
~" AD-A099 140 STANFORD UNIV CA DEPT OF COMPUTER SCIENCE F/6 12/1 :
VERIFICATION OF LINK=LEVEL PROTOCOLS,(VU) :
JAN 81 D E KNUTH. NOOO14=T76=C~0330

UNCLASSIFIED STAN=-CS=81-840 NS

| NE a Ee
oe : Bui

B ; DTIC

u 3 : ~~) / y
» ——p” Report. Nof STAN-CS-81-840

ik \ Verification of Link-Level Protocols |

[| oo Donald E Knuth
£3 Contra N@a#1),—76—-C-0330 |

§ S\VASE =e 27 720

' 3 0?

: 4 Department of Computer Science

! E Stanford University
§ 3 Stanford, CA 94305 4

9 ATR GION STATES~]§ 4 NI a XA2 os 0~ 1e1e<C198,
2 }| lef #2 \%\ roved for PEC a :
IE ian 3, rn, 5] RPP urination Vel
i Dred
FE ReaNIZED ~

AZ
~ Cr f 30 01dLN odd >

\C,
-s . i -%i oo oN

Verification of Link-Level Protocols oN \-4A 9
by Donald E. Knuth CO

Abstract. Stein Krogdahl [1} has given an interesting demonstration of the partial cor-
rectness of a ¥protocol skeleton”, by which the validity of the essential aspects of a '‘rge

variety of dita transmission schemes can be demonstrated. The purpose of this note is

to present a simpler way to obtain the same results, by first establishing the validity of a

less efficient skeleton and then “optimizing” the algorithms. The present approach, which |

was introduced for a particular protocol by N. V. Stenning [2], also solves a wider class of
problems that do not require first-in-first-out transmissions. __—— 1

1. Introduction. |

Alice wants to send messages My M; M,.... to Bill over noisy transmission lines. They

decide to handle the problem in the following way: Alice keeps a local variable)

A = the number of consecutive messages that Alice is sure Bill has received and

| . stored; 3
Bill keeps a local variable

: B = the number of consecutive messages that Bill is sure he has received and stored. Cf

Initially A = B = 0; we ignore problems of termination, since this can be dealt with as

in (1]. Alice does two types of operations:

Al. Send message M,, where j is an integer in the range A < j < A +k.

A2. Receive an acknowledgment ‘4b’ and set A « b.

Bill also does two types of operations:

B1. Send an acknowledgment ‘B’.

B2. Receive message M,, and optionally store it; then set B to any value b > B

such that messages My M,;... M,_; have been received and stored.

Here k is a constant representing the size of some internal buffer storage maintained by |
Alice. We shall assume as in [1] that the “send” operation either inserts an item at the rear
of a queue, or it causes nothing at all to happen; the latter event accounts for transmission |

errors, since a garbled message or a garbled acknowledgment will be treated as if it has oo

not arrived at all. According to this convention, the sender does not know whether the
| sent item has been put into the queue or not. The “reccive” operation is performed only Cf

when the queue is nonempty; in such a case the receiver reads and deletes the item at the

front of the queue. oo
\ SI

The preparation of this paper was supported in part by National Science Foundation grants MCS-77-23738 :
aad IST-79-21977, and by Office of Naval Research contract N00014-76-C-0330.

: iConon | :| Approved for pullic 1nloase; |

oo Thus there are two queues, one containing messages and the other containing acknowl-
| edgments. The only essential difference between the above conventions and those of [1] 5

is that we assume as in [2] that each message M; in the message queue specifies its own
integer index 7, and each acknowledgment in the acknowledgment queue specifies an in- |

teger b, where 7 and b can be arbitrarily large. After this simple but unrealistic model has

: been examined, it will be clear that only a limited amount of information about j and b .
: need actually be >ent. 5

The particular order in which Alice and Bill decide to perform operations Al, A2, =

| B1, and B2 is immaterial to us, and so are the particular choices of optional actions in| steps Al and B2. Our goal is to derive facts about any scheme that is based on these four

operations; it is in this sense that we are st ‘ing a “protocol skeleton” for a large class | i
of conceivable protocols. The facts we shall « .ve are expressed in terms of relations that Co

remain invariant under all four operations Al, A2, Bl, B2. JN 4| Ys RK2. Invariants. 4s M7 J i

The first invariant relation we shall prove is pt > Ww Te| (EE 2HN AN
Lemma 1. Let the contents of the acknowledgment queue af& SSSIT ZA SAve&Ia ns Pa Lo

od& O WR .
SR

from the front to the rear, where r > 0. Then IN ¥ oo.

: A<b <-- <b <B. | ‘
Proof. This condition holds initially, when A = B = r = 0, and it ic unaffected by

\ operation Al. Operation A2 is performed only when r > 0, and it replaces (A, b, ...b,) by
(b1,b;...8,); operation Bl either does nothing or replaces b, ...b,,B) by (b,...b,B, B); |

i and operation B2 has no effect except possibly to increase B. Thus the stated relation |

remains invariant. fj : |

As a corollary of Lemma 1, we conclude that variable A never decreases during the

course of a computation, since it changes only during A2. Notice that the invariant in
Lemma 1 expresses a joint property of the entire communication system; although Alice |

a does not know the value of B and Bill does not know the value of A, and although neither |
| knows the contents of the queue, they can be sure that the unknown quantities satisfy the |

invariant relation. The introduction of system-wide invariants like this is one of the main

features of Krogdahl's treatment.

2

| Lemma 2. Let the contents of the message queue be :

M;, ... M;, |

. from the front to the rear, where r > 0, and let jn.x be the maximum index of any |

message that has ever been removed from the message queue. (If nothing has ever been i

: removed, let jay = 0.) Let jo = jmax and j, oy = A; then

: Proof. Initially r = 0, so there is nothing to prove. Operation Al either does |
nothing or replaces j1...7, by 751...3.7 for some A < 7 < A + k; this leaves the 3

stated relation invariant (we must consider two new cases, namely j; = j and ji = j). 3

| Operation A2 does not decrease A, as we have already observed, and operation B1 changes ;
| nothing. Operation B2 is performed only when r > 0, and it replaces (max, 71 --Jr) bY

(max(Jmax, 51), J2 - - + Jr); again the relation remains invariant. § i

| {i 3. Consequences. |
The comparatively simple invariants proved in Lemmas 1 and 2 lead immediately to

our main result: ‘

Theorem. If M; is in the message queue, we have 4

B—k<j<B+k. |
If b is in the acknowledgment queue, we have]

$ ALS bL A+k. |]

3 Proof. We know from Lemma 2 that 7 < A + k and from Lemma 1 that A < B,

3 hence ;j < B + k. Furthermore B — 1 < jax, where jinax is dafined in Lemma 2,

| because messages Mg M, ...Mg_; have all been removed from the message queue; hence 3
B—1<j+kand B—1 < A+ k by Lemma 2. This completes the proof, since b < B 3
by Lemma 1. J J

f The theorem tells us that only a limited amount of information about j; needs to
appear in the message queue, and only a limited amount about b needs to appear in the s

acknowledgment queue. Let us consider b first: If m, is any fixed integer > k, it suffices i

to send the remainder B mod m, instead of the arbitrarily large integer B in step B1, since .

| Alice will be able to construct the full acknowledgment b from the ~emainder bmod m, :

’ received in step A2, given the fact that A < b < A+ k. Indeed, the operation A «— b is

simply replaced by | |

A«— A+ (b' — A)mod m,

where b’ = bmod m; is the acknowledgment that was received. |

Let us suppose that Bill will store a message A; that he receives in operation B2 only 3

if B< 3 < 3-41, where [represents a fixed amount of buffer storage. There is of cc irse

no point in storing M; when 3 < B, since all such message have already been stored. We :

might as wel: assume that | < k, because j will always be less than B + k. In this case it }
suffices to se 1d only the remainder j mod my as an identification number for Mj, instead

: of the full integer 7, provided that my, > k 4 [l. For we know that the index j received
by Bill in B? must satisfy B— k < 3 < B + k; the values of mod m, in the range 4

\ B < 3 < B +l are distinct, and they are disjoint from the values of mod ms in the 4
range B—hk <j < Bor B+4+1< j < B+ k. The fact that (B + !)mod m2 might

coincide with (B — k)mod mg, does not matter; Bill would not store such a message in :

either case, znd he doesn’t care about the precise value of 5 when the message isn’t being |]

stored since such messages might as well have been dropped.

- KrogdalI’s paper [1] essentially discusses the case | = 1 and m; = m; = k 4 1 1
in detail; he also gives a sketch of the case | = k, my = mq, = 2k without proof. The

argument ab ve is not only simpler and more general, it shows that the modulo m; = k+41 1
and my = 2.: are sufficient when [= k. 1

4. Generalization.

Krogdahl conjectured that the theory can be extended to the case where the queues i
do not quite operate in a first-in-first-out manner. It is clear that we cannot avoid sending

the full integer 5 or b when the queuing discipline allows the deletion of items in arbitrary 1

order, since -mall values might remain in the queue until they coexist with large ones. Let
us suppose, however, that if entries are inserted in the order z; z5z3... and deleted in

the order z,(1) x2) Zp(3)..., then p(1)p(2)p(3)... is a permutation of the positive integers
such that we have |p(:) — ¢| < q for all 2. Furthermore the p(:) must be consistent with :
the actual sequence of insertions and deletions made to the queue, in the sense that at

least p(z) elements must have been inserted at the time of the ith deletion. How does our :

previous analysis of the case ¢ = 0 extend to this more general situation? 3

In the first place it is clear that the assignment at the end of operation A2 should be

replaced by |

| A « max(A,b)

ic this more general setting, otherwise the monotone growth of A would be destroyed.

4 |

; Befere considering the general protocol problem in detail, it is useful to study the |
general queuing discipline more carefully. If : < ¢' and p(i) > p(i'), let us say that {

element z,(;) “passes” element zp), since it was inserted later but deleted earlier. |

Lemma 3. A permutation p(1)p(2)p(3)... of the positive integers satisfies the condition

: p(t) > © — q for all © if and only if no element of the corresponding queuing discipline is :

1 passed by more than q other clements. It satisfies the condition p(i) < © + q for all © if |
| and only if no element of the corresponding queuing discipline passes more than q other |
| elements.

i Proof. If p(t) > ¢—q for all 7, then p(i') > i—q for all ¢ > i; but p is a permutation, |
so at least : — y of the indices ¢/ < 7 have p(i) < 1 — q. This leaves at most gq indices

1 / < © that could have p(2") > p(z); so z,(;) is not passed by more than q other elements. 1
Conversely, if p(i} < i—q for some ?, then at most p(¢)—1 indices < ¢ have p(z') < p(3),]
so at least + — p() indices ' < 7 have p(i') > 7/7); in other words, at Jeast ¢ 4 1 elements

pass Zy(;). The second half of the lemma follows from the first half, if we replace p by the
inverse permutation.

; . As long as we are generalizing the case ¢ = 0, we might as well generalize further by
: supposing that the queuing discipline satisfies |

! i—g <p) <it+d |

for all :. Here ¢ = 0 if and only if ¢’ = 0, but each pair of positive integers (q, q’) defines a {
| different queuing discipline. We shall assume that the acknowledgment queue satisfies such]
| a discipline with parameters q; and ¢}, while the message queue satisfies such a discipline 1

(with parameters ¢q; and gq.
| Let by by b3... be the entries that are inserted into the acknowledgment queue, and

: let 71 j2 73... be the indices of the messages inserted into the message queue. We can prove
i as before that b; < by; < --- < b,, { B, after n acknowledgments have been inserted;
; that 3, < A+ kfor1 <1 <n, afl + messages have been inserted; and that

) Kh<. k fori<i<?.

| It follows that A < B <. A+ k. |

| We can now show that all entries b in the ack:xowledgment queue satisfy |

A—qk<b< A+k.

i The upper bound is obvious, because b < B. To prove the lower bound, we may suppose | |
: that b < A. When b was first placed into the queue, we had b == B > A, so A must have J

S y

: increased since then, by being set to other entries read from the queue. Suppose that n j

oi these other entries have “passed” b, i.e., were inserted after b; only the entries inserted 3

after b can have a value > b. Before the first such entry was read by Alice, we had b > A;

afterwards we had b > A—k, because A cannot increase by more than k during operation

| A2. (All entries in the queue at that time are < B.) By induction we have b > A — nk if |

: n entries have passed b, but Lemma 3 tells us that n < gq. 1
| Finally, we can prove that all indices j in the message queue satisfy 1

| B—k—¢p<j)<B+k. !

Again the upper bound is obvious, since j < A +4 k. To prove the lower bound, suppose]
that n message indices have “passed” j in the queue; all other indices j’ read by Bill |

| satisfy 3’ < 7 + k — 1. Therefore if Bill has received and stored messages Mp... Mg_1, ;
| we have B—1 < j+ k—1+n, with equality only if the n messages that passed M; were]

distinct messages whose index lies in the interval [; + k,7 + k — 1 + n]. By Lemma 3, i
| we have n < gq. .

| It is not difficult to verify that the above inequalities on b and j are best possible, i
by constructing scenarios in which the extreme values occur. As before, we can conclude

2 that it suffices to transmit only the residues b mod m in the acknowledgment queue and F

| jmod m; in the message queue, where m, and my are any integers satisfying

my > (q1 + 1)k,

! ma 2 k+ 1+ qz;

{ we assume that Bill has a buffer for receiving up to I < k messages whose indices lie in
‘ {B,B+1,...,B+41—1}. It is curious that ¢} and ¢,, do not enter into these formulas. i

| The protocol of Stenning [2] requires that at least one acknowledgment be transmitted {
per message received; in this special case the bound m; > k + | + ¢; is necessary and :

sufficient, where g; is the maximum number of other acknowledgments that can be sent 3

) and received between the transmission and receipt of any particular acknowledgment. |
In practice, Alice is a system program that receives messages sequentially from some

? user, and Bill is a system program that delivers messages sequentially to another user. 3
¢ Therefore, as Krogdahl has observed, the variables A and B need not be explicitly main- 1

| tained; only their values modulo a common multiple of m; and m, are needed.

[1] Stein Krogdahl, Verification of a class of link-level protocols, BIT 18 (1978), 436-448. Cd
| [2] N. V.Stenning, A data transfer protocol, Computer Networks 1 (1976), 99-110. 4

DEPARTMENT OF COMPUTER SCIENCE Co]
STANFORD UNIVERSITY SE

STANFORD, CALIFORNIA 94305 USA :

6 | i

ro ’ + : - :

1 . . &
- + rem

N ‘ i. a
“ J ~

. \ a

