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ABSTRACT

Very large scale matrix problems currently arise in the context
of accurately computing the coordinates of points on the surface of
the earth. Here geodesists adjust the approximate values of these
coordinates by computing least squares solutions to large sparse systems
of equations which result from relating the coordinates to certain ob-
servations such as distances or angles between points. The purpose of
this paper is to suggest an alternative to the formation and solution of
the normal equations for these least squares adjustment problems. In
particular, it is shown how a block-orthogonal decomposition method can
be used in conjunction with a nested dissection scheme to produce an
algorithm for solving such problems which combines efficient data
management with numerical stability. As an indication of the magnitude
that these least squares adjustment problems can sometimes attain, the
forthcoming readjustment of the North American Datum in 1983 by the
National Geodetic Survey is discussed. Here it becomes necessary to
linearize and solve an overdetermined system of approximately 6,000,000

equations in 400,000 unknowns - a truly large-scale matrix problem.






1. Introduction.

Recent technological advances have made possible the collection of
vast amounts of raw data describing--certain physical phenomena. As a
result, the sheer volume of the data has necessitated the development
of new elaborate schemes for processing and interpreting it in detail.
An example is in the adjustment of geodetic data.

Geodesy is the branch of applied mathematics which is concerned
with the determination of the size and shape of the earth, the directions
of lines and the coordinates of stations or points on the earth's surface.
Applications of this science include mapping and charting, missile and
space operations, earthquake prediction,and navigation. The current use
of electronic distance measuring equipment and one-second theodolites
for angle measurements by almost all surveyors necessitates modern ad-
justment procedures to guard against the possibility of blundersas well as
to obtain a better estimate of the unknown quantities being measured. The
number of observations is always larger than the minimum required to
determine the unknowns. The relationships among the unknown quantities
and the observations lead to an overdetermined system of nonlinear equations.
The measurements are then usually adjusted in the sense of least squares
by computing the least squares solution to a linearized form of the system
that is not rank deficient.

In general, a geodetical position network 1is a mathematical model

consisting of several mesh-points or geodetic stations, with unknown posi-
tions over a reference surface or in three-dimensional space. These stations

are normally connected by lines, each representing one or more observations



involving the two stations terminating the line. The observations may be
angles or distances,and thus they lead to nonlinear equations involving,
for example, trigonometric identities and distance formulas relating
the unknown coordinates. Each equation typically involves only a small
number of unknowns.

As an illustration of the sheer magnitude that some of these problems
can attain, we mention the readjustment of the North American Datum -
a network of reference points on the North American continent whose
longitudes, latitudes and, in some cases, altitudes must be known to an
accuracy of a few centimeters. This ten-year project by the U.S. National
Geodetic Survey is expected to be completed by 1983. The readjusted net-
work with very accurate coordinates is necessary to regional planners,
engineers and surveyors, who need accurate reference points to make maps
and specify boundary lines; to navigators; to road builders; and to energy
resource developers and distributors. Very briefly, the problem is to use
some 6,000,000 observations relating the positions of approximately
200,000 stations (400,000 unknowns) in order to readjust the tabulated values
for their latitudes and longitudes. This leads to one of the largest single
computational efforts ever attempted - that of computing a least squares
solution of a very sparse system of 6,000,000 nonlinear equations in
400,000 unknowns. This problem is described in detail by Meissl [1979],
by Avila and Tomlin [1979], and from a layman's point of view by Kolata
[1978] in Science.

In general then, geodetical network adjustment problems can lead
(after linearization) to a very large sparse overdetermined system of m

linear equations in n unknowns



AX ~ (1.1)

where the matrix A , called the observation matrix, has full column

rank. The least squares solution to (1.1) is then the unique solution

to the problem:

min([b- Ax”2 .

An equivalent formulation of the problem is the following: one seeks to
determine vectors y and r such that r + Ay = b and Atr =0
The least squares solution to (1.1) is then the unique solution y to

the nonsingular system of normal equations

A%y = b . (1.2)

The linear system of equations (1.2) is usually solved by computing

the Choleskv factorization

% t
A'A =RR, R= M]

t
and then solving Rw = Atb by forward substitution and Ry = W by

back substitution. The upper triangular matrix R is called the

Cholesky factor of A

Most algorithms for solving geodetic least squares adjustment problems
(see Ashkenazi [1971], Bomford [1971], Meissl [1979] or Avila and Tomlin
[1979])typically involve the formation and solution of some (weighted)
form of the normal equations (1.2). But because of the size of these

problems and the high degree of accuracy desired in the coordinates, it



is important that particular attention be paid to sparsity considerations
when forming APA as well as to the numerical stability of the algorithm
being used. It is generally agreed in modern numerical analysis theory
(see Golub [1965], Lawson and Hanson [197h] or Stewart [1978] )that ortho-
gonal decomposition methods applied directly to the matrix A in (1.1) are
preferable to the calculation of the normal equations whenever numerical
stability is important. Since A has full columm rank, the Cholesky

factor, R , of A can be computed by

% R t
QA = , @Q=I, R= (1.3)
5] 5

where the orthogonal matrix Q results from a finite sequence of
orthogonal transformations, such as Householder reflections or Givens

rotations, chosen to reduce A to upper triangular form.

Since A has the orthogonal decomposition A=Q [EJ ’

then defining d% = [g] , where ¢ is an n - vector,

the least squares solution y to (1.1) is obtained by solving Ry = c

by back substitution. The greater numerical stability of the orthogonal
decomposition method results from the fact that the spectral condition
number of AtA in the normal equations (1.2) is the square of the spectral
condition number of A . The-orthogonal decomposition method (1.3) has
other advantages, including the ease with which updating and downdating of
the system (1.1) can be accomplished, and the fact that possible fill-in

in forming the normal equations is avoided (see, for example, Bjbrck [1976]).



However, orthogonal decomposition techniques for solving large sparse
least squares problems such as those in geodesy have generally been
avoided, in part because of tradition and in part because of the lack
of effective means for preserving sparsity and for managing the

data.

Modern techniques for solving large scale geodetic adjustment
problems have involved the use of a natural form of nested dissection,
called Helmert blocking by geodesists, to partition and solve the normal
equations (1.2). such techniques are described in detail in Avila and
Tomlin [ 1979], in Hanson [1978], and inMeissl [1979] where error analyses
are given.

The purpose of this paper is to develop an alternative to the formation
and solution of the normal equations in geodetic adjustments. We show how
the orthogonal decomposition method can be combined with a nested dissection
scheme to produce an algorithm for solving such problems that combines
efficient data management with numerical stability.

In subsequent sections the adjustment problem is formulated, and it
is shown how nested dissection leads to an observation matrix A in (1.1)

of the special partitioned form

(1.4)

\ N\
NN

NN
N
N\




where the diagonal blocks are normally rectangular and dense and where
the large block on the right-hand side is normally sparse with a very
special structure. The form (1.4) is analyzed and a block-orthogonal
decomposition scheme is described. The final section contains some
remarks on the advantages of the approach given in this paper and
relates the concepts mentioned here to further applications. Numerical

experiments and comparisons are given elsewhere in Golub and Plemmons

[ 1980].

2. Geodetic Adjustments.

In this 'paper we consider geodetical position networks consisting
of mesh-points, caiied stations, on a two-dimensional reference surface.
Associated with each station there are two coordinates. A line connecting
‘two stations is roughly used to indicate that the coordinates are coupled
by one or more physical observations. Thus the coordinates are related
in some equation that may involve, for example, distance formulas or

trigonometric identities relating angle observations. An example of such

a network appears in Figure 1.

' _»

FIGURE 1

A 15 station network.



More precisely, one considers a coordinate system for the earth
and seeks to locate the stations exactly, relative to that system.
Usually coordinates are chosen from a rectangular geocentric system (see
Bomford [1971]). Furthermore, a reference ellipsoid of revolution is
chosen in this set of coordinates and the projection of each station onto
this ellipsoid determines the latitude and longitude of that station.

As indicated initially in Section 1, the relationships among the
coordinates of the stations in the geodetic network lead to an over-

determined system of nonlinear equations

7(p) = g (2.1)

where
p = vector of unknown coordinates, and

q = vector of observations.

The components of F(p) represent the equations that express the relation-
ships among the unknown parameters and the observations or measurements
made, for example, by surveyors.

A common procedure for solving the overdetermined system (2.1) is the

method of variation of parameters. (This is generally called the Gauss-

Newton nonlinear least squares algorithm in the mathematical literature).

Approximate coordinates are known a priori. Let
po = current vector of approximate coordinates.

Then if F has a Taylor's series expansion about pO , there follows the

relationship



F(p) = F('po) + F'('po)<p - po) + e

o)

where F'(po) denotes the Jacobian of F at p Then taking

A =7 (p°)

_ 0
X=p-p
b =q - F(p)
and truncating the series after 2 terms, one seeks the solution to:

minflb - Ax”2 . (2.2)
X

The least squares solution y then represents the correction to

pO . That is, one takes

1

p =po+y
as the next approximation to p . The process is, of course, iterative
and one can use pl to compute a further approximation to p . Normally,

the initial coordinates have sufficient accuracy for convergence of the
method, but the number of iterations is often limited by the sheer magnitude
-of the computations. Thus a very accurate approximation to y is desired.
Actually, the equations are usually weighted by use of some positive
diagonal matrix W , where the weights are chosen to reflect the confidence

in the observations: thus (2.2) becomes
1 1
min|[WFo - WAx|, .
X 2

For simplicity, we will use (2.2) in the analysis to follow. The procedure



we discuss, however, will not be complicated by the weights.

Due to the sheer volume of the data to be processed in many
adjustment problems, it is imperative to organize the data in such a
way that the problem can be broken down into meaningful mathematical
subproblems which are connected in a well-defined way. The total
problem is then attacked by "solving" the subproblems in a topological
sequence. This "substructuring" or "dissection" 'process has been
used by geodesists for almost a century. The method they have employed
dates back to Helmert [1880] and is known as Helmert blocking (see
Wolf [1978] for a historical discussion).

In Helmert blocking, geographical boundaries for the region in
question are chosen to *partition it into regional blocks. This technique
orders the stations appropriately in order to establish barriers which
divide the network into blocks. The barriers are chosen so that the
interior stations in one block are not coupled by observations to interior
stations in any other block. These interior blocks are separated by sets
of junction stations which are coupled by observations to stations in more
than one block. An example of such a partitioning of the geodetic network
in Figure 1 to one level of Helmert blocking is provided in Figure 2.

Here the circled nodes represent the junction stations chosen for this

example.



- ,

FIGURE 2
One level of Helmert blocking.

The particular form of Helmert blocking we will use here is the same
as that used by Avila and Tomlin [1979] for partitioning the normal
equations. That procedure, in certain respects, 1is a variation of the
nested dissection method developed by George [1973], [1977];
George and Lui [1978];and George, Poole and Voight [1978]. The primary
émphasis of the nested dissection strategy has been on solving symmetric
positive-definite systems of linear equations associated with finite element
schemes for partial differential equations, There, the finite element nodes

are ordered in such a way that the element matrix B is permuted into

the Dblock partitioned form

10



where the diagonal blocks are square.
In our case we use the following dissection strategy in order to
permute the'observation matrix A into the partitioned form (1.4)

Our procedure will be called nested bisection.

Given a geodetical position network on a geographical region R
first pick a latitude so that approximately one-half of all the stations
lie south of this latitude. This forms two blocks of interior stations
and one block of separator or junction stations and contributes one level

of nested bisection (see Figure 3).

J41 ;‘\\\ interior stations

13 _____ junction stations

D/{ -&- interior stations
a

FIGURE 3

One level of nested bisection.

11



Now order the stations in R so that those in the interior regions

‘/{1 appear first, those in the interior regicm4 appear second, and

2
those in the junction regionB appear last; order the observations
(i.e., order the equations), so that those‘involving stations in ﬂl

come first, followed by those involving stations inA ; then the

2

observation matrix A can be assembled into the block-partitioned form:

@ ;
a

Thus A can be expressed in the block-partitioned form:

where the A.l contains nonzero components of equations corresponding
to coordinates of the interior stations inli and where the Bi contain
the nonzero components of equations corresponding to the coordinates of
1;he stations in the junction region-B ;

Next, in each of these halves we pick a longitude so that approximately
one-half of the stations in that region lie to the east of that longitude.
This constitutes level 2 of nested bisection. The process can then be

continued by successively subdividing the smaller regions, alternating between

latitudinal and longitudinal dividing lines. Figure k illustrates three levels

12



of nested bisection.

A,
B

.

\

.
),
-/

I
[
A
A A
- N
S )

FIGURE &

Three levels of nested bisection.

The observation matrix associated with the nested bisection of the
geodetical position network in Figure 4 can then be assembled into the

partitioned form: -

/ %

y 2y
4

M-
2

] ;I)/ //// . o (2.3)
7% 7R 4
7

NN

N
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It follows that if nested bisection is carried out to k levels,
then the partitioned form of the assembled observation matrix has:
. k . . .
i) 2 diagonal blocks associated with
interior regions, and

ii) 2k—1 blocks associated with junction regions.

In particular, there are

iii) Zk_l junction blocks which are each coupled to
2 interior regions, and

k_
iv) 2 l—l junction blocks which are each coupled to

4 interior regions.

Heuristically, one normally would like to perform the bisection
process so that the sets of junction stations are minimal at each level,
~thus maximizing the numbers of columns in the diagonal blocks. The process -
is stopped at the level k at which the 2k diagonal blocks are suffi-
ciently dense or at the level at which further subdivisions are not
feasible or are not necessary for the particular adjustment problem.
Our proposed block orthogonal decomposition algorithm for an obser-
vation matrix A already in the partitioned form determined by nested

bisection is deferred to the next section.

3.  The Block Orthogonal Decomposition.

In this section we describe a block orthogonal decomposition algorithm
for solving the least squares adjustment problem m%n“b-AxHQ , where
the observation matrix A has been assembled into the general block
diagonal form (1.4). Here we assume that the structure of A is specified

by the nested bisection scheme described in Section 2. Other dissection

1L



schemes may be preferable in certain applications (see Golub and

Plemmons [1980]).

We first illustrate the method with k = 2 levels of nested

bisection, as given in Figure 5.

FIGURE 5

Two levels of nested bisection.

Suppose that the associated observation matrix A is assembled into the

corresponding block-partitioned form, giving

Ay Dy
A D
A= ° A c D2
3 3 3
By C Dy

Then by the use of orthogonalization techniques based upon, for example,
Householder reflections, Givens rotations or modified Gram-Schmidt ortho-
gonalization, the reduction of A to upper triangular form proceeds as

follows:

15



At the first stage, each diagonal block Ai is reduced by

orthogonal transformations.

Q:fi - & By Dy
Q;G ? B B 22
Q - ! By, C, Dh_

Here the Q1 are orthogonal matrices (which of course need not

be formed explicitly) and QJiG A = [il} , where R.l = [%} , yielding
5 5o
0 B] D}
7, I
0 Bél D;'
%5 ¢ 0
0 c; D:BL
Ry ¢, D
T

The row blocks corresponding to the upper triangular matrices Ri

are then merged through a permutation of the rows, yielding

16
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!

ct
| w}

&
[
T T

R
+

FRWH
_«':pn—lwtjl—'

This completes the first stage of the reduction. For the intermediate

stages, pairs of merged blocks corresponding to junction stations are

1 1
. B C

reduced. First, 1 and 3 are reduced to upper triangular
1 1

form by orthogonal transformations, yielding

) 0 07}
Ry By Dy
R, B, D
"3 ¢ 0
Ry, o Dy
R, D%
0 D;
Rg g
0 Dé

17



Then merging the triangular factors R. and R, through a permutation
J (V)

of the rows, yields

l\>':jO '—'UO

i

To complete the intermediate stages,

=== = =)
.OFL)U1F'O\O‘J1C)F‘O\J ©

is reduced to upper triangular

=

=]
(©))

form by orthogonal transformations, yielding

=
lw) g
O\O\HUO F’O\)JUON Or—'bO

=
[O)Y
g

-
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Here R is the Cholesky factor for A . Let n, denote the
order of Ri for i = 1,...,7 and let ct = (cl"' qc7?t denote the
result of applying the same sequence of orthogonal transformations and
permutations to b , where each Cy is an ni—vector. For the final
step of the solution process, the least squares solution y to Ax ~ b
is computed as follows.

Partition y as yt = (yl""’YT)t where y;, 1is an n,-vector,
i=1,...,7. Then the following upper triangular systems are solved

successively by back-substitution for the vectors y; , i = Tybyuuerl .

- R7y7 = C7 5
R,y. = ¢, - Doy i = 6,5
iYi i 197 e
0 0 .
Riyi - ci - CiY6 - DiYY > 1 = l"‘)B)
0 0 .
Riyi =c; - Biy5 - Diy7 , 1 =2,1

The general reduction process 1is described next in terms of three
basic steps. Let A and b denote the observation matrix and vector
resulting from k levels of nested bisection of a geodetic position
network on some geographical region. Assume that A has been assembled

into the general block-partitioned form (1.4), with 2k diagonal blocks

. k .
and 2%-1 remaining column blocks. Letting t =2" , we write A as

19



8 .
A A .
1 1,t+1 A,0t-1
A
2 Bo gr1 . By ot
A= . (3.1)
A, A .
— t Tt,t+l At,Et-l_‘

For a certain flexibility of the algorithm and also for simplicity in the

notation, we do not altogether distinguish here between zero and nonzero

blocks Al'j . The zero pattern of these blocks depends on the number of

levels, k , to which the nested bisection process is carried. particular
attention was paid to this pattern for the case of k = 2 levels in the

illustrative example just completed.

Algorithm 1. This algorithm computes the Cholesky factor R and the least

squares solution y to Ax ~b where A results from k levels of
k

nested bisection and A has the block form (3.1), with t = 2

Step 1. Reduce each diagonal block Ai of A to upper triangular form

by-orthogonal transformations and merge the reduced blocks.

- [

(Note that QJ; need not be formed explicitly).

1) Do for i = 1,2,...,t.

1) Determine Q: so that C'Q;.;_Ai =10
L

20



2) Compute

i,

2t-1_

resulting matrix has the form

T
Ay e+l

2,5+l

1,t+0

2,442

At,t+2

B3 o2

Au, t+2

21

0
Al,5t/2
20
2,3t/2
0
. . A‘t,Bt/Q
1
A 1,3t /0
1
Ap 3t/0

2) Merge the reduced row blocks by row permutations so that the

20
1, (3t/2)+1 .
20
o, (3t/2)+1 .

0
At,(5t/2)+1

1
A, Gefe)+1 -
by, (3t/2)+1
Al

3, (3t/2)+1 °

1
By (3tfe)+1 -

AL
t-1, (3t/2)+1

AL

t, (5t/2)+l ‘




step 2. Reduce and merge the intermediate-stage blocks.

K-
1) Do for u=1%, t/2,..., t/2 1o 2

1) Do for v = 1,3,...,u-1

1) Reduce each pair of row diagonal blocks

1l
v,ttv

v+1l,t+v

to upper triangular form by orthogonal transformation,

as in Step 1.

2) Merge the resulting reduced row blocks by row permutations

so that the upper triangular blocks R. ~appear first, as

in Step 1.

At the end of Step 2, A has been reduced by orthogonal transformations
) to the following form, where each Ri is upper triangular and where certain

of the blocks A?j are zero.

22



0 0

R B ger . 0 0 Peea
A a9

R, o4+l . T2,0t-1

R, A .. .0 3.2)
R = v P, eel t,06-1 . (3.
Rivy
0
o Bog oot
Rogo1

Step 3. Back Substitution. Let n, denote the order of Ri , for

i=1,...,2t-1 . Let et - )'  denote the result of

(eyrevscoy g
applying the same sequence Of orthogonal transformations to b and let

t )t

Yy = (yl,-..,yet 1 denote the least squares solution to Ax ~b ,

where c, and y, are n,-vectors, i =1,...,2t-1. Solve each of the

following upper-triangular systems by back-substitution

1) Rop g Yol — %o

0
2) R_'y = ci - Aij YJ 4 i = 2t—2’ 2t—l)""t

i
J=1+1
2t-1

3) Ry <oy -E: 23 , 1= b, t-ly...,l
j=t+1

23



The reduction algorithm just described for the observation matrix A
can be interpreted from a network-reduction viewpoint as follows. Suppose
that A results from a nested bisection of the geographical region to k
levels. Then at the first stage of the reduction process, orthogonal
transformations are applied to each of the 2k blocks corresponding to
the interior regions, to reduce the coordinates of stations not coupled
to stations outside that block by an observation. Modified junction stations
in the separator blocks are kept until nearby interior blocks are reduced.
Then clusters of blocks of junction stations are grouped together (merged)
to form higher level blocks. At the intermediate stages of the reduction
'process, some station coordinates are now interior and can be reduced by
orthogonal transformations. The process continues until at the last stage
the remaining stations are all interior and their coordinates can be reduced.
At this point A is completely reduced by orthogonal transformations to its
Cholesky factor R , and correspondingly, the vector b is reduced to c
as indicated in Step 3. To determine the least squares solution y to
Ax ~ b , the process is, in a sense, reversed to back substitute the co-
ordinates to successively lower levels until all of the corrections have
been found.

Notice that at each stage of the reduction process it is possible to
obtain a "diagnostic solution" (see Meissl [1979]). Here we hold the co-
ordinates of the junction stations fixed and solve for the coordinates of
the reduced interior stations at that stage.

We emphasize again that, fora certain flexibility, full advantage has

2l



not been taken in Algorithm 1 of the zero pattern of the blocks A‘13
of A as given by (3.1). This pattern of course determines the block
structure of the Cholesky factor R of A as given by (3.2). Basically,
R has the same type of block structure as A , but with 2k+l-1 upper -
triangular diagonal blocks. For nested bisection to k = 4 levels,

where A is assembled into the form (2.5), the Cholesky factor R has

the following structure.

NN

N

DN

NN
Y

AN

N N

NN
NN

N

N
NN
NIy
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In order to facilitate an analysis of the results of a least

squares adjustment, it is often desirable to compute some or all of

the elements of the variance-covariance matrix (AtA )7L since

(ata)~t

A°A tp)~L

= (R

4

the special block structure of R Jjust discussed can be used advanta-
geously in computing the variances and covariances. Such a procedure

is given in the next section for a more generally sparse Cholesky factor R .

4.  Computation of the Variances.

In many adjustment problems (see, for example, Hanson [1978]) it is
necessary to compute the variances and covariances associated with the
regression coefficients in order to estimate the accuracy of the results.

Under the usual assumptions, the variance of the i-th coefficient is pro-
portional to the (i,i) element of (afa)t .

diagonal elements of (AtA)_l can be calculated quite efficiently. Indeed,

If R is sparse, then the

it is easy to compute all the elements of (AtA)_l which are associated
with the non-zero elements of R , the Cholesky factor. We describe the
procedure next.

Using the orthogonalization algorithm we determine the Cholesky

factor R so that

A%a = rR ,

Suppose
T Z 0 when (i,j)e K
= 0 when (i,3)¢ K

26



Our objective is to determine
{(AtA)—l}ij When (i,j) € K ,

Let us write

t,\-1
(A'A)"" =z = [zl,...,zn] ,

is the i-th column of the matrix Z

where z,
1
Since
A°AZ = I
(4.1)
Rz = (R")™%
Note that
ty-1 3
(@77}, =1 / oo (4.2)

From (4.1) and (4.2), we see that

) (el = (0,004,0,1)

Rz =c¢e X(r
n n nn
so that we can solve for Z, by back substitution. Thus
;= (r )2
nn nn
and for i = n-1,n-2,...,1
n n
T r.
“in ~ —Z :I:;‘J 2 B _Z I'lJ %4n
in jn
j=ir1 ** j=ir1
(i,j)e K

27



Let In = min {i1 T # B . It is possible to calculate
1<1i<n-1
Zin for i = n-l,n-2,...,Iv1 . Once these components have been computed,

it is only necessary to save those elements for which (i,n) ¢ K

Note

Now assume we have calculated those elements of z ,z y ¢+ 22
n"nl T+

for which
- r ¥ 0 when p=l,...,n ; g = L+1,..,n

el

Thus, by symmetry we have computed

Zqi for g > 1 and (E,q)e K

Now for i = 1,2,., £-1

j=i
and n
1
3 fa T
oyt 14
Hence n
0 rl (7 - }: i 2
ITRY. Ly I
3=0+1
n
- ?}' (Ei— } 3 zaz)
F YA
(f,j)e K



Let Il = min {i | iy # 03 . Then for i = I-l,...,Iz

1< i< £-1
L n
Z. = - .
i ( Z Z 13 lJ I.ii
j:i—l—l J:
(i,j)€ K o ( 1,J

Again, after this 'calculation is performed, We save only those elements
for which (i,£) € K . The above algorithm thus describes a method for
computing the elements of the inverse of (a°A) which are associated
with the non-zero elements of R . Such a procedure can be quite

efficient when compared to computing

bl - plgt)-l

For example, suppose we need the diagonal elements of (AtA)'l when

rij # 0 for 1 = j and j = i+l , and

r,., =0 otherwise,
1]

i.e. R 1is bi-diagonal. The matrix R_1 will be completely filled in
above the diagonal and hence OGF) numerical operations are required to
(a®a) 7t

compute the diagonal elements of (AA

. The algorithm we have outlined
above would require 0(n) operations. Even greater savings can be expected
for the Cholesky factor R of the form (3.2), resulting from nested bi-

section.

5. Final Remarks.

To summarize, an alternative has been provided here to the formation
and solution of the normal equations in least squares adjustment problems.

In particular, it has been shown how a block-orthogonal decomposition method
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can be used in conjunction with a nested dissection scheme to provide

a least squares algorithm for certain geodetic adjustment problems,

Some well-known advantages ofdissectionschemes for sparse linear systems
are that they facilitate efficient data management techniques, they allow
for the use of packaged matrix decomposition routines for the dense
component parts of the problem,and they can allow for the use of parallel
processing. In the past, the combination of the normal equations approach
with these dissection techniques (in particular Helmert blocking) has been
preferred, partly because of tradition and partly because of the simplicity
and numerical efficiency of the Cholesky decomposition method. However,
the use of an orthogonal decomposition scheme applied directly toan
observation matrix A which has also been partitioned by a dissection
scheme has several advantages over the normal equations approach. First,
the QR orthogonal decomposition of A allows for an efficient and
stable method of adding observations to the data (See Gill, Golub, Murray
and Saunders [1974]). Such methods are crucial in certain large-scale
adjustment problems (see Hanson [1978]). Secondly, possible fill-in that
can occur in forming the normal equation matrix AtA is avoided. A
statistical study of such fill-in is provided by Bjorck [1976]. Meissl
[1979) reports that some fill-in can be expected in forming AtA in the
readjustment of the North American Datum. This problem cannot be over-
emphasized in such large scale-systems (6,000,000 equations and 400,000
unknowns) . But perhaps the most crucial advantage of the use of ortho-
gonal-decomposition schemes here is that they may reduce the effects of

ill-conditioning in adjustment calculations.

30



In this 'paper we have treated only one aspect of nested dissection
in least squares problems, that of decomposing a geodetical position
network by the 'process of nested bisection. However, the block diagonal
form of the matrix in (1.4) can arise in other dissection schemes such
as one-way dissection (see George, Poole and Voight [1978] for a description
of this scheme for solving the normal equations associated with finite
element problems). The form also arises in other contexts, such as photo-
grammetry (See Golub, Luk and Pagano [1979]). Least squares schemes based
in part upon block iterative methods (see Plemmons [1979])or a combination
of direct and iterative methods may be preferable in some applications.
Moreover, the general problem of permuting A into the form (1.4) by
some graph-theoretic algorithm for ordering the rows and columns of A
(see Weil and Kettler [1971]) has not been considered in this paper.

Some of these topics will be addressed further in Golub and Plemmons [1980].
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