlysis Ezperiments

As an introduction to the skeletal-plan method, twe-simplified and related
examples of analysis experiments in molecular biology are presented; namely,
DNA sequencing and resttiction-site mapping. Both experiments inivolve simi-
lar sequences of actions; consequently. they are discussed as variants of a single
skeletal plan.

DNA sequencing: The problem. DNA. is composed of a-linear-string
of molecules called bases. There are four possible bases; adenine, cytosine,
guanine, and thymine, usually abbreviated A, C, G, and' T. The goal-of a
sequencinig experiment isto determine which of the four bases is- present at
each position on the molecule. The base sequence is extremely*'mportant in
determining both the biological function and the physical structure of the
entire DNA molecule.

DNA sequencing: The solution. One of the best current-experimental
plans for DNA sequencing, known as Maxam-Gilbert sequencing (Maxam and
Gilbert, 1974), is as follows:

1. Label one end of the molecule with radioactive phosphorus. This gives

the experimenter a “handle” for later locating pieces of the molecule
.nOOnnhnA 01\-0‘\9 vnr‘tnanhtn& nnd Dnt‘vcnnhv n,p‘\ p‘v\-naJnknhnn 3O Oh..

UvTIdusiiig A
current method of choice for end-labeling of DNA.

557

W

598 Planning and Problem Solving XV

2. Divide the sample into four portions. For each portion, apply a hydrazine-
based chemical reaction that cuts the molecule at a particular base.
Control the reaction so that, on the average, one.base is cut-per molecule.
Each of the four samples will then contain a population’of molecules of
lengths determined by the base that was:cut in-that samplé.

3. Determine the lengths of the molétiles in each population with a labeled
end. This is-done by a technique called acrilamide gel. electrophoresxs,
which is cirrently the most acciirate'method forthe separation of mole-
cujes by length.

For example. suppose the starting sequence was AGTTCGA. The sample
for which the moleculé was cut at the A base woéuld show labeled molecules
of lengths-0 and 6. the C sample would show molecules of length 4. the G
sample would show molecules of lengths 1 and 5, and ‘the T sample would
show molecules of lengths 2 and 3. The sequence can now be “read” directly
from these lengths.

Restriction-site mapping: The problem. Restriction enzymes are
used to cut. DNA molecules at specific locations. The locations are specified
‘by a pattern of four. five, or six bases talled a restriction site. The goal of a
mapping experiment is to find all of the restriction sites for-common enzymes
on a molecule. This information tells the.molecular geneticist-which enzymes
to use or not to use in a future experiment that requires restriction cutting.

Restriction-site mapping: The solution. One of the best current
methods (Smith.and Birnsteil, 1976) is as follows:

1. 'Label the end-with radicactive phosphorus as above.

2. Divide the sample into.as many new samples as restriction enzymes for
which a-map is.desired. Then, for each sample, do a “partial digest” with
one restriction enzyme. This means to-control the laborator:, conditions
(temperature. pH. time of application) so that only one or- ‘two sites are
cut on the-average molecule. As above,-a population of molecules will
exist-in each sample.

3. Determine the'length of the labeled molecules by.means of electronhore-
sis, as above. The length measurerients will locate each of the restriction
sites for each enzyme tested.

The Skeletal Plan. Refinement Method

Clearly, 'the two experiments described above are closely related. ‘Each
had the.goal-of locating the position of a specific site—either a single base or

-a-string-of bases—on-the-moleniile. Each- hoAAfha..ecmnveiocmng they. Alﬁprpd.

NAEANE VI wa. a2 vaeN T as pasroLir§ g $ 15384

oniy in the middle, cutting step. Both, experiments sprang from the-same
basic idea:

E Refinement of Skeletal Plans 3959

1. Label one end of the molecule:

0

Cut with an agent that makes an-average of-one cut-pet molecule at-the
sites that are being mapped:

3. Determine the length of the labeled fragments.

This is an abstracted-or skeletal plan that is useful for locating any t\pe of
site for which there is a suitable cutting agent.

The plan is transformed .into an actual design for an experiment by
refining each step in the plan—by instantiating it with a method that wil}
actually work in the laboratory. The first and third steps-of the expériments—
phosphorus labeling and gel electrophorésis—were chosen because they were
the.best methods available. Thechoice of the second step was directed by the
specific choice of site to be mapped.

The idea here, again, is that scientists rarely invent an experimental
design from-scratch. They find a strategy, a skeletal plan, that was.useful
for some related experimental goal and then instantiate it with the proper
laboratory methods for their specific goal and laboratory conditions. The
skeletal-plan may be very specific if the goal is similar to one for which a very
good experiment has already been designed. It may also bé extremely general.
as was the plan in the-example above.

Implementation in MOLGEN

The skeletal plan. method is used successfully in the-MOLGEN system.
Since the method depends heavily on domain knowledge, a well-organized,
expert knowledge base is the central part of the system. The Unit package
(Stefik, 1979) is used by domain experts to construct a-knowledge base con-
taining both a selection of skeletal plans -and the objective and procedural
knowledge:necessary to instantiate the plans competently. The Unit package
permits the domain experts to describe such information in a language natural
to thern-as molecular biologists

The tWwo major steps in planning by incremental refinement of -skele:
tal plans—plan selection and plan-step refinement—are descnbed separately
below.

Choosing a skeletal plan. Skeletal plans are specified at many levels of
generality. At the most general’level, there are only a few basic plans. These
are used-as fallbacks when plans-that are easier to refine and that are more
specific cannot be found. The problem is not just one of finding a plan-that
might provide a satisfactory solution, but of finding a plan that will require
the least refinement work. Skelétal plan finding réduces.to a simple lookup
when exactly the same problem has been solved before (even if this were done
with a completely different set of laboratorv and molecular conditions), but
it-becomes-more-difficult-when-only-related-problems-have-been-solved: Then

560 Planning and Problem Solving XV

the task may be to decide whether to choose a detailed- plan for a related
problem or to choose a.more general plan for a class of problems.

The MOLGEN work has only begun to treat these problems of plan
selection. Plans are classified according to their perceived utility by molecular
genetici:t,s The specificity of" the utilities (any gi\‘én skeletal plan could have
taxonomy of goals in molecular bnology When a problem.is described to the
planning system, a search is made of the skeletal-plan utilities to see if any
exactly match the experimental design goal. If several do. all are tried; if
none does, a more general goal is chosen from the taxonomy and the process
is repeated.

Refining the skeletal plan. Refinement of the skeletal plan is the
process of selecting an appropriate ground-level instantiation for each step
in the abstract plan. In the example above, the ground-level instantiation
of labeling was radioactive phosphorus. This refinement process is usually
hierarchical; a scientist might decide first on the method of cutting, then on
a cutting enzyme, and finally on a specific enzyme.

Knowledge about laboratory techniques is organized hierarchically in
MOLGEN. There were several broad classes of techniques, with as many
subelasses as.are-deemed natural by the domain experts. In all, about 400
different techniques are described in the knowledge base.

The MOLGEN system proceeds linearly through the-steps of a-selected
skeletal plan. The steps are matched to the techniques in:the knowledge base
by name, synonym, or function of the step. A specific -technijue-—as specific
as can be directly determined from the plan step—is chosen: and then the
instantiation process begins.

The knowledge to do the instantiation is stored in:the form-of-an-English-
like procedural language within the knowledge base. This knowledge repre-
sents three major criteria for plan-step instantiation. In order of priority of
application they are: :

1. Will the technique, if successfully applied, carry; out. the specific goal of
the step; for example, will a separatory method not just-do some sort of
separation, but also separate all circular DNA from all linear DNA?

2. If the technique satisfies the first criterion, can it be successfully applied
to the given-molecule under the given laboratory. condmons”

3. Is-the ‘technique the “best” of thdse that passed the first two tests?
This choice point, while in some sense the least important (since all
techniques that-make it-to this point will work), seems to be the hardest
for scientists to define. All the scientists studied gave somewhat different
metrics mvolvmg rehablhty, convenience, accuracy, cost, and time to
-cairy out the'technique. The heuristic-chosen as-most representative
gave greatest weight-to four-point scales of convenience and.reliability
as an initial filter.

E Refinement of Skeletal Plans ‘ 961

This knowledge is used to proceed down a level.in the techriique ‘hierarchy;
the process-is repeated until an actual instance-of a-technique is chosen. At
higher levels of the hierarchy (i.e., with less refined plans), a.premium is set

on achieving-goals; but at lower levels of the hierarchy, a premium is-set on

making plans efficient and elegant.

This sirategy-finding process is common to many disciplines. In his:
book How to Solve It, Polya (1907) describes “mobilizing” problem-solving

Jtnowl 19&09

Many of these questions and.suggestions aim directly-at mobilization of our
formerly acquired knowledge: Heuve you seen it beforé? Or have you seen the
same-problem in a slightly different form? Do you know a related problem? Do
you know a-theorem that could be useful? (p. 159; italics in original}

The idea is to avoid reinventing general strategies and to use plan outlines
that have worked in the past on-related problems.

Related Work

‘The concept of. a skeletal plan for.experimental design has a direct.prece-
dent in Schank and:Abelson’s work in natural-language ‘understanding (see
Article IV.F6, in Vol. I). The\ introduce scripts, declarative representations
of ordered sequences of events. The detailed knowledge contained in-scripts
is used to understand, predict, and participate in events-one has encountered
previously. ’ ’

Schank-and Abelson also introduce generalized. scripts, called plans, that
explain events related to, but not exactly like, those the-user ligs seen before.
“Plans are where scripts come from.. .. The difference is that scripts -are
specific and plans are general” (Schank and Abelson, 1977, p. 72). In fact,
there is a continuum between seripts and plans in Schank and Abelson’s

work: "There is a fine line -between the point where scripts leave off and

plans begin.... When a-script is availablé for satisfy ing a goal, it is chosen,

’Othormse a plan is:chosen” (p. 77; see also Article IV.F8, in Vol. 1),

The idea of abstracted plans-is- found also-in the- STRIPS planner (Fikes,
Hart, and. Nilsson, 1972,,see also Article ILDS, in Vol. 1). This system param-
eterized successful plans incorder to generalize them. The generalized. plans
were called- MACROPs (for macro-operators).

There are several distinétions:between skeletal plan refinement and some
of the other:methods discussed in-this chapter—for example, Stefik’s parallel
work on planning in molecular biology (see Article Xv.D2). Othér methods
emphasize building the initial ahstract-plan; this method assumes the initial
plan is already known and emphasizes the plan seléction and instantiation

ptA = AR VIV MY SLVALLLARVE GV WAE ViAW 3

.
-procese. (\f}tnv‘mnfknfle_nnnnmw-:s(n-a “‘”"'n(crac;lvn vf l"}u“ awya, taua‘

method, in large part, considers plan steps to be sufficiently independent
that conflicts-can be resolved by relatively minor subplans. Finally, other

oW

562 Planiing and Problem-Solving ’ XV tos

methods place relatively little emphasis on domain-specific expertise, whereas
such expertise is-the heart of this planning method. -

Concluston

The reader may be surprised by the simplieity of thie method of skeletal
plan refinement but:should remember that it attempts to produce competent—
rather than wildly innovative—plans. It is based on the observation that
human scientists who know a lot bout their domains, ahd who.have flexible
cross-associations for choosihg stéps in an.experiment, are usually good at
experimental design. There are very few totally new plan outlines discovered,
but many new plan instantiations.

References

A source for this article and a good discussion of this<implementation of
MOLGEN is Friedland’s doctoral dissertation.(1979).

Sussman, G J]“73 AcompuLahonal modcl of%klll acqumtxon. Al T(.ch. ch 297,

BIBLIOGRAPHY

Bobrow, D. G., and Raphacl, B. 1974. New programming languages for artificial
intelligence. Computing-Surveys 6.

Corkill, D. D. 1979. Hierarchical planning in-a distributed environment. IJCALS,
168-175. ‘

Feitelson, J., and Stefik, M. 1077, A case-study of the rcasoning in a genétics
experiment. Rep. No. HPP-77-18, Heuristic Programming Project, Computer
Science Dept., Stanford University.

Fikes, R. E., Hart, P. E., and Nilsson, N. J. 1972. Leariing and exccuting general-
ized xrobot plans. Artxf cial_inlelligence: :3:251-288,

Fikes, R. E., and Nilsson, N. J. 1971. STRIPS: A new approach to the application
of theorem provmg to problem solving. Artificial Intelligence 2:189-208.

Friedland, P. E. 1979: Knowledge-based experiment design in- molecular genetics.

Rep. No. 78-771, Coinputer Science Dept., Stanford University. (Doctoral dmser-
tation.)

Hayes-Roth, B. 1980. Human planning processes. Rep: No. R—2670~ONR, ‘Rand-

Corp., Santa Monica, Calif.

Maxam, A., and Gilbert, W. 1874. A new method for sequencing DNA. Proceedine"
of the National Academy.of Seiences 74(2):560=-564,

Miller, G. A., Galanter, E., and Pribram, K. H. 1960. Plaris and the structure of
behavior. New York: Holt.

) Newell, A., and Simon; H. A. 1972. Human problem solving. Englewood Cliffs, N.J.:

Prentice-Hall.
Polya, G. 1957, How to solve it. New York: Doubleday Anchor Books.

Sacerdoti, E. D. 1974. Planning in a hierarchy of .abstraction spaces. Artificial
Intelligence 5:115-135:

Sacerdoti, E. D. 1975. A structure for plans and’ behavior. Tech. Note 109, Al
Center, SRI International, Inc., Menlo Park, -Calif:_(Doctoral dissertation,)

Sacerdoti, E. D. 1979. Problem solving tactics. Tech. Note 189, SRI International,
Inc., Menlo Park, Calif.

Schank, R. C., and Abelson, R. P. 1077. Seripts, plans, goals, and) understanding.
Hillsdale, N. J Lawrence Erlbaum,

Smith, W., and Birnstein; M. 1876, A slmple method for DNA restriction site
mapping. Nucleic Acids Researeh 3:2387-2398.

Stefik, M. J. 1879. An examination of a, frame-strucmi'e‘d?»re"prcscntation system,
IJCAI 6, 845-852.

Stefik, M. J. 1980. Planning with constraints; Rep. 'No, 80-784, ComputeiScience
Dept., Stanford Universily. (Doctoral dissertalion.)

563

564 Bibliography-

Sussman, G. J. 1975. A computer model of skill dequisition. New York: Amcrican
Elsevier.

Tate, A. 1975a. Intéracting goals and their use. IJCAI{; 215-218.

Tate, A. 1975b: Using goal structure to direci search in a problem solver. Doctoral dis- ’ .3
scrtation, University of Edinburgh.

Tate, A. 1976. Project planning using a hierarchic non linear planner. Rep, No. 25,
Al Research Dept., University of Edinburgh, '

Waldinger, R. 1977. Achieving scveral goals simultaneously. In E. W. Elcock and

D. Michie (Eds.), Machine intelligence.8. New York: Halstead/Wiley.

NAME INDEX

Pages on which.an-author’s work is discussed.are stalicized.

Abelson, R. P., 552, 561

Birnstcin, M., 558
Bobrow, D. G., 522

Corkill, D.:D., 550

Feitelson,,J., 522

Fikes, R. E., 522, 523, 530,561
Fri¢dland, P. E,, 522, 551, 557-562

—Galanter,»l"'}., 515
Gilbert, W., 557-558

Hart, P. E., 522,530, 561
Hayes-Roth, B., §19, 522
Hayes-Roth, F., 519

Maxam, ‘A., 557-558
‘Miller,.G. A., 515.

Ngwell, A, 518
‘Nilsson, N. J., 522, 523, 530, 561

Polys, G, 561
Pribram, K. H., 5§15

Raphael, B, 522

Sacerdoti, E. D., 518, 522, 523, 530, 5/1-550

Schank, R. C., 519, 522, 561

Simon, H. A., 518 -

Stith, W., 558

Solqmonoﬂ', R., 807 oL
Stefik, M. J., 520, 522, 551-557,.559, 561
Sussman, G. J., 520, 531-585, 540-

Tate, A., 595-537,-540, 550

Waldinger;-R. J., 537-5/0 -

NP

SUBJECT INDEX -
Abstract operators in NOAH, 542 HACKER, 53i~535, 546
Abstraction space, 516-518 Hierarchy of abstraction spaces, 528-530
in. ABSTRIPS, 528-530 :
ABSTRIES, 517-518; 523-530- Insulin, 554
Add list in NOAIl, 544-545, 550 INTERPLAN, §35-537
Assembly; 542 Island-driving control strategy, 519 :
Backtracking, ‘520-521, 526-530, 537, 542, Least-commitment planning, 552-556: :
545, 547, 552 :
after protection.violation, 531-537 Mnxam-Gilbcrt.,sequenéing,'557 . - i
in STRIPS and ABSTRIPS, 526-530: Means-cnds adalysis, 517
Blackboard, 519 in MOLGEN, .554-556
in STRIPS and "ABSTRIPS, 524-530
Computer-based consultant (CBC), 541 Meta-planning, 551
Constraint, 520-521 MOLGEN,; 518, 551-556, 557-562. i
formulation, 553556 ’ . .
in MOLGEN, 551—555 Network representation, procedural, 541~ °
on operator ordering, §20-521 550
propagation, §53-558 NOAH, 518, 541-550
satisfaction, 553-558 N
Control structures and strategles - PLANNER, 533
backtracking, 520-521, 526-530, 537, 542, Planning o0
5485, 547, 552 constructive, 522,.539, 552-556
blackboard, 519 in GPS, 518
island driving, 519 hierarchical, 516-518, 523-530, .541-556
means-ends analysis, 517, 524-530, 554 least-cominitment, 520-521,-552-556
556 meta-planning, 5§51 3)
opportunism, 516-519, 521 ‘honhierarchical, 516-517, 531-540 ’ ! ’
Criticality .value in- ABSTRIPS, 528-530 opportunistic, 516-519, 521)
Crities, 541, 546-550 overconstrained, 542, 552
in NOAIl, 546-550 ‘script-based, 516-519
by. skeletal-plan refinement, 557-562'
Delete list in-NOAH, 544~545, 550 underconstrained, 542, 552
Design space, 552 Planning space, 551 b
DNA sequencing, 557 Planning systems
Domain-specific knowledge, 541, 543545 ABSTRIPS, 523-530 . -
’ HACKER, 531-535,:546
Experiment planning in MOLGEN, 551-562 INTERPLAN, -535-537
MOLGEN, '55}-562 p
Frame knowledgé fepresentation for plans, NOAI, 541-550
557-562 STRIPS, §23-530
)) Preconditions of sn operator, 523
Generalized bugs, 532-535- in ABSTRIPS, 523-530
Goal,-523, 541 in HACKER, 533-534
Goul'regression, 537-540 in NOAH, 546-550 x
‘Ground space, 528-530 in STRIPS, 523-530] J
566 _ ‘

Subject Index

Prerequisite-clobbers-brother-goal, 533
Problem reduction, 551

Problem solving -
interdependent subproblems, 520; 542, 531~
540

means-ends analysls, 517, 524-530, 554—
586 .
problem reduction, 551
Procedural knowledge representation, 532
Procedural network in NOAH, 541-550'
Propagation of constraints, 553, 556
Protection violation in. HACKER, 535

QLISP, 543

‘Rat-insulin cxperiment, 554 .

Refinement of plan steps, 552, 565-556, 558~
562

Restrictibn-sitcvmappihg, 558

Scrip,t) knowledge representation and skeletal: -
plan-fefinement, 561
Skeletal plans, 558-562
Skill.acquisition, 532
SOUP functions, 543-550
Starting.state, 523
Strategy space, 552
STRIPS, 523-530
Subgoals
interacting, 520, 531-540,; 542
prcmotion of, 537

Tick list, 535
TOME (Table of Multiple Effects), 545-550

Unit Package, 551; 559

[

ey e e o Vi A i o ST 3 AR s i 3 e 8

