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ABSTRACT

>~ We consider the design of integrated circuits to implement arbitrary regular ex-

pressions. In general, we may use the McNaughton-Yamada algorithm to convert
a regular expression of length n into a nondeterministic finite automaton with
at most 2w states and 4w transitions. Instead of converting the nondeterministic
device to a deterministic one, we propose two ways of implementing the nondeter-
ministic device directly. First, we could produce a PLA (programmable logic
array) of approximate dimensions 4n X 4w by representing the states directly by
columns, rather than coding the states in binary. This approach, while theoreti-
cally suboptimal, makes use of carefully developed technology and, because of the
care with which PLA implementation has been done, may be the preferred tech-
nique in many real situations. Another approach is to use the hierarchical struc-
ture of the automaton produced from the regular expression to guide a hierarchical
layout of the circuit. This method produces a circuit n a side and is, to

within a constant factor, the best that can be done in genera]. o

{ Work partially supported by DARPA contract MDA903-80-C-0102 and by NSF grant MCS-
70-04538.
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L Introduction

There are a number of projects, such as [S, G, J] whose goal is “silicon compila-
tion,” that is, the automatic layout of circuits from their behavioral description.
These projects tend to be oriented around the design of computer-like circuits,
certainly an important goal, but one that is analogous, in the software domain,
to implementing languages suitable for writing operating systems, but little else.
It appears that the “Fortran” of circuit implementation must be quite general-
purpose, allowing us to specify a great variety of different kinds of circuits and to
implement anything we can specify, with a fair degree of efficiency.

It is the purpose of this paper to discuss only one possible component of such
a general-purpose language, a regular expression facility. Regular expressions are
capable of specifying any finite-state process, although they are not always as suc-
cinct as other representations [EZ]. Fortunately, there is a common class of finite-
state processes for which regular expressions appear very well suited indeed. In
the software world, lexical analyzers, which recognize the tokens (e.g., identifiers,
keywords) of a programming language, have been generated automatically from
regular expressions defining the tokens. Regular expressions also make a good
language for describing patterns to be matched by a text editor. |[AU] describes
these and other software applications of regular expressions.

In the hardware world, regular expressions are well suited to describing
processes like controllers, where it is desired that we signal “events,” where each
“event” consists of a sequence of significant input signals, perhaps interspersed
with arbitrary numbers of irrelevant signals. We shall later give a design ex-
ample for a simple device of this sort. On the other hand, regular expressions
are not very good for describing counting processes. For example, the event “876
zeros” is most naturally described by the regular expression 00---0 (876 times).
Obvious techniques for producing a circuit from this expression will only succeed
in producing a unary counter with 876 distinct memory elements, rather than a
binary counter with ten memory elements. Extensions to the regular expression
language can alleviate this problem somewhat, but the fact remains that regular
expressions cannot be billed as a panacea, even if we restrict our domain of inter-
est to sequential processes. However, they do represent a promising approach to
the automatic design of some components, and they probably have a place in any
general-purpose compiled circuit design language.

IL. The Circuit Model

To be specific, let us assume that circuits are implemented in the nMOS technol-
ogy, using the Mead-Conway [MC] design rules. However, what we say applies to
any technology in which
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1. 2-input logical operations can be implemented in constant space.

2. VWires have a fixed constant width, and signals can be driven through the
. wire in an acceptably short time by a driver no larger than the wire itself.
3. No more than a constant number of wires or logic elements may occupy the

same area; the constant 3 applies to the nMOS technology.
This model of integrated circuits is discussed in [T, BK], for example.

IIL. Regular Expressions and Nondeterministic Automata

We assume the reader is familiar with finite automata theory as discussed in [HU],

for example, and we only sketch the essential details here. Regular expressions

are built from an alphabet I (in practice, L might be the set of ASCII characters,

for example) using the following rules.

1. For each a in I, a is a regular expression denoting {a}, that is, the set
consisting of one string; that string is of one symbol, a.

2. 0 and ¢ are regular expressions denoting, respectively, the null set and { ¢},
that is, the set consisting of the empty string (zero-length string) only.

3. If R; and Rz are regular expressions denoting sets of strings S; and Sj,
respectively, then (R;)+(Rz), (R1)(Ra), and (R;)* denote S; |J Sa, 5152, and
S;*, respectively. Here 5,5, is the concatenation of sets S; and S,, that is,

{zy|lz€S1AYy€ S}

Also, S;*, the closure of S, is

{exUsiUsisilysisisily-

That is, (R)* means “zero or more occurrences of R.”

4. Parentheses may be dropped when they are implied by the following precedence
order: closure highest, then concatenation, then union. For example, a -+ dc*
is grouped a - (b(c*)) and stands for the set of strings

{a,b,be, bee, bece,... }

Sometimes it is useful to extend the regular expression language in several
ways that do not affect the collection of sets of strings we can define. For example,
LEX [Les], the UNIX lexical analyser generator, uses . to stand for “any charac-
ter,” that is, the expression ay+ a2 - - an, where the a;’s are all the symbols in
L. Also, (R)* stands for the positive closure of R, that is, R+ RR+ RRR+---,
or “one or more occurrences of R. The expression (R)! means “sero or one oc-
currence of R, that is, ¢ 4+ R.

s S & .n;mwmw




A nondeterministic finite automaton (NFA) is conventionally represented by
- adirected graph, whose nodes are states, and an arc from state p to state g can be
labeled by any symbol from I or by ¢, the empty string. We allow multiple arcs
between two states, but we usually represent these arcs by a single arc with more
than one label. One state is designated the start state, and one or more states
are designated accepting or final states. The NFA accepts a string aja2: - -a, if
there is a path from the start state to some accepting state, and the labels of the
arcs along that path read a;a;- - ‘a,. Note that ¢ may be a label of one or more of
those arcs, but € is “invisible,” that is, it can appear any number of times along
the path without appearing in the string accepted.
Example 1: Let us now take an example of how a sequential process can be
represented by regular expressions and by an NFA. Consider a control unit that
receives a sequence of two bits, which it interprets as a command according to
the code

00 = add
01 = subtract
10 = load

11 = load complement

For simplicity, we assume that the source of commands is “well behaved”; we
never receive anything but two bits at consecutive times, nor can a second com-
mand be received while the previous command is being processed.

The output consists of three lines, A, C, and L, which respectively cause (A)
add the memory buffer to some particular register, (C) complement the menfory
buffer, and (L) load the memory buffer into the register. When the C signal is
sent, the controller waits for a completion input signal (X) before sending the
A or L signal. As the machine is synchronous, we actually have a fourth input
symbol besides 0, 1, and X in our alphabet £. We use N to indicate that no
command bit or completion signal is present on the input.

As an aside, we note that the input alphabet & = {0,1,X, N} should be
regarded as consisting of logical, rather than physical inputs. For example, in
practice there might be three binary input lines: “command bit,” “command
present indicator,” and “completion.” The O input is represented by a command
bit of 0, with the command-present bit set to 1. The completion bit can be ig-
nored, as a 1 on that line while the command is present violates our assumption
that commands do not overlap. The interpretation of the three bits as input
symbols from I is shown in Fig. 1.

The regular expression for the “add” output signal is given by

A= 000+ IN*X)
4




command bit{0 0 0 0 1 1 1 1
commandpresent |0 0 1 1 0 0 1 1
completion{0 1 0 1 0 1 0 1
logicalinput[N X 00N X 11

Fig. 1. Actual-to-logical input interpretation.

Fig. 2. An NFA for the controller example.

where . stands for “any input symbol.” That is, we wish to signal an addition if

after any sequence of inputs we see a 0 followed immediately by either

1. another 0, completing the command 00=add, or _

2. al, completing the command 01=subtract, followed by any number of N’s
and an X. In this case, we assume the “complement buffer” signal C is sent
after receiving 01. The N's represent “clock ticks® while we wait for the
completion signal. When the X is received, we know the buffer has been
complemented and immediately issue the “add” signal.

Similarly, we can specify the conditions under which we should emit the C
and L signals by

C=*o+1)1

L= *1(0+ IN*X)

We shall subsequently discuss an algorithm to convert any regular expression
to an NFA with some arcs labeled ¢. However, we first illustrate the NFA concept
with one NFA for the controller; this NFA, shown in Fig. 2, uses no ¢-arcs, but it
does have nondeterminism, in the sense that it can be in more than one state at

5
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Fig. 3. Parse tree for .*0(0 + 1N*X).

the same time.t For example, suppose we have input NO1. We begin in state a,
the start state. The only arc with label N leaving state a leads back to a. Thus,
after the first input symbol we are only in state a. The next input, 0, labels arcs
from a to a and b, so after the second input we are in those two states. Then we
look for arcs out of a or b labeled 1, and we find them from a to @ and ¢, and
from b to d and g. Thus, after the third input we are in a,¢,d, and g. Since g is a
final state, we “accept” NOI. In practice, state g represents the C signal, which
is appropriate, since our input is one instance of the “subtract” command. ]

IV. The McNaughton-Yamada Construction

We shall now discuss a recursive algorithm for converting regular expressions to
NFA'’s with some e-arcs. The algorithm produces NFA's for the regular expres-
sions (R;) + (Rz2), (R1)(R2), and (R;)*, given NFA’s for Ry and R;. To begin, we
must “parse” a regular expression. That is, we view the regular expression as a
parse tree, where leaves represent symbols in I (or ¢ or @ if needed), and interior
nodes represent the application of union, concatenation, and closure operators
to subexpressions. For example, the parse tree for expression A of Example 1
is shown in Fig. 3. See |AU] for a description of how parse trees for regular
expressions can be constructed.

The McNaughton-Yamada algorithm [MY, HU] constructs for any regular
expression an NFA with one start state and one final state. It is conventional to
draw NFA'’s with the start state on the left and the final state on the right. Figure
4(a)-(c) shows the basis of the construction, the two-state NFA's that recognize

t Nondeterminism should not disturb us here. The NFA is a mathematical abstraction, and
190 NP MONINsIon 10 Sarvware » QUNE GINOrONs FFrOoMm SBAS OF W0 GSOPMINIPIIE COUNRIOrPare ‘.

DFA), which is guaranteed to be in only one state at a time.
6
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(a) for € (b) for 0 (c) forain &

(e) for concatenation

(1) for closure

.Fig. 4. The McNaughton-Yamada constructions.

€,0, and any particular a in L, respectively. Figure 4(d)-(f) shows how NFA’s
M, and M; for regular expressions R; and R, are combined to get NFA's for
(R1) + (Ra), (R1)(R2), and (R;)*. Simple modifications of construction (f) give us
the positive closure () and zero-or-one (1) operators. In the first case, eliminate
the e-arc from the new start state to the new final state, and in the second case,

eliminate the backward arc.

Example 2: The NFA constructed from the expression A = .*0(0 4+ 1N*X) is
shown in Fig. 5. There, and henceforth, we adopt the convention that final states
are indicated by double circles. Note the great superfluity of e-arcs. Many of
these can be eliminated by considering special cases in the recursive construction

f
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Fig. 5. NFA for expression A.
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Fig. 6. Combining several NFA’s into one.

rules. They can all be eliminated by replacing an e-arc from state p to state g by
arcs from p to whatever states ¢'s arcs go to. Also, if ¢ is final, make p final. Then
we may eliminate g if it is not the start state and it no longer has any entering
arcs. See [HUJ for details. [}

There is one more step to the construction of an NFA from a collection of
regular expressions. We introduce a new start state with ¢-arcs to the start states
of the NFA’s for all the regular expressions in the collection. This construction is
illustrated in Fig. 6. Note, however, that the various final states of the combined
NFA are not indistinguishable. Each represents one of the output signals for the
device. In a sense, the NFA of Fig. 6 represents an extension to the usual concept
of an NFA, since there are differing output signals associated with the different
final states.

Unlike deterministic finite automata, for a given NFA there is not, necessarily
8
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a unique minimum-state NFA equivalent to it. Moreover, finding even one of the
minimum-state NFA’s is a hard combinatorial problem. Nevertheless, often we
can simplify the NFA suggested by Fig. 6 considerably, if we first eliminate e-
arcs, as suggested above. Then merge any two states that have identically labeled
arcs to the same states, unless one, but not the other, of these states is accepting.

However, it is not always clear that these simplifications are beneficial. For
example, the NFA’s constructed by the McNaughton-Yamada algorithm never
have more than two arcs into or out of any state. This limited connectivity makes
certain implementations especially simple. If we eliminated e-arcs and merged
states, we might get states with large fap-out. When implementing such a state
in logic, we might require a tree of limited fan-out gates to represent this state,
thus undoing all the benefit of merging states.

V. A PLA Implementation of NFA's

The programmable logic array (PLA) has been used as a systematic implementa-
-tion of deterministic finite automata (see [MC]|, e.g.). In these implementations,
the states are binary-coded, and the bits representing the new state are computed
from the bits of the old state and the current inputs.
While we shall not attempt to describe the mechanics of PLA’s in detail here,
a rough idea of how they work can be obtained by looking ahead to Fig. 7. There
we see a typical PLA, which is a two-dimensional array of wires, divided vertically
into an and-plane and an or-plane. Certain signals (labeled state b, ..., state e in
Fig. 7) are fed back from the or-plane to the and-plane, with an implied delay of
one time unit. New values of the feedback signals and output signals (L,C, and
A in Fig. 7) are computed in the following manner. Imagine signals with vslue
1 originating at the left end of each horizontal wire. In order for that signal to
cross the and-plane, all the vertical wires that it intersects at a dot must have
value 1. If the signal reaches the right end of the and-plane, it enters the or-plane
and makes 1 every vertical line it intersects at a dot. For example, in Fig. 7, if
the fourth and fifth vertical wires (X input and state e) are 1, the top wire will
have its signal reach the or-plane and turn on the L output.

An alternative use of PLA’s is to use one bit for each state of an NFA. We
begin by assuming that the NFA has no e-arcs, but that restriction will be relaxed
later. For each arc of the NFA, labeled a and entering state q from state p, we
create a term in the formula that tells whether q is one of the states in which the
NFA is currently found.t This term is ap; that is, the term has the value true if
and only if the input is ¢ and state p was previously on. State g will be on at the
next clock tick if and only if one of its terms has the value true; that is, there is

t We shall say a state is op when the NFA is in that state.
9




2o ol iy et ¥ wadh s, i na 2 kit ke i

some arc labeled a to g from a previously on state.

We may conclude from the above remarks that the number of rows of the
PLA, each of which corresponds to a term in the formula for one or more states,
is no greater than the number of arcs in the NFA.f The number of columns in
the PLA is twice the number of states (for the next and previous versions of each
state) plus the number of input bits and their complements, if needed.

Example 3: Let us implement the NFA of Fig. 2 as a PLA. We begin by noticing

that there are eight states, so in principle, we need sixeen columuns for the next

and previous states. The inputs are coded by three bits, so we might assume we
need six more columns. However, let us assume that the inputs are decoded into

the four logical signals 0,1, N, and X, by the table in Fig. 1. We thus need a

total of 20 columns. Furthermore, if we sum the numbers of labels on each of

the arcs in Fig. 2, we see that we apparently need 16 rows. However, we can do
considerably better than this if we observe the following.

1. States f,g, and k have no arcs out, and therefore their values need not be
fed back, as those values are not used in the terms for any states. However,
we must compute values for these states because they are final states. This
arrangement saves three columns.

2. State a is always on. Therefore, it need not be computed, and terms involving
state @ can use “true” in its place. This saves four rows and two columns.

3. The transitions from b to d and g on input 1 require only one row, since the
conditions are the same. Similarly, the two transitions from ¢ on input 1
require only one row. Thus two additional rows can be saved.

The resulting PLA has 15 rows and 10 columns. It is shown in Fig. 7, where
circles represent connections. ||

It is interesting to compare Fig. 7 with the conventional PLA implementation
of machines. If we convert the NFA of Fig. 2 to a minimum-state DFA, we find
the latter has 11 states. By way of comparison, we chose a particular encoding for
states of this DFA. The encoding included the A, C, and L output bits and three
other bits (the minimum necessary, since five of the states have A = C = L = 0).
The state transition table and the encoding is shown in Fig. 8. Blanks in the state
code entries indicate that either 0 or 1 may be used, i.e., states with blank S, and
S3 entries have four alternative encodings, and we can use the most convenient
one when ope of these states is the next state.

Obviously, we could use only four bits to encode states, but then we would
have to compute the output bits anyway, giving back some of the columns we
saved by using shorter codes for the states, and also requiring additional terms to
be computed, possibly increasing the number of rows required.

t Recall that technically, an arc with several labels is shorthand for a set of arcs, each with
one label and the same source and destination.

10
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Fig. 7. PLA for machine of Fig. 2.

While we cannot be sure we have a minimum-row PLA, even after restricting
ourselves to the state encoding of Fig. 8, a careful selection of terms sufficient
to compute the six state bits resulted in a 22 X 26 PLA. That is, there were 26
terms required, and the 22 columns consist of six for the next state, twelve for
the previous state bits and their complements,} and four for the input bits.

The product of the dimensions for the conventional PLA implementation is
about four times what it is for the NFA-based implementation. The inclusion

t Note that the PLA implementation of nondeterministic finite automata never requires the
complements of state dits,

11
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D1 X N ACL S 8 S
e b ¢c a a 00 0 1:0°0
b d e ala 0 00 0 0 O
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Fig. 8. DFA from Fig. 2 and one possible state encoding.
of space around the peripheries of the two PLA’s for drivers and clocking gates
will reduce the 4:1 ratio somehat, but there is still a clear advantage for the NFA
approach to this design problem.

We do not wish to generalize the results of one example to all sequential
machine designs. Our method will be advantageous only when the problem at
hand lends itself to a succinct description by regular expressions. For example,
our methods do not work well on the traffic light example in [MC], because that
controller embodies a modulo four counter, and regular expressions are not con-
venient for expressing counts.

Let us summarize this section by formalizing the relationship between the
size of regular expressions and the size of PLA’s needed to implement them.

Theorem 1: For every collection of regular expressions of total length n, over an
alphabet of at most 2% symbols (i.e., #o bits are used to code inputs), there is a
PLA signaling the recognition of each of these expressions; this PLA has at most
4n rows and 4n + 2¢p columns.

Proof: First observe that each of the NFA constructions of Fig. 4 introduces at
most two new states, and the concatenation construction introduces none. The
parse tree for a regular expression with n symbols and m concatenations (which
are not represented explicitly by symbols in the regular expression notation) has
at most n 4 m nodes, m of which represent concatenations. Thus, in applying
the McNaughton-Yamada construction to each node, in a bottom-up order, we
create at most 2n states.

We claim that at most 4n arcs are created. The union and closure nodes

12




introduce four each, and the leaves (¢,®, and symbols from E) introduce one each.
It is easy to show that the number of concatenation operators cannot exceed the
number of leaves, so the total number of arcs due to non-concatenation nodes is
at most 4n —3m. The concatenation nodes contribute another m arcs, for a total
that does not exceed 4n.

The arcs are each labeled by one symbol, so 4n is an upper bound on the
number of terms needed to express nexi staies in the manner of ¥ig. 7. Aliso
generalizing Fig. 7, we need 2n columns for previous states, 2n for next states,
and 2¢ for the inputs and their complements, for a total of 4n +4 ¢o columns.

There is, however, one nuance that is not apparent from Fig. 7, which imple-
mented an NFA with no e-arcs. We have assumed that feedback wires have delay
built into them, in the form of clocking gates that allow the signal to pass only at
certain times, the clock ticks. If we have an arc labeled ¢ from state p to state q,
then p by itself is one of the terms for g. Most importantly, the use of that term
must not be delayed by clocking; ¢ must be turned on at the same clock tick in
which p is turned on. That can only be achieved if there are no clock gates in the
feedback path for state p; i.e., if next state p is turned on then the previous state
p wire must also be turned on.

Fortunately, the above rule causes no inconsistency, because a check of Fig.
4 confirms that if state p has an e-arc out, then all its arcs out are labeled e.
Thus we should put clocking gates in the feedback paths of all and only the states
whose arcs out are not e-arcs. {]

As as consequence of Theorem 1, for fixed input alphabet X, we can imple-
ment regular expressions of length n in O(n?) area. It is hard to compare this
figure, in general, with the area needed to implement the same expression or ex-
pressions by first converting to a DFA. In the worst case, an n state NFA requires
2" states when converted to a DFA. This DFA requires n bits to represent its
states, and in the worst case there could be as many as 2"+ terms needed to
compute all the next state functions. Thus a PLA as large as O(n) X O(2") cannot
be ruled out if we use the conventional approach.

However, in practical examples, it is more common for an n-state NFA to
be converted to a DFA with roughly n states. For example, the 8-state NFA of
Example 1 becomes an 11-state DFA. If that is the case, then an n-state NFA
might be implemented by an O(logn) X O(n) PLA. In that case, the DFA-based
implementation of machines would be superior. Surprisingly, we shall see in the
next section that there is a totally different approach to the implementation of
regular expressions that yields a circuit of dimensions O(v/n) X O(V/n).

Before completing this section, we should comment on the lengths of paths
created by the proposed PLA design in Theorem 1. As the PLA has no clock gates
in the feedback wires, a signal may have to propagate k times around the PLA

/
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in one clock phase if there is a path in the NFA with k consecutive ¢-arcs. There !
is no complete cure for this problem, but we can avoid many of the e-arcs if we
modify the construction of Fig. 4 in several ways. For example, we could merge
states instead of introducing e-arcs in the union and concatenation constructions.
If we do so, we cannot then modify the closure construction to simply identify
the start and final states; the construction fails to produce a correct NFA in the l
general case if all three modifications are made.

VL A Hierarchical Implementation of Regular Expressions

An inspection of Fig. 4, which shows how to construct an NFA from a regular
expression, suggests that we could lay out a ¢ircuit directly on a chip, if we repre-
sent states of the NFA by appropriate logical elements, represent e-arcs by wires,
and represent arcs labeled by input symbols by wires with gates checking for that
| symbol. The states used in Fig. 4 can be divided into two classes.
1. Those that have ¢e-arcs out, and
2. Those that do not, i.e., they are final states or have arcs leaving that are
labeled by an input symbol.
States in the second group are implemented by Iatches, that is, pairs of inverters
connected in a loop, with one clock phase to control the output of each. Those
in the first group are really nothing more than junction points in the circuit,
allowing two signals to merge (through an or-gate) or one signal to fan out into
two identical signals (no logic at all is needed here).

When building large circuits from smaller ones, it helps if we view eath circuit
as a rectangle, as suggested in Fig. 9. Needing a specific convention from among -
several options, we have chosen to assume that power, ground and two-phase clock
signals are passed into the circuit from above and, if needed, are passed through
the circuit to another circuit below. Similarly, the bits needed to represent an
input symbol from L are passed in from the left and can be passed out to the
right, unchanged, if needed by another circuit to the right.

There is a signal called state-in that, if it is 1, turns the start state of the
circuit on at phase one of the clock. An output signal, called state-out, is turned
on at clock phase two if the circuit enters its accepting state. In general, phase
one of the clock is used to decide which states will be on after processing the
current input symbol, and to propagate this information through states with e-
arcs leaving. Phase two is used to transfer the decisions made at phase one to the
output of the latches that do not have e-arcs out.

Let us suppose we have circuits for regular expressions R; and R3, and we
wish to construct a circuit for (R;)(R2). We can connect the circuits in cascade
as suggested by Fig. 4(e); this connection is shown in Fig. 10(a). Note that the
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power, ground, elock out,

if needed by a machine
below

Fig. 9. Format of a circuit implementing a regular expression.

final state of the first machine is given an e-arc out. Thus the latch representing !
it is no longer needed or appropriate. We must replace it by a junction point ;
or, if there are several input arcs for that state, by an or-gate. As latches can :
be expected to require more area than a single gate or junction point, we can
make this replacement without worrying about the geometry of the circuit, and
we shall henceforth assume such changes are made when necessary, not only in
the concatenation construction, but in the union and closure constructions as well.

Figure 10(b) shows an alternative organization for the circuit, in which the
first machine is placed above the second. Similarly, when we implement the union
construction of Fig. 4(d), we can choose to place either constituent circuit above
the other or place either to the left of the other. The closure construction, since
it does not combine two circuits, gives us little choice; we must simply augment
the circuit with surrounding feedback and feed-forward wires as suggested by Fig.
4(f).

The reason we care about the relative positioning of circuits is that we desire
each circuit to have an aspect ratio (ratio of height and width) near one. For
example, if we must combine two circuits that are longer than they are high, we
would prefer the vertical connection of Fig. 10(b) to the horizontal connection of
Fig. 10(a), since the former has a squarer shape than the latter. The reason, in
turn, for desiring an aspect ratio near one is that on the average, we can couple
squarish circuits with less waste spa-~e than we can couple elongated circuits. For !
example, neither Fig. 10(a) or (b) is very good if one of the constituent circuits i
is very tall and thin, while the other is short and wide. Another motivation for 4
keeping aspect ratios low is that the basic circuits, such as latches cannot be
designed in a fixed area with a fixed aspect ratio if the area allotted is small and
the aspect ratio is high. Thus the rectangles representing the basis constructions
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Fig. 10. Circuit connections.

of Fig. 4(a)-(c) must be allocated space of limited aspect ratio.

Unfortunately, just keeping the aspect ratio within bounds is not sufficient
to guarantee efficient use of space, for one of two constituent circuits could be
significantly larger than the other. For example, an expression like

(- (a1 + a3)as + a4)as + - - )a,

forces us to create either a long, thin circuit with many long wires or an L-
shaped circuit, if we restrict ourselves to the constructions of Fig. 10. As another

example, ,‘
(((a1*az)*as)*- - -an)* |
requires n nested feedback loops, so it appears to require O(n?) space no matter
16
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what we do.t As we shall see, all these problems can be solved, and circuits for
these expressions, taking area that is proportional to the length of the expressions,
can be generated automatically. Before proceeding to the techniques involved, let
us illustrate the basic McNaughton-Yamada construction and also show how the
combination of unequally sized circuits tends to waste space.

Example 4: Let us build a circuit for the regular expression .*0(0 + IN*X),
whose parse tree was given in Fig. 3. Using judicious choices between horizontal
and vertical connections when union and concatenation constructions are used,
we might obtain the layout} suggested by Fig. 11. There, only state-in and
state-out wires are shown, input, power, ground and clock wires are omitted. ||

VIL. A Compact Hierarchical Implementation of Regular Expressions

There are three insights necessary to our implementation of regular expressions.
First, we must observe that given any regular expression whose parse tree has
n 2> 2 leaves, we can find a subtree that has more than n/3 but no more than
2n/3 leaves. For example, the tree of Fig. 3 has six leaves, and its subtree for
expression 1 N*X has three leaves, which is greater than two and no greater than
four. The subtree for 0 + 1N*X would also qualify. This application of “divide
and conquer” to binary trees was first used by [LSH].

Once we have found a subtree of about half the leaves, we can build a circuit
C, for it, and we can build a circuit C; for the remaining tree, with a dummy leaf
in place of the deleted subtree. This leaf is an imaginary input symbol, and when
applying the McNaughton-Yamada algorithm to it, we generate a start state s
and a final state f, using the construction of Fig. 4(c), but without the arc. A
wire connects state s of Cy to the start state of circuit Cy, and another wire runs
from the final state of C; to f. In effect, we have simply removed C; from its
rightful place between s and f. Note that both states s and f are unnecessary and
can always be replaced by junction points, even if latches are created for them
initially. The arrangement is sketched in Fig. 12.

Notice how, if C; and C; are about the same size and shape, they are likely to
fit together, either side-by-side, as shown, or one above the other. In comparison,
if we had to distort C2 by “squeezing” C; between s and f, we might or might
not achieve a compact layout.

As our circuit desgin rules introduced in Section II do not permit us to cross
more than three wires at a point, simply laying down the wires shown in Fig. 12

t Note, however, that there is an equivalent regular expression with an O(n) area circuit.

$ We shall use the term “layout” in what follows to refer to the relative positioning of various
FUSTIFRNNIG. VAT 0P SOOP B0L BATY 190 MOIS YIYA! TORNNILALIDY OF 4 FMUTE MOre SIS AOMIEe .

However, the positionings we use are intended to be such that a layout, in the usual sease, could
be done without repositioniag.
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Fig. 11. Straightforward implementation of the
McNaughton-Yamada aigorithm.

could lead to an illegal circuit. We must therefore “pull apart® C; and C3 at four
channels, in which the wires can run. The idea is shown in Fig. 13. To create
a channel, we select a line across the circuit. Circuit elements and wires running
parallel to the line are held at one side of the line, while wires perpendicular to
the line are stretched. After stretching some constant amount, there will be room
to fit another wire parallel to the line. Circuit elements to which the wire must
be connected are, we presume, crossed by the line, and can be moved into the
channel to connect with the wire.
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The above method for creating channels will be successful if the original
circuit
1. has all wires running horizontally or vertically,
2. never has more than two wires crossing at a point, and
3. uses “circuit elements” from some fixed set, so there is an a priori bound on

the size of a circuit element.
Condition (3) guarantees that a channel of some fixed width will be sufficient to
run a new wire without crossing any circuit elements, and (1) and (2) assure that
the new wire will only cross one other wire at a time. Figure 14 gives an example
of the channel creation process.

The second insight needed is that even if C; and C; are about the same size,
their aspect ratios and relative sizes might be such that they do not have a com-
mon dimension, either the same width (for a vertical arrangement as in Fig. 12),
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Fig. 14. The channel creation process.

or the same height (for a horizontal arrangement). Unless our recursive circuit
layout algorithm works in such a way that when applied to C; and C, we can ex-
pect a dimension in common, we may be forced to connect C; and C> in a manner
that wastes about a quarter of the space. Since the waste can go on at every
level of the recursion, we shall have an algorithm that uses area n!°828/3 — p1.41
to implement a regular expression of size n. This result is superior to obvious
methods, but not as good as we can do.

The solution to the above problem is to design our recursive layout algorithm
to take as parameters
1. the parse tree of the expression for which we want to design a circuit,

2. the number of nodes of that tree, and
3. the desired aspect ratio, a real number in the range 1/4 to 4.

We assert that there is a constant d such that for each parse tree of n > 2
leaves, there is a circuit of aspect ratio r and area dn, for any r in the range
1/4 < r < 4. It will be shown that for n > 3 and aspect ratio r between 1/4
and 4, we can always arrange C; and Cj, either horizontally or vertically, with
a border and channels adequate for connections between C; and C; and to the
“outside world,” and with this arrangement, recursive calls to design C; and C2
can be given appropriate aspect ratios between 1/4 and 4, so that C; and Cj will
have a side in common.

Example 5: Let us consider how the parse tree of Fig. 3 would be processed
recursively by the circuit layout algorithm. First, we must find a node from which
between 1/3 and 2/3 of the leaves descend. The preferred candidate is the root
of the subtree for IN*X, which divides the leaves into two equal parts. As the
initial call to the circuit routine would normally ask for a square circuit (aspect
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ratio 1:1), we may position the subcircuits for .*0(0 + D)t and 1N*X either
horizontally or vertically; let us choose the latter. As the first expression has
four leaves and the second has three,} the heights of the two subcircuits should
be in the ratio 4 to 3. They are given the same width. A sample arrangement,
in which the entire circuit is allocated a 10 X 10 area (in some units), and borders
are one unit wide, is shown in Fig. 15.

We now lay out the circuits for IN*X and .*0(0 + D) in the rectangles
of aspect ratios 3:8 and 1:2, respectively. We should, in principle, divide each
of these expressions into two parts and recursively synthesize their circuits from
circuits for the parts. However, we omit the details of those recursive calls. One
circuit that could result is shown in Fig. 16. ]

The third necessary insight is that two or more consecutive applications of
the closure operator are equivalent to one. That is, for any regular expression

- R we have (R)* = ((R)*)*. As a consequence, we may eliminate superfluous *’s

and view regular expressions as if all the operators were binary operators chosen
from the list: union, concatenation, union-then-closure, and concatenation-then-
closure. We use the constructions of Fig. 4(d) and (e), followed by (f), when
closure is desired, to build circuits, just as in the McNaughton-Yamada algorithm.
Operands are either single symbols, or symbols to which closure is applied, and
circuits for operands can be constructed by Fig. 4(a)-(c) optionally followed by
4(f). Note that this algebraic simplification is necessary to avoid awkward situa-
tions like the expression a**:--* which, if the McNaughton-Yamada algorithm
were applied blindly, would result in a circuit of area 0(n2).

The heart of the circuit layout algorithm is the recursive procedure LAYOUT

t D stands for the particular dummy symbol used as a placeholder for the expression 1N*X.

$ However, if we are careful, we can avoid allocating circuit area for the dummy symbol, which
e E0OW WIN v FOProsontew I8 A0 SIFSUIN BF JUNEINE POINS OBLY.

21




RN ENY %14 > e ]
ooz | A _x_l__.?;
u [
) “or A X L
L - - VO _— - 3
C ot T
| |
.
i
l coY
| : C 1
J o Cor ] JFor . N
/ i i e 0 ] 7
o
. ' RS
i ry > {
i A
|

Fig. 16. Complete layout for the expression of Fig. 3.

sketched in Fig. 17. The algorithm itself is a call to LAYOUT(T, n, 1), where T
is the parse tree for a regular expression of length n, i.e., T is assumed to have n
leaves. In LAYOQUT, I is assumed to be a fixed input alphabet defined globally,
so its size may be regarded as constant. Also b is a constant chosen large enough
that the total width of the channels and border area, either in the horizontal
or vertical direction, is bounded above by . Note that channels need to carry
one wire each, while border areas may need to carry 4 -} log, ||E|| wires, one for
each of the input bits, and one each for power, ground, and the iwo clock phases.
Finally, A(n), the area alotted to a circuit for a regular expression of length n, is
a function of the form dn — ev/n — f, whose adequacy we shall show in the next

section.
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funetion LAYOUT(T,n,r); {T is a parse tree with n > 2 leaves. LAYOUT
returns a circuit of area A(r) and aspect ratio r; we assume without loss of
generality that r > 1; otherwise rotate the layout 80°. The circuit returned
has only horizontal and vertical wires, and at no point do more than two wires

overlap. }
begin
: if n = 2 then
use McNaughton-Yamada algorithm to produce a circuit C
else {n > 3}
begin
select a node N of T such that N is the root of a subtree with
n; nodes, where n/3 < n; < 2n/3;
let Ty be the tree with root N;
let T; be T with the subtree rooted at N replaced by a dummy
leaf;
na:=n — ny + 1;{ T has n3 leaves }
{ now we perform horizontal decomposition, as in Fig. 14}
h:=+/A(n)/r; { h is the height of circuit C of Fig. 14}
hi:=h —b; { height of C; and C; in Fig. 14}
wy:=(h*r —b) % ny/(n; + nz); { width of C;}
wo:==h *r — b — w;; {width of C3}
ri:=wy/hy; ro:=wz/ha; { aspect ratios for C; and Cz}
C1=LAYOUT(T1, ny, 7‘1);
C2:==LAYOUT(T3, nz, r2);
Separate circuits C; and C, to make two horizontal ~nd four
vertical channels for their interconnections, as shown in Fig.
14. Figure 15 showed how this operation could be done in
such a way that wires could be laid along the channels without
violating the circuit design rules we have assumed;
Add border around C, and C,, and run wires for inputs, etc., to
feed both circuits and to produce wires out of the bottom and
right edge, as indicated in Fig. 9;
Call the resulting circuit C;
end; :
return C;
end

Fig. 17. The recursive procedure LAYOUT.
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VIL Analysis of the Algorithm

We now show that LAYOUT can be made to use O(n) area, by showing that a

linear function A(n) can be chosen. We must pick A(n) to satisfy the following

constraints.

1. The area A(n) available for C in Fig. 14 must not exceed area A(n;) + A(n2)
used for C; and Cy plus the area needed for borders and channels.

2. The aspect ratios of C; and C; must be in the range 1/4 to 4 if that of C is.

3. A(2) must be large enough that we can build a circuit for any regular expres-
sion of length 2 in that area, with any aspect ratio up to 4.

Lemma 1: If A(n) > 25b% and C of Fig. 14 has aspect ratio 4 or less, then C,
and C; have aspect ratios in the range 1/4 to 4.

Proof: The extreme cases we must consider are when n; = 2nst and either
a) C has aspect ratio 1, in which case C; could be too tall and narrow, or
b) C has aspect ratio 4, in which case C; could be too short and wide.

Let the height of C be k. Then in case (a) the height of C2 is h — b and its
width is (h — 0)/3, so its aspect ratio is 3, satisfying the lemma. In case (b), the
height of C, is again A —b, and its width is 2(4h —b). Thus its aspect ratio will
be 4 or less provided

h—b2 (DGR —b)

that is, A > 3b. Since the area of C in this case is 442, the lemma follows. []

Theorem 2: There exist positive constants d, e, and f such that for all n > 2, the
function LAYOUT will succeed in producing a circuit if the allotted area A(n) is

dn—eyn—f.

Proof: Let us, for the moment, assume that d,e, and f satisfy the lemma for -

n = 2. Notice that when we divide a tree T of n > 3 leaves into T} and T3 in
function LAYOUT, neither n; nor ny can be 1. Thus we can attempt to prove
by induction, with a basis of n = 2, that area A(n) = dn — ey/n — f suffices for
LAYOUT to produce a circuit. To develop the induction, let n > 3, and n; = an
for some constant a, 1/3 < a < 2/3. Then the areas of C; and C; are A(an) and
A((1 —a)n-1), respectively, since n;+ny = n+1. Observe that C; and C; are,
by Lemma 1, of limited aspect ratio, and their areas are also chosen by LAYOUT
to be of limited aspect ratio. Hence the borders and channels in Fig. 14 have
area that is proportional to any side of C; or Cy, the constant of proportionality
naturally depending on which side is chosen. Specifically, there is some constant
¢ such that the extra area of circuit C, beyond that of C; and Cj, is at most

t Since 4n > n; > in and ny 4+ n3 = n 41, it is easy to show that n;/n, must be in the
range 1/2 to 2.
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c\/A(Tn). Thus

Alan) + A1 — aJn + 1)+ c\/A(an)] (1)

A(n) = max
1/3<a<2/3

We assume A(m) < dm —ey/m — [ for 2 < m < n, and show that the
same holds when m = n. By (1) it suffices to show that

dn—eyn—f >

adn — evan + (1 —a)dn+d—e\/(1—a)n+1—2f+c\/adn}

(2)
In the last term of (2), /A(an) has been conservatively replaced by Vadn. Simp-
lifying (2) we obtain

max
1/3<a<2/3

0> max
1/3<a<2/3

e\/r_;-—e\/a?-—e\/(l—a)n+1+d—j+c\/ﬁ;} (3)

Dividing (3) by —e/n yields

J 1 f—d_¢
0S1/3I<nf_§_2/a[ﬁ+ 1_a+;_1+~¢\/ﬁ e ad] (4-)

The first three terms on the right of (4) sum to at least 0.39. The next term can
be made zero if we pick f = d. The last term is no more than 0.28 if we choose
e = 3¢v/d. Thus, for these choices of ¢ and f in terms of d, (4) is satisfied; hence
so is (2).

Now we must satisfiy the condition that A(2) is adequate to hold all circuits
for regular expressions of length 2. We simply observe that we can pick d so that
A(2) = d — 3cV/d exceeds any quantity we choose, so an adequate value of d can
be found. (]

One may wonder if the linear bound on area for a general regular expression
is the best that could be achieved. We believe it is, because of another assump-
tion that is generally made ([BK], e.g.) about integrated circuits, that there is
a finite (as opposed to infinitesimal) amount of area needed to store one bit of
information. If that is the case, then we cannot improve on the linear growth rate
in Theorem 2, because there are regular expressions of length proportional to n
that require n bits of information to be remembered if we are to recognize them.
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A simple example is the family
(0+1)*1(0+1)(0+1)---(0+1)

where n terms (0 4 1) follow the 1. For each n, this regular expression denotes
the set of strings of 0’s and 1’s that have a 1 n positions from the end. Clearly, we
must remember the last n inputs if we are to recognize all strings in the language.

IX. Implementation Considerations

Theorem 2 gives an upper bound on the required area of a circuit. However, to
design a circuit we do not necessarily wish to use the function LAYOUT starting
with the maximum theoretically needed area, which we have called A(n). Rather
we should try it with half this area, initially. If we are successful in producing

a circuit, try the algorithm again with half as much area. After the #** try, if

successful, reduce the area by 2—(*+1) of the maximum possible area, and if we

fail to produce a circuit, increase the allotment by this amount. By this binary
search technique we can obtain the minimum possible area for a square circuit to
within a maximum error of one part in 2 in 1 tries after we have our first failure.

Surely ¢ = 10 is adequate in practice. As the algorithm itself requires only 0(n2)

time at most, we do not expect that repeated tries with different areas would be

odious.

Another variable that might be adjusted is the initial aspect ratio. It is pos-
sible that a ratio other than one leads to a circuit of smaller area than if the
initial aspect ratio were restricted to one. However, “tuning” this parameter is
not done as systematically as it was for the area parameter. In particular, there
is no reason to believe that area varies monotonically with aspect ratio, so binary
search cannot be used.

Another potentially promising modification of the algorithm is to allow aspect
ratios greater than 4 in certain circumstances. There must be some limit on the
aspect ratio, as circuits implementing single states cannot be designed, in a rec-
tangle of fixed area, if that rectangle is too long and thin. However, there is
nothing sacred about the limit 4.

There are a number of other ideas that could improve the quality of the
circuit. Among them are:

1. Use a catalog of circuits for small n. Indeed, the proof of Theorem 2 implies
that circuits for regular expressions of with only one operand will be selected
by table lookup. Circuits for some larger expressions could be stored.

2. As we have mentioned, the second state in the constructions for n = 1 (Fig.
4(a)-(c)), unless it is an accepting state, will eventually get an ¢-arc out. Thus
a latch for that state is not needed, and it can be replaced by a junction
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point. We can predict, by examining the entire tree, which states will be
accepting states of the entire circuit, and we can then save space by repre-
senting the others by points or or-gates, rather than latches, when they are
first introduced into the circuit.

3. Do not pass a wire (power, input, etc.) through a subcircuit if it is not needed
anywhere to the right or below.

4. When LAYOUT calls itself recursively, optimize the area of one subcircuit
before selecting the area and aspect ratio of the second. This technique may
cause the aspect ratios within the second circuit to exceed tolerable limits,
which in turn may require modification of the first circuit. Thus the time
spent by LAYOUT mat be exponential in n, but even this amount of time
may be worthwhile if it leads to a superior circuit design.

X. Related Work

The ideas of divide-and-conquer layout and of channel creation were also used
independently by C. Leiserson and by L. Valiant [V]. In terms of [Lei], we could
show Theorem 2 by proving a “2-separator theorem” for the graphs of nondeter-
ministic finite automata that we obtain by the McNaughton-Yamada construction.
Strictly speaking, the connections needed for supplying, input, power, and so on,
must by ignored in that theorem and handled outside the framework of [Lei).
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