
October 1982 a Report No. STAN-CS-82:939
Also numbéred HPP-82-21 jE FIL- COPY

oF
| {S = 0 20% MICON

NN

A Planning and Problem Solving

Paul R. Cohen

ELECTE pw
n oe [3 4

3 Jost jf 8 oo

Department of Computer Science

Stanford University i
‘Stanford, CA 94305

2 RQ d ~ |

eal NY NR y

FEALLLL LEALL CELA GRR a506 ‘61 ove |

Abstract:

‘ This report is reproduced from Chapter XV, “Planning and Problem
Solving,” of the Ilandbook of Artificial Intelligence (Vol. 111, edited by Paul R.
Cohen and Iidward A. Feigenbaum). The chapter was written by Paul R.
Cohen, with contributions by Stephen Westfold and Peter Friedland. Intended

as an cxlension of Chapter Il in Volume I on scarch, this chapter reviews |
nonhicrarchical planning and continues on to discuss hierarchicaland least-

commitment planning and thc refinement of skeletal plans.

/ » 8%tn |

% pom
: X

’ Accesion For

NTIS cna&l XM;

DTIC TAS
: Unannounced 0

oo Justification
STATEMENT "A" per Fred Koether -
DARPA Library, 1400 Wilson Blvd. By call.
Arlington, VA 22209-2308 Distribution]

: TELECON 6/57/90 VG Ceara ea ee
: Availability Codes

1 Avall aid or

A-[Special| 11-0

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

| REPORT DOCUMENTATION PAGE BEFORE ‘COMPLETING FORM -
1. REPORT NUMBER | 2. GOVT ACCESSION NO. |3. RECIPIENT'S CATALOG NUMBER

STAN-CS~82-939; HPP-82-21

4. TITLE (anc Subtitle) B a 5. TYPE OF REPORT & PERIOD COVERED
~ Planning and Problem Solving technical, July 1982 ’

6. PERFORMING ORG. REFORT NUMBER

: 7. AUTHORS) a i -| STAN-CS-82-939; HPP-82-21
8. CONTRACT OR GRANT NUMBER(S)

Paul R. Cohen
MDA 903-80-C-0107

(edited by Paul R. Cohen and Edward A. Feigenbaum)

5 PERFORMING ORGANIZATION NAME AND ADDRESS 1770. PROGRAM ELEMENT, PROJECT, TASK
Department of Computer Science AREA & WORK UNIT NUMSERS .
Stanford University
Stanford, California 94305 U.S.A. oo

17. CONTROLLING OFFICE NAME AND ADDRESS — '* le 1087 1a: Defense Advanced Research Projects Agency x uy :
Information Processing Techniques Office | 15 SECURITY CLASS. (of this report)
1400 Wilson Avenue, Arlington, VA 22209 | Unclassified . oo

14. MONITORING AGENCY NAME & ADDRESS (if diff. from Controlling Office)

: Mr. Robin Simpson, Resident Representative | _ ;
Office of Naval Research, Durand 165 150. DECLSSSIFICATION/DOWNGRADING

. Stanford University | . :

76. DISTRIBUTION STATEMENT(of this report — — rer re foe

. roduction in whol in part is permitte ' =

of t 3. Gover, ent. Diptribution authorized to U. S: Government
: agencies and privatg-fndividiwls or enter- Co

| prises eligible tgobtain expor) controlled :
17. DISTRIBUTION STATEMENT {of the abstract dy nave8ioaa 2a Wn {EeOCHen EGS ep tienes L

van Cian Other reque?
be r\ferred’to DARPA/TIO 1400 Wilsd

a ” n NO La

18. SUPPLEMENTARY NOTES i O- 5.

_ DopDS5230a5 3[i8[37 NE
T 19. KEY WORDS (Coninue on reverse side if necessary and identify by block ra) TT roe =

1 20. ABSTRACT (Continue on reverse side -if necessary and identil b I] Tk b 3 -] ; — i
. This. report. is. reproduced. from Chapter XV, *planning and Problem Solving," of the I

Handbook of Artificial Intelligence (Vol. III, edited by Paul R. Cohen and Edward A. | |
Feigenbaum), The chapter was written by Paul Cohen, with contributions by Steve |
Westfold and Peter Friedland. This. chapter, intended as an extension of Chapter II |
in Volume I on search, réviews.nonhierarchical planning and continues on. to discuss
hierarchical and least-commitment planning and thé refinement of skeletal plans. |

[FOAM - rn TT UNCLASSIFIED: BD 1 JAN 1473 CT oo 3 . -
} EDITION OF 1 NOV-65 IS OBSOLETE SECURITY CLASSIFICATION OF THIS PAGE (When Dsts Entered)

SECURITY CLASSIFICATION OF THIS PAGE (When Dats Entered) . .) } oo .

19. KEY WORDS (Continued) Tr TT : - |

_ 20 ABSTRACT (Continued) ”) x

} . | , oo.

: - —

- i

DD, fo. 14 73®Ack)- 8 1 JAN 73 oo oo oo |

EDITION OF 1 NOV-65 IS OBSOLETE SECURITY CLASSIFICATION OF THIS PAGE (WhenDats Entered):

) |

) o 5

woo

Planning and Problem Solving

CC by :

Paul R. Cohen

] Chaptér XV of Volume IIT of the :

Handbook of Artificial Intelligence .

cdited by

Paul R.-Coliecn and Edward A. Feigenbaum

This rescarch was supported by both the Defense Advanced Rescaréh Projects
Agency (ARPA Order No. 3423; Contract No. MDA 903-80-C-0107).andtheSUMEX-
AIM -Computer Project. under the National Institutes’ of: (Tealth (Grant No. NIH
RR-00785). The views and conclusions of this document should not be interpreted. |
as” necessarily representing the official policies, either expressed or implied, of the |

. Defense Advanced Research Projects Agency, the National Institutes of Health, or - |

the United States Government.) i k

© 1982 by William Kaufmann, Ine: All rights reserved. No part of this publication

may be reproduced, stored in a-retricval system, or-bransmilted, in any form or by .

any means, clectronic, mechanical; photocopying, recording, or otherwise, without

Lic prior written permission ofthe publisher. However, this work may liereproduced]
in whole or in part for-Lhe official useof the U.S. Government on the-condition that

. : -conyricht-notice-ie-included.with.gnch-officinl-roproduction. .Forfurther-infarmation, _ - } S—
write to: Periissions, Williara Kaufmann, Inc., 95 First Street, Los Altos, CA 81022. |

- - - - - - ir 2 - - ——4

CHAPTER XV: PLANNING AND PROBLEM SOLVING

A. Overview / 515 :
: B. STRIPS and ABSTRIPS / 528

C. Nonhierarchical planning / 581
D. Hierarchical platiners / 541 .

1. NOAH / 541)
| 2. MOLGEN/ 551

E. Refinement of skeletal plans / 557

|

|

FOREWORD

The Handbook of Artificial Intelligence was conceived in 1975 by Professor
Edward A. Feigenbaum as a compendium of knowledge of Al and. its ap-
plications. In the ensuing years, students and Al researchers at Stanford's
Departinent of Computer Science, a major center for Al rescarch, and at

: universities and laboratories across the nation have contributed to the project. |
: I'he scope of the work is broad: About200 short articles cover most of the im-

"portant ideas, techniques, and systems developed during 25 years of research
in Al :

Overview articles in each chapter describe the basic issucs, alternative
. approaches, and unsolved -problems that characterize areas of Al; they are

the best critical discussions anywhere of activity in the field. These, as well
as the more technical articles, are carefully edited to remove confusing and
uncssential jargon, key concepts are introduced with thorough explanations

(usually in the overview articles), and the three volumes are completely in-
dexed and cross-referenced to make-it clear how the important ideas of Al
relate to each other. Finally, the IJandbook is organized hierarchically, so
that readers can-choose how deeply. into the detail of each chapter they wish

to penetrate, } : : :
This technical report is reproduced from Chapter Xv, “Planning.and

Problem Solving,” of the Illandbook (Vol. ml, edited by Paul R. Cohen and
‘Tidward A. Feigenbaum). The chapter was written by Paul R. Cohen: Stephen
Westfold wrote an-early version of the NOAH atticle, and Peter Friedland -
wrote the article on the refinement of skeletal-plans. Intended as an extension
ofChapter II'in Volume I on search, this-chapter reviews nonhierarchical plan-

: ning. and continues on to discuss hierarchical and least-commitment planning
andthe refinement of skeletal plans. Co

] (i; « . A .A. OVERVIEW \ fe Sy

PROBLEM SOLVING is the process of developing a sequence.of getions to
achieve a goal. This broad definition admits all goaltdirected.A¥ programs

to the ranks of problem solvers: for example, MYCIN treeArticle-viEBI-_
Jini) solves the problem of determining a bacterdmia infection. HARPY

5—trticle Voz irvel4) solves the problemof understanding speech signals. and
5-0 (Article \IVDr}solves the problem of filling in slo¢s in its representations

of concepts It follows that this chapter is not about problem solvers—the
entire Handbool: is about problem solvers. This rylike the chapter on

| search (Chap. II, in Vol. 1).%s about problem-solving techniques. In particular,
it is about planning.

In everyday terms, planning means decidingon a courseof action before
acting. This definition accurately describes the planning systems of this
chapter. so we will adopt it. A plan is, thus, a representation of a course
of action. It can be an unordered list of goals, such as a grocery list, but

usually a plan has an implicit ordering of its goals;for example, most people
plan to get dressed to go to the theater, not the other way around. Many
plans include steps that are vague and require further specification. These
serve as placeholders in a plan; for example, a daily plan includes the goal
eat-lunch, although the details—where to eat, what to eat, when to leave—are
not specified.) The detailed plan associated with éating lunch-is a subplan of
the overall daily plan. Most plans have a-rich subplan structure; each goalin |
a plan can He replaced by a more:detailed subplan to achieve it. Although
a finished plan is a linear or partial ordering of problem-solving operators,

| the goals achieved by the operators often have a hierarchical structure:(see
Fig. A-1). TINs aspect of plans prompted one ofthe earliest definitions:

APlanis any hierarchical process in the organism that can control theorder °°
in which a sequence oft ions isto be performed. (Miller, Galanter, and
Pribram, 1960, p. 16). :

Planning and Problem Solving (ke)— |
Failure to-plan can result in less than optimal problem solving; one may

go.to the library twice, for example, having failed to plan to borrow abook
and return another at the same time. Moreover,in cases where goals are-not
independent. failing to plan before acting may actually preclude a solution to
the problem. For example, the goal of building ahouse includes the subgoals
ofinstalling a dry wall and installing electrical wiring, but these goals are not
independent. The wiring must be instaliedfirst: otherwise, the-dry wall will ~~
be in the way.

»

316 Planning and Problem Solving Aah

Plans can 'be used to monitor progress during problem ‘solving and to oo
catch errors befure they do too much harm. This is especially important if the . :
problem solver is not the only actor in the problem solver’s environment and.
if the environment.can change in unpredictable ways. Consider the example
of a roving vehicle on a distant planet: It must be able to plan a route
and then replan if it finds that the state of the world is not as it expected,

Feedback about the state of the world is compared with what is predicted by
the plan. which can-then be modified in the event of discrepancies. This topic
is discussed more fully in Sacerdoti (1975). The benefits of planning can be |
summarized as reducing search. resolving goal conflicts, and providing a basis
for error recovery. These will be discussed in detail in the remainder of this

chapter.

Approaches to Planning

: Four distinct approaches to planning are discussedin this volume. They |
are nonhierarchical planning. hierarchical planning. script-based planning,
and opportunistic planning. Here we must resolve a confusing ambiguity
in the word hierarchical. The vast majority of plans have nested subgoal ’
structures—hierarchical structures—as shown in Figure A-1. However, the
word has another interpretation, one that provides the basis for. distinguish-
ing hierarchical from nonhierarchical planning. The distinction is-that hierar-
chical planners generate a hierarchy of representations of a plan in which
the highest is a simplification, or abstraction, of the plan and the lowest

| Plan fcr the day

| morning -subplan | lunch subplan afternoon subplan

[read article | [eat sandwich | [write | [eo hone |

: buy -2ind quiet buy sandwich | | get 2ind
‘gas | place to work paper | | a free |

"| terminal y

get cash |

] go to bank | |

Figure A-1. Plan for a day, illustrating the hierarchical stfuéture of sub- 1
plans.

|

I

A Overview 317 .

is a detailed..plan, sufficient to solve the problem. In contrast, nonhierar-) |
chical planners have. only one representation of a-plan. Both kindsof plan. . |
ners generate plans with hierarchical subgoal structures, but oaly hierarchical :
planners utilize a hierarchy of representationsof the plan. This distinction is
discussed further in Article XVv.B,in which STRIPS (a nonhierarchical planner)
and ABSTRIPS (the hierarchical extension of STRIPS) are compared.

Nonhierarchical planning corresponds roughly to the:colloquial meaning
of planning; that is;a nonhierarchical planner develops a sequence of problems
solving actions to achieve each of its goals. It may reduce goals to simpler
ones, or it may use means-ends analysts to reduce the differences between
the current state of the world and that would hold after the problem has
been solved. Examples of nonhierarchical planners are STRIPS (Article X\".B).
HACKER (Article XV.C)..and' INTERPLAN (also in Article XV.C).

The major disadvantage of nonhierarchical planning is that it does not

distinguish between problem-solving. actions that are critical to the:success |
of a plan and those that are simply details. As a result, plans developed by

nonhierarchical planners get.bogged down in unimportant details. In any-plan
there are levels of detail that are too picky or too vague and a‘level of detail
that is appropriate for the problem; for example, a too-detailed plan for dinner
starts with Go to the table, sit down, unfold the napkin, pour a glass ofwater,

find matches, light the candles... A toosvague plan is Sit down somewhere,
| have food. Planning with too many details is a waste ofeffort, but plans-that

are too vague do not specify which problem-solving operators should: be used;

a balance between these extremes is necessary for efficient planning.
To this end, the method of hterarchical planning has-been implemerted |

in a number of planning systems. The method is first to sketch a plan
that is complete but too vague and then to refine the vague parts of the :

| plan into more detailed subplans until finally the plan has:been refined to a
complete sequence of detailed problem-solving operators. The advantage:of |
this approach‘is that the plan is first developed at a level at which the details.
are not computdtionally overwhelming.)

Hierarchical planning also takes several forms in these systems. One :
approach, typified by the ABSTRIPS program (Article I.Ds, in Vol. I}, is to. :
determine which subgoals are critical to the success ofthe plan and to igncre,
at least initially, all'others. (In ABSTRIPS, a detail is a subgoal for which a
subplan can be found if plans have been found to accomplish-gosals that are
not details.) For example, the problem.of buying a piano canhot be solved
unless two subgoals are accomplished, namely, Locate piané-and Get money.

Thus, an -initial plan for buying a.piano might simply be Lécate piano, get
money, buy piano. Subsequently, this plan can be refined with: inessential
details, such as Drive to the store and Select piano. ABSTRIPS plans in a |
hierarchy-ofabstraction spaces, the highest of which contains a plan dévoid

: of all uniniportant detailsrand<the-lowest of-which contains a completerand:
.

518 Planning and Problem Solving XV

the critical subgoals before the details is that it reduces search: By ignoring
details. one effectively reduces the number of subgoals to be accomplished in
any given abstraction space.

Hierarchical planning was implemented in its earliest form by Newell and
Simon (1972, pp. 429-433) in their GPS model oftheorem provingin logic. The
GPS approach was slightly different from that of ABSTRIPS. In ABSTRIPS,
a hierarchy of abstraction spaces is defined.by treating some goals as more
important than others, while in GPS there was a single abstraction space

: defined by treating one representation of the problem as more general than

others. GPS planned in an abstraction space defined by replacing all logical
connectives by a single abstract symbol. The original problein space defined

four logical connectives. but many problem-solving operators were applicable
tc any connective. Thus. it could be treated as a detail and abstracted out of

the formulation of the problem. A problem could be solved-in the abstraction
space. the space with only one connective. and the solution couldbe mapped

: back into the original four-connective space.
Subsequent implementations of the hierarchical planning approach such

as NOAH (Article XV.D1) and MOLGEN (Article XV.D2) are. again, slightly
different from either ABSTRIPS or GPS. ABSTRIPS abstracted. critical goals,
and GPS absiracted a more general representation of an aspect. of its prob-
lem space. NOAH abstracts problem-solving-operators; it plans initially with
generalized operators that it later refines to problem-solving operators given
in its problem space. MOLGEN goes one stép further, abstracting both the

operators and the objects in its problem space. In all cases, however, hierar-
chical planning involves defining and planning in one or more abstraction

spaces. A plan is first generated in the highest, most abstract space. This
constitutes the skeleton onto which details are fleshed out in lower-abstraction
spaces. Hierarchical planning provides a means of ignoring the details that
obscure or complicate a solution to a.problem.

: A third approach to planning also makes use of skeleton plans but, un-
like hierarchical planning, these skeletons are récalled {rom a store of plans
instead of generated. This approact was-adopted in one of theMOLGEN sys-
tems (Article XV.E). The stored plans contain the outlines for-solving many

: different ':inds of problems. They range in detail from extremely specific plans

for. conmiinon problems to very general plans for broad classes of problems.
The planning process proceeds in two steps: First a skeleton plan is found

} that is applicable to the given problem and then the abstract steps:in the :
| plan are filled in with-problem-solving operators from the particular problem

: context. This instantiation process involves large amounts of dcmain-specific |
knowledge. often working through several levels of generality until a problem- |
solving operator is founa to accomplish each skeleton-plan step. If a suitable |

: instantiation is found for each abstracted-step, the plan as a whole will be |
: successful. SR Co

A Overview 519 |

This approach has much in common with that of Schank and his col-

leagues (see Article IV.F6, in Vol. I). Their approach to natural-language
understanding is to use stored: scripts (and other, more sophisticated.strue-
tures) to provide top-down expectations about the courseof a story.

A fourth approach to planning has been found by Hayes-Roth and Hayes-
Roth in human planning (see Article X1.C). It is described as opportunistic

ond is characterized by a more flexible control strategy than is found in
the other approaches. The Hayves-Roths have adopted a blackboard control
structure to model human planning. The blackboard is a “clearinghouse”
for suggestions about plan steps, suggestions that are made by planning
specialists. Each specialist is designed to make-a particular kind of planning
decision. Specialists do not operate in any particular order; the asvrchrony
of planning decisions that are made only when there is reason to do so gives
rise to the term opportunistic. In the Hayes-Roths’ model, and apparently

* in human planning, the ordering of operators that characterizes a plan is
developed piecewise—the plan “grows out” from concrete clusters of problem-
solving operators.

Opportunistic planning includes a bottom-up component, since it is driven

by opportunities to include detailed problem-solving. actions in the develop-
ing plan. It contrasts with the top-down refinement process characteristic
of hierarchical planning, in which detailed problem-solving actions are not
decided until the last possible moment in developing the plan. Another
difference between opportunistic planning and other forms is that it can |
develop islands of planning actions—parts of a-plan—independently, while

| hierarchical planners try to develop an entire plan at each level-of abstrac-
tion. (See Chap. Vv, in Vol. I, for a discussion of island driving in speech
understanding.)

The Hayes-Roths’ model is-discussed in Chapter XI, 6n models of cogni-
tion, since it is intended as a modelofhuman planning-abilities:

Search and the Problem.of Interacting Subproblems |

Two major, interrelated issues will keep reappearingin this chapter. They |
are the problem of limiting search and the problem of interacting subproblems. |

: The problem of search is to find an ordering-of problem-solving actions that
| will achieve a goal when there are a huge number oforderings possible, most |

of which will not achieve the goal. This problem has been called combinatorial
ezplosion, since the number of combinations of problem-solving operators
increases-exponentially with the number of operators (see Chap. II, in Vol. I).
The problem of interacting subproblems arises whenever a problem has a
conjunctive goal, that is, more than one condition to be satisfied. The order :

in which conjunctive goals are to be achieved is sometimes not specified in the

problem. but it can be critical to findinga solution. Sometimes interactions Co :

520 Planning and Problem Solving Xv

of this sort prevent any solution;for example, if a-conjunctive goal is to paint
a ladder and paint a ceiling, the second. goal must-be achieved. before the |
first, because one cannot stand on a.freshly painted ladder to paint a. ceiling, oo
Unfortunately, this ififormation -is sometimes not given in“the problem but
must be inferred.

The problem of search-is related to the problem of interacting subproblems
because additional search-results from premature commitment to an arbitrary
ordering of interacting subgoals. In the ladder example, a planner that arbi-

' trarily decided to paint the ladder first would needto backtrack and change its
plan when it discovered it could not paint the ceiling. Backtracking involves
replanning from the choice point that failed, in this case, the choice between :
painting the ceiling and painting the ladder. Backtracking can be very costly.

Interactions-between subgoals have been called constraints (Stefik, 1980:
see also Article Xv.D2). They can be inferred from the preconditions of
operators if the preconditionsare explicit. For example, if the operator Paint

: ceiling has several. preconditions suchas Have paint, Have brush, and Have
ladder, an intelligent planner will infer from these that painting the ladder
cannot precede.painting the ceiling. A less intelligent planner may construct
a plan to paint the ladder first and then realize that it cannot continue; it

. ma} then attempt to reorder its actions.
Some of the earliest planners generated initial plans that violated ordering

constraints and then tried to go back and fix the plan. They include HACKER,
INTERPLAN, and Waldinger’s system; ‘all discussed in Article XV.C. These
systems applied. a powerful ‘heuristic called the linear assumption, namely,

: that

: subgoals are independent and thus can’be sequentially achieved in an arbi-
trary order. (Sussman, 1973, p. 59)

In a historical perspective, this can be seen to be an important heuristic.
The number of orderings of problem-solving operators is the factorial of‘the
number of operators, so it is obvious that a:problem solver cannot successfully
examine all orderings in the hope of-finding one that-does not fail because of |
interacting operators. The linear assumption says that in the absence of any |
knowledge about orderingsof operators, assume tliat one-ordering is as good
as any other and then fix any interactions that emerge. The three programs |
mentionéd above all fix plans by reordéring the component operators.

The linear assumption is used in cases where there'is-no a priori reason to

| order one operator ahead.ofanother. An alternative assumption is that it is
better not to order opérators than to order them arbitrarily. This assumption
arises in slightly different forms in the NOAH planning system (Article Xv:D1)
and one of the MOLGEN systems (Article XV.D2). NOAH: establishes partial
ordersof problem-solving operators :by- considering their preconditions. For
exaimple, it may-kaow-that-the-goal-ofbuying-coffee-beans-has-the.subgoals : - i.
Go to coffee store and Get money. but initially it-does not commit itselfto an

|
|

|
~ |

; |

: A Overview 521

ordering of these operators. However, when it expands-each of these goals,it
notices that a precondition ofgetting money, Be at bank, interferes with the
goal ofbeing at the coffee store; thus, it decides to get.money ‘before it goes
to the coffee store. NOAH orders operators only to eliminate problems: that .
might arise from picking an arbitrary ordering. MOLGEN also will not order
operators until constraints are available to guide it; furthermore, MOLGEN
avoids committing itself to using operators or objects -without constraints
because premature-commitment may conflict with other paris of.its plan.

The least-commitment approach of NOAH and MOLGEN contrasts with
the linear assumption. which says. Commit yourself to any order of operators

and then fiz it. This approach works because NOAH and MOLGEN are able
to infer constraints that hold between operators. An important aspect of the

approach is that it is constructive; since planning decisions are made-only
when the planner is sure they will not interfere with past: or/future decisions;
the planner need never backtrack and undo a bad decision. In fact, both

of these planners do make bad.decisions and can backtrack. but the major
research effort has'been to avoid backtracking.

Interestingly, human planners do notalwaysuse the ledst-commitment :
: strategy and. consequently;-they must sometimes backtrack. Humans oppor-
: tunistically planto execute an operator when it is convenient to do-so, For

exemple, a human may plan to pick up groceries on-the way to a football
game because it is convenient-todo so. Later he (or she) will realize that the
groceries will wilt. during the game-and he will have to replan to avoid tliis.

Conclusion

We have discussed the structure of plans, concentrating especially on
the hierarchical relation between goals-and subgoals. When problem solving
is discussed in terms of search, it becomes evident that. although finished

plans are usually linear or partial orders of problem-solving operators, the
cearch spaces in which the plans are developed are hierarchical. This is .
because problem-solving operators have preconditions that are.subproblems; .
with preconditions of their own, and so on. The term hierarchical was shown: |
to refer to two related concepts: Most plans have a-hierarchical structure, but;
only hierarchical planners use a hierarchy of abstraction. spaces to develop a :

: pian.
We have introduced four approaches to planning: nonhierarchical plan-

ning as practicedby STRIPS-and HACKER; hierarchical planning of the soft
done by ABSTRIPS, NOAH, and MOLGEN; script-based planning; and oppor- :
tunistic planning. Most will be discussed in-subsequent articles, although :
opportunistic planning is covered in Chapter Xi, on models of cognition.
Nonhierarchical planners are discussed in Article XV.C after a comparison
of hierarchical and nonhierarchical planning illustrated by ABSTRIPS and

- = - r v - — |

922 ‘Planning and Problem Solving 3 WE

STRIPS inArticle XV.B: NOAH-is discussed in Article XV.D1; andthe last two
articles are devoted to the MOLGEN systems. (Articles &V.D2.and XV.E).

The major issue for any planning system is reducing search; instrumental’ :
in this are methods for minimizing the effects of interacting subproblems.
In particular, the least-commitment approach that derives from hierarchical .
planning is:constructive, that is, it requires littleor no backtracking.

References

‘Sacerdoti (1979)-is an interesting overview and. attempt to taxonomize
planning methods. Stefik’s (1980) doctoral thesis discusses and compares
many planning systems and methods. The.references mentioned.in this article
are representative of the planning literature.and provide a readabié histori-

cal background; one important reference that was not mentioned earlier is
Bobrow and Raphael’s (1974) review of Al programming languages. Planning
has received-some attention in cognitive science, and human planning has been
examined in AI. References include Schank and Abelson’s.(1977) book -on ~
seripts-and plans. Feitelson and Stefik’s (1977) study of human experiment-
planning. Friedland’s (1979) doctoral dissertation on script-based .planning,
and the research ofBarbara-and Frederick Hayves-Roth on opportunistic plan-

ning (Hayves-Roth. 1980).

|
|

| :
|

|

02

B. STRIPS AND ABSTRIPS LL |

HIERARCHICAL PLANNING in the context of the.STRIPS and’ ABSTRIPS
planners’is the subject of this article (see-also Fikes and Nilsson, 1971; 3ikes, :
Hart, and Nilsson, 1972; Sacerdoti, 1974; Articles ILD5 and 11.D8, in Vol. I).
The two systéms are virtually identical except that STRIPS plans in a.dingle
abstraction space while ABSTRIPS plans in.a hierarchy .of‘them. Wespresent.
here .a single problem—getting,a cup of .coffee—and’ show how each of the |
systems would.solve it. -

Let us first characterize .a problem solver as a program that explores |
the statés that arise from the application of problem-solving operators in:
search of one that qualifies as 2.solution-tothe problem. (Other characteriza-
tions of search in problem Solving are.possible; see Articles I1.B1: and ILB2,; in
Vol. 1, for a discussion of state-space and-problem-reduction search.) The first
state examinedby ‘a problem-solver is the starting. state, and:if the problem
solver is successful, the last state examined will be:the goal state.

Problem solvers ‘have available a set -of ;problem-solving operators and
objects. When problem-solving operators are executed, zhey, bring .about
changes -in the state of the world. Consider now the problem: of getting: a
cup of coffee. You go to theikitchen and-if coffee is-made. you pour some. If
not, you make Some or go outto buy some. If youdecideto: make some, but i
there are no coffee beans or ground coffee, you go to. the storeto get.some.
If vou have no money, you. go to the-bank first. Thé-rc'~<ant operators and: | :

| objects are:. : |

Operator Object : "

Boil water boiling water. a
Pour X kitchen :
Buy X coffee-bean store CO
Make coffee coffee bears ,
Go.to X brewed-coffee store

Get money bank :
money ‘ _

Each operatorhas preconditions that must.be true before that operatorican
be executed—for example, if thére is no¢offee.to pour, you must make some. - :
‘Making a precondition triie-is.a subproblem. Because problem-solving.oper- cy
ators.usually have. preconditions, a developing-plan usually has a hierarchical Co
structure, ERE

The operators for this problem can be represented: in such a way that -
: --- their-nreconditions-and-effects-are-explicits « — - -- voc Lhein a ml

024 Planning and Problem Solving x\ KL » \

Operator Precondition Effect ‘ vo! i

Pour ‘coffee Have:brewed coffee ~~ Problem solved Co
Make coffee {lave beans Have brewed coffee EAE .

Have:grinder :
Have boiling water
Be in the kitchen:

Buy something Be at store Have something’
Have moriey

Go someplace Place exists Be-at place

Not-at. any. other place

Get money Be at bank Have money

Boil water Be in the:kitchen Haveboiling-water

The starting state and. goal state of the problem can be expressedin these
terms-also:

Starting state. ‘Goal state

Not have brewed coffee ~~ Have brewed coffée
In kitclien In"kitchen .
Have grinder ‘Have grinder :

Have money Have money
Have boiling water Have boiling water

od

: If*a problem solver knows how each problem-solving operator changes the
state of-the world and knows the preconditions for-an operator to-be executed,
it can apply a technique called means-ends analysis to solve problems (see
Article .D2, in Vol. 1, and Article X1.B).. Briefly, this technique inVolvesiooking

| for a. differénce:between- the current state ofthe world and-a desired:state and
: trving:to find a-problém-solving operator that willreduce the difference. This |

continués recursively uptil: the desired state-ofthe world has-been. achieved.
STRIPS afid ABSTRIPS, and most other plannérs; use mearis-ends analysis.

Thenextfew paragraphs illustratehow STRIPS might solve:the problersi
of getting.a cup:of coffee. First, it compares. the starting state-and.the.goal :
state-andsimmediatelv finds a difference: Have brewed coffee. ‘Sé-it looks for

, an operator that has Hu ve Stewedcoffee in its list ofeffects. It finds:two: Make
coffee and Buy something, where: somé? hing is.instantiated with brewed: coffee.

: STRIPS must choosé one of them;:choosing the firstmakesthe example midfe
ifitefesting, so.we will assuime-it does: that.)

To make coffee, the‘ four. preconditionsof: thé Make coffee. operator-must "
be fulfilled. STRIPS coinpares the current state of the-wotld (the starting oo
state) with the first precondition and immediately finds.a difference, Have ol
beans. Consequently, it goes back and tries to eliminate this- difference by
searching‘for an-operator-ihut liustasits-efiect Hostbeans: ‘Onli=oneoperator——r ~o rw moins =

- Cg ' "

B STRIPS and ABSTRIPS 523

applies, namely. Buy something, where something is-instantiated with beans. -

Once again. STRIPS compares the: preconditions. of the proposed operator :
with the current state-of the world. It-notes that the condition Be at storeis 7
not satisfied. so it must repeat the search once again and findan operator that
will get it to the st ire. There is such:an operator, Go tosomeplace, with-the

: single precondition that the place exist; since the store is-one of the.-objects
available to'STRIPS, the operator can be executed.

At this point, a plan for solvingthe problem wculd have the following

hierarchical structure: ;

| (Pour coffee)
‘Preconditions:
Have brewed coffee

|_|
(Make coffee) (Buy brewed coffee) :

Fracandisioas: | Preconditions:
’ | Have beans, ... { II

(Buy beans) E
) Preconditions: : .

i| Be at store...

(Go to store) : ol
Preconditions: |

Store exists

| True ia world modal | |

Note that executingthe operator Go-to store changes oneé-aspéct-of thé state
of the world. The starting state is-In the kitchen, but Go tg store changes:
this to At the store, This change satisfiesone of the preconditions of the Buy |
beans operator; STRIPS checks the other precondition, Have money. Sincethis |
preconditionis true in the current state ofthe world, STRIPSis free.to execute y
the Buy: beans. operator. Its execution fulfills the first précondition of the |

: Make coffee operator. Furthermore, STRIPS firids the next-two preconditions, '
Have grinder and. Havé boiling water, true in-the current: state-of the: ivorld: .
However, the last precondition, Be in-kitchen, has-been:made false: by going |

to the store, so before making coffee, STRIPSmust find an operator with _ _ __ . _.._ _.
TT © 7 theveffect of ‘making Bein kitchen‘true again. This-is simply ‘Ga to kitchen, oo

526 Planning and Problem Solving \’

and since it has no preconditions it is-immediately applicable. Its execution . \
fulfills- all the preconditions of Make coffee; consequently, that operator can Co
be executed. fulfilling the single precondition of Pour coffee and Solving the ba
problem. Co

The final plan for getting coffée:is, thus, Go to the store, buy beans, go to
the kitchen, make coffee, pour coffee. | ?

Means-ends analysis is a powerful problem-solving method becaiise it -
reduces the amount.of search done by a problém solver. At any point prior to

: solving a problem. one or more goals must be satisfied. Means-ends analysis
recognizes only one type of goal, namely, to reduce a difference ‘bétween

two-states. Moreover. an assumption .of the method is that problem-solving
operators can be classified according to the kinds of differences they reduce.
Consequently. only a fraction. of the available operators will be applicable to
anv-given goal. and search among the operators for an appli¢able.onewill be
reduced.

Search and Backiracking

Onedifficulty with.means-ends analysis is- thatit can still develop. large
search spaces. Althougn it restricts thé number of operators thatapplyto a
goal. there may sti}be several applicable operators and no a priori basis for Jo
selecting one. Moreover, there’is no way of kriowing whether the subgoals-of

: an operator can be.satisfied orwhether their evaluation may, eventually lead |
to a-dead end. that is, to-a subgoal that cannot be satisfied. For example, if
the Go to someplace operator had a.precondition Have-car but nocar-existed. -
all-of the processing that led to that operator would have been in vain.and)
the problem solver would-haveHad to backtrack to-find an:alternate path. In E
the example above, the-only other path. involves trying to Buy brewed-coffee,
andit. too. will fail for-the same reason. In more complicated problems, one
‘might expect to“find-several alternative-paths that might accomplish:a given -
subgoal, and a substantial amount of“backtrackingmay be needed tosolve.

: the problem. Backtracking canbe very expensive, so recent planners have
: been designed-to avoid-it-as. much as:possible. -

Backtracking arises from prémature commitment to a problem-solving Co
path. As an illustration, consider-again-the.problem.of‘getting coffee. Assume

: for a-momentthat the-objécts that.are-available t0"STRIPSare kitchen, bank,
coffee-bean store; ‘brewed-coffee store. The grinidér andthe. grinder store are 2
missing. To-solve ‘the problem, STRIPS builds.a search trée, as shown -in
Figure B=1. Co

: Briefly. TRIPS would reason that to pour coflee,.it must make:someor
: buy soma. It opts to-make some. To-do so, it neéds-beans, for which-it.needs :
: money ard a bean store. To getmoney,it must get to-a bank, for-whicha =.
“TC TTT TTT hank must exist. Since a bank does. exist, STRIPS plans to gothereand get }
: money. It then explores the possibility of going to-a Lean. store; since such

. |

)

) ’ {

LL] ’) ¢

B ‘STRIPS and ABSTRIPS 527 HC 2

| (Pour zo0ffes) | CPS
‘Preconditions: |] . :
Have brewed coffee 5

] | or | |
| (Hake coffee) (Buy brewed coffee)!

Preconditions: | [Preconditions: |

(Buy beans) | (Buy grinder) -
Preconditions: | Praconditions:

Have money, At bean store | Have money, At grinder store :

| (Get money)’ (Go to: store). (Go to store) |
Preconditions: Preconditions: | | Preconditions: |
At bank | | Store exists . 1iStore exists

1 (Go to bank) | FALSE: :

| Preconditions: | -Bank exists] .

- ny | r——— € Fl -

: Figure’B~1. A search tree:for the problem.of:pouring coffee. "

a. store exists, STRIPS- can go there. Both preconditions fof buying beans
are fulfilled,.soit plans:to buy. them: and then.goes.on-to consider the next
precondition-ofmaking coffee; which is having a-grinder. Since.it does:not

I have one, it’decidesto buy.one, for which the preconditions are‘having;money oo
: and beingat a grinder store. It-has' money from.its previous visit-tothe baiik,
: soit -plans to-goto the grinder store; Unfortunately, .no. such :store exists. :
: Allof this processing has been ifi-vain—STRIPS cannotpossiblymake coffee.

Its only optionis to. backtrack -to-a-choice point in-the:plar and try another oo |
path. Inthiscase, it.can try-to.buysome brewed coffee. This part of the:plan } EK
is not illustrated, but.it will succeed.since abrewed-coffeestore éxists. E

Part:of-the-expense ofbacktracking inthe previous example derives fro? -
planning:several operations that are actually unimportant détails. Intuitively,

- ceo o—. one.would.expect STRIPS to.have.checked.. much-earlier.in.the.pian. to-see.. eo ih
whether a.grinder store-existed. Similarly, if STRIPS:knew that certain stores)

528 Planing and Problem Solving a

existed, it should :not ‘have worried about how toget to them: until later in. i oo
the plan: getting toiplaces séems like a detail. ‘One would expect a planner .
first to plan to do all the important steps in a plan and then to fill in: the

: less important ones afterit has sketched out the others. Ini fact, this.method :
is called hierarchical planning; the first planner to use it was an extension of
STRIPS called ABSTRIPS. We will now briefly describe how it works.

ABSTRIPS plans in a hierarchy of abstraction spaces. An ABSTRIPS
abstraction space contains all of the objects and operators given in thé-initial
specification of the problem (called the ground:space), but some preconditions
.of some.cperators are judged-to-be: more important than others. For-example.
Have boiling water seems like an unimportant precondition of making coffee

because it is so easy to accomplish. Other preconditions such as Grinder
store -ezisls seem very important, bécause if they are not true in the ground

space; there is no operator thatthe problem solver-can executeto make them
true. Preconditions aré-assigned importance: jevels, called zriticalities. When

: ABSTRIPS starts planning, it plans to achieve only-those preconditions:that
have the maximum. criticality—just those preconditions that are-critical to
the’ success of the plan. ‘It .plans in the highest abstraction space. Next, it
plans‘to achieve the-preconditions of'the steps.in-its high-level plan that have :
the next-criticalitylevel, and so on, until all the preconditions in a plan have

: been achiéved. |
The first step in this process.is assighing criticalities. The method used ©

in ABSTRIPS is-for a:himan to.draw up.a partial ordering of preconditions.
: by ifituitively judging their importance; then ABSTRIPS follows an algorithm

to adjust the-criticalities:further. One might. guess that the most important :
precondition is that:a place exist, since if it. does not,operators that.depend

: on its existence cannot be used in a plah. Ohe might judge having sométhing
as the next most important precondition and ‘being sofhewhere the least :
important:

Precondition Intuitive criticality
Place exists 3 -, :

: ‘Have something 2 if . |
Be:soméwhere i ~) SE!

ABSTRIPS udjusts these-criticalifies as follows: All preconditions whose .
truth values cannot be changed by any operator are-givén a maximum-criti- /

: ¢ality. For each of the other preconditions.if a-short.plan canbe found to !
.achieve it—assuming the prévious;preconditions-are true—it is assumed. to-be
adetail and is:given a-criticality equal to. that:spécified'in the partial ordering.

: If no such plan can-be-found, it is given &-criticality greatér than the highest
one-in'thé partial order. .

The.preconditions -Bank-exists, Bean.éfore-exists,and. Brewed-coffec-store.. —. oe oon
) ezists are all assigned a maximum value, say, 5, because their truth cannot-be | .

.

|

B STRIPS and ABSTRIPS 529 |

changed by any operator. The.four Have something preconditions are Have oo
beans, Have grinder, Have boiling water, and Have money; three of them .
can ‘be achieved by a short plan, given that the previous preconditions are : :
true. For example, given that the bank exists, a short plan-can be found:to -

achieve the precondition Have money. These three preconditions are therefore :
assigned their partial-order rank of 2, and the fourth, Have grinder, which :
cannot be achievedby a simple plan becauseno grinder store exists, is-givén
the-rank of 4, higher than any partial-order rank, Lastly, the Be somewhere
preconditions are ranked, and since they can all be achievedby simple plans,
they are assigned their partial-order rank of 1:

Precondition Criticality

Bean store exists 5
Brewed-coffec store exists 5

Bank exists 5 :
: Have grinder 4

Have beans, boiling water, money 2 |
Be at brewed-coffee store, t=an. store, bank 1

: ABSTRIPS now formulatés a plan in .an abstraction space of critical |
ity-5. This means'that at this level; any precondition of an operator thathas
a smaller criticality value is assumed to be true. At this level, ABSTRIPS finds

: two plans to get coffee: Make coffee.and Buy:brewed coffee. It then-expands .
the Make coffee plan in an sbstraction spaceof criticality4, since the Have
grinder precondition emergesat this level. ABSTRIPS tries-to find a subplan
for getting a grinder but cannot. Consequently, it recognizes immediately
that its level 5 plan to make coffee will fail. It-backs up to level 5 again, picks :
the.alternativeplan to buy brewed coffee, and pursues it. Figure B-2 shows
a trace of its operation in-the-five abstraction spaces.

In this trace, ABSTRIPS first plans to make coffee, but this plan. fails.in -
the abstraction space of level 4. Thus, it backtracks to-level 5 and plans to
buy brewed coffee. This plan is not expanded further until'level 2, when. the
precondition ofhaving moneybecomes-apparent. At level 1, a precondition
of getting money is found, namely, Beat bank, and a. precondition.of buying
-coffee is found, namely, Be at store. ABSTRIPS plans to go to these places;

: its final plan.is Go to bank, get-money, go to-coffee store, buy brewed coffee.
ABSTRIPS solves problems with much ‘less .séarching and backtracking Co

than STRIPS because it is a hierarchical planner. It generates a. hierarchy
of plans in which. the highest level plans are very sketchy and the. lowest Co
level plans are detailed. Since a complete plan isformulated at each level :
of abstraction before thenext.level is considered, ABSTRIPS can find dead
ends early, as'it did with theproblem of-finding a coffee grinder. The details |

Co of-the other>parts of the plan to-make coffee, for example, boiling-water and

P - - - FE + - _ -— - |

230 Planning and Problem Solving Nv -

; (ake coffee) of (Buy brewed coffee) | :
Level-5: | No preconditions No preconditions

ofcriticality §° of criticality §

Level 4: ‘Preconditions: No preconditions
Have grinder ‘0. criticality 4

(Buy grinder)

j Preconditions:
, Be at grinder store.
a |

(Go: to grinder store)
: | Preconditions:

. Grinder store exists

: | FALSE: return to level 6) : :

Level 3: | No preconditions -]
of criticality3 oo

Level 2: oo Preconditions:
: (Get money) ——— Have money, oo |
: Level 1: Preconditions:

Be at bank -Be .at .coffee store|

: Figure-B=2. A trace of ABSTRIPS-in five abstraction spaces. a

buying beans, were never considered because ABSTRIPS quickly detected that i
: an important precondition of making coffee could not be satisfied. X

| References |

STRIPS is discussed. in Fikes and Nilsson’ (1971); in Fikes, Hart, and |
Nilsson-(1972); and in Article I.D5'in Volume:1 of the Handbook. ABSTRIPS
is-discussed in. Sacerdoti’(1974) and in Article 11.D6 (also in Vol. 1).

| :

| C. NONHIERARCHICAL PLANNING)

NONHIERARCHICAL approaches to planning order operations at a single level
of abstraction. in contrast to hierarchical planners. which develop entire-nlans

: © at multiple levels of abstraction. A-nonhierarchical planner typically develops
a hierarchy of subgoals. but they are.all at the same level of abstraction. |

The systems discussed in this article are HACKER, INTERPLAN. and
the planner developed by Waldinger. They are three attempts to solve the
difficult planning taskof achieving conjunctive subgoals that are not indepen-
dent. Many problems are formulated asa conjunction of goals; for example,
spring cleaning may involve sweeping, washing the floor, washing the windows,
beating the rug, and.so-on. However, these goals.are not independent: they

cannot be achieved in-an arbitrary order. Washing the floor before sweeping
i+ « doomed:-and grubby operation; a precondition of washing the floor is-that
it:be.swept clean ofloose dirt. Similarly, oné should not:beat the rug after
sweeping, because dragging a dusty rug outside will' make the floor dirty and
ruin the effect of sweeping. Intheterminology ofthis chapter, beating the rug

: after sweebingwould constitute a violation of a protected goal, the goal being
: a freshly swept house. Similarly, achieving some goals can- actually prévent

the accomplishment of others, as when washing the floor prevents one:from
‘walking across it or using it for any other purpose until it is dry. To any
‘person with minimal housecleaning experience, it will be obvious how and
why spring-cléaning tasks must be ordered to avoid their mutual interference.
‘but simple:planning programs do not. have a priori’knowledge about-the.order |
in which goals should be accomplished. The problem for these planners is
tc construct, in the absence ofthis:knowlecge, an efficient plan for achieving

conjunctive goals that are not.independent. | |
The approach takén by HACKER and INTERPLAN is to formulate plans Ce

: that are flawed by interferences between. subgoals arid then to fix them by :

reordering problem-solving operations in the:plan. Walding~r's system is more -
constructive: Instead of reordering operations:in a:flawed plan, it develops :
the plan by inserting operations one by one, checking each for potential |)
interference with established.operations.

HACKER -and INTERPLANapply "a simplifying heuristic called the linear
: assumption to restrict the numberof goal orderings that it considers. It was

originally formulated by Sussman.(1973) in these terms: :

Subgoals are independent and thus can-be séquentially achieved.in an erbi.

CL Co tratyorder, (P39). era

531 Lo

532 Planning and Problem Solving RY |
Of course, this assumption is false for many problems, but. it does avoid

the problem ofsearching for an ordering of:subgoals in which none interferes,

The search space of. orderings can-be enormous, since it grows with the fac. Co
torial of the numbér of subgoals in a plan; for example, there are over.3 million
distinct orders in which--10 conjunctive subgoals can be achieved. The linear |
assumption commits:-the plainer to an arbitrary ordering of subgoals rather

than searching for’ an optimal one and, in the event that the ordering is sub-
optimal. the planner tries to fix it. (For an alternative, least-commitment,
approach. see the following two articles.)

: HACKER

HACKER was developed as a-model of skill acquisition by Gerald Sussman
at M.IT. Sussman defines skill as a set of procedures, each of which .solves
a certain kind of problem from the domain-of the skill. If a skill does-not
include a procedure to solve a problem, a new procedure must be designed:
Typically, it impleinents old: procedures:as:a means of achieving subgoals of
the new problem. New procedures can turn out to have “bugs” and not work

in all the situations for which they are designed. in. which. case they can be

patched to make them work. Often, bugs can be-abstracted: that is, within.
the domain of a skill thereare common bugs that show up in many procedures.
One very general bug, theone addressed by all the systems:in this article, is
found in cases in which: conjunctive subgoals are'tobe achieved: Achievingone
subgoal-may prevent the.atcomplishment of another. ‘Sussman reasons that
this bug (and others) is s6 co.nmon thata model of skill acquisition should
know how to debug the procedures it designs. HACKER i5-able to do so in

] many cases. oo

Although HACKER: was designed as a model of skill acquisition, it is
interesting in the context-of planning because-the proceduresit develops:for
solving problems are plans and because the debugging ofplans was considered

: a useful problem-solving technique. For thepurposes.of this chapter, wewill
| ignore what HACKER contributes to the subject of learning (for this; see

Article’ xIv.D5¢) and concentrate on-those.aspects-of skill acquisition that-are
relevant to planning.

HACKERwas written at a-{ime when procedural representations of knowl- |
: : edge-were popular (see-Chap. If, in Vol.1, on knowledge representation). One
. result of this is that HACKER's various functions are difficult to separate. |

Rather than.explain their extensive interactions, the.functions and thé know}-
: edge that supports them are described here -in general terms. Those of

immediate interest are the anstver library, which-contains problem-solving :
: procedures; the knowledge library, which contains facts about the domain; |

the programining-technigues library, whichis used to'propose problem-solving .
_ procedures-when-appropriate-oncs-are-fiotfound in the answer library; nd To

ooof=bugs-and-appropriate patches.
|

C Nonhierarchical Planning 533

Problem solving in HACKER would be'much like that in PLANNER (see : E
ArticleV1.A, in Vol. IT) were itnot for the need to debug plans. FLANNERhad oT
only one mechanism for recovering from a‘flawed plan, namely, backtracking. I
This was very expensive in terms of search time. In contrast, HACKER
proposesa plan and then corrects errors in it with programs that are experts
in debugging, rather than by backtracking to the point of failure in-a plan
and blindly trying-another problem-solving.operation.

The bug:that concerns us here is called prerequisite-clobbers-brother-goal
by Sussman: it arises from the linearity assumption. There are often interac-
tions between goals-such that achieving the:prerequisités-for one goal prevents
the accomplishment ofanother. HACKER can solve some of these.interaction
problems, but sometimes the solution is not optimal. A popular:problem for
planners.is shown in Figure C-1.

: HACKER attempts to solve this problem by finding a procedure in its
: answer library that matches the pattern of the goal: (MAKE (ON B C)). It finds

a procedure that says,

(TO. (MAKE (ON-XY))

(PUTON (X'Y))) ; |

that is, to get block B on block C, execute-the simple procedure PUTON with
B and Cas arguments. When it simulates-the execution of this-program, it
discovers-that it fails, because A is on B. A-bug in the proposed plan has-been

: found; HACKER now attemptstopatch it-up. First, a library oftypes of bugs. ;
is consulted, from which HACKER concludes that the'bugis a PREREQUISITE-
MISSING type. We-will not go into the details of this classification. HACKER
knows that a prerequisite to one of its planned actions -is missing, but it
does.not know which. prerequisite. In its knowledge library it finds several
potentially pertinent facts. One.is |

(FACT (PREREQUISITE (PUTON (XY) (PLACE-FOR X Y)))) .

B
HE = ER

B oo Figure C<1. A planning problem: Get block B from under 4 :
and put it-on block C.

“

: 0:34 Planning and Problem Solving X\ .

That is. to put X on Y ‘there must be a place on } for X to rest. It
checks to see whether thereis a.place on-C for B; since there is, this is-not - -
the missing prerequisite. The next fact is-more enlightening:

(FACT (PREREQUISITE (EXPRESSION (CLEARTOP OBJECT))
(HAVE (). (MOVES EXPRESSION OBJECT)))) .

: It. says thata prerequisite for moving an-object is that the object have a clear
top. Since A is stacked on B,this prerequisite is-not met for B.

HACKER has discovered the identity of the bug that spoiled its initial

plan for-getting B oft C. It now uses this information to modify the plan,
applying general methods for fixing bugs-that.it has encountered before. One
such method savs that. to-patch a PREREQUISITE-MISSING bug. a procedure
for attaining the prerequisite shouldbe inserted into the plan before-the pre-

: requisite is needed. The prerequisite to be;achieved is (CLEARTOP B). HACKER
treats this as a subgoal and returnsto the beginning of its problem-solving
evele: it looks in the answer library for-a-procedure that-will achieve the pre-
requisite. We will assume that this procedure exists;if it did not.. HACKER

would construct.it with the:help ofits .programming-techniques library.
To summarize, HACKER solves problems by searching for a procedure:

known tobe appropriatefor such problems. If it finds one but theprocedure }
does not achieve the goal as expected, the reasons for thefailure are formalized t
as bugs. Efforts are then initiated.to debug the procedure. At anytime during
problem solving, HACKER -may be required to write procedures to achieve
certain goals. These are then ‘tested and. debugged -exactly like procedures |
found in thé.answer library.

There areproblems-for which HACKER cannot generate an optimal plan.

One such problem.is'shownin Figure C-2-and is discussedin the “Anomalous
Situations” chapter of Sussman’s thesis-(1973).

|

Figure C-2. A problem for which HACKER cannot ‘provide
: an optimal solution. The proper goal sequenceis

Co |
!

| |
|

’ |

|

C Nonhierarchical Planning 53d 5

: HACKER knows from previous experience that it is wise to build from the Co
ground. up; therefore, for the problem. in.Figure C-2;.it constructs a.planto | oo -

((ACHIEVE (ON B C))

(ACHIEVE (ON A B)))

: But when it simulates execution of this plan, it notices that, after putting
B on C, it must. take it off again, and take-C off.A, in order to clear A for

| putting 4 -on B. This constitutes a protection violation of the previously
achieved goal. namely, (ON B ¢). HACKER treats protection violations as
bugs: unfortunately. this one cannot be fixed simply by reordering its goals. If
HACKER tries to solve the problem by achieving (ON A B). and then (ON B ©).
it finds that, after achieving (ON A B), another protection violation results

: from trying to (CLEAR B) to put it on C. Regardless of the order in which

HACKER attempts to achieve the goals of the problem, a protection violation
occurs. The only alternative is suboptimal-—to permit the violation and then

- to achicve the violated goal again at a later time, for example, by putting
B on C, then taking it off again, taking C off A, putting B back on C, and
finally putting 4 on top. |

: ‘When HACKER discovers a protection violation, it tries to reorder the .
operations in its plan. However, it is limited to reordering operations at

: one particular level of the plan; in the previous-example it tried to reorder
the initial: goals. To solve the.problem, it is necessary to reorder goals-at |
different levels of the plan. HACKER need not reorder the goals (ON B.C) and
(ON A B), but.it must achieve a subgoa! of (ON A B), namely, (CLEAR A), before

it achieves (ON-A B). This kind of reorderingof levels of goals is too subtle
{or HACKER. However, another program called INTERPLAN does consider

: these more complex reorderings.

INTERPLAN |

INTERPLAN was developed byAustin Tate at-the University of Edinburgh
in 1974. It employs a convenient declarative representation called a tick- list
to allow protection violations to be detected easily-and to give the system the

: relevant information for recovery (Tate, 19752). In:the event of a protection
violation, INTERBPLANfirst tries the same reorderingsasHACKER; namely, :

: goals-are reordered at a single level of the subgoal-hierarchy. But if this fails,
it considers more general reorderings. In particular, the subgoal at which
failure occurred is‘promoted, that is, moved before its superordinate goal, and
possibly before other goals as well;

: The space ofgoal orderings consideredby INTERPLAN is thus larger than
that considered by HACKER, but for this-added: effort it gains the ability to

2 - .optimize-plans-that-HACKER-could-notoptimize. ~~. 0 0 comesse

536 Planningand Problem Solving XV . N Co

Consider ‘the problem.from. Figure C=2. INTERPLAN initially proceeds. :
like’ HACKER: : . Co

Goal or action State | Lo

ACHIEVE (ON A B): I. |

ACHIEVE (CL A) | © | A [5]APPLY (Clear A) 2.

APPLY (Puton A -B) 3. NE |

ACHIEVE (ON:B-C) . |

ACHIEVE ‘(CL B) clAPPLY" (Clear B) 4. | Lc]J |
* -(1) Protection violation with state 3: Reorder

ACHIEVE (ON B C) Lo LJ |

| ACHIEVE (ON A B) LL -

: ACHIEVE (CL A) a]8]c]APPLY (Clear A) 6. L i | Fa ,

» (2) Protection violation with state 5: Lo

At this point in the problem, HACKER résigns itself ‘to.a suboptimal plan. =
ee owe... Jt has tried the tivo possible orderings of the goals (ON AB)and(NBC), ©...

and neither: of them producesplans free-ofprotection violations. In order to ‘
: solve the problem, a subgoal ofone of the main goals must:be achieved before |

) bl

C Nonhierarchical Planning 937)

cither.of the main goals. HACKER is not capable ofreordering goals between: BE BR
levels, but INTERPLAN is. It decides to.promotethe subgoal that caused: ~e 3
the:protection violation; it returns.to the starting state. of the problem and or
immediately triesto achieve (CL.A): Co

Goal or action State IE

PROMOTE (CL A) IN
: ACHIEVE (CL A). 1. a |

APPLY (Clear A). FO

| ACHIEVE (ON B-C) [4] |APPLY (Futon ‘B¥C) 8. |

|

ACHIEVE (ON A.B) lc.APPLY. (Puton A B) 9:

* (3) Goal achieved

| Subgoal promotion is thus-a useful’ method for. reordering goals when they |
interfere with each other. The method and the fick-list data-structure that :

: facilitates it are discussed in-detail:in Tate:(1975b). -

: ‘GoalRegression

HACKER and-INTERPLAN. backtrack when-they. find a protection viola- E
tion; they reorder a:¢ouple of.goals.and then:start planning to achieve-them

; in'theé new order. For simple problems like:theprevious example, this method:
will suffice, but if there are several conjunctive goals, and many -or- most

: goal orderings produce: subgoal irteractions, the method.is very inefficient.
: Moreover, when these planners.réorder-their goals. all goals affected:by the |

reordering must be achieved again. This can lead to the same solution being Co
a achieved for asubgoal anumberof times becausesuperdrdinategoals inter-

acted-with each other.)

- - . - - " 4 Ey J

538 Planning-and Problem Solving no |
- ws CL]] - ’

An alternative approach is-to construct.a plan by solving-one ¢onjunctive :
subgoal at atime, .checking-that-each solution-does..ot ‘interfére-with-other CT
goals that have already been achieved and moving the offending goal to a 7 -
different place in the plan if it does: A planner that works this way was oC
developed by Richard Waldinger-(1977). He introduced the “oncept of goal
regression to handle iriterférence between goals. ! ;

At any point in-a plan a-goal:may have been-achievéd, but after another]
step it ‘may have-been violated. This was illustrated earlierin the problem

"in Figure C-2: after (ON BC) had beén achieved; it was violated to-achieve B
(CLEAR: A). Waldinger notéd that for any goal:G-and operation O, there ino

i guarantee that G will be true after O; but that a new goal.G’can. be found
such:that if.G’ holds before 0, G will'hiold. after O. Finding this new goal-G’
i& coal regression, oF passing: the goal:back over the -opérator. Goal regression
can be used: to guarantee that.goals:that have-been-achieved-arenot violated
hy subsequent operations. The basic planning algorithm: is-to achieve the

: first of the.conjunctive subgoals of the problem and: then expand:theplan by :
regressing subsequent subgoals from the end of the plan-%6 a point in.thie plan
wheré their accomplishment will-not violate-those previously .achievéd.

Consider again the three-blocks- problem. Waldinger:s:system-can-solve
: the problem regardless of. the order in which it approachesthe subgoals, but
| we will illustrate:it, planning to achieve (ON- A.B) before (ON B:C). First, the: L

svstémi removes block C from atop.A in-order:to-clear A. Théplan looks like :
this:

: Goal or .action State

: ACHIEVE (ON A B) c]la]s] :: (Clear A) 2. | :

Now the system puts .A-on B:

|

(Put A on B) 3. Lo -

: The plan consists of two-actions, (Clear A), (Put A on B). The system J
- now attempts its second goal, appendingit to the end of:the plan. However, it :

Airds:that achievingoncofitspreconditions; {C1aar- BY wiclates-the.nroteeted- eed
relation A. 1s on B. ‘Rather than reordering the conjunctive goals-of the plan, i :

TT7. A. =e Few TH PERE | . }

C Nonhierarchi¢al Planning 539. ,
~ ¢ .

as’HACKER andINTERPLAN do, the.system'simpl passes the offending goal
back-over previously achieved.subgoals-until:it-finds a place in.the-plan where: y
the goal will: not interfere with any: others. In this:case, the goal (ON B €) is. Ts

) moved in front of the action (Put A.én B). The plan now lookslike this: >

Goal or action State

- | i |

| | NE | |lL. J

ACHIEVE (ON A B) | C I A I B |(Clear A) 2. dl

ACHIEVE. (ON B C) [cla]: (Put 'B on C) 3. dl

: (Put A on B) 4, es)

: When a proposed operator causes a protection violation, an attempt is
made to insert it at earlier points in the plan, checking to-see-whetherthe
interaction is avoided and to see that no new protection violations occur. |

: However, the-choice of where to insert the new operator is not guided by

ary information. It-involves simply searching-back-in the plan and checking
| at-each position to see-if it is-suitable. Waldinger’s:system does not .check oe

whéther a later step is made redundant by. the insertion:6f the operator, soa

| less than optimal plan‘may be produced. :)
The main advantage of Waldinger’s approach-is-that it is constructive: :

Plan steps are:added-one by-one, and-the only difficulty is finding:out where Co
they should goin the plan. This ‘can involve a ¢onsiderable amount of .
searching, ‘but it avoids the inéfficient repeated achieving of subgoals that
HACKERand INTERPLAN must :do-after réordering,.

‘Conclusion Lo

Co ‘We have discussed Tete thrée nonhierarchical approaches to” planning: TTT TT
: HACKER.INTERPLAN, and-\Waldinger's system. Each suffers from interacting

|
|

o40 Plarining,and Problem Solving XV > .

: subproblems; the first two systems .are-forced to backtrack.and reorder sub-
; goals. and Waldinger's system, though.it avoids backtracking.by constructive :

goal regression. must evaluate thé consequences of: puttinga subgoal at a
proposed placein a:plan. In the remaining. articles of this chapter, we will:
consider hierarchical and script-based planning as alternatives to nonhierar-
chical planning.

References

- HACKERisdiscussed in Sussman’s doctoral thesis (1973; also. Sussman,
1975). INTERPLAN is discussed in Tate’s thesis'(1975b), although his JJCAT |
article (1975a)is more accessible. See Waldinger (1977) for a presentation of :
his system.

|

| |

| N .

- a "

CT i °C a et

. x ’ ~ or

D. HIERARCHICAL PLANNERS Cor

IN NOAH. Earl Sacerdoti made some significant advances in problem solving |
and planning. NOAH (Nets of Action Hierarchies) was desighed-as part-of the
Computer-based Consultant projeét at SRI International, Ine., around 1975
(see Article VILD2, in Vol. I). It uses a representationfor plans calléd the
procedural-net, which has.a richer structure than previous problem.solvérs. In
contrast to these-earlier efforts,the procedural net represents both procedural
and declarative knowledge about problem solving. The-procédural knowledge
(also called domain knowledge) includes functions that.expand stateménts of
goals.into subgoals and that simulate the actions of operators that transform
one state-into.another. Declarative, or plan, knowledge: represents the éffects
ofexecuting these functions; for-example, ifa procedure-is executed. that. puts
one block on top of another, NOAH records that the supporting biock no

: longer has a:clear top surface. Because the effects:of actions are represented
explicitly, NOAH can reason about them. In fact; NOAH employs a set of

: procedures called éritics that are sensitive to those effects of actions :that

would jeopardize the success of the plan. Critics are used‘to detect and correct’
interactions, eliminate redundant operations, and’sofort.

Problem solving in NOAH is-accomplished by developing the procedural :
net. From a single -node that represents the goal to be achieved, .a-hierarchy
of nodesis developed that represents levels of subgoalsto be achieved ‘before
the original goal can be accomplished. The original goal node contains a

: pointerto a set offunctions that -expand goals into-subgoals: When one
| or more of theésé functions are executed, subgoal nodes are added to the

procedural net. They ase linked to-the original. goal—their parent—and to |
each. other, and, like their parent, they contain pointers.-to functions that
expand goalsto subgoals. In addition, the-nodes representing the subgoals
include a declarative representation -of the: effects, if any, of executing the
functions. a. oe

: After the original goal node-has been expanded, -there-are two levels of
representation of the problem, the first of which is the:goal node. The second: : .
is a series of subgoals-that, when achieved, will havethe effect of achieving.

: the.original goal. These nodes are themselves expanded as thei: parent was.
NOAH continues to add nodes to: the procedural net that are more specific |

: versions of the'goais represented by their patents. Eventually,the originaigoal ~~ ~~~~
of the problem is replaced by several levels of more detailed goals and, finally,

342 Planning -and Problem Solving XV |
: }

by a level of goalsthatcan be immediately attained by simple problem-solving ;
| operators. i a

Thus, NOAH plans ‘by developing ahierarchy of subgoals. These will-
sometimes be called abstract operators: A distinction is.made heré, as else-

where in this.chapter, between the simple problem-solving operators specified
in-the problem space and abstract operators that will eventually be expanded
to problem-solving operators. Abstract operators are:goals, and their expan-
sions are subgoals. in the sense-that such operators specify abstract.actions
that the plaunner-would like to execute but that it cannot execute until thay |
are expanded to subgoals attainable by problem-solving operators. |

In addition to. abstract and problem-solving operators, NOAH. has plan- ;
ning actions. These include the functions that expand goals into subgoals and |
the actions-of various critics. They are not .part of the emerging plan but,

: rather. are the actions by- which NOAH develops the-plan. .
Note that whenever NOAH expands a goal tosubgoals, it runs the risk

-of creating interacting subproblems (see Article Xv.C). This problem arises
when a planner commits itself to an arbitrary order for achieving conjunctive |
goals. NOAH. avoids the problem in two ways: first, by not ordering subgoals |
until there is some reason to do so and, second, by continually examining
the developing plan for potential subgoal-interactions and correcting them |
before they afise. This allows NOAH to solve interaction problems-construe-

: tively: Operators are not-ordered until a potential interaction is detected, and |
thén they are ordered to avoid thé interaction. This contrasts with the plan- |
ners’in the previous article; those planners ordered operators arbitrarily, and, |
if an interaction emerged, they backtracked and replanned to try to avoid
the interaction: These planners are said to overconstrain a.plan by commit- |
ting themselves to orderings arbitrarily; NOAH is said to underconstraina. |
‘developing plan by not committing itself to any orderings except to-avoid an :

| interaction. :

Application no

NOAH was appliedin the domain of assembly-tasks, and it proved useful |
and powerful. It provided instructions. to a huihan apprentice, who then ,

carried out NOAH’s plan. The procedural net was well suited to this task, |
because it allowed a plan to be specified at any of séveral levels of detail;
for example, NOAH could instructa-trained engineer to bolt the mounting |
bracket.to the frame—a high-level instruction—butit could tell a novice how)
to accomplish thisgoalin detail if necessary. Theprocedural net also madeit
easier to monitor theexécuition of the plan. If an unexpected situation-atose, |
NOAH could replan:-by patching the proceduralnet. The building of the-plan
was.kept.distinet.from.its.execution, .but.control:could-pass.from-the-planner.. -. -..... |
to the execution monitor at. any stage.

- |

| The Structure. of the Procedural Net :

The procedural net contains several lévelsof representation of a.plan, each -
level more detailed than the previous one. Each consists of a partially ordered
sequence of nodes that represent goals-at-some level of abstraction. To avoid |
overconstrainingthe order in which goals are achieved, NOAH assumes they
can be attained in parallel until it has some reason to put.one before or after

: another.
Each node.in the procedural net is attached to its more detailed expansion.

in the next level; for example, the node representing the abstract goal Meke
coffce may be expanded to a handful of more detailed gcals, such as Grind
coffee, Boil water, Put the coffee in.a filter, Pour the water through it. NOAH
will not commit itself to any particular ordering-of these operators until it.
has reason to do so.

: ‘The statement of the problem goal is the top-levél node, representing a
: plan.at a very high level. A simple exampleof the structure of the net. with

‘two levels is given in Figure D1-1. The § and J nodes represent split and join, :
réspectively;they are dummy nodes-that bound actions that are assumed:to :
be executable-in- parallel. NOAH uses this formalism to represent-operations
for which it has not chosen-an ordering. }
NOAH expands a single goal node in the procedural net-into.a-hierarchy

of plans at various levels of abstraction. To do this,it uses procedures that
expand abstract operators into more detailed ones. Much:domain knowledge.
is implicit in these procedures; for example, one such procedure might.be:

: Ifthe abstract operator ts(MAKE COFFEE),
then:ezpand it'to the operators (BOIL WATER), (GRIND COFFEE),)

(PUT COFFEE IN FILTER), (POUR WATER ‘THROUCH).

The problem that NOARis to solve détermines what knowledgewill -be
represer .ed-in these procedures;-the preceding procedure may be.appropriate

Level i: | Achieve (ON A E) |

Figure D1-1. .An-action hierarchy (in a blocks world). :

544 Planning and Problem Solving x\

for the coffee domain but not for.any-other. ‘Since these procedures.contain:so
much knowledge about the problem domain, they are called SOUP functions, : »
for. Semantics of User Problem. They are written in-an extension.of QLISP. .

Expanding the Procedural Net with SOUP Functions |

Consider again the simple blocks-world action hierarchy in-Figure D1-1.
To achieve it, and to solve simple blocks problems, two SOUP functions are

+ required. One, shown in Figure D1-2, expands any goal of the form (ACHIEVE.
(ON X-Y)), and the other expands any goal-of the form (CLEAR X) (these are
the only functions required). The main goalof the problem is associated: with
both functions, since at the outset of the problem.it is not known which will
apply. However, only (PUTON X Y) matches the pattern of the ‘main goal, so
only it is applied. (See Article V1.A, in Vol. 1, for a discussion of pattern.
directed trivocation of procedures in PLANNER.):
Applying (PUTON X Y) to the main goal of the problem generates three:

subgoals. The PGOAL forms the basis for constructing subgoals; when a PGOAL

is activated, a-néw node is generated-at the next level'in the net whose-name
is the PGOAL’s first argument, for example, (CLEAR X). The three PGOALs in.

. PUTON create the nodes (CLEAR A), (CLEARB), and (Put A on B). The first.two
are conjunctive, as-is specified by the “AND” in: thefunction. NOAH. does not
choose -an- order to attain them but assumes they may be attainedin parallel

and thus-surrounds them with split andjoin-nodes.
The function (PUTON X Y) also specifies:the effects of achievingthese sub-

: goals. The effects of applying CLEAR to X.or Y.is to assert CLEARTOP for that

(PUTON |

(QLAMBDA: (ON' +X «Y)

: (PAND :
(PGOAL (Clear X)

] (CLEARTOP- X). :

APPLY

(PGOAL (Clesr Y) |
(CLEARTOP Y)

APPLY: |
(CLEAR)))

(PGOAL (Put X on top of Y)
(ON. XY) or

: | APPLY: NIL) |
(PDENY (CLEARTOP ¥))))

oo Figure D1-2, SOUP code for the blocks problem. : oo

: | |

u

- J

| |

D1 NOAH . 545 3

block, and the effect cf puttifig X on Y-is to DENY the assertionof (CLEARTOP Y). | oo
These effects are represented:declaratively in-the-add-list and -deleté ‘list-of a. “o

node. The add list is a list of propositions thai become true. after the goal
is achieved, and the delete list represents the propositions that are.no longer
true after the goal is-achieved. oo

Finally, the SOUP function specifies which other SOUP functions.should :
be applied to expand the subgoals it has just created. It suggests-that the
appropriate functionfor the subgoal-of clearing A or B is CLEAR. It makesno

. such suggestion for the third subgoal, Put A on B. because this goal can be
accomplished by a single problem-solving operator and need'-not be further
expanded. This mechanism increases the efficiency of problem solving and
helps to avoid backtracking. SeveralSOUP functions might apply to a node

. in the procedural net, but the parent of the node can specify, at the time
the node is created; which function i5-to be used to expand it. This reduces
search. (However, the user may explicitly cause NOAH to consideér alternatives

by using a POR function inside a SOUP procedure. In this case, alternative
expansions are generatedin parallel until one-is-seen to be simpler than the
other.)

The Concept of “State” in- NOAH

Problem solvers are typically regarded as searching through a spaceof
: states for one that qualifies'as a solution. One conception of astate'in problem:

solvers like STRIPS and GPS is that a state is a collection of propositions. New |
states are generated from old ones by the application of operators; that is,
operators make some-old propositions false and add new true propositions.
Eventually,and depending on the power of the problem solver,a state will be:
generated -that includes just the propositions required for the problem to-be .
solved. ;

NOAH can also be characterizedin this way, but.the knowledge that makes
up a stateinNOAHis quite distributed. Some knowledge—that which will
never have its truth valve changed—is represented in a world model. This)
includes the:state of the world that holds when problem-solving starts, When |

: some aspect.of. that stateis changed, the proposition. describing:it is removed |
from the world. model. The changed’state of the world is representedby thé

. propositions added to the add list or delete list of the operator that changed
the state. Thus, NOAH knows which aspects of.its'worldhave not changed—
they are represented .in thie world ‘model—and it distributes its records: of
changes.throughout:the procedural net. :

Changes-are summarized at each level in the net by a table of multiple -
effects (TOME), which contains an entty for every proposition that was asserted
or denied by more than one node at that level in the net. TOMEs are used
to-check for interactions. between goals; if a single proposition has its vahie

- . changed by-more than one action.in.a.plan, there is a possibility.of interference . ..
between the-actions.

216 Planning and Problem Solving xv

NOAH uses programs called critics to check for interferences. A eritic
simply «checks a TOME for the kinds of conflicts it is designed to correct.
When a conflict is.found. the critichas a. limited number (usually only one) :
of corrective actions it can take. If all ofthe critics can successfully eliminate
any conflicts found, the next level is expanded. There is presently only a
limited ability tobacktrack on failure. Three critics are described hére.

The RESOLVE-CONFLICTS critic. This examines conjunctive goals
: that are to be achieved in parallel. If an acticn taken to achieve one goal

removes a precondition of an action in the other, the critic attempts to order
the actions so that neither violates a precondition of the other. This eritic
is similar to the debugging procedure in HACKER: for reordering conflicting
goals. The important difference ‘is-that HACKER backtracks and reorders
arbitrarily ordered operations, while this critic constructively orders goals
that were previously unordered.

The ELIMINATE-REDUNDANT-PRECONDITIONS critic. Sometimes
during planning, the same operation gets specified twice when-it need be done

: only once. This critic.fixes the problem.
The USE-EXISTING-OBJECTS critic. Formal objects. essentially place-

holders. are used whenever there is:not a clear choice of what value to.give
a variable. This critic will substitute a value when a clear. choicé becomes

possible at a lower lével of planning.
There are other critics. in the system; some have a general purpose like :

those above, while-others are specifically designed for a given domain. More
can he-added at any time. The critics described ‘here are sufficient for the

following example. |

Planning in NOAH .

The planning algorithin. of NOAH operates repeatedly on. the current
lowest level of the procedural net. Initiglly, a node is constructed for the
goal NOAH is given as-its task. All SOUP procedures are available to expand
this node; expanded nodes are associated with a much smaller set of SOUP

: procedures by the procedure that generated them. Once all the nodes in the
current level havé been expanded to produce a new level, critics check for
interactions before-another level of expansion.is tried.

: An Ezample

- This example shows NOAH solving the three-blocks.problem that was so
difficult for the planners in the previous article.

NOAH’s world model contains the propositions:

: (ON C A)

(CLEARTOP ‘B))
oo ~ (CLEARTOP ©) :

D1 NOAH 947

This constitutes the starting state of the, problem. The goalis also written as Co
: a proposition:

| (AND (ON A B) (ON B QO).

Graphically, the-starting state and the goal look like this:

[A]

== . -

[2]=]
: The PUTON and CLEAR functions discussed earlier are used in this problem. no

The first.node in the proceduralnet is:

Level 1: Achieve (AND (ON A B) (ON B C))

This is expanded to two parallel actions by merit of NOAH’s policy about
conjunctive goals: They-are not ordered until there is-sorne reason:to-do so. :

meni)

o ll:
: This is a simple:expansion; ‘the critics-can find nothing to criticize about it. |

The PUTON function is now used to expand each of the nodes at-level2. (Refer-
+ back to Figs. D1-1 and D1-2 for an explanation of how this works.) The
result is shown in Figure D1-3.

The RESOLVE-CONFLICTScritic notices that:-node 3 will delete a precon- -
dition,of node 6, namely, that.B is clear (node-4), because node 3 adds-a
statement to-its deletelist that DENYs (CLEARTOP B). Whena table of multiple :
effects is compiled for thislevel, NOAH notices that (CLEARTOP B)-is implicated
in the effects of both nodes4 and 8. Since NOAH has not committed itself
to achievingany of its goals in a particular order, it need not backtrack to ~~

a modify its-pian in any destructiveway. Instead, it uses thisconfiictas-an- =~ oT
opportunity to introduce constructively a partial ordering of goals: It decides

548 Planning and Problem Solving XV)

: 3 he) “1 ! Rs

TT Tee
5| {CLEAR C) !

Figure D1-3. Level 3 before criticism, with nodes numbered for reference.

to accomplish node 3 after it has done everything else. Figure D1—4 shows
a this' reordering.
: Next, the REDUNDANT-PRECONDITIONScritic observes-that nodes 2 and v
: 4 are redundant and eliminates node 2. This step-is. shown inFigure D1-5. :

NOAH next expands the (CLEARA) goalat level 3. Actually, that is the
only goal that remains to be expanded,.since B and C have been clear from
the start of the problem, and the (Put X on Y) goals are-achieved by-simple
problem-solving operators. To .achieve (CLEAR:A), NOAH needs to move C
off of it and put C someplace; it does not know where, so it makes up a
placeholder. Block C:cannot be moved unless it is clear;.so.the final sequence

. p - - - 3 - - x

6

5] (CLEARC))) :

- Figure D1-4. Level 3 after the RESOLVE-CONFLICTS criticism.

) i

: i

D1 NOAH 549 | .

Figure D1-5. Level 3 after all criticism.

that NOAH plans-in order to clear: A-is ‘(CLEAR C); (Put C on Objecti). This
is illustratedin Figure D1-6. "

NOAH. notices that node 6 may interfere with its latest goal, so the :
RESOLVE-CONFLICTS critic decides to order node 6 after it has achieved :
(Put C on Objecti). See Figure D1-7.

: Finally, the ELIMINATE-REDUNDANT-PRECONDITIONS critic notices that :
(CLEAR C)-is-mentioned.twice in the plan. It eliminates one of the nodes. The
final plan is shown in Figure D1-8;

B 17] Put A on B -

Ce | |

| D [rome]

Teo]

Figure D1-6. Level 4 before criticism.

550 Planning and Problem-Solving XV :

0 vc]

5.|:(CLEARC)

Figure D1-7. Level-4 after the’RESOLVE-CONFLICTS criticism.

Conclusion SE |

oC NOAH plans witha combination of procedural and declarative-knowledge.
: Initially, all NOAHis knowledgeis in procedural form—IJocal domain knowl:
: edge-in the SOUP ode and global knowledge in the critics. At the outsét of

planning, NOAH.is given a world model and a goal that it develops: into a
hierarchical-pro.'edural net. As it plans, it.records.in a declarative form—in.
add lists and“ delete -lists—knowledge to help it.avoid interaction problems.
To reason.about interactions and possible orderings of goals, this.information.
is summarized in a-table-of multiple effects. Critics consult these tables. after
each level has been: expanded; they order and. alter the plan.constructively. -

References

NOAHis discussedin detail"in Sacerdoti’s doctoral dissertation (printed
as an SRI technical note, 1975). NOAH has been extended by Tate:(1976), end
a- distributed implementation is discussed by Corkill- (1979).

o SR OS CTEn SET

Figure D1-8. Level-4, final plan.

- a 3)

) -

D2. MOLGEN

THE PREVIOUS articles have demonstrated the utility of problem-reduction

inplanning—dividing a problem into suoproblems that are more easily solved.
But problem reduction has an associated liability, namely, that subproblems
are rarely independent. Solving one may prevent solving another. A.number
of approaches to this problem have-been presented in the previous articles.
HACKER and INTERPLAN used-destructive reorderingof subgoals: Walding-
er's system employed a more constructive goal-regression. method (see Article
XV.C). In NOAH (Article XV.D1), the conceptual leap was to avoid linear
orderings of subproblems as long as possible and to plan initially with:abstract
goals that were refined in-such a way as to avoid subproblem interactions.

In this article, we discuss the MOLGEN system—a knowledge-based pro-
gram that assists molecular geneticists in planning experiments. There are
actually two MOLGEN planners. one developed by Friedland (1979; sée also
Article XV.E) and another, the one this article is about. by Stefik (1920).
MOLGEN extends the work on hierarchical planningto include a layered con-
trol structure for meta-planning, Plans are constructed in-.one layer, deci-
sions about the design of the plan are made in-a higher laver, and strategies
that dictate the design decisions are.inade.at a still higher level. A key idea

: in MOLGEN is to represent the interactions-between subproblems explicitly

and declaratively, so that MOLGEN- can reason.about them and use them to
guide its planning. The structure that represents.an interaction-is.called a

: constraint.

Levels of Planning)

Control ofplanninginMOLGEN switches between three-layers,or spaces.
The lowest layer, called the planning:space, contains a hierarchy of operations
and objects typical in a gene-splicing experiment. At the lowest level-of this
laver are bacteria, drugs; and laboratory operations, which are represented
by knowledge structures called units (Stefik, 1979); generalizations of these

include the general objects gene, organism, and plasmid and thé general |
: laboratory operations merging, -amplifying, reacting, and sorting. Initially, |

MOLGEN. plans experimentswith these abstract objects and operators. As it |
chooses specific operatorsor objects to replace the abstract ones, it introduces
constraints into its plan. For example, it plans at an abstract level to sort
two kinds of bacteria. At a later time, sort is replaced by screen. which sorts
bacteria by killing one group of them with an antibiotic. This decision results
in-the constraint that theantibiotic be potent against one kind of bacterium

but not the other. - - :

351

552 Planning and Problem Solving XV

The utility of hierarchical planningis illustrated by the preceding exam-
ple. It shows that although’ a planning decisionto usea-particular operation
affects later decisions about the kinds of objects to use, this interaction is
absent as longas the plan is formulated at an abstract’levél. Using hierarchical
planning, a complete, abstract plan is constructed without attention:to these
interactions. Then, as steps.in the plan are refined, the interactions that
arise are explicitly represented as constraints and are resolved. The act of
refining plan steps involves replacing an abstract operator with a more specific
one or replacing an abstract object with a more specific one. If hierarchical
planning were not used, every planning-decision would introduce interactions;
each decision would affect. the decisions following it. Early planners like
those discussed in Article XV.C produced: initial plans that were crippled

by interactions and then attempted to reorder planiing steps to alleviate:
them. These planners were said to overconstrain their plans; in contrast,
MOLGEN and NOAH (see Article XV.D1) produce underconstrained plans and
addconstraints constructively. :

The middle layer at which MOLGEN: plans is called the design space: At
this level. MOLGEN makes decisions about how its.plan is to develop. The
operators of the design space-dictate steps taken in-the design-of a-plan, for
example, proposing a goalor refining an-operator. The objects:in this space .
include. goals and constraints. MOLGEN-reasons about plans with the objects :
and:operators in the design space, just as it reasons about molecular genetics :
with the objects and operators.in-the planning space.

| The top layer of planning.forMOLGEN, the strategy space, includes four
very general operators that dictate planning strategy. These are FOCUS and |

: RESUME, which together propose new planning steps-and. reactivate old ones
that ‘have been “put on hold,” and GUESS and*tNDO, which make planning

: decisions heuristically when there is not sufficiént information to focus or to
resume. UNDO is a backtracking operator that undoes decisions that have
overconstrained a plan. Much:of the research effort in MOLGEN has gone
into.avoiding backtrackingby developing underconstrained plas, butin the.
rare cases where a guess must be made about a plan step (e.g., choosing the

‘ identity of a bacterium), the unforeseen constraints introducedby the choice
may force backtracking anda different choice.

: Of -the three layers of planning in MOLGEN, only the planning space is:

: unique to-a. domain, in this case, molecular genetics. The designand strategy
spaces contain objects and operators-that apply to planning in any domain.

Control of Planning in MOLGEN

The three Jayers discussed above constitute a hierarchically organized con-
: trol structure for MOLGEN. At:the highest level, the strategy space, decisions
- ate made about the style ofpianiing. Two Styles-ate available, feast éom- oT

HE |

D2 MOLGEN 553: |

a message to the désign operators in the design space asking whether they
can suggest any tasks-to.do. Tasks include-proposing-a-goal (after noticing: :
a difference between the current state and the goal state), refining an object :
or an operator, and formulating a constraint. MOLGEN ‘may fail to: find a
task for which it has the constraints to proceed successfully; for example, it
may propose to refine an object—a bactérium—to a particular species of bac-
terium, but it may lack the guarantee that this refinement will not interfere
with later steps in the plan. In this case, it will suspend.this step and look for

. another. If MOLGEN cannot find any design steps to execute immediately, it
checks whether any previously suspended steps can be executed; information
may have become available since their suspension that justifies their reactiva-

tion. The least-commitment cycle oscillates between finding a. planning step |
to execute and reactivating suspended: steps in the light of new information.
It is called least commitment because it will not commit itself to a plan step
that might have to be abandoned. at some later point in the development of

: the plan. If MOLGEN cannot find a plan step that satisfies the requirements
of the least-commitment cycle. it switches to the heuristic cyclein which-it
guesses a-plan step.

MOLGEN uses three kinds of operations on constraints. The first, called |
constraint formulation, involves identifying interactions between solutionsfor

: goals. Often the goals are to refine abstract objects or operators; for example,
the goal-of sorting two-kinds of bacteria is achieved by screening one of them
with an antibiotic. When this solution isproposed, a constraint is formulated,

saying that the choice-of bacteriumand antibiotic is now constrained by the
réquirement that one kind of bacterium should be susceptible to the antibiotic.

The second operation with constraints is called constraint propagation.
This is the creation of new constraints {from old ones, which helps refine
abstract parts of a plan. For example. the single constraint described above
reduces the number of bacteria or antibiotics that MMOLGEN is considering,
because not all bacteria are susceptible to.all antibiotics. Constraint propaga-

tion collects other constraints on the ‘bacterium and antibiotic, formulated |
perhaps in- other parts-of the plan. As a result of constraint propagation,
abstract plan steps that might have been refined in dozens-of ways are con-
strained to have a relatively small number-of potential refinements. Often, |

individual subproblems are constrainedto some extent, but-not enough to nar- |
row down the space of solutions significantly. However, when the individual
constraints on individual subproblems ‘are propagated, the sum of the con-

: straints often eliminates one or more solutions. For example, during a day,
a person-may have two goals: to get some exercise and to get to school in a
short time for a class. The first problem, to get exercise.is constrained-only
by the requirementthat it is energetic; the second problem, to get to school,

is constrained only by therequirement that it take a short time. Propagating :
these constraints leads to the obvious solution that one should run or ride-a

204 Planning and Problem Solving XV oo

Following constraint formulation and. propagation, MOLGEN seeks to y
satisfy constraints. In the domain of molecular genetics. this-often involves
replacingah abstract object with a particular one that satisfies the constraints :
put on it. For example, it may involve replacing the object bacterium with ,
e. coli and replacing the object antibiotic with tetracycline. Whatever the
results of constraint satisfaction, it is facilitated by constraint {formulation
and ‘propagation, which together narrow down the space of refinements that

: is considered for each subproblem.
: The formulation-propagation-satisfaction cycle is a constructive process; ;

abstract parts of plans usually are refined only when there are constraints

: specifying the refinement. The antithesisof this constructive cycle is found
in rare cases in which MOLGEN lacks the constraints:neededto refine a plan
step. It guesses a refinement that may be shown at a later time to interfere
with other parts ofthe plan, in which case the refinement is abandoned for
another. This process.is destructive, since it may involve throwing away old
planning decisions. :

An Example

MOLGEN has been used to find’ plans for the rat-insulin ‘experiment
(Stefik, 1980). Many organisms produce insulin that is biologically active
in humans but can sometimes cause allergic reactions, An: alternative to
extracting insulin from thé pancreas of animals is to design-a-bacterium that

: produces insulin. No bacteria are known-to-produce.insulin naturally, so one
must be created. To do this, the gene coding for insulin production-in rats was
spliced into bacteria, altering the genetic.makeup of the bacteria and causing
them to produce insulin. This experiment.was done in 1977; it was selected
as a test case for MOLGEN, ivhich successfully -desighed four different plans :
for the experiment.

: The major steps inthe experiment involved finding a medium in which to
embed the insulin gene, allowing some bacteria to-absorb this medium. killing

: off-the bacteria-that did not absorb the-medium, and growing the culture of

those that did. The planis simple at this abstract level—that is the advantage
of hierarchical planning. The complete-plan is actually quite complicated and |
involves many constraints.

MOLGEN represents the goal of‘the experiment using the most abstract
objectsit knows of. The goal is to obtain a culture with

: ORGANISMS = (A Bacterium with

EXOSOMES = (A. Vector with
: GENES = (RAT-INSULIN))). |

- Planningin.MOLGEN.is: driven. by medns-ends. analysis, which.istosay = = = = a

: that. at each step of‘the planning process, MOLGEN seeks operators that will |
:

|

D2 MOLGEN 55% oo

| reduce the differences between the current state of the plan and its goal. |
In this case. MMOLGEN makes a very abstract plan to build, from available
objects, the organism specified in the geal. It plans two. merges of objects SE

to achieve its goal. The first merge involves the insulin gene anda vector (a
| medium for cartying the gene into the body of a bacterium), and the second

merge involves the results of the first merge and the bacterium:

’ Pizsmid (a Vector) Rat-lasulin Gane

| Merge
A |

Bacterium (Object 1) ,
ee me

‘ | Merge
(Goal)

Next. MOLGEN refines the two abstract merges to more specific-operations.

The second merge, by which a bacterium absorbs a plasmid carrying new
genes. corresponds to a laboratory step called a transformation. But MOLGEN
knows that not all plasmids areabsorbed by-all bacteria. so.it formulatesthe

constraint that they be coripatible. MOLGEN also.knows that:transformation '
: operators work by mixing plasmids and bacteria togetherin a.solution and

that some bacteria will not absorb the plasmid. This leads toa difference
between the goal of the experiment and the state resulting from-the plan: The
goal'isto have a single culture of bacteria carrying a particulargene, but-the |
plan results in a culture of bacteria in-which some .bacteria_do not carry the
gene. 5

: Since planning is driven by-differences between the current state and the |
goal, MOLGEN tfies *0 solve the problem. of getting rid of the unwanted
bacteria. To do this, it proposes to sort the culture. Soft is an. abstract :
operator that is next refined to screeningthe bacteria with-an antibiotic. Note
that the antibiotic is not specified because the bacterium is not. However, the

: refinement of sort to screen results:in two constraints: that the bacteria that

absorb the plasmid should resist the-antibiotic and that the bacteria that do
: | not absorb-the plasmid should perish from the antibiotic. |

At this point, MOLGEN propagates the constraints about. antibiotic, resis-
: tance. The result of the propagation.is-that both constraints:on-the bacteria

are replaced by a single constraint on the plasmid itself. The reasoning is
: that, since the only difference between the two kinds of bacteria-is that one
: carries-thie plasmid, theplasmid-itsellmust confer-immunityto-the antibiotic. i

Notice that this reasoning does not change any of the plan steps that have

536 Planning and Problem Solving XV

already taken place. but it-does constrain MOLGEN to include a resistance
gene for an antibiotic in the plasmid. -

So far. MOLGENXN. has done a little bit of planning at an abstract level
and a lot of reasoning about how to refine the abstract plan into a detailed
one. It has proposed a merge of a gene and a plasmid, a transformation
.of that result into two bacteria, and a screening of the bacteria to obtain
the desired one. The -identities of the bacteria, the screéning agent, the . |
resistance gene, and the-plasmid that will carry the genes are unknown, but

" MOLGEN knows some things about these objects in thé form of constraints.
For example, the resistance gene and the antibiotic must be compatible, and
the plasmid must be compatible with the bacterium. As MOLGEN continues
to plan. particularly to plan how to insert the desired genes in a plasmid,
other constraintswill be-formulated.

Eventually, MOLGEN will be able to satisfy constraints, By then, it will
have refined: the plan to a point where the only bacterium that it knows

: will satisfy all the constraints is e. coli. Similarly, it will have found just
one method of inserting genes into a plasmid (though this was not done
through constraint-propagation but because MOLGEN knows of only-one such
method). It will have found two antibiotics—tetracycline and-ampicillin—and
four plasmids that satisfy theconstraints. Thus, it finds four solutions-to the
rat-insulin problem.

MOLGEN's solutionto the rat-insulin experiment was. more complex-than
the abbreviated version presented here. In-all, a dozen constraints emerged
during tire planning process. The development of the plan was complex,
requiring about 30 pages: of printout to document.

Conclusion

We have seen that MOLGEN can develop a complex plan without ever

undoing a planning decision. Its least-commitment strategy dictates that it

aefer decisions for which it lacks constraints, and, thus, it rarely commits
itself to a decision that itmust later undo.

MOLGEN plans at different levels of abstraction, and it also works at.
: three levels of planning actions to accomplish meta-planning: At the highest

level it makes -strategy decisions, at the middle level it makes design decisions,
and -at the lowestlevel it-decides how to instantiate its design.

References |

oo Stefik’s MOLGEN systemis discussed in his doctoral dissertation (1880). = =

|

|
| |

|

E. REFINEMENT OF SKELETAL PLANS '

x h |

ONE WAY to develop methods for AI systems is to observe the methods

that humans use. Such an approach is typically taken by cognitive scien- |tists (see Chap. XI):to develop models of cognition. This article describes a
. molecular genetics (MOLGEX) planning system developed by Peter Friedland |

after studying human experiment-planning behavior. The major observation |
of the study was that scientists rarely invent from scratch the plan for an |
experiment. Most often, they begin with an abstract. or skeletal. plan that

contains the basic steps. Then they instantiate each of the plan steps by |
a method that will work within the environment of the particular problem.
Skeletal plans range from general to specific, depending on the experimenter
and -the problem. This MOLGEN gystem is one of two such systems devel.
opedat Stanford University; the other, by Mark Stefik, is discussed in-Article
X\.D2,

] This article gives an example of skeletal plans in the laboratory and :
discusses the implementation of the method in theMOLGEN:system for the
design: of experiments in molecular biology.

Two Examples of Analysis Ezperiments :

As an introduction to the skeletal-plan method, twe-simplified and related
examples of analysis experiments in molecular biology are presented; namely,
DNA sequencing and restriction-site mapping. Both experiments irivolve.simi- oo
lar sequences of actions; consequently. they are discussed as variants of a single

: skeletal plan. :

DNA sequencing: The problem. DNA.is composedof a-linear-string
: of molecules called bases. There are four poscible bases; adenine, cytosine,
: guanine, and thymine, usually abbreviated A, C, G, and T. The goal-of a

sequencing experiment is-to determine which of the four bases is present at
esch position on the molecule. The base sequence is extremely-important in
determining both the biological function and the physical structure of the

: entire DNA molecule.

DNA sequencing: The solution. One of the best current-experimental |
| plans for DNA sequencing, known asMaxam-Gilbert sequencing (Maxam and

: Gilbert, 1974), is as follows:

1. Label one end of the molecule with radioactive phosphorus. This gives
the experimenter a “handle” for later locating pieces of the molecule 3

- : attached-to-therradionctive-end. Radioactive.phosphorug-labeling-is-the- em mee
current method of choice for end-labeling of DNA.

557

HR Planning and Problem Solving XV oo

2. Divide the sample into four portions. For each portion, apply ahydrazine
based chemical reaction that cuts the molecule at a particular base.

Control the reaction so that, on the average, one base is cut-per molecule.
Each of the four samples will then contain a population’of molecules of
lengths determined by the base that was:cut in that sample.

3. Determine the lengths of the molétules in each population.with a labeled
end. This is:done by a technique called acrilamide gel. electrophoresis,
which is currently the most accurate'method forthe separation of mole-
cules by length.

For example. suppose the starting sequence was AGTTCGA. Thesample
for which the moleculé was cut at the A base would show labeled molecules

of lengths-0 and 6. the C sample would show molecules of length 4. the G
sample would show molecules of lengths 1 and 5, and the T sample would

: show molecules of lengths 2 and 3. The sequence can now be “read” directly
from these lengths.

Restriction-site mapping: The problem. Restriction enzymes are
: used to cut. DNA molecules at specific locations. The locations.are specified

‘by a pattern of four. five, or six bases called a.restriction site. The goal of a
mapping experiment is to find all of the restriction sites for common enzymes
on a molecule. This information tells the.molecular geneticist-which enzymes

: to use or not to use in a future experiment that requires restriction cutting.
Restriction-site mapping: The solution. One of the best current

| methods (Smith.and. Birnsteil, 1976) is as follows:

: 1. Label the end-with radioactive phosphorus as above.

2. ‘Divide the sample into.as many new samples as restriction enzymes for
which amap is.desired. Then, for each sample, do a “partial digest” with
one restriction enzyme. This means to-control the laboratory conditions

: (temperature. pH. time of application) so that only one or-two sites are
cut on the-average molecule. As above, a population of molecules will
existin each sample.

3. Determine the'length of the labeled molecules by-means of eleétronhore-
sis, as above. The length measurements will locate eachof the restriction :
sites for each enzyme tested.

The Skeletal Plan. Refinement Method

Clearly, ‘the two experiments described above are closely related. ‘Each
had the.goal-oflocating the position of a specific site—either a single base or
a-string-of bases—on-the-molecile; Each-had-the-same-design:-they-differed- a

oniv in the middle, cutting step. Both, experiments sprang from the-same
basic idea: -

E Refinement of Skeletal Plans 999 |

1. Label one end of the molecule: : Co

2. Cut with an agent that makes an-average of-one cut-per molecule atthe :
sites that are being mapped:

3. Determine the length of the labeled fragments.

This is an abstractedor skeletal plan that is useful for locating any type of oC
site for which there is a suitable cutting agent.

The plan is transformed .into an actual design for an experiment by .
refining each step in the plan—by instantiating it with a method that will
actually work in the laboratory. The first and third steps-ofthe expériments—

phosphorus labeling and gel electrophoresis—were chosen because they were
the. best methods available. The choice of the second step was directed by the
specific choice of site to be mapped.

The ides here, again, is that scientists rarely invent an experimental
design from scratch. They find a strategy, a skeletal plan, that was.useful

| for some related experimental goal and then instantiate it with the proper
laboratory methods for their specific goal and laboratory conditions. The
skeletal-plan may bevery specificif the goal is similar to one for which a very
good experiment has already been designed. It may also be extremely general. |
as was the plan in the example above. .

Implementation in MOLGEN

The skeletal plan. method is used successfully in the-MOLGEN system.
Since the method depends heavily on domain knowledge, a well-organized,
expert knowledge base is the central part of the system. The Unit package
(Stefik, 1979) is used by domain experts to construct a knowledge base con-
taining both a selection of skeletal plans and the objective and procedural
knowledge: necessary to instantiate the plans competently. The Unit package

permits the domain experts to describe such information in a language natural
to them as molecular biologists.

The two major steps in planning by incremental refinement of -skele:
tal plans—plan selection and plan-step refinement—are described separately
below.

Choosing a skeletal plan. Skeletal plans are specified at many levels of
: generality. At the most general level, there are only a few basic plans. These

are usedas fallbacks-when plans-that are easier to refineand that are more
specific cannot be found. The problem is not just one of finding a plan.that |

: might provide a satisfactory solution, but of finding a plan that will require
the least refinement work. Skelétal plan finding réduces.to a simple lookup
when exactly the same problem has been solved before (even if this were done :

with a completely different set of laboratory and molecular conditions), but :

560 Planning and Problem Solving XV

the task may be to decide whether to choose a detailed: plan for a related
problem or to choose a.more general plan for a class of problems. :

The MOLGEN work has only begun to treat these problems of plan
selection. Plans are classified according to their perceived utility by molecular
geneticists. The specificity of the utilities (any givén skeletal plan could have
many) is totally up to the experts. The knowiedge base contains also 3
taxonomy-of goals in molecular biology. When a problemis described to the :
planning system, a search is made of the skeletal-plan utilities to see if any
exactly match the experimental design goal. If several do. all are tried; if
none does, a more general goal is chosen from the taxonomy and the process
is repeated.

Refining the skeletal plan. Refinement of the skeletal plan is the
process of selecting an appropriate ground-level instantiation for each step :
in the abstract plan. In the example above, the ground-level instantiation

of labeling was radioactive phosphorus. This refinement process is usually
: hierarchical; a scientist might decide first on the method of cutting, then on

a cutting enzyme, and finally on a specific enzyme.
Knowledge about laboratory techniques is organized hierarchically in

MOLGEN. There were several broad classes of techniques, with as many
subclasses as-are deemed natural by the domain experts. In all, about 400
different techniques are described in the knowledge base.

The MOLGEN system proceeds linearly through the steps of a selected

skeletal plan. The steps are matched to the techniquesin-the knowledge base
| by name, synonym, or function of the step. A specific -technijue—as specific

as can be directly determined from the plan step—is chosen: and then the
instantiation process begins.

The knowledge to do the instantiation is stored in:the form-of-an-English- :
like procedural language within the knowledge base. This knowledge repre-
sents three major criteria for plan-step instantiation. ‘In order of priority of
application they are: :

1. Will the technique, ifsuccessfully applied, carry, out the specific goal of
the step;for example, will a separatory method not justdo sorne sort of
separation, but also separate all circularDNA from all linear DNA? >

2. If the technique satisfies the first criterion, canit be successfully applied
to the given molecule under the given laboratory. conditions? |

3. Is the ‘technique the “best” of those that passed the first two tests?)
This choice point, while in some sense the least important (since all d
techniques that make it to this point will work), seems to be the hardest |

oo for scientiststo define. All the scientistsstudiedgave somewhat different a
metrics involving reliability, convenience, accuracy, cost, and time to

‘carry out the technique. The heuristic-chosen as-most representative
gave greatest weightto four-point scales of convenience and. reliability
as an initial filter. -

E Refinement of Skeletal Plans 261 :

This knowledge is used to proceed down a level.in the technique hierarchy; : :
: the process-is repeated until an actual instanceof atechnique is chosen. At

higher levelsof the hierarchy (i.e., with less refiried plans), a. premium is set
on achieving.goals; but at lower levels of the hierarchy, a premium is-set on |
making plans efficient and elegant.

This sirategy-finding process is common to many disciplines. In his:
book How to Solve It, Polya (1957) describes “mobilizing” problem-solving :

Many of these questions and.suggestions aim directlyat mobilization of our
' formerly acquired knowledge: Huve you seen it before? Or have you scen the

same- problem in a slightly different form? Do you know a related problem? Do Co
you know a-theorem that could be useful? (p. 139; italics in original)

The idea is to avoid reinventing general strategies and to use plan outlines

: that have worked in the past on-related problems.

Related Work :

‘The concept of. a skeletal plan forexperimental design-has a direct. prece-

dent in Schank andAbelson’s work in natural-language ‘understanding (see
Article IV.F6, in Vol. 1). They introduce scripts, declarative representations
of ordered sequences of events. The:detailed knowledge contained in scripts
is used to understand, predict,and participate in eventsone has encountered Co
previously.

: Schank-and Abelson also introduce generalized. scripts, called plans, that |
explain events related to, but not exactly like, those the.user lizx seen before. oo

: “Plans are where scripts come from.... The difference -is that scripts are : |
specific and plans are general” (Schank and Abelson. 1977, p. 72). In fact, Co
there is a continuum between scripts and plans in Schank and Abelson’s
work: “There is a fine line between the point where scripts leave off and

: plans begin:... When a script is available for satisfving a goal, it is chosen.
‘Otherwise-aplan is:chosen” (p. 77; see also Article IV.F§, in Vol. 1).

The idea of abstracted plans-is found also in the STRIPS planner (Fikes,
Hart, and. Nilsson, 1972;see also Article ILD5,in Vol. I). This system param-

| eterized successful plans in:order to generalize them. The generalized. plans
were called-MACROPs (for macro-operators).]

There are several distinctions:between skeletal plan refinement and some
: of the other:methods discussed in-this chapter—for example, Stefik’s parallel

work on planning in molecular biology (see Article Xv.D2). Other methods
emphasize building the initial abstract. plan; this method assumes the initial
plan is already known and emphasizes the plan selection and instantiation Co
process. :Other-methods -concentrate-on-the-interactionof planstepsy this ~~ ~~ sr we
method, ‘in large part, considers plan steps to be sufficiently independent
that conflicts-can be resolved by relatively minor subplans. Finally, other

‘ . i |
2, '

5 © x hs

562 Planfing and Problem-Solving NV Cs

methods place relatively little emphasis on domain-specific expertise, whereas
such expertise is-the heart of this planning method. -

- . A

Conclusion

The reader may be surprised by the simplicity of the method of skeletal
plan refinement but:should remember that it attempts to produce competent—

rather than wildly innovative—plans. It is based on the observation that :
human scientists who know 2 lot about their domains, and who.have flexible
cross-associations for choosing stéps in an.experiment, are usually good at
experimental design. There are very few totally new plan outlines discovered,
but many new plan instantiations. "

: References :

: A source for this article and a good discussion of this<implementation of
MOLGEN is-Friedland’s doctoral dissertation: (1979).

d

|
|

|

4

2

=
: Co

_

BIBLIOGRAPHY

Bobrow, D. G., and Raphacl, B. 1974. New programming languagesfor artificial ,
intelligence. Computing-Surveys 8. |

Corkill, D. D. 1979. Hierarchical planning in-a distributed environment. IJCAL.6, |
168-175. ;

. Feitelson, J., and Stefik, M. 1977. A case-study of the reasoning in a genetics
experiment. Rep. No. HPP-77-18, Heuristic Programming Project, Computer
Science Dept., Stanford University.

Fikes, R. E., Hart, P..E., and Nilsson, N. J. 1972. Learning and exccuting general-
izedirobot plans. Artificial Intelligence-3:251-288.

Fikes, R.E., and Nilsson, N. J. 1971. STRIPS: A new approach to the application
of theorem proving to problem solving. Artificial Intelligence 2:189-208.

Friedland, P. E. 1979. Knowledge-based experiment ‘design in. molecular genetics.
Rep. No. 70-771, Computer Science Dept., Stanford University. (Doctoral disser-
tation.)

Hayes-Roth, B. 1980. Human planning processes. Rep: No. R-2670-ONR, Rand" ’
Corp., Santa Monica, Calif. .

Maxam, A., and Gilbert, W. 1874. A new mcthod for sequencing DNA. Proceedins-
] of the National Academy-ofSciences 74(2):560=564. SL

Miller, G. A., Galanter, E., and Pribram, K. H. 1960. Plaris and thestructure of
behavior. New York: Holt. vs

: oo Newell, A., and Simon, H. A. 1972. Human problem solving. Englewood Clifls, N.J.: |
Prentice-Hall.

Polya, G. 1957. How to solve it. New York: Doubleday Anchor Books.

: Sacerdoti, EF. D. 1974. Planning in a hierarchy of .abstraction spaces. Artificial
Intelligence 5:115-135: :

Sacerdoti, I. D. 1975. A structure for plans and behavior. Tech, Note 109, Al o
Center, SRI International, Inc., Menlo Park, Calif: (Doctoral dissertation.) :

Sacerdoti, E. D. 1879. Problem solving tactics. Tech. Note 189, SRI International,
: Inc., Menlo Park, Calif.

: Schank, R. C., and Abelson, R. P. 1077. Scripts, plans, goals, and: understanding.
: Hillsdale, N.J.: Lawrence Erlbaum.

Smith, W., and Birnstein; M. 19876. A simple method for DNA restriction site Co
mapping. Nucleic Acids Research 3:2387-2308. «oo

Stefik, M. J. 1879. An examinationof a.frame-structured representation system,
1JCAI 6, 845-852. : ‘.

Stefik, M. J. 1980. Planning with constraints; Rep. No, 80-784, Computei Science
Dept., Stanford University. (Doctoral dissertation.)

: Sussman, G. J. 1973. A compuiational mode! of skill-acquisition, Al Tech.'Rep. 297, oo
: © © Arbaboratory; Massaclinsciiecinstitaic. oir Technology. (Doclorai dissertations) ~~~ ~~ ©

563 :

9564 Bibliography:

Sussman, G. J. 1975. A computes model ofskill dequisition. New York: American
: Elsevier. -

Tate, A. 1975a. Interacting goals and their usc. IJCAI{; 215-218. -
Tate, A. 1975b: Using goal structureto direct search in a problem solver. Doctoral dis- i . 3

scrtation, University of Edinburgh. |
Tate, A. 1976. Project planning using a hierarchic non linear planner. Rep, No. 25,
Al Research Dept., University of Edinburgh.

Waldinger, R. 1977. Achieving scveral goals simultaneously. In E. W. Elcock and |
D. Michie (Eds.), Machine intelligence.8. New York: Halstead /Wiley.

:

Cs

Mow i - - - = a x — PR FEI Sr EL A Se Sa Gms dr a ET. TREN. Een uaa TEA ema TET uma ETI

NAME INDEX oo -

Pages on which-an-author’s work is discussed.are italicized.

Abelson, R. P., 552, 56! i |
Birnstein, M., 558 |

Corkill, D.-D., 550 : , |

Feitelson, J. 522 ~ :
Fikes, R. E., 522, 523, 530,-561 °° ,
Fricdland, P. E., 522, 551, 557-562

Galanter, E., 515 \
Gilbert, W., 557-558 ’

Hart, P. E.,.522,/530, 561 . | }
Hayes-Roth,B., §19, §22 .
Hayes-Roth, F., 519 -

Maxam, A., 557-558 |
‘Miller,.G. A., 515.

Newell, A. 518
‘Nilsson, N. I., 522, 523, §30, 561 } x

: Poly», G,, 5611] . E
Pribram, K. H., 515 |

Sacerdoti, E. D., 516, 522, 523, 530, 541-550" :
Schank, R. C., 519, 522, 561) _

Stith, W., 558 |
Solomonofl, R., £07 oo
Stefik, M. J., 520, 522, 551-557, 559, 561]
Sussman, G. J., 520, 581-535, 540"

Tate, A., 595-537,-540, 550 :

- }) {
: Waldinger;-R. J., 537-540 E i

565 :

DE SLs... LLL = Co 2 -

| {

SUBJECT INDEX - Cd

Abstract operators in NOAH, 542 HACKER, 531-535, 546
Abstiraction space, 516-518 Hierarchy of abstraction spaces, 578-530 :
in.ABSTRIPS, 528-530 \

ABSTRIES, 517-518; 523-530: Insulin, 554
Add list in NOAIl, 544-545, 550° INTERPLAN, 535-537

: Assembly; 542 Island-driving control strategy, 519 '

Backtracking, -520-521, 526-530, 537, 542, Least-commitment planning, 552-556:
545, 547, 552 :

after protection.violation, 531-537 Maxam-Gilbert.sequenting, 557 . C- :
in STRIPS and ABSTRIPS, 526-530 Means-cnds analysis, 517

Blackboard, 519 in MOLGEN, 554-556
in STRIPS andABSTRIPS, 524-530

Computer-based consultant (CBC), 541 Mecta-planning, 551
Constraint, 520-521 MOLGEN; 518, 551-556, 557-562.

formulation, 533-556) : at
in MOLGEN, 551-556 Network representation, procedural, 541- ‘

: on operator ordering, 520-521 550] . - :

) propagation, 553-556 NOAH, 518, 541-550
satisfaction, 553-556 h

Control structures and strategies PLANNER, 533
backtracking, 520-521, 526-530, 537, 542, Planning 8

545, 547, 552 constructive," 522,.539, 552-556

] blackboard, 519 in GPS, 518
island driving, 519 hierarchical, 518-518, 523-530, 541-556
means-ends analysis, 517, 524-530, 554- least-cominitment, 520-521,-552-556 BN

556 meta-planning, 551 3

opportunism, 516-519, 521 honhierarchical, 516-517, 531-540 +
Criticality value in. ABSTRIPS, 528-530 opportunistic, 516-519, 521

] Critics, 541, 546-550 overconstrained, 542, 552
in NOAIl, 546-550 -script-based, 516-519

by. skeletal-plan refinement, 557-562

Delete listin-NOAH, 544-545, 550 underconstrained, 542, 552
Design space, 552 Planning space, 551 : So bo
DNA sequencing, 557 Planning systems
Domain-specific knowledge,541, 543-545 ABSTRIPS, 523-530 N -

HACKER, 531-535,:546
Experiment planning in MOLGEN, 551-562 INTERPLAN, 535-537

MOLGEN, 551-562 Co
Frame knowledge representation for plans, NOAIIL, 541-550

557-562 STRIPS, 523-530
Preconditions of an operator, 523

: Generalized bugs, 532-535: in ABSTRIPS, 523-530
Goal,.523, 641 in HACKIER, 533-534 -
Goal regression, 537-540 in NOAH, 546-550 .
‘Ground space, 528-530 in STRIPS, 523-530 .] :

: J

| 566 |

-

hey,

Subject Index 967 “3

Prercquisite-clobbers-brother-goal, 533 EUNTN :
Problem reduction, §51 Ce
Problem solving : ’ .
interdependent subproblems, 520; $42, 531 3540

means-ends inalysls, 517, 524-530, 554-
556 , -

problem reduction, §51

Procedural knowledge representation, 532
Procedural network in NOAH, 941-550
Propagation of constraints, 553, 556
Protection violation in.HACKER, 535 .

QLISP, 543

‘Rat-insulin experiment, 554 oo. |
Refinement of plan steps, 552, 555-556, 558-

562 -

Restriction-site. mapping, 558 |
Script knowledge representationand skeletal: -

: plan-refinement, 561 - |Skeletal plans, 558-562
: Skill _acquisition, 532

SOUP functions, 543-550 |
Starting. state, 523 -
Strategy space, 552) To
STRIPS, 523-530

Subgoals
interacting,520, 531-540, 542
premotion of, ‘537

: Tick list, 535
TOME- (Table of Multiple Effects), 545-550 }

. Unit Package, 551; 559

.

EL.I

