
"AD=A086 504 STANFORD UNIV CA DEPT OF COMPUTER SCIENCE F/G 9/2
BUILDING PROGRAM MODELS INCREMENTALLY FROM INFORMAL DESCRIPTION=-ETC(U)}
OCT 79 B P MCCUNE MDA903=76=C=D206

UNCLASSIFIED STAN=CS=79=T772 NL

&BERR
al

ADAGE 1A

A rr—————— rrr r————u



h Stanfora Artificial Intelligence Laboratory October 1879 |
! Memo AIM-333 oy |

§ Computer Science Department | | 1 t- PE
; Systems Control, Inc. te? #2 7+ 7 «707
i Technical Report SCLICS.U.79.2

1 3 ed W3 X CS
Building Program Models Incrementally from Informal Descriptions ]

i B McC OC AT NE
2 C0 A tg b x

° Research sponsored by

1 «=r Defense Advanced Research Projects Agency |
| <<
] COMPUTER SCIENCE DEPARTMENT

Stanford University

Computer Science Department

Systems Control, Inc. 2 |
Palo Alto, California oY

gr” EET Ta AF . .
A 0 JUNI, EN - AN on SE
& eT z 1) LD a! o°

ie ~~ \% \ \o* ¥ O°iE] ol; ws

— NSO

= :
= 80 7 8 025



; - mcsecm i. ir) RT 7 eid RTM oprRSS — ie, hh
k | “~ ~~

; UNCLASSIFIED ’ |
; SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

hv READ INSTRUCTIONS 1
(44 REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

1 1. REPORT NEMBER oe oe meme 2. GQVT ACCESSION NO. | 3. RECIPIENT'S CATALOG NUMBER

er - / /] V7AIM-333 {STAN-CS-79-772, A/M-2L.2 | AD-10 0 HC
3 {a TITLE {and Sabticle AL amebeair A ~~ | 5. TYPE OF REPORT & PERIOD COVERED

] : l A Building Program Models Incrementally from Informal
3 '—~ | Deseriptions, / | technical, October 1979 |

, d 6. PERFORMING ORG. REPORT NUMBER |od }ST ACTOGRS ATIM-333 ‘(STAN-CS-79~-772)
IN . 8. CONTRACT OR GRANT NUMBER(S)

. ne J + / J & 5 | NOOOTE=T9-C=012T, © |1 f& ff Brian plyMeCune ; ee | | MDA9O3-T6-C-02006 :
2 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK :

i Department of Computer Science AREA & WORK UNIT NUMBERS
4 Stanford University ( yo,J 144 ! { 4
] Stanford, California 94305 USA CT i
j 2. REPORT DATE © . NO. OF PAGES 3

i 11. CONTROLLING OFFICE NAME AND ADDRESS 7 \ off ” 9 140 £4 Defense Advanced Research Projects Agency ; f / :
j Information Processing Techniques Office ~~ - SECURITY CLASS. (of this report) ]
3 1400 Wilson Avenue, Arlington, Virginia 22209 ]

¥ 14. MONITORING AGENCY NAME & ADDRESS (if diff. from Controlling Office) Unclassified
: Mr. Philip Surra, Resident Representative 43 . . 15a. DECLASSIFICATION/DOWNGRADING 3

4 Office of Naval Research, Durand 165 CCHEDULE
Stanford University i

3 16. DISTRIBUTION STATEMENT (of this report) {

Approved for public release; distribution unlimited. 3
1” f o } — 1

EF 17. DISTRIBUTION STATEMENT (OY INE BPttract dpderfd in Block 20, if different from report) | 3

- 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) co

I

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

(see other side) |
4

|

rs 1873 [DD.> UNCLASSIFIED
EDITION OF 1 NOV 65 IS OBSOLETE SECURITY CLASSIFICATION OF THIS PAGE (When Dats Entered) 1 :

-



UNCIQSSIFIED ». o :

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) F
198. KEY WOROS (Continued) ¥

20 ABSTRACT (Continued)

.—-1-2" Program acquisition is the transformation of a program specification into an executable, but not
necessarily efficient, program that meets the given specification. This thesis presents a solution to

3 one aspect of the program acquisition problem: the incremental construction of program models |
from informal descriptions. The key to the solution is a framework for incremental program |
acquisition that includes #4¥ a formal language for expressing program fragments that contain |
informalities, 74] a control structure for the incremental recognition and assimilation of such |
fragments, and ¢3)"a knowledge base of rules for acquiring programs specified with informalities.

The thesis describes, a LISP based computer system called the Program Model Builder

(gbbreviated 7PMB, which receives informal program fragments incrementally and assemblesi them into a very high level program model that is complete, semantically consistent, unambiguous,
| and executable. The program specification comes in the form of partial program fragments that
3 arrive in any order and may exhibit such informalities as inconsistencies and ambiguous
1 references. Possible sources of fragments are a natural language parser or a parser for a surface
} form of the fragments. PMB produces a program model that is a complete and executable
i computer program. The program fragment language used for specifications is a superset of the

language in which program models are built. This program modelling language is a very high
level programming language for symbolic processing that deals with such information structures

: as sets and mappings. |
; The recognition paradigm used by PMB is a form of subgoaling that allows the parts of the |

E program to be specified in an order chosen by the user, rather than dictated by the system.
Eo Knowledge is represented as a set of data driven antecedent rules of two types, response rules and —
= demons, which are triggered respectively by either the input of new fragments or changes in the
- partial program model. In processing a fragment, a response rule may update the partial program
% model and create new subgoals with associated response rules. To process subgoals that are |
pr completely internal to PMB (e.g, model consistency checks), demon rules are created that delay |
= execution until their prerequisite information in the program model has been filled in by response |
p rules or perhaps other demons. 2

PMB has been tested both as a module of the PSI program synthesis system and independently.
Models built as part of PSI have been acquired via natural language dialogs and execution traces
and have been automatically coded into LISP by other PSI modules. PMB has successfully built |

| a number of moderately complex programs for symbolic computation.
|

FORM

\ DD. JAN 1B TJ BACK! UNCLASSIFIED
EDITION OF 1 NOV 65 IS OBSOLETE SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)



i Stanford Artificial Intelligence Laboratory October 1979 - B
Co Memo AIM-333 a

: | Computer Science Department :
1! Report No. STAN-CS-79-772 3

1 3 Systems Control, Inc. | 1
I § Technical Report SCLICS,U.78.2 :

J Building Program Models Incrementally from Informal Descriptions ]

§ by ]

: Brian P. McCune

1 Program acquisition is the transformation of a program specification into an executable, but not :
1 3 necessarily efficient, program that meets the given specification. This thesis presents a solution to 2
LE - one aspect of the program acquisition problem: the incremental construction of program models 1

I from informal descriptions. The key to the solution is a framework for incremental program 3
acquisition that includes (1) a formal language for expressing program fragments that contain A

: informalities, (2) a control structure for the incremental recognition and assimilation of such ¥
: fragments, and (3) a knowledge base of rules for acquiring programs specified with informalities. 3

The thesis describes a LISP based computer system called the Program Model Builder
(abbreviated "PMB"), which receives informal program fragments incrementally and assembles 3

) them into a very high level program model that is complete, semantically consistent, unambiguous,
: and executable. The program specification comes in the form of partial program fragments that
; arrive in any order and may exhibit such informalities as inconsistencies and ambiguous |
1 references. Possible sources of fragments are a natural language parser or a parser for a surface
i form of the fragments. PMB produces a program model that is a complete and executable

computer program. The program fragment language used for specifications is a superset of the
1 language in which program models are built. This program modelling language is a very high |

i I level programming language for symbolic processing that deals with such information structures
as sets and mappings.

i The recognition paradigm used by PMB is a form of subgoaling that allows the parts of the
} ’ program to be specified in an order chosen by the user, rather than dictated by the system.
a. Knowledge is represented as a set of data driven antecedent rules of two types, response rules and |
; demons, which are triggered respectively by either the input of new fragments or changes in the ;



partial program model. In processing a fragment, a response rule may update the partial program Co. :
3 model and create new subgoals with associated response rules. To process subgoais that are !
3 completely internal to PMB (eg, model consistency checks), demon rules are created that delay g
{ execution until their prerequisite information in the program model has been filled in by response : 1
j rules or perhaps other demons. i

] PMB has been tested both as a module of the PSI program synthesis system and independently. I
; Models built as part of PSI have been acquired via natural language dialogs and execution traces :
3 and have been automatically coded into LISP by other PSI modules. PMB has successfully built

a number of moderately complex programs for symbolic computation.

F This dissertation was submitted to the Department of Computer Science and the Committee on 1
3 Graduate Studies of Stanford University in partial fulfillment of the requirements for the degree of 3
i Doctor of Philosophy. 3

4 Available from University Microfilms International, P. O. Box 1346, Ann Arbor, Michigan 48106 E

§ © Copyright 1980 1
by CL]

i Brian Perry McCune 1

|

x ii



] h Acknowledgments i

; Professor Cordell Green provided his time, encouragement, and many good ideas throughout
fo the period he was my thesis adviser and leader of the PSI project. The other members of my
an thesis reading committee, Professors Bruce G. Buchanan and Terry Winograd, spent many :

; hours reading my thesis and discussing it with me in order to crystallize the ideas it contains, } 4
relate them to other work, and help me present them better. The fourth member of my oral
examination committee, Professor Gio Wiederhold, helped teach me what a Ph.D. thesis 1s and .

Fo how to present it to a wider audience than just the artificial intelligence community. |

| Many other people helped me in various ways during the writing of this thesis. Discussions 1
3 with the knowledge based programming group at Systems Control, Inc, helped clarify the :

problems addressed by the Program Model Builder and how it relates to the PSI program :
§ synthesis system. Elaine Kant, Thomas T. Pressburger, Stephen J. Westfold, and Michael ].
2 Clancy provided helpful criticisms of drafts of the thesis.

E This work would not have been possible without the ideas, hacking, support, and friendship of ~~ s
E the entire PSI group at the Stanford Artificial Intelligence Laboratory. Jerrold M. Ginsparg, i
EF Jorge V. Phillips, Louis I. Steinberg, Stephen J. Westfold, and Ronny van den Heuvel 3
E collaborated on the definition of the program fragment language. David R. Barstow created the .
Fr initial specifications of the program modelling language. David R. Barstow, Elaine Kant, Bruce i
FE Nelson, and juan J]. Ludlow heiped “debug” the modelling language. Bruce Nelson wrote the 1
SE program model interpreter, and Richard E. Pattis enhanced it to parse arbitrary inputs. 4
E Thomas T. Pressburger wrote the program that generates readable program models. Avra
: Cohn and Ronny van den Heuvel outlined the types of programming knowledge a program |
FE acquisition system should have. Steve T. Tappel wrote and helped specify the rule expander. :

. Finally, thanks to Lester D. Earnest and the rest of the hacker/volleyball community at the 4

4 Artificial Intelligence Laboratory for making it a fun and productive environment in which to ]
2 work. And thanks to my housemates, friends, parents, and relatives for having faith in me and ;
x3 for putting up with much work and little play for too long. H

t E This thesis describes research done in the Computer Science Department, Systems Control, Inc. 3
: fk and the Artificial Intelligence Laboratory, Stanford University. The research was supported in 3
sR part by the Defense Advanced Research Projects Agency under DARPA Order 3637, Contract :
J? N00014-79-C-0127, which is monitored by the Office of Naval Research, and DARPA Order :
FF 2494, Contract MDA903-76-C-0206. Additional support was provided by the National Science
2S Foundation through an NSF Graduate Fellowship, the International Business Machines
1 Corporation through an IBM Graduate Fellowship, and the Josephine de Karman Fellowship :
1 Trust through a Josephine de Karman Fellowship. I am extremely grateful to all of these |

organizations for their financial support.

Bi The views and conclusions contained in this thesis are those of the author and should not be

= interpreted as necessarily representing the official policies, either expressed or implied

5 the organizations mentioned above. Li |
Vo mee mare

al & 45 IR _

REEL aia CARAS og i AVE b AO mn oilyREG CEASA AF : . STTET T—— 4



a. Table of Contents {

Section Page :

g 1. Introduction ] 3
, 1.1 Summary of Research i :

Li 1.2 The Problem 2 1
EF 1.2.1 Incremental Specification 3
] 1.2.2 Informal Specification 3 1

1.3 Control Structure 4 1

1.4 Knowledge Base 5 1
1 1.5 Example of PMB in Operation 6 1
3 1.6 Role of PMB in a Program Synthesis System El }
3 1.7 Outline of Thesis i4 1

] 2. The Problem 15 :
2.1 The Program Synthesis Context 15 3

] | 2.2 Limiting Assumptions 16 ;
2.2.1 User Group: Programmers 16 3

1 2.2.2 Programming Domain: Symbolic Computation 16 :
| 2.3 Design Goals 17 3
1 2.3.1 Very High Level Specification 1? 4

2.3.2 Interactive Specification 18 3
2.3.3 Incremental User Control 19 5

! 2.3.4 Informal Specification 20 3
2.3.5 Program Modification 22 E

: . 2.36 Target Program Goals 22 r
2.4 Program Synthesis Paradigm: Separate Acquisition and Coding Phases 23 3
2.5 Additional Design Goals for Acquisition 24 3

3 2.5.1 Multiple Specification Techniques 24 1
2 2.5.2 Understanding Specific Programming Subdomains 24 11
Fg 26 Program Acquisition Organization: Independent Programming Expert 25 ?
yo 2.7 Detailed Problem Definition: Differences between Fragments and Model 26 a
=» 2.8 Program Synthesis As Specification Transformation 28 :

. | 3. Survey of Related Work 3] :
¥ 3.1 Incremental Acquisition of informal Programs 31 i

b 32 Programmer Aid Systems 32 :
bf 3.3 Recognition Problem Solving Using Demons 33 :
J 3.4 Programming Methodologies 33 |

3.5 Very High Level Languages 34
a 36 Knowledge Representation by Rules and Frames 34

3.7 Compiler Technology 34

| 4. An Example 35
; 4.1 The CLASSIFY Program 35

| 4.2 Example Inputs and Outputs 35: 4.2.1 English Specification Dialog with PSI 36
42.2 Program Fragments Input to PMB 37

| 4.2.3 Program Model Output by PMB 19

| v



=

A

1 Table of Contents . i

: Section Page E
4.24 Typescript of Sample Interpreted Execution 42 J

4.3 Annotated Trace of Model Building 42 3

5. The Input: Program Fragments 65 j
5.1 Format of Fragments 65 8

: 52 Program Specification Information 67 i
: 52.1 Types of Fragments 67 [
: 5.2.2 Incompleteness 69 :

5.2.3 Inconsistency 69
5.2.4 Variety of Specification 70 4

5.3 Program Reference Information 70 1

6. Control Structure: The Rule Interpreter 73 i
| 6.1 External Control Structure: Data Driven Subgoaling 15

6.2 Internal Subgoals: Demons 77
6.2.1 Compound Demons 78

| 6.3 Comparison to Structured Programming 79
| 6.4 Related Problem Solvers 80

6.4.1 The Recognition Paradigm 80 1
6.42 GUS 81 |

6.4.3 Demon Regimes 82 L.
6.4.4 Processes 83 ;

| 6.5 Other Approaches ’ 83 3
6.5.1 MYCIN 83

6.5.2 SAFE 84 k

| 7. The Output: Program Modelling Language 85 ;
! 7.1 Information Structures 38 1

7.1.1 Information Structures of the TF Program Model 89

| 7.2 Control Structures 91 ;
1 | 7.2.1 Procedural Part of the TF Program Model 92| 7.3 Primitive Operations 94 1
¢ | 1.4 Assertions 94 3

8. The Knowledge Base: Rules for Building Program Models 95
8.1 Format and Types of Rules 95 :

8.1.1 Response Rules 95
8.1.2 Simple Demons 98 i
8.1.3 Compound Demons and the Rule Expander 99

8.2 Incremental Building 102
8.3 Completeness 102

8.3.1 Default 103

8.3.2 Inference: Type Coercion 102
8.3.3 Questioning 103
8.3.4 Cross-References 103 0

vi _

=



| ) Table of Contents f

Loe Section Page 3
| 8.4 Semantic Consistency 104 k
| 8.4.1 Consistency Checking 104

8.4.2 Inconsistency Resolution 104
: 8.4.3 Specialization of Generic Operators 106 :

8.5 Canonization 106 T

9. Conclusion 109

9.1 Program Models Built 109
9.2 Contributions 110 ]

9.2.1 A Framework for Program Acquisition 110 {
9.2.2 Program Fragment Language 110 3
9.2.3 Control Structure 111 4

92.4 Knowledge Base 1H] J
9.2.5 Implementation 112 ]

9.3 Limitations and Future Work 112 ;

9.3.1 Role of Mode! Building in Other Systems 112 1
9.3.2 Control Structure 113 |

9.3.3 Program Modelling Language 113 :
9.3.4 Knowledge Base 114 rE

9.4 Concluding Thoughts i115 a

10. References 117 >

Appendix Page :

A. Proposed Program Reference Language 127
od A.l Textual References 128 ¢
i A.2 Syntactic (Lexical) References 129 3

| A.3 Contextual References 132 3
A.4¢ Historical References 133 4

1 A.5 Semantic References 133

, A6 Pragmatic References 134 A

b B. Example Rules 135 !
| B.l Completeness by Default and Questioning: Response Rules £35 i
Co B.1.1 Response Rules for Information Structures i135 f

| B.1.2 Response Rules for Control Structures 135 -
B.1.3 Response Rules for Primitive Operations 136

B.2 Completeness by Inference 138
B.3 Completeness by Generating Cross-References 138
B.4 Consistency Checking 139
B.5 Inconsistency Resolution 139
B.6 Specialization of Generic Operators 140

| - B.7 Canonization 140
vii |



| l

| |. Chapter 1. Introduction 4

Most of the research that has been done under the rubric of “automatic programming” auring
: the past decade has been of a formal nature. The two areas that have seen the greatest effort

are synthesis systems based on theorem proving and low level programming aids such as syntax | 4
oriented program editors. Both of these areas have made important contributions to the feld. 3
But both of these areas require the human user to provide a formal input of some sort, be it
predicate calculus statements or a computer program. For many purposes, such formal
specifications are appropriate. 4

There is another approach that also shows promise of making the programmer's task easier.
This approach emphasizes informal program specification. Some examples of this type of 1
specification are natural language dialog, example pairs of inputs and corresponding outputs,
execution traces of important process states, and graphical examples. Most researchers on j
informal program acquisition have proceeded by choosing one of these specification techniques )
and then writing a system that derives programs for a class of specifications using that
technique.

The approach developed in this thesis looks at informality in programming terms, rather than
in terms of the external specification technique. The goal is to find a common set of | 4
informalities that are useful for programming, independent of any particular specification
technique. One offshoot of this approach is the creation of a formal programming language for 4
the expression of informalities that itself might be the basis of useful program specification by
people. In addition to its relevance to artificial intelligence ("Al"), this work may be of interest

) to such software systems research areas as semiautomatic programming aids, intelligent program E
| editors, and incremental compilers. 4

3 1.1 Summary of Research J

= Program acquisition is the transformation of a program specification into an executable, but not 3
od necessarily efficient, program that meets the given specification. This thesis presents a solution 3
1 to one aspect of the program acquisition problem: the incremental construction of program
| models from informal descriptions. The key to the solution is a framework for incremental E

program acquisition that includes (1) a formal language for expressing program fragments that F
contain informalities, (2) a control structure for the incremental recognition and assimilation of }
such fragments, and (3) a knowledge base of rules for acquiring programs specified with 1
informalities. 3

%

The thesis describes a LISP based computer system called the Program Model Builder :
(hereafter abbreviated “PM B"), which receives informal program fragments incrementally and Cy
assembles them into a very high level program model that is complete, semantically consistent,
unambiguous, and executable. The program specification comes in the form of partial program
fragments that arrive in any order and may exhibit such informalities as inconsistencies and :

: ambiguous references. Possible sources of fragments are a natural language parser or a parser Co
for a surface form of the fragments. PMB produces a program model that 1s a complete and
executable computer program. The program fragment language used for specifications 15 a

] superset of the language in which program models are built. This program modelling langucge |

| 5
|

5 J



2 Introduction ’

: is a very high level (hereafter abbreviated “VHL") programming language for symbolic ‘od
: processing that deals with such information structures as sets and mappings. -

| PMB has expertise in the general area of simple symbolic computations, but PMB 15s designed :
to be independent of more specific programming domains anu particular program specihcation
techniques at the user level. However, the specifications given to PMB must sufl be algorithmic
in nature. Because of the VHL nature of the program model produced, PMB also operates
independently from implementation details such as the target computer and low level language. .
PMB has been tested both as a module of the PSI program synthesis system [Green-76A, Green ]
et al-79]) and independently. Models built as part of PSI have been acquired via natural

: language dialogs and execution traces and have been automatically coded into LISP by other i
PSI modules. PMB has successfully built a number of moderately complex programs for
symbolic computation. :

By design the user is allowed to have control of the specification process. Therefore PMB must 5
handle program fragments interactively and incrementally. Interesting problems arise because
these informal fragments may arrive in an arbitrary order, may convey an arbutrarily small ]
amount of new information, and may be incomplete, semantically inconsistent, and ambiguous. |
To allow the current point of focus to change, a program reference language has been designed
for expressing patterns that specify what part of the model a fragment refers to. Various | f
combinations of syntactic and semantic reference patterns in the model may be specified.

The recognition paradigm used by PMB is a form of subgoaling that allows the parts of the ' 4
program to be specified in an order chosen by the user, rather ian dictated by the system.
Knowledge is represented as a set of data driven antecedent rules of two types, response rules | 3
and demons, which are triggered respectively by either the input of new fragments or changes 5
in the partial program model. In processing a fragment, a response rule may update the parual |
program model and create new subgoals with associated response rules. To process subgoals 4

\ | that are completely internai to PMB, demon rules are created that delay execution until their ]
prerequisite information in the program model has been filled in by response rules or perhaps :

Fo other demons. i

- PMB has a knowledge base of rules for handling modelling language constructs, processing j
to informalities in fragments, monitoring the consistency of the model, and transforming the ;
: program to canonical form. Response rules and simple demons are procedural. Compound 3

demons have more complex antecedents that test more than one object in the program mode. 1
~~ Compound demons use declarative antecedent patterns that are expanded automatically into §

procedural form. 1

! 1.2 The Problem ]
| The two key problems faced by PMB come from processing fragments that specify programs 1
| incrementally and informally. id

———
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4 The Problem 3 | |
: . 1.2.1 Incremental Specification Co

] The notion of incremental program specification means that the fragments specifying a program |
3 may be received in an arbitrary o'er and may contain an arbitrarily small amount of new ]
] information. Fragments are accepted in any order to allow the user to provide new knowledge 1

about any part of the program at any ume. The amount of new information conveyed by each |
fragment is allowed to be small in order to provide the greatest flexibility for interactive, 1
incremental specification. For example, a single fragment conveying a small number of pieces of

j information is the statement “A 1s a collection.”'. This identifies an information structure called i
3 A and defines it as a collection of objects. However, the fragment says nothing about what
] sorts of objects comprise the collection, whether 4 is a set or a list, how many elements are in

A, where and how A is used in the algorithm, etc. All of these details are provided in o'her
| program fragments that may occur either before ar after this one.

1 With respect to the feature of accepting fragments in arbitrary order, PMB is analogous to an
: intelligent program editor. Whereas nearly all interactive editors are text or, at most, syntactic

editors, PMB incorporates knowledge of the semantics of a particular programming language so
5 that higher level feedback can be given to the user incrementally and so that only legal :
] programs will be admitted in the end.

i 1.2.2 Informal Specification

3 The use of informality means that fragments may be incomplete, semantically inconsistent, or

1 ambiguous; may use generic operators; and may provide more than one equivalent way of |
: expressing a prograrn part. 2

] The description of one part of a program model may be incomplete at any point during model
3 building. It may then be completed either by use of a defauit value, by inference by PMB, or

from later fragments from the user.

1 Program model consistency is monitored at all times. PMB tries to resolve inconsistencies first;
3 otherwise, it reports them to the user. For example, the fragment

 - x €A

] (a Boolean operation that checks if ob ject x 1s an element of collection A) requires that either 4 3
: have elements of the same type as x (whenever the types of 4 and x finally become known) or

the type of one of them be inferred to be the same as the other. 1

bl Because a fragment may possess ambiguities, it may be interpreted in a number of ways, "
depending upon the program model context. For example, PMB specializes a generic operator :
into the appropriate primitive operation, based upon the information structure used. For :
example, 3

| I In this thesis the names of program constructs or entities are set in special type faces. Control |program cor pecial type
and information structure types appear in boldface. The names of other primitive operations,

: as well as information structures and procedures defined by the user, appear in italics. Be
i aware that italics is sometimes also used in standard ways, eg, for emphasis and to denote

special terminology that is being defined.

-
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4 Introduction .§

| part_of(x,A)

4 (a Boolean operation that checks if information structure x is somehow contained within 1
information structure 4) becomes 1

;

x € A }

if A is a collection with elements of the same type as x. However, if 4 were a plex (record ]
: structure) instead, an is_component operation might be used to test whether x is the value of 3

one of the components of A. 1
1

3 :

Within the modelling language there may be a number of formally equivalent ways to encode
: the same expression or information structure. An important task for PMB is canonization, the :

transformation of information and procedural structures into concise, high level, canonical
forms. The intent is to map equivalent expressions into one canonical form whenever they are )
detected. This allows subsequent automatic coding the greatest freedom in choosing
implementations. Interesting patterns are detected by specific rules set up to watch for them. 1
For example, expressions that are quantified over elements of a set are canonized to the

: corresponding expression in set notation. Here is an expression that uses a notation similar to $
that of the predicate calculus to represent a predicate over ail elements of some universe: .

(Vx) xe A>xeB

This Boolean expression determines whether every element x in collection A is also in i
collection B. The process of canonizing transforms this expression into :

{ AcB

4 (is A a subset of B). :

: 1.3 Control Structure 3

2 The model building problem is one of acquiring knowledge from the external environment. y
3 This knowledge takes the form of a program model. But many other domains of knowledge 1
1 based understanding (e.g, natural language, speech, vision) have analogous problems and 5

knowledge bases. The general paradigm that many of these systems follow 1s called ]
4 “recognition” [Minsky-75, Bobrow & Winograd-77). In this paradigm, the system watches for ;

new information, recognizes the information based upon the system's knowledge of the domain :
3 and the current situation, and then integrates the new knowledge into its knowledge base. :

| The control structure of PMB is based upon the recognition paradigm, and has one key {

3 | feature: PMB subgoals may be dealt with in an order chosen by the user, rather than dictated 3
by the system. Subgoals are satisfied either externally or internaily to PMB. The two cases are 1
handled by the two kinds of data driven antecedent rules, response rules and demons, which are

. triggered respectively by either the input of new fragments or changes in the partial program
a model. When new information arrives in fragments, appropriate response rules are triggered to

process the information, update the model being built, and perhaps create more subgoals and :
associated response rules. Each time a subgoal is generated, an associated “question” asking for

| |



} Control Structure 5

3 . new fragments containing a solution to the subgoal is sent out by PMB to its external i
environment. This process continues until no further information 1s required to complete the :

model. To process subgoals that are completely internal to PMB, demon rules are created that |
delay execution until their prerequisite information in the program model has been filled in by
response rules or perhaps other demons. Information is added to the program model i
monotonically. Therefore, if an inconsistency caused by the most recent fragment can't be K
resolved automatically by PMB, the last fragment must be changed by the user.

The incremental approach of PMB may be contrasted with the approach used in SAFE, the !
1 only comparable program acquisition system [Balzer et al-78). A SAFE program specification, :
i in the form of a preparsed English paragraph, is passed through three noninteractive phases. :
; The first acquires domain knowledge in the form of relations by recognizing what relations ]

exist in the sentences; the second infers ordering constraints on the parts of the program; and
the last partially symbolically evaluates the program to fll in missing operands and other :

1 information. The output is a program in an Al language that includes demons as a standard i
control structure and relations as the only information structure. The last stage of SAFE ;
handles completeness and consistency issues, but not incrementally—except in the sense that it

b finds problems in the order of program execution. If there are unresoivable errors in the |
1 program, the specification must be changed and the system restarted. :
1 A

4 : 1.4 Knowledge Base \
PMB has a knowledge base of rules for handling constructs of the program modelling

: language, processing informalities in fragments, monitoring consistency of the model, and doing :
limited forms of program canonization. These rules about the modelling language include facts

| about five different information structures, six control structures, and approximately twenty :
3 primitive operations. The control structures are ones that are common to most high level |
: languages. The language's real power comes from its very high level operators for information :
3 structures such as sets, lists, mappings, records, and alternatives of these. )

Fo Below are English paraphrases of three rules that exemplify the major types of rules used in |
PMB. The first rule is a response rule for processing a new loop. The second 1s a demon that

. checks that the arguments of an is_subset operation are consistent. The third is a canonization
demon that transforms a case into a test when appropriate.

i

4 ¢ A complete list of the constructs in the program modelling language is given in Chapter 7.

!
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Examples of Three Types of Mode} Building Rules

] A loop consists of an optional initialization, required body, and required pairs of
exit tests and exit blocks. Each exit test must be a Boolean expression occurring
within the body. |:

Require that the two arguments of an is_subset operation both return collections ;

of the same prototypic elemen:. |
i

4 if
: (1) the statement is a case, |

(2) the case has two condition/action pairs, and i

(3) the first condition is the negation of the second condition, :

then

i change the case into a test. |
Knowledge is represented as a set of data driven antecedent rules that are triggered by either :

1 the input of new fragments or changes in the partial program model. The rules are separated 3
; into two categories, response rules and demons, based upon these two ways of being triggered. '
J Both response rules and simple demons are procedural. Compound demons (i.e, those whose k

k antecedents test more than one ob ject in the program model) use declarative antecedent patterns 1
that are expanded automatically into procedural form. :

As an example, consider the above response rule for loops. When a loop is required, this rule : i
3 creates a unique template in the rrogram model for the loop. Then the rule sets up subgoals :
| for the loop’s initialization, body, and exit blocks, along with appropriate response rules for \

each. These rules will process the parts of the loop as they arrive in fragments, and then store |
the results in the loop template in the program model. Questions soliciting information about g

3 these loop components are sent outside PMB to the user or other knowledge sources. In :
3 addition, for each exit test a demon is created that will wait until the location of that test |
- becomes known and then check that the location is within the body of the loop. |

- 1.5 Example of PMB in Operation 3

The example from Chapter 4 of PMB building one entire program model is excerpted below in
order to give the reader the flavor of the two types of processing going on: (1) growth of the

od program model tree in a fashion that is generally top down, but data driven, and (2) completion
and monitoring of parts of the model by demons. Note that this excerpt does justice neither to

| the concept of arbitrary order of fragments nor the types of programming knowledge in PMB.
The trace includes four of the program fragments that were generated by the PSI

3 | parser/interpreter from an English dialog. Before each fragment, a hypothetical English4 sentence that might resuit in such a fragment is given. Each fragment is followed by a
description of how it was processed by PMB, a snapshot of the partial program model at that
point, and a list of the outstanding demons. The processing of the first fragment presented is
traced in greater detail than the rest, in order to show PMB focusing on individual slots of a

1
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 . fragment, creating model templates, and creating subgoals. The discussion of the last two
| fragments emphasizes the creation and triggering of demons. 4

; Comments interspersed within the trace are indented. Fragments and models are printed in a }
i PASCAL-like notation, although they are maintained internally as property lists. Names
: preceding colons are unique template names (analogous to statement labels in ALGOL) that |!
i allow fragments to refer to different parts of the model. Mnemonic names have been assigned
] wherever possible to avoid using the computer symbols generated by PSI. Missing parts of the |

partial program model that are still to be filled in by later fragments are denoted by “???". Lines
that are new or have changed from the immediately preceding model or demon list are denoted 3

| by the character “|” at the right margin. 4

| Excerpt of Model Building Trace }
The excerpt starts after the first fragment has already caused the partial program

| model shown below to be created. It only contains the names of the model, 3
| CLASSIFY, and the main algorithm, “algorithm_body”. No demons have been i

created yet.

Current program model: k

program classify; ']

; : algorithm_body: ? 1
| Current demons active: ;
| None 3

| The second fragment describes the top level algorithm as a control structure having 1
type composite and two steps called “input_concept” and “classify_loop”. This g
fragment might have arisen from a sentence from the user such as “The algorithm g
first inputs the concept and then classifies it.". 3

Inputting fragment: 1

algorithm_body: ;
begin :

input_concept; i
classify_loop

end

A composite is a compound statement with a partial ordering on the execution of
its subparts. The partial ordering is optional and defaults to sequential. The |
response rule that processes the composite creates the following two subgoals (or

| questions), along with response rules to handle the answers (not shown):

Processing ALGORI THM-BODY. TYPE = COMPOSITE
- Creating subgoal:

ALGORI THIM1-BOOY.SUBPARTS = ??7

Creating subgoal:
ALGORI THH-B00Y.ORDERINGS = ?7?

Done processing ALGORI THM-BOOY. TYPE = COMPOSITE
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Within the same fragment the two subparts are defined as operational units with
i unique names, but of unknown types. An operational unit can be any control
4 structure, primitive operation, or procedure call. Two new templates are created

; and their types are requested.

Processing ALGORITHM-BODY.SUBPARTS = (INPUT-CONCEPT CLASSIFY-LOOP)
] Creating template INPUT-CONCEPT with value
3 INPUT-CONCEPT.CLASS = OPERATIONAL-UNIT
i Creating subgoai:
] INPUT-CONCEPT.TYPE = 72?

Creating template CLASSIFY-LOOP with value
3 CLASSIFY-LOOP.CLASS = OPERATIONAL-UNIT |
3 Creating subgoal:
3 CLASSIFY-LOOP.TYPE = 77? |

Oone processing ALGORI THM-BODY.SUBPARTS = (INPUT-CONCEPT CLASSIFY-LOGP)

4 At this point, the program model is missing the definitions of the two parts of the
! composite.

1 Current program model: |

3 program classify, |

begin ]
4 input_concept: ??? |
i classify_loop: ??? : 3
1 end 4

1 Current demons active: Ek
None 3

4 The next fragment defines an input primitive operation that reads from the user ;
=» an information structure of type concept_prototype. The three arguments of an oy
- input operation are the prototype of the information structure to be input, the :
1 source of the input, and a prompt string to be output just prior to input. This 3
| fragment would be generated from the same sentence as the last fragment: “The 'S
| algorithm first inputs the concept and then classifies it.". 3

= Inputting fragment:

p input_concept: input(concept_prototype, user, concept_prompt)

1 PMB creates information structure prototypes called concept prototype and
2 concept_prompt. PMB infers that the object of type concept _prototype that is input

should be saved in an instance (or variable) of that type. So PMB creates one
| | called concept and puts the input inside a remember operation (denoted by “«”

below). Prototypes are listed after the keyword type below, and instances of

| prototypes are listed after var.
|
Fo 3
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EF . Current program model: §

FE program classify,

| type {
concept_prototype: 222, |

i concept_prompt: string = 22; |

] concept: concept _prototype,

f begin 1
1 concept « input(concept_prototype, user, concept_prompt); | ;

classify_loop: 22?
] end L

4 Current demons active: j
None 3

] Now the fragment that defines the second step of the composite is processed. This E

fragment might have been produced from the following sentence: “The i
classification step is a loop with a single exit condition.”. §

: Inputting fragment: 4

: classify _loop: 4
: : until exit (exit_condition) 4
A repeat loop_body §

finally exit: ;
1 endloop

- This fragment defines a loop that repeats “loop_body” (as yet undefined) until a :
» Boolean expression called “exit_condition” is true. At such time, the loop is exited 3

! to the empty exit block, called “exit”, which is associated with “exit_condition™. 1

4 ¢ At this point PMB doesn't know for sure where in the algorithm the test of
, “exit_condition” will be located, so it is shown separately from the main algorithm g
Fi below. The response rule that processes the loop needs to guarantee that
Lb “exit_condition” is contained within the body of the loop. Since this can't be
pr determined until the location of “exit_condition” is defined in a fragment, the
: | response rule creates a demon to wait until this event. So Demon | (the number is
; assigned only for identification) is created and attached to the template for
] “exit_condition”. Here Demon | will aw.it the definition of the control structure
y "that contains “exit_condition”. |

i Similarly, Demon 2 is created to await the location of “exit_condition” and then put
_ it inside a test with an assert_exit_condition as its true branch. This will cause the

| loop to be exited when the exit condition becomes true.

i LPR TRPEIEN © NE RIE LT hi ~ Co ' N TT 4
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Current program model: |

program classify, {

3 concept_prototype: 222, 2
: concept_prompt: string = 22; ;

i var ]
concept: concepl_ prototype, 1

4 begin 1
| concept « input(conceptprototype, user, concept _prompt), f

until exit

: repeat 1
i loop_body: ??? |

3 finally 3
exit: 4

endloop

1 exit_condition: ??? :

Current demons active: 4
4 Demon 1: awaiting control structure containing "exit_condition” 1

Demon 2: awaiting control structure containing "exit_condition" | §

E The final fragment of this excerpt defines the body of the loop, thus triggering the 1
Eo two demons set up previously. One English specification that could be the source A
4 of this fragment is “The loop first inputs a scene, tests whether the datum that was g
A input is really the signal to exit the loop, classifies the scene, and then outputs this 3
1 classification to the user.”. :

4 Inputting fragment: 3

loop _body:
begin :

i loop _input; :
1 exit_condition;

classification;
output _classification

So “loop_body” is a coinposite with four named steps. Even though none of the
Co four is fully defined yet, PMB now knows where “exit_condition” occurs and that it

- must return a Boolean value.

Demon | is awakened to find that “exit_condition” is located inside the composite |
“loop_body”. Since this isn’t a loop, Demon | continues up the tree of nested |
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: | control constructs. It immediately finds that the parent of “loop_body” is the j
FL desired loop. So Demon | succeeds and 1s destroyed, as are most demons after they £

= succeed. E
J { 1B

b Demon 2 is also awakened. Since it now knows “exit_condition” and its parent,
: Demon 2 can create a new template between them. The demon creates a test with
E “exit_condition” as its predicate and an assert_exit_condition that will leave the 3
Fo loop as its true action. |

] Current program model: 4

1 program classify;

3 type |
concept _prototype: 22, :

3 concept_prompt: string = 22?;

3 var |

; concept: concept_prototype, y

4 begin }
concept « input(concept_prototype, user, concept_prompt), ,

b until exit 2
: : repeat 5
| begin | 4
i loop_input: 222; | ]
1 : if exit_condition: 22? then assert_exit_condition(exit), 4
] classification: ??2; | 1

output_classification: ??? :
3 end 7
y finally 3
gi exit: 3
WW! endloop

2 i end :

4 | Current demons active:
f None

} H At the end of the excerpt, five fragments have been processed, and 27 more must of
p & be before the program model is complete.

=» 1.6 Role of PMB in a Program Synthesis System

b PMB was designed to operate as part of a more complete program synthesis system with two
distinct phases: acquisition and automatic coding. In such a system the program model would
serve as the interface between the two phases. Automatic coding is the process of transforming

| a program model into an efficient program, without human intervention. Program models are
| acquired during the acquisition phase; coding of the model is only done when it is complete

| § and consistent. A system organization based on this paradigm is shown in the diagram below. |

iy FYa EE : Lo } Tot '
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; Two-Phase Program Synthesis Paradigm ly
user A

Acquisition

} Phase 1

program model 3

Coding :
1 . Phase i

( target program :

] PMB was designed so that it may operate within a robust acquisition environment. In such an 4
- environment, program fragments may come from many other knowledge sources, such as those i
| expert in traces and examples, natural language, and specific programming domains, as depicted 3
a in the diagram below. However, the operation of PMB is not predicated on the existence of 3

other modules, each of which is a complex Al program in its own right. For example, all 4
a fragments to PMB could be produced by a straightforward deterministic parser for an informal
| VY HL surface language, such as the one used to express program fragments. i

|

1 ; | Co | ]
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4 Typical Acquisition Environment for Which PMB Was Designed 1

j user i

i Trace Natural Informal 3
1 and Domain Language VHL :

; Examples |e————| Expert |e——| Processor Language 1
{ Expert Parser

3 program fragments '§

| Program 1
Mode! 4

3 Builder

28 program model |

. ; In addition to providing a focus and testbed for developing a framework of program
{ - acquisition, PMB plays a central role as one of the expert modules or knowledge sources of the |
Ee} PSI program synthesis system [Green-76A, Green et al-79]). PSI is divided into acquisition and |
EC coding phases, with PMB as part of the acquisition phase. In this first phase a VHL model of |
1 the desired program is acquired from the user. In the second phase an efficient program is
a coded from this model. The user's external program specification (e.g, English) is first
: transformed into fragments by other acquisition modules that are experts on particular

| specification techniques or programming domains. Then PMB builds a complete and consistentprogram model based upon the user's program specification. When complete, this program
| model is refined by the PSI coding phase into an efficient target program [Barstow-79A, Kant-

719A, Kant-79B). In actual operation, PMB has built models from fragments produced by PSI's |
English parser/interpreter (Ginsparg-78) and PSI’s expert on program inference from traces
and examples [Phillips-77] |
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; 4

| 1.7 Outline of Thesis E
| !

| Subsequent chapters discuss the problem area in detail, examine all aspects of the solution, and
end with a discussion of the resuits. 1

The program acquisition problem is defined in some detail in Chapter 2, because PMB was | 3
designed to fit within a particular framework for automatic (or, more accurately, semiautomatic) 1

programming. Chapter 2 is my personal view of the program synthesis research arena. The |
chapter is a discussion of the important problems and a global system design strategy for
solving them. The discussion starts with a general definition of program synthesis and
progresses to a detailed definition of the program model building problem in terms of the
differences between PM B's input and output. Of course, much of the discussion also reflects |
conceptions—and biases—resulting from my interactions with the PS] group over a number of
years.

Chapter 3 provides a brief survey of related research areas. It is designed only to provide j
pointers to the literature and a basic framework for understanding how PMB relates to the rest
of program synthesis, artificial intelligence, and software systems. Detailed comparisons of 1
approaches and techniques are contained in the relevant sections elsewhere.

A detailed example of the operation of PMB is presented in Chapter 4. This provides the Ho
details of building an entire program model for a fairly complicated program, from start to
finish. In addition to an annotated trace of model building, the English dialog that was the :
source of program fragments is given. A sample execution of the resultant program model is
listed too. :

| Chapter 5 discusses the format of fragments and the aspects of informality that make the : ]
program fragment language different from other programming languages. The last section of :

i the chapter introduces the program reference language, which could be used to describe where 3
' in the program model a fragment is to be incorporated. The discussion will interest those

1 concerned with intelligent program editors and other programming aids. A more complete d
| description of the reference language is presented in Appendix A.

| Chapter 6 describes the control structure of PMB, which consists of user directed subgoaling
» with asynchronous demon invocation. This structure is compared to other problem solving 3

techniques used in both AI (notably, natural language understanding) and software systems, 3
and the generality of the techniques is related to structured programming. Chapter 6 is s
probably of greatest interest to people in artificial intelligence. g

The program modelling language is briefly defined in Chapter 7. That material will be of most 4
| interest to designers of programming languages, especially very high level languages. :

Chapter 8 defines the structure of the rule base of program acquisition knowledge and the types |
of rules in it. It also provides some example rules and a discussion of the various types of :
knowledge in PMB. Many more rules are listed in Appendix B. Chapter 8 will probably be of
greatest interest to those doing research in knowledge based systems or program synthesis.

The conclusion, Chapter 9, discusses the program models that have been built; the | |
contributions of the thesis to the areas of program synthesis, artificial intelligence, and software
systems; and directions for extensions of the research to remove some of its limitations.

|
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s Chapter 2. The Prablen oy

The problem addressed by this thesis is termed the “model building” problem. The discussion 1
| of the problem 1s comprehensive because the area 1s relatively new and experience has shown ]
: that the problem is not a particularly intuitive one. The key notions involved in building | 3

program models are not directly analogous to any one body of prior research. 1

| The goals of research on PMB are quite similar to the broader goals for program synthesis 1
| systems such as PSI. In both cases, people outside of the field often have difficulty i
‘ understanding these goals. Hence, it is important to clearly state the case for systems of this 1

type. ;

| We present a top down development of the problem definition. First the context within the E
| larger, more general program synthesis problem is presented. Then major assumptions, design 3

goals, and design decisions of the current work are discussed. 4

| 2.1 The Program Synthesis Context
| ,

The model building problem that is addressed is at the bottom of a hierarchy of problems. 3

| The top level problem is the general program synthesis problem': Transform a program 1
specification expressed in some formal or informal specification language into an executable and 3
efficient program that meets the given specification. This is a very broad problem, including :

: not only artificial intelligence approaches, but standard compiler technology as well. However, A
| the most difficult (and perhaps most interesting) case arises when the program specification is Cj

not directly executable in its initial form. ;

: The subproblem of interest within the program synthesis problem is the program acquisition 4
problem: Transform a program specification into an executable, but not necessarily efficient, ;

a program that meets the given specification. This subproblem merely eliminates the requirement ;
| that the program resulting from the transformation be efficient. 2

| Finally we reach the specific problem deait with by this thesis, a part of the program acquisition 4
| problem called the model building problem: Receive informal program fragments incrementally .

and assemble them into a very high level program model that is complete, semantically | 3
consistent, unambiguous, and executable. Here the program specification comes 1n the form of ©
partial program fragments that arrive in any order and may exhibit inconsistencies and ig
ambiguous references. The program produced is a program model that is a complete and 12

| executable computer program. a
! Sometimes also called the “automatic programming problem”  §

2 There is another subproblem, called problem acquisition, which additionally removes the i
requirement that the result of the transformation be an executable program. An example is a |
set of statements in the predicate calculus that, when processed by a theorem prover, yields a
result, possibly in the form of a computer program [Green-69). The set of statements is not |
itself a program, rather merely a problem statement that, when solved, will resuit in a computer
program. Arbitrary problem acquisition is not the focus of this thesis.

{ i
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2.2 Limiting Assumptions "

; First we note two fundamental limitations that we have imposed in order to make the model |
: building problem tractable.

| 2.2.1 User Group: Programmers 3
: A fundamental assumption of our approach is that the user of the system is assumed to be 1

familiar with programming. In limiting users to programmers, we are implying that }
i specifications will still reflect a parucular algorithm and information structures, not something

more abstract. The system is not expected to be especially creative with respect to designing its 1
own algorithms. !

: Many people feel that it is time to forget programmers and try to help nonprogrammers ]
directly. We feel that there are many difficult and important problems left to be solved in the
quest of making programming easier for programmers before tackling the much harder
problem of extending to nonprogrammers the capabilities now afforded only to programmers. 1
We think that helping programmers with some of their less creative, more mundane tasks (e.g. :

; bookkeeping) is an appropriate first step, and is on the critical path to achieving automatic 1
programming for nonprogrammers as well. .

| Programming is an intellectual task that is highly labor intensive. As computers get cheaper }
: and qualified programmers get relatively more expensive, automating as much of the !

| programming process as possible becomes more and more important.

| To accommodate users who are not programmers would introduce an entirely new level of 3
complexity to our problem. One solution would be to merely add a front end or integrate into | 3
the original system a capability for the computer assisted teaching of programming. This :
solution avoids the problem of doing program acquisition for nonprogrammers by forcing the -
user to become a programmer in the standard sense.

|! A better solution would involve changing the task from program acquisition to problem
| acquisition. The problem would be stated in a nonprocedural language that is highly tailored

< to a specific task domain. Since the user 1s presumably an expert in this domain, the f
_ communication problem would therefore be reduced, but the system would then have the 4

‘ additional difficulty of converting the problem specification into a program. Solutions might

| involve techniques for algorithm creation [Tappel-79) and discovery® and certainly would {
require much domain specific knowledge. These are interesting research areas, but ones that §
are not covered here. 3

22.2 Programming Domain: Symbolic Computation d

There really is no such thing as domain independent programming. Hence domain
independent automatic programming, as purported in [Balzer et al.-74]), doesn’t exist either.

3 For a possible approach to the discovery of algorithms, consider the work on automatedJOSH PP Y g
mathematics discovery {Lenat-76, Lenat-77].

VESPRITE WHT CLLR 7SM RCN
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. |

Instead there are hierarchies of programming domains, from very general to very specihc.” For '
4 example, symbolic computation 1s a very broad domain; so 15 the domain of numerical |
3 algorithms. Algorithms for the solution of differential equations form a narrower domain, and |

the class of all programs based on the Runge-Kutta method 15 a very specific programming i
domain. ]

Some programming domain has to be chosen just to make our problem feasible. Hopefully the +
i domain selected will have widespread importance. An even more important consideration 1s i
| that the domain chosen not limit the generality of the program acquisition framework that is

developed.

] The programming domain chosen for this work is that of simple symbolic computations®—as !
j opposed to, say, numerical or realtime control algorithms. For our purpose. the universe of
3 possible programs is limited to those for symbolic processing, and specific programming domains
3 are subsets of this universe. Example domains inciude set manipulation, list processing,
: searching, sorting, simple data storage and retrieval, pattern matching, and symbolic learning. 4

2 Although, say, numerical algorithms could have been chosen, the area of symbolic {
programming is fundamental to much of computer science (even to some numerical algorithms).
Knuth has said about just the subdomain of sorting and searching (Knuth-73B, page vi

3 Indeed, | believe that virtually every important aspect of programming arises a.
k somewhere in the context of sorting or searching! :

: 2.3 Design Goals 1

3 Now we list some useful properties of a model building system that form the basic assumptions :
on which the thesis rests. In general, the goals discussed in this section stem from a desire to !
provide the user with more capabilities and flexibility in program specification, thereby forcing

3 the program acquisition system, and PMB in particular, to provide more intelligent assistance to
: the user. j

4 2.3.1 Very High Level Specification i

Perhaps the most significant assumption is that much higher level (in terms of information and 4
! control structures) languages than are now prevalent will be used in our interactions with =

computers. Programming is a difficult intellectual exercise. Part of the difficulty 1s the sheer ; 3
Co complexity of the details required to successfully compose a nontrivial! program in any of the ig

commonly used languages. Program specification and subsequent modification will be done at a [ 3
higher conceptual level than at present, to reduce the magnitude of the programming details H
involved and the complexity of communicating with the user. This implies that the program I»

| model is updated during interactive acquisition, rather than the iarget program being if
manipulated incrementally. For example, PMB builds programs in a very high level (VHL) 4
language, and automatic coding systems such as the one in PSI take care of the details of |

9 Of course, domains may overlap as well.

> Of course, at the lowest level, all computation is symbolic In nature.
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translating this language to lower level ones. 3

1 Limited English is one VHL language suitable for certain applications. This does not imply |
] that an algorithmic language such as ALGOL has no place, but merely that it can often be

successfully replaced. When specifying a program in English to PSI, the user should not have 1
to understand the target language program and make changes at that level. 4

Present day high level languages and their compilers provide a good analogy. Users need to
! write code at the level produced by the compiler only for special purposes; nearly all
3 programming is carried out at the source language level.

Now add the assumption that the target language used for the synthesized program is
i significantly below the level of the specification language. Potential target languages today are :

conventional high level languages, assembly language, microcode, and possibly mixtures of
1 these. There is a large gap between a specification language such as English and a target {
i language such as assembly language, in terms of brevity, ambiguity, consistency, and
| completeness. It is clear that direct automatic conversion between the two, especially
| incrementally, would be very difficult. It is reasonable to interpose an intermediate level |

specification language into which the user's specification is first transformed. This 1s the role of i
the program modelling language used by PMB.

] The level of this intermediate, acquisition level language, in terms of its control and
information structure primitives, is an important design decision. Choosing too high a level .

| (e.g., unrestricted predicate calculus) may result in an intractable coding problem. Choosing too 1
] low a level (e.g. assembly language) may unduly restrict the coding options available and make 1

the acquisition process too difficult. Standard high level languages have often been proposed 3
: for this intermediate language. But they all have information structures that are designed for 4

direct, efficient implementation on most computers. So high level languages are too low level 4
1 for nur needs because they restrict coding and make acquisition more difficult. |

2.3.2 Interactive Specification 3

4 The system should be interactive so that it can provide immediate feedback to its user, either tn
k response to questions or specifications that aren't fully understood. One rationale for interaction :
E arises from the following analogy: Interactive program specification is to batch specification as 3
1 interactive program development using high level languages and text editors 1s to batch 1
! programming using decks of cards. But an even a stronger analogy can be made, since most 2

interactive program development today is really a form of online batch in which the text editor
takes the place of the card punch and calling the compiler on the edited file corresponds to 3
reading a card deck into a card reader. :

| This second analogy defines interactive program specification as a combined incremental 4
| ® Programming in standard high level languages and even assembly language is sull done :

3 | today because appropriate VHL substitutes are not widely available and, more important, the |problem of coding efficient target programs from them has not been solved. But the trend
toward higher and higher level languages will persist because of (I) the continuous (albeit slow)

| advances in these two areas and (2) the trend of software to cost increasingly more than |
hardware.
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] editor/compiler in which changes to statements or expressions are checked for consistency after : :
1 | each change. Such compilers today only allow simple editing (e.g. total replacement of a line of
i text) because of the difficulty of maintaining enough context for truly incremental compilation |
1 to take place. The approach taken by PMB is to maintain the program as a YHL model after

checking for syntactic and semantic consistency, but not to code incrementally.

; 2.3.3 Incremental User Control

J The perfect programming paradigm has yet to be devised. In particular, different programmers
may desire and different applications may require different orders of defining the parts of a
program. This is especially true for large systems (e.g, compilers, operating systems) in which |

| the total complexity is so great that a programmer cannot plan out in advance all the
possibilities that the program must consider. In such cases, the most general solution for an |
automatic programming system or semiautomatic programming aid is to allow an arbitrary

1 order for defining, refining, and modifying the parts of the program.

We subscribe to the philosophy that the user should have the option of controlling the |
interaction by asking questions or changing the topic under discussion at any time. A user
should be able to converse with an acquisition system as freely and easily as with another

k human programmer. Lacking this flexibility, an acquisition system will restrict the user and
E thus not be as habitable as is desirable. '

| This philosophy doesnt necessarily contradict the aims of the school of structured
] programming. Our goal is not to force the user to do low level programming and debugging :

on a program that was not well thought out. Our goal 1s to provide computer aids that will |
allow the high level thinking and planning phases of programming to take place in a more

: automated and less error prone environment. :

§ There are two levels of incremental specification capability. A fully incremental system allows ;
the user to go back and make changes to what has been specified before. A system with ;
“monotonically” incremental specification doesn’t allow a part to be modified, once it has been :

E specified. The term “incremental”, as used in this thesis, refers to the monotonic case. |

y There are two aspects of incremental programming: (I) the order that parts of the program are :
| specified and (2) how much is specified at each step. 3

Since the user controls the interaction, the user may determine the order in which information 3
flows into PMB. Information is received piecemeal, as chunks or fragments of program ]
description. These fragments may arrive in arbitrary order, as long as they carry enough

program reference information to determine their context in the program model being ;assembled.

| In addition to deciding what part of the program to work on and when, the user may decide
| how much of the program part to specify at one time. This means that a program model may

be incomplete at any level, from an entire procedure being missing to a single parameter of a
single operation being left unspecified. This is the reason that PMB 1s capable of delaying its

f operations until the required arguments are completely specified.

Even if the user isn't exercising the option to take control of the interaction, information for
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PMB may still arrive incrementally and arbitrarily ordered, since the generation of questions
y and program fragments may be mediated by the activities of other expert programs. For

example, there might be experts on moderating dialogs, modelling the state of the user, or
1 providing domain support. Any of these experts can intervene between PMB and the user so

{ that questions are asked of the user in a much different order than PM B's default order. In |
1 addition, other experts may produce fragments as a result of their own reasoning. These may
: be sent to PMB independently of what is transpiring with the user. Thus, even if the user

yields control of the dialog to the system, there is no guarantee that questions will be answered
3 in PM B's default order.

i 2.3.4 Informal Specification

Another important feature of VHL model building is informality of specification. Most VHL
language designs have concentrated on the issue of defining new and useful VHL programming
primitives. This is certainly necessary, and indeed has been one part of this research.
However, we believe that informality of specification 1s going to be an equally important design
issue in the future. Any system capable of dealing with informality will have to possess a large

| amount of general programming knowledge so that many details can be handled automatically;

so that ambiguities, omissions, and inconsistencies can be caught; and so that different ways of
specifying the same thing can be handled.

3 An incremental, informal program specification does not constitute an executable algorithm. |
Before assembling the individual pieces of program and removing any informalities, the

i specification will lack the quality of “definiteness” that is required for any procedure to be
i considered an algorithm. This property requires that each step of the procedure be known and
3 be precisely, rigorously, and unambiguously defined [Knuth-73A, page 5].

An executable algorithm isn’t very useful if it isn’t also correct. We use a less formal sense of
2 program correctness than that used in the program verification field [Luckham-77, London-77].
3 Here a “correct” program model is one that the user 1s satisfied meets specifications (e.g., by
= interpreting it on test data or reading a listing of it) and that the system is satisfied 1s complete |
- and consistent. Thus PMB is only concerned with guaranteeing that the final model 1s a legal
E program syntactically and semanticaily. Verifying that the program is correct in a pragmatic

sense is left to the user or perhaps other knowledge sources. To help out in this endeavor, i
1 assertions could be attached to the program modei. These assertions would then be evaluated

[ during model interpretation to make sure they are always true. i

: Incompleteness i

! Compared with their communication with computers, people communicate with one another 1
| fairly efficiently. This is partly because many assumptions are in force and need not be restated ;: during each conversation. Informality is the analog in program acquisition. VHL primitives :
- allow programs to be expressed succinctly; informality encourages succinctness by having PMB

infer details that aren't stated explicitly. To do this requires rules about default values for
y pieces of programs and rules for computing the appropriate value from eisewhere in the

program.

| Another issue is temporary (or local) incompleteness. In this case information is missing and
| not inferable. PMB asks for the information and only continues processing that is based on 1t

after it is provided.

 —— A ee- item aa - rn v— . . .
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Seinantic Inconsistency |

| Statements by people are not consistent, especially during such complex intellectual exercises as
3 programming. Informality allows for semantic inconsistencies among fragments, these are

noticed by PMB and either resolved automatically or brought to the attention of the user. For
4 example, a reference to an information structuie definition when its value 1s required instead

| can be corrected automatically.

: Ambiguous Operands

§ Ambiguity is also a powerful tool for making succinct program specifications. These have to be
3 appropriately interpreted from context by the acquisition system. For example, there are many
: ways to refer to a particular information structure, in this case a particular set named A:

4 the last set I talked about

the set A

} the set containing elements of type x
the smallest set

| A program reference language has been designed for PMB, but not implemented. If the
examples above were specified in this language, they would be ambigucus. If the last statement

1 from the user referred to “set B, which is a subset of set C", then whicn of those sets is the last
| one taiked about? There might be two sets called A, declared in two different subroutines.

1 There might be two sets containing elements of type x. And the smallest set (presumably out of
all known sets) may vary during program execution. [f by “smallest” is meant the set with the
smallest minimum size, then there still could be ambiguity. In most cases, which set is meant is
-easily determined by what part of the program is currently being built or which set meeung the
specifications was referred to most recently.

Generic Operators

3 Another useful type of informality is the generic or “polymorphic” operator. Just as ambiguous
references to operands naturally arise, a generic capability makes it possible for operators to

E.- express ambiguity too. For example, part_of returns a subpart of some other information
FE structure. Since part_of doesn’t exist in the program modelling language, it is transformed into

the appropriate primitive operation based upon the information structure it operates on. For a
] collection (eg, a set), part_of might become an is_element; for a plex (record structure), an

is_component.

Multiple Equivalent Specifications

2 Another aspect of informality is the desire to allow alternate ways of specifying the same

| | underlying concept or action, even within the same basic specification method (e.g, English).| All of these equivalent specifications are mapped into the same final form in the program
model: the canonical form, the form that is the most concise expression of the concept and that

| will allow the greatest freedom of choice when it is coded. This requires program equivalence
3 | transformations that recognize opportunities for and then carry out program canonization.
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} 2.3.5 Program Modification

Studies of the programming life cycle have shown that most programs that are used over any 1
length of time are written once from scratch and then subsequently modified numerous times.
So programming consists of much more modification, reprogramming, or maintenance than E

] initial programming. Modification may be required because of the discovery of programming 1
A errors, changes in design goals, or changes wn the program's execution environment (e.g, p

; changes in the format «f the program's input). Note that a partial program being written can 3
| undergo modification, as well as a previously completed program. Although a modification :
. capability 1s a goa! of this ine of research, it 1s not available in PMB. ;

] Just as with initial program acquisition and coding, desired modifications should be expressed :
: and carried out at the highest level feasible, not at the target language level. The program E:
1 model should be modified, and a new and efficient target program produced from the new

; model.” Compilers provide an - ogy. Users need to look at target code only for special J
: purposes, most interaction is carried out at the source code level.

1 Modifications can be complicated to handle. A minor change in one part of a program can
; have ma jor effects throughout. Thus, conceptually simple changes may be difficult because of |

all of the places in the model that must be updated. Of course, this 1s the sort of bookkeeping 3
that computers should be used for. 1

! 2.3.6 Target Program Goals |

1 Now consider goals for the final programs produced by the entire synthesis system. : i

Efficiency

3 | The target programs produced should be reasonably efficient in both space and time.

= Flexibility |3 | The system should be, in principle, capable of generating programs in more than one language, A
for more than one computer, and for varying assumptions about the inputs (e.g, size, :
distribution). 3

Independence of Specification and Coding :

| The program specification process should be independent of the implementation details. The |
| user should not have to change to accommodate a change in the level of the target language
; (e.g. standard high level language, assembly language, or even microcode), the particular target

language (e.g, LISP or PASCAL), or the target machine.

7 Whether or not any of the old target program should be used or modified 1s a question for
| the coding phase of how efficient this would be versus coding an entirely new program from

scratch.

|
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! 2.4 Program Synthesis Paradigm: Separate Acquisition and Coding Phases 1

Our solution to some of the design goals discussed in the preceding section is a program
1 synthesis paradigm that separates the problem into two distinct phases: acquisition and coding.
1 The program acquisition problem is to receive a specification of the desired program. expressed \
| in one or more formal or informal languages, and to construct an effective procedure for E

realizing the specified program. The automatic coding problem 1s to turn such an eftective i
procedure into an efficient program. The interface between the two phases 1s a program model

1 expressed in a very high level program modelling language for symbolic processing. The 1s
1 program produced by PMB is termed a “model” because of the desire to model the }
§ corresponding program in the user's head and because it 15 an abstract, implementation 1

| independent program specification that may actually lead to many different concrete 3
: implementations. Program models are constructed during the acquisition phase; coding from ;
; the model is only done when it is complete and consistent. A system organization based on this :
: paradigm was shown in the diagram labeled “Two-Phase Program Synthesis Paradigm” in 3
; Section |.o. j

There are many reasons for dividing the problem into acquisition and coding parts, given the 1
assumptions stated earlier. Both program acquisition and automatic coding are known to be
difficuit problems, quite likely more successfully dealt with as separate subproblems. 3

i Acquisition and subsequent modification of a program should be done at a high conceptual 3
: level, to reduce the magnitude of the programming details involved and the complexity of |

communicating with the user. This implies that updating is done to the program modei during ]
interactive acquisition and that incremental manipulation of the target program is not done. b

: Coding can be done most effectively if the complete program is available from the start and 1s 1
{ known to be correct. Coding can proceed with little or no interaction with the user. In contrast,
L mcremental program specification by definition builds up a complete program from scratch. {
E Thus, acquisition relies primarily upon forward inferencing from incrementally acquired E
4 information, while coding may use backward chaining to make deductions from the completed ;
3 model.

- Dividing program synthesis into two phases separated by the program model allows programs ;
. to be optimized by taking different runtime environments into account. The program can be H
4 acquired once and a program model built. Then different programs can be produced by 1
Fo specifying different execution estimates of the model (e.g, set sizes and branching probabilities), )
3 a different target language (which affects what primitives are available and how much they ;
1 cost), and even a different target machine (i.e. instruction set). The programs will of course :
{ have the same input/output behavior, but the code will be designed and optimized for the
Eg particular environment.

} Further details of approaches to the automatic coding problem are found in (Barstow-79A], |
(Kant-79A), and [Kant-79B). Coding considerations are for the most part ignored throughout

| the remainder of the present work. |

| An alternative design for a program synthesis system 1s a monolithic system with only one
phase or “pass” [Phillips-79]. This approach obviates the VHL program modelling language |

| and perhaps avoids having the same knowledge in more than one place in the system. In
addition to the possibility of simply emulating the two phase approach, a one phase system has Co
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the fexibility to explore coding possibilities for parts of a program before the rest has been -
| fully specified. This system uses a single language to express programming concepts from the 3
4 most informal specification to the most concrete target language detail. The forms of knowledge 3
| (e.g., rules) may be unified and a single unified global data structure kept.

: 2.5 Additional Design Goals for Acquisition 3
] Now, concentrating on the acquisition phase, we add two more design goals. f

: 2.5.1 Multiple Specification Techniques J

: A number of different program specification techniques should be allowed, separately or f i
3 intermingled, reflecting the belief that different techniques are useful for different programs and E
: different users {Green et al-7¢). Examples of candidate techniques include predicate calculus,
j informal VHL languages, noninteractive natural languages (eg, a limited subset of English), 1
1 natural language dialog, speech, execution traces of important process states, example pairs of 3
8 inputs and corresponding outputs, and graphical examples. 3

: A model for program specification using multiple techniques may be taken from Knuth’s series 1
of programming texts (Knuth-73A, Knuth-69, Knuth-73B]. In addition to the actual programs 1

: coded in the MIX assembly language, a number of higher level techniques are used to convey
{ the intent of an algorithm to the reader. Knuth normally uses an informal programming 4

notation embedded in explanatory English. He often supplements this description with |
3 graphical examples and traces of the program's operation.

= A problem arises when more than one specification technique 1s allowed. The specifications 1
g must somehow be integrated into a single model of the desired program. This problem is g
- exacerbated when each technique can only be understood by a complicated Al program. In 4
| addition to the programming knowledge specific to one specification technique, each of these 1
= programs would also require a large, redundant body of knowledge, both about the target y
= programming language and about programming in general. A separate programming expert |

| such as PMB would eliminate this redundancy. od
i

1 | 2.5.2 Understanding Specific Programining Subdomains ]

| Once a general programming domain (e.g, symbolic computation) has been chosen, the system
should be capable of acquiring programs in very specific subdomains (e.g.. concept learning, text
editing, sorting, searching). This capability requires an understanding of the specific

{ subdomain in terms of its “programming vocabulary” (i.e, standard information structures and

| algorithms). |

| However, the system should also be able to get by without any knowledge of specific || programming subdomains. Of course, without such knowledge the system will behave less |
1 intelligently and therefore rely more upon the user to provide the domain expertise (eg.
| substitute programming terminology for domain specific terminology). But the system should

still be functional.

| | |
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{ 2.6 Program Acquisition Organization: Independent Programming Expert oo

| A tremendous amount of knowledge, both about the particular programming language and
: about programming in general, is required to write a correct program within the large

f programming universe of symbolic processing. Much of this knowledge is independent of the 1]
human user's choice of specification technique, and much of this knowledge is independent of )
any specific subdomain of symbolic processing. Therefore, it 1s possible and desirable to :

1 identify and codify this knowledge independently. This suggests an organization for the E
acquisition phase that includes an independent module embodying general programming i

4 knowledge.® Such an organization is shown below. This is essentially the organization of the 1
4 acquisition phase of the PSI program synthesis system, in which PMB plays the role of k
3 programming expert. 3

!

1 2 Another possible solution would be to simply have one enormous system that handles all
Nx aspects of acquisition. With our current understanding of the program acquisition problem

| and under current constraints on the size of programs, this 1s impractical. On a more
) fundamental level, .s knowledge bases grow larger and larger, it is important to recognize and

take advantage of any modularity inherent in the domain. A compromise would be to have |
oo separate modules that use standardized knowledge bases. Then knowledge could be shared |
pi when necessary. |
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Program Acquisition Organization with Independent Programming Expert !

: user F

Trace Natural :
and Oomain Language ]

Examples |¢———| Expert |e————s| Processor ;

| Expert

program fragments £

i Program 3
Mode | E

3 Bui | der 3

program mode| 4

| ‘PMB accepts fragments from one or more specification modules and one or more ilomain i]pts irag P i
F modules. It is responsible for building the program model independently of any particular r
Fo specification techniques and programming domains. This solution leads to a new, but more ]

tractable problem: designing an interface language for describing the types of informal :
i program fragments that are produced from external specifications. :

|

2.7 Detailed Problem Definition: Differences between Fragments and Model

The following table and discussion summarize the differences between program fragments and
| the program model, thus providing a concise definition of the model building problem. T hese
) features all correspond to particular design goals for informal program acquisition discussed
] earlier in this chapter. The remainder of the thesis defines fragments and models in more |
| detail, provides many examples of each, and presents the processing and underlying knowledge
{ base necessary to transform one into the other. ;



SN Detailed Problem Definition: Differences between Fragments and Model 27 Fi

co Differences between Program Fragments and Program Model 2

Cd Fragments (input) Mode) (output)
Cs Small chunks of program a110n Complete program description 3
Lo Written using superset of wm Written in VHL program modelling language 1

modelling language ¢ 3 3
Many independent sources Produced only by PMB | §
Arbitrarily ordered Always ordered in same way: information 3

structures, procedures, algorithm 1
| incomplete Complete, cross-referenced :

Nonexecutable Executable 3
| Semantically inconsistent Semantically consistent E

Ambiguous Unambiguous 1
Generic operators Specialized operators for each information :

structure type 3

Many ways to say something Concise, high level canonical form 1

Fragments are exphctly hmited to the description of programs (as opposed to arbitrary :
problems) because of the assumption that the system will only deal with algorithms specified by 3
programmers. 3

| The amount of new information conveyed by each fragment is allowed to be small in order to %
provide the greatest flexibility for interactive, incremental spectfication. For example, a set A

oo might be described by separate fragments conveying the following facts: “A is a collection”, “4 3
oo is unordered”, “4 has no repeated elements”, “each instance of A has at least five elements”. 3

| Fragments are expressed using a superset of the primitives in the program modelling language 3
so that (1) straightforward programs may be written in the modelling language using the same ]

Cd PMB mechanisms and (2) fragments will have at least the same power as the modelling F
language for expressing symbolic computation programs at a very high level. 3

Fragments are handled independently of their source, so that more than one specification or 1
domain module may be active at once. 5

Fragments may be arbitrarily ordered to provide freedom to the user in ordering the 3
specification process. For example, once 4 has been defined to be a collection above, the other 3

§ three fragments may arrive in any order, with other fragments not referring to 4 occurring in 2
between them. :

The fragments may be incomplete, semantically inconsistent, or ambiguous; may use generic 5
operators; and may provide more than one equivalent way of expressing a program part. Until 3
the fragments are built into a single model and such informalities removed, they obviously |
don’t form an executable program.
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2.8 Program Synthesis As Specification Transformation RE
1

§
Now we ascend to reconsider the general program synthesis problem. We have seen thar this

problem is to transform a human program specification into an efficient program that meets the 1
specification. Each program specification that 1s informal or at a very high level can often be 1
met by hundreds of reasonable target programs. The program synthesis system produces only |:
one of these programs: (hopefully) the one that meets the program specification most efficiently |
under the known constraints. |

This transformation process can be broken down into a small number of relatively sequential .
and independent phases that carry out part of the overall transformation process. Each of »
these phases concentrates on bringing one type of knowledge to bear on the problem. Each 2
phase narrows the space of programs that are still under consideration. Adjacent phases x
communicate only via an appropriate interface language. |

i

The diagram below shows the space of ail possible programs being constrained further and :
further by each successive knowledge level, until finally exactly one target program is produced. Ll

The program specification is first transformed into program fragments by the application of ¥
knowledge of particular specification techniques and the particular programming domain. 4
Fragments are transformed into a complete and consistent program model by the application of 4
general programming knowledge. Then the model is transformed into a target program by the | 3
application of coding and target language knowledge. The middle step is the topic of this |

thesis. i

!

| |
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Specification Transformation 3

informal VHL program, natural language, trace, etc.

program fragments 4

program mode| ;

d

3 target program ¢
A 1

! :
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f Chapter 3. Survey of Related Work

A number of distinct research areas are related to the present work. Rather than giving a ]
1 detailed, but out-of-context discussion of them all in a single chapter early in the thesis, I only |

| provide a brief mention of the more important pieces of related research here. Detailed 4
{ discussions occur as appropriate in the chapters that present the relevant parts of PMB. |

PMB 1s a program acquisition system. Aruficial intelligence approaches to the program 3
3 acquisition problem, as well as related problems of program synthesis and “automatic

programming”, are surveyed in [Heidorn-76], [Green-76B]. [Biermann-76), and [Elschlager & 3
| Phillips-79).

: The other areas covered in this chapter are the incremental acquisition of informal programs, 3
programmer aid systems, recognition problem solving using demons, programming 4

b methodologies, very high level languages, knowledge representation by rules and frames, and 5
standard compiler technoiogy. :

Pr | 3

3.1 Incremental Acquisition of Informal Prograins |

No other research appears to have attacked the problem of acquiring programs that are 1
i specified both incrementally and informally. ;

The SAFE program acquisition system [Balzer et al.-78] is the closest in goals and scope to !
3 PMB. SAFE translates from a preparsed form of natural language into a VHL language 3

| featuring relations as its only data type. SAFE deals with some of the same issues of program 1
: incompleteness and inconsistency, but isn’t incremental or interactive. 1

1 The NLPQ system acquires simulation programs from natural language [Heidorn-72, Heidorn- 1
un 74, Heidorn-75). This was the first successful natural language program acquisition system. It 1
- is not an incremental system, but does allow for questions at the end of specification, from the
3 user for verification of the acquired program and from the system to fill in any gaps left in the :

program. Most inconsistencies are not discovered until the simulation program is run, and the 3
J class of programs handled is small. 4

The XREP system [Wilczynski-75] deals with the problems inherent in referencing variables by :
| English noun phrases. XREP assumes that such a specification is parsed into a production rule 4

programming language, along with a set of intentions (or plan). Then the program is executed od
to see if it matches the intentions. :

| Hobbs catalogs a number of completeness and consistency inferences and canonizing program ]
4 transformations, many of which PMB can do [Hobbs-77A, Hobbs-77B). But he is more 3
| interested in dealing with them at an earlier, more linguistic level, and a system encompassing .

| his ideas hasn't been implemented yet. i
The SID verification system (Moriconi-77, Moriconi-79} is incremental, but deals with formal
programs (in a PASCAL-like language) annotated with assertions. These are created and

; changed using a standard text editor.
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1 3.2 Programmer Aid Systems 7

} A number of attempts have been (and are being) made to provide interactive tools to support ]
; the programming process. These are variously called programmer aids, programmer assistants,

intelligent program editors, and programming environments, but they all require the user to :
program in a standard high level or very high level (VHL) language. They provide one or | 4
more programming aids that are implicitly or explicitly invoked to take care of programming
details, make checks for errors, make suggestions to the user, etc. ;

1 In this vein, PMB might be a useful programming aid if it were provided with a
1 straightforward front-end parser for the surface form of the program fragment language. This i

parser would generate fragments for PMB to process for completeness and semantic consistency. :
The structure of such a system is depicted below.

{ Role of PMB in Intelligent Program Editor

! Informal 3
VHL (not implemented)

Language

4 Parser 1

3 program fragments )

Program 1
A Mode!

2 Bui der 1

Fo program model §

| An intelligent program editor along these lines 1s being developed by Stephen ]. Westfold as ;
J part of the CHI system [Phillips-79). This program synthesis system is the successor to the PSI |
| system and incorporates many of the new ideas that arose during the development of PSI and ]

PMB. CHI also has a first implementation of the program reference language discussed in
| Chapter 5.

The INTERLISP system [Teitelman-78] was the first to provide a good set of low level tools for
programmer assistance. These are an editor enforcing LISP syntax; a “prettyprinter” specifically
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| for LISP constructs; a symbolic debugger; the “Do What | Mean” (DWIM) facility {Teitelman- :
72A), featuring a spelling corrector, among other niceties; the Programmer's Assistant

1 [Teitelman-72B, Teitelman-77), including a history list of past user activities and commands to :
: manipulate them; and the program analysis package called MASTERSCOPE. SCOPE ss an J

| extension of this package (Masinter-79). Ld

: The PCM system {Yonke-75] extends many of the INTERLISP notions to block-structured 3
! languages such as ALGOL and PASCAL. PCM does incremental parsing and thus quickly i

discovers syntactic and simple semantic errors (i.e, those determinable by looking up variable ]
1 properties in the symbol table). There is also a syntax oriented editor for PASCAL {Donzeau- :

Gouge et al-75) and one for BDL (“Business Definition Language”) that uses a fancy color |
| display (Hammer et al.-74]. A set of routines for manipulating program parse trees within such ;

systems as syntax oriented editors is described in [Robinson & Parnas-73).

} Work on programmer apprentices (Winograd-74, Hewitt & Smith-75, Rich & Shrobe-78, Rich et E
| al.-79, Waters-78, Waters-79, Shrobe-79A, Shrobe-79B, Rich-79] is aimed at assisting a
; programmer with the details and with understanding a program that is being written primarily

by the programmer, rather than the system.

~ 3.3 Recognition Problem Solving Using Demons 4

Demons were invented—or at least named—as a tool for pattern recognition [Selfridge-59]. They 1
i have become a common feature of artificial intelligence languages and were popularized as the i

| key mechanism in a story understander [Charniak-72). PMB’s use of demons attached to
templates is most similar to the control structure of the Gemal Understander System (GUS)
[Bobrow et al-77). The reasoner portion of GUS is at the back end of a natural language
understanding system. The reasoner builds up smaller trees of frames than PMB and never ]

3 manipulates them once they are completed. Our use of demons also fits nicely into Rieger's
general theory of spontaneous computation {Rieger-77]. J

; The successive refinement paradigm is used by the automatic coding phase of PSI, which
consists of the PECOS coder [Barstow-79A) and LIBRA efficiency expert [Kant-79A, Kant- 3

[ 79Bl. This paradigm appears to have much in common with the basic top down, goal oriented
completion of a program model in PMB. But the coding process proceeds from a complete {
program model and has total control over what subgoal to work on next, whereas acquisition of
the model only proceeds in an orderly top down fashion by default. The program acquisition 3

: process allows informalities and is usually data driven. Typically the user will jump around 3
pb from subgoal to subgoal and even create new, unanticipated subgoals (e.g., define previously i

| | unreferenced procedures and information structures). i

7 | 3.4 Programming Methodologies ;
| | PMB allows the user to determine the order in which program parts are defined. However, this
{ unrestrictive methodology for program development could be restricted if desirable, eg. in

support of structured programming. Many programming methodologies advocate writing
| programs in a top down, structured fashion (Dahl et al-72, Wirth-73). PMB could support

|
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1 such orders of program development in two ways. The first way, which is already available, Is :

| to trust the user to impose a parucular ordering on the fulfillment of subgoals (eg. all
information structures must be defined before they are referenced). The other way would be to

modify PMB so that it imposes this ordering. | ;

| Most of what PMB does can be viewed as the piecewise transformation of programs. This
1 differs from standard program transformation work {Burstall & Darlington-77, Loveman-77, :
] Kibler et al.-77, Kibier-78, Balzer et al.-76] in that the program being transformed is only a ;

partial program and many of the transformations are designed to remove informalities from the |
i input form. Most program transformation research deals with source-to-source transformations,
3 i.e, equivalence preserving transformations done ail within the same language and on complete
1 programs. PM B's rules of canonization are transformations of this sort. :

| 3.5 Very High Level Languages

; PMB produces a final program in the program modelling language, which is a very high level |
language. Its very high level nature stems from its information structures, rather than any |
fancy control structures. It 1s most akin to the “set oriented” languages such as SETL

] [Schwartz-75) and VERS2 [Earley-74]. However, systems dealing with languages such as these
| concentrate on automatic coding. These systems don’t do program acquisition. Therefore, the

program must be handwritten by the user. : |

| 3.6 Knowledge Representation by Rules and Frames :

1 PMB represents knowledge as both templates and rules. |
1 Static knowledge of model building 1s stored as a rule base of antecedent/consequent rules
1 (Davis et al-77, Barstow-79A) However, PM B's rules are data driven (ie, triggered by the |

Rk antecedents being or becoming true), such as in ARS [Stallman & Sussman-77]. i

J Dynamic knowledge (i.e, the partial program model) is stored as a tree of templates, which are £
; similar to structured property lists or frames [Minsky-75, Bobrow & Winograd-77]. j

| 3.7 Coinpiler Technology

! A number of ideas in PMB have been borrowed from standard compiler theory and practice. |
The notion of incrementally processing a program is borrowed from tncremental compilers, eg,

} PL/ACME [Breitbard & Wiederhold-69]. However, all of these appear to be limited to a grain
of incremental processing that is one line of text. |

| Many compilers handle some of the informalities that PMB does. A common example is type
coercion. But compilers do such operations at either compile time or runtime. The philosophy
of PMB is that it is better to move such processing from runtime or coding (compile) time to

| “acquisition time”, before the user 1s out of the picture.



3 Chapter 4. An Example

This chapter presents in some detail a single example of PMB in action. The example is one E
4 of the programs that have been acquired and coded by the PSI program synthesis system. |

i We start with an informal description of the desired program, called CLASSIFY. Then the |
inputs and outputs of PSI are shown, to provide context. We present the actual dialog that a

3 human user carried out with the PSI parser/interpreter to specify CLASSIFY. A few program |
3 fragments are described; they are the form of program specification that PMB receives from the
3 parser/interpreter. To demonstrate the output of PMB, the completed program modet 1s listed, |
1 along with a sample execution by the model interpreter. Finally, the most important (and |

longest) section has an annotated trace of the program fragments as they are input by PMB |
s from the parser/interpreter and the resulting partial program model as it is built by PMB.

4.1 The CLASSIFY Program |

] CLASSIFY is a simple program for classifying symbolic patterns. At the heart of the E
algorithm, CLASSIFY simply tesis to see whether one set 1s a subset of another set. To ;

] provide motivation for such a program, an application is described in parentheses along with :
the abstract algorithm below. The application involves a set of qualifications that are required
for a job. The qualifications of one or more job applicants are tested against this set to see if
any applicant fits the job requirements. |

: CLASSIFY first inputs a sample set of items (eg. a list of required job qualifications), where |
each item is a relation (or n-tuple). Then the program repeatedly inputs a trial set (e.g. he

i qualifications of an applicant), tests whether the sample set (required qualifications) is a subset :
: of the trial set (applicant's qualifications), and prints “Fit” or “Didn't fit" accordingly. The :
1 program is exited if the word “quit” is typed instead of a trial set.

2 CLASSIFY is typical of the size and complexity of programs that can be built by PMB.
FE CLASSIFY was chosen for this example because it makes use of a wide variety of modelling E
4 language features, including all the control structures and all information structures but the :

correspondence (or mapping). Because of this diversity, CLASSIFY requires the use of much :
of PMB’s knowledge of program models and many of its special techniques for handling

; completeness, consistency, type coercion, canonization, etc. :

|

| 4.2 Example Inputs and Outputs
| The following diagram shows the relationship between the four inputs and outputs that are
fl presented in this section. The fragments and resultant model are germane to the thesis, but the
: English dialog with the user and execution trace of the model are also given to provide

additional context.

ro

!

Cd



36 An Example |] Relationship of Inputs and Outputs Used in Example i

: English dialog

PSI

Parser/

Inter- |

preter |

| program fragments |

3 Program

Builder 3

program model 2

- Program }
= Model 3
2 Inter- k
gi preter i

= execution typescript
|

4.2.1 English Specification Dialog with PSI

| The following dialog was held with PSI to specify CLASSIFY. Sentences from the user wereprocessed by the PSI parser/interpreter [Ginsparg-78). Questions from PSI were generated by
the PSI explainer [Green et al.-79). The choice of what question to ask next was made by the

| PSI dialog moderator [Steinberg-79].

| i
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Specification Dialog for CLASSIFY |

: PSI: What is the name of the program you want to write?

= User: CLASSIFY. |

| PSI: Does CLASSIFY have a special program type?

; User: Yes, classification.

PSI: Please describe CLASSIFY.

User: CLASSIFY first inputs a concept. Then it repeatedly accepts an input scene from the
| user, classifies it based on whether or not it fits the concept, and outputs this classification

to the user.

PSI: What is the structure of the concept?

| User: The concept is a set of relations, each of which is a property name followed by the |
\ names of the objects over which it hoids.

1 PSI: What is the structure of the scene? |

User: The same as the concept.

] | PSI: Please define what it means for a scene to fit the concept. |
| User: A scene fits the concept if all of the relations in the concept are in the scene.

p PSI: What is the exit test of the loop? :

| User: Stop when the user types “quit” instead of an input scene.

3 PSI: What is the format of the classification output?
k 3

J User: Output “Fit” if the scene fit the concept, “Didn't fit" if it did not. |

PSI: Are we finished?

|

, User: Yes.
h 4.2.2 Program Fragments Input to PMB |

| Since all of the 32 fragments generated from the preceding dialog will be given in the detailed
trace of model building later in this chapter, only an example of each basic type (control
structure, primitive operation, and information structure) is given here.

The first example fragment arises from the following sentences in the preceding dialog:
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CLASSIFY first inputs a concept. Then it repeatedly accepts an input scene from
| the user, classifies it based on whether or not it fits the concept, and outputs this ;
3 classification to the user. :

| Actually the fragment below is only the first of a number of fragments that are gleaned from ¥] | these two sentences. A paraphrase of the fragment in terms of the above sentences is |
; “CLASSIFY first [does something). Then it [does something else)”.

| algorithm_body:
- begin
: input_concept;

classify_loop
| end

: The fragment above defines a control structure called by the unique name “algorithm_body"'. !
; It is a composite (similar to a compound statement in ALGOL) with two parts, called

“input_concept” and “classify_loop”. These are arbitrary names representing the two things that
CLASSIFY is supposed to do. Notice that this fragment neither defines where
“algorithm_body” is to be invoked in the algorithm of CLASSIFY, nor defines what

3 “input_concept” and “classify_loop” are, nor specifies whether the two parts are to be executed z
: sequentially or in parallel.

1 The second fragment arises from the part of this sentence that precedes the word “instead”: |

“Stop when the user types ‘quit’ instead of an input scene.” j
exit_condition: input_data_prototype = quit_prototype

. This fragment is a primitive operation called “exit_condition”, which tests for equality between 3
two information structures, input_data_ prototype and quit_prototype. Once again, other

EE fragments specify where this test is to be made. The operator is a generic equaiity condition 4
: that is specialized based upon the types of its two arguments.

- The final example comes from the part of this sentence before the comma: “The concept is a set
, of relations, each of which is a property name foilowed by the names of the ob jects over which ¥

| type concept_prototype: set of relation_prototype 4

: This fragment declares an information structure called concept_protorype. Concept_prototype is :
| an unordered collection without repetition of elements. The prototypic element of the t

collection is a relation_prototype. The size of the collection, where it is referenced, and the ;

| definition of relation_prototype are not provided in this fragment. :

i ' Mnemonic names have been assigned wherever possible to avoid using the computer symbols
generated by PSI.

|
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{ 4.2.3 Program Model Output by PMB "3

3 Below is the program model of CLASSIFY that PMB produced. It was printed using a 1
J PASCAL-like syntax by the readable progranv model generator {Pressburger-78]. Information 3

structures have both prototypes (defined after the keyword type below) and instances of the 4
] prototypes (defined after the keyword var). All cross-references, assertions, and other | §
| nonessential annotations have been omitted for clarity. The program modelling language, from 1

which listings such as this are derived, is defined in Chapter 7. 1

] One interesting feature of this model is input_data_prototype, which is an information i
: structure prototype that is an alternative of two other prototypes. This is a mutuaily exclusive 3
{ selector, so that an instance of input_data_prototype has to be of one type or the other, either a J

scene_prototype or the string “quit”. This construct is useful in recognizing nonstandard data
4 that mark the end of processing. 1

|
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1 CLASSIFY Program Model »

1 program classify, 4

4 type )
: input_data_prototype: alternative of {scene_prototype, quit_prototype}, ! 4
1 scene_prototype: set of relation_prototype, 1

concept_prototype: set of relation_prototype, ;
] relation_prototype: plex of <relation_name: string, arguments: list of string>, }
] quit_prototype: string = “quit”;

input_data: input_data_prototype, i
scene, fit_scene: sceme_prototype, :

i concept, fit _concept: concept_prototype, ,
} fit_result: Boolean; 3

1 procedure fit(fit_scene, fit_concept): Boolean; -
fit_concept ¢ fit_scene; J

begin '§
{ concept « input(concept_prototype, user, ‘Ready for concept”); E

until exit | 1
: repeat 1

input_data « input(input_data_prototype, user, “Ready”); ;
1 if input_data = quit_prototype then assert_exit_condition(exit), 1
1 scene « input _data; E
oo fit _result + fit(scene, concept); | 2
- case g
F fit_result: inform _user("Fit™); §
» -fit_result: inform_user("Didn’t fit") §
¥ endcase |
E end 3

3 finally 3
pF exit: :
3 endloop 7

end 4

» Program Model Structure :

| The actual program model is a tree? of templates, each containing a number of slots andassociated values. The top level of the CLASSIFY model is shown below. 1

Each template has a class, and most classes have a particular (ype. The remaining required or |
optional slots depend upon the class and type. Some slots take simple values, and some point to

| other templates.

| 2 More accurately a graph because of the cross-reference pointers that are added to the basic
| top down program structure |

o



| Example Inputs and Qutputs 4] | ]

J Internal Structure of Prograin Model |
Name: CLASSIFY X

{ Class: program model H
j Domain: :
i classification

Top level Information 1
structures 1

: Procedures 1

4 3

4 : Name: algorithm_body Name: fit Name: concept_prototype 3
pr! Class: Class: procedure Class: "
po control structure Type returned: Boolean information structure :

Type: composite Instances: Type: set :
3 Drderings: sequential classification Instances: concept, ¢

Parameters: fit_scene, fit_concept 3

a fit_concept Size: 2 5

| JN Top level AlU for elements
1 | input_concept classify_loop procedure_body relation_prototype |

N's |
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4.2.4 Typescript of Sample Interpreted Execution ;

Below is one executic - of the CLASSIFY program model shown in the preceding section. 3
CLASSIFY was exe «d interpretively by the program model interpreter [Nelson-76], which k
always uses the same uefault data structure implementations. The example used in this run is | 4
the job classification task discussed earlier. Here the minimum qualifications for the job we :
have in mind are lots of programming experience and the enjoyment of LISP over ALGOL. 4
Other qualifications (e.g, an interest in aruficial inteihigence) are optional. 3

Typescript of CLASSIFY Execution 3

«INTERPRET (CLASSIFY)

Initializing CLASSIFY ... i
Entering Interpreter at ALGOR]THM-BOOY: 3

REAQY FOR CONCEPT
x((ENJOYS-MORE (LISP ALGOL)) (PROGRAMMING-EXPERIENCE (MUCH))) {

READY | E
x((ENJOYS-fORE (LISP ALGOL))) '

| DIDN'T FIT ]

| READY |
/ * { (PROGRAMMING-EXPERIENCE (MUCH))) 3

| DION'T FIT 1
READY 3

| * { (ENJOYS~MORE (APL LISP)) (PROGRAMMING-EXPERIENCE (MUCH) )) ]

. © DIDN'T FIT ]
- READY 3

*((ENJOYS-MORE (LISP ALGOL)) (PROGRAMMING-EXPERIENCE (LITTLE))) A

- DION'T FIT ;
READY

| * { (ENJOYS-MORE (LISP ALGOL)) (PROGRAMMING-EXPERIENCE (MUCH)))

FIT

} .

Co READY
| x ( (ENJOYS-MORE (LISP ALGOL)) (INTEREST (Al)) (PROGRAMMING-EXPERIENCE (MUCH)))

: | FIT |
READY |

*QUIT . |

| Exiting Interpreter ...

| ———— u -RT -wr—OT- ——"- :—o -wiiTT —
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OKAY i

4.3 Annotated Trace of Model Building ]

This section presents an annotated trace of PMB building the program model for CLASSIFY. 3
Included in the trace are all 32 program fragments in the order they were received by PMB
from the PSI parser/interpreter, an English description of any important or novel processing ;
that took place for each fragment, and a snapshot of the partial program model and
outstanding demons after each group of related fragments was processed. Most other details of 4
the original trace (e.g, explicit rule invocations) have been left out for the sake of brevity and 1
clarity. i

This example provides a good demonstration of PM B's control structure because the order in
which fragments arrive is particularly perverse: All of the information structure declarations 1

arrive after the algorithm itself.> This forces PMB to create many demons to wait for the t
information structures to be defined before consistency checks, type coercion, etc, can be |
completed. Also, instead of the one procedure being defined before the main algorithm, the 1
procedure is defined in the middle of the top down definition of the main algorithm, N
immediately after the procedure is called. Although information structures and procedures can »
be processed in any order, the most efficient order for PMB to process fragments is all 4

information structures first, then all procedures, and the main algorithm body last. But :
information structures and procedures may be interspersed throughout the main algorithm ]
body in any order. :

| PMB'’s control structure is a loop that inputs and then processes program fragments. The ]
processing of the first two fragments is traced in greater detail than the rest, in order to show §

oo PMB focusing on individual slots of a fragment, creating model templates, and creating 3
3 subgoals. The discussion of later fragments emphasizes the inference of pieces of program and 4

the creation and triggering of demons. Although only fourteen demons are discussed, dozens of 3
bo | other, more mundane ones are created and executed during the building of CLASSIFY. 3

| Comments about the trace are indented. Demons are assigned unique identification numbers 1
from | through 14 in the same order as demon creation. Fragments and models are printed in .

| a PASCAL.-like notation, although they are maintained internally as property lists, as evidenced ;
below in the low level trace of processing. Most computer generated symbols have been 3
replaced by more mnemonic words corresponding to the program model presented in an earlier 3
section. Each partial program model is printed at the top of a new page so that the incremental 3
building up of the model can be more easily discerned. Lines that are new or have changed it
from the immediately preceding model and demon list are denoted by the character “" at the ]
right margin. Missing parts of the partial program model that are still to be filed in by later :
fragments are denoted by “???". :

3 Note that in this example the parser/interpreter did not generate fragments in precisely the .
same order as their contents were specified in the English dialog. ;

|
9 This observation of a computer model correlates well with one typical programming style.
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Annotated Trace of Building CLASSIFY Model

The first fragment simpiy names the program to be written and the top level
algorithm. |

inputting fragment: :

program classify Cy
algorithm _body

PMB is initialized with the goal of wanting to know the name of the program J
model. The first fragment fulfills this goal, so the root template of the program :
model tree is created and given the name CLASSIFY. A subgoai 1s created to
determine its top level algorithm. The domain of the CLASSIFY program 1s an
example of a simple default value. The default value (funknown”) is stored in the
program model, but a subgoal (question) 1s also created to allow the default to be 3
overridden. This subgoal 1s marked as optional since a valid answer is already 3
known. §

Processing PROGRAM-MODEL.NAME = CLASSIFY 3
Creating template CLASSIFY with value 1

CLASSIFY.CLASS = PROCRAM-MODEL 3

CLASSIFY.DOMAIN = UNKNOWN 4

Creating subgoal: |
CLASSIFY.OCHAIN = 77? :

Creating subgoal:
CLASSIFY. TOP-LEVEL = 2??? 1

Done processing PROCRAM-MOOEL.NAME = CLASSIFY

The name of the top level of the algorithm occurs in the same fragment. Since |
there is an outstanding subgoal that wants to determine the top level, it 1s processed }
next. Since a template named “algorithm_body” doesn’t exist already, a new
template is created and a two way pointer between it and the CLASSIFY template
is inserted. Because the new template represents the top level algorithm of the |
model, PMB assigns it a class of operational unit. An operational unit can be any :

| control structure, primitive operation, or procedure call. Then PMB asks for what 1
specific type within this class the template is.

Processing CLASSIFY. TOP-LEVEL = ALGOR! THM-BOOY :
Creating template ALGORITHM-BOOY with value 4

ALGORI THM-BODY.CLASS = OPERATIONAL-UNIT

Creating subgoal: k
ALGORI THM-BODY.TYPE = 27? ;

Uone processing CLASSIFY.TOP-LEVEL = ALGORITHM-BOOY 1

| In partial program models, the first of which is given below, names preceding 5colons are unique template names (analogous to statement labels in ALGOL) that J
allow fragments to refer to different parts of the model. Besides the explicit fs

| question about the top level algorithm of CLASSIFY (denoted below by “»?"), J
there are always two implicit (i.e, set up internally by PMB and always present) '
questions that will handle definitions of information structures and procedures. 3
These questions aren't shown. :



| Annotated Trace of Model Building 45 |

 § Current program model: E

program classify;

algorithm _body: ???

Current demons active: i
| None :

| | The second fragment describes the top level algorithm as a composite of two steps. i
i Inputting fragment:
| i algorithm _body: :

| begin :
| input_concept; :

classify_loop 1
end 1

| i A composite is a compound statement with a partial ordering on the execution of ;
| its subparts. The partial ordering is optional and defaults to sequential.
1 p.

R Processing ALGORI THM-BOGY. TYPE = COMPOSITE 1
Creating subgoal:

ft ALGORI THM-BODY. SUBPARTS = 27? i
| Creating subgoal: :
1 ALGOR] TH-BODY.ORDERINGS = 277? 1

i Done processing ALGOR] THM-BOOY. TYPE = COMPOSITE i

The two subparts must be operational units because they are the steps of a i
composite. However, their specific types (e.g, input, test) are still unknown.

Processing ALGORI THM-BOOY.SUBPARTS = (INPUT-CONCEPT CLASSIFY-LOOP) 1
: Creating template INPUT-CONCEPT with value i

INPUT-CONCEPT.CLASS = OPERATIONAL-UNIT :

Creating subgoal: 4
INPUT -CONCEPT. TYPE = 277 1}

: Creating template CLASSIFY-LOOP with value E
CLASSIFY-LOOP.CLASS = OPERATIONAL-UNIT

Creating subgoat: 3
CLASSIFY-LOQP.TYPE = 27? K

Done processing ALGORI THM-BODY.SUBPARTS = (INPUT-CONCEPT CLASSIFY-LOOP) ¥

After this point, we won't show the details of PMB processing particular slots of A
fragments, creating templates, and creating subgoals. Rather, we will emphasize the :

| inference of pieces of program and the creation and triggering of demons. Of the 1
subgoals remaining at this point, the two in brackets below are implicit. :
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1 Subgoals stiil remaining: 1
3 CLASSIFY.DOMAIN = 277 3

ALGORI THM-BODY,ORDERINGS = ??7? ;
1 INPUT -CONCEPT. TYPE = 2727 3

CLASSIFY-LOOP.TYPE = 777 ]

2 (CLASSIFY. INFORMATION-STRUCTURES = 727] f
[CLASSIFY.PROCEDURES = ??77] 1

| The two required questions regarding the types of “input_concept” and :
“classify_loop” also appear below in the current program model. 1

|

|
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t J

: Current program mode:

program classify, :

begin |
input_concept: ???; | 3
classify _loop: ???

end 1

1 Current demons active:
: None j

The next fragment defines the input primitive operation that reads in the concept. ]
1 The three arguments of an input operation are the prototype of the information

structure to be input, the source of the input, and a prompt string to be output just ;
; prior to input. | :

Inputting fragment: 1

input_concept: input(concept_prototype, user, concept_prompt)

PMB infers that the object of type concept_protorype should be saved in an 4
instance of that type. So it creates one that is called concept here for mnemonic :
reasons and puts the input inside a remember operation (denoted by “~" below). 1

| 4

|
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| Current program model: i
] program classify, :

] type |
concept_prototype: ???, | |
concept_prompt: string = 22? :

1 var |

1 concept: concept_prototype; | p

begin
; concept « input(concept_prototype, user, concept_prompt); |

classify. loop: 22?
; end ;

i Current demons active: |
None i

i Inputting fragment: |

classify _loop: |
1 until exit (exit_condition) 1

repeat loop_body ;
finally exit: ]

endloop |

4 The above fragment defines a loop with a jump out of “loop_body” to exit block
“exit” when the Boolean condition “exit_condition” is true.

At this point PMB can’t tell where “exit_condition” is located, so it is shown
separately from the main algorithm. Demon | is created to make sure that

3 “exit_condition” is contained within the body of the loop. Since the context of 1
2 “exit_condition” within the algorithm isn't known yet, the demon is set up to await :
EF the definition of the control structure that contains “exit_condition”. In general, a 1

| demon may require the values of many undefined slots in order to evaluate its k
: antecedents. However, a demon is implemented “linearly”, i.e, it only waits for one :
3 slot at a time, moving from slot to slot until all required slot values are defined. k

Demon 2 is created to put the exit condition inside a test with an ;
assert_exit_condition as its true branch. This will cause the loop to be exited when

Eg the exit condition becomes true. ;

rT TT ee . . I a aE aaa EEE — ) PSS —— —_ | 3
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I 8 Current program model:

: 8 program classify, |

| type

 § concept_prototype: 2%,
Ek ¥ concept_prompt: string = ???;

3 ; var |
E concept: concept_prototype, |

| + begin

» concept « input(concept_prototype, user, concept_prompt), |
= until exit | |
= repeat | :

- loop_body: ???
nN finally |

exit:
} endloop
: end |

= exit_condition: ???

[ Current demons active:
B Demon 1: awaiting control structure containing "exit_condition"
=} Demon 2: awaiting control structure containing "exit_condition” [ :

3 Inputting fragment: |

y loop _body:
] begin ;
{ loop _input; !
3 exit_condition; ]
1 classification;
k output_classification J

Since the location of “exit_condition” within the algorithm is now defined, Demon | |
8 is triggered and finds that “exit_condition” is within the composite “loop body".
| § Since this is not the loop that Demon | was hoping to find, it creates a new |
| instance of itself to await the definition of what control structure “loop_body" is |

inside. Since this is already known, the new instance of the demon doesn't have to
t wait. It immediately discovers that “loop_body"” is inside the desired loop and thus, |
| by transitivity, so is “exit_condition”. Now Demon 1 is destroyed, as are most

demons after they succeed.

Lk Demon 2 creates a test with “exit_condition” as its predicate and an
X BB assert_exit_condition that will leave the loop as its true action. Then Demon 2 goes
| out of existence.

by
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Current program model: }

i program classify,

i type

J concept_prototype: 222,
concept_prompt: string = 2?

| var
3 concept: concept prototype,

begin :
concept « input(concept_prototype, user, concept _prompi),
until exit

repeat

begin |
Joop_input: 22% :
if exit_condition: 2? then assert_exit_condition(exit); |
classification: ??? ;

output_classification: ??? |
1 end |

finally E

endloop {
end i

{ Current demons active: |
None i

: 1

E Inputting fragment: ;

= loop_input: inpur(input_data_prototype, user, input_data_prompt)

| The input fragment above is handled similarly to the previous input. 3

- Inputting fragment: :

] exit_condition: input_data_prototype = quit_prototype 4

{ Demon 3 is created to specialize the generic operator are_equal into the appropriate 5
primitive operation, depending on the types of its arguments. In this case, Demon t
3 specializes are_equal into an is_of _type when input_data_prototype is determined :

| to be an information structure alternative and quit_prototype one of its :
subalternatives. To succeed, this demon has to wait for the definition of :

| input_data_prototype.

| | Inputting fragment:
classification: fit(scene_prototype, concept_prototype) |
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| PMB infers that a procedure named fit exists. Demon 4 will ensure that there are |
i the same number of actual and formal parameters when fit is defined. |

i A disambiguation of the second argument occurs at this point. Since
concept_prototype is known to be an information structure prototype, it can't be |

; used as the argument in a procedure call. Instead, PMB replaces it in the call with
the only instance of concept_prototype, concept. In addition, concept 1s designated
the “primary instance” of concept_prototype, to be used if a similar situation should

3 arise in the future.

In contrast, scene_prototype is mentioned for the first time in the current fragment.
Since PMB can't see into the future, scene_prototype is assumed to be an instance
now. Later, scene_prototype will be defined as a prototype, and an instance will be
created for it then.

3 Demons 5 and 6 will ensure that the types of the two actual parameters,
scene_prototype and concept, are in agreement with those of the two formal |
parameters. If a type is not specified for a formal parameter, then its type will be :
coerced by (inherited from) the corresponding actual parameter.

i Demon 7 is created to coerce the type returned by the procedure instance :

j (procedure call) to be the same as that returned by the procedure definition.
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| Current program modet:

] program classify;

type

1 input_data_prototype: ???, |
: concept_prototype: 72, |
| input_data_prompt: string = 2, |

concept_prompt. string = ?2?,
3 quit_prototype: 22, |

1 var |
3 input_data: input_data_prototype, |
] scene_prototype: ???

concept: concept prototype, |

! procedure fit(???):

begin
concept « input(concept_prototype, user, concept prompt); .
until exit .

repeat

| begin od
! input_data « input(input_data_prototype, user, input_data_prompt); |
1 if input_data = quit_prototype then assert_exit_condition(exit); :

fit(scene_prototype, concept),
output_classification: ?#?

end f

Ep finally |3 exit:
= endloop }
gE end |

z Current demons active: ]
oo Demon 3: awaiting type of input_data_prototype ;

5 Demon 4: awaiting formal parameters of fit |
4 Demon 5: awaiting formal parameters of fit 3

| Demon 6: awaiting formal parameters of fit :
Demon 7: awaiting type returned by fit

Now the top down exposition of the main algorithm is interrupted in order to
define the fit procedure, which is called in the previous fragment. :

| Inputting fragment: |

1 | procedure fit(fit_scene, fit_concept): Boolean;
procedure_body

| Demon 4 succeeds when it finds that the number of formal parameters of fit is the
| same as the number in the call to it. )
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PMB infers that the two formal parameters are the names of information structure |
. instances, and creates them. Demons 5 and 6, the type coercers, are moved ahead :

: to wait for the definitions of the prototypes of the actual parameters, 3
: | scene_prototype and concept, so that type coercion can be done on the ]
i corresponding formal parameters, which are now known. 3

] Demon 7 stores the type of procedure fir, Boolean, into the procedure _instance. ]

| Inputting fragment: 3

: procedure_body: (Y relation_prototype) true_for_all_body 4

This is a true_for_all Boolean test, which determines whether some condition is i
1 true for all elements of a collection. Demon 8 is created to canonize true_for_all 3

: into an is_subset if this becomes appropriate based on the definition of 3
| “true_for_all_body". 1

} Inputting fragment:

true_for_all_body: antecedent_is_element > consequent_is_element 3

Demon 8 moves ahead to await the definition of “antecedent_is_element”. .
i Inputting fragment: i

: antecedent _is_element: relation_prototype € fit_concept :

i Demon 8 notices that “antecedent_is_element” is an is_element test whose element 3
argument is relation_prototype, which is the referent variable of the true_for_all. $
So Demon 8 moves ahead to await the definition of fit_concept. E

3 Demon 9 is created to guarantee type consistency between relation_prototype, the :
! element of the is_e¢lement, and the as yet unknown prototypic element of the 3
BB collection fit_concept. BE

4 | Inputting fragment: .
k consequent_is_element: relation_prototype € fit_scene 5

This is_element fragment is handled similarly to the previous one. Demon 10 is set >
| up to check for type consistency. ;

} .

|
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: Current program model: |

1 program classify,

type |
i input_data_prototype: ?22,

concept_prototype: 22, :
input_data_prompt: string = 22, I

4 concept_prompe: string = 222, |
| quit_prototype: 227;

var

input_data: input_data_prototype, 1
i scene_prototype: 222, |

fit _scene: 222, :
1 concept: concept_prototype, |

fit_concept: 222, | 3
1 relation_prototype: 222, | |

procedure fit(fit_scene, fit_concept). Boolean; ;
Y relation_prototype | relation_prototype € fit_concept > relation_prototype € fit_scene; |

begin '
; concept « input{concept_prototype, user, concept_prompt); :
1 until exit |

; repeat :
begin

| input_data « inputlinput_data_prototype, user, input_data_prompt); ;
3 if input_data = quit_prototype then assert_exit_condition(exit); i

fit(scene_prototype, concept), | [
8 output_classification: ??? 3
= end ]
3 finally 4
b | exit: 4
<8 endloop ;
= end 3

F Current demons active: :
1 Demon 3: awaiting type of input_data_prototype E
i Demon 5: awaiting prototype of scene_prototype 3
; Demon 6: awaiting prototype of concept
3 | Demon 8: awaiting prototype of fit_concept ;Demon 9: awaiting prototype of relation_prototype |

: | Demon 18: awaiting prototype of relation_prototype -
BR inputting fragment: |
) | output _classification:case

fit_true;
| fit_false

| endcase §
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1

J lnputting fragment:

| fit_true: fir_resulr: print_fit |

Inputting fragment:

print_fit: output(fir_prototype, user) 5

i Demon 11 is created to transform the output into the simpler inform_user |
operation, if fit_prototype turns out to be a string constant.

= lnputting fragment:

= fit_false: not_fit_result: print_didn't_fit

= Inputting fragment: }

b not_fit_result: -fit_result

| [nputting fragment: 1

| print_didn’t_fit: output(didn’t_fit_prototype, user) .

Demon 12 is created to transform the output into an inform _user operation, if 5
| didn’t_fit_prototype is a string constant. 3

y 4

;
Cd
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Current program model: :
{

| program classify,
1

type

: input_data_prototype: ???, | i
concept_prototype: ???,
input_data_prompt: string = 222, :
concept _prompt: string = 22, :
quit_prototype: 223,

| fit_prototype: 2, | :
didn’t _fit_prototype: ??; ;

4 var 1
input_data: input_data_prototype, :

i scene_prototype: 322, 1
fit_scene: 222, 1
concept: concept_prototype, - 1
fit_concept: 3? 3

| relation_prototype: ???, ?

| procedure fit(fic_scene, fit_concept): Boolean; | i
: Y relation_prototype | relation_prototype € fit_concept > relation_prototype € fit_scene; :

| begin
concept « input(concept_prototype, user, concept_prompt); k

4 until exit 3
i repeat )

begin E
input_data « input(input_data_prototype, user, input_data_prompt), ;

3 if input_data = quit_prototype then assert_exit_condition(exit); ]
{ fit(scene_prototype, concept), 3
| case | | 1

| fit _resule: 2: output(fit_prototype, user),
2 ~fit_result: ?%: output(didn’t_fit_prototype, user) 3
y endcase }
: end 3

finally ]
exit: d

endloop 4
df end

: | Current demons active: :
: Demon 3: awaiting type of input_data_prototype :
a. Demon 5: awaiting prototype of scene prototype
. Demon 6: awaiting prototype of concept |
| | Demon 8: awaiting prototype of fit_concept

| Demon 3: awaiting prototype of relation_prototype |
| Demon 18: awaiting prototype of relation_prototype |
| Demon 11: awaiting type of fit_prototype

Demon 12: awaiting type of didn't_fit_prototype

|
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] Finally PMB receives the fragments that define information structure prototypes. 1
JRE Now many demons that were set up earlier in the trace are fired off and succeed ©

with their appointed checks and transformations. 1

- An instance of the alternative input_data_prototype 1s at any time an instance of 3

| exactly one of the alternative prototypes, scene_prototype or quit_prototype. .

i Inputting fragment:

3 type input_data_prototype: alternative of {scene_prototype, quit _prototype} i

1 Input_data_prototype is defined as an alternative prototype, and quit_prototype
| already is a prototype. Scene_prototype should either already be a prototype or be §

defined as one now. But scene_prototype was previously defined as an information E
structure instance. So PMB copies this instance to a new template, which will be |

1 called scene, that is created by PMB. All pointers to the instance that used to point 1
to scene_prototype from other templates are updated to point to scene. Then PMB .
creates the prototype in its place. Scene is marked as the primary instance of 4
scene_prototype. 3

| Now that scene_prototype is known to be the prototype of scene, one of the two type 3
coercion demons, Demon 5, coerces fit_scene to be of the same type as scene by Vg
making fit_scene be an instance of scene_prototype too.

Demon 3 specializes the are_equal operator into an is_of _type, which is specifically 1
| for testing which option an instance of an alternative is.>

a. Demon 13 is created to guarantee that quit_prototype is in the tree of alternatives ;
for input_data_prototype. It is, so Demon 13 succeeds. :

Demon 14 is created to insert a select_alternative operation (denoted by the “«” :
: operator) after the is_of type. It succeeds because there are only two alternatives,

and if input_data isn't of type quit_prototype, then it must be of type ;
J scene_prototype.

Inputting fragment: 3

type quit_prototype: string = “quit” E

| | S The “=" symbol is still used to denote the operation in the program model.
bo
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: Current program model: a

program classify, |

| type :
: input_data_prototype: alternative of {scene_prototype, quit_prototype},

scene_prototype: 222, | »
concept prototype: 2, |
input_data_prompt: string = 22,

| concept prompt: string = 222,
| quit_prototype: string = “quit”,

fit_prototype: 22,
didn’t_fit_prototype: ???, :

| var
input_data: input_data_prototype, 4

: scene, fit_scene: scene_prototype, i
concept: concept_prototype, 3
fit_concept: 2, ]
relation_prototype: :

procedure fit(fit_scene, fit_concept). Boolean; »
| VY relation_prototype | relation_prototype € fit_concept > relation_prototype € fit_scene; |

begin 1
| concept « inputiconcept_prototype, user, concept_prompt); i

until exit 4

repeat :
p begin

| | input_data « input(input_data_prototype, user, input_data_prompt),
if input_data = quit_prototype then assert_exit_condition(exit),
scene « input_data, |

b fit(scene, concept); | y
oo case 4

2 fit result: 22: output(fit_prototype, user), ]
: ~fit _result: 2: output(didn’t_fit_prototype, user) h

| endcase |
| end | k

finally 4
exit: }

i endloop A
end

| Current demons active: i
| Demon 6: awaiting prototype of concept 3

Demon 8: awaiting prototype of fit_concept :
| Oemon 3: awaiting prototype of relation_prototype :

Oemon 18: awaiting prototype of relation_prototype
Demon 11: awaiting type of fit_prototype
Demon 12: awaiting type of didn’t_fit_prototype
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1 Inputting fragment: | J
type didn’t _fit_prototype: string = “Didn't fit”

At this point Demon 12 transforms the output operation that prints out
didn't_fit_prototype into an inform_user that prints the string constant “Didn't fit”. :

i Inputting fragment:

type fit_prototype: string = “Fit” 1
| Demon 11 transforms the other output into an inform user. 1

Inputting fragment:

type relation_prototype: plex of <relation_name: relation_name, arguments: arguments> i

Relation_prototype is already defined as an instance, so the instance is copied to a
new template called relation, and the new prototype relation_prototype takes its ]

| place. :

| | The is_element consistency demons, Demons 9 and 10, now know what the element 3
i slots of the is_element operations are, but they must still wait for the definitions of 3

the prototypic elements of their collection slots. 1

| Inputting fragment: :
] type relation_name: atom
: Atoms are treated equivalently to strings by PMB. i

; Inputting fragment: :
F type argument: atom 3

E Argument is an unknown template name because it is defined before arguments and }
§ isn’t otherwise referenced by any fragment. So PMB creates a new information j

structure prototype and assumes it will get referenced later. 3

] Inputting fragment: 1

i type arguments: list of argument |

| Argument is referenced here. ]

|
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: Current program model: Pg

program classify, 3

type
; input_data_prototype: alternative of {scene_prototype, quit_prototype},
{ scene_prototype: 22? | 4
1 concept_prototype: 222, |
: relation_prototype: plex of <relation_name: string, arguments: list of string>, 3
! input_data_prompt: string = 222, 1

concept_prompt: string = 222, 3
quit_prototype: string = “quit”; 3

i var Jj
input_data: input_data_prototype, 3

] scene, fit_scene: scene_prototype,
: concept: concept_prototype, i
4 fit_concept: 22,

relation: relation_prototype, | :

procedure fir(fit_scene, fit_concept): Boolean; ]
| V relation | relation € fit_concept > relation € fit_scene; | Ho

begin J
concept « input(concept_prototype, user, concept_prompt); i
until exit

repeat {

begin 3

3 input _data « input(input_data_prototype, user, input_data_prompt); 1
p if input_data = quit_prototype then assert_exit_condition(exit), i
: scene « input_data, |

fit(scene, concept), 3
case 1

{ fit_result: 22: inform_user(*Fit"); J
; ~fit_result: ?? inform_user(“Didn't fit") | gE
d endcase y

end }

finally 1
exit: ;

endloop 1
end :-

i Current demons active: .
2 Demon 6: awaiting prototype of concept

| Demon 8: awaiting prototype of fit_concept
= Demon 9: awaiting prototype of fit_concept |

3 | Demon 18: awaiting scene_prototype :
=» Inputting fragment:

Cy type concept_prompt: string = “Ready for concept”

17
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: Inputting fragment: 1

type input_data_prompt: string = “Ready” :

Inputting fragment: »

fit_result « classification

; A Boolean information structure instance called fit_result is created and the result i
: of the classification test is remembered in it. ]

Inputting fragment:

type scene_prototype: set of relation_prototype

Now Demon 10, the is_element consistency check, succeeds because the prototypic ]
i element of the collection slot of the is_element is now defined and matches the type |
| of the element slot. 3

3

; -

i
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Current program model: ©

} program classify; i

3 input_data_prototype: alternative of {scene_prototype, quit_prototype}, | §
scene_prototype: set of relation_prototype,

: concept_prototype: 222,
1 relation_prototype: plex of <relation_name: string, arguments: list of string>, 2

quit_prototype: string = “quit”;

var

input_data: input_data_protolype, i

| scene, fit_scene: scene_prototype,
1 concept: concept prototype, 4

fit_concepet: 22, s
| relation: relation_prototype, 3

| fit_result: Boolean; | 1

procedure fit(fit_scene, fit_concept). Boolean; !
| Y relation | relation € fitconcept > relation € fit_scene; a.

begin 3
concept « input(concept_prototype, user, ‘Ready for concept”); 3

; until exit | ;
; repeat {

begin |
input_data + input(input_data_prototype, user, “Ready”; 1

s if input_data = quit_prototype then assert_exit_condition(exit); ;
scene « input_data; 1
fit_result « fit(scene, concept), 1

1 case :
Fo fit_result: inform _user("Fit"),
E ~fit_result: inform_user(“Didn't fit") 1
2 endcase :
] end }
i finally E
I exit: k

endloop ;

{ end 3

Current demons active: "

| Demon 6: awaiting prototype of concept §| Demon 8: awaiting prototype of fit_concept :

j | Demon 9: awaiting prototype of fir_concept :

5 | Inputting fragment: :
type concept_prototype: set of relation_prototype |

|
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x Now that the prototype of concept is defined, the second type coercion demon,
258 Demon 6, coerces fit_concept to be of the same type as concept by making

| § fit_concept be an instance of concept_prototype t0o.® |

= Knowing that fit_concept is an instance of concept_prototype also allows Demons 8
B and 9 to proceed. Demon 9, one of the two is_element consistency checks from the Co
= fit procedure, succeeds because the prototypic element of the collection slot of the |
| is_element is now defined and matches the type of the element slot, |

relation _prototype. :

| Finally, all information structures referenced in the procedure body are defined and
all consistency demons have succeeded. So Demon 8 canonizes the true_for_all by
transforming it, along with the implies and the two is_elements it contains, into an :
is_subset. :

Program model complete. i

3 At the end of model building, 37 optional questions and no required questions are i
: left, so CLASSIFY is complete. The optional questions that remain are mostly

about information structure prototypes that have already been inferred, sizes of |

collections, probabilities of conditions, optional constant values of primitives, etc. !
Although all fourteen demons that have been tracked throughout the trace are F
gone, a few other demons are left alive at the end of model building. Some }
consistency demons were designed to watch for certain conditions forever. For y

! example, when the true_for_all Boolean test was created earlier, a group of demons ;
= was created to guarantee that the referent information structure of the true_for_all i
» wasn't ever referenced outside the body of the true_for_all. Sometimes 4

| transformation demons are created to watch for possible canonizations, but the 4
3 antecedents of these demons are never satisfied. There weren't any such ]

transformation demons in this example. 1

| ® This demon could also have been designed to succeed earlier rather than waiting for i
{ concept prototype to be explicitly defined, since concept prototype was assumed to be the 1

prototype of concept.

7 It is interesting to observe the power of a few additional rules. In addition to the is_subset ;
transformation demon, Demon 8, another demon could have been set up to watch the !

3 true_for_all within procedure fit. Both fit_concept and fit_scene occur as collections in
is_element tests with the same element argument, relation. From this the demon would infer :

to that fit_concept and fir_scene are collections with the same prototypic element. When PMB'’s |
| question about the prototypic element of scene_prototype was answered, the question about the
HRT prototypic element of concept_prototype would become superfluous, and vice versa. However,

the two collections might still have other characteristics, e.g, one might be ordered and the
; other unordered.
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| i

Final program model: Cf

f program classify; |
|

type | .
input_data_prototype: alternative of {scene_ prototype, quit_prototype}, bo
scene_prototype: set of relation_prototype,
concept _prototype: set of relation_prototype, |

: relation_prototype: plex of <relation_name: string, arguments: list of string>,
1 quit_prototype: string = “quit”;

i

| var |
| input _data: input_data_prototype, - |

scene, fit_scene: scene_prototype, !
concept, fit_concept: concept _prototype, |

fit _result: Boolean; |
} procedure fit(fit_scene, fit_concept): Boolean;
j fit concept c fit_scene; |

l

) begin '
; concept « input(concept_prototype, user, “Ready for concept”);
: until exit :

repeat |1 begin ]
input_data « input(input_data_prototype, user, “Ready"); i

1 if input_data = quit_prototype then assert_exit_condition(exit), ;
: scene « input_data,

fit_result « fit(scene, concept), |case {

: fit _result: inform_user(“Fit"); {
~fit_result: inform_user(“Didn't fit") :

FE endcase
- end
2 finally 4
| exit: §

endloop |

3 end |i Current demons active: g
| None !

rR |
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Chapter 5. The Input: Program Fragments .

2 Input to PMB is in the form of a sequence of informal pieces of program description called
program fragments. The program fragment language provides a uniform means of feeding

: information to PMB from any other program acquisition knowledge source. Fragments are |
designed to convey small chunks of information corresponding to, for example, all or part of a Ha

i sentence from a specification dialog. The flexibility of fragments allows a program specification |
 § to be given incrementally in an arbitrary order when the user is in control of the specification |
E process. !

B For a procedure to be considered an algorithm, it must possess the quality of “definiteness”. |
- This property requires that each step of the procedure be known and be precisely, rigorously, |
2 and unambiguously defined (Knuth-73A, page 5]. An incremental and informal program |
; specification using fragments does not constitute an executable algorithm. Until all of the i
=u fragments are assembled, the procedure they specify is incomplete. In addition, it is not weli-

= defined if any informalities remain. |
3 A fragment consists of two parts: what is to be done to the program model that is under :

| construction (i.e, defining or modifying some part) and where this action is to take place (ie, |
oo which part of the model is to be affected). Specification of the “where” part is limited to 3
= explicitly naming unique points in the model now, but a language for referring to the parts of a ]

program has been designed. We will discuss the format of fragments and then their content, in
Fp - terms of what is to be done and where. 1

N 5.1 Format of Fragments

To understand fragments, one must understand the program model, which they are used to }
3 specify. By the end of model building, the program model constitutes a computer program that 3
| is (1) executable; (2) written at a very high level (VHL); and (3) made up of information ]

structure definitions, procedure declarations, a main algorithm consisting of control structures 3
and primitive operations, and assertions. The model is represented as a parse tree. Elements of
the tree are templates, which define the program in a hierarchy of information structures, i
control structures, and primitive operations. Each template consists of a set of siot/value pairs.

| The value of the ype slot (e.g. loop) determines the other slots that are required or optional. ]
Bn: Depending on the slot, a slot value may be such things as a string, a pointer to another
a: template, or a list structure that points to more than one template. |

[ § A fragment specifies a template in the model and one or more slot/value pairs of that template. t
In the most perverse case, the fragments specify templates in an arbitrary order, and each ;

t £ fragment contains only one new piece of information about a template. In the most
| straightforward case, the fragments specify the templates in a top down traversal (either depth i
¥ or breadth first), and the information about each template is contained in a single fragment. Of ;
Ni course, the typical sequence of fragments lies somewhere between these extremes. For example,

| an information structure may be described first, followed by the algorithm that uses it, or vice |
3 versa. A procedure may be defined before or after the procedure_instances that call it.

! I As an example, we give the two extremes for fragments that specify (1) the prototype of a set
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(an unordered collection without repetitions) of relations and (2) a specific instance of an
: operation that checks if relation is an element of the collection concept. First are their |

] definitions in just two fragments.

Minimum Number of Fragnents |

where: name: relations |
what: type: collection |

: ordered: nil

repetitions: nil |
AlU_for_elements: relation

where: name: membership _test
| what: type: is_element

element: relation

| collection: concept |
Following is the same information expressed in a number of fragments in a nearly arbitrary 1
order.’ :

3 Maximum Number of Fragments : 1

where: name: relations | 1
what: type: collection 1

A where: name: membership _test 1
what: type: is_element 3

1 where: name: relations 4
: what: AlIU_for_elements: relation 1

- where: name: relations i
2 what: repetitions: nil 3

where: name: membership _test y
; what: collection: concept {3

| where: name: membership _test '
| what: element: relation 4

J {

| where: name: relations |
what: ordered: nil -

| ! No formal experiments have been performed to determine the adequacy of program fragments
. for specifying programs in the most desirable ways. However, it is clear that fragments come a

long way toward providing the necessary flexibility. Fragments provide a means for specifying
i parts of a program in the minutest detail and in an arbitrary order. The program reference

' The only important restriction on the order of slot definitions is that the type of a template
] must be contained in the first fragment about that template.

|
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language is based on observations of common ways that people refer to parts of a program. 3:
: The other features of fragments, such as incompleteness, inconsistency, and ambiguity, are also ;

| based on common assumptions that people make when specifying programs. There is no claim 1
] that this set of properties is complete, however, 1

In contrast to the fragment language, the typical computer program is specified to a | 3
| programming language processor all at once, as a computer file or deck of cards. This program 3

is a sequence of statements in a high level language, appearing in a very restricted order and 3
using a precise and limited syntax. To be accepted by the processor, the program must be

] complete, consistent, and unambiguous. :

Human users are not expected to interface directly to PMB. PMB was designed so that it may
operate in a robust acquisition environment featuring many other knowledge sources, such as j

experts on natural language, inference from traces, and specific programming domains. In a f
: more straightforward environment, fragments would be produced by a deterministic parser for E
: an informal VHL surface language. For example, the two fragments presented above might 3

look like this in a surface language modelled after PASCAL: ]

! type concept: set of relation; j

| membership _test: relation € concept )

SE Throughout the thesis, fragments are expressed in this language. 3

5.2 Program Specification Information 3

\ This section discusses the information conveyed by a fragment about a particular template in :
the program model. The first subsection discusses the types of fragments. The next three 4

3 subsections discuss the properties of fragments that distinguish them from program model R
. templates: incompleteness, inconsistency, and variety of specification. A

= 5.2.1 Types of Fragments 1

: The kinds of fragments (i.e, as determined by the “type” slot of the fragment) form a superset 1
|! of the kinds of templates in the program modelling language. Fragments without informalities 3
3 | correspond directly to parts of templates in the program modelling language. Hence, the class 1

of programs that can be’ specified with fragments is a superset of those that can be specified in ,
! the program modelling language. ’

1 Below is a list of the types of fragments. Types followed by an asterisk correspond to model |
constructs by the same name. A complete definition of these types is deferred until Chapter 7

| on the program modelling language. However, any aspect of informality possessed by a type is |
3 discussed here. Types not followed by an asterisk are unique to the fragment language and
i provide for some form of informality in specification. These types are discussed below.
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] Constructs of the Program Fragment Language 3

Abstract Information Units (AIUs) Abstract Control Units (ACUs) 3

| primitives composite: 9
{ string test: 3
; atom case:

: Boolean condition/action |
i collection: loop: 3
4 set exit_pair 3

multiset procedure: 3
3 ordered _set program_modelx: 3

list 3

correspondence: 1
plex: 1

§ subpart 3
3 alternative 1

AlU instances 3

; Primitive Operations (POPs) Primitive Operations 3
with Boolean Values with Non-Boolean Values 3

not: result_of Cy

ands correspondent _ofs ' 3
implies: 3
is_element: 4

i is_subsets 3
{ true_for_all: : 1
3 has_correspondent: 1
; is_of _typex ]

are_equals 3
bE part_of gz

so Primitive Operation with Side Effects Value Labelling Primitive Operation }

u select_alternatives remember: 1
| J

F 1/0 Primitive Operations Control Flow Primitive Operations 3
3 input: assert_exit_conditions 2

outputs procedure_instancex :
J inform_user: returns 3

: Some fragment types merely allow abbreviated specification of a program model construct with :
1 a particular set of predefined parameters (slot values). String, atom, and Boolean are :
cd abbreviations for an information structure of type primitive and subtype string, string, and |

Boolean, respectively. Similarly, set, multiset, ordered_set, and list are abbreviations for the
four types of collections.

| Some model templates have slots that take complicated values. Since a slot value cannot bemodified once it has been defined, the contents of a slot cannot be incrementally specified. In
order to allow remedy this situation, separate fragment types exist for complicated slots. These
types are for the subparts of a plex, the condition/actions of a case, and the exit_pairs of a
loop. |

a
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Resultof is an informal operator that takes as its argument the name of a construct that X 1
returns a value somewhere elise in the model. Result_of returns the last value that its argument 1

| did, whether or not this value has been explicitly stored for such retrieval. Typically an 3
information structure instance is created to hold the value, and a remember is placed around the E
construct to store its latest value in the instance, each time the construct is computed. 3

4 5.2.2 Incompleteness |

All fragments, including the low level ones that map directly into model templates, require
: fewer details than eventually appear in the corresponding model. The simplest example of this 1
3 is the extensive cross-references of the program model that are automatically generated by L

PMB. i

: Slots defining simple or optional program properties may be omitted from fragments; default 3
values are provided by PMB. For example, the format for inputting a collection will default 3
to a LISP list. Size information about a collection is optional, hence the default is none.

Slots can often be omitted if the appropriate value can be inferred from the context provided :
by the program model, whether immediately or after processing future fragments. A good

1 example of inference is the type coercion of information structures such as procedure |
; parameters and quanufied variables.

| 5.2.3 Inconsistency ;

Certain inconsistencies that appear in fragments are automatically removed by PMB. One such }
inconsistency is called “ype/token ambiguity” or, in the language of program models,
prototype/instance ambiguity. The modelling language distinguishes between the prototype of

: an information structure and the one or more actual instances of it that are manipulated by the ;
, algorithm. If there is only one instance of a prototype, PMB allows fragments to skip defining

; the instance and make all data references diiectly to the prototype instead. ]

Fo One type of informality of specification allows for many interpretations of a program fragment, 1
depending upon the program model context. PMB specializes a generic operator that is not ,
part of the modelling language into the appropriate primitive operation in the modelling Bg

FE language, based upon the operands. The semantics of these operators depend on the types of ;
| their arguments, so PMB does the appropriate operator coercion. For example, the fragment 3
FE predicate part_of may be translated into one of the primitive operations is_element, is_subset, p
} has_correspondent (does a domain element map to anything), or is_component (of a plex), f

depending upon its arguments and how they are represented in the program model. The
fragment predicate are_equal may result in one of the following primitive operations: is_empty :

! (is a collection empty), are_equal, are_components_equal, and is_of type (is an alternative ;
instance of a particular type). :

= .
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5.2.4 Variety of Specification ©

3 Within the modelling language there may be a number of formally equivalent ways to encode |
the same expression or information structure. PMB recognizes the most common forms of such 3

{ information and procedural structures and transforms them into concise, high level, canonical :
| forms. The intent is to map equivalent expressions into one canonical form whenever they can
! be detected. For example, expressions that are quantified over elements of a set are canonized ]
| to the corresponding expression using set notation:

(Wx) xe A>xeB

(a Boolean operation that determines if every element x in collection A is also in collection B)
becomes 3

(is A a subset of B).

Below is another example, an English description of a set of fragments describing a set of
marked elements. 1]

pi

A concept is a set of relations. A relation is a plex (record structure) consisting of a
| relation name and arguments. Additionally, each relation is marked by a label. 4

The notion of “marking” an information structure is merely one way of creating a mapping !
| from that structure into another. Since the modelling language has an explicit correspondence ]

structure to handle this type of mapping, the canonization is done: | 1

| A concept is a correspondence from relations to labels. A relation is a plex ;
consisting of a relation name and arguments. |

jp 5.3 Program Reference Information |

| We have seen that program fragments can update parts of the program model in arbitrary 4
order. The particular part, or template, currently must be referred to explicitly by its unique k
name. In addition, fragments referring to two different entities of a program model cannot be ]
specified to occur in exactly the same location in the model: One must explicitly occur before 3

| the other. Thus, we have not addressed the problem of inferring control structures or :
Cd sequencing constraints [Wile et al.-77). 7

| There are many ways to refer to a point of interest in a program other than by explicit name. §
The more useful of these ways have been incorporated into a program reference language for :
specifying part or parts of a program. This language has not been implemented in PMB

| because a general reference capability wasn't necessary for PMB to function within its original
context of the PSI program synthesis system. The techniques include reference to the program |

: considered as a linear string of text and as a static syntactic structure, reference based upon the |
current context in the model (i.e, position of the last previous reference), reference based upon
the historical order of prior references, reference based upon the semantics of the program

|
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model, and reference based upon the pragmatics of the program model (ie, involving domain : 4
knowledge). |

Pointing directly at the desired program piece on a display screen with a pointing device (eg, 1
light pen or mouse) is obviously useful too, but can’t be used to refer to the parts of a large
system that can't fit on the screen or be searched visually by scrolling the screen. Pointing isn't _.
adequate for specifying qualifying predicates either. Perhaps most important, a general j
purpose reference language should be usable by other programs, not just humans with a 1
pointer. This form of reference is not considered further here. 4

Only a few examples of patterns in the reference language are given here; the entire language
is outlined in greater detail in Appendix A. The first example makes use of syntactic reference.
The following expression might be used to represent the statement, “the fifth output operation §
in the program that occurs somewhere after a conditional that is three levels down inside some 1
block”:

template n | (type=output, {foo 12 bar .* n}, foo.type=composite, bar.type=test)s :

The expression within parentheses above matches all such outputs, and the subscript on the }
expression selects the fifth one (if it exists). The expression within braces is a template pattern j
in which the names of templates are separated by special pattern variables. “*" constrains the i.
templates or either side of it to be separated by zero or more templates in lexical order. “12 3
constrains its neighbors to have exactly two intervening lexical scope levels. i

Using the symbol “+” to denote the current template, the following contextual expression i
specifies the closest test template above the current template: |

| template n | ({n 1* 2}, typestest),

As an example of semantic reference, the following pattern finds all (control structure) templates :
that contain below them a set operation that returns a Boolean value:

template n | {n {* x}, type(x)eset_operations, returns(x)=Boolean ;

| .

| |
:
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Chapter 6. Control Structure: The Rule Interpreter |

The Program. Model Builder is a rule based problem solver. It consists of two main parts, a set :
of antecedent (data driven) rules containing the system's model building knowledge and a rule
inter preter control structure for choosing and applying the rules. The rule interpreter of PMB
is the sub ject of this chapter; the details of the rules themselves are covered in Chapter 8. :

i

A fundamental assumption of this work is that the user of PMB has the option of controlling
1 the interaction, in other words, that the program specification dialog allows mixed initiative 1

(Carbonell-70A, Carbonell-70B, Bobrow et al-77, Steinberg-79]. One result of this was =
: discussed in the previous chapter: the design of the program fragment language, which is |]
4 PMB’s input language.

i The other result of the decision to allow mixed initiative is a control structure that can deal
with subgoals in any order and that can therefore deal with an almost arbitrarily incomplete ;
program model. This means that the model may be incomplete at any level, from an entre 1
procedure being missing to a single parameter of a single operation being left unspecined. 3

| PMB delays its operations only until the required arguments are completely specified. :
Incremental operation would be lost if PMB waited longer than this. This technique may be

applicable to other problems that require a symbolic knowledge base to be acquired,
maintained, and modified incrementally. Examples of possible applications are speech }
understanding, image understanding, other signal processing domains, and knowledge j

i acquisition domains.

The. problem of building a complete program model consists of a sequence of subproblems of 1
the form: Given a partial program model and a new program fragment, update the model by :

| making appropriate use of the new information in the fragment. As the program model is 4
4 built, each new fragment answers some questions that were outstanding, but in turn may lead to

new questions. Thus, the process of building the program model can be viewed as one of i
problem reduction or subgoaling, with the root of the goal tree being the completion of the 3

4 program model, the set of unanswered questions representing the unexpanded subgoal nodes,
5 program fragments providing the information necessary either to complete a node or expand it 3
p into further subgoals, and PM B's knowledge base about programming providing the basis for
f generating potential subgoal trees. To process subgoals that are completely internal to PMB 3
{ (e.g., consistency checks), demon rules are created that delay execution until their prerequisite -

information in the program model has been filled in from fragments. _

~The overall dataflow within PMB is depicted below. The boxes represent the major databases
within the system, except that the one labelled “user and other experts” is external to PMB. :
Lines denote the transfer of information between boxes, with arrows denoting the direction of Lg
flow. Labels denote the activities that cause the associated transfers. Activities under explicit i"

i | control of the rule interpreter are denoted by solid lines; those that are implicit are denoted by 4dashed lines. 3

| 3

x
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PMB Control Structure |
user |

and

4 other

$ experts

input program fragment

outstanding i
| questions, ]

response 1
rules }

| generate a
questions create demons 1

{ apply response rules ‘ :

] | moni tor model ]

3 program 3

F mode | apply demons 1

J Observe that PMB’s subgoaling is data driven [Charniak-72]. PMB doesn’t try any 4
complicated goal driven reasoning on its own. This would result in hypothesizing about what g
the program model might look like, in the form of trees of incomplete subgoals. The space of y

| possible programs is much too large for this approach to be useful. Instead, PMB maintains :
| incomplete subgoals only at the leaves of the subgoal tree and then patiently waits for the user 4

| to get around to fulfilling these subgoals. The rules for processing the solution to a particular R| subgoal include all of the pertinent actions such as creating new subgoals, fulfilling other h
| subgoals in the tree leaves by inference, setting up internal demons, etc. :
4 The remainder of the chapter covers in turn data driven subgoaling, demons, and a ;

comparison to structured programming, related problem solvers, and other possible approaches. |

:
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| | 6.1 External Control Structure: Data Driven Subgoaling

| The control structure of PMB may be viewed as a hybrid problem solver with two modes of
1 operation. The default mode is a search of a hmited AND/OR goal tree in which outstanding

subgoals are worked on in an arbitrary order determined externally to PMB. The other mode
allows new subgoals to be created by the user and then worked on. The program below is a

simplified! specification of the top level control structure of PMB. It will be explained
| throughout the rest of this section.

Top Level Control Structure

create_template(program model),
outstanding_questions « nil;
ask_question(program_model.name),

i ask_question(program_model.toplevel),
while input(fragment) do

| Y template € match(fragment,program_model) do
if 3 question € outstanding _questions | answers{fragment question)

| then V question € outstanding questions | answers(fragment question) do
] Y rule € response_rules(question) do until invoke(ruie) finally

outstanding _questions « outstanding _questions - {question}
else create_subtree(tem plate),

| out put(program_model), :
return(if 3 question € outstanding questions | type(question) = required then false else true)

| We examine the default operation of PMB first. The top level goal of PMB is to form a
complete program model, as represented by a unique template in the model called the

: program_model template. In this discussion the variable program_model refers to both the top
level template and the entire tree of templates making up the model. In order to attain this
goal, PMB creates this top level program_model template and generates two subgoals (via the

3 function ask_gquestion) for acquiring (1) the name of the program and (2) a top_level algorithm
in terms of control structures and primitive operations operating on instances of the

: information structures. For each subgoal, ask_question also generates a question that is sent |
out to PMB’s external environment (e.g. the user or other expert programs). A question has
the form of a template name and the name of a slot within the template that has yet to be filled |

] in. PMB adds a new question onto the front of its global list of outstanding_questions.
; Associated with each question is stored a set of response_rules for dealing with the possible

responses to that question. In addition, the question is tagged as “optional” if a default response
has already been assumed. At the end of model building, the model is considered complete only |

bE if no “required” questions remain on the list of outstanding_gquestions, since any “optional” J
3 questions have already been answered by default. \

| ' For example, checks for error conditions are omitted.
2 As is discussed later in this section, at the level of the program_model template there are |
always implicit goals outstanding for new procedure and information structure definitions.
There are also two optional slots that take atomic values defining the domain of the program
(e.g., concept learning) and the user's name for this template. The latter slot is an optional slot
in every template.

|
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Recall that a fragment consists of two parts: (1) a pattern that specifies which template in the Cf
model is being referred to and (2) one or more slot/value pairs of that template. When PMB :
inputs a new program fragment, the program reference part 1s matched against the current 3
program _model to determine a set of templates ordered by the order in which they were found 4
by the matcher, according to the program reference language introduced in Chapter 5. 3
Currently this match is only done on unique template names, so exactly one template matches. :
Then for each template suggested, the list of outstanding questions is searched linearly to
determine if the new fragment answers one of the outstanding _questions. It does so if the
template name in question is the same as that in fragment and if the slot name in question 1s 3
one of those present in fragment. If fragment and question correspond, then the response rules 1
associated with question are applied in the fixed order in which they were stored until one ]
succeeds (i.e, returns true), and question is deleted from the list of outstanding_questions. The
successful rule either completely answers the question by filling in the value of a template slot or J
causes a new level of subgoals (and questions) to be generated. This process continues until all
outstanding_questions of type “required” have been answered, indicating the program _model is i
complete. Then the final model is output. 1

A rule is invoked (by the function invoke) within a simple context consisting of a set of global
variables whose names are known by the rules. For response rules, these are the name of the 3
current template, the name of the slot being filled in template, and the value from fragment to 3
go in that slot. From this context, the rule currently being invoked may reference the current |
fragment, test and modify the entire program_model, ask new questions (and add them to the ;
outstanding _questions list), and create demons (discussed in the next section). If the model is | ;
modified as a side effect of invoking rule, a demon that was created by an earlier rule may be 1
indirectly triggered by the act of modification. The rule invocation function invoke returns a
value of true if and only if the rule it invoked succeeded. This allows invoke to be used as a- 4
predicate, as in invoke(rule) in the algorithm above. 4

But what happens when a fragment doesn't answer any of the outstanding_questions (subgoals)? :
This occurs, for example, when a procedure or an information structure is defined before it has {
been referenced in the algorithm portion of the program_model. In this case PMB creates a
new template and a new goal tree (denoted by the function create_subtree in the algorithm }
above) to acquire the new piece of program_model created by this program fragment. Also, by 3
storing the name of the new template in the list of all information structures or procedures, a :
list kept in the program_model template, PMB notes that the implicit goal of completing these ]
lists has been furthered. Later on, presumably, the new template and the independent subgoal 3
tree of which it is the root will prove to be the solution to a subgoal in the main tree. Not all 1
types of procedural templates can be defined before they are referenced. This mode has been E
iumited to procedure definitions, since control structures and primitive operations can be put 1

inside a procedure declaration if it is necessary to define them out of order. y

“orice that (if the first question in the list of outstanding questions is always answered next, g
‘nen a depth first expansion of the goal tree ensues. Changing to breadth first would be trivial: §
+ add new questions to the end of the list instead of the beginning. In fact, most of the A
“e »anuism os in place to handle a best first order if appropriate ordering heuristics were J
- ~~ They haven't been written because topic coverage during the specification dialog is i
- =» tere by orher means, such as the user or another knowledge source (eg, the PSI :

+ cemte- 3'nr ‘Sieinherg-79)). 4

+ '* at incremental as possible. It processes one fragment completely before
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4 accepting another. In the course of processing one fragment, a response rule will typically i.
{ succeed for each slot/value pair 1n the fragment. Each of these rules may generate one or more 1

questions, but handling the answer to any of them must wait until they are all asked (ie, put |
on the list of outstanding questions). This has the advantage that related subgoals are
generated at the same time, so that expectations are set up that allow PMB to deal with any of {

| a number of related questions that the user might choose to address. To achieve the utmost in  ]
incremental operation, if this is desired, each fragment would be limited by its originator to !

| only one slot/value pair. i

} Program modification is another case in which no question is answered by a fragment. 3
However, in this case the template named already exists. The fragment’s information is meant 1

] to supplant what was in the template before. A general program modification capability has 1
not been implemented. :

| 6.2 Internal Subgoals: Demons 3

You've got your demons; you've got desires. Well, I've got a few of my own.
3 —“One of These Nights™ b
| by Don Henley and Glenn Frey (The Eagles)

f In addition to the rules that handle responses to questions sent externally, other rules handle 5
subgoals that are remain internal to PMB, such as consistency tests between two or more i

| : templates, inference rules that allow a subgoal to be inferred indirectly when a different subgoal }
is answered explicitly, and transformation rules that delete or modify entire templates. If such a f
rule can’t succeed because information is missing from the model, the rule waits untl the

| necessary information is provided. Such simple demon rules are attached, along with a simple
context of global parameters, to a particular slot in a particular template, waiting for the value 1

there to change” Whenever this happens, all the demons awaiting that slot value are 3
] reinvoked within their own stored context.> This is much more efficient than invoking all 4

demons each time a slot value changes anywhere in the model. Each demon that succeeds is 3
E removed from the demon list.® A

3 Benchmark Music and Kicking Bear Music '§

FE 9 Response rules could also be handled by attaching them to the appropriate template and slot. ;
§ However, there are theoretical arguments for keeping response rules, which represent externally :

| asked questions about slots required for completing the program model, at a separate and| higher level than the demons [Rieger-77]. Pragmatically, it is then easier to see if any questions :
are left unanswered, change priorities of questions, periodically ask again questions that haven't |

| been answered yet, allow the user to ask questions about the questions, etc.| ® To guarantee that all changes to slots are noticed, rules use a standard set of accessing
! functions to make all references to the program model. Those functions that modify the model

aE call the demon invocation mechanism immediately afterward.

4 ® Demons may also be explicitly deleted (“garbage collected”) by other rules. |
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Demon rules are of two types, those that may and may not make structural modifications to the |
model. These types create two priority classes for demon execution, corresponding to those rules :

1 that make consistency checks or small inferences (e.g, fill in a slot) and those that make program1 transformations that alter a template’s type (and hence its slots) or even its existence. A |consistency demon (or a slot filler) can’t be executed until the slot whose value will be referenced "4
by the demon has been filled in by another rule. A transformation demon can’t be executed
until (1) the slot to be referenced has been filled in by another rule and (2) all outstanding |

3 consistency checks for the entire template have been done. The following demon invocation :
mechanism is used each time some slot in template changes value. :

Demon Invocation Mechanism !

Y demon € template.demons | awaited _slot(demon)asiot do
3 if type(demon)=consistency

then if invoke(demon) A ~3 other _demon ¢ template.demons | typelother _demon)=consistency
| then V transform € template.demons

| type(transform)=transformation A ready(transform) do
if ~invoke(transform) then mark_not_ready(transform)

| else if -3 other _demon € template.demons | type(other _demon)=consistency ,
then invoke(demon) |

else mark _ready(demon)

Since a transformation demon may not be fired if any consistency demons remain in the same :
! template, in such a case a transformation demon whose slot has changed is marked ready
i instead of invoking it. Then, when the last consistency demon of a template has succeeded, the

algorithm goes back and tries all of the ready transformation demons. 3

: No consideration has been made in PMB for the incorporation of metalevel heuristics, |
especially those for efficiency [Kant-79A, Kant-79B] They would prove useful mainly in the i3 ordering of feasible transformations. Currently all transformations relevant to a given template
are applied in an arbitrary order, and there is no backtracking. The first transformation to
succeed will be carried out; the others will be forgotten. Efficiency heuristics should guide the |

- transformation process by attempting to (lI) minimize the running time and space of the
program model at its very high level (e.g, when interpreted using default implementations of

: information structures) and (2) maximize the degree to which the model uses very high level y
(VHL) constructs so as to maximize the freedom to choose efficient implementations when the i
model is coded (Barstow-79A1.

! 4

} 6.2.1 Compound Demons |

1 | Often a number of slot values must be filled before a demon can perform as intended. In thuscase, a compound demon rule is used. A compound demon may be thought of as a “cascade”, an

| ordered set of simple demons such that only one is active at a time. The frst of these simple |demons waits (only if necessary) for the first required slot to be filled in. Then the antecedent

2 | that references this slot value is evaluated. If it is true, then the first simple demon completes its
activities by setting up the second simple demon to wait for the next siot value to arrive, and so
on. After the last slot value is defined, the last simple demon evaluates the final antecedent. If

1 this antecedent is true, then the action part of the compound demon is executed and the entire }
| compound demon goes out of existence. If any antecedent evaluates to false, then the

|

x
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§ else_action of the compound demon is executed instead. Compound demons have the same © 4
two types as simple demons—consistency and transformation.

| The technique of attaching demons to different templates and slots in succession ts greatly
automated by the rule expander. This rule “compiler” converts a compound demon that
contains a declarative antecedent pattern into a series of separate simple demons, one pe: slot 3

| value used in the pattern. These demons utilize the same invocation mechanism as other 1

simple demons, discussed above.’ :

3 There is often a natural partial ordering to the slot values required by the antecedents of a
compound demon. The numerous slot values needed by a demon are often closely related in
the space of model templates. In particular, it is typical for a pattern to first bind pattern
variables to the values of one or more slots in one template, then the values of slots in templates :

: pointed to by the first group of slots, etc, until there are hooks into an entire subtree of the
; model. Since the subtree will often be defined in some top down order, it is natural to order the 1
i slots this way too. From all the complete orderings of slot value bindings that are possible 3
| within the constraints of the partial ordering, the rule expander selects one arbitrarily for {
i implementation of the pattern match. :

A problem with the current implementation of compound demons arises from the interaction of 1
the ordering of slot value monitoring and the existence of an else_action, an action taken i

: whenever an antecedent fails. If the else_action contains error processing for a consistency 1
: check that has failed, then we wish this failure to be noted as soon as possible, i.e, as soon as 1

1 one of the demon’s antecedents is known to be false. Since the visiting of slot values 1s strictly ;
ordered, a con junct that is false may not be discovered until much later in the specification |

| : dialog, thus defeating the desire for incremental operation. An obvious, if not pleasing, way to :
a restore fully incremental operation would be to create separate demons for the negation of each ;

antecedent of a compound demon. The else_action would be removed from the original 3
» compound demon and made the action of each of the new demons. The compound demon, 4

sans else_action, would remain to handle the case of success. Another solution would be to 1

| | have all antecedents of a compound demon represented by demons, one per antecedent, all
y active in parallel. Whenever one of them failed, it would have to garbage collect the rest. 3

| 6.3 Comparison to Structured Programming :

: If questions are answered in the same order as they are posed, then a top down, depth first 5
nn specification of the program model occurs. The first thing specified 1s the name of the program. 3

Then the control structure at the top level of the program is defined. Then the frst control i
fF structure or primitive operation just beneath the top level is completely defined, followed by the %

second, and so on. Whenever a previously unmentioned information structure or procedure is :
: given as a slot value, questions pursue the details of this new entity until it is completely J

defined. d

Ey This ordering of subgoals provides a simple form of top down, structured program
| § development. Whether or not this particular search order is a reasonable one for structured
2 programming is not the point. Even structured programmers don't agree on the order in which |

1 9 7 The syntax and semantics of compound rules are discussed more fully in Chapter 8.
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parts of a program should be filled out. The point is that PM B's technique accommodates |
nearly any order for defining the parts of the program.

| The philosophy is one that assumes that only the user can ultimately know when to do what.
] For example, the user may suddenly remember an important detail required by a part of the

program not currently under discussion and may want to add it to that part before the detail 1s oo
i forgotten again. Notice that this same flexibility 1s essential for program debugging and
3 modification.® One must be able to access and change a particular program model part on |
: demand. It might be claimed that the proper use of structured programming and verification
| will someday make debugging obsolete, but the need for program modification in the light of |

changing design specifications can't be dismissed so easily. |

Because of the simplicity and generality of PMB's control structure, it should be
i straightforward to impose particular subgoal orderings. For depth first, the list of outstanding

questions would be restricted to being a queue in which only the question at the front can be
3 answered next. For best first tree expansion, a set of heuristics would reorder the queue of ;

outstanding questions each time a new question was added.

Experimentation along these lines might aid our understanding of the human programming i
process. For example, we might choose a target programming task in a particular domain, have ]
a number of expert (or some other level) programmers use PMB in its mixed initiative mode, :

| and monitor how they go about building up the program (Brooks-75A, Brooks-75B, Brooks-77]. ]
From these experiments, heuristics would be developed to be incorporated as metarules
governing PMB’s question asking. We might learn that programming is too idiosyncratic to

] make such neuristics useful in general. Or the appropriate set of heuristics for most |
programmers might vary from domain to domain or even from program to program within the 3
same domain. §

: 6.4 Related Problem Solvers |

E 6.4.1 The Recognition Paradigm |

1 The problem solving techniques used in PMB comprise one instance of the “recognition y
1 paradigm” [Minsky-75, Bobrow & Winograd-77). The key aspect of recognition is the i

acquisition of knowledge by pattern matching and forward inference, as exemplified in
UNDERSTAND [Hayes & Simon-74] and HEARSAY-II [Lesser et al.-75, Lesser & Erman-77). :
The general methodology involves a system that accepts bits of information about some domain ’
from a user and integrates this information into a global database (e.g, a “blackboard” or set of |
frames) that represents the system's understanding of the situation up until then. The system J

| recognizes the relevance of the new input to its internal model of the world. The system uses a if
recognition process of some kind (e.g, pattern matching) to determine to what parts of the I

; | database the new input is relevant, then updates those parts appropriately. i
® We distinguish between debugging and modification. Debugging is the process of changing a |
program that doesn't meet its design goals so that it will. Modification 1s the process of
changing a program that already meets its original design goals so that it will meet new ones.
In either case, the same system flexibility is needed.
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=. PMB fits into the recognition paradigm very well. The global database is the program model :
SH tree being constructed. Inputs in the form of program fragments are matched against this tree,
= and then the tree 1s updated and inferences are made. The major new twist that PMB adds 1s

the capability for having the user (or external system) specify, via the program reference
| language, which part of the model is to be updated. In earlier apphcations of the recognition

paradigm, natural language and speech understanding, the possible order of topics 1s much
more constrained by what has come before.

1 6.4.2 CUS

The reasoning portion of GUS, the “Genial Understander System” [Bobrow et al-77] is a
simple recognition system with a control structure similar to that of PMB. During a mixed
initiative natural language dialog, GUS acquires the parameters of a simple round trip. such as |

1 a travel agent might set up over the telephone. The canonical trip scenario 1s represented by a |
i set of prototype frames that get instantiated into the equivalent of PM B's templates. A slot in a |

frame instance may have a simple value or point to another frame. GUS starts out with a
k single frame representing a trip and proceeds to ask questions about all the slots in that frame :

until ail required slots are flled in. This process typically involves the creation of more frames,
] filling in their slots, etc.

GUS expects every dialog to be about trip planning and, in fact, has only one trip scenario. | i
y PMB expects every dialog to specify a program, but has no preconception of the program ;
} beyond the language in which it must be written. The typical model built by PMB 1s larger
2 than the trip scenario used by GUS. 1

SE Although both GUS and PMB are mixed initiative systems, GUS’s default 1s for the system to |
= control the dialog, and PM B's default 1s to let the user control it. GUS asks for slot values in a
- depth first order. GUS processes the next information received, regardless of whether this
3 information 1s related in any way to the question just asked. Then GUS repeats a depth first
3 search for the next outstanding question. GUS will (eventually) ask the previous question
1 again if an indirect answer didn't lead to inferences that fill in the slot asked for. In contrast, 3
1 PMB has no predisposition to any particular order for answering questions. Although it asks
E questions in a depth first order (at least locally), it doesn't ask a question a second time (unless :
2 required questions are left outstanding when fragments stop arriving) and doesn't try to gain J
: control over the interaction.’ 1

| Bg

LL GUS will ask a question ahead of its default, depth first order if a slot value is required for 4
¥ some reasoning process currently taking place. Otherwise, it won't deviate from the default E
] order even when a new frame instance is created. Because a trip plan is still useful when only :
| partially complete, it is possible for a dialog to be completed without ail questions being :

answered. PMB, because it is building an executable program model, has a fixed set of slots for |

| each template that are required to be filled in by the end of the dialog. Since PMB knows
f which slots will be needed, it asks for them when a template is created. :

- GUS’s knowledge resides primarily in its frame prototypes. This knowledge includes the slot
; | names, simple goal seeking “servant” routines for filling in the slots, and simple demons for

: 9 It would be simple to have a command that causes PMB to ask again the first question on its
queue.
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making inferences or consistency checks when a slot gets filled in. There are no compound
1 demons. PMB’s knowledge resides in its rule base: rules that create templates and explicit |
1 subgoals (questions), response rules that process answers, and rules that are attached 10 |
§ templates as demons. GUS’s prototypes are easy to understand because all of the relevant

information is in one place. But the sharing of knowledge among templates is probably easier »
| when it is in the form of rules. For example, this allows PMB to create a template of unknown b

type and specialize it later into a template with known slots. More important is the fact that a
| GUS instance always refers back to its prototype for the names of relevant servants and :
4 demons. PMB attaches its demons to each template, which allows different instances of each :

| tempiate type to have a different set of dernons attached at a given time. This allows demons to
| come and go as needed during model building. Of course, since GUS’s demons are arbitrary

programs, they could be given enough preconditions so as to have the same effect.

A final distinction between the two systems is that GUS never modifies or destroys frame
: instances once they have been created. PMB’s templates can be deleted or altered by a

i transformation demon, once enough slots are filled in to allow the transformation to proceed. |
i 6.4.3 Demon Regimes

1 The compound demons of PMB are one kind of “trigger pattern”, consisting of associative,
) nonassociative, and computable components, as introduced in Rieger's theory of spontaneous

computation (Riezer-77]). The associative component of our compound demons 1s restricted to |
triggering when simple predicates involving a single slot value become true. The }
nonassociative component is limited to evaluating the same simple predicates for slot values that y

3 are known to have values already. The computable component is one or more require i
; statements, each with an arbitrary LISP expression to be evaluated. 3

1 Rieger introduces the notion of “pressure” versus “pulse” activation of demons. The simpler, 1
; pulse model reevaluates all antecedents (or at least enough to know that one isn't true) each time ]
- something changes that might bear on the value of one of them, until they are all true. The :
= pressure model uses the notion of a “trigger tree” that allows each antecedent to be evaluated ;
J just once after it becomes true. The fact that it is true is stored so that when the final
2 antecedent becomes true, it will notice that all the others are too and will proceed to execute the .
- demon's body. iE

1:

j The matching mechanism of the ARS (Antecedent Reasoning System) language (Stallman & 4
Sussman-77] uses pulse activation so that its internal state can be updated to reflect changes in 4
old assumptions. ARS simultaneously monitors all changes in the database that might make 3

| true one of the antecedents of a demon. All demons are stored in a single decision tree that :
| determines which demons are triggered by a new fact. This is but one example of how

: | monolithic, general purpose knowledge bases (e.g, those whose basic unit is an S-expression),
: - associated demon bases, etc. are less efficient than frame oriented structures. In a frame system,
| demons may be attached to particular slots of a frame, thus affording constant retrieval time.

| | When ARS notices a change that might affect a demon, all of its antecedents are evaluated to
see if the demon body can be executed. If not, no partial information is retained about which
antecedents are already true. But in some cases, an ARS demon can proceed even though some
information is missing because antecedents are divided into mandatory and optional ones. This
scheme has an advantage over that used in PMB in that ARS automatically checks that

2 }
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: enough of the antecedents are true just prior to executing the demon’s body. But this 1s done Pd
at the expense of needlessly reevaluating many true con juncts each ime some of the others are "3
false. Assuming all of the con juncts are required and nong becomes false after once becoming :
true, the best case occurs when the first of the n conjuncts to be evaluated becomes true last. .

2 Then only that conjunct will be reevaluated—n times—and the total number of evaluations is

1 approximately 2n. The worst case happens when the con juncts become true in the same order »
as they are evaluated. Then the evaluation time 1s order n? b

] PMB uses a form of pressure activation tn which antecedents are ordered so that only one is 1
actively monitoring the database at a time, rather than all of the nontrue conjuncts as with :

3 trigger trees.'® Thus, exactly n evaluations are done. Since only one conjunct is active at a 4
3 time, some storage space is saved and, depending on how the database 1s implemented, 1
1 monitoring time may be saved also. ]

i In general, however, this scheme could be dangerous in an environment in which database 3
| changes are allowed, such as in program modification. A change could result in a demon i
§ con junct that was true earlier now becoming false, after the demon has already found it true. i

The cure for this potential problem is to reevaluate all con juncts once, just before executing the ]
3 demon body. In the case in which the demon succeeds (i.e, all the con juncts are still true), this s

algorithm does exactly 2n - | evaluations. The case in which one or more con juncts are now
1 false can most easily be handled by reinitializing the demon to wait to evaluate all con juncts y
1 again. Let p be the probability that, when the last con junct becomes true, all of the rest are still ;

true. Then the expected value for the number of evaluations is about 2n/p. Thus, as long as a :
lower bound on p exists, we are assured that the algorithm is linear for all cases. :

| 6.4.4 Processes : :

Another way to view demons is as processes that block until particular conditions are met. ]
This view has resulted in a compiler for ALGOLS8 that uses demon-like processes instead of

3 multiple compiling passes to handle information that arrives in nonlinear order [Banatre et al.- 4
3 79). This compiler handles the problems of type coercion and storage allocation in a language 4

in which data declarations aren’t required to occur at the start of blocks. |

| 6.5 Other Approaches 4

Bu 6.5.1 MYCIN 3

i The MYCIN system for diagnosing bacterial infections [Shortliffe-76) is a well-known rule
5 based system. However, it’s rules are mostly in consequent (or backward chaining) format |
g [Davis et al.-77), rather than the antecedent (or forward chaining) format primarily used by |

3 PMB. This bias reflects a design decision that accepted the constraint that the system is in |
y - complete control of the problem solving dialog. Thus, MYCIN’s top down subgoaling is
¥ equivalent to a PMB specification dialog in which there is no user initiative and for which

; 3 '9 PM B's passing of bindings from already matched conjuncts to the currently active one is a
Cy simple form of Rieger's notion of the “splitting” of spontaneous computations.
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1 straightforward subgoaling therefore works. PMB's inferencing approach was developed ]
| because we felt that, given the difficult task domain of writing computer programs, any rigid A

dialog format would stifle programmer creativity and lead to too much user frustration to prove :
i successful. od

6.5.2 SAFE 1

1 The Specification Acquisition from Experts (SAFE) system [Balzer et al-78] takes a novel 1
4 approach to some of the program synthesis issues dealt with by PMB. SAFE is a three phase, 1

| noninteractive program synthesis system that converts a program specification into a VHL {
i language version of it. The three phases cover linguistic, planning (ordering), and meta- i
{ evaluation (completion and consistency) knowledge. SAFE has acquired programs for message :

processing and for scheduling timeshared resources. }

SAFE’s first phase inputs parsed English sentences specifying relatively complete, independent |
s parts of a program. This phase infers domain knowledge in the form of the ob jects that exist A

and the relations that hold between them [Goldman et al.-77). In contrast, PS] was designed to 1
: have precodified domain knowledge available from a separate domain expert, and no attempt 1S
i made to learn anything new about the domain while the system is running. PMB itself has no a
: knowledge of the particular application domain of the program model. i

J The second phase of SAFE analyzes where program variables are produced and consumed, In ]
order to create a partial ordering of the pieces of the program into an executable form [Wile et

i al.-77). This is required because ambiguous, demon-like, parallel specifications may be input to p
SAFE, mainly because of the application domain. Although no work in this direction has been |

3 done for PMB, it would certainly be useful. |

The final phase partially symbolically executes (“meta-evaluates”) the program to determine its
§ completeness and consistency [Balzer et al-77]. This phase can discover missing procedure
y parameters and often infer what they are from type information and context. The final
a program is written in an AI language called AP/I, in which relation is the only data type. The :
lL fact that this language is quite a bit higher level than the program modelling language ]
Z produced by PMB (eg, it has a demon-like control structure) may make AP/l program |]
1 acquisition somewhat easier. SAFE doesn't have a coding phase that transforms the AP/I 4
; program into an efficient implementation; AP/l wasn't especially designed with this in mind. 1

The meta-evaluation phase of SAFE corresponds most closely to PMB in terms of the types of
processing it does on programs. The fundamental design difference is that SAFE is not an L

Eo interactive, incremental system. The meta-evaluator isn't called until the program is nearly a
complete. Hence, it makes sense to attempt to evaluate the program symbolically (or even ¢

| interpretively using test data {Wilczynski-75)) to see if any problems remain. This approachwill not work in a system such as PMB, which is designed to work incrementally, gleaning as -
| much information from each new program fragment as possible and providing immediate |

feedback. To summarize the fundamental difference, SAFE defers inferences about

| completeness and consistency until the program can be symbolically evaluated; PMB makes |
] inferences as soon as enough information is present to do so.

|
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[ The knowledge base of PMB may be divided into two parts: dynamic and static. The :
dynamic knowledge is that which varies from one run of PMB to the next. This 1s represented {

i during a run by the partial program model that 1s being built up and at the end of model |]
building by the completed program model. The nature of the program modelling language in ©
which these models are written is the sub ject of this chapter. The static knowledge base 1s the

; body of rules that are used to build a program model from fragments. These rules are the
topic of the next chapter.

; The program modelling language includes (1) information structures, (2) control structures, (3) :
primitive operations (which are embedded within control structures and which operate on

; information structures), and (4) optional assertions attached to any of the other types of model 1
3 elements.! Each of these four topics is treated in a separate section. ;

! The program model produced by PMB is so termed because of a desire to closely model the 4
| corresponding program in the user's head and because it is an abstract, implementation 4

| independent program specification that may actually lead to many different concrete 4
i implementations. A program model is essentially a highly annotated program written in a very 4
] high level (VHL) language. A model can actually be executed, albeit slowly.? .

The program model is written in a VHL language in order to (1) keep the parts of the model i
| at a level not too far below the user's own conceptualization of the problem and free of 1

unnecessary detail; (2) allow detailed algorithm and data structure selection to proceed in a ;
} separate, nonincremental phase; and (3) keep the synthesis problem tractable for PMB. The 1

use of a VHL language, either by machine or human, is part of the natural evolution of
= expressibility in computer programming from programming in raw binary machine language |

| through assembly language, macro languages, FORTRAN, and the more advanced high level
languages of today (e.g, ALGOL, LISP, PASCAL). In fact, until only ten years ago the term j

1 “automatic programming” referred to the development of the assemblers, macro expanders, and
compilers for these earlier languages. 1

a. The modelling language is designed to easily express common programs in the general area of k
jo symbolic computation (e.g, set and list processing, symbolic concept formation, information E
_ retrieval). In addition, its constructs are amenable to machine codification and automatic )

synthesis. The VHL nature of the language comes mainly from its information structures and :
F the primitive operations that are allowed on them, rather than from complex control structures 4

(e.g., backtracking, pattern directed function invocation) and the database mechanisms necessary K
to support them (eg, context trees) that are found in Al languages (Bobrow & Raphael-74). 5

' The original specifications of the information structures, control structures, and primitive
operations are due to David R. Barstow. The language has evolved considerably from that ¢

E point. E

| 2 A program model interpreter exists for helping the user verify the correctness of the model
and for gathering runtime statistics on collection sizes and branching probabilities for efficiency

ol analysis {Nelson-76). This interpreter can be used to execute all or just selected parts of a
model. Bruce Nelson wrote the interpreter, and Richard E. Pattis added a general information

| structure parser for input operations.



86 The Output: Program Modelling Language £

The information structures were also influenced by those of predecessor set oriented languages so
] such as SETL [Kennedy & Schwartz-75, Schwart2.75, Schonberg et al-79) and VERS2 [Earley- :
3 73A, Earley-73B, Earley-74). Sets and mappings are examples of information structures that i
1 meet our requirements. |

3 Below is a list of ail of the types of information structures (abstract information units, or AlUs), :
f control structures (abstract control units, or ACUs), and primitive operations (POPs), classified "4
: by how they obtain their effects. The primitive and collection AlUs have a number of

subtypes, which are also listed. A primitive operation may either return a value (which may be i
i used in an expression where the operation was called) or operate by side effect (in which case it
: modifies one or more of its arguments). A small number of special primitive operations gain ;

effect by such side effects as enumerating elements in a collection, doing input/output, changing
the flow of control, or remembering the value of another operation in an instance for later use.

y All five AlUs, all six ACUs, and sixteen of 51 POPs have been implemented. These are
1 designated by asterisks following their names. E

i
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Constructs of the Program Modelling Language

Abstract Information Units (AIUs) Abstract Control Units (ACUs) |
: primitive: (string, Boolean, integer) composite: (“compound”)

collection: (set, mulitiset, ordered set, list) test: (“conditional”) ;
| correspondence: (“mapping”, “function”) case:

plex: (“record”) loop:
| alternative: (“union™) procedure:
: program _model: i
1 i

3 Primitive Operations (POPs) Primitive Operations i
with Boolean Values with Non-Boolean Values j

nots remembered _value:

: or new_primitive |
and new_collection i

] is_empty convert

is_elements: element _of |precedes subset |
] is_subset: union

J true_for_some Intersection
true_for_allx difference =

1 has_correspondent: new_correspondence |
correspond correspondent _of:
is_component domain _of |
are_components_equal inverse_of

SE is_of _typex new_plex
a. are_equals component

| Primitive Operations with Side Effects Primitive Operations That Enumerate
4 add _element for_some_do |
3 add _elements for_all_do
1 remove_element ’

remove_elements

: replace_element ;
| transfer_element )
b transfer_elements
{ establish correspondence A
2 remove_correspondence 3
EL change_correspondence }
F replace_component 1
| select_alternatives §

: I/O Primitive Operations Control Flow Primitive Operations i
i inputs assert_exit_condition:
fF output: procedure_instances

inform_users return

Value Labelling Primitive Operation
5. remember:
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7.1 Information Structures |

The information structures of the modelling language were designed to handle a variety of
simple symbolic computations. Information structure prototypes may be defined recursively to :

] build quite complex structures. Each structure may have associated with it a hst defining one Cd
or more legal values that the structure may take on. If there is exactly one such value, then the |
structure is a constant. Each prototype information structure may have zero or more concrete |
instances that are assigned values and manipulated by the primitive operations of the language.

A primitive requires no subordinate information structures to complete its defimtion. A
primitive may be of subtype string, Boolean, or integer, which determines the kind of atomic
value the primitive represents.

; A collection is a group of semantically similar elements, where an element 1s an arbitrary !
j information structure (e.g, a primitive, another collection). A collection 1s categorized by
i whether its elements are ordered and whether they may be repeated. The resulting four types :
i of collections are set, multiset (or “bag” [Rulifson et ai.-72]), ordered set, and list (or “ordered ,

multiset™), as determined by the table below. :

Types of Collections .

3 No Repetitions Repetitions ;
Unordered set multiset :
Ordered ordered set list }

It is advantageous to group these four related information structures into one basic entity, the |
9 ~ collection, with two binary subtype specifiers. Since the four subtypes have much in common, :

the knowledge involving their definition and use (i.e, by primitive operations) can be factored |
2 SO as to be nonredundant. :

3 An explicit information structure has its value explicitly stored somehow; an implicit one must
compute its value when needed. A correspondence 1s an explicit function consisting of

3 mappings from the elements of an implicit domain set to those of an implicit range set. A
fF correspondence may be thought of as a set of ordered pairs of domain and range elements. |
ro The implicit domain is then the set of all first elements of ordered pairs, the implicit range the
b set of all second elements. A particular domain value can occur In at most one ordered pair at
2 a time. This information structure has widespread applicability. For example, such common |
F structures as arrays, property lists, symbol tables, and simple databases may be expressed as

| correspondences.’ |
3 L

| A plex is a group of semantically dissimilar elements, like the record structure found in many ’
| high level languages such as PL/I, PASCAL, and INTERLISP. Each field of a plex has a :| unique (within that plex) constant name and an associated value. The type of each value 1s

defined by another information structure in the model. A field of a plex can be referred to only |by its name, and not by less meaningful indices, such as its position in a list.

An alternative is a group of information structure choices, similar to the union declaration of |
:

3 It is desirable to extend the notion of correspondence by creating a new information structure
for expressing general, explicit relations, rather than limiting them to only functional ones.

!
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] ALGOLG68 (Van Wijngaarden et al-69). The value of an instance of an alternative must be |
3 of a type corresponding to the selection of exactly one of these information structures. This
: allows a program to handle (e.g, read In) an information structure whose precise structure isn't

known at the time the program 1s specified.

7.1.1 Information Structures of the TF Program Model

2 As an illustration of most of the important aspects of the program modelling language, we will
present a fairly complex program model of a concept formation program called TF. TF (for
“Theory Formation”) is a simplified version of Winston's concept formation program [Winston-

| 75]. The goal of TF is to form an internal model (in the form of a simple information
structure—not to be confused with a program model) of a concept that may be used to

j discriminate between “scenes” that are and are not part of the concept. TF builds up its
3 internal model by repeatedly reading in a scene that may or may not be an instance of the
i concept. TF determines whether each scene fits the current internal model of the concept and
i verifies this guess with the user. The internal model 1s then updated based on whether or not
3 the guess was correct. The internal model consists of a set of relations, each marked as (or
1 mapped into) one of the labels, “necessary” and “possible”. A scene fits the model if all of the

“necessary” relations are in the instance; “possible” relations are optional.

] As an example of an internal model, one plausible model of the concept of a blocks world
“arch” is the correspondence (set of mappings)

ji {cube(a) » necessary, cube(b) -» necessary, cube(c) » possible, pyramid(c) » possible,
| supports(ac) -» necessary, supports(bc) + necessary, not_touching(a,b) + necessary}

3 This correspondence indicates that an arch must have three blocks. Two of them are cubes
that are not touching and that support the third block, which may be either a cube or a

FE pyramid.

FE The information structures of TF are given below. They are presented in a PASCAL-like
L | notation that is produced from the actual program model by the readable program model
Co generator’. The program model itself is rather unreadable, being maintained internally in a
a parsed form as a tree of templates, each of which is an association list. The procedural part of
4 | TF is shown in the next section.

b

|

Lo 9 This “prettyprinter”, written by Thomas T. Pressburger, provides concise, understandable
versions of program models (Pressburger-78]. Any or all of the parts of a partial model may be

Eb printed, and cross-reference tables are available to index the line numbers of the concise listing

{ and the template names of the original model.
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d Information Structures of the TF Program Model

i type :
FC input_data_prototype: alternative of {scene_prototype, string = “quit”}, :

scene_prototype: set [3 < size] of relation. prototype, 5
concept_prototype: correspondence [1 < degree] of

relation _prototype to string = {“necessary”, “possible”}, E
relation _prototype: plex (size = 2] of

<relation_name: string, arguments: list [0 < size] of string>, 1
user_response_prototype: alternative of {string = “correct”, string = “wrong”}; !

3 var
3 input_data: input_data_prototype, i

scene: scene_prototype,

i concept: concept_prototype,
relation: relation_prototype, 3

| user_response: user_response_prototype, :
: necessary, possible: string = {“necessary”, “possible”}, 1

i fit _result: Boolean &

1 An information structure definition in a program model creates a new prototype of the abstract E
] information unit (AIU), of which there may be any number of actual instances with various i
: values during the execution of the model. In the example above, the AIU prototypes are | i
: defined after the reserved word type, and the AIU instances after the word var. For
[ conciseness, the definitions of simple prototypes are expanded where the prototypes are :

referenced instead of giving them names to be referenced elsewhere.

9 | We see that input_data_prototype is either a scene_prototype or the string constant “quit”. 3
E Scene_prototype is a collection of at least three unordered, unrepeated elements called
: relation_prototypes. Concept_prototype is a many-to-one mapping from an implicit set of ;
i relation_prototypes to the implicit set containing the strings “necessary” and “possible”. :
» Relation_prototype is a plex with two fields, a string reiation name and a list of string ;
= arguments. User_response_prototype is either of the string constants “correct” or “wrong”. 1

= Most of the AIUs have only one instance. The AIU that is a string with two possible values,
F | “necessary” and “possible”, has two instances, unimaginatively called necessary and possible.
3 Fit_result is an instance of a Boolean primitive.

i In order to exemplify the detail contained in an information structure, listed below 1s the
Ey detailed AIU prototype for the correspondence concept prototype, along with its sole instance,
i concept. They are presented as two templates, each consisting of a list of slot/value pairs. Note |

3 | that the domain and range elements of the correspondence are names of templates defining1 these AlUs (not shown here). The where entries of concept provide a cross-reference to each
template in the model where concept is used (i.e, created, destroyed, read accessed, or changed).

3 These templates are not shown. Also notice that assertions about the sizes of the implicit
: domain and range sets are maintained.

E 8

i
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h ] Details of Two Information Structure Templates | |
; name: concept_prototype name: concept ‘
1 class: AlIU ‘ class: AlU_ instance |

type: correspondence instance_of: concept_prototype {
§ super-AIUs: none where_remembered: |

instances: initialize_concept, }:
concept where_forgotten: none {

J domain_AlU: relation prototype where_referenced: |

] domain_size: fity 14 |
i minimum: 0 updatey yy ]
; maximum: unknown update; , i
3 mean: unknown updateq |

variance: unknown updateg 5 |

; range_AIU: label_prototype update; ; , ;
range_size: update;3 4 | i

minimum: 0 where_modified: }
1 maximum: 2 update; , 3

mean: unknown updates 3 2
variance: unknown update; 3 1

many_to_one: true ;

: : 7.2 Control Structures ]

3 The control structures of the program modelling language are generalizations of types common i
ko to block-structured languages such as ALGOL. §

+& A composite, or compound statement, is a set of operations to be performed, with a partial :
| | ordering on their execution. The two extremes, no orderings and fully ordered, provide the ;

1 | useful special cases of fully parallel and fully sequential execution. The default is fully i& sequential. :

» A test is just like an if-then-else biconditional in ALGOL. A case is a muitiway conditional
; whose conditions are independent and unordered, with exactly one of them true. One of the
3 cases may use a default condition that is true whenever none of the others is [Barth-74).

: A loop is a generalized loop structure that (1) has an explicit initialization part in addition to
| the body of the loop and (2) allows exiting on any number of exit conditions, with special exit
| actions associated with each condition {Zahn-74, Knuth-74]. Standard for, while, and until

loops all fall within this framework.

; A procedure may return a value or not and may have parameters or not. All parameters are
. considered to be called by reference.

a
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7.2.1 Procedural Part of the TF Program Model 1

1 To help clarify the procedural notions in a program model, below is a PASCAL-like version® :
of the abstract control units (ACUs) and primitive operations (POPs) of the TF program 4

introduced in the previous section. This example represents about half of the program model. i
All information structure definitions are given in the preceding section; cross-references and ¢

1 most other annotations have been omitted. ;

3 Procedural Part of the TF Program Model |
until exit |

| first | p
i parbegin ¥
i necessary « “necessary”; ;
1 possible « “possible”; 4
i concept « concept_prototype{} KX

parend
3 repeat 1
3 begin 3
: input_data « input{input_data_prototype, user, “Ready”), rE

if input_data = “quit” then assert_exit_condition(exit); x:
: scene « input_data; :
3 fit _result « (concept [necessary] c scene)p = 0.5]; -
1 if fit_result then inform_user(“Fit") else inform _user(*Didn’t fit"); i
1 user_response « input(user_response_prototype, user, “Is this correct or wrong?”); y:
] case . 2

i fit_result A user_response = “correct”: A
:: VY relation € scene | relation ¢ domain(concept) nN
= do conceptlrelation] + possible;
E | fit _result A user_response = “wrong”: 3
- 3 relation € concept” [possible] | relation ¢ scene .

3 | do concept(relation] + necessary; | .
| ~fit_result n user_response = “correct”: ; .
E | ~fit_result A user_response = “wrong”: i
= Y relation € concept” (necessary) | relation ¢ scene
! do concept(relation] + possible

4 endcase |
p end |
: finally
| exit: |

| endloop Co
; The main body of the model is a loop, shown delimited by the reserved words until and

i | endloop. The three parts of the loop, the initialization, body, and exit blocks, follow the| reserved words first, repeat, and finally, respectively. There is one exit block, called “exit”,
which is empty. The initialization consists of a fully parallel conposite that initializes the two 1
instances of string primitives, necessary and possible, to the values “necessary” and “possible” |

4 and initializes the concept instance of the correspondence called concept prototype to have no |
mappings. | ]

® produced by the readable program model generator

Ra dl N= mee Sepp— | TTC CCT vo errno
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: . The body of the loop is a fully sequential composite that first inputs from the user an instance
: of the input_data_prototype alternative and stores it in input_data. Input_date may either be

; an instance of the set scene_prototype or the string “quit”. If it is “quit”, then the body of the
1 loop is left via an assert_exit_condition operation and the exit block called “exit” is executed. If

it isn’t “quit”, then input_data must be an instance of scene_prototype. In this case, the |
[ select_alternative operation is used to rename input_data as scene, a particular instance of !
] scene_prototype. From this point on, input_data is no longer defined. |

: The fourth statement of the composite tests whether scene fits the current concept and stores the
i result of the test in the Boolean primitive fit_result. The test checks whether the set of all

elements in the domain of the correspondence concept that map into the string necessary is a
subset of scene. This computation uses the inverse_of operation on a correspondence and a

1 particular range element. The is_subset operation is annotated to show that the probability
that it is true is 0.5. :

The next two statements print out the result of the test and then input the user's agreement or
{ disagreement with that result, in the form of one of the strings “correct” or “wrong”. This
] string is stored in the instance user_response of the prototype user_response_prototype, which is
; an alternative of the two possible strings.

E The final statement in the loop body is a case with four possibilities for updating concept based :
upon the cross-product of the two possible values of fir_result and the two for user_response. ;
The first case puts every relation in scene that isn't already in concept into concept, with a B

1 mapping into possible. The second case chooses a relation that is marked possible in concept :
] and is not in scene, if one exists, and changes its marking to necessary. The third case doesn't :
) have any action. The fourth case is similar to the second, but changes each relation marked d
1 necessary in concept and not a member of scene so that it is marked possible instead.

FE Below are the details of one control structure template, the main loop of TF. Note that this :
| template points to the control structures both above and below it in the program model tree. )
= The root template, TF, is directly above it, and initialize and input_and_process_body are the p
b templates directly below it, which define the subparts of the loop. The relevant AIU instances :
| listed are those that are only used locally to this subtree of the total control structure of the :

» Details of a Control Structure Template

3 name: input_and_process
j class: ACU

4 type: loop
[| super-ACU: TF
: relevant _AIU_instances:

| necessary
possible

b concept
3 : initialization: initialize1 | body: input_and_process_body

exit_pairs:
<exit, nil>

: {
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1 7.3 Primitive Operations

; There are approximately fifty primitive operations®, including some of a fairly high level. A

y number of these were presented in the program model example of the preceding section. ¥
] There are operations for creating, accessing, changing, and combining the components of
3 information structures in various ways; making standard Boolean tests; doing input and output; 1
i and calling and returning from procedures. For example, the standard set operations union,
1 intersection, and difference are defined on collections. i

: Here are some examples of higher level operations. /nverse_of takes the inverse of a 3
§ correspondence under a particular range element, i.e, inverse_of returns a subset of the domain |
3 of the correspondence consisting of each element that maps into the chosen range element. 1
: Subset returns all elements of a collection that satisfy a given predicate. True _for_all and :
1 true_for_some aliow a collection to be examined to see if a condition holds over all or at least J

one of its elements. Examples of the universal and existential enumeration operations, ¥
3 for_all_do and for_some_do, were presented in the preceding section within the case statement
1 of TF. :

1 7.4 Assertions 1

Certain metalevel information in the form of assertions may be attached to program model E
3 templates. Assertions are not required for a complete model, e.g, the model can be interpreted 3
1 without the existence of any assertions. However, assertions can provide valuable information ;
2 to PMB, other acquisition experts, or a later coding phase. Currently assertions may only state 3
» user assumptions or estimates (e.g., of collection sizes or probabilities of conditions being true k
= in control structures or primitive operations). It would be trivial to add a definitional type of £
= assertion that acts as a command to PMB or later coding stages, eg, “This information o

i structure should be implemented as a linked list.”. Assertions are represented by special slots in 1
| templates, one siot name per assertion type. T hese slots are handled like other slots. 1

SA complete list was given at the beginning of this chapter.
| ]
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Chapter 8. The Knowledge Base: Rules for Building Program Models ’

= There are two aspects of rules: form and function. First we define the format and types of
i rules in PMB's knowledge base. Then types and examples of specific knowledge about 1
EE programming are presented. These include facts about incremental construction of program | §

models, completeness, semantic consistency, and canonization. English paraphrases of many
4 more PMB rules are given in Appendix B. :

8.1 Format and Types of Rules 1

EL PMB’s expertise is implemented as a set of procedural rules that are scheduled by the rule {
interpreter discussed in Chapter 6. All rules (i.e, both response and demon rules) use a ]

3 standard antecedent/consequent format: ]

] Each antecedent (or precondition) g, is either a simple Boolean test on the state of the current gr
; fragment or program model or an explicit call to a Boolean function. The consequent ¢ is a |
] | sequence of actions that access the current fragment and partial program model, modify the H
j model, ask questions, call other rules (perhaps creating demons), and return a Boolean value. :
i Each antecedent is evaluated in order. If one is false in a response rule, then the rule fails. If
¥ one is false in a demon, then the demon blocks at that point, awaiting a later change that might 4
1 make the antecedent true. Only when all of the antecedents are true is the consequent executed. 4
3 A rule achieves success only if all of its antecedents and its consequent are true. i

x Being procedural, the rules run compiled and hence very efficiently. However, it is difficult to 1
- add, modify, or generalize rules in this form. So a high level “rule expander” has been written §
2: that generates procedural demon rules from a declarative antecedent pattern. On the average, 1
k | one of these compound demon rules translates into about five simple rules. z
p | The rest of this section discusses the two types of rules, simple and compound. The current i
ff rule base of PMB consists of approximately 200 simple rules and twenty compound demons. )
BN Perhaps twenty of the simple rules are demons that were written by hand before the existence ,
pC of the rule expander. If rewritten, these would result in four or five new compound demons. :

1 8.1.1 Response Rules

| PMB knows many facts about program models in order to be capable of building them and
guaranteeing that they are complete and consistent. PMB knows all of the types of control
structures, information structures, and primitive operations in the modelling language; the

properties of each construct; the legal values of each property; which properties are required
1 and which are optional; and default values for properties. Other knowledge takes the form of )

| checks or transformations on one or more properties.

¥ Most of this knowledge is organized into response rules according to the program model
construct involved. The following table contains paraphrases of what PMB knows about an |
example control structure and an example information structure.
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: Examples of Knowledge of Legal Program Models |
4 A loop consists of an optional initialization, required body, and required pairs of :
4 exit tests and exit blocks. Each exit test must be a Boolean expression occurring
3 within the body. 1

3 A collection may be ordered or not, may allow repetitions or not, may have a size ;
3 estimate, must define the prototypic element, and may have instances. The default :
4 I/O format is a LISP list of elements.

i The nature of response rules will be covered in more detail by discussing one representative |
| response rule. This rule handles the acquisition of an is_subset primitive operation. To hs
1 provide context for the discussion, the completed is_subset template from the CLASSIFY :
: program model is shown below. This template represents an operation that tests whether the 3
} collection fit_concept is a subset of the collection fit_scene. 4

] Completed Is_Subset Template E

| name: procedure_body ;
: class: primitive operation 2
: type: is_subset v;
! super-ACU: fir i

type_returned: Boolean ;
3 subcollection: fit_concept E
1 collection: fit_scene 4

A Processing of the name and cuper-ACU slots is trivial and isn’t shown. Although processing of 3
E the type_returned slot for a Boolean condition is also trivial, the general case is discussed in E
| the next section.

= The rule is designed to be invoked whenever an is_subset is a legal type for a new template, i.e, :
3 | whenever a Boolean value is permitted. For this to happen, the name of this rule is included
| in the list of response rules associated with any question that asks for a Boolean expression. A
- For example, when the subgoal for the condition part of a test is created, a question asks for a 3
a Boolean expression. The name of the function that is the rule below will be a member of the 1}

list of response rules stored along with this question. In terms of the slot values below, the
h is_subset operation takes the form SUBCOLLECTION ¢ COLLECTION. TEMPLATE is
f the name of the new template being defined by the latest fragment. |

]

i -
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Response Rule for Handling Is_Subset Operation 3

i [f the TYPE of the new template is IS-SUBSET, then |
- (1) store POP (primitive operation) as the CLASS of TEMPLATE; | 4

(2) store IS-SUBSET as the TYPE of TEMPLATE;
| (3) add TEMPLATE to the list of all IS-SUBSETs in the program model; 1

| (4) ask the external environment what the SUBCOLLECTION slot of TEMPLATE is, {
storing the question away along with appropriate response rules to handle ]
the answer, which is required; 3

; (5) ask what the required COLLECTION is similarly; 1
(6) guarantee that the two types of collections returned by SUBCOLLECTION and 3
COLLECTION have the same prototypic element; 3

(7) assume that there will be no PROBABILITY given; 3
(8) ask what the optional PROBABILITY is that the IS-SUBSET returns a value :

of true; and ]

| (9) return success.
; Note that Steps 1, 2, and 7 store values into slots in the template and thus may trigger demons |

that are waiting for those slots to be filled in. Step 3 generates a global cross-reference to this ]
| template by its type. Steps 4, 5, and 8 generate subgoals. Step 6 sets up a compound demon 1

; that is discussed in the following section. Step 8 asks an optional question (i.e, one not 3
: required to be answered) because Step 7 has already assumed a default answer.

Steps 4 and 5 create questions that are equivalent except for the slot name involved 3
(SUBCOLLECTION versus COLLECTION). Each of these questions has five response rules ¥
(discussed individually below) to handle the various possible states of the program model when §
a template name is provided in answer to the question. These states arise because templates 5

. and parts of templates may or may not exist at any particular time in the midst of model §
- building, since program fragments may arrive in any sequence. Note that exactly one of the E
u response rules succeeds. 3

|

:
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i Response Rules for Handling Arguments of Is_Subset 3

(1) If the template doesn’t exist, create one and give it a class of “collection”. This b
is a pseudo-class that serves as a constraint on the class and type allowed for this ¥

: template.’ Other rules notice this pseudo-class and restrict the template to be either i
an instance of a collection information structure or a primitive operation that 1
returns an instance of a collection as its value. J

(2) If the template has pseudo-class “collection”, then don’t do anything. It is :
already guaranteed to return an instance of a collection. E

(3) If the template is an information structure instance, then set up a demon to 3
guarantee that it is eventually defined to be an instance of a collection. 3

(4) If the template is a primitive operation, then set up a demon to guarantee that :
it is eventually defined as returning an instance of a collection.

(5) If the template exists but isn’t of one of the types discussed above, then there is
an error because the template can't possibly return an instance of a collection. 5

8.1.2 Simple Demons Co

Simple demons are used whenever an operation may have to wait for a single slot to be filled E

in. There are few simple demons. Co

As an example, all templates that return a value have a TYPE-RETURNED slot. The value E
= of this slot is determined from the values of other slots in the template in various ways. An E
. input operation has an AIU slot defining the information structure that is input, which is the 3

: type returned by the input. When the input template is created, a simple demon is set up that i
waits for the AIU slot of the template to be filled in and then copies its value into the TYPE- 1

- RETURNED slot of the same template. 3

In many cases, the TYPE-RETURNED slot of a template will simply be the same as the i
TYPE-RETURNED slot of a second template pointed to by the first. For example, the TYPE. 3
RETURNED by a procedure_instance (or call) will be whatever the TYPE-RETURNED of the ;
procedure itself is. In such cases, a simple demon is set up that will copy the value from one :
template to the other when it becomes defined in the former. |

!

' Looked at from the point of view that a number of possible template types are still allowed by

| | the pseudo-class, it can be considered a form of implicit OR.2 The use of a pseudo-class makes the constraint more explicit than simply using consistency :
demons to check the templates class and type after the fact. This explicitness is important in |
defining the type of a template. However, this means that every rule that might do something
with that template must be aware of the possible constraint. :

; 3 When more than one slot may be missing, a compound demon is used.
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8.1.3 Compound Demons and the Rule Expander J

A compound demon is used whenever the antecedents of a rule may have to wait for more than
! one slot to be filed in before being evaluated. The consequent or action part of a compound :

demon is procedural, as in all rules. The antecedents are written in a concise, declarative 3
language that can express any pattern of program model templates and slots to be matched. y

: Slot values may be bound and compared using a small number of predicates. Then the rule ¥
expander (or compiler)? translates the declarative form into a linear cascade of simple demons, 3
each of which waits for one new slot value to become available, tests all antecedents that can

now be tested at that point, and then sets up the next simple demon in the order.

The rule expander takes into account ordering constraints on the antecedents and makes sure b
that the rule consequent is executed as soon as all antecedents are satisfied. A partial ordering :
of the antecedents is determined, based upon the constraint that no antecedent can be evaluated
until all of the variables that it references have been bound, often by another antecedent. From 1
this partial ordering, one complete ordering of antecedents is chosen. By writing a compound
demon and using the rule expander, rather than writing a sequence of simple demons by hand,
the number of rules required has been reduced by factors from two to seventeen. When this
expansion ratio is large, say, five or greater, the ease of writing and modifying the single [

| compound demon becomes an important factor in maintaining and expanding the knowledge 1
base. ) 3

: Input to the rule expander is in the form of one logical PMB rule:

Gy NGI AN ..ANQyC |

Qutput takes the form of a compound demon implemented as n ordered simple demons (LISP b
functions). The order in which the antecedents are evaiuated is denoted by the permutation :
function p below. x

- Format of Compound Demons E

a dy: agp)=» dz
a da: Gpz) + d3 ;

| As an example, one might want to transform into tests all case statements that have exactly two
mutually exclusive conditions. Such a rule might be expressed as shown below.

|

4 Written by Steve T. Tappel
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Exampie Compound Demon

(1) the statement is a case, 4
: (2) the case has two condition/action pairs, and

(3) the first condition is the negation of the second condition,

then :
: change the case into a test. 1

| As discussed in Chapter 6, there are two types of demons, consistency and transformation. The 1
distinction is that transformation demons make structural changes to the program model (ie, i

| they add or remove entire templates), whereas consistency demons do not (i.e. they only access 1
or store into existing slots). Examples of a compound demon of each type follow.

| Example Consistency Compound Demon

This consistency demon is set up by the response rule for handling is_subset operations, which
was discussed in the previous section on “Response Rules”. The actual demon from PM B's rule .

| base is listed below. The context of the demon is that IS-SUBSET is an is_subset primitive i
| operation, a predicate of the form SUBCOLLECTION ¢ COLLECTION. An English 1
| paraphrase of the rule is Co

| Require that the SUBCOLLECTION and COLLECTION expressions, which are } |
the two arguments of the is_subset operation called IS-SUBSET, both return © 13
collections of the same prototypic element.

F Compound Demon for Checking Consistency of Is_Subset } |

» (NAME [S-SUBSET-CONSISTENCY) }
(TYPE CONSISTENCY) }

_ (VARS [S-SUBSET) i
(PATTERN (I1S-SUBSET (SUBCOLLECTION = SUBCOLLECTION) 1

(COLLECTION = COLLECTION) § |

: (SUBCOLLECTION (TYPE-RETURNED = COLLECTION-1)) 3
| (COLLECTION (TYPE-RETURNED = COLLECTION-2)) 3

(COLLECTION-1 (CLASS = "AlU) 1

(TYPE = 'COLLECTION) §

| (AIU-FOR-ELEMENTS = AIU-FOR-ELEMENTS-1})
(COLLECTION-2 (CLASS = 'AlU) :

(TYPE = "COLLECTIGON) :

(AJU-FOR-ELEMENTS = AIU-FOR-ELEMENTS-2))) &
| (REQUIRE (AIU-FOR-ELEMENTS-1 = AJU-FOR-ELEMENTS-2)) x

(ELSEACTION (HELP [S-SUBSET &

| | "SUBCOLLECTION and COLLECTION have different prototypic elements.")) 2
The rule expander translates this compound demon into tweive LISP functions that will be 5
executed in order. The first function is given the name IS-SUBSET-CONSISTENCY and 1s a
the rule invoked with the name of the is_subset template of interest as a parameter in order to

| initialize the compound demon. When the first function is called, this template name is bound
to the variable IS-SUBSET, which is declared in the VARS section of the listing above. The 8

a |
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first function is not a demon itself, but sets up the first simple demon. The next ten functions |
; are simple demons that await the ten slot values referenced in the PATTERN secuon above.
: Finally, the twelfth and final function 1s created for the ELSEACTION.

The heart of a compound demon is its PATTERN part. A pattern defines relations on one or
i more slot values of one or more templates. For each template specified, there may be any i

number of slot triples, each consisting of a slot name, relation, and value. The sfot name is |
} implicitly quoted. The relation may be equality, set membership, and their negations. The :
] value of a slot triple may be either a constant (which is explicitly quoted) or a variable (which |
3 is not quoted). The first time a variable is encountered—at runtime, not compile time—it is 1
i bound to the value of the slot.” After this occurrence, the relation will be tested to see if it
3 holds, when the slot finally has a value. If the relation holds, the compound demon proceeds to

the next test, which often means setting up the next simpie demon. If the relation doesn't hold, 3
1 then the ELSEACTION is executed.

j A REQUIRE section takes an arbitrary LISP expression to be evaluated as soon as all of its 1
external variables have bindings. This expression must be true; otherwise, the compound rule's 1
ELSEACTION is executed. 4

The optional ACTION and ELSEACTION parts contain arbitrary LISP code. The
} ELSEACTION is executed if the PATTERN isn’t matched successfully or if a REQUIRE x

statement is false. Otherwise, the ACTION is executed. The demon above doesn’t need an

ACTION because it is only making a consistency check. ]

1 ~ Example Transformation Compound Demon 3

This transformation demon is set up by the response rule for handling output operations. i
3 Again, the actual demon is listed below. The context of the transformation demon 1s that ;

| | OUTPUT is an output primitive operation that outputs AIU-INSTANCE to ]
: DESTINATION. An English paraphrase of the rule is 1

= If the output operatior. called OUTPUT is merely outputting a string constant to 1
a the user, then transform OUTPUT into an inform _user operation. :

The relation in this first occurrence must be equality. |
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Compound Demon for Transforming Output to Inform _Use: |
(NAME QUTPUT-TO-INFORM-USER)
(TYPE TRANSFORM) || (VARS OUTPUT)

(PATTERN (OUTPUT (SUPER-QU = SUPER-OU)
(DESTINATION = 'USER) !

| (AIU-INSTANCE = REMEMBERED-VALUE)) i
(REMEMBERED-YALUE (TYPE = 'REMEMBERED-YALUE) i

(TYPE-RETURNED = STRING))

(STRING (TYPE = PRIMITIVE) 3
(SPECIFIER = STRING) i
(VALUE ~= NIL))) ;

(ACTION (DELETE-AM-TEMPLATE OUTPUT) 1
(SET-AM-TEMPLATE OUTPUT (create INFORM-USER-TEMPLATE SUPER-OU-~SUPER-QOU :

MESSAGE+ (GET-AM-SLOT STRING *VALUE))) ]

(ADO-TEMPLATE-REFERENCE AM-NAME 'POP ’ INFORM-USER OUTPUT)
(DELETE-FROM-AM-SLOT (GET-AM-SLOT REMEMBERED-YALUE °*ATU-INSTANCE) :

’ WHERE -REFERENCED REMEMBERED-VALUE) {

| (BELETE-AM-TEMPLATE REMEMBERED-YALUE}) 3

f Here we see that ACTION is a list of LISP expressions to be evaluated. Usually they are
restricted to a small set of primitives that manipulate the program model. This particular 3

! ACTION deletes two old templates and creates a new one to replace them. J

8.2 Incremental Building

! Sitice the specification process doesn't constrain the order in which topics are covered, PMB is i
capable of dealing with fragments received in virtually any order. There are twc mechanisms f
for dealing with this problem: (1) demons and (2) response rules that respond appropriately
whether or not a template that is referenced already exists. Examples of these were given 4

4 earlier in this chapter. 1

: 8.3 Completeness E

| One major goal of PMB is to produce a complete program model. This means that every ]
1 required piece of information about a construct that has been put in the model must be .
oo determined eventually. There are several ways to achieve completeness: by default, inference, ;
1 and questioning. Cross-referencing is a required part of each model template and is done by y

| PMB. | j

|
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8.3.1 Default ;
[ The simplest way information can be determined is by default. If some detail is omitted from a :
J fragment, PMB fills in a default value if one is known. For example, the format for inputting |
| a collection will default to a LISP list. Size information about a collection is optional, hence
} the default is none. ;
:

A slot default is stored as soon as a template is created. But a question about that slot is still j
: asked. Thus, if the question does get answered, the default value is overridden. If the question ]

doesn’t get answered, then the default value remains in force. Such a question 1s explicitly |L marked as an optional question in the list of outstanding questions. Optional questions need |

not be answered for model completeness. The user cannot override a previously stored slot :
value that isn't a default because no outstanding question will remain for that slot. i

8.3.2 Inference: Type Coercion

] The second way slots may be completed is by inference. The best example of completion by
| inference is the coercion of the types of information structures [Reynolds-69). If the type of a ;

) formal parameter of a procedure isn’t known, it will be inferred from the type of the :
| corresponding actual parameter in a procedure_instance, and vice versa. The type of a referent 3

i (quantified variable) in a true_for_some, true_for_all, for_some_do, or for _all_do may be coerced Hg
by the way in which it is referenced in the body of the operation. In an is_subset operation if ;
the names of both set arguments are known and the prototype of one of these instances is E

: known, then the prototype of the other is inferred to be the same.

There is an interesting analogy between the propagation of data type constraints through a
: model (smart type coercion) and the propagation of constraints in an electronic circuit [Stallman |

& Sussman-77). In the former case, a step in the propagation is based on what operations two
data types enter into together. In the latter, it is derived from equations defining the E

! relationships (e.g., voltages, current flow) between neighboring points in a circuit. g

2 8.3.3 Questioning 3

o | The final-and usually the most frequent—-way to attain completeness is to ask the external :
FE environment for more information. For example, when a loop is added to the model, PMB
fF requests its exit conditions. When a collection is created, its prototypic element is immediately 3
J requested. 3

B 8.3.4 Cross-References

i | As a model is being built, cross-references are added. One type of cross-reference keeps track of {
1 the current scope of each information structure instance, i.e, the control structure that contains

all references to the instance, but contains no other control structure that also contains all such

’ references. Scope information is useful for variable allocation during coding.

L Each instance also contains a list of each primitive operation that creates, destroys, references.
i or modifies it. This information is required for some consistency checks and transformations.

~~ we ———— — LTTT read
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: Global lists of all objects are maintained by class (e.g. control structure, information structure, i
i and primitive operation) and type (eg. loop, collection, and add_element). This allows all 3

constructs of one type to be found quickly. 4

8.4 Semantic Consistency 3

! After completeness, the next major goal of PMB is to guarantee the consistency of the model ]
produced, i.e, that everything done in the model 1s legal with the respect to the semantics of the F
program modelling language and permissible with respect to the rest of the current model.

3 This sort of consistency checking is one level smarter than the simple syntactic checks that are
done by incremental compilers and some editors. Obviously this is only a step in the right

4 direction. There are many possible tests that might be considered within the scope of :
“consistency”, but most (e.g., formal program verification) require much more information from

1 the user about the intent of the program. These are not covered here. 3

8.4.1 Consistency Checking

PMB does standard type checking and will complain, for example, if a number is given as the d
i value of a string primitive. Similarly, an is_element operation, e.g., x € §, requires that x be of ¥
! the same type as the prototypic element of the collection S.

! 8.4.2 Inconsistency Resolution

3 There are situations in which inconsistencies are corrected by PMB. One example is the 1
sorting out of prototype/instance ambiguities. The modelling language distinguishes between ¥

the prototype of an information structure and the one or more actual instances of it that are :
- manipulated by the algorithm. For one of these instances (the “primary instance”), PMB allows 3
EE fragments to skip defining the instance and make all data references directly to the prototype
¢ |! instead. This prototype/instance ambiguity is also called a type/token mixup.

gr In the diagram shown below, two separable problems arise. In the first, fragments have defined, |
- first, the prototype of an alternative and, second, a procedure_instance that uses the prototype as
: an actual parameter. Unfortunately prototypes aren't allowed as procedure_instance arguments.

Since no instances of the alternative prototype exist, PMB creates one and changes the
; procedure_instance to use this new instance as its argument. This instance is marked as the

primary instance in the information structure prototype so that, even if other instances are
2a defined in the interim, future prototype references that should be references to an instance will

be translated into the primary one. Two way cross-references are filled in also, as denoted by
the additional arrowheads.

] If a primary instance of the alternative had already existed, it would have been used. If no
! primary instance but exactly one regular instance had existed, PMB would have marked it as

the primary instance instead of creating a new one. If more than one regular instance had
1 existed, none marked primary, then PMB would have given up, since there are no heuristics at

present to attempt a disambiguation.
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. The second problem occurs in defining the alternative information structures (or sub-AIUs) of |
: an alternative. In this case, one of them is defined as a collection instance (see diagram below). ]
E In the modelling language, information structure prototypes may be recursively defined only in

terms of other information structure prototypes, not particular instances of them. In this case 1
4 the collection prototype is known, so PMB changes the alternative prototype to point to it i

instead of the collection instance. If the prototype weren't known, then the instance would |
3 have been copied to another template, the prototype created in its place, and the instance i
3 marked as primary. |

| Resolution of Prototype/Instance Ambiguity |
Program Fragments }

} aiter- binding | procedure
native |e————————————————————|  {ngtance ]

prototype t

4 : col lec- ingtance_of col lec- ;
tion rt tion ;

prototype instance

4 Program Model

" | al ter- instance_of al ter- binding | procedure
| native |e—————————— native |e—————| instance :
x prototype instance

| sub-AlU

| col fec- instance_of col lec~
; |! tion PE—— tion |

1 | prototype instance
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3 8.4.3 Specialization of Generic Operators ‘

Similar to inference based on consistency is the specialization of generic operators. A generic
; operator is one that has several different but closely related semantics, depending upon the types 1

{ of its arguments.’ This problem can be thought of as the inverse of type coercion on variables. 1
J Instead of coercing operands according to what operators they are arguments of, the operator is } §

coerced (specialized) based on the types of its arguments. :

; The fragment operation are_equal may result in one of the following primitive operations: |
is_empty (is a collection empty), are_equal (are two instances of the same prototype equal in

: value), are_components_equal (are two components of two instances of the same plex prototype 1
| equal), and is_of_type (is an alternative instance of a particular type). 1

3 The fragment operation part_of may be transiated into one of the primitive operations :
j is_element, is_subset, has_correspondent (does a domain element map into anything), or ]
1 is_component (of a plex), depending upon its arguments and how they are represented in the f

program modei: 3

i part_of(xY)+xeY :

1 + Y [x] defined? ‘1
: + is_component(x,Y) : g

1 8.5 Canonization 1

PMB also has knowledge of program model equivalence transformations. This knowledge {
- allows PMB to modify the normal results of model building in order to map constructs into 3
F higher level, more concise forms. The intent is to map equivalent expressions into one ¢
- canonical form whenever they can be detected. The higher the level of an expression, the more ¥
= implementation alternatives are afforded the coding process. 3

a | We term this type of model transformation canonization because equivalent constructs are 3
LT transformed into the same canonical form. Other words don’t convey quite the right meaning. .
E “Abstraction” connotes a loss of detail. “Generalization” also connotes a loss of detail, e.g., as in i
5 learning programs and unification algorithms. “Simplification” connotes the small, localized, 3
1 syntactic transformations, often contained in the simplifier module of a program verifier, that
3 always result in a simpler (according to some metric) expression. Loveman has coined the term |
1 “evolution” to denote transformations that discover higher level constructs in lower level code
E | (Loveman-77]

| Below are the input and output from one transformation.”

® Since its semantics may take various forms, another name for this kind of operator is
“polymorphic”. |

7 Some other examples are discussed in [McCune-77]
Ag



Canonization 107 }

(Y relation) relation € concept > relation € input_scene y

3 concept ¢ input _scene

VERS2 [Earley-73A, Earley-73B, Earley-74] proposed similar transformations to convert
1 element mapping operations into set operations, but the language was never implemented. | 3

There are three possible ways to perform such transformations: (1) Immediately force the user
3 to provide any additional information needed to proceed; (2) assume the information that is |

required if there is no evidence to the contrary (this may require inverse transformations or 3
backing up later if the assumption proves unfounded); or (3) wait until all information is 1

i known and the transformation is permissible. PMB uses approach (3). Doing a transformation 3
[| earlier wasn’t feit critical enough to burden the user with answering additional questions ;
| immediately. And making assumptions is too dangerous to do without a model of when they 3
] are reasonable.

4 Canonization uses transformation demons to catch the obvious (and hopefully most useful)
equivalences. A matching process occurs during the building of the model, looking for 1

3 appropriate occasions in which to apply these transformations. A scheme to recognize a wider 1
] class of equivalences would need a theorem prover [Barstow-79B). Canonization is done by |
: attaching demons to a template whenever it may be possible to canonize it, e.g, to the I
: true_for_all template (represented by ¥) in the example above. Attachment to a model template 4
4 is done after any informalities have been removed (i.e, the template is a legal construct in the y
3 modelling language). This avoids having canonization rules that can also handle informalities. 3

|
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Chapter 9. Conclusion '

: The thesis concludes with a description of the types of program models that have been :
successfully built by the Program Model Builder (PMB), a listing of the scientific contributions :

] made by the research, and a discussion of limitations of the work and the directions for future |
research that these limitations suggest. 3

9.1 Program Models Built

1 PMB has built very high level program models for various versions of the algorithms A
| described below. Most models were buiit during runs of the entire PSI program synthesis

system. The table lookup model was constructed by PMB running separately. 4

| An identity algorithm inputs and then outputs a single information structure (e.g., a set of |
3 record structures). Program models for this algorithm class make use of most of the 3
4 information structure types in the program modelling language. The exception is the :

alternative, or union, structure. In addition, simple inferences about input/output operations E
"are performed. 3

k : A membership algorithm first inputs a set of elements. Then the algorithm loops, inputting an 3
element and testing whether it is in the set. This algorithm might be used to determine who ]
should be admitted to a restricted place (e.g, a bank vault or a posh discotheque), based upon a E
set of names of authorized people. Models for this algorithm class use all of the control 3

| structures in the modelling language, plus the alternative information structure. Most of the
| expertise exhibited in the example of Chapter 4 is required for this class of models. 3

= A subsetting algorithm inputs a set and then loops, inputting another set and testing whether |
F the first is a subset of the second. This algorithm might be used to determine whether a set of ¥
; job requirements is met by the set of qualifications of any job applicant. Program models for 1
| this class of algorithms are comparable in complexity to models for membership. However, in 1
J some cases there are more opportunities to transform expressions into canonical form. One 3
- model for subsetting contains 52 program constructs (information structures, control structures, .
 , and primitive operations).

: A table lookup or search algorithm inputs a mapping (e.g. a set of ordered pairs of domain
4 and range elements). The program then loops, inputting a domain element and printing the |
f corresponding range element, if any. This algorithm could be used to look up recipes in a file |

that is indexed by recipe names. Program models for this algorithm class utilize much of the
[ knowledge base about mappings and operations on them. One model for table lookup contains

5¢ modelling language constructs.
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9.2 Contributions ‘ 4

1 We have presented a solution to one aspect of the program acquisition problem: the 4
} incremental construction of program models from informal descriptions. /ncremental implies :
; not only that information arrives a piece at a time, but that the pieces may arrive in an almost I
4 arbitrary order. /nformal implies that even if all program pieces were put together, they might } 4
: still not form an algorithm. The solution to this problem is a framework for incremental
| program acquisition that includes a language for expressing programs informally and

incrementally (the program fragment language), a control structure for recognizing fragments in {
1 which new information arrives in an arbitrary order, and a knowledge base of rules for using 3
1 this new information to update the program under construction. A computer system, the 1
] Program Model Builder, has been developed to test these aspects of the framework. |

i 9.2.1 A Framework for Program Acquisition 1

3 Defining a framework for program acquisition is important. This is a new field, and not all of 3
, its aspects discussed herein have been fully appreciated previously. The general framework for 1
3 program acquisition is described here briefly. Specifications are done at a very high level A
[ (compared to typical high level programming languages) and allow informalities such as minor 3
4 incompleteness, inconsistencies, and ambiguities. These two features require the acquisition E
: system to do more of the work in arriving at an efficient program, but the user to do less. The 3
: user must be in control of what is specified, how much is specified, and when it is specified. J

Specification is decoupled as much as possible from implementation considerations such as
t target language and target computer. E

Our program acquisition framework assumes that transferring a program from human to i
t computer requires the use of one or more languages for program specification. In addition to
< knowledge of these specification methods, any system of program acquisition requires knowledge :
- of the programming language in which the acquired program is to be represented and 3
3 knowledge of the domain of the program. It is possible to study, codify, and build systems that “4
= use the programming knowledge and interface with the other kinds of knowledge necessary for 3
= acquisition, yet not be constrained to work with any particular other kinds. 4

; This thesis has explored one point in the space of this acquisition framework. A number of 3
- new techniques have been tried. In particular, the notion of combining informal specification }

| with incremental specification is new. To allow this type of specification, a language for 3
| representing program fragments was designed and implemented. Then a pattern language for d

1 referring to parts of a program was designed when the need became evident. Supporting this 4
] type of specification has required the invention of incremental semantic consistency checking.

Finally, the idea has been introduced of putting a program in canonical form to simplify a.

| subsequent automatic coding. |

| | 92.2 Program Fragment LanguageThe program fragment language supports two important notions, incremental and informal |
program specification. The informalities include incompleteness, inconsistency, and variety of :

| specification. The language appears to have succeeded in its goal of providing a method for
specifying the smallest amount of new information possible about a program. The fragment
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language is aiso a start toward a representation of programming informality that is independent :
L of a particular specification technique. This notion isn't conclusively a success, however, since
1 the informalities have arisen mainly from observations of specifications using natural language

and, secondarily, execution traces.

i The pattern matching primitives of the program reference language provide a simple, uniform ¥
1 framework for accessing a piece of a program by a combination of textual, syntactic, contextual,

historical, semantic, and pragmatic indices. This language is the result of ideas borrowed from J
systems such as text and program editors, combined with ideas derived from observations of |

3 how people actually specify programs informally. Since the program reference language is only |
| in the early stages of incorporation into the program editor of the CHI program synthesis |

system [Phillips-79), the successor to PSI, no results are known. However, the need is clear and
the idea seems promising.

| 9.2.3 Control Structure

PMB uses a problem solving technique that allows subgoals to be dealt with in an order
defined by the user, rather than the system. This recognition method may be applicable to

] other problems that require a symbolic knowledge base to be acquired incrementally (e.g.
speech understanding, image understanding, other signal processing domains, knowledge .

| acquisition domains). Although subgoaling without any well-planned default for ordering the :
. subgoals is not desirable, it is much closer to the ideal for recognition or knowledge acquisition g

than an absolute ordering that is fixed by the program. |

Having only one demon for one antecedent active at a time (linear demon activation) is an J
: efficient mechanism for those cases in which all antecedents must be true before any action is ;
: taken. Use of this method results in only one location in the database being monitored at a :
: time. Evaluation time is linear in the number of conjuncts, even in the case in which some 1
= conjuncts sometimes become false after having been true. Average time for the typical method, ;
. in which all conjuncts are reevaluated whenever one may have changed, is quadratic in the :

number of conjuncts. :

K Demon priorities are useful when one class of demons must (locally) succeed before another class k
: is allowed to awaken. The demon invocation mechanism was only implemented for two priority ]

classes, but a general scheme for an arbitrary number of classes would be straightforward and k
| useful. :

| 9.2.4 Knowledge Base

PMB demonstrates the feasibility of having two forms of knowledge, a static base of rules
about program acquisition and a dynamic base of templates that constitute the program that is

3 being acquired. Except for the declarative antecedents used in compound demons, all rules are |
procedural. However, for the most part the types of processing done are quite restricted. It

| makes sense to extract the syntactic knowledge of the language in which program models are
written (the program modelling language). This knowledge would be represented declaratively.

| The next step would be to develop a special language for doing incremental semantic
} consistency checks, program transformations, etc. Any processing that didn't fit the first two
| categories would be done by special purpose procedures.

| al | ios SEE0. UAT PPI PGP = J + +«eo mse
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| The rule base has a fairly large array of rules about various programming constructs and ! 7%
: associated consistency checks. Incrementally acquiring and checking pieces of a program seems 3

3 to work out weil. A few rules for a number of different types of informalities have been
written. The emphasis was on breadth rather than depth. The result is not conclusive in this a

i area. Many more rules need to be tried before the problems will even be fully understood, let F
{ alone solved. | 3

J The technique used by the rule expander for “compiling” compound demons allows complicated §
! antecedent patterns to be specified declaratively, yet executed efficiently as procedures. This i
i technique is simply an application of the tenets of program acquisition to the building of the i
3 program acquisition system itself! Use of the rule expander has resulted in rules being written i

much faster and with fewer errors than when they were written out individually by hand. 3

9.2.5 Implementation ]

The implementation of PMB has provided a testbed for experimenting with our approach to 1
the program acquisition problem. This experiment has been a qualified success. A number of 1
programs have been successfully acquired by PMB working as part of the PSI program :
synthesis system. But a number of deficiencies have been observed in PM B's capabilities and 5
implementation. These are outlined in the next section. E

9.3 Limitations and Future Work | 3

The limitations given below point out the most obvious and important future work needed on ]
3 PMB and related research. 4

3 9.3.1 Role of Model Building in Other Systems }

u PMB assumes that program fragments come from other knowledge sources or possibly directly 4
| from the user. But there is no mechanism for feedback or sharing of the knowledge in the
un program model, except for PMB asking questions. Whether the best approach is a single
- acquisition system with many types of knowledge or a distributed system with a communications 1
& mechanism, the need for interchange of information is evident. 3

] Just as in natural language understanding, the need for pragmatic domain support in program
acquisition is real. Although a system may get by with just its programming knowledge, lack of |

- knowledge about the specific application domain forces the user to do too much work. This has
been one of the weakest points of the PSI system, and was probably a resuit of the lack of

| information sharing discussed in the preceding paragraph.
‘The role of the type of capabilities found in PMB should definitely be explored for less
grandiose, programming aid systems such as program editors. Even if full-fledged automatic :
program acquisition systems never flourish, their concepts should be transported to the less
automatic systems that may be practical today.

' Although such obvious consistency checks as producer-consumer analysis on variables are not
| done
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9.3.2 Control Structure 1

The ability of the system to make changes to parts of a program that have already been :
acquired is very restricted. Once a fragment has been successfully processed, the result of that |

processing cannot be undone. The capability to modify the results of previous fragments is |]
important, both for recovery from programming errors during initial specification and for 1
general program modification at a later time. Straightforward backtracking or, worse, redoing
the entire model building process with the new fragment are unappealing approaches. One 3
solution might be to use heuristic rules that would examine the most likely causes of an error 1
and then modify the model. Another possibility to be explored is to maintain a database of
dependencies and make those changes that are necessary. Many data dependencies are already 1
stored as cross-references in the program model. These could be used by specific rules for 3
simple information structure modifications, e.g., changing an existing program by adding a new f
part to an information structure. When such a redefinition occurred, references to it by the
algorithm would be updated to maintain the consistency of the program model. A similar :
approach has been taken in the domains of incremental circuit analysis [Stallman & Sussman- 3
77) and program verification (Moriconi-77, Moriconi-79]. !

Work shouid be done on problem solying that is more flexible, that can be totally user 1
controlled, system controlled, or some shade of each. In addition to the underlying problem .
solving techniques that will support such flexibility, models need to be developed so that the EK
system can help determine at which end of the control spectrum it should be. At the user end 3
of the spectrum, a user model of incremental, informal programming needs to be developed. In 3
the area of greater system control, models of structured programming or other programming 1
methodologies are needed. 3

Experience with the transformations made by PMB on fragments and models has pointed out
| the need for efficiency knowledge at the model level. As observed in [Long-77], it appears that 3
oo efficiency considerations can never be completely divorced from the acquisition problem and ;
- hidden away in a lower level automatic coding system. In an acquisition system with a large

body of transformations, more than one could be applicable to a part of the program being :
a acquired. The choice of which transformation, if any, to perform may rest in part on high b
Fo level “efficiency” heuristics. The right metric to be minimized is not obvious. Some possible ]

- metrics are (1) program complexity and length, (I) execution time of the program when i
" interpreted using default data structure implementations for its high level information ;
oo structures, (3) cost of subsequent acquisition, (4) cost of coding, and (5) execution times of 4

potential coded target programs. Efficiency knowledge for the particular programming domain 4
would also be useful. The new CHI system is one attempt to consider efficiency at a higher E
level than in PSI. 4

| 9.3.3 Program Modelling Language :
An obvious limitation in almost any system of this type is the scope of the language accepted. :
Two examples of useful constructs not in the program modelling language at present are

. recursive procedures and arbitrary relations.

A general assertion mechanism would be a useful addition to PMB. Suc" assertions may be
thought of as user supplied consistency checks that would be monitored either during model
building or program execution. This type of assertion would consist of a predicate on elements
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(i.e, templates, slots, and values) of the program model and on the associated state at runtime !
(e.g., the values of information structure instances, execution counts of statements, etc.). Such a
predicate could be asserted globally or locally to one or more templates. The assertion would be
evaluated however often and wherever in the model was necessary to assure that it remained
true. Assertions could be so guaranteed during model building, during model interpretation on
test data, or during execution of the coded version of the program, if appropriate statements |
were added to the model itself.

9.3.4 Knowledge Base |

Much more detailed observation and precise codification of rules about programming
informalities are needed. For informal specification to succeed, much richer languages for
informality than are available now are needed. Otherwise, users get frustrated. An analogous ]

problem has been observed with natural language understanding systems that aren't robust. |
Any coding system has a finite amount of knowledge about how to implement various
combinations of elements found in a program model. So there will always be cases in which 1
two program models that behave the same but are syntactically different are implemented i
differently because the automatic coder didn't recognize some special case in one of them. In 1
many of these cases, PMB should recognize the equivalence and transform them into a .
canonical form. On the other hand, putting a program in a canonical form may remove special ;
cases about which the automatic coding system has special knowledge. In such cases 3
canonization should not be done. The conclusion is that the two phases, if they are kept }
separate, should know about each other’s capabilities so that they can work together, rather
than be at odds. 3

Only a few rules dealing with canonization have been written. Experiments should be done i
using a sizable set of such rules in order to determine the gain in model conciseness and 3
subsequent coding capability. Then the tradeoff between adding more rules at the model
building versus coding level could be examined. Incorporating a generai dedu..ion mechanism
to help recognize when canonization may be done might also be explored. 3

Rules for such things as type consistency and coercion should be merged. One rule could either
attempt coercion or only check for consistency, depending upon models of how conservative the E
user wants the system to be and how successful the system has been previously. ‘4

A much smarter demon compiler would be very useful. It would allow the antecedents of a b
demon to be monitored either one at a time or in parallel. Demons could automatically be 3

( created to trigger as soon as the failure, as well as the success, or a compound antecedent was 3

| known. i
Demons are just a form of simple concurrency, i.e. they are procedures blocking for an event J
(i.e, a change in a database) to occur. Other concepts from concurrent programming and d
operating systems (e.g., message passing) should be explored as ways to improve the technology 3
of demons.

And finally, every good artificial intelligence system needs an explanation system and a |

2 The last method is a feature provided by ALGOLW via the ASSERT statement [Sites-72] |
|

|
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: knowledge acquisition capability. The explanation system should be incremental, of course. It !
2 should provide answers to specific questions in the form of a program and/or natural language.
| The explainer should also be able to give a summary of the entire program.

| | 9.4 Concluding Thoughts x
[ The concepts and techniques that have been presented here wiil hopefully have an impact on ;
a. such software systems areas as intelligent program editors and incremental compilers. The
bo notion that a programming system should provide incremental semantic support, not just f

textual and syntactic support, should become more widespread. The idea of designing
: programming languages that allow informalities, not just higher and higher level primutives, is
i also an important avenue to explore. 4

It is my hope that the work described here, along with the related research of others, will lay E
the groundwork for the development of practical program acquisition systems. Without this i
advance, the promise of computers is destined to be limited by their accessibility only to the
programmer elite. 1

}
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] Appendix A. Proposed Program Reference Language |

: As introduced in Chapter 5, the program reference language is designed to provide a “where” |
} capability for program fragments. A program reference specification given in the program
; reference language doesnt necessarily identify a unique point in the program model. A

reference specification is just a pattern to be matched against the model in order to constrain 5
: which model templates are considered. A specification can be universally quantified, which

indicates that all templates that match should be transformed by the “what” part of the
fragment. If a specification is not universally quantified, then there is an error condition if |

more than one template matches (i.e., the specification is ambiguous).?

: One way to view a universally quantified fragment is as a demon that monitors those points in
the program (or conditions during execution) and is executed when triggered by the

1 appropriate conditions. Seen in this light, fragments are related to Schwartz's notion of i
| independent, parallel chunks or “rubble” ([Schwartz-74, Schwartz-78]. However, whereas i

| programs written in terms of pieces of rubble would presumably be compiled or interpreted all
] at once, fragments are incrementally integrated into a modelling language that uses standard

sequential control structures.

] A program reference pattern is a declarative specification of a set of relevant program modei ]
] templates: no particular search strategy is presumed for how the pattern match is implemented. }
} For example, consider a pattern that specifies all loops in the model with a particular property. g

A straightforward pattern matcher might match this pattern to the model by searching every i
template in the model for those that are loops with the required property. A smarter matcher k

| would know that the root template of the program model contains cross-references to every ;

template by type? and would therefore limit its search to the list of all loop templates. So we
observe that this small part of the great automatic programming problem may be viewed as an
automatic programming problem itself, complete with program specification and opumization 1

» considerations.

| Besides its utility in automatic programming systems, the program reference languaye may be of f
x use in research on intelligent program editors. The reference capabilities described are related J
Cl to those provided by many interactive text editors, especially those for specific programming :

: languages. Most general purpose text editors only provide low level editing primitives that .
treat their data as an arbitrary character string”, Language oriented editors introduce syntactic ?

| and contextual editing, eliminating most of the need and perhaps even the capability for purely
textual editing. An excellent example of such an editor is the one embedded in the :

1 INTERLISP system [Teitelman-78). INTERLISP also has limited methods for specifying

=

: ! The program reference language is a special purpose pattern matching language. Much more
general matching schemes are described for KRL (Bobrow & Winograd-77]

2 Another possibility would be to order the templates and use the one that was the “best”
| match.

3 These cross-references correspond to the notion of index keys in KRL [Bobrow & Winograd-
| | i!

4 Or even worse, the data is treated as a list of individual lines of text. 1
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| historically and semantically, using the “history list” feature of the Programmer's Assistant 8
| [Teitelman-72B] and the program analysis package called MASTERSCOPE [Masinter-79]. s

These three subsystems of INTERLISP have somewhat differing goals from the present effort, ;
and in any case are provided via separate mechanisms utilizing separate languages®. 4

The rest of this appendix defines the capabilities envisioned for the program reference |
language by the types of references allowed. ]

A.l Textual References 1

A point in a program can easily be specified (partially, at least) by its position in a text string
representing the program. The two standard ways are by line number and by substring match. ;
In the program reference language both of these methods make use of the “readable” program
model, a compressed, linear form of the model that can be printed for the user upon request i
[Pressburger-78] The model is represented in a PASCAL-like notation that optionally includes 3
line numbers. This form of the model will be referred to as the model listing to distinguish it k
from the program model itself. 3

The pattern ' 4

line 500 3

in the program reference language limits the search {ar the specified program model template to 1
those templates represented in line 500 of the readable model listing.

| A pattern consisting of the character string 1

“output” :

matches all templates represented by the word “output” in the readable model listing.® The {
| universally quantified pattern 3

Y “output” A

results from a user command such as “Change ‘output’ to ‘print’ everywhere.". Note the
distinction between these two patterns. Both may match zero or more templates, but the former 3
pattern requests that the associated action in the fragment be done to exactly one template, ;
while the latter pattern requests that it be done to all matching templates. :

}

| Most types of patterns can be combined to form conjunctive expressions. For example, :
line 2100, “output” |

| > The most interesting one is MASTERSCOPE's fill-in-the-blank command language, which| accepts limited English phrases. |

| ® We say “represented by" because the string pattern itself may never occur in the actual 1
| program model. For example, the reserved words “begin” and “end” are used in the readable |
| model listings to represent templates of type composite. |
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EL matches only model templates represented by the occurrences of the string “output” in line 2100 "
Eo of the model listing. :

| The pattern variable “”" is used to match arbitrary individual characters, with a superscript
| specifying the number to be matched. “” or “%" matches zero characters, hence is equivalent to
| concatenating the neighboring strings. The pattern |

“begin” 10 “end” i
| will match all blocks with exactly ten characters between the starting and ending keywords. j

Borrowed from the language of regular expressions, the superscript variable “<” matches zero or
more characters, and “+”, one or more. For example, the. pattern :

“begin” .* “end”

matches all blocks. ;

A pattern may be subscripted by a sequence of numbers specifying which matches of the
pattern are to be retained. To do this, a starting point and an ordering on potential matches {
must be specified. In the case of string matches, this ordering starts at the beginning of text V1
and proceeds linearly through the text to the end. For example, :

“output” §

matches only the template corresponding to the fifth occurrence of the string “output” statement
CL in the listing. As a more generai example, ]
- i }

oo)

“output”; 368.3

i matches the first, third, fourth, and fifth templates from the beginning and the fourth template 3
from the last corresponding to “output”. We could also extend the syntax to allow the exclusion 4

| of certain templates that match. As later examples show, subscripts may be added to any E
|! expression to constrain the extent of the match.

A.2 Syntactic (Lexical) References ]

Specifying program parts syntactically requires a shift from specifying text in the model listing |
to specifying templates in the program model itself. The model is essentially a parse tree of the
program, with templates as nodes in the tree. The closest related work to this is the Find |
command with patterns in the INTERLISP editor [Teitelman-78, Section 9.3.2]. |

The simplest way to specify a model template is by giving its unique name. For example,

| | template update

| specifies the unique template called update in the model.

| If the name of the template isn't known, then the values of slots may be used to identify the
y desired template. The phrase “where x is output to disk or tape” may be represented as |
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template n | n.type=output, n.AIU_instance=x, n.destinatione{disktape} 1

Pattern match expressions are separated by commas representing logical conjunction. 3

N Expressions are matched in order, left to right, to avoid potential ambiguities.” A way to :
visualize the matching process is to consider it as a series of constraints applied to the set of all | §
templates in the model. The first conjunct reduces the set of potentially matching templates to a 1
subset of all the templates. The next con junct further reduces the size of this subset (constrains 3
the match), and so on until the last conjunct is applied and the final set of matching templates 3

A slot value expression is of the form 1

<template>.<slot> <operator> <value> i

where the operator can be equality, inequality, set membership, set nonmembership, and other }
operations where appropriate. If a name appearing in the value position of some expression
also appears in the template position of another expression, then that name is assumed to be a :
variable; otherwise, it is assumed to be a constant. |

If a slot name (e.g, type) isn't preceded by a template name, then the template named between )
template and “I” at the beginning of the pattern is assumed. Thus the following pattern is
equivalent to the one above: 3

template n | type=output, AIU_instance=x, destinatione{disktape} 1

If the action of the fragment is to apply to all such output statements, the pattern used is 3

Y template n | type=output, AIU_instance=x, destinatione{disktape} :

Co Sometimes one wants to obtain a slot value some templates away from the current template, and E
b the names of the intervening templates aren't needed for other purposes. In such a case, slot ]
: names may be strung together in one expression, separated by periods. Thus, the following two 4

patterns are equivalent. 1

' template n | n.true_action=¢, t.body=b, b.type=composite :
template n | n.true_action.body.type=composite E

Of course, as in any pattern match, if the value of the slot doesn't match or the slot doesn't 1
have a value at all, the match fails.

Subscripts may be used to limit the matches that occur with these conjuncts. The default \
ordering is lexical order, i.e, the depth first traversal order that templates are visited when a
listing is being created. Because all information structures and procedures are considered .
global in the program modelling language, lexical order puts all information structure
prototypes first, then information structure instances, then procedure declarations, and finally
the main algorithm body. The following three examples demonstrate the power of subscripting:

7 An example of such an ambiguity appears later in this section.
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- tenplate n | (n.type=input, n.type_returned=a), to
} template n | (n.type=input);, n.type_returned=a i
¥ template n | (n.type=input)s, (n.type_returned=a); i

| The first expression matches the third input operation of the model that returns a value of type uy
» a; otherwise, no template is matched. The second expression is more restrictive. It matches the :
ou third input operation if that input returns a value of type a; oth.rwise, no template 1s matched. |

. The final expression can’t match anything. It first selects a set of templates containing only the {
= third input operation (if such exists) and then tries to select the third element of this set that 1
| | returns a value of type a. Obviously there can't be a third element in a set with only one i
Po member.

| Constraining a group of templates to some order is done by enclosing the sequence of templates ]
| in braces and separating the template names by an ordering relation (or pattern variable). For 3
a lexical ordering, the pattern variable is a period. An unsuperscripted period may be omitted. 4

: For example, the two patterns 4

| template n | type=output, {foo . bar . n}, foo.type=composite, bar.type=test 1L template n | type=output, {foo bar n}, foo.type=composite, bar.typestest 1

| : are equivalent and match all output operations that immediately follow a test that immediately
I follows a composite. ]

Similar to the string matching in the previous section, determinate (with a fixed number of {
elements) and indeterminate (with either zero or more or one or more elements) sequences of ;

oA templates can be specified; e.g. !

 § template n | {foo .* bar .2 n}, foo.type=input, bar.type=output

; specifies the template exactly three templates lexically after an output that lexically follows an
input.® i

If matches are restricted by subscripting, then ambiguous patterns can occur unless the 3
evaluation of conjuncts is limited to a particular order, in this case left to right. For example, 3
in the pattern

|! template n | {a .* n}, (typestest), ;

: a left-to-right matching order finds the second test after a, while right-to-left order will find no 4
E matches if two or more fests occur before a. :

\ Template paths through the program model tree are specified as sequences of template names |
separated by “1”s. A { b means that b is a child of a. A 1° b means that there are exactly five
intervening templates between a and b. 4 1* b means that there is an indeterminate number of

! ® Thus, a single “.” is equivalent to “On

| ? If one knew that 5s was the name of the slot in a that pointed to b, then an equivalent formp q
would be a.5 = b. However, the form a { b is more general, since it allows b to be located in any |
slot of a that can point to a child. Typically there is more than one.
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3 intervening templates. “The statement that outputs a collection of size less than twenty” is ! |
| expressible as

template n | type=output, AIU_instance=x, {y | x}, y.type=coilection, y.size<20 3

“The output statement that occurs in a conditional that is three levels down inside some block” | 4
4 becomes

| template n | type=output, {foo 1% bar 1* n}, foo.type=composite, bar.type=test i

1 Here we also note the following equivalence, for arbitrary paitern variable “eo” (e.g. “.", “1”: !

template y | ({x o* 3}), = template y | {x o"' y} 1

| The lefthand side matches all templates y “after” x and then selects the ith one. The righthand
3 side directly selects the ith template after x.

1 A.3 Contextual References 3
i 3

Contextual reference, i.e, specifying a piace in the program relative to the last place discussed, i
is often extremely useful. To refer to the current template explicitly, we introduce the symbol

“«".'9 We can now refer, for example, to templates before, after, below, and above the current {
one. The first example below specifies the template that lexically follows the current one. If the 3
current template is the first part of a composite, this statement would specify the second part. 3
Also note the last example, which allows one to specify the closest test template above the
current template.

oo template n | {» . n} |
template n | {n .* #} 1

a template n | {= I* n} :
template n | ({n 1* «}, typestest), 1

: Another type of useful reference constrains the pattern to match the “clorest” template in any g
direction to the current template context. Closeness is defined in terms of the number of ¥
intervening templates along the path between the two templates in question. We introduce two
symmetric pattern variables that provide two ways to define paths. A . 56 means that ¢ occurs {
either before or after b in lexical order. A if b means that a occurs either on the path from the :

| root node of the program model tree to 6 or somewhere in the subtree below b. If two or more "

| templates tie for closest, then they all match. -
template n | ({» .. n}, type=composite),

| template n | ({» LT n}, types=test),

| The first example above specifies the closest composite lexically to the current location. The _
| second specifies the closest test that either contains or is contained in the current template. ;

'9 This context variable provides a simple but useful form of the KRL notion of a “focus list”
3 of templates (Bobrow & Winograd-771
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A.4 Historical References Ff

| Referring to the program model in chronological order of specification requires maintenance of
a history list [Teitelman-72B] of fragments (not necessarily the same as the tree of more general |
topics discussed, cf. the PSI dialog moderator {Steinberg-79]). Along with each fragment, a list |
of model templates that were affected by the fragment is kept. E

Now we introduce the pattern variable "<". 4 < b constrains template a to occur in the history :
list immediately before template b. Here are some examples of its use: 3

. 3 template =~ ' {n <x} A

template n | {n <* x} 1

template n | {n <7 1
teimnplate n | ({n <* «}, types=test),

Since “»” 15 the current template, it always refers to the latest entry in the history list. For ]
example, the last expression above refers to the most recently discussed test, excluding the :
current template.

Historical patterns may constrain matching of the history list to an appropriate order. For this 1
purpose, we introduce the pattern variable “<>”. A <> b means that b occurs in the history list ',
somewhere either before or after a. As examples, the phrases “the most recent output statement
discussed”, “the earliest output statement discussed”, and “the closest output statement to the L
point where template a was discussed” might be expressed as

template n | ({n <* «}, type=output), 3

template n | ({n <* «}, type=output)y 3
template n | ({a <> n}, type=output),

: A.5 Semantic References

Templates can be specified semanticaily by their functionality in the model and by control and b
dataflow. Simple forms of these references are available in the MASTERSCOPE package of
INTERLISP ([Masinter-79]. The notion of semantic functions is exemplified below by type, ;
returns, and referents, but this is not a complete list of the necessary functions. :

As an example of reference by function, the following pattern finds all (control structure) i
LL templates that contain below them a set operation that returns a Boolean value.

| template n | {n 1* x}, type(x)eset_operations, returns(x)=Boolean
ol The functional notation used for type and returns indicates that these are not simple slot values

| of template x, but possibly have to be computed. The following pattern describes all
procedures that return a value of type :

template n | type=procedure, returns=y

Control and dataflow order are specified by the “+”, *+™, *4*”, and "+*" patterns, analogous to |
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the forms for the “”, “I”, and “<” pattern variables discussed earlier.'! Whether “+” refers to '
: requires a data or control flow ordering depends upon the context in which it occurs. Here 1s a

: pattern that specifies all procedures that may be called before template x is executed: ;

| template n | type=procedure, y.instance_of=n, {y +* x} 5
The dataflow examples below specify the first reference to g, the last reference to a, the template
that references both a and b, and the template that references a before it is output. The default :

7 order for matching is execution order. |

template n | (aereferents(n)),
template n | (aereferents(n)y g
template n {| referents(n)={ab} i

] template n | acreferents(n), {n »* x}, x.type=output, x.AIU_instance=a | |3 We could also introduce a “»«" pattern variable analogous to “.”, “IT”, and “<>”, but its utility

isn’t clear. |
A.6 Pragmatic References

Referring to a part of a program pragmatically, i.e, by its function or purpose, is probably the !
most common and useful program reference technique when the user isn't dealing directly with :

] the program itself (e.g, by using an editor of some kind). However, this conclusion is based on |
an examination of a small number of natural language program specification dialogs held by :
only a few different people. Unfortunately, pragmatic references require domain knowledge, of i
which PMB has little. The only way PMB can handle specifications such as “the output |

b statement that lists the updated database” is via trivial slot values that provide some domain 3
i specific context: k

- template n | type=output, AIU_instance=database, {a |* n}, a.user_name=update J
Co template n | type=output, purpose=output_database

i Each template currently has an optional user name slot, which takes an arbitrary (user defined) ¢
string. A purpose slot could also be made optional for all templates, with the user or other ;
domain expert allowed to fill it in. The first example pattern above matches the output ;
operation that outputs information structure datgbase and occurs below a template that is called }
“update” by the user. The second example matches an output operation whose purpose is

| “outputting the database”.

'! “Convenience” pattern variables such as “1”, %>", and “~" could easily be introduced. For .
example, a T b would be defined to be equivalent to b {| a. However, these forms add nothing to |

1 the power of the language.

’ | — . CS AAA————— J
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i | Appendix B. Example Rules ;

; This appendix provides a sampler of the rules in PMB's knowledge base. About one-fourth of
: the over 200 rules are listed. Each rule is represented by an English paraphrase, rather than |!
1 by the raw LISP code.

The example rules are listed by kind of knowledge (e.g, consistency checking) rather than
i format of rule. Within a particular category of knowledge, the rules are listed in the order of
k the class of the primary template being updated: (1) information structures (AIUs), (2) control :
3 structures (ACUs), and (3) primitive operations (POPs). Compound demons have mnemonic |
1 names, while other rules have numeric names. If a rule sets up a demon that is also listed in |

1 this appendix, the rule description so states. |
; Recall that each rule is invoked in a context that includes a template name, slot name, and |
E value from the current fragment.

B.I Completeness by Default and Questioning: Response Rules i

; Where response rules contain such words as “later”, “guarantee”, and “eventually”, a demon is |
being created. |

Sn B.1.1 Response Rules for Information Structures :

RULEO57: If the current fragment defines a known AlU prototype to be of type primitive,
then store the type in the AIU prototype template in the model and ask if there is a specifier .

3 slot, but assume it is a string for now. :

3 RULEO085: The current fragment defines the specifier of a primitive AIU prototype. If the
} specifier is “numeric”, then store that fact and ask about a numeric value slot. ,

| RULEO093: In the current fragment we have the definition of the type of an AIU prototype. If
3 the type is list, then create a collection, make it ordered, and ask about repetitions.

’ RULEO81: We have the subparts of a plex. First make sure the subparts are in the form of a

| { list structure. Process each subpart, making sure that each subpart name is a unique (among
a the subparts) literal atom and asking questions about each subpart. Then store the entire list of

subparts in the plex template.

1. B.1.2 Response Rules for Control Structures

RULEOQOS: If the slot value specified in the current fragment is not already the name of a
BR template, then create a new template with that name and with a class of operational unit, ask

the type of the new template, and set up two-way linkage with the template that calls this
operational unit.
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3 !
3 RULEOLO0: If the operational unit is a composite, then store that type and ask about the

| subparts and orderings, but assume sequential orderings for now.

] RULEOLL: If the operational unit is a test, then store the type and ask about the condition,
| probability that the condition is true, true action, and false action. Assume no false action.

{ RULEOI2: If the operational unit is a case, then store that type and ask for a list of case pairs.

f RULEOL3: If the operational unit is a loop, then store that fact and ask about the
. initialization, body, and exit pairs. Assume no initialization.

RULEO023: We have the exit pairs of a loop. Make sure they are in a list, and then store the
| list. Make sure each exit pair has exactly two elements, a predicate and a corresponding action,

For each exit pair, the predicate should be a Boolean expression occurring in the loop body
] somewhere and should be unique among the exit predicates for this loop. Put the predicate

inside a test and add an assert_exit_condition (done by RULE191). The action of the exit pair
may be any operational unit.

RULEOQOI: If the name of the program model is legal, initialize the algorithm model and
3 associated demon space, set up the program model template using the name given, and ask for

the domain and top level ACU. Assume that the domain is “unknown”.

B.1.3 Response Rules for Primitive Operations |

| Primitive Operations That Return Boolean Values

| RULE174: We are expecting a construct (either a primitive operation or an AIU instance) that |
; has a Boolean value. If its type is is_element, then store it and ask about the element, collection, ;
1 and probability slots. Eventually check for consistency between the element and collection slots
{ (done by IS-ELEMENT-CONSISTENCY). |

3 | RULEO19 (discussed in Section 8.1.1): If the new operational unit is an is_subset, then store the
] type and ask about the subcollection, collection, and probability slots. Also guarantee that
3 subcollection and collection have the same prototypic element (done by IS-SUBSET-
3 ~~ CONSISTENCY).

i RULE?222: If the Boolean expression is a {rue_for_all, then store the type and ask about :
4 referents, collection, condition, and probability. Later see if the true_for_all can be transformed
1 into an is_subset (done by TRUE.-FOR-ALL-TO.|S-SUBSET).

RULE228: We have the AIU instance that is used as the referent of a POP with a quantifier,
eg. a true_for_all. Add cross-references and guarantee that the referent is only remembered
once and never forgotten or modified (done by RULE256 and RULE257). Finally, see if its |

| AlIU prototype can be inferred from how it is used, by monitoring the where-referenced slot.RULE275: We are expecting a Boolean POP. If its type is Aas_correspondent, then store the
: type and ask for the correspondence, domain element, and probability slots. Eventually

| guarantee that the domain element is of the same type as the domain AIU of the
correspondence sint. ‘
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: RULEO020: If the operational unit is an is_of _type, then store the type and ask about the value
to be checked, the AIU prototype, and the probability that the test is true. )

RULEI51: We have the value slot of an is_of_type. If the template named as the value slot
i doesn’t exist yet, then create an alternative and ask the appropriate questions about it, create an i

instance of it, create a remembered_value above it, and eventually guarantee that the AIU 3
i prototype named in the is_of_type occurs somewhere in the alternative tree (done by 1S-OF-

TYPE-CONSISTENCY). ;

RULE?293: If the Boolean expression is a generic are_equal operator, then ask about the two |
i instances and the probability the test is true, and eventually decide how the are_equal should be 1

specialized (done by RULE300). ]

Primitive Operations That Return Non-Boolean Values |
; The three rules below are discussed in Section 8.1.1. ]

RULEOQ0Y6: We are expecting a POP or instance that has a collection as its value. If the |
1 specified template exists and is a POP, then store two-way linkage and guarantee eventually :

1 that the POP returns a collection. 3
J RULEO098: We are expecting a POP or instance that has a collection as its vaiue. If the

| : template exists and is an AlU instance, then make sure eventually that it is a collection and |
1 insert a remembered_value above it.

| | RULEOQ099: We are expecting a POP or instance that has a collection as its value. If the
E template doesn’t exist yet, create a template of class “collection” and store two-way linkage
; between it and the calling template.

2 Primitive Operations for Input/Output :

1 RULEOQ36: The operational unit is an input POP, so fill in the appropriate slots and then ask p
F questions about the AIU to be input, the source of the input, optional input format, and |

prompt and reprompt strings. Assume that the source is the user and assume defaults for the ;
3 prompt and reprompt. Eventually copy the type-returned slot of this POP from its AIU slot. u
EE Eventually construct a default format for the AIU and its sub-AlU:s.

RULE148: If the prompt or reprompt is an existing AIU prototype, then eventually make sure
: it is a string primitive with a value, and store the value as the prompt or reprompt. ;

3 RULEI146: If the prompt or reprompt is a new template, then create a string primitive, ask its

| value, and eventually store the value in the prompt or reprompt slot.
RULE?262: If the operational unit is an output, then store the type and ask questions about its

] AlU instance, destination, and optional format. Assume that the destination is the user.
: Eventually create a default format. Eventually see if the output can be transformed into an

inform_user (done by OUTPUT-TO-INFORM-USER). |
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] Primitive Operations That Alter the Flow of Control

i The first rule below was used near the beginning of the CLASSIFY example in Chapter 4. |

b RULE149: We have the condition slot of an assert_exit_condition. First make sure it's a legal J
name. Eventually check every loop that the assert_exit_condition is in to see that condition 1s
the name of an exit block in (at least) one of them (done by RULE194). Then store the )

1 condition. :

: RULE?238: We have the instance-of slot of a procedure_instance. If the procedure named as
the slot value doesn’t exist, then create it and store cross-references between it and the instance. 1

| Eventually store in the procedure_instance the type returned by the procedure. }

RULE243: We have the list of bindings of a procedure_instance. If the list isn't empty, then
process each element of the list, store the bindings list in the procedure_instance, eventually t

| make sure there are the same number of bindings as parameters in the procedure (done by }PARAMETER-« CONSISTENCY), and eventually guarantee that the types of bindings and !
parameters agree. |

B.2 Completeness by Inference :

J RULE191: An exit condition of a loop is now known. Create an assert_exit_condition with the :
name of the exit block as its label slot. Create a test with the exit condition as its condition slot

and the assert_exit_condition as its true action. :

INSERT-POP: If we have a POP below the current template, then store the name of the POP J
= ir. .he template. ¥

= INSERT-SELECT-ALTERNATIVE: If an is_of_type POP is in an exit condition of a loop |
ow and the alternative referred to by the is_of_type only has two possibilities, then insert a i
BB select alternative after the exit condition. 3

3 B.3 Completeness by Generating Cross-References :

4 RULEO51: We have a new reference to an instance. Update which ACU has this instance in :
- its list of relevant AIU instances. This ACU should be the least global ACU that contains )
| both the current reference to the instance and the current ACU listed in the ACU scope slot of

| the instance. Also update the ACU scope slot in the instance template to point to this newly 3computed ACU. Quantified POPs are considered to be ACUs when their referent instances |
are being handled. There is an error if the new reference to the instance implies that the |

: | instance is used both locally and globally to a procedure or quantified POP.

a

1 i
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3 | B.4 Consistency Checking : 1

] SAME-PRIMITIVE: Check that the two AlUs are primitives with the same specifier subtype | i
(e.g., both strings). ]

1 RULEI94: Check that the exit condition of a loop is contained within that loop. When the 3
current template knows what operational unit is above it, see if it is the loop we are looking for. 1

} If not, move up eventually to the next higher operational unit and repeat the check. There is
; an error if the program model template is reached. ]

EXIT-CONDITION-NOT-TEST-CONDITION: Ensure that the exit condition of a loop :
: isn’t also the condition of a test (since RULE 19] puts the exit condition in a new test). 3

] IS-ELEMENT-CONSISTENCY: In an is_element POP, make sure that the element slot is the 4
: same type as the prototypic element of the collection slot. 1

IS-SUBSET-CONSISTENCY (discussed in Section 8.1.3): Make sure that the subcollection 4
: and collection slots of an is_subset POP have the same prototypic elements. : ;

| RULE?256: An AlU instance that is used as the quantifier in a POP such as a true_for_all has ¥
been changed. Make sure that it is still remembered only once. ']

] RULE257: An AlU instance that is used as the quantifier in a POP has been changed. Make 1
| sure that it hasn't been forgotten or modified. 3

; IS-OF-TYPE-CONSISTENCY: In an is_of_type POP, make sure that the specified AIU 1
1 prototype is somewhere in the alternative’s subtree. 1

- RULE103: We are expecting a template that returns a collection. If the template exists and ;
Fo doesn’t return a collection, then there is an error. 1

3 | PARAMETER-s-CONSISTENCY: Ensure that a procedure_instance has the same number of
F | parameters as the procedure declaration. 3

] | B.5 Inconsistency Resolution

Both of the following rules deal with the resolution of prototype-instance ambiguity.

= RULE267: An AlU instance is referenced. If a template with that name already exists and is
an AIU prototype, then create a new instance template for the prototype and insert a
remembered _value POP between the reference to the instance and the instance itself.

RULE276: An AIU prototype is referenced. However, the template referenced is currently an
AlU instance that doesn't have a prototype defined. Change the template into an AIU

| prototype and ask questions about its type. Create a new instance template, make it the primary
| instance of the prototype, copy information from the old instance to the new instance, update all

pointers to the old instance to point to the new one, and make all demons that were active in |
the old instance active in the new instance instead. |
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| B.6 Specialization of Generic Operators * 3

RULES300: If the first argument of an are_equal generic operator is an alternative, then the
second argument should be a subtype of the alternative. Change the are_equal into an 3

» is_of type. Finally, try to insert a select_alternative in the appropriate place after the }
2 is_of type. §

| B.7 Canonization j

1 TRUE-FOR-ALL-TO-IS-SUBSET: The current template is a true_for_all test. If it has the
 ! form (true_for_all x) (x is_element a) implies (x is_element b)), for arbitrary expressions a and 1

b, then transform the entire true_for_all expression into (a £s_subset b). f

: OUTPUT-TO-INFORM-USER (discussed in Section 8.1.3: If the output POP is merely 1
! outputting a string constant to the user, then transform it into an inform_user.

}


