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| L Introduction

. There are a number of projects, such as [S, G, J] whose goal is “silicon compila-
: tion,” that is, the automatic layout of circuits from their behavioral description.

These projects tend to be oriented around the design of computer-like circuits,
| | certainly an important goal, but one that is analogous, in the software domain,

to implementing languages suitable for writing operating systems, but little else.

It appears that the “Fortran” of circuit implementation must be quite general-
purpose, allowing us to specify a great variety of different kinds of circuits and to

implement anything we can specify, with a fair degree of efficiency. I
It is the purpose of this paper to discuss only one possible component of such |

. a general-purpose language, a regular expression facility. Regular expressions are |
| capable of specifying any finite-state process, although they are not always as suc- od

cinct as other representations [EZ]. Fortunately, there is a common class of finite-
state processes for which regular expressions appear very well suited indeed. In

the software world, lexical analyzers, which recognize the tokens (e.g., identifiers,

| keywords) of a programming language, have been generated automatically from |
= regular expressions defining the tokens. Regular expressions also make a good :
! language for describing patterns to be matched by a text editor. [AU] describes

these and other software applications of regular expressions.

In the hardware world, regular expressions are well suited to describing
1 processes like controllers, where it is desired that we signal “events,” where each |
; | “event” consists of a sequence of significant input signals, perhaps interspersed 1

with arbitrary numbers of irrelevant signals. We shall later give a design ex- 1
! ample for a simple device of this sort. On the other hand, regular expressions
] are not very good for describing counting processes. For example, the event “876
1 zeros” is most naturally described by the regular expression 00---0 (876 times).
2 Obvious techniques for producing a circuit from this expression will only succeed ;
4 in producing a unary counter with 876 distinct memory elements, rather than a |
J binary counter with ten memory elements. Extensions to the regular expression

language can alleviate this problem somewhat, but the fact remains that regular
: expressions cannot be billed as a panacea, even if we restrict our domain of inter- |

est to sequential processes. However, they do represent a promising approach to |
] the automatic design of some components, and they probably have a place in any

general-purpose compiled circuit design language. |

£ IL. The Circuit Model }
j To be specific, let us assume that circuits are implemented in the nMOS technol-
1 ogy, using the Mead-Conway [MC] design rules. However, what we say applies to .
] any technology in which



3 | 1. 2-input logical operations can be implemented in constant space. |
i 2. Wires have a fixed constant width, and signals can be driven through the |
3 . wire in an acceptably short time by a driver no larger than the wire itself.

3. No more than a constant number of wires or logic elements may occupy the |
same area; the constant 3 applies to the nMOS technology.

This model of integrated circuits is discussed in [T, BK], for example.

IIL. Regular Expressions and Nondeterministic Automata

We assume the reader is familiar with finite automata theory as discussed in [HU],
for example, and we only sketch the essential details here. Regular expressions |

: are built from an alphabet I (in practice, & might be the set of ASCII characters, i

for example) using the following rules.
j 1. For each a in I, a is a regular expression denoting {a}, that is, the set

consisting of one string; that string is of one symbol, a.
] 2. © and ¢ are regular expressions denoting, respectively, the null set and {¢},
4 that is, the set consisting of the empty string (zero-length string) only.
i 3. If R; and Rz are regular expressions denoting sets of strings S; and S,,

respectively, then (R;)+ (Ra), (R1)(Ra2), and (R;)* denote S; |J Sa, 5:52, and
1 S3*, respectively. Here S;S5; is the concatenation of sets S; and S3, that is, i

: | {zy|z€ Si Ay€ Sa}

{ Also, S;*, the closure of S;, is

1 {aUsiUssilysisisily-- |

1 That is, (R)* means “zero or more occurrences of R.”
] 4. Parentheses may be dropped when they are implied by the following precedence

i order: closure highest, then concatenation, then union. For example, a -+ dc* |
is grouped a -}- (b(c*)) and stands for the set of strings

: {a,b be, bee, bece,... } |

Sometimes it is useful to extend the regular expression language in several
3 ways that do not affect the collection of sets of strings we can define. For example,
y LEX [Les], the UNIX lexical analyser generator, uses . to stand for “any charac-
J ter,” that is, the expression a; + a2}: an, where the a;’s are all the symbols in
: I. Also, (R)* stands for the positive closure of R, that is, R+ RR+ RRR+--., |
| or “one or more occurrences of R. The expression (R)! means “sero or one oc-

currence of R, that is, ¢ 4+ R.

de Gawd. aha rn lee © amNITE pe | | : 3



. A nondeterministic finite automaton (NFA) is conventionally represented by !
: a directed graph, whose nodes are states, and an arc from state p to state g can be

labeled by any symbol from X or by ¢, the empty string. We allow multiple arcs :
between two states, but we usually represent these arcs by a single arc with more
than one label. One state is designated the start state, and one or more states

| are designated accepting or final states. The NFA accepts a string aja3- - ‘a, if |
there is a path from the start state to some accepting state, and the labels of the
arcs along that path read a;a; - ‘a,. Note that ¢ may be a label of one or more of
those arcs, but € is “invisible,” that is, it can appear any number of times along 1
the path without appearing in the string accepted. 1

Example 1: Let us now take an example of how a sequential process can be
represented by regular expressions and by an NFA. Consider a control unit that |

/ receives a sequence of two bits, which it interprets as a command according to
| the code i

00 = add {
01 = subtract 1

10 = load

11 = load complement [

For simplicity, we assume that the source of commands is “well behaved”; we -
never receive anything but two bits at consecutive times, nor can a second com-

mand be received while the previous command is being processed. .
The output consists of three lines, A, C, and L, which respectively cause (A)

add the memory buffer to some particular register, (C) complement the memory
buffer, and (L) load the memory buffer into the register. When the C signal is ]
sent, the controller waits for a completion input signal (X) before sending the
A or L signal. As the machine is synchronous, we actually have a fourth input

: symbol besides 0, 1, and X in our alphabet £. We use N to indicate that no

command bit or completion signal is present on the input.
| As an aside, we note that the input alphabet ¥ = {0,1,X, N } should be

regarded as consisting of logical, rather than physical inputs. For example, in
practice there might be three binary input lines: “command bit,” “command

present indicator,” and “completion.” The 0 input is represented by a command

| bit of 0, with the command-present bit set to 1. The completion bit can be ig- |
nored, as a 1 on that line while the command is present violates our assumption |
that commands do not overlap. The interpretation of the three bits as input J
symbols from X is shown in Fig. 1. 6

The regular expression for the “add” output signal is given by |
| A= *00+ IN*X) !

| |



| command bdbit{0 0 O0 0 1 1 1 1 i
- command present |O0 0 1 1 0 0 1 1 ]
] | completion |0 1 0 1 0 1 0 1
i logical input |[N X 0 0 N X 1 1 :

; Fig. 1. Actual-to-logical input interpretation. ]

D |

| GY 0 ND A output
| Start 0

(a) (g) C output
0,1, N,X( |

| (e} 0 0) L output1 1

Fig. 2. An NFA for the controller example. :

) where . stands for “any input symbol.” That is, we wish to signal an addition if
i after any sequence of inputs we see a 0 followed immediately by either

1. another 0, completing the command 00=add, or | |
i 2. al, completing the command 01=subtract, followed by any number of N's

and an X. In this case, we assume the “complement buffer” signal C is sent
after receiving 01. The N's represent “clock ticks” while we wait for the
completion signal. When the X is received, we know the buffer has been

; complemented and immediately issue the “add” signal.
Similarly, we can specify the conditions under which we should emit the C |

and L signals by

3 C= *0+41)1

1 | L = *1(0 + IN*X)

We shall subsequently discuss an algorithm to convert any regular expression
1 to an NFA with some arcs labeled e¢. However, we first illustrate the NFA concept }

| with one NFA for the controller; this NFA, shown in Fig. 2, uses no e-arcs, but it
] does have nondeterminism, in the sense that it can be in more than one state at »

5 |



0

X |

Fig. 3. Parse tree for .*0(0 + 1N*X). 1

the same time.! For example, suppose we have input N01. We begin in state a,

| the start state. The only arc with label N leaving state a leads back to a. Thus, |
| after the first input symbol we are only in state a. The next input, 0, labels arcs ]

from a to a and 8, so after the second input we are in those two states. Then we
look for arcs out of a or b labeled 1, and we find them from a to a and ¢, and ]

from b to d and g. Thus, after the third input we are in a,¢,d, and ¢. Since gis a
| final state, we “accept” NOI1. In practice, state g represents the C signal, which i

is appropriate, since our input is one instance of the “subtract” command. |]

IV. The McNaughton-Yamada Construction

i We shall now discuss a recursive algorithm for converting regular expressions to

{ NFA’s with some e-arcs. The algorithm produces NFA’s for the regular expres-
] sions (R;) + (R2), (R;1)(R2), and (R;)*, given NFA’s for R; and R,. To begin, we
: must “parse” a regular expression. That is, we view the regular expression as a
1 parse tree, where leaves represent symbols in X (or ¢ or 0 if needed), and interior

nodes represent the application of union, concatenation, and closure operators |
3 to subexpressions. For example, the parse tree for expression A of Example 1 |

is shown in Fig. 3. See [AU] for a description of how parse trees for regular |
1 expressions can be constructed.

] The McNaughton-Yamada algorithm [MY, HU] constructs for any regular
3 expression an NFA with one start state and one final state. It is conventional to
3 draw NFA'’s with the start state on the left and the final state on the right. Figure |
; 4(a)-(c) shows the basis of the construction, the two-state NFA’s that recognize

: { Nondeterminism should not disturb us here. The NFA is a mathematical abstraction, and :
100 IMPIOMONISION 10 SATUTAIE IF QUNE GINOreas From (04% OF 130 STIMIBIIIE COURerpare a :

3 DFA), which is guaranteed to be In only one state at a time. y

: 6



i (a) for e (b) for 0 (c)forain =

| 0 olf 0]
Lo

i FS

(d) for union (e) for concatenation |

| £3 ¢

£

(f) for closure

.Fig. 4. The McNaughton-Yamada constructions.

| ¢,0, and any particular a in I, respectively. Figure 4(d)-(f) shows how NFA's |
M; and M; for regular expressions R; and R; are combined to get NFA’s for
(R31) + (Ra), (R1)(Rz2), and (R,;)*. Simple modifications of construction (f) give us
the positive closure (7) and zero-or-one (1) operators. In the first case, eliminate
the e-arc from the new start state to the new final state, and in the second case,

i eliminate the backward arc.

| Example 2: The NFA constructed from the expression A = .*0(0 + IN*X) is
i shown in Fig. 5. There, and henceforth, we adopt the convention that final states
3 are indicated by double circles. Note the great superfluity of e-arcs. Many of

1 these can be eliminated by considering special cases in the recursive construction |
i 7



& |
stack rs |. ¢ |

< € : |
Aa € _€ ¢NYe =X

£ :

| Fig. 5. NFA for expression A.

5©

i § |
1 & a.

1 Fig. 6. Combining several NFA’s into one.
rules. They can all be eliminated by replacing an e-arc from state p to state g by

1 arcs from p to whatever states ¢’s arcs go to. Also, if q is final, make p final. Then
- we may eliminate q if it is not the start state and it no longer has any entering

i arcs. See [HU] for details. |]
There is one more step to the construction of an NFA from a collection of

; regular expressions. We introduce a new start state with ¢-arcs to the start states
of the NFA’s for all the regular expressions in the collection. This construction is

3 illustrated in Fig. 6. Note, however, that the various final states of the combined
3 NFA are not indistinguishable. Each represents one of the output signals for the

s device. In a sense, the NFA of Fig. 6 represents an extension to the usual concept
3 of an NFA, since there are differing output signals associated with the different
1 final states.

1 Unlike deterministic finite automata, for a given NFA there is not necessarily

] = Ca iSRSA© —



] a unique minimum-state NFA equivalent to it. Moreover, finding even one of the
| minimum-state NFA’s is a hard combinatorial problem. Nevertheless, often we

can simplify the NFA suggested by Fig. 6 considerably, if we first eliminate e-
- | arcs, as suggested above. Then merge any two states that have identically labeled

arcs to the same states, unless one, but not the other, of these states is accepting.

However, it is not always clear that these simplifications are beneficial. For
example, the NFA’s constructed by the McNaughton-Yamada algorithm never
have more than two arcs into or out of any state. This limited connectivity makes
certain implementations especially simple. If we eliminated e-arcs and merged
states, we might get states with large fan-out. When implementing such a state

| in logic, we might require a tree of limited fan-out gates to represent this state,
thus undoing all the benefit of merging states.

VY. A PLA Implementation of NFA's

] The programmable logic array (PLA) has been used as a systematic implementa-
1 ‘tion of deterministic finite automata (see [MC], e.g.). In these implementations,
] the states are binary-coded, and the bits representing the new state are computed

from the bits of the old state and the current inputs.

While we shall not attempt to describe the mechanics of PLA’s in detail here,

; a rough idea of how they work can be obtained by looking ahead to Fig. 7. There
: we see a typical PLA, which is a two-dimensional array of wires, divided vertically
{ | into an and-plane and an or-plane. Certain signals (labeled state b,... state e in

Fig. 7) are fed back from the or-plane to the and-plane, with an implied delay of
one time unit. New values of the feedback signals and output signals (L,C, and |

1 A in Fig. 7) are computed in the following manner. Imagine signals with vslue
i 1 originating at the left end of each horizontal wire. In order for that signal to
] cross the and-plane, all the vertical wires that it intersects at a dot must have
1 value 1. If the signal reaches the right end of the and-plane, it enters the or-plane
| and makes 1 every vertical line it intersects at a dot. For example, in Fig. 7, if

the fourth and fifth vertical wires (X input and state e) are 1, the top wire will
] | have its signal reach the or-plane and turn on the L output.

An alternative use of PLA’s is to use one bit for each state of an NFA. We

begin by assuming that the NFA has no e-arcs, but that restriction will be relaxed
| later. For each arc of the NFA, labeled a and entering state q from state p, we
1 create a term in the formula that tells whether q is one of the states in which the

i | NFA is currently found.t This term is ap; that is, the term has the value true if

1 and only if the input is a and state p was previously on. State gq will be on at the
next clock tick if and only if one of its terms has the value true; that is, there is

4 { We shall say a state is on when the NFA is in that state.

3 9



§ some arc labeled a to q from a previously on state.
» We may conclude from the above remarks that the number of rows of the to

| PLA, each of which corresponds to a term in the formula for one or more states,

: 1s no greater than the number of arcs in the NFA. The number of columns in .
| the PLA is twice the number of states (for the next and previous versions of each

| state) plus the number of input bits and their complements, if needed. | |
| Example 3: Let us implement the NFA of Fig. 2 as a PLA. We begin by noticing

: that there are eight states, so in principle, we need sixeen columns for the next
and previous states. The inputs are coded by three bits, so we might assume we i

need six more columns. However, let us assume that the inputs are decoded into |
1 the four logical signals 0,1, V, and X, by the table in Fig. 1. We thus need a

total of 20 columns. Furthermore, if we sum the numbers of labels on each of

the arcs in Fig. 2, we see that we apparently need 16 rows. However, we can do
: considerably better than this if we observe the following.
3 1. States f,g, and A have no arcs out, and therefore their values need not be

fed back, as those values are not used in the terms for any states. However,

we must compute values for these states because they are final states. This
1 arrangement saves three columns.

| 2. State ais always on. Therefore, it need not be computed, and terms involving
1 state a can use “true” in its place. This saves four rows and two columns.

3. The transitions from b to d and ¢g on input 1 require only one row, since the
] conditions are the same. Similarly, the two transitions from ¢ on input 1 .

require only one row. Thus two additional rows can be saved.

] The resulting PLA has 15 rows and 10 columns. It is shown in Fig. 7, where
3 circles represent connections. [|
] It is interesting to compare Fig. 7 with the conventional PLA implementation
| of machines. If we convert the NFA of Fig. 2 to a minimum-state DFA, we find
- the latter has 11 states. By way of comparison, we chose a particular encoding for
f states of this DFA. The encoding included the A, C, and L output bits and three

| other bits (the minimum necessary, since five of the states have A = C = L = 0).
; The state transition table and the encoding is shown in Fig. 8. Blanks in the state
i code entries indicate that either 0 or 1 may be used, i.e., states with blank S, and
| S3 entries have four alternative encodings, and we can use the most convenient

one when one of these states is the next state.

| Obviously, we could use only four bits to encode states, but then we would
have to compute the output bits anyway, giving back some of the columns we

} saved by using shorter codes for the states, and also requiring additional terms to
i be computed, possibly increasing the number of rows required.

t Recall that technically, an arc with several labels is shorthand for a set of arcs, each with .

| one label and the same source and destination.

3 10
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: State b1 Cc A
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| Fig. 7. PLA for machine of Fig. 2.
While we cannot be sure we have a minimum-row PLA, even after restricting

1 ourselves to the state encoding of Fig. 8, a careful selection of terms sufficient
: to compute the six state bits resulted in a 22 X 26 PLA. That is, there were 26
: terms required, and the 22 columns consist of six for the next state, twelve for

the previous state bits and their complements, and four for the input bits.

The product of the dimensions for the conventional PLA implementation is
about four times what it is for the NFA-based implementation. The inclusion

; t Note that the PLA implementation of nondeterministic finite automata never requires the

: : complements of state bits.
| 11



3 inputs state code
: 1X NACL 8 8 8
] a b ¢c a a 0°00 1.0 0
| b d ¢e ala 0 0 0 0 0 O

¢c d e a a:0i0!00 0 1
| d d e aja 10,0 0 |

fld e ala 001 0 ooslr g jl 0l1'0 1! Po
hib.c a a. 1010 1 =
ide h|d:0/0°0 01/0] |

| jlb,ea | a; 0 (0 1 1 |

klole 7 kjofo 0 of1]1
| Fig. 8. DFA from Fig. 2 and one possible state encoding.

of space around the peripheries of the two PLA’s for drivers and clocking gates

1 will reduce the 4:1 ratio somehat, but there is still a clear advantage for the NFA
} approach to this design problem.

We do not wish to generalize the results of one example to all sequential
machine designs. Our method will be advantageous only when the problem at )

: hand lends itself to a succinct description by regular expressions. For example,
our methods do not work well on the traffic light example in [MC], because that .
controller embodies a modulo four counter, and regular expressions are not con-

: venient for expressing counts.
! Let us summarize this section by formalizing the relationship between the

3 size of regular expressions and the size of PLA’s needed to implement them.

i Theorem 1: For every collection of regular expressions of total length n, over an
3 alphabet of at most 2'¢ symbols (i.e., io bits are used to code inputs), there is a

PLA signaling the recognition of each of these expressions; this PLA has at most

1 4n rows and 4n + 2¢p columns.

3 Proof: First observe that each of the NFA constructions of Fig. 4 introduces at
; most two new states, and the concatenation construction introduces none. The
k parse tree for a regular expression with n symbols and m concatenations (which
1 are not represented explicitly by symbols in the regular expression notation) has
1 at most n +4 m nodes, m of which represent concatenations. Thus, in applying
] the McNaughton-Yamada construction to each node, in a bottom-up order, we
1 create at most 2n states.

4 We claim that at most 4n arcs are created. The union and closure nodes

3 12



4 | introduce four each, and the leaves (¢, 9, and symbols from ¥) introduce one each.
E It is easy to show that the number of concatenation operators cannot exceed the
2 number of leaves, so the total number of arcs due to non-concatenation nodes is
; | at most 4n— 3m. The concatenation nodes contribute another m arcs, for a total
3 that does not exceed 4n.
4 The arcs are each labeled by one symbol, so 4n is an upper bound on the

number of terms needed to express nexi stales in the manner of Fig. 7. Aiso
generalizing Fig. 7, we need 2n columns for previous states, 2n for next states,

i and 2¢p for the inputs and their complements, for a total of 4n +4 to columns.
| There is, however, one nuance that is not apparent from Fig. 7, which imple-

] mented an NFA with no e-arcs. We have assumed that feedback wires have delay
built into them, in the form of clocking gates that allow the signal to pass only at
certain times, the clock ticks. If we have an arc labeled ¢ from state p to state gq,

i then p by itself is one of the terms for g. Most importantly, the use of that term

} must not be delayed by clocking; ¢ must be turned on at the same clock tick in
which p is turned on. That can only be achieved if there are no clock gates in the

| feedback path for state p; i.e., if next state p is turned on then the previous state
] p wire must also be turned on.
| Fortunately, the above rule causes no inconsistency, because a check of Fig.
3 4 confirms that if state p has an e-arc out, then all its arcs out are labeled e.

Thus we should put clocking gates in the feedback paths of all and only the states

whose arcs out are not e-arcs. {|
1 As as consequence of Theorem 1, for fixed input alphabet ¥, we can imple-

ment regular expressions of length n in O(n?) area. It is hard to compare this
figure, in general, with the area needed to implement the same expression or ex-

4 pressions by first converting to a DFA. In the worst case, an n state NFA requires
1 2" states when converted to a DFA. This DFA requires n bits to represent its
1 states, and in the worst case there could be as many as 2"+% terms needed to
i compute all the next state functions. Thus a PLA as large as O(n) X O(2") cannot,
1 be ruled out if we use the conventional approach.

However, in practical examples, it is more common for an n-state NFA to

: be converted to a DFA with roughly n states. For example, the 8-state NFA of
i Example 1 becomes an 11-state DFA. If that is the case, then an n-state NFA

| might be implemented by an O(logn) X O(n) PLA. In that case, the DFA-based
; implementation of machines would be superior. Surprisingly, we shall see in the
J next section that there is a totally different approach to the implementation of
1 regular expressions that yields a circuit of dimensions O(v/n) X O(V/n).
| Before completing this section, we should comment on the lengths of paths
1 created by the proposed PLA design in Theorem 1. As the PLA has no clock gates
{ | in the feedback wires, a signal may have to propagate k times around the PLA
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| in one clock phase if there is a path in the NFA with k consecutive ¢-arcs. There
is no complete cure for this problem, but we can avoid many of the e-arcs if we |

| modify the construction of Fig. 4 in several ways. For example, we could merge || states instead of introducing e-arcs in the union and concatenation constructions. |
If we do so, we cannot then modify the closure construction to simply identify
the start and final states; the construction fails to produce a correct NFA in the |
general case if all three modifications are made.

VL A Hierarchical Implementation of Regular Expressions
An inspection of Fig. 4, which shows how to construct an NFA from a regular
expression, suggests that we could lay out a circuit directly on a chip, if we repre- |

sent states of the NFA by appropriate logical elements, represent ¢-arcs by wires,
and represent arcs labeled by input symbols by wires with gates checking for that
symbol. The states used in Fig. 4 can be divided into two classes.

1. Those that have e-arcs out, and

: 2. Those that do not, i.e., they are final states or have arcs leaving that are
labeled by an input symbol.

States in the second group are implemented by latches, that is, pairs of inverters

connected in a loop, with one clock phase to control the output of each. Those
; in the first group are really nothing more than junction points in the circuit,
] allowing two signals to merge (through an or-gate) or one signal to fan out into
: two identical signals (no logic at all is needed here).

| When building large circuits from smaller ones, it helpsifwe view each circuit
as a rectangle, as suggested in Fig. 9. Needing a specific convention from among

1 several options, we have chosen to assume that power, ground and two-phase clock
1 signals are passed into the circuit from above and, if needed, are passed through
3 | the circuit to another circuit below. Similarly, the bits needed to represent an
: input symbol from I are passed in from the left and can be passed out to the
1 right, unchanged, if needed by another circuit to the right.

{ There is a signal called state-in that, if it is 1, turns the start state of the
3 circuit on at phase one of the clock. An output signal, called state-out, is turned
1 on at clock phase two if the circuit enters its accepting state. In general, phase
3 one of the clock is used to decide which states will be on after processing the

current input symbol, and to propagate this information through states with e-
arcs leaving. Phase two is used to transfer the decisions made at phase one to the

1 output of the latches that do not have ¢-arcs out.

Let us suppose we have circuits for regular expressions R; and R;, and we

j wish to construct a circuit for (R;)(Rz). We can connect the circuits in cascade
i as suggested by Fig. 4(e); this connection is shown in Fig. 10(a). Note that the

[ 14



| power, ground, clock in

! inputs) 3 figs if needed by |(5 a machine to the right

state-in - ; state-out |
power, roid clock out,
if needed by a machine |

| below ;
|

Fig. 9. Format of a circuit implementing a regular expression. | |

final state of the first machine is given an ¢-arc out. Thus the latch representing

| it is no longer needed or appropriate. We must replace it by a junction point
or, if there are several input arcs for that state, by an or-gate. As latches can :
be expected to require more area than a single gate or junction point, we can :

{ make this replacement without worrying about the geometry of the circuit, and
we shall henceforth assume such changes are made when necessary, not only in

| the concatenation construction, but in the union and closure constructions as well.
i Figure 10(b) shows an alternative organization for the circuit, in which the |

| first machine is placed above the second. Similarly, when we implement the union |
| construction of Fig. 4(d), we can choose to place either constituent circuit above

| the other or place either to the left of the other. The closure construction, since
{ it does not combine two circuits, gives us little choice; we must simply augment

the circuit with surrounding feedback and feed-forward wires as suggested by Fig.
4 4(1).

The reason we care about the relative positioning of circuits is that we desire |

| each circuit to have an aspect ratio (ratio of height and width) near one. For
| example, if we must combine two circuits that are longer than they are high, we

would prefer the vertical connection of Fig. 10(b) to the horizontal connection of
| Fig. 10(a), since the former has a squarer shape than the latter. The reason, in

| turn, for desiring an aspect ratio near one is that on the average, we can couple |
] squarish circuits with less waste spa~e than we can couple elongated circuits. For

example, neither Fig. 10(a) or (b) is very good if one of the constituent circuits |
is very tall and thin, while the other is short and wide. Another motivation for

: keeping aspect ratios low is that the basic circuits, such as latches cannot be i

| designed in a fixed area with a fixed aspect ratio if the area allotted is small and |
3 the aspect ratio is high. Thus the rectangles representing the basis constructions

15
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i Fig. 10. Circuit connections. ]

of Fig. 4(a)-(c) must be allocated space of limited aspect ratio.
| Unfortunately, just keeping the aspect ratio within bounds is not sufficient i

to guarantee efficient use of space, for one of two constituent circuits could be

i significantly larger than the other. For example, an expression like

4 (-- (a1 + 62)as + a4)as + - + -)ay, |

] forces us to create either a long, thin circuit with many long wires or an L-
shaped circuit, if we restrict ourselves to the constructions of Fig. 10. As another "4

; example, i
(((a1*az)*as)*  -an)* :

requires n nested feedback loops, so it appears to require O(n?) space no matter

16
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| what we do. As we shall see, all these problems can be solved, and circuits for
| these expressions, taking area that is proportional to the length of the expressions,
B can be generated automatically. Before proceeding to the techniques involved, let
: us illustrate the basic McNaughton-Yamada construction and also show how the

combination of unequally sized circuits tends to waste space. |

Example 4: Let us build a circuit for the regular expression .*0(0 + IN*X), |
whose parse tree was given in Fig. 3. Using judicious choices between horizontal
and vertical connections when union and concatenation constructions are used,
we might obtain the layout} suggested by Fig. 11. There, only state-in and
state-out wires are shown; input, power, ground and clock wires are omitted. {]

| VIL A Compact Hierarchical Implementation of Regular Expressions |

There are three insights necessary to our implementation of regular expressions.
| First, we must observe that given any regular expression whose parse tree has

n > 2 leaves, we can find a subtree that has more than n/3 but no more than
| 2n/3 leaves. For example, the tree of Fig. 3 has six leaves, and its subtree for

expression 1 N*X has three leaves, which is greater than two and no greater than
four. The subtree for 0 + 1N*X would also qualify. This application of “divide
and conquer” to binary trees was first used by |[LSH].

! | Once we have found a subtree of about half the leaves, we can build a circuit

C, for it, and we can build a circuit C; for the remaining tree, with a dummy leaf
| in place of the deleted subtree. This leaf is an imaginary input symbol, and when

applying the McNaughton-Yamada algorithm to it, we generate a start state s
and a final state f, using the construction of Fig. 4(c), but without the arc. A
wire connects state s of C3 to the start state of circuit Cy, and another wire runs
from the final state of C; to f. In effect, we have simply removed C,; from its

§ rightful place between s and f. Note that both states s and f are unnecessary and
can always be replaced by junction points, even if latches are created for them
initially. The arrangement is sketched in Fig. 12.

! Notice how, if Cy and C3 are about the same size and shape, they are likely to
| fit together, either side-by-side, as shown, or one above the other. In comparison, |

if we had to distort Cz by “squeezing” C; between 8 and f, we might or might
| not achieve a compact layout.

: As our circuit desgin rules introduced in Section II do not permit us to cross

i more than three wires at a point, simply laying down the wires shown in Fig. 12

1 t Note, however, that there is an equivalent regular expression with an O(n) area circuit. |§ We shall use the term “layout” in what follows to refer to the relative positioning of various
b POSTIFENIE. YAO 10°F COOP BOL SATE It) MOS VIVA! TORRENS OF a FHUTH MOre ONAINe GONG. ’ {

However, the positionings we use are intended to be such that a layout, ia the usual sease, could
‘ be done without repositioniag.
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Fig. 11. Straightforward implementation of the
| McNaughton-Yamada algorithm. |

could lead to an illegal circuit. We must therefore “pull apart” C; and C3 at four
1 channels, in which the wires can run. The idea is shown in Fig. 13. To create
4 a channel, we select a line across the circuit. Circuit elements and wires running |

f parallel to the line are held at one side of the line, while wires perpendicular to
the line are stretched. After stretching some constant amount, there will be room
to fit another wire parallel to the line. Circuit elements to which the wire must

be connected are, we presume, crossed by the line, and can be moved into the
channel to connect with the wire. .

18 |
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Fig. 12. Divide-and-conquer implementation of regular expressions. i

; -— .L. i y -— _ — 3 - vm emma ee SI _ i— 1
pnyNI TT oo 4-1 =

| Li od - | ;

Fig. 13. Channels to carry wires of Fig. 12. |
The above method for creating channels will be successful if the original = |

circuit |

1. has all wires running horizontally or vertically, J

2. never has more than two wires crossing at a point, and ]

3. uses “circuit elements” from some fixed set, so there is an a priori bound on |

| the size of a circuit element. |
Condition (3) guarantees that a channel of some fixed width will be sufficient to
run a new wire without crossing any circuit elements, and (1) and (2) assure that
the new wire will only cross one other wire at a time. Figure 14 gives an example

| of the channel creation process. i

1 oo The second insight needed is that even if C, and Cj; are about the same size,
their aspect ratios and relative sizes might be such that they do not have a com- i

J mon dimension, either the same width (for a vertical arrangement as in Fig. 12), {

i | 19



(a) before creating channel (b) after creating channel 1

Fig. 14. The channel creation process. 3

or the same height (for a horizontal arrangement). Unless our recursive circuit
layout algorithm works in such a way that when applied to C; and C,; we can ex- |
pect a dimension in common, we may be forced to connect Cy; and C5 in a manner ]
that wastes about a quarter of the space. Since the waste can go on at every ]

level of the recursion, we shall have an algorithm that uses area nl!°8a8/3 — p1.41
to implement a regular expression of size n. This result is superior to obvious ]
methods, but not as good as we can do. ]

The solution to the above problem is to design our recursive layout algorithm
to take as parameters :

| 1. the parse tree of the expression for which we want to design a circuit,
| 2. the number of nodes of that tree, and

| 3. the desired aspect ratio, a real number in the range 1/4 to 4.

} - We assert that there is a constant d such that for each parse tree of n > 2
leaves, there is a circuit of aspect ratio r and area dn, for any r in the range :
1/4 < r < 4. It will be shown that for n > 3 and aspect ratio r between 1/4 ;
and 4, we can always arrange C; and Cg, either horizontally or vertically, with |

| a border and channels adequate for connections between Cj and C, and to the i
“outside world,” and with this arrangement, recursive calls to design Cy and C3 j

can be given appropriate aspect ratios between 1/4 and 4, so that C; and Cz will
have a side in common.

| Example 5: Let us consider how the parse tree of Fig. 3 would be processed
recursively by the circuit layout algorithm. First, we must find a node from which |
between 1/3 and 2/3 of the leaves descend. The preferred candidate is the root
of the subtree for IN*X, which divides the leaves into two equal parts. As the

3 initial call to the circuit routine would normally ask for a square circuit (aspect |



.

| :

Fig. 15. Initial layout. {

ratio 1:1), we may position the subcircuits for .*0(0 + D)t and 1N*X either E
horizontally or vertically; let us choose the latter. As the first expression has 1
four leaves and the second has three,} the heights of the two subcircuits should :
be in the ratio 4 to 3. They are given the same width. A sample arrangement, }
in which the entire circuit is allocated a 10 X 10 area (in some units), and borders i

| are one unit wide, is shown in Fig. 15.

| We now lay out the circuits for IN*X and .*0(0 + D) in the rectangles ]
| of aspect ratios 3:8 and 1:2, respectively. We should, in principle, divide each
: of these expressions into two parts and recursively synthesize their circuits from ]
| circuits for the parts. However, we omit the details of those recursive calls. One ]

circuit that could result is shown in Fig. 16. |] 1
The third necessary insight is that two or more consecutive applications of :

| | the closure operator are equivalent to one. That is, for any regular expression ]
- R we have (R)* = ((R)*)*. As a consequence, we may eliminate superfluous *’s i

4 and view regular expressions as if all the operators were binary operators chosen 4
from the list: union, concatenation, union-then-closure, and concatenation-then- i

closure. We use the constructions of Fig. 4(d) and (e), followed by (f), when i
| closure is desired, to build circuits, just as in the McNaughton-Yamada algorithm. !

Operands are either single symbols, or symbols to which closure is applied, and 1

] circuits for operands can be constructed by Fig. 4(a)-(c) optionally followed by {
4(f). Note that this algebraic simplification is necessary to avoid awkward situa- |

1 tions like the expression a**-.-* which, if the McNaughton-Yamada algorithm i
| were applied blindly, would result in a circuit of area 0(n?).

The heart of the circuit layout algorithm is the recursive procedure LAYOUT 3

t D stands for the particular dummy symbol used as a placeholder for the expression IN*X. 3

3 { However, if we are careful, we can avoid allocating circuit area for the dummy symbol), which |
3 WO SSOW WIN OU FOPreronted 10 0 UFCYIL OF JUECINE PONS OBL.
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Fig. 16. Complete layout for the expression of Fig. 3. |

4 sketched in Fig. 17. The algorithm itself is a call to LAYOUT(T,n,1), where T |
is the parse tree for a regular expression of length n, i.e., T is assumed to have n J

; leaves. In LAYOUT, X is assumed to be a fixed input alphabet defined globally,

i so its size may be regarded as constant. Also b is a constant chosen large enough "
that the total width of the channels and border area, either in the horizontal

3 or vertical direction, is bounded above by b. Note that channels need to carry
| one wire each, while border areas may need to carry 4 -} log, [|X|] wires, one for
9 each of the input bits, and one each for power, ground, and the two clock phases.
1 Finally, A(n), the area alotted to a circuit for a regular expression of length n, is
] a function of the form dn — ey/n — f, whose adequacy we shall show in the next |
1 section.

: 22



function LAYOUT(T,n,r); {T is a parse tree with n > 2 leaves. LAYOUT
returns a circuit of area A(r) and aspect ratio r; we assume without loss of

: generality that r > 1; otherwise rotate the layout 80°. The circuit returned
has only horizontal and vertical wires, and at no point do more than two wires

overlap.}
begin

if n = 2 then

use McNaughton-Yamada algorithm to produce a circuit C
else {n > 3}
begin

select a node N of T such that N is the root of a subtree with

n; nodes, where n/3 < ny; < 2n/3;
let Ty be the tree with root N;

: let T; be T with the subtree rooted at N replaced by a dummy
| leaf;

: | na:=n —n; + 1;{ T, has ny leaves}
; { now we perform horizontal decomposition, as in Fig. 14}

| h:=+/A(n)/r; { bh is the height of circuit C of Fig. 14}
| hi:==h — b; { height of C; and C; in Fig. 14}
i wy:==(h xr —b) x ny /(n1 + ny); { width of Cy}
3 wa:=h xr — b — wy; {width of Cy}
: ri:=w;/hy; ro.=wsy/ ha; { aspect ratios for of and C2}

C2:=LAYOUT(T3, na, rz); |
Separate circuits C; and C, to make two horizontal ~nd four

| vertical channels for their interconnections, as shown in Fig.

14. Figure 15 showed how this operation could be done in

such a way that wires could be laid along the channels without
violating the circuit design rules we have assumed;

| Add border around C; and C,, and run wires for inputs, etc., to
feed both circuits and to produce wires out of the bottom and

| right edge, as indicated in Fig. 9;

1 Call the resulting circuit C;
end;

: return C;
end

4 Fig. 17. The recursive procedure LAYOUT.
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{ | VIIL Analysis of the Algorithm

3 We now show that LAYOUT can be made to use O(n) area, by showing that a 4
linear function A(n) can be chosen. We must pick A(n) to satisfy the following

2 constraints. :
1. The area A(n) available for C in Fig. 14 must not exceed area A(n;) + A(n2)

1 used for C; and Cz plus the area needed for borders and channels. |
] 2. The aspect ratios of C; and C, must be in the range 1/4 to 4 if that of C is. |

: 3. A(2) must be large enough that we can build a circuit for any regular expres-
] sion of length 2 in that area, with any aspect ratio up to 4. |

Lemma 1: If A(n) > 25b% and C of Fig. 14 has aspect ratio 4 or less, then C, |
and C, have aspect ratios in the range 1/4 to 4. |
Proof: The extreme cases we must consider are when ny = 2n3t and either |
a) C has aspect ratio 1, in which case C5, could be too tall and narrow, or |

: b) C has aspect ratio 4, in which case C; could be too short and wide. :
Let the height of C be A. Then in case (a) the height of C2 is A — b and its j

j width is (h — b)/3, so its aspect ratio is 3, satisfying the lemma. In case (b), the |
; height of C, is again A —b, and its width is 2(4h — b). Thus its aspect ratio will

be 4 or less provided
1,,2

i h—b2 (=)=)4h —1b

| > (;)(5)ah —b)
| that is, A > 2b. Since the area of C in this case is 4A%, the lemma follows. |]

{ Theorem 2: There exist positive constants d,e, and f such that for all n > 2, the |
function LAYOUT will succeed in producing a circuit if the allotted area A(n) is |

i dn —e\/n— f. |
Proof: Let us, for the moment, assume that d,e, and f satisfy the lemma for |
n = 2. Notice that when we divide a tree T of n > 3 leaves into T; and T5 in

i function LAYOUT, neither n; nor ny can be 1. Thus we can attempt to prove
; by induction, with a basis of n = 2, that area A(n) = dn — e\/n— f suffices for

LAYOUT to produce a circuit. To develop the induction, let n > 3, and n; = an
for some constant a, 1/3 < a < 2/3. Then the areas of Cy and C; are A(an) and
A((1 —a)n—+1), respectively, since n; +n, = n+1. Observe that C; and Cs are, |
by Lemma 1, of limited aspect ratio, and their areas are also chosen by LAYOUT

i to be of limited aspect ratio. Hence the borders and channels in Fig. 14 have
i area that is proportional to any side of C; or Cy, the constant of proportionality
] naturally depending on which side is chosen. Specifically, there is some constant |

¢ such that the extra area of circuit C, beyond that of C; and Cj, is at most .
t Since in > ny > in and ny; + nag =n + 1, it is easy to show that n;/ny must be in the

1 range 1/2 to 2. .
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: ¢v/ Aan). Thus |

= 1 — 1 A 1Am = max Aen) + AG =n +) +e/aGn)]
We assume A(m) < dm — ey/m — f for 2 < m < n, and show that the

same holds when m = n. By (1) it suffices to show that

dn —eyn—f > |

max adn —evan+ (1 —a)dn+4d — ey/(1 —an+1—2f+ Vain)| 1/3<a<2/3

! In the last term of (2), \/A(an) has been conservatively replaced by vVadn. Simp-
lifying (2) we obtain

: 02> max evi — evan —e\[ll— an +1+d— f + vada) (3)1/3<a<2/3

| Dividing (3) by —e/n yields

! 1 f—d ¢
- 0< J1— ~—14— Vad 4— NEVE a+ n t ev/n ¢ 4 | ( )

The first three terms on the right of (4) sum to at least 0.39. The next term can
] be made zero if we pick f = d. The last term is no more than 0.28 if we choose
| e = 3cv/d. Thus, for these choices of e and f in terms of d, (4) is satisfied; hence
| so is (2).

1 Now we must satisfiy the condition that A(2) is adequate to hold all circuits
for regular expressions of length 2. We simply observe that we can pick d so that

1 A(2) = d — 3¢V/d exceeds any quantity we choose, so an adequate value of d can
3 be found. {]
] One may wonder if the linear bound on area for a general regular expression
4 1s the best that could be achieved. We believe it is, because of another assump-
A tion that is generally made (|BK], e.g.) about integrated circuits, that there is

a finite (as opposed to infinitesimal) amount of area needed to store one bit of

p : information. If that is the case, then we cannot improve on the linear growth rate |
§ in Theorem 2, because there are regular expressions of length proportional to n |

i | that require n bits of information to be remembered if we are to recognize them. |
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[ A simple example is the family

| (0+ 1)*1(0 + 1)(0 + 1)-- (0 + 1)

3 where n terms (0 + 1) follow the 1. For each n, this regular expression denotes
i the set of strings of 0’s and 1’s that have a 1 n positions from the end. Clearly, we

must remember the last n inputs if we are to recognize all strings in the language.

IX. Implementation Considerations

{ Theorem 2 gives an upper bound on the required area of a circuit. However, to
design a circuit we do not necessarily wish to use the function LAYOUT starting

; with the maximum theoretically needed area, which we have called A(n). Rather
§ we should try it with half this area, initially. If we are successful in producing

: a circuit, try the algorithm again with half as much area. After the i** try, if
| successful, reduce the area by 2—(*t1) of the maximum possible area, and if we

| fail to produce a circuit, increase the allotment by this amount. By this binary
search technique we can obtain the minimum possible area for a square circuit to

within a maximum error of one part in 2* in ¢ tries after we have our first failure.
Surely § = 10 is adequate in practice. As the algorithm itself requires only 0(n?)
time at most, we do not expect that repeated tries with different areas would be
odious.

3 Another variable that might be adjusted is the initial aspect ratio. It is pos-
sible that a ratio other than one leads to a circuit of smaller area than if the

] initial aspect ratio were restricted to one. However, “tuning” this parameter is

: not done as systematically as it was for the area parameter. In particular, there

1s no reason to believe that area varies monotonically with aspect ratio, so binary
search cannot be used.

1 Another potentially promising modification of the algorithm is to allow aspect
ratios greater than 4 in certain circumstances. There must be some limit on the

] aspect ratio, as circuits implementing single states cannot be designed, in a rec-
tangle of fixed area, if that rectangle is too long and thin. However, there is

| nothing sacred about the limit 4.
There are a number of other ideas that could improve the quality of the

4 circuit. Among them are:
: 1. Use a catalog of circuits for small n. Indeed, the proof of Theorem 2 implies
3 that circuits for regular expressions of with only one operand will be selected
1 by table lookup. Circuits for some larger expressions could be stored.
: 2. As we have mentioned, the second state in the constructions for n = 1 (Fig.

4(a)-(c)), unless it is an accepting state, will eventually get an e-arc out. Thus
a latch for that state is not needed, and it can be replaced by a junction )
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| point. We can predict, by examining the entire tree, which states will be
: | accepting states of the entire circuit, and we can then save space by repre-

: senting the others by points or or-gates, rather than latches, when they are
: first introduced into the circuit.

| 3. Do not pass a wire (power, input, etc.) through a subcircuit if it is not needed
anywhere to the right or below.

| 4. When LAYOUT calls itself recursively, optimize the area of one subcircuitbefore selecting the area and aspect ratio of the second. This technique may
! cause the aspect ratios within the second circuit to exceed tolerable limits,
| which in turn may require modification of the first circuit. Thus the time
A spent by LAYOUT mat be exponential in n, but even this amount of time
3 may be worthwhile if it leads to a superior circuit design.

] X. Related Work

| The ideas of divide-and-conquer layout and of channel creation were also used
independently by C. Leiserson and by L. Valiant [V]. In terms of [Lei], we could
show Theorem 2 by proving a “2-separator theorem” for the graphs of nondeter-
ministic finite automata that we obtain by the McNaughton-Yamada construction.
Strictly speaking, the connections needed for supplying, input, power, and so on,
must by ignored in that theorem and handled outside the framework of [Lei].
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