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ABSTRACT

A problem arising in taste testing, medical, and

parapsychology experiments can be modeled as follows. A deck of n

cards contains c, cards labeled i, 1 <1 <r. A subject guesses at

the cards sequentially. After each guess the subject is told the

card just guessed (or at least 1f the guess was correct or not). We

determine the optimal and worst case strategies for subjects and the

distribution of the number of correct guesses under these strategies.

We show how to use skill scoring to evaluate such experiments in a

way which (asymptotically) does not depend on the subject's strategy.
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THE ANALYSIS OF SEQUENTIAL EXPERIMENTS

WITH FEEDBACK TO SUBJECTS

Persi Diaconis and R. L. Graham

1. Introduction

For a variety of testing situations the following experiment

1s performed: A subject tries to guess the outcome of a sequence of

draws without replacement from a finite population. After each

guess, the subject is given feedback information. This might be the

name of the object just guessed at ——complete feedback--or only the

information that the guess just made was correct or not--partial

feedback. We are interested in the subject's optimal strategy and in

methods for scoring subjects which do not depend on the strategy used

by the subject.

The following example illustrates our main results.

1.1. Taste testing and_partially randomized clinical trials

Consider Fisher's famous Lady tasting tea (Fisher (1949) p. 11).

) Eight cups of tea were prepared--four of one type and four of a

second type. The cups of tea were presented to the lady in a random

order, and she was to guess the type for each cup. With no ability

and no feedback, the lady is expected to have four of her eight

guesses correct. We propose the following variation: to help cali-

brate her guesses, the lady 1s told after each guess if it was

correct or not. If the lady has no tasting ability but is trying to

maximize the number of correct guesses, her optimal strategy, knowing
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that a of type one and b of type two remained, 1s to guess the type

corresponding to max (a,b). The expected number of correct guesses

under the optimal strategy is 373/70= 5.3.

Mathematically, this problem is the same as a problem dis-

cussed by Blackwell and Hodges (1956) and Efron (1971) 1n connection

with clinical trials. In comparing two treatments on 2n patients,

suppose 1t 1s decided that n patients are to get each treatment, the

allocation being otherwise random. Assume that the patients arrive

sequentially and must either be ruled ineligible or assigned one of

the two treatments. A physician observing the outcome of each trial

would know which treatment was most probable on each trial. This

information could be used to bias the experiment if the physician

ruled less healthy patients ineligible on trials when a favored treat-

ment was more probable. A natural measure of the selection bias is

the number of correct guesses the experimenter can make by guessing

optimally. Blackwell and Hodges showed that with 2n subjects the

optimal guessing strategy leads to

) n +227 -1) = n + = Vm - 3+ 06) correct expected guesses.
The same problem arises in card-guessing experiments. The

usual ESP experiment uses a 25-card deck with the 5 symbols 0, +,

SI, 1, * repeated five times each. The deck is shuffled; a

sender looks at the cards 1n sequence from the top down, and a sub-

ject guesses at each card after the sender looks at it. We discuss

three types of feedback:



Case 1--No feedback. If no feedback 1s provided, then any guessing

strategy has five correct guesses as 1ts expected value. The distri-

bution of the number of correct guesses depends on the guessing

strategy. Several writers have shown that the variance 1s largest

when the guessing strategy 1s some permutation of the 25 symbols.

This 1s further discussed at the beginning of Section 3.

Case 2-—-Complete feedback. If the subject is shown the card guessed

each time, then the optimal strategy 1s to guess the most probable

remaining type at each stage. The expected number under the optimal

strategy 1s'8.65, a result first derived by Read (1962). In Section

2 we glve closed form expressions for the expected number of correct

guesses for the optimal and worst case strategies for a deck of

arbitrary composition.

Case 3—--Yes or no feedback. The situation becomes complex with par-

tial feedback--telling the subject if each guess was correct or not.

Nosimple description of the optimal strategy 1s known. An example

in Section 3 shows that the "greedy algorithm" which guesses the most

probable symbol at each stage 1s not optimal. The optimal strategy

and the expected number of correct guesses under the optimal strategy

can be determined by solving a recurrence relation numerically. For

a standard ESP deck the expectation 1s 6.63 correct guesses. In

Theorems 5 and 6 we show that the greedy algorithm 1s optimal

for partial feedback experiments with no repeated values (that 1s,

for a deck labeled (1,2,...,n)). For an empirical attempt to solve
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these problems, see Thouless (1977). A thorough discussion of

statistical problems in ESP research may be found in Burdick and

Kelly (1978), and Diaconis (1978). .

How should feedback experiments be evaluated? Consider a

numerical example made explicit in Table 1. A deck of 20 cards, 10

labeled "red" and 10 labeled "black," was well mixed. A sender

looked at the cards in sequence from the top down, and a subject

guessed at each card after the sender looked at it. After each trial

the guesser was told whether the guess was correct or not. There

were 14 correct guesses. If this experiment was naively evaluated by

neglecting the availability of feedback information (a widely used

approach, see Tart (1977), Chapters 1,2 for references), each trial

would be regarded as an independent binomial variable with success

probability 1/2. Binomial tables show that P(l4 or more correct out

of 20) = .058. The choice sequence that the guesser actually made is

fairly close to the optimal strategy. There were 7 times that the

number of red cards remaining was equal to the number of black cards

- remaining. At these trials, red and black have the same probability

of being correct and either choice is optimal. The guesses made

agree with the optimal strategy on 9 of the 13 remaining trials.

Perhaps the 14 correct guesses should be compared with 12.30, the

expected number of correct guesses under the optimal strategy.

Neglecting the availability of feedback information can lead to

crediting a subject using an optimal (or near optimal) strategy with

having "talent." On the other hand, demanding that a subject



TABLE 1

EXAMPLE OF SKILL SCORING IN AN EXPERIMENT WITH

10 RED AND 10 BLACK CARDS AND FEEDBACK

TO THE GUESSING SUBJECT

Trial No. Guess Feedback Optimal Ps Card

1 B Yes Tie 1/2 B

2 B No R 9/19 R

3 B No Tie 1/2 R

4 B Yes B 9/17 B

5 R No Tie 1/2 B

6 B Yes R 7/15 B

7 h R Yes R 8/14 R

8 B Yes R 6/13 B

9 R Yes R 7/12 R

10 R Yes R 6/11 R

11 R No Tie 1/2 B

12 R Yes R 5/9 R

13 B No Tie 1/2 R

14 R Yes B 3/7 R

15 B Yes B 4/6 B

16 B Yes B 3/5 B

17 B No Tie 1/2 R

18 B Yes B 2/3 B

19 R Yes Tie 1/2 R

20 B Yes B 1 B

14 11.049

Correct

Column 1 is trial number, Column 2 is subject's guess, Column

3 is feedback information, Column 4 1s optimal guess (tie means either

color is optimal), Column 5 is probability that subject's guess 1is

correct, and Column 6 1s card actually present.

5



significantly exceed the expected number under the optimal strategy

can lead to failure to detect a "talented" subject who doesn't use

the feedback information. In Section 4 we describe a method of eval-

uation called skill scoring. The skill score compares the number of

correct guesses to a base line score calculated from the conditional

expectation of the gto guess given the feedback information. The

statistic is particularly simple in the present example. If at the

time of the ith guess there are r, red cards and b, black cards
remaining in the deck, then the probability of the next card being

(say) red is i . The numbers p,--the probability of the
{Oh guess being correct-—are given in the fifth column of Table 1.

If Zs is one or zero as the i th guess 1s correct or not, then the

skill score statistic S 1s defined as S = ph tz, p.}. For this
example S = 14-11.049 = 2.95.

In Theorem 7 we show that for any guessing strategy

S/V2n/4 has a limiting standard normal distribution. In the example

of Table 1, S/V5 = 1.32. Further discussion of this example is in

J Section 4.

Clearly experiments which combine feedback with sampling with

replacement are easier to analyze. Our motivation for considering

sampling without replacement is twofold. First, reanalysis of a

previously performed feedback experiment done without replacement may

be desirable. Second, experiments are often designed without

replacement to insure balance between treatments for moderate

samples. Efron (1971) gives a nice discussion of these issues and

references to standard literature.
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2.CompleteFeedback Experiments

In this section we consider experiments with a deck of n cards

containing c, cards labeled i, 1 <1 <r, so n = rt 1 Cs We write= i= i

c = CSIECPTRERIID, for the composition vector. A subject tries to guess
what card 1s at each position and after each guess 1s shown the card at

this position. The optimal strategy for a subject trying to maximize

the total number of correct guesses 1s to guess the most probable symbol

at each stage. (This is easily proved by backward induction.) 1et

H= H(c) be the number of correct guesses when the optimal strategy is

used. We can derive the distribution of H when r= 2 by using variants

of an argument in Blackwell and Hodges (1957). We give the limiting

distribution of H here, the exact distribution is derived in the course

of the proof.

Theorem 1.

If cq and c, tend to infinity 1n such a way that

ci /leytey) > p, 0 <p <1l, p# 1/2, then

7.1 _ y Lo 1

(2.2) P(H - max(c,,c,) =k) > Y(1-¥)

_ 2|p =
for k = 0,1,2,... where y = .

1+ [p-gq

If Cy = c, = k (so p=%), then, as k tends to infinity,

2k
1 { 2 1 = 1 1= — an = + =n - A —

k
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i <
Hk 0 if x <0

(2.4) P{——= XxX] > )

k/4 2@ (x) -1 if x > 0

where ®(x) is the standard normal cumulative distribution.

Results (2.3) and (2.4) are essentially given by Blackwell

and Hodges (1957). The results show that there is a big difference

between balanced decks where cq = <, and unbalanced decks. In the

unbalanced situation the optimal strategy does not do much better

than the strategy which always guesses the type corresponding to

max (c;,c,). An intuitive explanation is that when cy >> c, the

optimal guess will almost always guess type 1.

When r > 2, we have not actively pursued the problem of

finding the distribution of H, but we have determined the mean of H.

If h(c) = E(H(c)), then elementary considerations show that when

r

2:21 c. > 0, h satisfies the recursion

2.5) h(@ =F Ft h@-§)+—mx@ qo
' .c,+...+cC i c.+...+4c¢c ' ’

i 1 r 1 r

= th CL =

where 0. has a one 1n the 1 position and zeros elsewhere, and 0 is
} the vector of all zeros.

We will show that h(c) has the following closed form

expression:

Theorem 2. The solution of the recursion (2.5) 1s

} 3 cq Cc <q +c, nae CD)
(2.6) hic) =max(c) + 2 i NE EY If (NESEO

O0#i<c t



where

0 if there is a unique Jj such that i. = max(i)
max” (i) = BN

max (i) otherwise

The sum 1n (2.6) 1s over the nonnegative orthant of the integer

lattice in r dimensions,

The recursion (2.5) was used by Read (1962) to numerically

determine certain values of h. We recomputed the following values of

-~ +
h(c) confirming Read's calculations: h(3,3,3) = 4.78690 ,

+

h(5,5,5,5,5) = 8.64675 . A direct probabilistic interpretation of

the right side of (2.6) 1s given after the proof.

For a deck containing r different types with each type

repeated k times, c = ki, where 1 is a vector of r ones. For large

k, weak convergence techniques can be used to bound the right side of

(2.0):

Theorem 3. As k tends to infinity,

-

h(ki) = k + = M Vk + o_(Vk),
2 Tr r

where M_ 1s the expected value of the maximum of r independent

~standard normal variates, The notation 0 means the implied constant

depends on r.

The numbers Mo are tabled in Teichroew (1956) and Harter

(1961). For example,

r 2 3 4 5

M .564 .863 1.029 1.163
r
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Of course, Theorem 3 agrees with (2.3) when r = 2. When k = r = 5,

the approximation given by Theorem 3 is about 9.08 as compared with

8.65 from exact evaluation.

In the complete feedback problem it 1s possible for a subject

to try to minimize the expected number of correct guesses by guessing

the least probable symbol on each trial. We call this worst case

guessing. This can lead to strategies with a strange appearance.

For example, with n cards labeled {1,2,00.,n) the worst strategy

guesses any card, (say 1) on the first trial and thereafter guesses

a card known not to be in the deck. This leads to 1/n as the expected

number of correct guesses. Analysis of worst case guessing 1s valua-

ble in determining how widely the distribution of correct guesses can

vary as a function of strategy. The arguments are similar to best

case guessing and will not be given 1n detail. Here are some results:

Theorem 4. Let d(c) denote the expected number of correct

guesses when the worst case strategy 1s used with complete feedback.

cy C. cpt. tel | Ck
S) = min(e 3 __min(1)

d(c) = mine) - 2 A EY | ETE
O#1i<c | t

x — —_ — —
where min (i) = min(i) (mul(i) - 1), mul(i)is the number of j such

that Ls = min(i).

As k tends to infinity,

d(kl) = k - = M Vk + o_(Vk)
2 r Y

where ML was defined in Theorem 3.
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Some numerical values for d are d(3,3,3) = 1.48690,

d(5,5,5,5,5) = 2.29606. When r = 2, min(c ,c,) = d = h - max(c,,c,)
so (2.1) and (2.3) can be used for similar computations involving d.

Theorems 3 and 4 show that with a bounded number r of

distinct types the deviation of either best or worst case guessing

from guessing with no feedback 1s of order Vk compared to a lead

term of k. This is crucial to results in Section 4 involving the

skill scoring statistic.

Proofs for Section 2

Proof of Theorem 1. To determine the distribution of H we follow

Blackwell and Hodges (1957) in considering an associated random walk.

Without loss of generality suppose <q > Cpe Following the notation

of Chapter 3 of Feller (1968), consider a random path composed of

lines of slope * 1. The walk moves up 1f a card of type 1 1s turned

up, and down if a card of type 2 turns up. The walk begins at (0,0)

and ends at (c +co, C, = Co). The optimal strategy 1s to guess

type 1 1f the path 1s below the line y = C,= Cy» guess type 2 1f the

path is above this line, and guess arbitrarily at points where the

path touches the line. This 1s because when the path touches

Y = Cy = Cys the number of cards of type 1 remaining equals the num-

ber of cards of type 2 remaining. Let T be the number of times the

random path touches the line y = Cy = Cpe It 1s not hard to show by

12



induction that for any path the number of correct guesses that the

optimal strategy makes at time c. + Ch equals C +7Z where Z 1s a

binomial random variable with parameters 1/2 and T. Thus all ran-

domness 1n the outcome of a run through the deck using the optimal

strategy can be attributed to the outcome of guesses when the

remaining numbers of each type were the same.

T takes values 0,1,2,...5¢, and a straightforward variant

of the proof of Theorem 4 in Section 7 of Feller (1968) shows

that

- c,-c.+t [c,+c,~-t Cc tc,

(2.7) p(T=1t) = ot aT | fe, 2 I e, ) t=0,1,...,c,.
Notice that when C1 = Cys T cannot take on the value 0 and

(2.7) 1s equivalent to equation (2.3) of Blackwell and Hodges (1957).

They argue that T/Vk tends in distribution to the absolute value of a

standard normal, and this implies (2.4). Passing to the limit in

(2.7) when c, and c, tend to infinity with ci /(ey+ey) > p

0 <p<1l, p# yields that T has a limiting geometric distribution

) with p(T=t) = v(1-v)" £=0,1,2,...,y=|p-q|. The limiting distri-

bution of H 1s obtained from the limiting distribution of T by using

the fact that, if H given T=t is binomial with parameters : and t,
then H unconditionally has the distribution specified by (2.2). The

equation for the mean of H can be derived as a special case of (2.6).

Thus, when r= 2, max (i,,1,) = 0 unless 1, =1,. Then (2.6) becomes

C Cc c, +c

(2.8) B(H) = max(c,,c, ) + 3 I CI t. 2).
~i>1
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When cy =c¢, =k, we have

2 2k
_ 1 k 2k 12

E(H) = k +5 x (5/69 _ k i {6 |i>1 Kk

“1
so (2.3) follows. Taking the limit in (2.8) as FR p yields

17

1 21 i
E(H) = max(c. .c.) += I Pq + o(1)

1' 2 2 1
i>1

= max (c,,c,) + - == + o(1)v1 = 4pq

= max (c c) 4 + 1 -17 + o(l)
Trertepe) +g (pea

Proof of Theorem 2. Tet f(c) = h(c) - max(c). The recursion (2.5)

translates into

_ c, (©)f(c) = —+. {f(c-6 c-6 Maxie) c(c) 3] c+. to {f(c 6.) +max(c 6.0) + to max (c) .
i 1 r 1 r

or

(c + Ce tec )f(e) =Llc, f(c - 5.)
) i

+ = cy max (c - 65) + max (c)-(c, + ce. +c Jmax(c) 1.
p—

The expression in square brackets is easily seen to equal max (c) as

defined in Theorem 2. Now,writing

BN (cyt... te): B
gc) = ——7f(c) ,

1 r

the recursion becomes

14



_ _ (c + Co . te). max. (¢)
2, = - SS.SO... J. 1.7 A(2.9) g(c) 2 gle 04) Toe. cl cc +...+c

1 1 r 1 r

It is clear from (2.9) that g(c) can be expressed as a sum over the

nonnegative orthant 0 # i<ec of the function

i, +...+1 )! *

AI) = (3, i) max (i)
1H Yr 1 Ty

At each lattice point i the function A(i) must be multiplied by the

number of paths from ¢ to i. This number is

-i) +... - i .((ey -1,) +c _-1))
ou: 1 IE '

(c,=i 1]. . oo. (c i): :

Thus,

- 1 +... - 1 !3 (cy i) + (ec i) _
gc) =  ————F+— (1) .

0#i<i

Transforming g back to f and f back to h completes the proof of

Theorem 2.

By considering a multidimensional random walk, taking a step

) in the direction of the th coordinate when a card of type 1 is exposed,

we can give a direct probabilistic interpretation to the max of

Theorem 2 and min* of Theorem 4. Just as when r=2, the only random-

ness in the number of correct guesses under the optimal strategy comes

— fo

from lattice points i where max (1) > 0. The number of correct guesses
x — _

from lattice points where max (i)= 0 being max(c). The probability
x —

of a correct guess for a lattice point where max (i)> 0 is

x —

max (i)
~~,  .: , and the sum in (2.6) 1s Just a sum of these
1 t. co tL
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probabilities multiplied by the probability that the path passes

through i.

Proof of Theorem 3. We are considering a deck of n=rk cards

containing k cards marked i, 1 <i <r. For j=1,2,...,n, let v be
an r-dimensional random vector which counts how many of each type

have been called before time J. Thus, v,=0 and V, (4) is the number
of cards marked 1 which have appeared before time Jj. At the 5 th trial

the optimal strategy is to choose any value % such that V. (2) =

min V.@). The probability of a correct guess is then
1 -—

k = min V, (1)

i J

(2.10) Th i+ 1 i =1,2,...,n .

To work with (2.10) we use weak convergence techniques from Chapter 4

of Billingsley (1968). The first step is to transform the random

vectors Vises V into a random function which will be shown to con-
verge to an appropriate Brownian bridge. Let

x, - in ET

The components of X, have EX. (1) = 0, Var (x. (1)) = 1. Form a
vector valued continuous function X, : [0,1] > R* by connecting the

components X, (1) by straight lines as in Billingsley ((1968),pp.8-15).

Thus, Xi /n = xe It follows from Rosen's (1967) results for depen-
dent vector valued random variables that the r-dimensional analog of

~ D _4

Theorem 24.1 of Billingsley (1968) holds. That 1is, nt — Wo where

Wo 1s an r-dimensional mean 0 Gaussian process with the following
covariance:

16



 -s(1 -1t)

—q 5 Ts = 1 when 1 #
for s <t , E{W_ (WwW _(3)} = {

s(l-1t) when 1 = J .

Thus, each component process Wo) is a Brownian bridge and, for

fixed t, cov WW, — t(1-t) I where

1

) _ | 1 . B 7)1°.
- — 1

r-1

This implies that 2 Ww (1) =0. Returning to (2.10) and summing yields
1

0 Kk — 6 , min X, (1)
(2.11) 5 Sr J k(r-1) 5 — .

j=1 J r j=1 n=

The first sum in (2.11) 1s easily seen to equal k + 0. (122) (the/k

notation 0. means that the implied constant depends on r). we will

argue that we may take expectations in (2.11) and pass to the limit

'sk tends to infinity. Then,

min X. i
n i ) 1 E (min W))

(2.12) E D —— > —dt .
|j=1 n-j 0 1-t

Assuming the validity of (2.12) for the moment, we have shown that the

expected number of correct guesses 1s

k = MM vk + o (Vk)
r r

where

—0

N 1 E(min W)

Mv = Jr-1 | A“I PUr r 1-t
0

~ T

We now show that M = - 5 where M was defined in Theorem 3. Tor r r

prove this note that one way of constructing W from r independent
py : (1) (r)

l-dimensional Brownian bridges ¥. yee a WY is as follows.

17
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R r a A

Let W = 1 2. wd) and let Wo (41) : rowdy ) for 1 < 1 < r.
t Liq t t r-1 t t —- =

—0

It 1s easy to check that W_ has the correct covariance, t (1-t)}. Now,

for fixed t the symmetry of mean 0 Gaussian variables implies that

(i), _ (i) . —O0,, —0
E{min W } = - E{max Ww, }: E{min W_(i)} = - E{max W, (1)} i

i i i" iC

Moreover,

0 ] / Tr 1
2E {max Wo(1)) = E {Range {W, (i) }} =v 7 E Range wet)

1

= 2/ —% Emax wP}|
r-1 t

For fixed t the variables wD are independent Gaussian varilables
with mean 0 and variance t(l- t). It follows that

~ 1
-M =-M Jt ae. Ty as claimed.

r r Jo 1-t 2 r
We now show that the limit step in (2.12) is valid. We will

z D, —o

argue 1n the function space D[0,1]. Note first that Ke a Ww.

implies min xX (1) > min Wo(1) in D[0,1]. Next consider the contin-
1 1 1-€

uous functional T, :D[0,1]+ R defined by T,.(f)= LE) dt.
€ S c 1-t

. Since min X (1) is piecewise constant and equals min X,(i) on the
i, - i

interval Lc < =, we have that

i+1

Te (min X (1) = ) min( X., (i) | n he dti En<j<(1-€)n J i
n

, : 1

= min(X, (i)) (- log (1 - —7))
€n<j<(1l-€)n !

min X. (1) min X. (i)

= L ch + 0c %— .
€n<j<(1-€)n J | (n-7)

18



To apply Markov's inequality we need to bound E(|min X, (1).

(2.13) Elmin X,(D)| <r E([X.(D]) <r (BEX, ()) "“=¢/EF (1821) |
J J — J k(r-1) \ n-1

Thus, for any Y > 0,

min JX. (1) 1 - 1/2

i (0-3) j (n-3) (n-1)""7 . v/k

where the positive constant c¢ 1s independent of k and Y. Thus, we

have shown that the error converges to 0 in probability and the

continuous mapping theorem yields

min KX. (LY D 1-€ min W (4)
(2.14) 2 —_—l a — ————— dt.— 1 _

€n<i<(1-€)n "TI + ¢ Lot

To take expectations in (2.14) we must show that the left side is

uni.formly integrable. Write M, = min X, (i) and consider
J i J

M, ) BM |v]. SEPE— < — |(2.15) E 6 nit) [ hy EET CERES)
: 2 2.1/2

When i # J, EC) | |, ) < (EMEC) / and; J —

2 2 r i 1, n-1
EM.) <r E(X,(1 = = - =) —(2.16) (M)) <r EX; (1) Dz LP aT

Using these bounds in (2.15) shows that

2

" ) 1 Va—_——— I— —————ete eel LO g8 Nn > .E 6 n-1i+1 — k(n-1) he n-i+1n-j+1
This implies uniform integrability and thus shows that
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EM.) 1-E E (min Ww)
(2.17) 2, rr > —————— dt .

— + —

€n<i<(1-€)n "71 1 S Lot

To prove (2.12) note that

I E(min W (1))
IDN

0 1-t

1s a convergent integral so the right side of (2.17) approximates

this arbitrarily well for € sufficiently small. Further

EM.) E(|M, |) -
se rpc I Set
i<Cn i<€n i<€n

for some positive cC. The last sum 1s a Reimann sum for

S
/ x

0 1 -x

and so can be made arbitrarily small for small €. The same argument

works for

EM.)
’ n-i+1

(1-€)n<i

This completes the proof of (2.12) and thus of Theorem 3.
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3. Yes-No Feedback

In this section we discuss problems concerning a deck of

n cards with C, cards of type i, 1 <1 <r. We again writec¢ for the

composition vector c = (ciseensc). On each trial the subject is
told 1f the previous guess was correct or not. We refer to this

situation as yes—-no feedback. The problem is complicated when

max(c)> 1, so we first state results for a deck of n cards labeled

1,2,...,n. We begin with no feedback and complete feedback guessing

and compare these to yes—no feedback.

No feedback. If no feedback 1s provided, then any guessing

strategy has one correct guess as its expected value. Several

writers have shown that the variance of the number of correct guesses

1s largest when the guessing sequence 1s a permutation of {1,2,...,n}

(see J. A. Greenwood (1938) and the references cited there).

Complete feedback. If the subject is shown the card just

guessed each time, then the optimal strategy is to guess a card known

) to remain in the deck. The number of correct guesses has the same

distribution as a sum of n independent random variables X;pl <2 <n

where P(X, = 1) = > 1 - P(X, = 0). For large n the number of correct
guesses 1s approximately normally distributed with mean log n and

standard deviation Vlog n.

If the subject 1s only given yes-no feedback, then the

optimal and worst case strategies are described by the following

pair of theorems.
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Theorem 5. For a deck containing n cards labeled {1,2,...,n} a

guessing strategy which maximizes the expected number of correct

guesses when yes-no feedback 1s available 1s the strategy which

guesses type 1 until the guess 1s correct, then guesses type 2 until

the guess 1s correct (or the end of the deck is reached) and so on.

If G denotes the number of correct guesses under this strategy, then

1

(3.1) P(G>Kk) = = k=1,2,...,n .

1 1

(3.2) E(G) = 1 +t 57 + ... +5 = e — 1 + 0(=) .

Theorem 6. For a deck containing n cards labeled {1,2,...,n} a

guessing strategy which minimizes the expected number of correct

guesses when yes-no feedback 1s available 1s the strategy which

guesses type 1 on the j th trial until a guess 1s correct and then

repeats the correct guess for the remaining trials. If g denotes the

number of correct guesses under this strategy, then g takes values

zero and one with probabiltiy:

- 1 1

(3.3) P(g= 0) = 2 +09) = 1 - P(g=1) .

1
(3.4) E(g) = 1 - 1 + 0(=p) .

e n.

Theorems 5 and 6 deal with the only type of deck where we can pro-

vide a simple description of the optimal strategy. In each case the

optimal stratey 1s the "greedy" strategy which guesses the most

probable (for Theorem 6 the least probable) type. We do not know if the

greedy strategy 1s optimal for decks of 2n cards with composition
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vector (2,2,...,2). We will show that the greedy strategy is not

optimal for the 9-card deck with composition vector (3,3,3). We first

need some notation.

Letp = (pysPys>---5p ) be a vector with integer components

P; > 0. Define

(3.5) N(c;p) = the number of permutations of cl + . . . + c. symbols
which do not have symbol 1 in the first pl positions, nor symbol 2

in positions pl + lyeevsPys etc.

Thus, N(c30)= (cl+ . . . + ce. The numbers N(c;p) allow
computation of the most probable type at any stage of an experiment

with yes-no feedback. They are closely related to rook polynomials

described in Chapters 7 and 8 of Riordan (1958) and are discussed

further in Diaconis, Graham, and Mallows (1979).

Algorithm to compute probabilities with yes—no feedback. gyppose an

experiment started with composition vector [a and that after the 41h
guess there have been Yi) yes answers on type i and p, (1) no

answers on type 1, 1 <1 <r. The deck now has composition vector

C = <q = Y.. We will callc¢ the reduced composition vector.
Writing 8, for the vector (0...1... 0) with a 1 at position i and 0

elsewhere, the conditional probabilities of a correct (or incorrect)

guess on type 1 on the J + 1st trial given and P, are:
_ c, N(c- §,5p.)

(3.6) P (yes on type i |Y, ,p.)= .
bo NSP, )

J
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_ N(csp. +6.)
(3.7) P(no on type i|Y ;p,) = ————

bd N(c;py)

For 1 <1 <r. .

As implied by(3.6) and (3.7), the functionN satisfies the

recursion

(3.8) N(c;p+8) = N(e3p) = ¢ N(c+8 3p), 1<k<r

with N(c;0) = (ey +.oote )! .

This recursion can be solved in closed form to allow computation of N:

_ i +...+1 4p p ((c,-i) +...+ (c -i))1 1 1 71

(3.9) N(c3p) = I (-1) it EO a JtEEE Cc _— X .nC 1 r 1 17° "7" Yr r’’
i<c

The proof of (3.9) 1s given in Diaconis, Graham, and Mallows along

with a host of other properties of N(c;p).

Let E(c;p) be the expected number of correct guesses under an

optimal strategy starting from the reduced composition vector C.

E(c;p) 1s well defined since there are only a finite number of stra-

tegies and one (or more) of them maximizes the expected number of

correct guesses. It 1s straightforward to show that E satisfies the

recurrence:

(3.10) E(c;pIN(e;p) = max{E(c;p+ 8)N(csp+ 8)
k

+ E(c-8,3p)e, N(e=6,5p) + ¢ N(c-05p)]

where N(c;p) was defined in (3.5). We have not been able to solve
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this recurrence for E(c;0) in closed form even though N 1s known

through (3.9). The recurrence can be solved numerically. For

example, Mary Ann Gatto (Gatto (1978)) generated values for all

composition vectors smaller than (5,5,5,5,5). Some results are:

E(3,3,3;0) = 4.26, E(4,4,4,4;0)= 5.47, E(5,5,5,5,5;0) = 6.63 .

The details of computing a number like £(5,5,5,5,5;0) are not simple.

The computation required 15 hours of cpu time on a Honeywell 6070

computer along with clever use of both recursions (3.8) and (3.10).

The optimal strategy at each stage 1s determined by finding a

k which maximizes the right side of (3.10). Formula (3.6) implies

that the greedy strategy at each stage is determined by choosing a

k Maximizing C, N(c - 68, 3p). We now give an example which shows that
the greedy strategy is not optimal.

Consider a 9-card deck with 3 each of 3 different types of

card. A complete listing of N(c;p) and E(c;p) for all (c;p) that

arise with this 9-card deck is given in Diaconis and Graham (1978).

In the situation summarized by(231;003)the optimal strategy is to

choose type 3 on the next guess. However, type 2 1s more probable

than type 3 on the next guess. The situation summarized by (231;003)

could arise under the optimal strategy from starting position

(333;000) as follows: the first guess 1s type 1, and this 1s correct.

The next three guesses are type 3, and all three guesses are wrong.

The next guess on type 3 is correct. At this point the situation 1s

summarized by (232;003) and the optimal guess is type 3. If this is

correct, then the situation is summarized by(231;003).
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Even though the greedy strategy 1s not optimal, computations

reported in Diaconis, Gatto, and Graham (1979) show that the expected

number of correct guesses under the.greedy strategy 1s extremely

close to the expected number under the optimal strategy for decks

with composition vector (3,3,3)or (5,5,5,5,5).

If e(c;p) 1s the expected number of correct guesses for the

worst possible strategy, then e (cip) satisfies a recurrence obtained

from replacing max by min in (3.10). We have not pursued the problem

of numerical computation of e.

Even though the optimal strategy seems to be extremely

complex, we believe that the following simple persistence conjecture

holds: In any problem with partial feedback, if symbol 1 1s the

optimal guess on trial 1 and a guess of 1 is answered by "no," then

symbol 1 is optimal on guess 1 + 1.

Proofs for Section 3.

Proof of Theorem 5. When the given strategy 1s used, the permutations

with k or more correct guesses are those in the set

i _ -1 -1 -1

A= mem "(<1 7@)< . ..<7 (k)}. Thus, P{G>k} = P(meA, ) = 5
This proves (3.1) and implies (3.2).

We now argue that the outlined strategy 1s optimal. In this

problem a strategy S may be regarded as a sequence of n functions

Ss = (8155,,+++55) where S; . {0,13 71 + {1,2,...,n}. The interpreta-
tion 1s that a point in {0,131 represents a sequence of 1-1 yes or

no answers, 0 standing for no and 1 for yes. The expected value of a

strategy is E(S) = Ii “Or (1)s,) where 043 1s one Or zero as 1=]
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or not. We will say that strategy S dominates strategy S' if

E(S) > E(S'"). Strategies S and S' will be called equivalent if

E(S) = E(S"). )

We first argue that the given strategy calls the most

probable symbol at each stage. This 1s implied by the following

monotonicity property of the function N:

(3.11) p;>p, if and only if N(L;p+8,) <N(1;p +8).

This property of N 1s proved and further discussed in Diaconis,

Graham, and Mallows (1979). Inequality (3.11) implies, and 1is

implied by, the following combinatorial fact which was first

established by Efron (1963).

(3.12) (Efron's Lemma). Let two decks of n cards be prepared. The .

first deck labeled (1,2,...,n), the second deck labeled (a)5a55¢--52a)

with a, € {1,2,...,n}. Each deck 1s mixed and the cards turned over

simultaneously, one pair at a time. The probability of no matches 1is

largest 1f and only 1f there are no repeated symbols among the a

That is, if {a,} = {1,2,...,n}.

We have thus argued that the given strategy calls a most

probable symbol at each stage. We want to show that any strategy

which achieves the maximum number of correct guesses in this problem

has this property. We note that a maximizing strategy exists since

there are only finitely many strategies.

To begin with we may restrict attention to strategies which

do not guess symbols known not to be left in the deck since such
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strategies may be improved uniformly over all permutations by modi-

fying them to guess only symbols which have not been definitely

eliminated.

We will argue by backward induction that any strategy can be

strictly improved by being modified to choose a most probable symbol

at each stage. This 1s clear at trial n since modifying a strategy S

so that it chooses the most probable symbol on the final guess can

only increase E(S). Consider a strategy S which chooses the most

probable symbol on trials n-k, n-k+l,...,n, for fixed k >0.

Consider a history h ¢€ {0,132 for which Sg 2 (h) = a where b # a
1s the most probable guess and strictly more probable than a. By

(3.11) we must have Py > p> i.e., Py, > P, + 1. No matter what the

outcome of the guess Spey (MW) = a is, no symbol 1s more probable

than b just before trial n-k. Thus, by induction we may assume

S(h,0) = S(h,1) = Db (i.e., we can modify S to have this property

without decreasing E(S)).

Consider the portion of the "strategy tree" of S following h

(see Figure 1). Form the strategy S from S by defining Sy (0) =b,

s__, (0,0) = s__ (h,1) = a and interchanging the two parts To; and LO
of S which follow (h,0,1) and (h,1,0) (see Figure 1).

We claim that for each permutation T of the deck there 1s a

unique permutation m of the deck such that the number of hits that S

has for T 1s the same as the number of hits that S has for m. This

correspondence 1s given by switching coordinates n-k-1 and n-k:
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§ p
5 5
¢ nh - ¢ h
) )
¢ ¢
) )

5 S
a b

b b a a

0 1 0 1 0 1 0 1

Figure 1

i.e.,

jo for 1=n-%k-1 ,G(i) = mT(n-k-1) for i=n-k ,

a otherwise .
=a

It is now a simple matter of checking the four cases T(n-k-1) ,
= TT b A A # a

n=) to see that S has the desired property or m. For# b

example, if T(n-k-1)= a, m(n-k) # b (and, of course, T generates

the history h), then 7 generates the history (h,1,0), collects one
n

more hit (at the question S11 (M) = a) and exits into Tio
~ ~ FAY ?

However, in S, T gets a no at the question S11 (0) = b, a yes at
A 2

the question 5 (h:0) = a (collecting one hit) and also exits into

Tio Thus,
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E(S) > E(S) .

However, by induction if we replace Si (0) = a by S__1 (0,0) = Db,

then since b 1s (still) more probable than a, this gives a strict

improvement to S. This shows that an optimal strategy must also

guess the most probable symbol on trial n-k-1. This completes the

induction step and the theorem is proved.

Proof of Theorem 6 Under the given strategy the number g of

correct guesses 1s either zero or one. The probability of one cor-

rect guess 1s the probability that two permutations have one or more

matching coordinates. This probability 1s well known (Feller 1968,

p. 100) to be

1 1 -1 1 1 1

P(g = 1) =1-Pe=0=1-37 bart. Ft (= 1) ar-i-2 07) .

This proves (3.3) and (3.4).

We now show that the strategy given in Theorem 6 achieves

the minimum number of expected correct guesses.

Using the notation established in the proof of Theorem J,

a strategy S is a sequence of functions S = (8 8 orm 5.)
i-1

S : {0,111 ~{1,2,...,n}. To begin with, it is easily shown that
the expected value of any strategy can be decreased by modifying it

so that

(3.13) s, (0,....01) = S; 1 (0y...,00) for i=2,3,...,n3 -

and so that S never achieves more than 1 correct guess.
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Restricting attention to strategies which satisfy (3.13) we

see that the strategy S 1s determined by the n numbers

$,55,(0),5,(0),...,5 (0). The expected value of S is the probability
of one or more matches of a random permutation T to n symbols labeled

$155,(0),...,5 (0). Efron's Lemma (3.12) shows that this probability

is smallest when (8,,8,(0),...,5_(0)} = {1,2,...,n}. This proves
Theorem 6.
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4, Evaluation of Feedback Experiments

The evaluation of feedback experiments 1s problematic because

it 1s impossible to know what use a subject will make of the feedback

information. In this section we introduce an evaluation approach

called skill scoring. The idea is to compare the number of correct

guesses with a base line rate calculated from the conditional expected

number of correct guesses given the available information.

One example of skill scoring in the present setting was given

in Table 1. To motivate the abstract definitions we are about to

present, we review this example. The problem considered was card

guessing with two types (call them type 1 and type 2), k of each type

(so n= 2k cards in all) and complete feedback. We can model this by

considering the basic probability space to be Sy the set of permuta-

tions on {1,2,...,n}, with the uniform probability measure. A permu-

tation T 1s chosen at random and the ith trial 1s declared "type 1"

if m(i) is odd and "type 2" if m(i) is even. On the ith trial the

guessing subject 1s given feedback.

- $ ith guess 1s correct,£, =
2 1th guess 1s 1ncorrect.

This particular feedback function only depends on the current

coordinate. Some possible variations are:

(4.1la) Feedback might depend on previous outcomes. This is realis-

tic 1n card guessing experiments with unconscious cuing due to sub-

jects being within sight or earshot of one another. If there were
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few correct guesses in the early stages, more active feedback might

be made available as the experiment progressed.

(4.1b) In addition to telling if "the previous guess was correct or

not, feedback might indicate if incorrect guesses were "close."

Fisher (1924), (1928), and (1929) gives some examples of measures of

closeness.

(4.1c) Feedback might only be available on some outcomes. For

instance, the subject might be given feedback after red guesses but

no feedback after black guesses.

We formulate the general situation in terms of S_» the set of

permutations of {1,2,...,n} = 2 To model a pack of cards with Cs
cards labeled 1 we need the idea of an evaluation function.

For example, to model red-black card guessing we might consider

| 1 if m(i) is odd

A(m1) =
2 if mw(i) 1s even

) (4.2a) An evaluation function Ais a sequence of functions

A = (Ay; ...r A) where AL (mm) = A (mi) for TES . Let the range of

Ag be denoted by Ry = (A, (mE) sme s I. An evaluation function is

of type r if Am = 1 = m(i) (mod r). Let A, denote the algebra in

S_ generated by SELVIREERLYE

We will restrict attention to guessing strategies which take

values in Ry. For each sequence of guesses and each history up to
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time 1, we must define a feedback function £.. For complete feedback

guessing, £, = Am). For yes—no feedback £, = Sy ¢ 7 where G. is

the jth guess. oe

(4.2b)A feedback functionf is a sequence of functions

f = (F1'..., £) where Ee PRIX Rye, XRXSE For each fixed

r= (Tr, ,r,,...,1.) we may regard £. as a function FACT +)

from 5 into i This function 1s to be measurable when S is

equipped with the algebra A, defined in (4.2a) for any r. We also

define the algebra G(r) = olf (rose), f(r ,rp5),..,

f(r...)

This frightening terminology has the following interpretation:

that f is measurable means that t, only depends on the first 1 guesses

and the values Ap(m) see A (m). A function from S will be measura-

ble with respect to Frys... 1.) if it only depends on the first 1

components of the permutation through the feedback information given

when guesses CL sTgseesst, are made on trials 1,2,...,1i.

- (4.2¢) A feedback function is adapted if Op \ is SAS ERRRRESY
ii

measurable for each Ly oTgseresTys 1 <i <n. Adaptability means

—that the feedback includes the information that the last guess was

correct or not.

(4.2d) A guessing strategy 2 is a sequence of functions

g = (81:855---58) where 81 is a constant and

g, R, X coo XRy_X S_~ R, satisfies gi (Tyseeenty 1 ® ) is

F(ry,e.nr, 4) measurable. The value of g. will be denoted G.
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(4.2e) The collection of functions A,f will be called an experiment.

We define the skill scoring statistic for an experiment by

n .

(4.3) 5 = I {85 5 —El8, , 186,006, D1) :
i=1 ii ii

The main motivation for considering S 1s that for a wide

variety of experiments S can be normed to have an approximate standard

normal distribution uniformly in guessing strategies. This 1s made

precise in:

Theorem 7. For an experiment as definedin (4.2e) and any

guessing strategy o, the skill scoring statistic S defined by (4.3)

satisfies

(4.4) E(S) = 0 .

If the evaluation function is of type r as defined by

(4.2a) and the feedback function adapted as defined by (4.2c¢),

then as n tends to infinity,

Lt
1 2

(4.5) P 8 <x »L e dt .
/ 1,. 1 21 decon =(1-=)

r r

Convergence in (4.5)is uniform in guessing strategies gz.

We now discuss some motivation and properties of S. In the

absence of "talent," the distribution of J \ given the feedback
ii

information is the conditional permutation distribution. S will be

large when there are more successful guesses than chance predicts.
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To compute S, only the observed guesses G13GgsenesC need be known,

not the entire guessing strategy.

For definiteness consider the example in Table 1l--card

guessing with complete feedback from a deck containing k red and

k black cards. As shown in Theorem 1, a subject using the optimal

(or worst case) strategy expects to obtain approximately a. /Tk

(or k - 5/7) correct guesses. The statistic S compensates for this
by subtracting a random correction factor with mean value k = Vk

(or k - 2 Yk). This allows us to see 1f the subject scored more
than chance when the strategy has been adjusted for. The conditional

expected value in (4.3) may be complicated to compute 1f f is

complex. For yes—no partial feedback the conditional expectations

may be computed using (3.6) and (3.7).

One penalty that must be paid for the close tracking of Oc 1

by 1ts expected value 1s as follows: If the feedback information va

some stage determines the composition of the remainder of the deck,

none of the subjects' guesses from that trial on have an effect on S.

This can be seen in the last guess in Table 1 when the feedback

information determined that the last remaining card was black.

Similarly, the possible corrections due to feedback are less pro-

nounced at the beginning of the deck and more pronounced toward the

. end of the deck.

Theorem 7 holds because the terms in the sum for S are a

Martingale difference sequence with well-behaved variance. The

Martingale central limit theorem is 1n force. If there was a prac-

tical reason for doing so, the result could be extended to scoring

functions of the form
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(4.6) S = I (W (6seeesCys Agaeenhy)

- EW. (Gy,...,63 ApressA) [BEC PD

where the functions Ww. could be chosen to give desired weights to

correct or incorrect guesses depending on previous results.

We note that the form and motivation for the statistic S are quite

similar to the form and motivation for the Mantel-Haenszel statistic

as discussed (for example) by Tarone and Ware (1977). It should be

possible to show that S 1s locally most powerful by arguments

similar to those used to show that the Mantel-Haenszel statistic 1s

locally most powerful against Lehmann alternatives.

We now illustrate the hypothesis of Theorem 7 through some

examples.

(4.7) Example of the need of adaptability assumptions.

The adaptability assumption (4.2c¢) simply means that the

feedback includes the information that the last guess was correct or

- not. To see that there 1s no hope of a normal limiting result with-

out this assumption, consider an experiment with no feedback

information, for example, £, = 1. To be specific, suppose there are

n each of two types, and that the guessing strategy always guesses

type 1. Then the number of correct guesses will always be n, and

the conditional probability subtracted off at each stage will always

equal 1/2 so that S = 0. This example presents a fundamental problem

for the widely used normal approximation to classical card guessing
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experiments without feedback (this is discussed by Greville (1941),

(1944) ) . It underscores the need for common sense even when

Theorem 7 1s in force since, if a subject always guesses the same

type of card, the randomness captured by the limiting normality will

be due to the fluctuation of the conditional expectations in 8S.

The next example shows the need for the assumption of a deck

of type r by exhibiting several non-normal limits (depending on the

guessing strategy) for a deck labeled {1,2,...,n}.

(4.8) Example: Partial Feedback guessing for a deck labeled

{1,2,3,...,n}.

In this problem, as discussed in Section 3, a deck of n cards

is labeled {1,2,...,n}. Agub ject guesses the value of each card

sequentially and is told if each guess 1s correct or not. Here

VY — : T(1),...,m(i)) = §A (m(i)) ni), £,(G, Gy 3 (1) (i)) 1(i)G. and S can be
i

represented as

n 1 n
S = Z (a, . - — x 0 . }

121 T(E) n-i+1 3=1 G.m(3) .

To see that the distribution of S depends on the guessing strategy we

consider three cases:
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Case I. Worst case guessing. If the guessing strategy 1s the worst

case strategy established in Theorem 6,we will show that the

limiting distribution of S converges to a beta distribution on

1 1 1 1

5 (1+) tol with an atom at - 3 (1-5). More precisely,
& &

(4.9) P(S <t) > G(t) as n tends to infinity where the distribution

function G(t) 1s defined by

1 1

G(t) =0 for t <-5 (1-3),
&

- 1 1 1 1 1
= — - = - —) < < = -)for 5 (1 7) Jt<5 A+)

& e

1/2 1 1
= v2 (t-t, for 7 (1 +=) <t<1,

e

= 1 for t > 1 .

Case II. G, = 1. We will show that when G, always guesses 1, the

distribution of S converges to an exponential distribution on (-°,1].

More precisely,

- X

(4.10) P{1-S<x}>1-¢e for 0 <x< oo |

Note that while the expected value of S agrees with the limiting

expected value of 0, computation shows that

log (n) Cae
Var(S) = 2 log n + ON" , as n tends to infinity.
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Case III. Best case guessing. In Theoremb the rule for

maximizing the expected number of hits was shown to be the rule which

guesses the most probable card at each stage. When this rule is

used, we will show that, as n>, the statistic S tends to a countable

mixture of continuous distributions:

16.0]

(4.11) P(S<t) = I pF. (1)
i=1

where

i+1
1 1 t-1i

— ee F = IT <Py TIT CGT c B® PUT cen
j=1

where LysLoyseees boy are the lengths of the i + 1 intervals the unit

interval 1s partitioned into by dropping 1 points at random.

Proofs for Section 4.

Proof of Theorem 7. Consider the basic probability space S with the

uniform distribution. Let G,,...,G be any sequence of guesses.
1 n S

. n

Let BO = {¢,s 1, B, = F(GyseeesGiyg) for i=1,2,...,n-1, B = 2 .
- Thus, BOCB ©, . . CB, Let

1 n

! 1
Z, =—16 - E16 : .= .5 { CA E{ G |B, 1} and X L 2

/ 1 1 ii i1 i=1
n =(1--=)

Tr r

Because f is adapted, Xs 1s a B. Martingale with E(X,) = 0. To prove

(4.5), we first show that (4.5) holds when £. =, and C, is the result
of best case guessing. Further, and without real loss, suppose that

n = rk. Let M, denote the minimum of the number of each type seen
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before time 1, so My = 0. The probability of a correct guess on the
k —- M.;

HM trial = ——50 Z, tak 1
i rial is p, = "5.7 so %, takes values

1 i Co

—_— (1- py) with probability Py
Jota

r Tr

1 Co
- —————— p. with probability 1-p, .

1 1 i i
yn —=(1->)

r r

According to the Martingale Central Limit Theorem (Hall (1977)) the

limiting normality will be demonstrated if we can show that

n

EE SE 2 (1 - p.) Prob , 1.
a La-t jo 4 Pi

r it)

We show that

1 . Prob 1
i=1

1 2 Prob ¢ 1 .

(4.12b) oP; >
r

To demonstrate (4.12a) write

k-g-M, i
aET

Then

n M,

ly po=diodeany1;n , i r n n n-1i+1
i=1
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The inequality (2.13) implies that there is a positive constant c. such that
. / i(n-1

ECM, [x C. tooth Using this and Markov's 1nequality 1t
follows that for any € > 0,

~ '

1 n M, c.
Ma z ———— > es

i=1 € va

so that (4.12a) is true. The proof of (4.12b) is similar. Hence, we

have shown that (4.7) holds when £; > Ay and G, 1s best case guessing.

A similar proof works if £, i Ay and G. 1s worst case guessing. If

now £f 1s an arbitrary measurable feedback sequence and G, an arbi-i

trary guessing strategy, let p; = E{S, A 3.1. Recall i defined in
ii

4.2a). p. =E{8= = Eg( ). Let P. { RL 3p ELS, 5 14 iE Then p; = P. <P;
1 1 -1 1 _

and since (4.12a)and (4.12b) hold for p. and p., they must hold for— 1

Pi This completes the proof of Theorem 7.

Proofs for example (4.8).

Proof of (4.11). For worst case guessing S takes values which depend

on T, the time of the first correct guess. Let N(i,n) denote the

_ number of permutations mes which do not have 7m(j)=3,1<j <i.
i j,i ey 1

Equation (3.9) implies that N(i,n) = Limp) (j) (0-13). and we

see that P{T=k}= a N(k-1, n-1) and p{i®h guess 1s correct |past) =
N¢i- 1, n-1)
TN(i-1, n) . Thus, S takes values

Co 1

(1-1) with probability oo

(1-L_-Dz2, with probabilit n=-2n 2 P Y a(n-1) °
(n-1)
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k N(i-1, n-1) 1
- oy Bo) i1ity — N(i-1, n-1) ,1 z N(i-1. mn) with probability ~ (1 n-1)

i=1

2 N(i-1, n-1) 1
1 - 2 NGi-1, n) with prdbability nl N(n-1, n-1) ,

i=1

2 N(i-1, n-1) 1
- L N(Gi-1, n) with probabiltiy a’ N(n, n) .

i=1

1 1 1 1
We now show that —v N(i,n) = (1 - 2) + 02) uniformly in i.

Indeed,

1 1) Lif! 1 Don f(a={)! 1
= N(i,n) - (1-2) |< I O-== -4)<I 4)

n
1 1

=e + 0H) - (1-9) - 0) |
n. n n

Thus, for any k, 1 < k <n,

1 i-1
k k 1 -—— k

(5 - _ _

p Ma-1, nol) _ 2) nl rod =1-1a-% rod,} N(i-1, n) n . 1 n 2 2 n n
i=1 i=1 1--—-

1 n

) so that S takes values

k k
1 1 2 1 Co 1 1 1

5 + 5(1--) + 0C)) with probability —(1-—=) + =)
1 1 1 Co.

for 1 < k <n and S takes the value - 71 =) + 02) with probability
1 1 °

Using these estimates shows that P(S<t) > G(t) for

t < 1 + LTa-dy, For larger t we have
— 2 2 2
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T
1 1 1 2 1 1

p - = = =(1 -% = —_(S< t) So + PS + 30 >) + 02) <th + 0%)

1 2T 1 1 1
= = - =< - = = —

- + P{- == < log(2(t 5) +0. (DO) + 0)

I RP SR | 1 1 1
=-+Q P{—< 5 log 2(t 5) +0. (DH +00)

1-1

_1 1,04, 1 1," 1=o +t1- (GC +060) + 2 L(1--) + 02)
0<j<nf (t)

1/2
— 1 + 0d
=72(t-9 +0)

1 Ad

where we have written f(t) = 5 log 2(t -=3). This completes the

proof of (4.9).

Proof of (4.10). When the guessing strategy has G, = 1, then S takes

values 1 - (R -Hp), k=0,1,2,...,n-1, where T is uniformly dis-

tributed on 10,1,2,...,n-1} and H = 14+...4+1/k. So,

H _-H

P{1-S>t}= Ple © "<e }

H,_-~H

= ple © "ce a <T <n - va) 1 + 0D) + od
Vn vn

1

log T-log n+0 (3) _t 1
= ple < e |/n <T<n-va}+0G)

Vn

- 1

pf + 0d) <e F/n <T <n-vn}l+ 0D)
n TT" — Vn,

> e | as n tends to infinity,
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Proofof (4.11). With best case guessing it was shown in Theorem 5

that the number of correct guesses, G, takes value 1 with

probabilityp, = LoL 1 <i<n-1. When G=1, let T. be
i~ iT T ED! == 7

the waiting time for the jth correct guess, for 1 < j <i. The

random variables 2(1,,..01,, n-T, +...+T,) are easily shown to
have as limiting distribution the distribution of the lengths

LisLoseeesl, fy of the 1 + 1 intervals that the unit interval 1s

partitioned into by 1 random points. de Finetti (Feller 1971, p. 42)

1
> RR I > X, = ~ cos .has shown that P{L, 2 Xyseeeslig2 X17 (1 x, + +x. 04 where

CL -— k

+ denotes positive part. When G = i, write T = Li=0 T.; then
. TT, =

i J 1 n-T 1
P{s<t|c=1i} = P{i - 2 2 T-i-k 2 —5 5 St}

j=1 k=0 "J j=0 "

t-1
-> <PIL; Ly. Lyyy Se 7)

by an easy argument. This completes the proof of (4.11).
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