March 198 { Kcport No. STAN-CS-81-837

Also numbered:
HPP-81-1

Research on Expert Systems

Bruce G. Buchanan

Pt v DPUHIDUICU L patt iy

Office of NavalResearch
National Science lFoundation
and
Defense Advanced Research Projects Agency

Department of Computer Science

Stanford University
Stanford, CA 94305

Table of Contents

1 INTRODUCTION: What Is An Expert System?

2 CURRENT STATE

3 DIRECTIONS OF FUTURE WORK
3.1 REPRESENTATION AND CONTROL
3.2 EXPLANATION
3.3 KNOWLEDGE ACQUISITION
3.4 VALIDATION
3.5 EXPERIMENTATION

. 3.6 CHOOSING A FRAMEWORK

4 CONCLUSION

10
11

13
14

17

18

X
m

S

m

ARCH ON EXPERT SYSTENMS

&

Bruce G. Buchanan’
Computer Science Department
Stanford University

1 INTRODUCTION: What Is An Expert System?

All Al programs are essentially reasoning programs. And, to the extent that they reason well about
a problem area, all exhibit some expertise at problem solving. Programs that solve the Tower of Hanoi
puzzle, for example, reason about the goal state and the initial state in order to find “expert-
level”solutions. Unlike other programs, however, the claims about expert systems are related to

questions of usefulness and understandability as well as performance.

We can distinguish expert systems from other Al programs in the following respects:

Utility
Performance
Transparency

Designers of expert systems are motivated to build useful tools in addition to constructing programs
that serve as vehicles for Al research. This is reflected in the tasks chosen. Solving the Tower of
Hanoi puzzle, per se, is not a critical bottleneck in any scientific or engineering enterprise. But
integrating mathematical expressions and determining molecular structures are imporfam problems
for scientists. Utility is the least important of the three criteria and is perhaps less definitional than a
personal bias about whether expertise on trivial matters constitutes expertise at all. In some cases a
task is chosen just because of its inherent importance. More often than not, a problem’s significance

for Al research is also a factor now because expert systems are still constructed by researchers.

The hallmark of expert systems is high performance. Using weak methods to perform any useful
task requires expertise. And it requires skill on the part of the designer to shape these programs into
“world-class” problem solvers. Thus we see relatively few expert systems and those we do see
include considerable domain-specific knowledge codified over months or years. High performance

requires that the programs have not only general facts and principles but the specialized ones that

This work was supported in part by DARPA contract MDA 903-80-C-0107, NSF grant MCS 7903753 and ONR contract
NOQQ 14-79-C-0302. The paper is based on an invited lecture at the AISB Summer Workshop, Amsterdam, July. 1980.Mike
Genesereth. Doug Lenat, Ed Fergenbaum, and Carroll Johnson provided helpful comments on an early draft. All members of
the Heuristic Programming Project at Stanford have contributed to the ideas reported here; my debt to them is substantial.
They are also partly responsible for errors in my thinking.

separate human experts from novices. Unfortunately for all of us, specialized expertise, includes
almost by definition, knowledge that is not codified in print. Thus high performance has to be courted

with patience.

in addition to utility and performance, | have added transparency, or understandability, as a third
characteristic of expert systems. This separates Al programs from very good numerical algorithms. It
is not necessary that expert systems are psychological models of the reasoning of experts. However,
they must be understandable to persons familiar with the problem. Statistical pattern recognition
programs, for exampte, perform well on many important problems, but there is little illumination_to be

gained from rehashing algebraic manipulations of Bayes’ Theorem.

2 CURRENT STATE

MYCIN [Shortliffe, 1976] represents a prototype of “Level-I” expert systems in many respects
because it was built with the three criteria of utility, performance and transparency among its design
goals. In the decade or so before MYCIN, roughly 19651975, DENDRAL [Lindsay, et al., 1980] and
MACSYMA [Moses, 1971] were developed as working tools. Other medical Al programs were
developed then, most notably PIP (the MIT present illness program) [Pauker, et al., 1976], INTERNIST
[Popie, 1977], and the Rutgers GLAUCOMA program [Weiss, et at., 1978]. And three important
organic chemical synthesis programs [Corey & Wipke, 1969], [Wipke, et al., 1977], [Gelernter, et al.,
1977] were demonstrated as well. Several specialized programs were also developed for
mathematical and management science problems [Hearn,1971], [Burstall, 1966 (a)(b)], [Kuhn &
Hamberger, 1963]. These tasks were chosen partly because of the value of their solutions and partly
because of the belief that complicated problem areas were more fruitful than “toy” problems for
studying complex reasoning. All of these were initially programmed more as a collection of

algorithms and tricks than as a coherent method working with a large body of knowledge.

Out of that early work we, the Al community, came to realize that separating domain-specific
knowledge from the problem solving methods was important and essential for knowledge base
construction and maintenance. With open-ended problems and ill-defined bodies of knowledge, it
was obvious that building a knowledge base was more a matter of iteration and refinement than bulk
transfer of facts. This was clearly the case in Samuel’s checkers program [Samuel, 1953] and
Greenblatt's chess program, [Greenblatt et al,. 1967] and became painfully clear early in the work on
DENDRAL. Thus a separate and simple representation of the domain-specific knowledge was
essential for successfully transferring expertise to a.program. (In the-case of MACSYMA, virtually all

the knowledge is in the methods, so the distinction is not always a sharp one.)

" We also saw from this early work that transferring the judgmental knowledgeciexperts into a
program meant representing the concepts and problem solving methods that the experts use. Clever
shortcuts and elegant formalisms are worthless unless the experts can fit their own knowledge into
the framework provided by the designer. Only when a program’s vocabulary is “natural” to experts
can they help refine and augment the knowledge base to bring the system’s performance up to their

own level of expertise.

We’also learned that high performance tools will not be used if the interface to them is clumsy.
Since we needed a large amount of feedback to refine the knowledge base, we were obligated to pay

attention to human engineering issues as well as problem solving issues.

There has been much experimentation with different ways of representing knowledge. Productions
had been very successful in Waterman’s poker playing and learning programs [Waterman, 1970] and
had proved easy to manipulate in parts of DENDRAL. They fit the MYCIN problem [Davis, et al., 1977]
well also. But we now realize that almost any uniform encoding of many, nearly-separate items of
knowledge would have allowed us to achieve our goals. Almost any knowledge can be represented in
almost’ any formalism; the main issue is how easily the domain knowledge can be codified and

maintained.

Work on MYCIN, DENDRAL and other expert systems also showed the value of a simple control
structure. It needs to be powerful enough for reasoning about complex problems. But it-cannot itself
be so complex that the expert cannot predict the effects of adding new items to the knowledge base.
DENDRAL’S forward chaining, data-directed inference is preferable in this respect to MYCIN'S

backward chaining, goal-directed inference.

In building useful expert systems, it ‘was also seen to be necessary to consider more of the whole
environment, in which the program would ultimately be used. High performance is a necessary, but
not sufficient, aspect of usefulness. Human engineering issues are important for making the program
understandable, for keeping experts interested, for making users feel comfortable. Explanation, help
facilities and simple English dialog thus became important. INTERNIST recently incorporated a
display-oriented interface with menu selection, for example, to allow more flexible and natural use by
physicians [R. Miller, private communication]. Simple, non-heuristic utilities (e.g., [Stefik, 1978]) offer
extra capabilities beyond the main focus of the reasoning programs, but are necessary in the total
package offered to users. Speed of computation forced rewrites of HEARSAY [Lesser & Erman,
1977] to HARPY [Newell, 1978]and the DENDRAL hypothesis generator into CONGEN [Carhart, et al.,
1979]. The whole environment also was seen to include knowledge acquisition and knowledge base

maintenance [Davis, 1976].

One of the interesting features of expert systems is their ability to reason under unceriainty. This is
essential for reasons of practical utility, since there is no practical application in which the data can
be guaranteed to be correct or complete as given. Moreover, in problem areas that are not fully
understood we cannot assume that the program’s knowledge base is either correct or complete,
either in separate entries or as a whole.

SOURCES OF UNCERTAINTY

MISSING OR ERRONEOUS DATA
MISSING OR ERRONEOUS RULES

INACCURATE MODEL

The basic mechanism we have for coping with uncertainty in expert systems is to exploit
redundancy. If there are many redundant items of evidence that support the same conclusion, the
absence or incorrectness of a few of them will not seriously impair performance. Similarly, if there are
many reundant reasoning paths to the same higher-level conclusion then the incorrectness of any
path can be mildly confusing but should not seriously throw the program off track.

CORRECTIONS FOR UNCERTAINTY

REDUNDANT DATA
REDUNDANT RULES
EXPERTS’ HEURISTICS

CAUTIOUS STRATEGY

Incomplete information is a particularly pervasive problem in empirical problems. Very often
programs halt when items are unknown; frequently, too, they ask the user for the missing items.
Some systems try to infer the missing information from available facts and relations. Default values
are used, too, either with subsequent validation or without. The defaults may be either fixed globally
or dependent on the context, e.g., inherited from a parent node that describes the current context in
general terms. It is also possible for a program to guess at a plausible value - using heuristic
procedures to fill in a context-dependent value, rather than using a value stated somewhere as a
default value. Another way of coping with incomplete information is to do the best one can without it.
MYCIN tries to infer a value for each relevant fact (or asks for it) but if the fact remains unknown, it
reasons to a “best guess” solution using the available facts. If too many facts are missing it advises
the user that not enough is known about the case to make any reliable conclusions. CONGEN, too,

generates all solutions consistent with the available facts, even though there may not be enough

known to formulate a unique solution. McCarthy’s work on circumscription is a fc-mai approach to
these kinds of problems [McCarthy, 1980].
ACTIONS AVAILABLE TO COPE WITH INCOMPLETE INFORMATION

stop Use Defau It
Ask Guess
Infer Skip and Use Available Information

PROSPECTOR [Duda, et al., 1978], INTERNIST, CONGEN and MYCIN, are among the best

examples of expert systems whose designs encompassed:

o uniform representation of knowledge,
o conceptually simple control structure,
o consideration of the environment of use.

These were mostly done in the period 19751980 and thus can be taken as representative of the state

of the art of expert systems.

Expert systems crystallize many issues of Al by forcing attention to high performance, actual use,
and transparent lines of reasoning. We do understand a little about choosing problem areas that
match the current state of the art. As Feigenbaum has written [Feigenbaum, 1977] one of the most
critical questions is whether there is an expert available and willing to spend time developing and
debugging the knowledge base. Also, the problem should be one which is interesting to the expert
(not algorithmic or trivial or already totally understood). At the same time, the problem must be
constrained: neither involving an indefinite number of common sense concepts and facts about the
world nor involving a very large number of objects and relations in the problem area itself. MYCIN, for
example, needs for meningitis about a.dozen types of objects (some with multiple instances, such as
multiple infections), about 200 attributes associated with those objects, each with 2- 100 values (many
are yes/no attributes). MYCIN, “knows” 450 rules that relate sets of object-attribute-value triples and
another 500-1000 individual facts stored as definitions (e.g., E.coli is gram-negative), lists (e.g., the list
of normally sterile sites), and relations (e.g., the prescribed drug for streptococcal infections is usually

penicillin).

The state of the art of expert systems technology is advancing, but to be quite realistic we need to
look at existing limitations as well as potential power. The following table lists many characteristics of

what can currently be done.

EXPERT SYSTEMS: STATE OF THE ART

« NARROW DOMAIN OF EXPERTISE
o LIMITED LANGUAGE FOR EXPRESSING FACTS AND RELATIONS

e LIMITING ASSUMPTIONS ABOUT PROBLEM AND SOLUTION METHODS (HELP
REQUIRED FROM A “KNOWLEDGE ENGINEER”)

o STYLIZED 1/0 LANGUAGES
o STYLIZED EXPLANATIONS OF LINE OF REASONING
. LITTLE KNOWLEDGE OF OWN SCOPE AND LIMITATIONS

« KNOWLEDGE BASE EXTENSIBLE BUT LITTLE HELP AVAILABLE FOR INITIAL DESIGN
DECISIONS

o SINGLE EXPERT AS “KNOWLEDGE CZAR”

The domain of expertise cannot grow too large because we lack efficient means for building and
maintaining large knowledge bases. Donald Michie [private communication] estimated that the
average rate of growth for a knowledge base for his AL/X system is about two rules per week, by the
time errors are found and corrected. MYCIN'S knowledge base was constructed and debugged over
two years, so the rate is comparable. Thus an expert system cannot now cover more than a narrow
slice of a domain. The most notable exception is INTERNIST, for which the knowledge base covers
about ZOO disease diagnoses or about 80% of internai medicine [H. Pople, private communication].
However, this represents a full time commitment for an expert internist, Dr. Jack Meyers, and several
colleagues and students over a period of oves ten years. Also, it represents a strategy to cover
internal medicine in more breadth than depth, using a relatively shallow set of associations between

disease states and manifestations.

The representation languages that are available are still limited. Once a commitment is made to a
framework, e.g., a hierarchy of objects, it is inevitable that experts will find relations that are difficult to
express in that framework. Ad hoc programming removes this difficulty: a clever programmer can find
a way to encode anything an expert wants to say. But the loss of uniformity is too high a price to pay

for removing the constraint, for an ad hoc knowledge base rapidly becomes unmanageable.

Just as an expert needs help understanding the representational framework, he/she also needs
help understanding the problem solving methods used by the program. Someone who is familiar with

both the program and the domain, a so-called “knowledge engineer”, must provide that help.

Input/output languages and interfaces are improving, but most are still styiized and rather
inflexible. In Level-l systems, the emphasis has been more on demonstrating adequacy of the
knowledge bases than on acceptability and ease of use. Understanding totally unconstrained English

text is not yet possible, even in technical domains [Bonnet, 1979].

The explanations, too, are stylized. MYCIN, for example, unwinds its goal stack to explain why it
needs a piece of information, and does so in the same way for every user. This offers some insight,

but is not always acceptable.

Neither the utility programs for knowledge base construction nor the reasoning programs
themselves contain much knowledge about their own assumptions and limitations. They offer little
guidance about the appropriateness of new problems or the boundaries of their own expertise. One

of the marks of wisdom, Socrates told us repeatedly, was knowing when ngt to claim expertise.

As just mentioned, knowledge bases are constructed laboriously. Several research groups have
considered the problem of automating knowledge base construction, or writing routines that carry on
a dialog with an expert to elicit knowledge without the help of a knowledge engineer. So far, however,

these activities are successful only when the program contains an initial framework to build on.

Although it is desirable to have several experts contributing to a knowledge base, we are currently
limited in our ability to maintain consistency among overlapping items. Except for blatant
contradictions, the incompatibilities are too subtle for a program to catch, or a knowledge engineer
either. So, currently, a single expert must coordinate and monitor the contributions to a knowledge

base to insure quality as well as consistency.

In addition to the programs and task‘areas already mentioned, several others have helped define or
extend the concept of expert systems. For example, in the following task areas (and more) expert
systems have been constructed and described: computer system configuration (J. McDermott's R1
program), automatic programming [Barstow, 1979], physics problems [Novak, 1976 - Bundy, et al.,
1979], chess [Wilkins, 1980}, tutoring or ICAl (Brown, et al., 1975; Clancey, 1979], software
consultation [Genesereth, 1978], electronics debugging [Sussman, 7 975], protein structure
determination [Engelmore & Terry, 1979], signal interpretation [Nii & Feigenbaum, 1978], visual scene

understanding [Brooks, et al., 1979].

3 DIRECTIONS OF FUTURE WORK

Much of the new work on expert systems must necessarily be extensions of old work on problem
solving, controlling search and inference, representing facts and relations about the world,
understanding language and visual scenes, and so forth. In fact, all Al research is relevant for
constructing and understanding expert systems. Thus the representation and control issues
discussed over the last 25 years will continue to recur in expert systems. The Logic Theorist (Newell,
et al.,, 1957) was presented to the scientific community in 1957; the Advice Taker in 1958, [McCarthy,
1963] Samuel's checkers program [Samuel, 1959] in 1959: and Minsky’s structuring of Al in 1961
[Minsky, 1961]. These, and other, early papers have not been outdated. The issues remain with us,
and insofar as expert systems are constructed by persons whose primary interest is Al, they will

continue to provide us with new wrinkles on old problems.

3.1 REPRESENTATION AND CONTROL

In the immediate future, expert systems will be severely constrained until we understand better how

to represent and reason with many kinds of concepts, including the following:

Causal Models Propositional Attitudes and Modalities
Strategies Conflicts in Plans, Strategies and Methods
Expectations and Default Knowledge Multiple Sources of Expertise

Temporal andSpatial Continuity Parallel Processing

Plans and Approximations Multiple Sources of Knowledge
Abstraction and Hierarchies Learning from Experience

Analogies (Formulating and Using) Focus of Attention on Facts & Relations

None of the items in this list represents a shift in emphasis, or anything that would not have been
familiar to the participants of the 1956 Dartmouth Conference [Feigenbaum, 1979]. Many are found in
the early papers cited. For each of the issues listed above there has already been substantial work.
The point of listing them is to emphasize that much more needs to be done to progress from Level-l
to Level-2 systems. In particular, what are the alternatives available for representing and using these
concepts, and under what conditions should we choose one over another? To a very large extent the
proof of effective representations of these concepts must lie in their use for high performance

problem solving. The concepts are discussed very briefly below.

Causal Models --- The best work in casual reasoning has been in systems developed for analysis
of small electronic circuits and simple physical devices (e.g., [deKleer, 1979, Rieger & Grinberg,
1977]. We have much to learn about exploiting causal models of physical and biological devices and

coupling the models with other knowledge. -

Strategies --- With a cautious problem solving strategy, all relevant, available evidence is used by
all relevant inference rules (in a data-driven system). In a “quick and dirty” strategy many facts and
inference rules are ignored because they seem less relevant. We want a program’s strategy to be
sensitive to the problem solving context. And it needs to be represented explicitly and flexibly enough
to be scrutinized and modified. Meta-rules in a MYCIN-like system [Davis & Buchanan, 1977] are one

way to encode strategies, and use them. What alternatives exist? What are the strengths of each?

Expectations and Default Knowledge --- In complex or open-ended domains we need to be
able to make assumptions about the world rather than express all we know explicitly. Non-monotonic
logic (e.g., [Doyle, 1980]) offers one paradigm. Frames can be used to represent what is known about
“typical” members of classes and used to store expectations for comparison with observed data (see
[Minsky, 1975], [Aikins, 1980].

Temporal Continuity --- Reasoning over time requires different representations and mechanisims
(e.g., feedback) than static analysis of a situation (see [Fagan,1980]) Some information decays in

certainty or value as it grows older.

Spatiai Continuity --- Most work on representing 3-dimensional models of objects is done in the
context of vision systems in which a representation of a scene is the final goal. Expert systems need
to be able to use those representations to reason efficiently about scenes (see [Kuipers, 1876]).
When there are thousands or millions of facts like “the leg bone is connected to the ankle bone”, a

diagram offers great economies.

Plans and Approximations --- The planning method in GPS is to solve an approximate, more
general, problem than the given one and then use the solution as a guide for constructing the desired
solution. In NOAH [Sacerdoti, 1974] and MOLGEN [Stefik, 1980; Friedland, 1980] planning exploits
abstraction hierarchies and constraints. Sussman [Sussman, 1975] has expiored how debugging a
plan can lead to a problem solution. Most work on planning has been research done for its own sake.

Expert systems need to incorporate those methods and more.

Abstractions and Hierarchies --- Many systems represent and use abstractions and hierarchies.
But there is little understanding of the strengths and weaknesses of various techniques. For example,
different kinds of inheritance in representation languages [Brachman, 1977] are available but we
don’t know which to recommend for a new problem without trying some. Diagrams are abstractions

of considerable heuristic value that we do not know how to exploit (see [Gelernter, 1959]).

10

Analogies --- Analogical reasoning is generally regarded as a powerful methcd for suggesting
hypotheses when more constrained generators fail to produce satisfactory ones. Formulating loose
analogies is relatively easy but finding those that are useful for a specified purpose is difficult. Using
analogies productively is also difficult. Winston’s frame-based program finds similarities in stories
and situations [Winston, 1979]; Kling exploited structural similarities between an oid and new theorem
to suggest an economical set of axioms for a resdution theorem prover to use on the new theorem
[Kling, 1971].

Propositional Attitudes and Modalities --- Common-sense reasoning and problem solving in
open-ended domains often require inferences about believing, knowing, wanting and other concepts
that do not necessarily preserve truth value under substitution of equals for equals [McCarthy, 1977].
For example, it may be true that John believes Venus is the Evening Star and not true that John
believes Venus is the Morning Star (although they are one and the same). It is also necessary to

reason with modal operators such as necessity and possibility.

Conflict in Plans, Strategies and Methods --- As knowledge bases grow larger and planning
becomes more complex, we can expect multiple conflicts in planning and problem solving. Are all
methods for resolving conflicts ad hoc, domain-dependent rules or are there general principles we

can use?

Multiple Sources of Knowledge --- The expertise available to an expert system may have to be
gathered or stored as spearate “packages”, or it may be desirable to do so. The Blackboard model
derived from HEARSAY provides one useful framework [Nii & Aiello, 1979]. Maintaining consistency
in the whole knowledge base, or coping with inconsistency during reasoning, are problems that still

require solutions when working with many knowledge sources.

Parallel Processing --- As tasks increase in complexity and knowledge bases grow in size, expert
systems will need to find methods for increasing efficiency. Some problems require distributed
control just to avoid the risk of failure of the central processor. Other problems involve inherently
parallel subproblems. Distributing the problem solving across many processors is economically

feasible but we lack experience in making it work (see [Smith, 1978] [Lesser & Corkill, 19781).

Learning from Experience --- There has been little progress on methods for improving
performance in light of past experience [Buchanan, et al., 1978). Samuel's work was a tour-de-force
that other work has not approached. Any kind of learning still requires special purpose programs.
Almost every conceivable expert system can benefit from past experience, at the least from simple

records of past successes, and failures.

11

" Focus of Attention on Relevant Facts a nd Relations --- As the breaci: of knowledge
increases, problem solvers need context-sensitive mechanisms for focussing atiention on parts of the
problem and parts of the knowledge base that appear most fruitful [Pople.1977].Many methods have

been tried but we have little understanding of their relative merits.

In addition to representing and using the general concepts in the above list (and many others
besides) future work on expert systems will involve other issues arising more directly from the work on
expert systems. Because of the increased emphasis on large knowledge bases, the three issues of
explanation, acquisition, and validation are becoming critical issues for expert systems. While they
would not have surprised Al researchers in 1956, their importance seems not to have been fully
anticipated. Also, we are beginning to see more interest in experimentation with Al programs. These
four topics will be discussed briefly in turn, followed by a short discussion of the difficulty of choosing

a framework for problem solving.

3.2 EXPLANATION

Explanation ‘is important for an expert system because users cannot be expected to know or
understand the whole program. The users are seeking help from the program because they want
advice about their problem and will take some action based partly on that advice. They will be held
responsible for the actions, in many cases. Therefore they need to be able to understand the rational

basis for the programs’ decisions.

An important source of explanatory descriptions is 2 record of what data and hypotheses the
reasoning program has considered. Merely keeping a “laboratory notebook”, of sorts, is 2 first step
in making the reasoningtransparent [Buchanan, 1979]. One kind of interactive explanation is simple
question answering [Scott, et al., 1977]. But while answering questions about the contents of the
knowledge base is necessary, it is not sufficient for giving users the information they need. in
complicated cases the difficulty many lie more in how the program uses what it knows than in what it

knows [Swartout,1977]. Thus the user needs to be able to understand the line of reasoning.

In the MYCIN example in the appendix, part of the dialog contains the prompt for information about
burns, for which the user might request an explanation. The response to 2 “why?” question is
MYCIN'S reason why a fact is needed to complete the line of reasoning. In effect, X is needed
because then | can conclude Y, already having established other facts that are contained with X in a
rule. Work on explanations in MYCIN assumes that the user needs to know specific rules in the

knowledge base which have been invoked. It does not take account of individual differences in users’

12

qualifications Or different purposes for aski ng a question in the first place. A smarter system that can
determine and exploit those differences can provide more helpful explanations. in building a tutor for
MYCIN’S knowledge base, called GUIDON [Clancey, 1973], we found that students needed more than
the conditional rules to understand what is going on. They needed some of the causal descriptions
that justified the rules in order to make sense of them and remember them. Thus we conclude that a
knowledge base capable of producing excellent results may, nonetheless, be less than satisfactory

for pedagogy.

3.3 KNOWLEDGE ACQUISITION

Knowledge acquisition has become recognized as an issue with expert systems because it has
turned out to be difficult and time consuming. DENDRAL, for example, was originally ‘‘custom-
crafted” over many years. Its knowledge of chemistry was carefully molded from material provided by
chemists and then cemented into place. We rewrote large parts of the system as the knowledge base
changed. After doing this a few times we began looking for ways to increase the rate of transfer of
chemistry expertise from chemists into the program. Making procedures highly stylized and
dependent on global parameters was a first step, but still required programmers to write new

procedures. DENDRAL'S knowledge of mass spectrometry was finally codified in production rules.

Once the vocabulary and syntax for the knowledge base are fixed, the process of knowledge
acquisition can be speeded considerably by fitting (sometimes forcing) new knowledge into the
framework. A programmer, whose title in this role is “knowledge engineer”, is still required to explain
the program’s framework to the expert and to translate the expert’s problem solving knowledge into

the framework. This is about as far as we have come in building expert systems.

There have been prototype dialog programs that communicate with an expert to provide some of
the same help that the knowledge engineer provides. One of the most ambitious, to date, is
TEIRESIAS [Davis, 1976,] but even it is limited to helping debug and fill out a knowledge base that

has already been largely codified.

Ultimately it would be desirable to have a program learn from nature, as scientists do. As
mentioned above, the state of induction programs is not up to widespread use for constructing
knowledge bases. However, prototype programs (e.g., [Mitchell, 1977]) again point to future

directions for research on expert systems.

An interactive editor that prompts for values of necessary slots is a starting place for a knowledge

13

acquisition system, but it is not the final product. When a “knowledge engineer” h=ips an expert,

he/she is not passive but:

1. interprets and integrates the expert’'s answers to questions:

2. draws analogies to help the expert structure the domain or remember important aspects
of the domain:

3. poses counter-examples and raises conceptual difficulties.

The most difficult aspect of knowledge acquisition is helping the expert structure the domain
initially. Because the knowledge acquisition system has no domain-specific knowledge at the
beginning (by definition), the system can only rely on general knowledge about the structure of
knowledge bases and specific examples of other knowledge bases as well as what the expert says
about the new domain. The knowledge acquisition system has to contain, or have access to, the
structure, assumptions, and limitations of the inference mechanism that will use the new knowledge.
MYCIN, again, assumes that rules are structured from fact triples, that the rules will be used to infer

values of attributes of a primary object, and so forth.

Maintaining a large knowledge base will be every bit as difficult as constructing it in the first place.
With problems having no closed solutions, the knowledge base of an expert system should certainly
change as experts accumulate more experience and develop new techniques. In medicine, for
example, new measuring devices make it possible to detect new states or quantify known parameters

more precisely. New microbiological agents are discovered as well as new drugs to treat them.

Maintenance may mean actively seeking problems in the knowledge base that need attentio :
There may be gaps, where some of many possible combinations of conditions are covered, but not all.
There may be overlapping items in the knowledge base, leading to inconsistent or redundant
conclusions. Or items may become outdated. An intelligent maintenance system should have both
the syntacic and semantic knowledge needed to assign blame to specific items in the knowledge base

that appear to be responsible for poor performance and to suggest modifications.

The problems of knowledge base maintenance become more difficult when two or more experts
contribute to the knowledge base. In MYCIN, although several physicians contributed, only one
physician at any onetime could make changes. Thus all recommendations for change went to a

knowledge base “czar” who decided how to maintain consistency.

14

3.4 VALIDATION

Expert systems are beginning to move from the research and development stage into the market
place. MACSYMA, DENDRAL and MOLGEN all have serious users who are only loosely coupled to
the designers of the programs. Under these circumstances, the developers are expected to provide

some objective demonstration that a program performs as well as they claim.

Anyone who has constructed a complex reasoning program knows how difficult it is to anticipate
unusual requests and error conditions. We want expert systems to provide assistance in a broad
range of unanticipated situations-- that is the strength of an Al approach. But we also want to provide—

assurance to prospective users that the programs will perform well.

Convincing the external community is different from convincing insiders. Insiders can examine
code and perform gedanken experiments that carry as much weight as statistics. For the external
community, however, we need to develop our own equivalents of rat studies and clinical trials for
programs, such as those that new drugs are subjected to. Empirical proof is the best we can hope

for; sometimes actual use is the most we can point to [Buchanan & Feigenbaum, 1978].

MYCIN is one program whose performance has been externally validated. There have been
different empirical studies of MYCIN'S performance, each. simpler than the last but all of them time
consuming. In the last of these [Yu, et al., 1979] we were trying to determine how outside experts
compared MYCIN’S final conclusions with conclusions of local experts and other physicians. Ten
meningitis cases were selected randomly and their descriptions were presented to seven Stanford
physicians and one student. We asked them to give their therapy recommendations for each case.
Then we collected all recommendations, together with MYCIN'S recommendation for each case and
the actual therapy, in a 10 x 10 matrix -- ten cases each with ten therapy recommendations. We asked
a panel of eight experts not at Stanford to give each recommendation a zero if, in his opinion, it was
unacceptable for the case and a one if the recommendation was acceptable. They did not know

which, if any, recommendation came from a computer. The results are shown in the following table.

15

RATINGS BY 8 EXPERTS ON10MENINGITISCASES
PERFECTSCORE = 80 *

MYCIN 52 ACTUAL THERAPY 46
FACULTY-| 50 FACULTY-4 44
FACULTY-2 48 RESIDENT 36
INF. DIS. FELLOW 48 FACULTY-5 34
FACULTY-3 46 STUDENT 24

* Unacceptable Therapy = 0, Equivalent Therapy or Acceptable Alternate = 1

The differences between MYCIN'S score and the scores of the infectious disease experts at
Stanford are not significant. But we can claim to have shown that MYCIN'S recommendations were
viewed by outside experts to be as good as the recommendations of the local experts and all of those

better than the recommendations of physicians (and the student) who are not meningitis experts.

So far, | have reviewed many outstanding problems of expert system work. All of these are

motivated in one way or another by the three parts of the definition of expert systems | gave initially:

H!GHPERFCRMANCE --- obviously requires careful attention to the representation of knowledge,

methods of inference and validation that the program does perform well.

UTILITY --- requires a large body of knowledge about a problem of significant size or difficulty and

thus requires careful attention to knowledge acquisition and knowledge base maintenance.

TRANSPARENCY --- requires explanation programs using high-level concepts and models famitiar

to the user. That can tell a user what the program knows, how it uses its knowledge, and why it

reasons as it does.

In addition to the problems just discussed, two other outstanding issues are beginning to influence
work on expert systems but have had little influence to date. The first issue, or perhaps project, is

experimentation with existing Al systems. The second is choosing a problem-solving framework.

3.5 EXPERIMENTATION

Al is an empirical science, as Newell and Simon have argued convincingly [Newell & Simon, 1976].
The data we work with are programs; the conclusions we hope to draw from studying them include
understanding the phenomenon of intelligent action itself. One reason to construct expert systems is

to replace arguments about what computers can ‘do by demonstrations. Physicians, chemists, and

16

mathematicians support our claims that the programs are working on intellectually challenging
problems. These and other Al programs constitute data points, sometimes mcre because of their

methods than becuase of their tasks.

We have generalized from the data presented but we have almost totally ignored the value of
controlled experiments. The collection of papers on the GPS experiments [Ernst & Newell, 1968],
represent the most systematic sets of experiments undertaken in Al. But we must think still more
about experimenting with the programs we spend so much time building. At this time we are not even

very good at formulating precise questions that can be answered experimentally.

Eventually we will be able to work out a taxonomy of problems and a taxonomy of solution methods.
Newell and Simon have taken us farthest in this direction [Newell, 1973], but they will undoubtedly
agree we still have less than perfect understanding of our discipline. When the taxonomies exist, then

we can begin developing criteria that let us determine the best method for a given problem

Because construction of expert systems and experimentation with them are both very expensive at
the moment, we are beginning to see a trend toward design tools for expert systems. These are tools
that help a person design and build an expert system within a given framework. By setting up the
framework and providing some knowledge engineering help, the design system can speed up the
construction, or modification, of an expert system. Such systems can also speed up our experiments

‘with existing systems.

EMYCIN [vanMelle,1980] is one such design system that helps a person design and build a MYCIN-
like expert system. The-name stands for “essential MYCIN”, the MYCIN system without the medical
knowledge. It assumes that production rules are an appropriate representation framework for a
person’s new knowledge base and that a backward-chaining, or goal-directed, interpreter is an
appropriate inference mechanism. If a new problem can be set up as a problem of gathering
evidence for and against alternative hypotheses that define subgoals for ultimateiy satisfying the
major goal, then EMYCIN is likely to provide some help in constructing an initial prototype expert

system to solve the problem.

EMYCIN provides some assistance in structuring a person’s knowledge about a problem. This
means finding out about the main kinds of objects in the domain and their relationships. What is the
primary object about which the expert system should offer advice - a patient, a corporation, an
automobile, a computer? What are its parts, and their sub-parts? Also, EMYCIN needs to know about

the attributes of those objects and possible values. A computer’s manufacturer, a patient's age, a

17

corporation's size, for example are relevant attributes for most problems involvingthsse primary

objects. EMYCIN expects that goals are stated as finding plausible values for onsormcre attributes.

After EMYCIN has helped a designer build a new knowledge base, and thus a new expert system, it
interprets the knowledge base with the inference engine. These two main functions are shown
schematically in the figure below. In addition, the rules in the knowledge base can also be compiled
into a decision tree for more efficient execution.

THE EMYCIN SYSTEM

(SYSTEM DESIGNER)

expertise debugging feedback
|
v |
Knowledge Base
Construction Aids et »»)
Domain
EMYCIN Knowledge
T Base
Consuitation & 3>
Driver
A
casedcta. zdvice

‘ CLIENT }

Some of the experimental expert systems developed in EMYCIN are PUFF (see [Feigenbaum,
1977]), SACON [Bennett & Engelmore, 1979], and consultants for computer system debugging,

nutrition, psycho-pharmacology, nervous disorders, and circuit debugging.

Other similar design tools are OPS4 [Forgy & McDermott, 1977] at Carnegie-Mellon, Hearsay-lll
[Balzer, et al., 1980] at ISI, AGE [Nii & Aiello,1979] at Stanford, EXPERT [Weiss & Kulikowski, 1979]
written at Rutgers, XPRT [Steels, 1979] at MIT, and RITA & ROSIE at RAND [Anderson 8 Gillogly,

18

1876]. Representation languages such as KRL [Bobrow & Winograd, 1977].OV/_[Szclovits, et al.,
1977], and the UNITS package [Stefik, 1979] have similar motivations of making it ccnvenient to build

a new knowledge base, without locking the designer into an interpreter for it.

3.6 CHOOSING A FRAMEWORK

The last outstanding issue is the well-known problem of choosing the right framework for solving a
problem before searching for a solution [Amarel, 1968]. Problem solving can be viewed as a two

stage process:

o Choose a language, L

¢ Select the best solution within L

We are beginning to understand how to use heuristic methods to find and select solutions to
problems within a given problem solving framework. If expert systems can also suggest new
frameworks for solving problems, then they will be useful aids for theory construction as well as for

hypothesis formation within an existing theory.

When MYCIN gathers evidence for alternative hypotheses, the choices are fixed in advance in the
vocabulary of the rule set and object-attribute value triples. When CONGEN generates chemical
structures, it describes them in a given vocabulary of labelled, planar graphs. Extending the
vocabulary to inclucde some 3-dimensional information has been and still is a task of great magnitude.
When META-DENDRAL proposes rules that codify data, it does so within a fixed and very limited

vocabularv.

One of the criticisms of sceptics is that Al programs are not yet touching “real science”. This must
be false - otherwise only Galiieo, Newton, Einstein and a few others could be called real scientists.
But the objection is right in one respect: we do not have Al methods for searching a space of

frameworks the way we search a space of hypotheses.

Lenat's program, AM [Lenat, 1978], generates new mathematical terms by combining old terms in
interesting ways. It is continually expanding its framework, given in the initial concepts of number
theory with which it starts. J.S. Brown wrote a concept formation program [Brown, 1972], that added
new predicates to cover interesting partitions of the data it noticed. The BACON program [Langley,
1979] defines new concepts from old ones in order to reduce the combinatorics of its search.
Although there is much more to the introduction of new theoretical terms in science, these

redefinitions offer considerable savings in reducing the number of terms to consider. The heuristics

19

of when to introduce a new “macro”, in this sense, still needs to be much better undzrstood. Beyond
that, though, will be the Level-lll expert systems that can aid scientists by introducing new theoretical

terms into existing languages and creating new explanatory languages.

4 CONCLUSION

Al is still very much in the so-called “natural-history” stages of scientific activity in which
specimens are collected, examined, described, and shelved. At some later time a theory will be
suggested that unifies many of the phenomena noticed previously and will provide a framework for
asking questions. We do not now have a useful theory. The vocabulary that we use to describe
existing systems is more uniform and useful than it was a decade ago, however. And the questions

that we pose in the context of one program are sometimes answered in another.

Expert systems will provide many more data points for us over the coming years. But it is up to
everyone in Al to do controlled experiments, analyze them, and attempt to develop a scientific
framework in which we can generalize from examples. At the moment we ourselves lack the

vocabulary for successful codification of our own da