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ABSTRACT

A problem arising in taste testing, medical, and
parapsychology experiments can be modeled as follows. A deck of n
cards contains ¢y cards labeled i, 1 < i <r. A subject guesses at
the cards sequentially. After each guess the subject is told the
card just guessed (or at least if the guess was correct or not). We
determine the optimal and worst case strategies for subjects and the
distribution of the number of correct guesses under these strategies.
We show how to use skill scoring to evaluate such experiments in a

way which (asymptotically) does not depend on the subject's strategy.
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THE ANALYSIS OF SEQUENTIAL EXPERIMENTS
WITH FEEDBACK TO SUBJECTS

Persi Diaconis and R. L. Graham

1. Introduction

For a variety of testing situations the following experiment
is performed: A subject tries to guess the outcome of a sequence of
draws without replacement from a finite population. After each

guess, the subject is given feedback information. This might be the

name of the object just guessed at--complete feedback--or only the

information that the guess Jjust made was correct or not--partial
feedback. We are interested in the subject's optimal strategy and in
methods for scoring subjects which do not depend on the strategy used
by the subject.

The following example illustrates our main results.

1l.1. Taste testing and_partially randomized clinical trials

Consider Fisher's famous Lady tasting tea (Fisher (1949) p. 11).
Eight cups of tea were prepared--four of one type and four of a
second type. The cups of tea were presented to the lady in a random
order, and she was to guess the type for each cup. With no ability
and no feedback, the lady is expected to have four of her eight
guesses correct. We propose the following variation: to help cali-
brate her guesses, the lady is told after each guess if it was
correct or not. If the lady has no tasting ability but is trying to

maximize the number of correct guesses, her optimal strategy, knowing



that a of type one and b of type two remained, is to guess the type
corresponding to max(a,b). The expected number of correct guesses
under the optimal strategy is 373/70 = 5.3.

Mathematically, this problem is the same as a problem dis-
cussed by Blackwell and Hodges (1956) and Efron (1971) in connection
with clinical trials. In comparing two treatments on 2n patients,
suppose it is decided that n patients are to get each treatment, the
allocation being otherwise random. Assume that the patients arrive
sequentially and must either be ruled ineligible or assigned one of
the two treatmeﬁts. A physician observing the outcome of each trial
would know which treatment was most probable on each trial. This
information could be used to bias the experiment if the physician
ruled less healthy patients ineligible on trials when a favored treat-
ment was more probable. A natural measure of the selection bias is
the number of correct guesses the experimenter can make by guessing
optimally. Blackwell and Hodges showed that with 2n subjects the

optimal guessing strategy leads to

1,.2 2 1 1
n + 5(2 n/(I?)-—l) =n+ 35/ - o5t 0(%) correct expected guesses.
The same problem arises in card-guessing experiments. The

usual ESP experiment uses a 25-card deck with the 5 symbols 0, +,
.fff, [::], * repeated five times each. The deck is shuffled; a
sender looks at the cards in sequence from the top down, and a sub-
ject guesses at each card after the sender looks at it. e discuss

three types of feedback:



Case 1--No feedback. If no feedback is provided, then any guessing

strategy has five correct guesses as its expected value. The distri-
bution of the number of correct guesses depends on the guessing
strategy. Several writers have shown that the variance is largest
when the guessing strategy is some permutation of the 25 symbols.

This is further discussed at the beginning of Section 3.

Case 2--Complete feedback. If the subject is shown the card guessed

each time, then the optimal strategy is to guess the most probable
remaining type at each stage. The expected number under the optimal
strategy is'8.65, a result first derived by Read (1962). In Section
2 we give closed form expressions for the expected number of correct
guesses for the optimal and worst case strategies for a deck of

arbitrary composition.

Case 3--Yes or no feedback. The situation becomes complex with par-

tial feedback--telling the subject if each guess was correct or not.
Nosimple description of the optimal strategy is known. An example
in Section 3 shows that the "greedy algorithm" which guesses the most
probable symbol at each stage is not optimal. The optimal strategy
and the expected number of correct guesses under the optimal strategy
can be determined by solving a recurrence relation numerically. For
a standard ESP deck the expectation is 6.63 correct guesses. In
Theorems 5 and 6 we show that the greedy algorithm is optimal

for partial feedback experiments with no repeated values (that 1is,

for a deck labeled (1,2,...,n)). For an empirical attempt to solve



these problems, see Thouless (1977). A thorough discussion of
statistical problems in ESP research may be found in Burdick and
Kelly (1978), and Diaconis (1978).

How should feedback experiments be evaluated? Consider a
numerical example made explicit in Table 1. A deck of 20 cards, 10
labeled "red" and 10 labeled "black," was well mixed. A sender
looked at the cards in sequence from the top down, and a subject
guessed at each card after the sender looked at it. After each trial
the guesser was told whether the guess was correct or not. There
were 14 correct guesses. If this experiment was naively evaluated by
neglecting the availability of feedback information (a widely used
approach, see Tart (1977), Chapters 1,2 for references), each trial
would be regarded as an independent binomial variable with success
probability 1/2. Binomial tables show that P(14 or more correct out
of 20) = .058. The choice sequence that the guesser actually made is
fairly close to the optimal strategy. There were 7 times that the
number of red cards remaining was equal to the number of black cards
remaining. At these trials, red and black have the same probability
of being correct and either choice is optimal. The guesses made
agree with the optimal strategy on 9 of the 13 remaining trials.
Perhaps the 14 correct guesses should be compared with 12.30, the
expected number of correct guesses under the optimal strategy.
Neglecting the availability of feedback information can lead to
crediting a subject using an optimal (or near optimal) strategy with

having "talent." On the other hand, demanding that a subject



TABLE 1

EXAMPLE OF SKILL SCORING IN AN EXPERIMENT WITH
10 RED AND 10 BLACK CARDS AND FEEDBACK
TO THE GUESSING SUBJECT

Trial No. Guess Feedback Optimal P, Card
1 B Yes Tie 1/2 B
2 B No R 9/19 R
3 B No Tie 1/2 R
4 B Yes B 9/17 B
5 R No Tie 1/2 B
6 B Yes R 7/15 B
7 - R Yes R 8/14 R
8 B Yes R 6/13 B
9 R Yes R 7/12 R

10 R Yes R 6/11 R
11 R No Tie 1/2 B
12 R Yes R 5/9 R
13 B No Tie 1/2 R
14 R Yes B 3/7 R
15 B Yes B 4/6 B
16 B Yes B 3/5 B
17 B No Tie 1/2 R
18 B Yes B 2/3 B
19 R Yes Tie 1/2 R
20 B Yes B 1 B
14 11.049
Correct

Column 1 is trial number, Column 2 is subject's guess, Column
3 is feedback information, Column 4 is optimal guess (tie means either
color is optimal), Column 5 is probability that subject's guess 1is
correct, and Column 6 is card actually present.



significantly exceed the expected number under the optimal strategy
can lead to failure to detect a "talented" subject who doesn't use
the feedback information. In Section 4 we describe a method of eval-

uation called skill scoring. The skill score compares the number of

correct guesses to a base line score calculated from the conditional

. . th . . .
expectation of the i guess given the feedback information. The
statistic is particularly simple in the present example. If at the
time of the ith guess there are r, red cards and bi black cards

remaining in the deck, then the probability of the next card being
r,

(say) red 1is B_:_i;_i'

The numbers pi——the probability of the
ith guess being correct--are given in the fifth column of Table 1.
If Zi is one or zero as the ith guess 1s correct or not, then the
skill score statistic S is defined as S = Zi:l {Zi —pi}. For this
example S = 14-11.049 = 2.95.

In Theorem 7 we show that for any guessing strategy
$/V2n/4 has a limiting standard normal distribution. TIn the example

of Table 1, S//g = 1.32. Further discussion of this example is in

Section 4.

Clearly experiments which combine feedback with sampling with
replacement are easier to analyze. Our motivation for considering
sampling without replacement is twofold. First, reanalysis of a
previously performed feedback experiment done without replacement may
be desirable. Second, experiments are often designed without
replacement to insure balance between treatments for moderate
samples. Efron (1971) gives a nice discussion of these issues and

references to standard literature.
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2. Complete Feedback Experiments

In this section we consider experiments with a deck of n cards

. . . r
containing ci cards labeled i, 1 < i <r, son =1, 1 c.. We write
- - i= i
c = (Cl’CZ"'°’Cr) for the composition vector. A subject tries to guess

what card is at each position and after each guess is shown the card at
this position. The optimal strategy for a subject trying to maximize
the total number of correct guesses is to guess the most probable symbol
at each stage. (This is easily proved by backward induction.) 1et

H= H(E) be the number of correct guesses when the optimal strategy is
used. We can defive the distribution of H when r= 2 by using variants
of an argument in Blackwell and Hodges (1957). We give the limiting

distribution of H here, the exact distribution is derived in the course
of the proof.

Theorem 1.

If < and <, tend to infinity in such a way that

cl/(cl-kcz) > p, 0<p<1, p#1/2, then

(2.1) E(H) = max(cl,cz) " ;(T}j%zﬂ‘— )+ o(1)
(2.2) P(H—max(cl,cz) =k) > Y (1-Y) k
for k = 0,1,2,... where Yy = 2 'Lﬂi_r .
1+ ip-gq
If g = ¢, = k (so p=%), then, as k tends to infinity,
(2.3) E(H) = k + % i%;% -1 =k * %Vﬁi’— % + 0(%)
k




IA
o

0 if x
(2.4) p(j'.kira > :
k/4 20 (x) -1 if x 0

where ®(x) is the standard normal cumulative distribution.

| v

Results (2.3) and (2.4) are essentially given by Blackwell
and Hodges (1957). The results show that there is a big difference
between balanced decks where cl = c2 and unbalanced decks. In the
unbalanced situation the optimal strategy does not do much better
than the strategy which always guesses the type corresponding to
max(cl,cz), An intuitive explanation is that when c1 >> 02 the
optimal guess will almost always guess type 1.

Whe; r > 2, we have not actively pursued the problem of
finding the distribution of H, but we have determined the mean of H.

If h(c) = E(H(c)), then elementary considerations show that when

. ¢, > 0, h satisfies the recursion

o —
N _-v_ i L= max(c) = _
(2.5) h(e) = ; c,+...+c h(e 6i) P e h(0) =0,
i 1 r 1 r

. . th L .
where Si has a one in the i position and zeros elsewhere, and 0 is
the vector of all zeros.

We will show that h(g) has the following closed form

expression:
Theorem 2. The solution of the recursion (2.5) is

- ~ ¢y c. c1-+. -+cr max*(f)
(.00 mtey=maxter+ 2 Ay P e een [ TR

Ofi<c



where

0 if there is a unique j such that %.= max (1)
max* (1) = _
max(i) otherwise
The sum in (2.6) 1is over the nonnegative orthant of the integer
lattice in r dimensions,

The recursion (2.5) was used by Read (1962) to numerically
determine certain values of h. We recomputed the following values of
h(c) confirming Read's calculations: h(3,3,3) = 4.78690+,
h(5,5,5,5,5) = §.64675+. A direct probabilistic interpretation of
the right side of (2.6) is given after the proof.

For a deck containing r different types with each type
repeated k times, c = ki, where 1 is a vector of r ones. For large

k, weak convergence techniques can be used to bound the right side of

(2.6):
Theorem 3. As k tends to infinity,
s m
h(ki) = k + 5 MYk + o (k) ,

where Mr is the expected value of the maximum of r independent

—standard normal variates, The notation or means the implied constant

depends on r.

The numbers Mr are tabled in Teichroew (1956) and Harter

(1961) . For example,

r|2 3 4 5

Mr [ .564 .863  1.029 1.163

10



Of course, Theorem 3 agrees with (2.3) when r = 2. When k = r = 5,
the approximation given by Theorem 3 is about 9.08 as compared with
8.65 from exact evaluation.

In the complete feedback problem it is possible for a subject
to try to minimize the expected number of correct guesses by guessing
the least probable symbol on each trial. We call this worst case
guessing. This can lead to strategies with a strange appearance.

For example, with n cards labeled {1,2,...,n} the worst strategy
guesses any card, (say 1) on the first trial and thereafter guesses

a card knoyn not to be in the deck. This leads to 1/n as the expected
number of correct guesses. Analysis of worst case guessing is valua-

ble in determining how widely the distribution of correct guesses can

vary as a function of strategy. The arguments are similar to best
case guessing and will not be given in detail. Here are some results:
Theorem 4. Let d(c) denote the expected number of correct

guesses when the worst case strategy is used with complete feedback.

...t 5 _
. 1 r 1 r min (1)
min(c) - L A I i T+ i
_ _ _ v 1t v

O*ifc ‘ 1 r 1 r

0
0
o]
+

d(e)

[
o

e
+

where min (i) = min(i) (mul(i) - 1), mul(i) is the number of j such

that ij = min(i).
As k tends to infinity,

d(kl) = k -

>1r/12 + or(/‘Z)

where Mr was defined in Theorem 3.

11



Some numerical values for d are d(3,3,3) = l.48690+,

d(5,5,5,5,5) = 2.29606 . When r = 2, min (e,

so (2.1) and (2.3) can be used for similar computations involving d.

,c2) -d=h- max(cl,cz)

Theorems 3 and 4 show that with a bounded number r of
distinct types the deviation of either best or worst case guessing
from guessing with no feedback is of order vk compared to a lead
term of k. This is crucial to results in Section 4 involving the

skill scoring statistic.

Proofs for Section 2

Proof of Theorem 1. To determine the distribution of H we follow

Blackwell and Hodges (1957) in considering an associated random walk.
Without loss of generality suppose < > Cye Following the notation
of Chapter 3 of Feller (1968), consider a random path composed of
lines of slope * 1. The walk moves up if a card of type 1 is turned
up, and down if a card of type 2 turns up. The walk begins at (0,0)
and ends at (cl-+c2, cl-cz). The optimal strategy is to guess

type 1 if the path is below the line y = ¢y = €y» guess type 2 if the
path is above this line, and guess arbitrarily at points where the
path touches the line. This is because when the path touches

Y = cl-cz, the number of cards of type 1 remaining equals the num-

ber of cards of type 2 remaining. Let T be the number of times the

random path touches the line y = c¢c, - ¢

1 9" It is not hard to show by

12



induction that for any path the number of correct guesses that the

equals ¢, +Zwhere Zis a

optimal strategy makes at time c_. + c 1

1 2

binomial random variable with parameters 1/2 and T. Thus all ran-
domness in the outcome of a run through the deck using the optimal
strategy can be attributed to the outcome of guesses when the

remaining numbers of each type were the same.

T takes values 0,1,2,... and a straightforward variant

’Cz
of the proof of Theorem 4 in Section 7 of Feller (1968) shows

that

- -
t cl c2-+t c1+c2 t c1~+c2
p— - bl

cl-+c2 t c2 t c

(2.7)  p(T=t) = 2

Notice that when c, =c T cannot take on the value 0 and

1 2’
(2.7) 1is equivalent to equation (2.3) of Blackwell and Hodges (1957).

They argue that T//k tends in distribution to the absolute value of a
standard normal, and this implies (2.4). Passing to the limit in

(2,7) when c, and sy tend to infinity with cl/(c1-+c2) > p

0<p<1, pt# % yields that T has a limiting geometric distribution
with p(T=t) = Y(l--Y)t t=0,1,2,...,y= |p-q|. The limiting distri-
bution of H is obtained from the limiting distribution of T by using

the fact that, if H given T=t is binomial with parameters 1 and t,

2
then H unconditionally has the distribution specified by (2.2). The

equation for the mean of H can be derived as a special case of (2.6).

*
Thus, when r =2, max (il,iz)= 0 unless i, =1 Then (2.6) becomes

1 72

c.\ /C c,+c
(2.8) E(H) = max (c 'Z (1])(12)/( 12]'. 2) .
i>1

1
c2)+§



When ¢ =c, =k, we have

2 2k
_ 1 K\“/ (2K 1[2%¢
B =k+3 ¢t (i)/(Zi) kot
‘1
so (2.3) follows. Taking the limit in (2.8) as TIo P yields
17 %
1 21 i
E(H) = max(c_. . c.) += L ) [pq + o(1)
1'72 2 451 \H

= max(c.. c

11€p) +%<;—1) + o(1)
V1 - 4pq

1

= max(cl,cz) + % (Tp——_qf—l) + o(l).

Proof of Theorem 2. TLet f(c) = h(c) - max(c). The recursion (2.5)

translates into
- €y ax(c)
=y Y  {f(c-3 -3 e maxle) <
f(c) Z o . {f(c (Si) + max(c Gi)} + o +Cr max(c) .

+ ...+
i1 r

or

(cl+ Ce +cr)f(z) =Zi2cif(—c—-'gi)

+ [f g max(z-—é—i) +max(€)-(c1+ e+ cr)max(z) 1.

% —
The expression in square brackets is easily seen to equal max (c) as

defined in Theorem 2. Now,writing

. (c.+...+c )l
g(c) = —— 5 f(a)
e, V..o e !

1 r

the recursion becomes

14



_ _ (c1+ C +cr)! max*(Z)
(2.9) g(c) = ?g(c—&i) * c.:'". . .c !t ec,+...+cC
i 1 r 1 r

It is clear from (2.9) that g(E) can be expressed as a sum over the

nonnegative orthant 0 # i g_E of the function

. PR *
_ (i +...-+1r). max (1)
ML) = 5 i) i+...+1

I T A

At each lattice point i the function A(i) must be multiplied by the
number of paths from ¢ to i. This number is

((cl-il)+...+(cr-ir))!

(cl—i 13 ... (cr_—ir)!

Thus,

((cl-il)+...+(c -i))!

(cl—il)! .. g:—%)!

H

a3
>
~
[ N
~

g(c) = I
0#i<i
Transforming g back to f and f back to h completes the proof of
Theorem 2.
By considering a multidimensional random walk, taking a step
in the direction of the ith coordinate when a card of type i is exposed,
we can give a direct probabilistic interpretation to the ma¥ of
Theorem 2 and min* of Theorem 4. Just as when r=2, the only random-
ness in the number of correct guesses under the optimal strategy comes
from lattice points i where max*(f)> 0. The number of correct guesses
from lattice points where max*(E) = 0 being max(c). The probability
of a correct guess for a lattice point where max*(z)> 0 is
max*(g)

i + . ..+i '
1 T

and the sum in (2.6) 1is just a sum of these

15



probabilities multiplied by the probability that the path passes

through i.
Proof of Theorem 3. We are considering a deck of n=rk cards
containing k cards marked i, 1 <i <r. For j=1,2,...,n, let Vﬁ be

an r-dimensional random vector which counts how many of each type

have been called before time j. Thus, Vl=?6 and V&(i) is the number
of cards marked i which have appeared before time j. At the jth trial
the optimal strategy is to choose any value £ such that—vj(l) =

min V,(i). The probability of a correct guess is then
i -
k - min V, (1)
i J
n-1i+1

(2.10) 5=1,2,...,n

To work with (2.10) we use weak convergence techniques from Chapter 4
of Billingsley (1968). The first step is to transform the random
vectors Vl,...,Vn into a random function which will be shown to con-
verge to an appropriate Brownian bridge. Let

—'____r__~__i—
X, = /k&_l){vj =1

The components of ij have E(i&(i)) 0, Var(ij(i)) = 1. Form a

vector valued continuous function nit: [0,1] » Rr by connecting the
components Xj(i) by straight lines as in Billingsley ((1968),pp.8-15).

Thus, It follows from Rosen's (1967) results for depen-

X, , = x..
nj/n "%
dent vector valued random variables that the r-dimensional analog of
- D
Theorem 24.1 of Billingsley (1968) holds. That is, nXt - Wt where

=0 . . . . .
Wt is an r-dimensional mean 0 Gaussian process with the following

covariance:

16



F-s(l-1¢t)

( — when i # j

for s <t , E{E\Yz(i)ﬁi(j)} =
s(1l-t) when 1 = ]

Thus, each component process 1772(1) is a Brownian bridge and, for

fixed t, cov W‘E = t(l-1¢t) I where

1
1 .
T or-1 1

This implies that Z wt(i) =0. Returning to (2.10) and summing yields
i

h k-6 , min X, (1)
(2.11) — _ ,/Lr'_il D
g n-3+1 r . n-j+1
j=1 j=1
The first sum in (2.11) is easily seen to equal k + Or (—1—03——1() (the
/k
notation Or means that the implied constant depends on r). ye will

argue that we may take expectations in (2.11) and pass to the limit

's k tends to infinity. Then,
in X, (i
n mlin j( ) 1 E(min ﬁg)
(2.12) E I ——— J ————— dt
=1 n-j+1 0 1-t

Assuming the wvalidity of (2.12) for the moment, we have shown that the

expected number of correct guesses is

k—E:I Vi + o (V)
r r

where
—0
N 1 E(min W)
vy = /r-1 J t dt
r r 1-t
0

~ T
We now show that M = - E M where M yas defined in Theorem 3. To

r r r

prove this note that one way of constructing ﬁi from r independent

(1) (1)
At
t

t is as follows.

l-dimensional Brownian bridges W

17



r . . ~
X W<J) and let ﬁo(i) g (W(l) -W) for 1 <i < r.
j=1 t t r-1 t t — —
. —0
It is easy to check that Wt has the correct covariance, t(l—t)i. Now,

i 1
W = =
Let ¢ -

for fixed t the symmetry of mean 0 Gaussian variables implies that

E{min Wii)} = - E{max Wii)}; E{min ﬁ?(i)} = - E{max W, _(1)}
i i i i f
Moreover,

2F{max if(t)(i)} = E{Range{f\?z(i)}} = -;f—l- E Range wii)}
i

= 2/ - E{max W(i)}

r-1 t
For fixed t the variables WEl) are independent Gaussian variables
with mean 0 and variance t(l1- t). It follows that
~ 1
m
M =-M / t dt = - - M as claimed.
T r 1-t 2 'r

0
We now show that the limit step in (2.12) is wvalid. We will

- D
argue in the function space D[0,1]. Note first that nXt —_ F’Z

implies min X (i) » min W (i) in D[0,1]. Next consider the contin-
nt , t

i i 1-€
uous functional T, :D[0,1] > R defined by T.(f) = £E)

dt.

Since min nit(i) is piecewise constant and equals min X, (i) on the
i, . i -

interval %5 £ < ; 1 , we have that

41
- - 1
T (min X (1)) = z min( X, , (i)) { T 4t
€, nt en<i<(1-€)n n j/n i 1-t
n
. . 1
= % min(X, (1)) (- log (1 - — -))
€n<ji<(1-€)n J n-t
min X_j_(i) min X, (i)
= Z . —— 4 O _— .
€n<j<(1-€)n "7 +1 € (n-j)2

18



To apply Markov's inequality we need to bound E(|min Xj(i)l).

. . 2 1/2 - nei 1/2
(2.13) E|min Xj(l)lirE([Xj(l)])ir(E(Xj(l)) 'r‘/m(in'—i) .

Thus, for any vy > 0,

min X, (i) o 1/2
P{lZn—12|>y}§-¢—r r r < c .

j
i (=) KD 5 e ¥? -V? 0 vk

where the positive constant c is independent of k and Y. Thus, we
have shown that the error converges to 0 in probability and the

continuous mapping theorem yields

min X (4 p (1-€ min W _(4)
(2.14) T ——“'J'T_’ J — o at

€n<j<(l-€)n "7 4 ¢

To take expectations in (2.14) we must show that the left side is

uni.formly integrable. Write M, = min X, (1) and consider
i
M, )2 EIMiHMjl
(2.15) E (Zn—i+1 < m-itD@-3+1

’

When 1 # 3, E(IMi| IMJ.[) < {E(Mi)E(MJ%)}l/Z and

2 2 i 1
(2.16) E(Mi) <r E(Xi(l)) Y- r (1 - ‘_;)

Using these bounds in (2.15) shows that

My ) 1 ! 1
—_— . e - 00
E (Zn-i+1 T SD) izj nCiFincj¥1 o7 e

This implies uniform integrability and thus shows that

19



E(M.) 1-E E(min W)
i J R 2

(2.17) X noi+1

€n<i<(1-€)n O~ -t

€

To prove (2.12) note that

dt

fl E (min ﬁt(i))
A 1-t

is a convergent integral so the right side of (2.17) approximates

this arbitrarily well for € sufficiently small. Further

EM) E([Mil) . T
l z n - i+l| <2 n-i+1 <ec I 5 n-1
i<gn i<gn i<€n
for some positive c. The last sum is a Reimann sum for
€
{ X
0 1-x

and so can be made arbitrarily small for small €. The same argument

works for

E(Mi)

L n-1i+1

(1-€)n<i

This completes the proof of (2.12) and thus of Theorem 3.
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3. Yes-No Feedback

In this section we discuss problems concerning a deck of
n cards with c, cards of type i, 1 < i <r. We again write ¢ for the

composition vector c = (cl,...,cr). On each trial the subject is

told if the previous guess was correct or not. We refer to this

situation as yes-no feedback. The problem is complicated when

max(z)> 1, so we first state results for a deck of n cards labeled
1,2,...,n. We begin with no feedback and complete feedback guessing

and compare these to yes—no feedback.

No feedback. If no feedback is provided, then any guessing

strategy has one correct guess as its expected value. Several
writers have shown that the variance of the number of correct guesses
is largest when the guessing sequence is a permutation of {1,2,...,n}

(see J. A. Greenwood (1938) and the references cited there).

Complete feedback. If the subject is shown the card just

guessed each time, then the optimal strategy is to guess a card known
to remain in the deck. The number of correct guesses has the same
distribution as a sum of n independent random variables Xi,lf i<n
where PO(i= i) = % =1- P(Xi= 0). For large n the number of correct
guesses 1s approximately normally distributed with mean log n and
standard deviation 1og_;.

If the subject is only given yes-no feedback, then the

optimal and worst case strategies are described by the following

pair of theorems.
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Theorem 5. For a deck containing n cards labeled {l,2,...,n} a
guessing strategy which maximizes the expected number of correct
guesses when yes-no feedback is available is the strategy which
guesses type 1 until the guess is correct, then guesses type 2 until
the guess is correct (or the end of the deck is reached) and so on.

If G denotes the number of correct guesses under this strategy, then

(3.1) PG>K) = & k=1,2,....n
1 1 1
(3.2) E(G)=1+7T+"'+BT=€_1+O(F)

Theorem 6. For a deck containing n cards labeled {1,2,...,n} a
guessing strategy which minimizes the expected number of correct
guesses when yes-no feedback is available is the strategy which

th trial until a guess 1is correct and then

guesses type 1 on the i
repeats the correct guess for the remaining trials. If g denotes the

number of correct guesses under this strategy, then g takes values

zero and one with probabiltiy:

(3.3) P(g= 0) =

- 1 1
(3.4) E(g) =1 - ot O(n.!)

Theorems 5 and 6 deal with the only type of deck where we can pro-
vide a simple description of the optimal strategy. In each case the
optimal stratey is the "greedy" strategy which guesses the most
probable (for Theorem 6 the least probable) type. We do not know if the

greedy strategy is optimal for decks of 2n cards with composition
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vector (2,2,...,2). We will show that the greedy strategy is not
optimal for the 9-card deck with composition vector (3,3,3). We first
need some notation.

Let p = (pl,pz,...,pr) be a vector with integer components

Py > 0. Define

(3.5) N(E';E) = the number of permutations of cl + . . . + cr symbols
which do not have symbol 1 in the first pl positions, nor symbol 2
in positions pl + 1,...,p2, etc.

Thus, N(E_;(ﬁ = (cl + . . .+ cr)f. The numbers N(_c;;)) allow
computation of the most probable type at any stage of an experiment
with yes-no feedback. They are closely related to rook polynomials

described in Chapters 7 and 8 of Riordan (1958) and are discussed

further in Diaconis, Graham, and Mallows (1979).

Algorithm to compute probabilities with yes-no feedback. gsyppose an
experiment started with composition vector -C—O and that after the jth

guess there have been Y, (i) yes answers on type i and pj (i) no

J
answers on type i, 1 < i <r. The deck now has composition vector
C - —:O - Yj' We will call ¢ the reduced composition vector.

Writing gi for the vector (0...1...0) with a 1 at position i and 0
elsewhere, the conditional probabilities of a correct (or incorrect)

guess on type i on the j + 1lst trial given Y, £ and E are:
J 3

¢y N(c - Gi;pi )

(3.6) P(yes on type i IYj ,—1;. ) = —
N(c;pj )
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_ N(c;p. +6.)
(3.7) P(no on type i|Y ;p,) = ____ZT:__E_
v N(espy)

For 1 <1i<r.

As implied by (3.6) and (3.7), the function N satisfies the

recursion

(3.8) N(esp+6,) = N(c;p) = ¢ N(c+<5k;p), 1<k<r

with N(c;0) = (c

+...4+c¢c)!
1 +cr)

This recursion can be solved in closed form to allow computation of N:

i1+ R S ir(pl) (pr) ((Cl—il) + ...+ (Cr—ir))

. . 3 ] ] ]
i i (c1 11). ...(cr 1r).

(3.9) N(c;p) = I (-1)
T 1

i<e

The proof of (3.9) is given in Diaconis, Graham, and Mallows along
with a host of other properties of N(E;;).

Let E(E};} be the expected number of correct guesses under an
optimal strategy starting from the reduced composition vector c.
E(E}E) is well defined since there are only a finite number of stra-
tegies and one (or more) of them maximizes the expected number of
correct guesses. It is straightforward to show that E satisfies the
recurrence:

(3.10) E(c;p)N(c;p) = max{E(c;p + SL)N(535_+ Ek)
k

+ E(c=8,3p)e, Ne-8,5p) + ¢ N(e -6, ;5p)}
where N(Z}B} was defined in (3.5). We have not been able to solve
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this recurrence for E(E{ﬁ) in closed form even though N is known
through (3.9). The recurrence can be solved numerically. For
example, Mary Ann Gatto (Gatto (1978)) generated values for all

composition vectors smaller than (5,5,5,5,5). Some results are:
£(3,3,3;0) = 4.26, E(4,4,4,4;0)= 5.47, E(5,5,5,5,5;0) = 6.63

The details of computing a number like E(5,5,5,5,5;6) are not simple.
The computation required 15 hours of cpu time on a Honeywell 6070
computer along with clever use of both recursions (3.8) and (3.10).
The optimal strategy at each stage is determined by finding a
k which maximizes the right side of (3.10). Formula (3.6) implies
that the greedy strategy at each stage is determined by choosing a

k maximizing c N(E:—Gk;g). We now give an example which shows that

k
the greedy strategy is not optimal.

Consider a 9-card deck with 3 each of 3 different types of
card. A complete listing of NZc;ﬁ) and E(E;b) for all (E;;) that
arise with this 9-card deck is given in Diaconis and Graham (1978).

In the situation summarized by (231;003) the optimal strategy is to
choose type 3 on the next guess. However, type 2 is more probable
than type 3 on the next guess. The situation summarized by (231;003)
could arise under the optimal strategy from starting position
(333;000) as follows: the first guess is type 1, and this is correct.
The next three guesses are type 3, and all three guesses are wrong.
The next guess on type 3 is correct. At this point the situation 1is

summarized by (232;003) and the optimal guess is type 3. If this is

correct, then the situation is summarized by (231;003).
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Even though the greedy strategy is not optimal, computations
reported in Diaconis, Gatto, and Graham (1979) show that the expected
number of correct guesses under the.greedy strategy is extremely
close to the expected number under the optimal strategy for decks
with composition wvector (3,3,3) or (5,5,5,5,5).

If e(g;és is the expected number of correct guesses for the
worst possible strategy, then e(;;;) satisfies a recurrence obtained
from replacing max by min in (3.10). We have not pursued the problem
of numerical computation of e.

Even though the optimal strategy seems to be extremely

complex, we believe that the following simple persistence conjecture

holds: In any problem with partial feedback, if symbol 1 is the
optimal guess on trial i and a guess of 1 is answered by "no," then

symbol 1 is optimal on guess i + 1.

Proofs for Section 3.

Proof of Theorem 5. TWhen the given strategy is used, the permutations

with k or more correct guesses are those in the set
Ak = {m: 'IT_l(l) < Tr"l(Z) < L L.< w-l(k)}. Thus, P{G>k} = P(TTE:Ak) = EIT
This proves (3.1) and implies (3.2).

We now argue that the outlined strategy is optimal. In this
problem a strategy S may be regarded as a sequence of n functions

s = (S "Sn) where Si :{O,l}l_l +{1,2,...,n}. The interpreta-

l,Sz,..

tion is that a point in {0,1}1_1 represents a sequence of i-1 yes or

no answers, 0 standing for no and 1 for vyes. The expected value of a
strategy is E(S) = Z?=l E(Gﬂ(i)Si) where 6ij is one or zero as i=j
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or not. We will say that strategy S dominates strategy S' if
E(S) > E(S'"). Strategies S and S' will be called equivalent if
E(S) = E(8").

We first argue that the given strategy calls the most
probable symbol at each stage. This is implied by the following

monotonicity property of the function N:
(3.11) pi>pj if and only if WI‘\I(lgp‘-_l-(Si)<fI‘\I(l;¢p—:|—Gj).

This property of N is proved and further discussed in Diaconis,
Graham, and Mallows (1979). Inequality (3.11) implies, and is
implied by, the following combinatorial fact which was first

established by Efron (1963).

(3.12) (Efron's Lemma) . Let two decks of n cards be prepared. The
first deck labeled (1,2,...,n), the second deck labeled (al,az,...,an)
with a; € {1,2,...,n}. Each deck is mixed and the cards turned over
simultaneously, one pair at a time. The probability of no matches is
largest 1f and only if there are no repeated symbols among the a;-
That is, if {a{} = {1,2,...,n}.

We have thus argued that the given strategy calls a most
probable symbol at each stage. We want to show that any strategy
which achieves the maximum number of correct guesses in this problem
has this property. We note that a maximizing strategy exists since
there are only finitely many strategies.

To begin with we may restrict attention to strategies which

do not guess symbols known not to be left in the deck since such
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strategies may be improved uniformly over all permutations by modi-
fying them to guess only symbols which have not been definitely
eliminated.

We will argue by backward induction that any strategy can be
strictly improved by being modified to choose a most probable symbol
at each stage. This 1is clear at trial n since modifying a strategy S
so that it chooses the most probable symbol on the final guess can
only increase E(S). Consider a strategy S which chooses the most
probable symbol on trials n-k, n-k+l,...,n, for fixed k > 0.

, , -k-2
Consider a history h € {0,1}n k for which § (h) = a where b # a

n4<—l
is the most probable guess and strictly more probable than a. By
(3.11) we must have pb > pa’ i.e., pb > P, + 1. No matter what the
outcome of the guess Sn—k—l(h) = a is, no symbol is more probable
than b just before trial n-k. Thus, by induction we may assume
S(h,0) = S(h,1) =Db (i.e., we can modify S to have this property
without decreasing E(S)).

Consider the portion of the "strategy tree" of S following h
(see Figure 1). Form the strategy S from S by defining gn—k—lﬂﬂ =b,
gn_k(h,O) = §n_k(h,l) = a and interchanging the two parts T01 and Tio
of S which follow (h,0,1) and (h,1,0) (see Figure 1).

We claim that for each permutation T of the deck there is a
unique permutation % of the deck such that the number of hits that S

has for T is the same as the number of hits that § has for T. This

correspondence is given by switching coordinates n-k-1 and n-k:
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Figure 1

m(n - k) for i=n-k-1 ,
G(i) = m(n-k-1) for i=n-k ,
(i) otherwise

=a
It is now a simple matter of checking the four cases m(n-k-1)
= b N N #a
TT(“-H\ to see that S has the desired property or m. For
#b

example, if T(n-k-1) = a, m(n-k) # b (and, of course, T generates
the history h), then T generates the history (h,1,0), collects one
I’
more hit (at the question Sn—k—l(h) = a) and exits into TlO'
A A A ’)
However, in S, m gets a no at the question Sn_k_l(h) = b, a yes at

~ ?
the question Sn_k(h,O) = a (collecting one hit) and also exits into

TlO' Thus,
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However, by induction if we replace én_k(h,O) = a by g;_k(h,O) = b,
then since b is (still) more probable than a, this gives a strict
improvement to §. This shows that an optimal strategy must also
guess the most probable symbol on trial n-k-1. This completes the

induction step and the theorem is proved.

Proof of Theorem 6 Under the given strategy the number g of

correct guesses is either zero or one. The probability of one cor-
rect guess 1s the probability that two permutations have one or more
matching coordinates. This probability is well known (Feller 1968,

p. 100) to be

1
2

1 11 1 1
S RERER S B L s S T

P(g =1) =1-Pg=0=1-

L

This proves (3.3) and (3.4).

We now show that the strategy given in Theorem 6 achieves
the minimum number of expected correct guesses.

Using the notation established in the proof of Theorem 5,
a strategy S is a sequence of functions S = (%_5 Srmm Sn),
Si : {O,I}i_l ~{1,2,...,n}. To begin with, it is easily shown that
the expected value of any strategy can be decreased by modifying it

so that

(3.13) si(O,....Ol) = Si_l(O,...,OO) for i=2,3,...,n

and so that S never achieves more than 1 correct guess.
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Restricting attention to strategies which satisfy (3.13) we
see that the strategy S is determined by the n numbers
sl,sz(ﬁ),SB(ﬁ),...,sn(B). The expected value of S is the probability
of one or more matches of a random permutation T to n symbols labeled
81,82(6),...,Sn(6). Efron's Lemma (3.12) shows that this probability
is smallest when {81,82(6),...,Sn(6)} = {1,2,...,n}. This proves

Theorem 6.
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4, Evaluation of Feedback Experiments

The evaluation of feedback experiments is problematic because
it is impossible to know what use a subject will make of the feedback
information. In this section we introduce an evaluation approach

called skill scoring. The idea is to compare the number of correct

guesses with a base line rate calculated from the conditional expected
number of correct guesses given the available information.

One example of skill scoring in the present setting was given
in Table 1. To motivate the abstract definitions we are about to
present, we review this example. The problem considered was card
guessing with two types (call them type 1 and type 2), k of each type
(so n= 2k cards in all) and complete feedback. We can model this by
considering the basic probability space to be Sn' the set of permuta-
tions on {1,2,...,n}, with the uniform probability measure. A permu-
tation m is chosen at random and the ith trial is declared "type 1"
if m(i) is odd and "type 2" if m(i) is even. On the ith trial the

guessing subject is given feedback.

1 ith guess is correct,

2 ith guess is incorrect.
This particular feedback function only depends on the current

coordinate. Some possible variations are:

(4.1a) Feedback might depend on previous outcomes. This is realis-
tic in card guessing experiments with unconscious cuing due to sub-

jects being within sight or earshot of one another. If there were
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few correct guesses in the early stages, more active feedback might

be made available as the experiment progressed.

(4.1b) In addition to telling if "the previous guess was correct or
not, feedback might indicate if incorrect guesses were "close."
Fisher (1924), (1928), and (1929) gives some examples of measures of

closeness.

(4.1c) Feedback might only be available on some outcomes. For
instance, the subject might be given feedback after red guesses but
no feedback after black guesses.

We formulate the general situation in terms of Sn’ the set of
permutations of {1,2,...,n} = Qn. To model a pack of cards with c;

cards labeled i we need the idea of an evaluation function.

For example, to model red-black card guessing we might consider

’ 1 if m(i) is odd
A (T(D) = <

l 2 if mw(i) is even

(4.2a) An evaluation function X is a sequence of functions

A= (A,,...,Xn) where Ki(ﬂ) = Ki(ﬁ(i)) for WS:Sn. Let the range of
Ai be denoted by %! = {Ki(ﬂ(i)): TE Sn}. An evaluation function is
of type r if ki(ﬂ) -1 = 7m(i)(mod r). Let Ai denote the algebra in
Sn generated by ll,lz,...,ki.

We will restrict attention to guessing strategies which take

values in Rl' For each sequence of guesses and each history up to
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time i, we must define a feedback function fi' For complete feedback
guessing, f, = A,(T). For yes—no feedback f, = § , where G. is
i i i AG, 1
ii
the ith guess.

(4.2b) A feedback function f is a sequence of functions

£

(f1'..., f ) where f. :R_XR_,,...,XR.XS>Q . For each fixed
n 1 1 2 1 n n

!r_.'; ')

(r 127t

o
|

l,rz,...,riL we may regard fi as a function fi(r
from Srl into Qn. This function is to be measurable when Sn is
equipped with the algebra Ai defined in (4.2a) for any r. We also
define the algebra &(r) = O{fl(rl;-),fz(rl,rz;-),...,

fi(rl,.

..,ri;'T'}.

This frightening terminology has the following interpretation:
that f is measurable means that fi only depends on the first i guesses
and the wvalues Al(ﬂ),...,ki(ﬂ). A function from % will be measura-
ble with respect to J(rl,...,ri) if it only depends on the first i

components of the permutation through the feedback information given

when guesses r_,r ..,ri are made on trials 1,2,...,1.

1’72

(4.2¢c) A feedback function is adapted if 6r A is 3(r1,...,ri)
ii

measurable for each rl’rZ""’ri’ 1 <i < n. Adaptability means

-that the feedback includes the information that the last guess was

correct or not.

(4.2d) A guessing strategy g is a sequence of functions

g = (gl,gz,...,gn) where g, is a constant and

8y Rl X .. XRi—lx Sn* Ry satisfies gi(rl,...,ri 1 ® ) is

S(rl,...,ri 1) measurable. The value of g, will be denoted G].
- 1
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(4.2e) The collection of functions A,f will be called an experiment.
We define the skill scoring statistic for an experiment by

G. )1}

|36y 5e 000654

N
w
w2
1]
[ =

. {6G.X._'E{6G.A.
i=1 i'i ii
The main motivation for considering S is that for a wide
variety of experiments S can be normed to have an approximate standard
normal distribution uniformly in guessing strategies. This is made

precise in:

Theorem 7. For an experiment as defined in (4.2e) and any

guessing strategy g} the skill scoring statistic S defined by (4.3)

satisfies

(4.4) E(S) =0

If the evaluation function is of type r as defined by
(4.2a) and the feedback function adapted as defined by (4.2¢),
then as n tends to infinity,
-2
S

t
x - £
2
(4,5) - _<_ X - —1 }' e dt .
J/ 1 1 Y21 oo
n =(1-=)
r r

Convergence in (4.5) is uniform in guessing strategies E.

We now discuss some motivation and properties of S. In the
absence of "talent," the distribution of 6G A given the feedback
ii
information is the conditional permutation distribution. S will be

large when there are more successful guesses than chance predicts.
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To compute S, only the observed guesses Gl’GZ""’Gn need be known,
not the entire guessing strategy.
For definiteness consider the example in Table l--card
guessing with complete feedback from a deck containing k red and
k black cards. As shown in Theorem 1, a subject using the optimal
. . 1 /e
(or worst case) strategy expects to obtain approximately k + = vVTk

2
1

> VTk) correct guesses. The statistic S compensates for this

(or k -
by subtracting a random correction factor with mean value k + % VTk
(or k —-% /EE). This allows us to see if the subject scored more
than chance when the strategy has been adjusted for. The conditional
expected value in (4.3) may be complicated to compute if f is

complex. For yes-no partial feedback the conditional expectations
may be computed using (3.6) and (3.7).

One penalty that must be paid for the close tracking of SG.K.
by its expected value is as follows: If the feedback information ;£l
some stage determines the composition of the remainder of the deck,
none of the subjects' guesses from that trial on have an effect on S.
This can be seen in the last guess in Table 1 when the feedback
information determined that the last remaining card was black.
Similarly, the possible corrections due to feedback are less pro-
nounced at the beginning of the deck and more pronounced toward the

end of the deck.

Theorem 7 holds because the terms in the sum for S are a
Martingale difference sequence with well-behaved variance. The
Martingale central limit theorem is in force. If there was a prac-

tical reason for doing so, the result could be extended to scoring

functions of the form
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5 = A ealy
(4.6) S iEl W, (6000655 A 0

- EW (G,...,G;5 A ,...,Ai)l:}(cl,...,ci )1}

1" 1 -1

where the functions Wi could be chosen to give desired weights to
correct or incorrect guesses depending on previous results.
We note that the form and motivation for the statistic S are quite
similar to the form and motivation for the Mantel-Haenszel statistic
as discussed (for example) by Tarone and Ware (1977). It should be
possible to show that S is locally most powerful by arguments
similar to those used to show that the Mantel-Haenszel statistic is
locally most powerful against Lehmann alternatives.

We now illustrate the hypothesis of Theorem 7 through some

examples.

(4.7) Example of the need of adaptability assumptions.

The adaptability assumption (4.2¢) simply means that the
feedback includes the information that the last guess was correct or
not. To see that there is no hope of a normal limiting result with-
out this assumption, consider an experiment with no feedback
information, for example, fi = 1. To be specific, suppose there are
n each of two types, and that the guessing strategy always guesses
type 1. Then the number of correct guesses will always be n, and
the conditional probability subtracted off at each stage will always
equal 1/2 so that S = 0. This example presents a fundamental problem

for the widely used normal approximation to classical card guessing
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experiments without feedback (this is discussed by Greville (1941),
(1944)) . It underscores the need for common sense even when
Theorem 7 is in force since, if a subject always guesses the same
type of card, the randomness captured by the limiting normality will
be due to the fluctuation of the conditional expectations in S.

The next example shows the need for the assumption of a deck
of type r by exhibiting several non-normal limits (depending on the

guessing strategy) for a deck labeled {1,2,...,n}.

(4.8) Example: Partial Feedback guessing for a deck labeled
{1,2,3,...,n}.

In this problem, as discussed in Section 3, a deck of n cards

is labeled {1,2,...,nl}. Asubject guesses the value of each card

sequentially and is told if each guess is correct or not. Here
i = ' .o s (1), ..., (d =4
A (m(i)) = n(i), fi(Gl’ 2G5 (1), m(1)) 1(1)G. and S can be
i
represented as
n 1 n
S=Z (a, . - . Z(S .}
i=1 i7T(1) n-i+1 j=1 G.m(j)

To see that the distribution of S depends on the guessing strategy we

consider three cases:
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Case I. TWorst case guessing. If the guessing strategy is the worst

case strategy established in Theorem 6,we will show that the

limiting distribution of S converges to a beta distribution on

1

—). More precisely,
2

% (14“25) tol with an atom at - % (1-
e e

(4.9) P(S <t) > G(t) as n tends to infinity where the distribution

function G(t) is defined by

_ 1 1
G(t) =0 fort<—7(1—2)r
e
. 1 1 1 1 1
=% for -3 (1 - —E) <t 5 § (a+ —5) s
e e
1/2 1 1
= /2 (t-t, for 5 (1T + —5).5 t<1 ,
e

Case II. Gi = 1. We will show that when Gi always guesses 1, the

distribution of S converges to an exponential distribution on (-»,1].

More precisely,

(4.10) P{1-S<x}>1-e " for 0<x<w

Note that while the expected value of S agrees with the limiting

expected value of 0, computation shows that

3
Var(S) = 2 log n + 0(19&H£El), as n tends to infinity.
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Case III. Best case guessing. In Theoremb5 the rule for

maximizing the expected number of hits was shown to be the rule which
guesses the most probable card at each stage. When this rule is
used, we will show that, as n>®, the statistic S tends to a countable

mixture of continuous distributions:

[e0)
(4.11) P(S<t) = I p.F,(t)
i=1 t 1
where
i+l
1 1 t-1i
= = = <
Pyt IT Ty R - P <en
j=1
where Ll’LZ"“’Li+1 are the lengths of the i + 1 intervals the unit

interval is partitioned into by dropping i points at random.

Proofs for Section 4.

Proof of Theorem 7. Consider the basic probability space Sn with the

uniform distribution. Let G ..,Gn be any sequence of guesses.

1’
S
. _ _,n
Let BO = {cb,sn}, B. = 3((;1,...,Gi+l) for i=1,2,...,n-1, B 2 .

Thus, BOCB1C. . 'CBn' Let

i
- 1 _
Z, = {8 - E{(SG.A B, .}} and X. = E Z.

i G.A, i-1 .
/n %(l——i—) ii i1 i

Because f is adapted, Xi is a Bi Martingale with E(Xi) = 0. To prove
(4.5), we first show that (4.5) holds when fi=)\i and Ei is the result
of best case guessing. Further, and without real loss, suppose that

n = rk. Let Mi denote the minimum of the number of each type seen
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before time i, so M, = 0. The probability of a correct guess on the
-th t g l : - ﬂ Z t k l
i rial is p; = "7 47 SO Z; takes values

( —r (1- pi) with probability 1
/nla-d
r r

-t P, with probability l—pi .

/ 1 1. *
n ‘;(1 —;)

\

According to the Martingale Central Limit Theorem (Hall (1977)) the

limiting normality will be demonstrated if we can show that

n
Zp,(1-p)) Prob ,, |

n ;(l -— i=1

H
B~

We show that

3=
g
2]

(@]

o
|

n
(4.12a) L op,

et
SN
)
H
O
o
.

1
(4.12b) =X P, -

=]

To demonstrate (4.12a) write

k_%-Mi i
AT T B S S
Then
n M
1 1 log n 1 i
= ==+ 0(2>) -= ——— .
niﬂ.& r ¢ n ) n n-i+1
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The inequality (2.13) implies that there is a positive constant c. such that

N /i(n-1 , . . .
E(IMiLi cr —£2E~—l—-. Using this and Markov's inequality it

follows that for any € > 0,

~

1 n M, c;
Ma Ioaoirr €<
i=1 € /n
so that (4.12a) is true. The proof of (4.12b) is similar. Hence, we

have shown that (4.7) holds when fi = Ai and Ei is best case guessing.

A similar proof works if fi = Ai and Qi is worst case guessing. If

now £, 1s an arbitrary measurable feedback sequence and Gi an arbi-
1

trary guessing strategy, let p,; = E{GG A lBi}- Recall i defined in
i1
E{S

(4.2a). Let pi:=E{66iAilAi 1}, }. Then p, <p, < .3

Py G,A,lAi 1
-1 1

and since (4.12a) and (4.12b) hold for p; and p., they must hold for
1

Pi' This completes the proof of Theorem 7.

Proofs for example (4.8).

Proof of (4.11). For worst case guessing S takes values which depend

on T, the time of the first correct guess. Let N(i,n) denote the
number of permutations TrE:Sn which do not have 7(j)=3,1< 3 <i.

Equation (3.9) implies that N(i,n) = Z;=O(—1)J(;)(n-j)! and we

see that P{T=k} = ;% N(k-1, n-1) and p{ith guess is correct]past) =

N¢i- 1, n-1)

Thus, S takes values

N(i-1, n)
. . Lo 1
(1-1) with probability o
1 n-2 . o n-2
(1-=-—-=3) with probability —;—ic
n (n-l)z n(n 1)
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N(i-1 -1 . s 1 .
N((li+,nn)) with probability T N(i-1, n-1) ,

=]
—

N(i-1, n-1)

1 - with prdbability T N(n-1, n-1) ,

i=1 N(i-1, n)

o N(i-1, n-1) 1

z — i iltiy — N

' N(i-1, 1) with probabiltiy 5 (n, n)

i=1

1 1" 1

We now show that — N(i,n) = (1 —H) + 0(;) uniformly in i.

Indeed,

i i o\t n T\
NG - a-D <3 (;)((n—;?)—'—i) <z (r.‘)(m—)—'—i)
. 420 .

n
= e + 0(n—1!) - (1-%) - o(%)

Thus, for any k, 1 <k <n,

K N(Gi-1, n-1) 1
i=1 N(i-1, n) n .

so that S takes wvalues

k 1 1 1 k 1
=+ 5(1—;) + O(—n-) with probability -H(l —E) + 0(;—-2—)

for 1 < k < n and S takes the value - %(1 -—1-2-) + 0(—11;) with probability
e

1 1
eV O(n!)'
Using these estimates shows that P(S<t) > G(t) for
t E% + -‘,lz(l—iz). For larger t we have
e
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T
Ps<t) =2+ pF+20-2 +od) <+ oy

-2+ pl- 2 < t0g2(e =) + 0D} + 0

-lia-rd T ae-H ro. b +ody
Sl dhod sl pany’ 0
T e e n n n ¥ n

0<j<nf (t)

1/2
_ 1 1
=2 (t -3) "'O(}{)

log 2(t-—§gl This completes the

NI

where we have written f(t) =

proof of (4.9).

Proof of (4.10). When the guessing strategy has Gi = 1, then S takes

values 1 - (%I—HT), k=0,1,2,...,n-1, where T is uniformly dis-

tributed on {0,1,2,...,n-1} and Hk = 1+...+1/k. So,

H_-H
P{1-S>t} = Ple I "< o "}
He-H . )
= Ple <e [a<T<n -V} (1 + 0+ 0(=)
n vn
1
log T-log n+0(f) L
= Ple < e[/ <T<n-Va}l+ o)
/n
pfa+ody<eta<T<n-Va)+ 0()
n T — - — /%

> e t as n tends to infinity,
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Proof of (4.11). With best case guessing it was shown in Theorem 5

that the number of correct guesses, G, takes value 1 with

probability p; = -f?-?I§TYT 1<4i<n-1. when G=1, let TU be

the waiting time for the jth correct gquess, for 1 < j < i. The

random variables %(Tl,...,Ti, n-Tl-F...-+Ti) are easily shown to

have as limiting distribution the distribution of the lengths

Ll’LZ""’Li+1 of the i + 1 intervals that the unit interval is
partitioned into by i random points. de Finetti (Feller 1971, p. 42)
1
> R > x, = - .
has shown Ehat P{Ll > %Xy, ,L1+]__ x1+1} (1 x1+ +x1+1)+ where

. e, k
+ denotes positive part. When G = i, write T = L, 0 Ti; then

J=
i Tj 1 n-T 1
P{Sit'G=i}=P{i— z X n-i -k - X —i—k<t}
j=1 k=0 " 7J j=0 1
t-1i
Py I, L Ly Se )

by an easy argument. This completes the proof of (4.11).
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