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ABSTRACT

Very large scale matrix problems currently arise in the context

of accurately computing the coordinates of points on the surface of

the earth. Here geodesists adjust the approximate values of these

coordinates by computing least squares solutions to large sparse systems

of equations which result from relating the coordinates to certain ob-

servations such as distances or angles between points. The purpose of

this paper 1s to suggest an alternative to the formation and solution of

the normal equations for these least squares adjustment problems. In

particular, it 1s shown how a block-orthogonal decomposition method can

be used in conjunction with a nested dissection scheme to produce an

algorithm for solving such problems which combines efficient data

management with numerical stability. As an indication of the magnitude

that these least squares adjustment problems can sometimes attain, the

forthcoming readjustment of the North American Datum in 1983 by the

National Geodetic Survey is discussed. Here it becomes necessary to

. linearize and solve an overdetermined system of approximately 6,000,000

equations in 400,000 unknowns - a truly large-scale matrix problem.





1. Introduction.

Recent technological advances have made possible the collection of

vast amounts of raw data describing--certain physical phenomena. As a

result, the sheer volume of the data has necessitated the development

of new elaborate schemes for processing and interpreting it in detail.

An example 1s 1n the adjustment of geodetic data.

Geodesy 1s the branch of applied mathematics which 1s concerned

with the determination of the size and shape of the earth, the directions

of lines and the coordinates of stations or points on the earth's surface.

Applications of this science include mapping and charting, missile and

space operations, earthquake prediction,and navigation. The current use

of electronic distance measuring equipment and one-second theodolites

for angle measurements by almost all surveyors necessitates modern ad-

justment procedures to guard against the possibility of blundersas well as

to obtain a better estimate of the unknown quantities being measured. The

number of observations 1s always larger than the minimum required to

determine the unknowns. The relationships among the unknown quantities

: and the observations lead to an overdetermined system of nonlinear equations.

The measurements are then usually adjusted in the sense of least squares

by computing the least squares solution to a linearized form of the system

that 1s not rank deficient.

In general, a geodetical position network 1sa mathematical model

consisting of several mesh-points or geodetic stations, with unknown posi-

tions over a reference surface or in three-dimensional space. These stations

are normally connected by lines, each representing one or more observations
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involving the two stations terminating the line. The observations may be

angles or distances,and thus they lead to nonlinear equations involving,

for example, trigonometric identities and distance formulas relating

the unknown coordinates. Each equation typically involves only a small

number of unknowns.

As an 1llustration of the sheer magnitude that some of these problems

can attain, we mention the readjustment of the North American Datum -

a network of reference points on the North American continent whose

longitudes, latitudes and, in some cases, altitudes must be known to an

accuracy of a few centimeters. This ten-year project by the U.S. National

Geodetic Survey is expected to be completed by 198%. The readjusted net-

work with very accurate coordinates 1s necessary to regional planners,

engineers and surveyors, who need accurate reference points to make maps

and specify boundary lines; to navigators; to road builders; and to energy

resource developers and distributors. Very briefly, the problem 1s to use

some 6,000,000 observations relating the positions of approximately

200,000 stations (400,000 unknowns) in order to readjust the tabulated values

for their latitudes and longitudes. This leads to one of the largest single

computational efforts ever attempted - that of computing a least squares

solution of a very sparse system of 6,000,000 nonlinear equations 1n

400,000 unknowns. This problem is described in detail by Meissl [1979],

by Avila and Tomlin [1979], and from a layman's point of view by Kolata

[1978] in Science.

In general then, geodetical network adjustment problems can lead

(after linearization) to a very large sparse overdetermined system of m

linear equations 1n n unknowns
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AX nb (1.1)

where the matrix A , called the observation matrix, has full column

rank. The least squares solution to (1.1) 1s then the unique solution

to the problem:

minllo- Ax],.

An equivalent formulation of the problem 1s the following: one seeks to

t
determine vectors y and r such that r + Ay = b and Ar = 0 .

The least squares solution to (1.1) 1s then the unique solution y to

the nonsingular system of normal equations

Atay = At . (1.2)

The linear system of equations (1.2) 1s usually solved by computing

the Choleskv factorization

2% =r, r= kK
t t

and then solving Rw = A™b by forward substitution and Ry = Ww Dby

back substitution. The upper triangular matrix R 1s called the

Cholesky factor of A .

Most algorithms for solving geodetic least squares adjustment problems

(see Ashkenazi [1971], Bomford [1971], Meissl [1979] or Avila and Tomlin

[1979])typically involve the formation and solution of some (weighted)

form of the normal equations (1.2). But because of the size of these

problems and the high degree of accuracy desired in the coordinates, it
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1s important that particular attention be paid to sparsity considerations

when forming Ata as well as to the numerical stability of the algorithm

being used. It 1s generally agreed in modern numerical analysis theory

(see Golub [1965], Lawson and Hanson [1974] or Stewart [1978] that ortho-

gonal decomposition methods applied directly to the matrix A in (1.1) are

preferable to the calculation of the normal equations whenever numerical

stability is important. Since Ahas full colum rank, the Cholesky

factor, R , of A can be computed by

4%, _ {R t

a = |E] , QQ=1, “| (1.3)LJ

where the orthogonal matrix Q results from a finite sequence of

orthogonal transformations, such as Householder reflections or Givens

rotations, chosen to reduce A to upper triangular form.

Since A has the orthogonal decomposition A= Q H )
then defining Q'b = H , where c¢ 1s an n =- vector,
the least squares solution vy to (1.1) 1s obtained by solving Ry = cC

by back substitution. The greater numerical stability of the orthogonal

decomposition method results from the fact that the spectral condition

number of Ath in the normal equations (1.2) 1s the square of the spectral

condition number of A . The-orthogonal decomposition method (1.3) has

other advantages, including the ease with which updating and downdating of

the system (1.1) can be accomplished, and the fact that possible fill-in

in forming the normal equations is avoided (see, for example, Bjbrck [1976]).

ly



However, orthogonal decomposition techniques for solving large sparse

least squares problems such as those in geodesy have generally been

avolded, 1n part because of tradition and in part because of the lack

of effective means for preserving sparsity and for managing the

data.

Modern techniques for solving large scale geodetic adjustment

problems have involved the use of a natural form of nested dissection,

called Helmert blocking by geodesists, to partition and solve the normal

equations (1.2). Such techniques are described in detail in Avila and

Tomlin [ 1979], in Hanson [1978], and inMeissl [1979] where error analyses

are given.

The purpose of this paper 1s to develop an alternative to the formation

and solution of the normal equations in geodetic adjustments. We show how

the orthogonal decomposition method can be combined with a nested dissection

scheme to produce an algorithm for solving such problems that combines

efficient data management with numerical stability.

In subsequent sections the adjustment problem is formulated, and it

is shown how nested dissection leads to an observation matrix A in (1.1)

; of the special partitioned form

Z 70
7 / pa

A = 7 7 (1.4)
Lv* yd

A
re

p



where the diagonal blocks are normally rectangular and dense and where

the large block on the right-hand side is normally sparse with a very

special structure. The form (1.4) is analyzed and a block-orthogonal

decomposition scheme is described. The final section contains some

remarks on the advantages of the approach given in this paper and

relates the concepts mentioned here to further applications. Numerical

experiments and comparisons are given elsewhere in Golub and Plemmons

[ 1980].

2. Geodetic Adjustments.

In this 'paper we consider geodetical position networks consisting

of mesh-points, called stations, on a two-dimensional reference surface.

Associated with each station there are two coordinates. A line connecting

two stations 1s roughly used to indicate that the coordinates are coupled

by one or more physical observations. Thus the coordinates are related

in some equation that may involve, for example, distance formulas or

trigonometric identities relating angle observations. An example of such

a network appears in Figure 1.

FIGURE 1

A 15 station network.
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More precisely, one considers a coordinate system for the earth

and seeks to locate the stations exactly, relative to that system.

Usually coordinates are chosen from a rectangular geocentric system (see

Bomford [1971]). Furthermore, a reference ellipsoid of revolution is

chosen 1n this set of coordinates and the projection of each station onto

this ellipsoid determines the latitude and longitude of that station.

As indicated initially in Section 1, the relationships among the

coordinates of the stations in the geodetic network lead to anover-

determined systemof nonlinear equations

~ F(p) = gq (2.1)

where

p = vector of unknown coordinates, and

q = vector of observations.

The components of F(p) represent the equations that express the relation-

ships among the unknown parameters and the observations or measurements

made, for example, by surveyors.

A common procedure for solving the overdetermined system (2.1) 1s the

method of variation of parameters. (This 1s generally called the Gauss-

Newton nonlinear least squares algorithm in the mathematical literature).

Approximate coordinates are known a priori. Let

o” = current vector of approximate coordinates.

Then 1f F has a Taylor's series expansion about 0 , there follows the

relationship



0 0
F(p) = Fp’) + F'(p)(p - p°) +...

where Fr (pO) denotes the Jacobianof F at oo . Then taking

A =F (p°)

_ 0
X=pPp Pp

b= gq - F(p°)

and truncating the series after 2 terms, one seeks the solution to:

min|[b - Ax|. . (2.2)
X 2

The least squares solution y then represents the correction to

po” . That 1s, one takes

1
p = p+ y

as the next approximation to p . The process 1s, of course, iterative

and one can use 0! to compute a further approximation to p . Normally,

the initial coordinates have sufficient accuracy for convergence of the

method, but the number of iterations 1s often limited by the sheer magnitude

-of the computations. Thus a very accurate approximation to y 1s desired.

Actually, the equations are usually weighted by use of some positive

diagonal matrixW , where the weights are chosen to reflect the confidence

in the observations: thus (2.2) becomes

ry XL
min||[W5b - WoAx|. .
< 2

For simplicity, we will use (2.2) in the analysis to follow. The procedure

8



we discuss, however, will not be complicated by the weights.

Due to the sheer volume of the data to be processed in many

adjustment problems, 1t 1s imperative to organize the data in such a

way that the problem can be broken down into meaningful mathematical

subproblems which are connected in a well-defined way. The total

problem 1s then attacked by "solving" the subproblems in a topological

sequence. This "substructuring" or "dissection" 'process has been

used by geodesists for almost a century. The method they have employed

dates back to Helmert [1880] and is known as Helmert blocking (see

Wolf [1978] for a historical discussion).

In Helmert blocking, geographical boundaries for the region 1n

question are chosen to *partition 1t into regional blocks. This technique

orders the stations appropriately in order to establish barriers which

divide the network into blocks. The barriers are chosen so that the

interior stations in one block are not coupled by observations to interior

stations in any other block. These interior blocks are separated by sets

of junction stations which are coupled by observations to stations in more

than one block. An example of such a partitioning of the geodetic network

in Figure 1 to one level of Helmert blocking is provided in Figure 2.

Here the circled nodes represent the junction stations chosen for this

example.

9



FIGURE 2

One level of Helmert blocking.

The particular form of Helmert blocking we will use here 1s the same

as that used by Avila and Tomlin [1979] for partitioning the normal

equations. That procedure, 1n certain respects, 1s a variation of the

nested dissection method developed by George [1973], [1977];

George and Lui [1978];and George, Poole and Voight [1978]. The primary

emphasis of the nested dissection strategy has been on solving symmetric

positive-definite systems of linear equations associated with finite element

schemes for partial differential equations, There, the finite element nodes

are ordered in such a way that the element matrix B 1s permuted into

the block partitioned form

10



B, 0 » LJ [J O

0 B, [4 [J [J 0

B = «ah ° 9 Fl C

jm} jm} [a=] an an By

ok D

where the diagonal blocks are square.

In our case we use the following dissection strategy in order to

permute the'observation matrix A into the partitioned form (1.4)

Our procedure will be called nested bisection.

Given a geodetical position network on a geographical region EK

first pick a latitude so that approximately one-half of all the stations

lie south of this latitude. This forms two blocks of interior stations

and one block of separator or junction stations and contributes one level

of nested bisection (see Figure 3).

— 4 interior stations
FIGURE 3

One level of nested bisection.
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Now order the stations in RR so that those in the interior regions

A. appear first, those in the interior regio appear second, and
those in the junction region B appear last; order the observations

(i.e., order the equations), so that those‘involving stations in A
come first, followed by those involving stations inA ; then the
observation matrix A can be assembled into the block-partitioned form:

- |
Thus A can be expressed in the block-partitioned form:

A, 0 B

A — 1 1

0 A, B,

where the A, contains nonzero components of equations corresponding

to coordinates of the interior stations wd, and where the Bs contain
the nonzero components of equations corresponding to the coordinates of

the stations in the junction region B

Next, 1n each of these halves we pick a longitude so that approximately

one-half of the stations in that region lie to the east of that longitude.

This constitutes level 2 of nested bisection. The process can then be

continued by successively subdividing the smaller regions, alternating between

latitudinal and longitudinal dividing lines. Figure k illustrates three levels

12



of nested bisection.

—_

---B---3

EE
J |L | L

L/
PB bd

| A,AL

FIGURE &4

Three levels of nested bisection.

The observation matrix associated with the nested bisection of the

geodetical position network in Figure 4 can then be assembled into the

partitioned form: -
7 /

| 7| LY % 7 £

- 7

, . (2.3)
5 y,

7 7
|/

fy/|

1% c 5%
15



It follows that 1f nested bisection 1s carried out to k levels,

then the partitioned form of the assembled observation matrix has:

i) of diagonal blocks associated with
interior regions, and

ii) 2X1 blocks associated with junction regions.

In particular, there are

111) pk1 junction blocks which are each coupled to
2 interior regions, and

iv) 5-1 junction blocks which are each coupled to
L interior regions.

Heuristically, one normally would like to perform the bisection

process so that the sets of junction stations are minimal at each level,

thus maximizing the numbers of columns in the diagonal blocks. The process

1s stopped at the level k at which the oF diagonal blocks are suffi-

ciently dense or at the level at which further subdivisions are not

feasible or are not necessary for the particular adjustment problem.

Our proposed block orthogonal decomposition algorithm for an obser-

vation matrix A already in the partitioned form determined by nested

bisection 1s deferred to the next section.

5. The Block Orthogonal Decomposition.

In this section we describe a block orthogonal decomposition algorithm

for solving the least squares adjustment problem min|[b-Ax]l, , where
the observation matrix A has been assembled into the general block

diagonal form (1.4). Here we assume that the structure of A 1s specified

by the nested bisection scheme described in Section 2. Other dissection

1h



schemes may be preferable 1n certain applications (see Golub and

Plemmons [1980]).

We first 1llustrate the method with k = 2 levels of nested

bisection, as given 1n Figure 5.

7 N —_—

H A,
CC p--—----
y

|

3 C y

FIGURE 5

Two levels of nested bisection.

Suppose that the associated observation matrix A 1s assembled into the

corresponding block-partitioned form, giving

Ay 5 Dy

A = Bo 55 by
A C., D
3 3 75

D

fy “u Oy

Then by the use of orthogonalization techniques based upon, for example,

Householder reflections, Givens rotations or modified Gram-Schmidt ortho-

gonalization, the reduction of A to upper triangular form proceeds as

follows:

15
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At the first stage, each diagonal block Ay 1s reduced by

orthogonal transformations.

t Co
qr | HK By by
t

% A 5a Ps
t

=~ A C, D

E 3 373

Here the Oy are orthogonal matrices (which of course need not
R

be formed explicitly) and Qs As = . , where Ry = x , yielding
0

fy 51 Pi
1 1

0 BY DJ
0)

55 5; Ww,
1 1

0 B, Ds
0 _0O

R C, D
5 3 3

1 1
0 C, D

3 73
oO 0

Ry, “Dy
1 1

: “DO

The row blocks corresponding to the upper triangular matrices R,

are then merged through a permutation of the rows, yielding

16



0

51 Bq a!
0 O

R
2 5 b)

oO 0
R C D
3 3 3

oO 0

Bo 9 hy
11 Do .

B, D,
1 1

t C D

or DE
TA

This completes the first stage of the reduction. For the intermediate

stages, pairs of merged blocks corresponding to junction stations are

pl ot
reduced. First, 1 and 5 are reduced to upper triangular

1 1
BS Cy,

form by orthogonal transformations, yielding

) 0 0
Ry By D

0 0

fs 5; b
0 0

R Cc. D2
3 3 3

0 0

Ry, Cy, Dy,
0

R D

p, p)
1

0 D
p)
0

"6 D6
1

0 De

17



Then merging the triangular tactors Rg and Re through a permutation

of the rows, yields

50
R, 5%

2, Q 5
Ry, oY Dy

SR.
Re Tg

D

6

HTo complete the intermediate stages, 1 1s reduced to upper triangular

form by orthogonal transformations, ’6 yielding

3 B, D

R, no
i. R, cs D

A 9 Dy

ts D;
Re De

Ro

18



Here R is the Cholesky factor for A . Let n, denote the
t t

order of Rs for i = 1,...,{ and let ¢ = (eqs. Ce) denote the
result of applying the same sequence of orthogonal transformations and

permutations to b , where each Cy 1s an n, -vector. For the final

step of the solution process, the least squares solution y to Ax =~ D

1s computed as follows.

Partita t_ ( yt where y is an n.-vectorartitiony as y = \¥ys---5¥y i i '

i =1,...,(. Then the following upper triangular systems are solved

successively by back-substitution for the vectors y; , 1 = Tybyenesl

R.y. = Cc. - Oy. i = 6,5ivi i iv? id

0 O
—_— -— — —_— Lh

0) 0_ _ - = 2,1.

The general reduction process 1S described next in terms of three

basic steps. Let A and b denote the observation matrix and vector

resulting from Xk levels of nested bisection of a geodetic position

network on some geographical region. Assume that A has been assembled

into the general block-partitioned form (1.4), with oF diagonal blocks
: 11] = oF L1te Aand 2-1 remaining column blocks. Letting t =2 , We write A as

19



A A .

1 1, t+1 1,261
A A A
2 2,t+1 2,2t-1

A = : (3.1)

A, A ‘
t t,t+l Ap otol

For a certain flexibility of the algorithm and also for simplicity in the

notation, we do not altogether distinguish here between zero and nonzero

blocks A . The zero patternof these blocks depends on the number of

levels, k , to which the nested bisection process 1s carried. Particular

attention was paid to this pattern for the case of k = 2 levels in the

illustrative example just completed.

Algorithm 1. This algorithm computes the Cholesky factor R and the least

squares solution y to Ax=~ Db where A results from k levels of

nested bisection and A has the block form (3.1), with t = of .

Step 1. Reduce each diagonal block A, of A to upper triangular form

by-orthogonal transformations and merge the reduced blocks.

1) Do for 1 = 1,2,...,%t.

. : |B;1) Determine Q, so that QA, =! 1 , R. =
i 11 LO i O

(Note that Qs; need not be formed explicitly).

20



2) Compute

£

Al By ohy crpree ooh py]

_ i Tel U2

1 1

ERIS IR

2) Merge the reduced row blocks by row permutations so that the

resulting matrix has the form

0 0 0 0 0

By Berl Bree 0 0 0 Bisel ML Gefen. 0 0 Plo
- 0 0 0 0 0

A .. .
fo fo trl Dope fo3t/2 Po, (3t/2)+1 Bo opel

0 0 0 0 0

Ry Ap eel AL go ote Ay 34/0 Ae (38/2)+1 to Ap oto
1 1 1

Ay, +1 AL Gefe)r © © 0 Meta
1 Y 1

Ao p41 8 (38/0) +1 CTT Bo oto
1 1 1

Az pro A3 (31 /2)+1 coo As oto
’ 1 1 1

Ay, tao By (3t/2)+1 ) © A oto

1 1 1

Ae 1,3t/0 8-1, (3t/2)+1 At_1,0t-
1 1 1

Ay 34/0 A (36/2)+1 oT Ae oto

21



step 2. Reduce and merge the intermediate-stage blocks.

k-1
1) Do for u =1%t, t/2,..., t/2 = 2

1) Do for v = 1,3%,...,u-1

1) Reduce each pair of row diagonal blocks

1

A thy
1

Are1, tov

to upper triangular form by orthogonal transformation,

as 1n Step 1.

2) Merge the resulting reduced row blocks by row permutations

so that the upper triangular blocks R. appear first, as

in Step 1.

At the end of Step 2, A has been reduced by orthogonal transformations

) to the following form, where each Rs 1s upper triangular and where certain

of the blocks A are zero.

22



0 0

R TS IU JOY|
A” 20

5s 2,t+1 . } 2,2t-1

R, A: aY
R = t Ap t+ ) t,2t-1 - (3.2)

Rel

0

‘ Bot_o,0t-1

Fogo

Step 3. Back Substitution. Let n, denote the order of R; , for
t t

i=1,...,2t-1 . Let ¢ = (cqreeesCpy 1) denote the result of
applying the same sequence ©f orthogonal transformations to b and let

vv = CAPRERES Vf denote the least squares solution to Ax =~ Db ,
where c, and y, are n,-vectors, i = 1,...,2t-1. Solve each of the
following upper-triangular systems by back-substitution

1) Bop1 Vogl = Copia

2) R.Y =. - AD yi 7 i= 28-2, 2b-1,...,%
ivi 1 17]

j=1i+1

2t-1

0 .
= — A, 1 = t t-1 + 0. 13) RVs Cs y ij oe ’ ’ ’ ]

J=t+1

25



The reduction algorithm just described for the observation matrix A

can be interpreted froma network-reduction viewpoint as follows. Suppose

that A results from a nested bisection of the geographical region to k

levels. Then at the first stage of the reduction process, orthogonal

transformations are applied to each of the o* blocks corresponding to

the interior regions, to reduce the coordinates of stations not coupled

to stations outside that block by an observation. Modified junction stations

in the separator blocks are kept until nearby interior blocks are reduced.

Then clusters of blocks of junction stations are grouped together (merged)

to form higher level blocks. At the intermediate stages of the reduction

'process, some station coordinates are now interior and can be reduced by

. orthogonal transformations. The process continues until at the last stage

the remaining stations are all interior and their coordinates can be reduced.

At this point A 1s completely reduced by orthogonal transformations to its

Cholesky factor R , and correspondingly, the vector b 1s reduced to c

as indicated in Step 3. To determine the least squares solution y to

Ax =~Db , the process is, in a sense, reversed to back substitute the co-

ordinates to successively lower levels until all of the corrections have

been found.

. Notice that at each stage of the reduction process it 1s possible to

obtain a "diagnostic solution" (see Meissl [1979]). Here we hold the co-

ordinates of the junction stations fixed and solve for the coordinates of

the reduced interior stations at that stage.

We emphasize again that, fora certain flexibility, full advantage has

2h



not been taken in Algorithm 1 of the zero pattern of the blocks By

of A as given by (3.1). This pattern of course determines the block

structure of the Cholesky factor R of A as given by (3.2). Basically,

k+1

R has the same type of block structure as A , but with 2 -1 upper -

triangular diagonal blocks. For nested bisection to k = 4 levels,

where A is assembled into the form (2.3), the Cholesky factor R has

the following structure.

CoZ ’
& 7 Z
ZI

< %

£4 .« - L.A p
% %

NY, 7.
A

<
EX
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In order to facilitate an analysis of the results of a least

squares adjustment, 1t 1s often desirable to compute some or all of

the elements of the variance-covariance matrix (% ) 71 . Since

wt)" = ®t,

the special block structure of R just discussed can be used advanta-

geously 1n computing the variances and covariances. Such a procedure

1s given 1n the next section for a more generally sparse Cholesky factor R .

L. Computation of the Variances.

In many adjustment problems (see, for example, Hanson [1978]) it is

necessary to compute the variances and covariances associated with the

regression coefficients in order to estimate the accuracy of the results.

Under the usual assumptions, the variance of the i1-th coefficient 1s pro-

portional to the (i,i) element of (a%a)t If R 1s sparse, then the

diagonal elements of (ata)t can be calculated quite efficiently. Indeed,

it is easy to compute all the elements of (ata)-t which are associated

with the non-zero elements of R , the Cholesky factor. We describe the

procedure next.

Using the orthogonalization algorithm we determine the Cholesky

factor R so that

Abs = gtr,

Suppose

Ts 4 0 when (i,3)¢ K
— 0 when (i,j)¢ K .

26



Our objective 1s to determine

(a), When (i,j) €¢ K ,

Let us write

tt. \-1

(A°A) = 7 = [Zy5-052,] ,

where Z 1s the i-th column of the matrix 72 .

Since

A°AZ = I
(4.1)

rz = (RU)™Y

Note that

ty-1 _
(R)77}, = 1 / r.. (k.2)

From (4.1) and (4.2), we see that

-1 t

Rz =e X (r_) le, = (0,...,0,1)

so that we can solve for Z by back substitution. Thus

z = (r )=2
nn nn

and for 1 = n-1,n-2,...,1

n n

Tr. r..

“in y 7 i} -y = inin .. Jn . .

j=iri j=ivl 7
(1,3)¢ K

27



Let I = min {i r, # 3. It is possible to calculate
n in

1 <1<n-1

Zsp for1 = n-1,n-2,...,1 . Once these components have been computed,

it is only necessary to save those elements for which (i,n)e K .

Note

zZ = z
in ni

Now assume we have calculated those elements of z ,2z y + 22
n" nl AE

for which

- Tr # 0 when p=l,...,n ; g = 1+1,..,n .
ba

Thus, by symmetry we have computed

201 for gq > £ and (1,9) K .

Now for 1 = 1,2,.,2-1

n

zz, = 0DT jt
j=i

and
; n

1

EN “50 rT.
. } 11
J=1

Hence n

a -) TR]Tr

EY. d
j=2+1

n

- i= -) iE 250r xr

21 14 j=1+1
(2,3) ¢ K
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Let I, = min {i | r., # 03 . Then for i = [-1,...,I{ ilk J
1< i< £-1

J n

z., = ( - r.. z., - . CL14 ) 13 Ji ) Tij Z,5) / Tid
j=i+1 j=1+1

(1,j)e K . (i,3)e K

Again, after this 'calculation is performed, We save only those elements

for which (i,£) € K . The above algorithm thus describes a method for
t :

computing the elements of the inverse of (A"A) which are associated

with the non-zero elements of R . Such a procedure can be quite

efficient when compared to computing

wt) = rH

t,v-1
For example, suppose we need the diagonal elements of (A”A) when

roo fo for1 = J and j = itl , and

r.. = 0 otherwise,
1]

i.e. R 1s bi-diagonal. The matrix RL will be completely filled in

above the diagonal and hence 0(n®) numerical operations are required to
; | ~ | |

compute the diagonal elements of (ata) . The algorithm we have outlined

above would require 0(n) operations. Even greater savings can be expected

. for the Cholesky factor R of the form (3.2), resulting from nested bi-

section.

5. Final Remarks.

To summarize, an alternative has been provided here to the formation

and solution of the normal equations in least squares adjustment problems.

In particular, it has been shown how a block-orthogonal decomposition method
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can be used 1n conjunction with a nested dissection scheme to provide

a least squares algorithm for certain geodetic adjustment problems,

Some well-known advantages ofdissectionschemes for sparse linear systems

are that they facilitate efficient data management techniques, they allow

for the use of packaged matrix decomposition routines for the dense

component parts of the problem,and they can allow for the use of parallel

processing. In the past, the combination of the normal equations approach

with these dissection techniques (in particular Helmert blocking) has been

preferred, partly because of tradition and partly because of the simplicity

and numerical efficiency of the Cholesky decomposition method. However,

the use of an orthogonal decomposition scheme applied directly to an

observation matrix A which has also been partitioned by a dissection

scheme has several advantages over the normal equations approach. First,

the QR orthogonal decomposition of A allows for an efficient and

stable method of adding observations to the data (See Gill, Golub, Murray

and Saunders [1974]). Such methods are crucial in certain large-scale

adjustment problems (see Hanson [1978]). Secondly, possible fill-in that

can occur in forming the normal equation matrix IN 1s avoided. A

statistical study of such fill-in is provided by Bjorck [1976]. Meissl

[1979] reports that some fill-in can be expected in forming 2% in the

readjustment of the North American Datum. This problem cannot be over-

emphasized in such large scale-systems (6,000,000 equations and 400,000

unknowns) . But perhaps the most crucial advantage of the use of ortho-

gonal-decomposition schemes here 1s that they may reduce the effects of

1ll-conditioning 1n adjustment calculations.
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In this 'paper we have treated only one aspect of nested dissection

in least squares problems, that of decomposinga geodetical position

network by the 'process of nested bisection. However, the block diagonal

form of the matrix in (1.4) can arise 1n other dissection schemes such

as one-way dissection (see George, Poole and Voight [1978] for a description

of this scheme for solving the normal equations associated with finite

element problems). The form also arises in other contexts, such as photo-

grammetry (See Golub, Luk and Pagano [1979]). Least squares schemes based

in part upon block iterative methods (see Plemmons [1979])or a combination

of direct and iterative methods may be preferable in some applications.

Moreover, the general problem of permuting A into the form (1.4) by

some graph-theoretic algorithm for ordering the rows and columns of A

(see Weil and Kettler [1971]) has not been considered in this paper.

Some of these topics will be addressed further in Golub and Plemmons [1980].
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