AD=-A099 140

UNCLASSIFIED

STANFORD UNIV CA DEPT OF COMPUTER SCIENCE
VERIFICATION OF LINK=LEVEL PROTOCOLS: (U}
JAN 81 D E KNUTH

STAN=-CS=81-840

F/6 12/1
N0O014=76=C~0330
NL
END
6 van

ptic

\CU

Jandueyeest | - @ Report. N sum:sslm !
l/' .’

" -
\)
3 - e e 2 “as OV P S S YUt 4. i 4 .
¢ ”4
~d

| S

b U Teh s

Verification of Link-Level Protocolsl

by

/‘

/.
Ci Donald E./Knuth
Contracy NE#FLY,-76-C~0330 _
15 \//;1«; g 4,&'“’//” 2z : ?

. J oG

o:
e \)
\ “\g\"

ADAO099 1

‘-’I

&

Department of Computer Scienco /

Stanford University
Stanford, CA 94303

et it it

Verification of Link-Level Protocols

by Donald E. Knuth

Abstract. -Stein Krogdahl Ll} has given an interesting demonstration of the partial cor-
rectness of n %protocol skeletor”, by which the validity of the essential aspects of a ''rge
variety of dita transmission schemes can be demonstrated. The purpose of this note is

to present a simpler way to obtain the same results, by first establishing the validity of a
less efficient skeleton and then “optimizing” the algoritkms. The present approach, which
was introduced for a particular protocol by N. V. Stenning [}, also solves a wider class of
problems that do not require first-in-first-out transmissions. __— :

1. Introduction.
Alice wants to send messages My M; M, ... to Bill over noisy transmission lines. They
decide to handle the problem in the following way: Alice keeps a local variable
A = the number of consecutive messages that Alice is sure Bill has received and
. stored;
Bill keeps a local variable
B = the number of consecutive messages that Bill is sure he has received and stored.
Initially A = B = 0; we ignore problems of termination, since this can be dealt with as
in [1]. Alice does two types of operations:
Al. Send message M;, where j is an integer in the range A < j < A+ k.
A2. Receive an acknowledgment ‘b’ and set A « b.
Bill also does two types of operations:
B1. Send an acknowledgment ‘B’.
B2. Receive message M;, and optionally store it; then set B to any value b > B
such that messages My M, ... M,_, have been received and stored. 4
Here k is a constant representing the size of some internal buffer storage maintained by
Alice. We shall assume as in [1] that the “send” operation either inserts an item at the rear
of a queue, or it causes nothing at all to happen; the latter event accounts for transmission H
{

errors, since a garbled message or a garbled acknowledgment will be treated as if it has
not arrived at all. According to this convention, the sender does not know whether the
sent item has been put into the queue or not. The “receive” operation is performed only

: when the queue is nonempty; in such a case the receiver reads and deletes the item at the
front of the queue.

The preparation of this paper was supported in part by National Science Foundation grants MCS-77-23738 :‘
aad IST-79-21977, and by Office of Naval Research contract N00014-76-C-0330.

1 "~ DSYRIBUTION STATE:

Approved for pullic 1nlcase;
Distritution Unlimiead

A e ———— o &8 1 ¢ = oo 4

Thus there are two queues, one containing messages and the other containing acknowl-
edgments. The only essential difference between the above conventions and those of [1]
is that we assume as in [2] that each message M, in the message queue specifies its own
integer index j, and each acknowledgment in the acknowledgment queue specifies an in-
teger b, where ; and b can be arbitrarily large. After this simple but unrealistic model has
been examined, it will be clear that only a limited amount of information about j and b
need actually be sent.

The particular order in which Alice and Bill decide to perform operations Al, A2,
B1, and B2 is immaterial to us, and so are the particular choices of optional actions in
steps Al and B2. Qur goal is to derive facts about any scheme that is based on these four
operations; it is in this sense that we are st ‘ing a “protocol skeleton” for a large class
of conceivable protocols. The facts we shall . .ve are expressed in terms of rglations that
remain invariant under all four operations Al, A2, Bl, B2.

2. Invariants.
The first invariant relation we shall prove is /

03
/QQ O .
© e
Lemma 1. Let the contents of the acknowledgment queue v &'é’éf‘ \5",_; 7)
QQ& 3-’? ‘:J/ ’
AP
from the front to the rear, where r > 0. Then \ i

AL b <---<b <B.

Proof. This condition holds initially, when A = B = r = 0, and it ic unaffected by
operation Al. Operation A2 is performed only when 7 > 0, and it replaces (A, b, ...b,) by
(b1,ba...%,); operation Bl either does nothing or replaces b, ...b,, B) by (b, ...b,B, B);
and operation B2 has no effect except possibly to increase B. Thus the stated relation
remains invariant. fJ

As a corollary of Lemma 1, we conclude that variable A never decreases during the
course of a computation, since it changes only during A2. Notice that the invariant in
Lemma 1 expresses a joint property of the entire communication system; although Alice
does not know the value of B and Bill does not know the value of A, and although neither
knows the contents of the queue, they can be sure that the unknown quantities satisfy the
invariant relation. The introduction of system-wide invariants like this is one of the main
features of Krogdahl's treatment.

{
i
3]
'

Lemma 2. Let the contents of the message queue be
M;, ... M;,

from the front to the rear, where r > 0, and let)yax be the maximum index of any
message that has ever been removed from the message queue. (If nothing has ever been
removed, let jpnax = 0.) Let jo = jmax and j,y = A; then

Ji<ge+k foro<i<t<r41.

Proof. Initially r = 0, so there is nothing to prove. Operation Al either does
nothing or replaces j71...5 by j1...77 for some A < 7 < A - k; this leaves the
stated relation invariant (we must consider two new cases, namely j; = j and ji = j).
Operation A2 does not decrease A, as we have already observed, and operation B1 changes
nothing. Operation B2 is performed only when r > 0, and it replaces (Jmax, 71 --.J») by
(max(jm“, N)d2... j,); again the relation remains invariant. J

3. Consequences.
The comparatively simple invariants proved in Lemmas 1 and 2 lead immediately to
our main result:

Theorem. If M; is in the message queue, we have
B—k<j<B+tk.
If b is in the acknowledgment queue, we have
AL b<L A+k.

Proof. We know from Lemma 2 that § < A+ k and from Lemma 1 that A < B,
hence ;7 < B + k. Furthermore B — 1 < juax, Where jnax is d2fined in Lemma 2,
because messages My M, ... Mp_, have all been removed from the message queue; hence
B—1<j+kand B—1 < A+ k by Lemma 2. This completes the proof, since b < B
by Lemma 1. §

The theorem tells us that only a limited amount of information about j needs to
appear in the message queue, and only a limited amount about b needs to appear in the
acknowledgment queue. Let us consider b first: If m, is any fixed integer > k, it suffices
to send the remainder B mod m, instead of the arbitrarily large integer B in step B1, since
Alice will be able to construct the full acknowledgment b from the ~emainder bmod m,

o S . S B £t

received in step A2, given the fact that A < b < A+ k. Indeed, the operation A « b is
simply replaced by
A~ A+ (Y — A)mod m,

where ' = bmod m; is the acknowledgment that was received.

Let us suppose that Bill will store a message A; that he receives in operation B2 only
if B< 3 < 341, where | represents a fixed amount of buffer storage. There is of cc 1rse
no point in storing M; when j < B, since all such message have already been stored. We
might as wel: assume that ! < k, because j will always be less than B + k. In this case it
suffices to se1d only the remainder j mod m, as an idertification number for Mj;, instead
of the full integer 7, provided that m, > k 4 I. For we know that the index j received

: by Bill in B? must satisfy B — k& < 7 < B+ k; the values of jmod m, in the range
B < j < B+ are distinct, and they are disjoint from the values of jmod m2 in the
: range B—hk < j < Bor B+l < j < B+ k. The fact that (B + !)mod rn2 might
coincide with (B — k)mod m, does not matter; Bill would not store such a message in
either case, znd he doesn’t care about the precise value of ; when the message isn’t being
stored since such messages might as well have been dropped.

Krogdal I's paper [1] essentially discusses the case [= 1 and m; = my; = k 41
in detail; he also gives a sketch of the case | = k, m; = my = 2k without proof. The
argument ab jve is not only simpler and more general, it shows that the modulo m; = k-1
and my = 2.: are sufficient when [= k.

4. Generalization.
Krogdahl conjectured that the theory can be extended to the case where the queues
do not quite operate in a first-in-first-out manner. It is clear that we cannot avoid sending
the full integer j or b when the queuing discipline allows the deletion of items in arbitrary
order, since <mall values might remain in the queue until they coexist with large ones. Let
us suppose, however, that if entries are inserted in the order z; z5 z3... and deleted in J
the order z,(1) Zp(2) Zp(3) - - -, then p(1)p(2) p(3)... is a permutation of the positive integers
such that we have |p(¢) — 7| < q for all 7. Furthermore the p(¢) must be consistent with
the actual scquence of insertions and deletions made to the quecue, in the sense that at #
least p(z) elements must have been inserted at the time of the :th delction. How does our i
previous analysis of the case ¢ = 0 extend to this more general situation?
In the first place it is clear that the assignment at the end of operation A2 should be]
replaced by ' {

A « max(A,d)

ic this more general setting, otherwise the monotone growth of A would be destroyed.

I
{
4 |
]

e e T A TEOOTAIEIIIN Y Gt HAI M WRAIF S omt = e

et L

B R b AR S W

Befere considering the general protocol problem in detail, it is useful to study the
general queuing discipline more carefully. If ¢ < ¢ and p() > p(i'), let us say that
element z,(;) “passes” element z,;:), since it was inserted later but deleted earlier.

Lemma 3. A permutation p(1)p(2)p(3)... of the positive integers satisfies the condition
p(3) > ¢ —q for all ¢ if and only if no element of the corresponding queuing discipline is
passed by more than q other clements. It satisfies the condition p(i) < ¢ -} q for all 1 if
and only if no element of the corresponding queuing discipline passes more than q other
elements.

Proof. If p(z) > ¢—q for all 7, then p(i') > 1—gq for all 7/ > 7; but p is a permutation,
so at least ¢ — g of the indices ¢/ < 7 have p(¢) < ¢ — q. This leaves at most q indices
¢ < 2 that could have p(2') > p(2); so z,(;) is not passed by more than g other elements.
Conversely, if p(i} < i—gq for some ¢, then at most p(¢)—1 indices 7 < ¢ have p(3') < p(3),
so at least ¢ — p(7) indices 7/ < ¢ have p(¢') > 7./7); in other words, at least ¢4 1 elements
pass Z,(;). The second half of the lemma follows from the first half, if we replace p by the
inverse permutation. [

As long as we are generalizing the case ¢ = 0, we might as well generalize further by
supposing that the queuing discipline satisfies

1—qg<p(t)<i+q

for all <. Here ¢ = 0 if and only if ¢’ = 0, but each pair of positive integers (g, ¢’) defines a
different queuing discipline. We shall assume that the acknowledgment queue satisfies such
a discipline with parameters g, and ¢}, while the message queue satisfies such a discipline
with parameters ¢q; and q.

Let b; by b3 ... be the entries that are inserted into the acknowledgment queue, and
let 71 72 j3 . .. be the indices of the messages inserted into the message queue. We can prove

as before that b; < by < --- < b, { B, after n acknowledgments have been inserted;
that), < A4 kfor1 <: < n,aflt : messages have been inserted; and that
<. -k fori<i<gt.

It follows that A < B <. A+ k.
We can now show ihat all entries b in the ack:rowledgment queuc satisfy

A—qk<b< A+k.

The upper bound is obvious, because b < B. To prove the lower bound, we may suppose
that b < A. When b was first placed into the queue, we had b == B > A, so A must have

5

increased since then, by being set to other entries read from the queue. Suppose that n
ol these other entries have “passed” b, i.e., were inserted after b; only the entries inserted
after b can have a value > b. Before the first such entry was read by Alice, we had b > A;
afterwards we had b >> A—k, because A cannot increase by more than k during operation
A2. (All entries in the queue at that time are < B.) By induction we have b > A —nk if
n entries have passed b, but Lemma 3 tells us that n < q;.

Finally, we can prove that all indices 7 in the message queue satisfy

B—k—qg <j<B+k.

Again vhe upper bound is obvious, since j < A+ k. To prove the lower bound, suppose
that n message indices have “passed” j in the queue; all other indices j’ read by Bill
satisfy 3/ < 7 + k — 1. Therefore if Bill has reccived and stored messages My ... Mg_y,
we have B—1 < j+k—1+n, with equality only if the n messages that passed M, were
distinct messages whose index lies in the interval [j + k,7 + k — 1 + n]. By LLemma 3,
we have n < ¢q;.

It is not difficult to verify that the above inequalities on b and j are best possible,
by constructing scenarios in which the extreme values occur. As before, we can conclude
that it suffices to transmit only the residues bmod m; in the acknowledgment queue and
Jjmod m; in the message queue, where m; and my are any integers satisfying

my > (g1 + 1)k,

mz 2 k+ 14 qs;

i we assume that Bill has a buffer for receiving up to ! < k messages whose indices lie in

{B,B+1,...,B+1—1}. It is curious that ¢} and ¢} do not enter into these formulas.
The protocol of Stenning [2] requires that at least one acknowledgment be transmitted

per message received; in this special case the bound m; > k + | 4 q; is necessary and
sufficient, where ¢y is the maximum number of other acknowledgments that can be sent

} and received between the transmission and receipt of any particular acknowledgment.
‘ In practice, Alice is a system program that receives messages sequentially from some
: user, and Bill is a system program that delivers messages scquentizlly to another user.

Therefore, as Krogdahl has observed, the variables A and B need not be explicitly main-
tained; only their values modulo a common multiple of m; and m, are nceded.

(1] Stein Krogdahl, Verification of a class of link-level protocols, BIT 18 (1978), 436-448.
[2] N. V. Stenning, A data transfer protocol, Computer Networks 1 (1976), 99-110.

DEPARTMENT OF COMPUTER SCIENCE :
STANFORD UNIVERSITY E

STANFORD, CALIFORNIA 94305 USA

————e

