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1. Introduction.

Decision trees are often used to model algorithms for combinatorial and

geometrical problems. While motivation for these models rests primarily on their

generality and couceptual simplicity, they also have the benefit of offering at

present the most promising prospect for proving worst case lower bounds in many

problems.

For linear decision trees several powerfu! techniques are known for bounding

the tree height from below, e.g. Reingold [9), Dobkin [3], Dobkin and Lipton

{4][5], Yao [13], and Yao aud Rivest [15].

Much less is known {or general aigebraic decision trees. Beyond the naive in-

formation bound, Rabin’s theorem (Rabin (8!) and the convex hull problem (Yao
[14]) are apparently the only known results.

The purpose of this article is to provide a general methoa ‘or e:tablishing

lower bounds for the worst case performance of algorithms prescribed by arbitrary

algebraic decision trees. Technically this work extends the results of Dobkin and

Lipton [4][5), but the tools put to work here provide non-trivial bounds for a large

class of previously untouchable problems. |

Before giving the detailed computational model it seems worthwhile to men-

tion informally a concrete application.

Theorem I. Any algebraic decision tree of bounded order which solves the n-

dimensional knapsack problem must bave height at least (nd).

This result extends the knapsack bounds under the linear decision tree model

due to Dobkin and Lipton [4] and the Q(n log n) result of Dobkin (3]. |

The method used here rests critically on a result from real algebraic geometry

due to Milnor [7]. Since the machinery used by Milnor may not be familiar to

workers in complexity, we have tried to give an expository of the basic facts

necessary for making this work self-contained. The bounds discussed here should

prove usefui in many related problems.

In the next section we rigo-ously specify the computational model and outline

~ the lower bound method. The third section exposits Milnor’s inequality and gives a
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heuristic argument which tries to pinpoint the necessity for the more sophisticated
tools.

The fourth section is devoted to applications and in particular to the proof

of the result on the knapsack problem (Theorem 1) which was mentioned abovs.

The final section mentions some open problems and suggest a lins of attack

which if sufficiently developed might add significantly to the powsr of the present
method.
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3. Computational Model the General Method.

Let W C R™ be any set. A (d-th order) decision tree T for testing if
2 € W is a ternary tree with each internal node containing a test of the form
p(2,,22,...,2s) : 0, where p is a polynomial of degree at most d. Each leaf of T
contains “yes” or a “no” answer. For an input 2, the procedure starts at the root
and traverses down the tree. At each internal node a branching is made according

to the polynomial test at that node and when a leaf is reached the answer to the
question “Is 2 € W" must be given correctly.

Now let C4(W) be the minimum height Ay for any d-th order decision tree

T (for the set W). Our key objective will be to obtain lower bounds on Cy(W),
and the bound given here will depend heavily on the topology of W.

By ¥W we denote the number of (disjoint) connected components of W. Also
for any polynomial p(z;,z3,...,2,.) we set S, = {2 | p(2) # 0}, and for any
integers n,m > 0 we put (m,n) = max{*S, | p is s polynomial of n real
variables and of degree at most m }.

The following elementary result provides the skeleton of our method. (To
put Gesh on the bones will require the bounds on A obtained in the next section.)

Theorem 3. Let W C R™ be an open set, and let T be a d-th order algebraic
decision tree for deciding if 2 € W. If W is the disjoint union of N open sets,

then the height hy satisfies the inequality

2’B(Ard,n) > N.

Proof. For each leaf £ of T let V; be the set of inputs 2 € R® lerding to ¢

and let I, be the set of constraints resulting from the tests. Let L be the set of
leaves ¢ such that J; consists only of strict inequalities and such that the answer

stored at £ is “yes”. One should note that each V, is an open set and Vy C W.
We now write W = uv. W; where each W; is a connected open sst and

the W; are disjoint, and write Vy = (2: p, (2) < 0,p,, < O0,...,0,(2) < 0)
where each p, is a polynomial of degree not greater than d and where ¢ <
hr. As a consequence of this representation, V; C {2 | qf2) # 0} = D
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where q¢(2) = ]| p,,(2) is a polynomial of degree at most Ard. Moreover, each
connected component of V, is contained in at most one component of D. Hence,

Ve has at most f(hrd, n) connected components Vy, Vga, ... .

Since each leaf of T is correctly labeled, each Vi; has to be completely
contained in some W;. Since the number of such Vi; is at most S(Ard,n) and
there are only |L]| values of ¢ which lead to “yes” the number of components N

of W is bounded by |L|8(hrd,n). Since 2*r > |L| the theorem follows. §
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3. Counting Connected Components.

To use Theorem 2 one needs bounds on S(m,n) and this is apparently no

easy matter. Fortunately, there is a bound due to Milnor [7] whici i« Sufficient

for some applications:

B(m,n) < (m+ 2)(m +1)". (3.1)

The proof of Milnor’s inequality rests on the several substantial results from Morse

theory and algebraic topology, but it is nevertheless possible to give a heurtistic

indication of an analogous result.

The only preliminary needed for the argument is Besout’s Theorem which

says that any system of n algebraic cquations in n variable with degree d has

either infinitely many (complex) solutions or at most d™. For a classical approach

to the proof of Bezout’s Theorem one can consult Enriques [6], or, for the case

n = 2, there is a nice proof in Seidenberg [10].
To use Bezout’s Theorem we suppose that p is a real polynomial in n variables

with degree m, and we note that R can be chosen so that A = {p > 0} N{q =

R2—Y"_, 22 > 0} has as many bounded connected components as {p > 0} has
connected components (bounded or unbounded). Since each bounded connected

component of A must contain a local maximum of pg, the number of bounded

components of A 1s majorized by the number of zeros of the system Vpq = 0.
By Bezout, this number is either infinite, or else bounded by (m + 1)™.

This finite bound is for our purposes almost as sharp as Milnor’s !.aviid. The

real work comes in providing a rigorous perturbation argument which: ru'es out the

case when Besout gives nnly the trivial infinite bound. That is precisely the case

which causes all the trouble and presents this section from being self contained.

We should further remark that a recent exposition of R. Bott [2] provides an

intuitive introduction to Milnor [7], where inequality {3.1) is given as Theorem 3.
As it happens, the problein of determining §(m, n) is actually very deep and it is

intimately connected with Hilbert’s 16-th Problem, see Arnold [1].
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4. Applications.

We now use Theorem 2 to derive lower bouads. Clearly, the function 2*8(zd, n)

is an increasing function of z. Let a(d,n,N) be the minimum z satisfying
2:f8(zd,n) > N. Theorem 2 immediately yields the following formal bounds:

Any general upper bounds on 8 can be used to derive lower bounds on a and
hence Cy. In particular, Milnor's bound (3.1) gives the following result.

Theorem 3. For any real ¢,

 CuW) 2 minfelogy N, (NF — 1)
when N = ¥W.

Corollary. If #W = Q(n{**+é)") for some fixed § > 0, then

Co(W) = Qllog(*W)).

Proof. Let £ = C4(W). Then 2*6(zd,n) > N. Hence by (3.1)

2*(zd +1)" 2 N.

Either 2* > N* or (zd + 1)™ > N!—¢, proving the theorem. B

The coroliary follows by writing #W = a™1+4(r)) and setting ¢ = Ter 0)
in the theorem.

Thus, Theorem 3 gives a lower bound nonlinear in » when *W grows at least
as fast as n(1+#)" This is also necessary since the theorem only gives a lower

bound O{n) when *W = O(n").
In the first example given below, ¥W ss 24%" thus we have a good lower

bound. The other two examples have #W < n", and Theorem 3 does not give
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nonlinear bounds. However, Theorem 2 (or, (4.1)) is still true for these later

examples, and a better determination in the future may result in an improved
bound.

Example 1. The Knapsack Problem. Given real numbers z;,z3,..., 2,, decide if

there exists some subset S C {1,2,...,n} such that 3}. oz; = 1.
In this case, W = {(z,,23,..., 24) | [Is(Xcs 2: — 1) 7 0}. It was shown

in Dobkin’s and Lipton (1978) ¥W > in’ Thus, C4(W) = f}(n?) for any fixed
d. This generalizes the result of Dobkin and Lipton where they showed C,(W) =
(n?).

Example 2. Element Distinctness. Given z;,23,...,2, € R, is there a pair ¢, J

with ¢ # 7 and z; = z,? In this case,

W={(z1,2,...,2a)| [T(zi—2;) #0} C R"
| 17%)

. It is easily shown that #W = n! since each region {(z;,23,...,2.) | Zo(1) <
Zo(2) < -..Zo(n)} is a maximal connected component of W for each permutation
0. One therefore has C4(W) > a(d, n, n!).

Example 3. Extreme Points. Given n points on the plane does the convex hull

formed by them possess n vertices?
Here W cannot be expressed by an easy algebraic relation but it is still

possible to show #W > (n — 1)!. Obviously, W is an open set in (R3)*. For
any configuration {z,,2a2,...,2.} in W C (R?)™, we have a cyclical ordering o
of the points {z; | 1 <i < n} which is given uniquely by taking the points in
cyclical order. Clearly, any of the (rn — 1)! cyclical permutations can arise in this

way so all that remains is to show that if ¢ # ¢' then the configurations which

give rise to these permutations are in disjoint components of W.

For each configuration in W we consider the (3) element array A given
by A(z;z;zx) where A is the signed area of the triangle formed by the 3-set

{zizjzx} C {z1,22,...,z,}. If the configuration corresponding to o is con-
tinuously deformed in any way to the configuration for o' then A, is transformed

continuously into A,:. Since 0 and ¢' differ there is some triple {z,z;z,} for
which A(z;z;zx) bas differing signs in A, and A,r. By the intermediate value
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theorem there is therefore some time during the continuous deformation when

A(z;z;z) = 0. This says that z;, xj, zx are then co-linear and at that point
there are at most n — 1 extreme points in the configuration. This proves that

any passage from o to 0’ must go out of W, so 0 and o' correspond to different
components.

The main consequence of the preceding bound is that

and it was originally hoped that this would be sufficient to nrove a conjecture of

Yao [14] that any algebraic decision tree of order d for the extreme point problem
must have height (nlogn). The Milnor bound in this case is not sufficiently
sharp to obtain the desired bound. We indicate in the next section a bound which
would be sufficient.

While these last two examples are disappointing in that they do not give the

conjectured non-linear lower-bounds, one should note that since only a yes-no
answer is required there is a logical necessity of only 2 terminal leaves. So, the
information theoretic bound in these two cates gives only the absurd bound log; 2.

9



§. Open Problems and Directions.

Surely the most interesting and important problems pivot atuut finding
sharper bounds on A{m,n). It is conceivable that (m,n) = 2°¥=+%) which
could imply by Theorem 2 that T4(W) = M(}(logy N — m)). This tound would
yield a f}(n log n) lower bound in Examples 2 and 3 for fixed 4.

In fact, a somewhat weaker result will suffice for this purpose. Le. S{d, wm’, n)

be the maximum of *S, for any p of the form nx, pi21,23....,%4) with each
p; of degree not greater than d. Clearly S(d, m’,n) < S(dm’,n). Tk: rcevit one
really needs in Examples 2 and 3 is f(d, m',n) = 20(sm’ +a) Cap cae prove
better bounds on S(d, m',n) than on S(m,n)?! Here we note that it is not hard

to see that .

mms y(T) mew (5.1)jmo VJ

since A(1, m', n) just equals the number of regions of R® which can be partitioned
by m' hyperplanes. (This is proved in Steiner (1826) [11] which is in the first
volumn of Crelle’s J. Reine Ang. Math. and which is better remembered for

coptaining five fundamental papers of N. H. Abel. For modern treatment of (5.1)
see Wetzel [12] and the refrences given there.)

A more modest approach to the problems suggested by Examples 2 aad 3

rest on obtaining bounds for any small values of d > 2. It is known (Yao [14])
that C3(W) = fi{nlogn) in Example 3, but there are no other known noe-linsar
lower bounds even in the case d = 3.
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