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-Abstract

An algorithm for pretty printing is given. For an input stream of length n
and an output device with margin width m, the algorithm requires time O(n) and
space O(m). The algorithm is described in terms of two parallel processes; the
first scans the input stream to determine the space required to print logical blocks
of tokens; the second uses this information to decide where to break lines of text;
the two processes communicate by means of a buffer of size O(m). The algorithm
does not wait for the entire stream to be input, but begins printing as soon as it
has received a linefull of input. The algorithm is easily implemented.

1. Introduction

Althqugh the art of parsing is a well-researched area, its dual — “unparsing”
and “pretty printing” — has not received like attention. A pretty printer takes
as input a stream of characters and prints them with aesthetically appropriate
indentations and line breaks. As an example, consider the following stream:

var z : integer; y : char; begin z:=1; y := ‘a’ end
If our margin width is 40, we might want it printed as follows:

var z : integer; y : char;
begin z:=1; y i= ‘a’ end

If our margin width is 30, we might want it printed as follows:

var z : integer;

y : char;
begin
z:=1;
y i="a’;
end

This research was supported by the National Science Foundation under contract MCS 78-02835.
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But under no circumstances do we want to see

var z : integer; y :
char; begin z := 1;
y := ‘a’; end

Pretty printers are common components of Lisp environments, where trees
or s-expressions are data objects which are interactively manipulated and which
have to be displayed on a screen or on the printed page. Since the main delimiters
in Lisp are parentheses and spaces, a Lisp program or s-expression is visually
intolerable unless pretty printed, (See [Goldstein 1973} or [Hearn and Norman
1979) for descriptions of some pretty printers for Lisp.)

Pretty printers have generally not been very common for block-structured
languages, perhaps because, until recently, “programming environments” for such
languages did not exist. (See [McKeeman 1965], [Hueras and Ledgard 1977}, [Huet
et al 1978] or [Hearn and Norman 1979] for descriptions of some implemented
pretty printers.) Happily, this situation is fast changing. Pretty printers are in-
tegral components of any programming environment tool. Editors, for example,
for block-structured languages benefit enormously from a pretty printer — as the
user interactively makes changes to his program text, the modified program is
pleasingly displayed. Not only does this make it easier for the user to read his
program text, but it makes it easier for him to notice such common programming
errors as missing ends. Compilers should use pretty printers to print out error
messages in which program text is displayed; this would make the error much
more understandable. Pretty printers are useful in any system which prints or
displays messages or other output to the user.

Pretty printers have traditionally been implemented by rather ad hoc pieces
of code directed towards specific languages. We will instead give a language-
independent pretty printing algorithm. The algorithm is easy to implement and
quite fast. It is not, however, as sophisticated as it might be, and certainly can-

- not compete with typesetting systems (such as TEX [Knuth 1979]) for preparing
text for publication. However, it seems to strike a reasonable balance betwcen
sophistication and simplicity, and to be appropriate as a subcomponent of editors
and the like.

" We will not discuss in detail the question of how to interface the pretty
printer described here with any specific language. In general, the pretty printer
requires a front-end processor which knows the syntax of the language, to handle
questions about where best to break lines (that is, questions about the inherent
block or indenting structure of the language) and to handle questions such as
whether blanks are redundant. We shall describe in section 6 two approaches we
have taken to implementing a preprocessor for pretty printing.
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2. Basic Notions

The basic idea of how a pretty printer works is well established in the folklore,
and the algorithms of which the author is aware all provide roughly the same set
of primitives — primitives which the algorithm described here also provides.

A pretty printer expects as input a stream of characters. A character may
be a printable character such as “a” or “3” or “&” or “,” or it may be a delimiter
such as blank, carriage-return, linefeed, or formfeed. A contiguous sequence of
printable characters (that is, not delimiters) is called a string. The pretty printer
may break a line between strings but not within a string.

We will differentiate between several types of delimiters. The first type of
delimiter is the blank (carriage returns, formfeeds and linefeeds arc treated as
blanks). The next two types correspond to special starting and ending delimiters
for logically-contiguous blocks of strings. We will denote the delimiters [ and ]
respectively. The algorithm will try to break onto different lines as few blocks as
possible. For instance, suppose we wish to print out f(a, b, ¢, d) + g(a, b, ¢, d) on
a display which is only 20 characters wide. We might want this printed as

f(as b,c, d)
+g(a, b, ¢, d)

or as

f(a, b, ¢, d) +
g(ai b’ C) d)

but definitely not as

f(a, b,¢,d) 4 g(a,
b,
¢
d)

We can avoid this by making f(a, b, ¢, d) and g¢(a, b, ¢, d) logically-contiguous
blocks; that is, by surrounding each by [ and ].In fact, since this expression
undoubtedly appears within some other text, we should include logical braces
around the whole expression as well:

ﬂ[[f(a,byC,d)]] + [ ¢(a,b,c,a) ]]]]

(You might be asking at this point why the algorithm doesn’t recognize that
parentheses are delimiters and thus that g(a, b, ¢, d) shouldn’t be broken if pos-
sible. But the pretty printing algorithm given here is a general purpose algorithm
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providing primitives for pretty printing, and is not tailored to any particular lan-
guage. The example could have been written just as easily with two begin . . . cad
blocks.)

We will later allow refinements to the above set of delimiters, but for the
moment we will describe the algorithm using just these three. We assume that
the algorithm is to accept as input a “stream” of tokens, where a token is a string,
a blank or one of the delimiters [ and ]. A stream is recursively defined as follows:

1. A string is a stream.
2. Ifsy,.... sk are streams, then [s; <blank> s3 <blank > . . . < blank >

sk is a stream

As we shall see later, this definition of an “allowable” stream is a little too
restrictive in practice, but makes describing the basic algorithm easier. We make
one additional assumption to simplify discussion of the space and time required
by the basic algorithm: no string is of length greater than the linewidth of the
output medium.

3. An Ineficient but Simple Algorithm.

We first describe an algorithm which uses too much storage, but which should
be fairly easy to understand. The algorithm uses functions Scan() and Print().

The input to Scan() is the stream to be pretty printed. Scan() successively
adds the tokens of the stream to the right end of a buffer. Associated with each
token in the buffer is an integer computed by Scan() as follows. Associated with
each string is the space needed to print it (the length of the string). Associated
with each [ is the space needed to print the block it begins (the sum of the lengths
of the strings in the block plus the number of blanks in the block). Associated
with each ] is the integer 0. Associated with each blank is the amount of space

. needed to print the blank and the next block in the stream (1 + the length of
the next block).

In order to compute these lengths, Scan() must “look ahead” in the stream;
it uses the buffer stream to store the tokens it has already seen. When Scan()
has computed the length ! for the token z at the left end of the buffer, it calls
Print(z,l) and removes z and | from the buffer. The buffer is therefore a first-in-
first-out buffer.

Print() uses the length information associated with each token to decide how
to print it. If Print() receives a string, it prints it immediately. If Print() receives
a [[, it pushes the current indentation on a stack, but prints nothing. If it receives
a ], it pops the stack. If Print() receives a blank, it checks to see if the next block
can At on the present line. If so, it prints a blank; if not, it skips to a ncw line
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and indents by the indentation stored on the top of the stack plus an arbitrary
offset (in this case, 2).

Print() is the simpler routine so we describe it first. It uses auxillary func-
tions Output(z), which prints z on the output device, and Indent(z), which starts
a new line and indents z spaces. . Print() also uses a local stack S with operations
Push(), Pop() and Top() (the latter returns the top of the stack without popping
it). It also uses the constant margin which is the margin width, and a variable
space which stores the number of spaces left on the present line.

Print(z, ) :
.cases
x :wtring 3 Output(x); space += space . I;
z: ﬂ 3 Puah(S. epace);
X n=¥ Pop(S);
X : blank = if | > space
then space := Top(S) — 2; Indent(margin — space);
else Output(x); space == epace — 1;

Now we are ready for Scan(). It successively receives tokens from Receive()
and stores each at the right of the buffer stream, It uses a second bufier size
for storing the lengths associated with tokens as described above. It uses vari-
ables left and right for pointing at the left and right ends of these buffers (the
buffers are assumed to be of arbitrary length). It uses a local stack S with opera-
tions Push(), Pop() and Top(), and a local variable z. Finally, it uses a variable
rightotal to store the total number of spaces needed to print all elements of the
buffer from stream[l] through stream|right].

Secan() : local x;

forever x := Receive();
cases

X : eof = halt;

z:[=
cases S : empty = left:= right :=rightotal := 1;

othcrwirc = right 1= right + 1;

stream|right] ;= z;
size[right] := —rightotal;
Push(S, tight);

z:] =

reight := right 4+ 1;
stream|right]:= x;
size[right] := 0;
z = Pop(S);
size[z] := rightotal + size[z);
if stream[z] : blank them x := Pop(S); esze|z]:= rightotal + size|z];
if S : empty ,
then until left > right do



Print(streamlleft], size[left]);
left := left + 1;
X : blank =
right := right 4 1;
z := Top(S);
if stream|z] : blank then size[Pop(S)]:=rightotal + size[z};
stream|right] := z;
size|right] := —rightotal;
Push(S,right);
rightotal := rightotal + 1;
x : string 3
cases S : empty = Print(z, length(z));
otherwirc =
right :== right 4 1;
stream|right] ;.= z;
size[right] := length(z);
rightotal := rightotal 4 length(z);

Scan() uses the stack to keep track of occurrences of delimiters. If it receives
a [, it stores the [ in stream|right] and —rightotal in size[right]; when it receives
the corresponding ], it computes the space needed for this block — it is (the cur-
rent value of) rightotal 4 size[right). If Scan() receives a ], the top of the stack
is either the index of the [ starting the block (if the block contained no blanks),
wwnd otherwise the index of the previous blank in this block and underneath that
the index of the [ starting the block. In the former case, Scan() computes the
length associated with the [[; in the latter, it computes the lengths associated with
the [ and the blank. If Scan() receives a blank, the top of the stack contains
either the index to the start of the block or the index to the previous blank in
the block. If the latter, Scan() computes the length associated with the previous
blank.

Scan() has the nice property that it requires time linear in the length of the
stream (as does Print()). It has the undesirable property that it also requires space
linear in the length of the stream. For suppose the whole stream is delimited by
[ and ]. Then Scan 1 ilad the whole stream before it computes the length of
this block. (If all blocks are small this may be considered an unimportant point.)
Another problem with Scan() is that it may have to process large amounts of
data before the first character can be printed. This is undesirable in an interactive
environment: we want to start printing characters as soon as possible if only to
give the user positive reinforcement.

We are now ready for the next iteration of the algorithm, which requires
space O(m) rather than O(n), that is, space which depends only the linewidth of
the output medium and not on the length of the input.

6



4. AR Efficient but Less Simple Algorithm.

Let us consider again the roles of Scan() and Print(). It may be helpful to
visualize them as two parallel processes communicating via the buffers stream
and size. Scan() wants to put information into the buffers on the right while
Print() wants to remove information from them on the left, That is, Scan() wants
to advance fhe cursor variable right while Print() wants to advance the cursor
variable left.

The problem is that Print() cannot use stream[left] until s¢ze[le ft] has a
positive value. In the algorithm given in the previous section, if stream[lcft]is a
[ or a blank, Scan() will not fill in size[left] until it has seen the corresponding
] or next corresponding blank. And this holds up Print() unnecessarily. Since
there can only be m characters on a line, it is not necessary for Scan() to compute
an exact value for size[left] if size[left] is going to be greater than m. As soon
as Scan() knows that size[left] must be greater than m, it may as well make
size[left] equal to co. That is, as soon as the sum of the lengths of strings plus
the number of blanks between left and right in stream exceeds m, we can let
Print() advance.

Thus, Scan() and Print() needn’t get too far apart in accessing the buffers.
Allowing for the fact that stream stores occurrences of [ and ] as well as strings
and blanks, right — left need never exceed 3m. So, our buffer size can be lincar
in m, and we never need look ahead more than 3m tokens before being able to
print something.

And we can do even better. At any moment, Print() has printed zero or more
characters on a line. All it needs to know in order to make a decision on how
to print the next block in the stream is whether or not the block can fit in the
remaining space on the line. So we don’t have to test whether the space required
by the elements of stream between left and right exceeds m, but rather whether
or not it exceeds the present value of space — the variable used in Print() to
store the number of spaces remaining on the present line.

We are now ready to describe our refined algorithm. It is a close relative
to our previous algorithm. Print() remains the same. Scan() uses an additional

-variable leftotal which is the total number of spaces needed to print all ele-
ments of the buffer from stream|l1] through stream[left] (analogous to rightotal
which measures from stream[1] through stream[right]). Popbottom() removes the
bortom element of the stack (so our local stack is no longer a true stack — w e can
flush elements from its bottom). And when Scan() chooses to force output from
the left of the stream, it does so by calling the auxillary function Advancele ft().
We implement stream and size as two arrays of size arraysize, a constant equal
to 3m, say. The variables left and right arc initially 1, pointing to the start of
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the arrays,

Scan() : local z;
forever z := Receive();

cases
z : eof = halt;
z:[=

cases S : empty =>left:=right :=leftotal ;= rightotal := 1;
otherwise = right := il right = arrayssize then 1 else right 4+ 1;
stream|right] := z;
size[right] := —rightotal;
Push(S,right);
z:] =
cases S : empty 3 prini(z,0);
otherwire =
right := if right = arrayesze then 1 elre right 4 1;
stream[right) := z;
size[right] := 0;
z := Pop(S);
size[z) := rightotal + size[z);
if stream|z] : blank and =S : empty
then z:= Pop(S); size[z]:= rightotal 4 size[z];
if S : empty then Advanceleft(streaml|left], size[left]);
Z : blank =
cases S : empty = left:= right := rightotal := 1;
otherwire =
right ;= if right = arraysize then 1 else right + 1;
z := Top(S);
if stream|z] : blank then ssze[Pop(S)] := rightotal + size[z];
stream|right] := z;
size[right] := —rightotal;
Push(S, right);
rightotal := rightotal + 1;
z : string =
cases S : empty = P rint(z, length(z));
otherwise =
right := if right = arrayssize then 1 else right 4 1;
stream|right] := z;
size|[right) := length(z);
rightotal := rightotal + length(z);
while rightotal — leftotal > space do
size[Popbottom(})]:= 999999;
Advanceleft( streamlleft), size[left];



Advancelef t(z,1):
if {2 0 then
Print{z,1);
cases x : blank = leftotal :=leftotal - 1;
x : string 3 lef total :==lef total -} {;
if left ¥ right then
left := if left = arraysize than 1lelseleft + 1;
Advanceleft(streaml|left], size[left]);

We have implemented the buffers in the obvious way as ring buffers. Print()
follows Scan() around the buffers (that is, left follows right), and as long as the
size of the buffers is at least 3m, Scan() will not overtake Print().

All that remains is to describe how to implement the local stack S. One way
is to implement it also as an array of size arraysize, with indexing variablestop
and bottom initially equal to 1, and a boolean variable stackempty initially set to
true. We implement the tes} S:empty as a test on the value of stackemptry and
the other stack operations as follows:

Push(S, z):
if stackempty
then stackempty:= false
else top :== if top == arrayssize then 1 elsetop 4 1;

S[top) := z;

Pop(S): local x;
X : = Sltop);
if bottom = top
then stackemply := true
else rop :=1if top = 1 then arraysize else top — 1;
return z;

Top(S): return S[top];

Popbottom(S): local x;
< =35 [bottom];
if bottom = top
then stackempty := true
else bottom := if bottom = arraysite then 1 else bottom ~-1;

return X;

5. Modifications to the Basic Algorithm.

The algorithm actually implemented by the author is somewhat more sophis-
ticated. The complete algorithm is given in appendix A.
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There is one major deficiency in the set of delimiters we chose, and that is
that the delimiter blank is not subtle enough. It needs at least three associated
parameters.

First, we want a variable offset associated with each blank instead of the
constant offset 2 used in the algorithm. This allows us to have, for example, the
following: .

cases | : ...
2:...
3 e

where we have indented six characters to line up the cases. Variable offsets also
allow us the option of choosing, say, either of the following ways of indenting
begin . .. end blocks (assuming a narrow enough linewidth to force breaking):

begin
= f(z);
= fy)
end;
begin
: = flz);
Y *= f(y);
end;

Second, we want to differentiate between two types of blanks, which we call
consistent and inconsistent blanks. If a block cannot fit on a line, and the blanks
in the block are consistent blanks, then each sub-block of the block will be placed
on a new line. If the blanks in the block are inconsistent, then a new line will be
forced only if necessary. The reason for this differentiation is that we may prefer

begin

x .- - flz))
- ) ;
z:= f(z);
w i f(w)
end;
to

begin
z:=f(z); Y= f(y )
z:= f(z) W= f(W),
end;
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but prefer

locals x, y, z, w,
a,b,¢c,d;

to

localr x,

(assuming again that the linewidth is sufficiently narrow to force breaking). That
is, for begin . . . end blocks we may prefer consistent breaking, but for declaration
lists we may prefer inconsistent breaking.

Finally, we want to be able to parameterize the length of each blank. A
blank of length zero (that is, an invisible blank) is useful when one wants to insert
a possible line break but print nothing otherwise.

There is one other major modification that the author has found useful, espe-
cially if this pretty printer is used as the output device for an unparser. Consider
the following stream for printing out f (g(X, y)) (<blank> denotes a blank):

[f([g(z, <blank> , )] <blank> )]

This may result in the following output:

f(g(Z, y)
)

given appropriate margin width and parameters to the delimiters. We might
instead prefer:

f(g(%
v))

even though the first is correct according to the algorithm (since it breaks fewer
logical blocks). We could try to stop a linebreak from occurring between the right
parentheses by sending the stream:

[f[g(z,<blank>y)])
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that is, by deleting the <blank> between the parentheses. But this violates the
assumptions given in section 2 on what constitutes a legal stream. The algorithm
in appendix 1 tries to handle in a reasonable fashion any sequence of tokens (if
the stream satisfies the assumptions given in section 2, the output is the same as
given by the basic algorithms). It does assume, however, that occurrences of [
and ] are balanced and that the stream begins with a [ (for correct initialization).
In particular, it effectively changes (dynamically) each occurrence of ] <string>
into <string> ].

6. A Preprocessor for Pretty Printing

Let us briefly consider the question of how to tailor the pretty printer to
some specific language.

The simplest way is to drive the pretty printer directly from the parse tree
produced by a parser or the parsing component of a compiler. Typically, this
component first translates the program (a stream of text) into a tree. For instance,
if the grammar for the language contains the production

<term> — <subterm> <operator> <subterm>

. the parser may generate, when parsing a + 6, the subtree consisting of a node
with three successors: the subtrees corresponding to a, + and 6. The preprocessor
to the prettyprinter then walks this tree in what might be called a “recursive
descent unparse”. For instance, when faced with our example tree for a - 6, the
unparser may first generate a [, recursively unparse the first subtree to generate
a, generate a blank, unparse the subtree for -+, generate another blank, unparse
the subtree for 6, and finally generate a closing ].

Driving the pretty printer from the parse tree is relatively straightforward,

_ especially in languages such as Lisp where the program is a tree. A disadvantage
of waiting for the parse tree to be constructed is that pretty printing is no longer
online: the whole program must be parsed before pretty printing can begin. In
many situations this is no disadvantage.

. Notice that this method makes automatic use of the scanner of the parser
to resolve all such questions as whether there are redundant blanks. This is, of
course, a double-edged sword; the scanner component of many parsers also deletes
useful information (such as comments). We must modify the scanner to pass this
information on, and modify the parse tree to save the information.

We have used this “unparsing” approach to write a pretty printer for for-
mulas produced by the Stanford Pascal Verifier (with Wolf Polak) and for Mesa
(with Steve Wood).
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Another approach we have used also makes use ofa scanner and a parscer for
a language, but uses the parser to drive the pretty printer directly, without using

the parse tree.
For instance, if we use a recursive descent parser, we can add code to the

syntax routines of the parser to transmit to the pretty printer the delimiters [,
<blank> and ] and the other tokens.

If we are using a table-driven parser whose semantic routines are called
bottom-up, we can use a slightly different approach. First, notice that the in-
formation needed by the pretty printer can often conveniently be represented
directly in the grammar; for instance, in our example production above:

<term> — [<subterm> <blank> <operator> <blank> <subterm>]

Suppose we are using a parser generator (to generate a table driven parser). We
modify the grammar of the language to contain pretty printing information as
above, where [, <blank> and ] are nonterminals mapping only to the empty
string. The semantic routines associated with these nonterminals transmit, respec-
tively, [, <blank> and ] to the pretty printer. The other semantic routines
transmit to the pretty printer the other tokens in the stream. Because table-
driven parsers typically call their semantic routines in a bottom-up fashion, we
may have to modify the grammar slightly to ensure that tokens are sent to the
pretty printer in the correct order. For instance, consider the production:

<block > — begin <statementlist> end
We do not want the semantic routine associated with <statementlist > to be
called before the semantic routine for <block>, because we do not want the
tokens corresponding to <statementlist> to be printed before the begin is
printed. We can correct this by changing this production to:

<block > — <begin> < statementlist > end

<begin> —+ begin
so that the semantic routine corresponding to begin will be called (and “begin”
will be printed) before the semantic routine for <statementlist >.

The advantage of this variant is that it is very clean — the pretty printing
information for the language is represented in the grammar instead of being buried

.in the code. The disadvantage is that the tables for the parser may grow because

of the additional productions. (The impact of this can be lessened to acceptable
levels by not having explicit nonterminals for [, <blank> or ], but adding code
to the semantic routines for the other nonterminals to drive the pretty printer
directly. For instance, the semantic routine corresponding to the nonterminal
<begin> above could emit the three tokens [, “begin” and <blank >.)

A pretty printer for Mesa has been implemented in this fashion by Philip
Karlton and the author.

13



1. Other Pretty Printers.

As mentioned in the introduction, pretty printers are common in Lisp
environments and therefore have been fairly widely implemented, but rarely
analyzed. The following is a list of those algorithms known to the author; tt.
list has been growing and is undoubtedly incomplete. With a few exceptions, the
analyses given below are the author’s. As before, n denotes the length of the
input stream and m denotes the linewidth of the output device.

Goldstein [1973] describes various ways of implementing pretty printers for
Lisp, and gives several algorithms requiring O(n) time and O(n) space. Whit
Diffle (private communication) has an algorithm for Lisp pretty printing which
uses the notion of variable glue to put together boxes of text. Mentor, a structure-
oriented editor for Pascal, contains a pretty printer for Pascal ([Donzeau-Gouge
et al 1975}, [Huet et al 1978}). Dick Waters (private communication) independ-
ently discovered the observations given here on how much lookahead is rcquircd;
he has implemented a pretty printer for Lisp which requires O(mn)time and
O(m) space. Hueras and Ledgard [1977] describe a formatting program for Pascal,
their program appears to require O(n) time and space. Greg Nelson (private
communication) has a pretty-printing algorithm which requires O(m) space and
O(n) time. Jim Morris (private communication) has an algorithm which, like the
one described here, conceptually consists of two parallel processors; it requires
O(m) space and O(mn) time, Tony Hearn and A. C. Norman [1979] have inde-
pendently discovered a similar method; their description is informal and their
analysis assumes that linewidth is constant, but if margin width is assumed to be
m, their algorithm appears to have the same bounds as Morris’ algorithm. Don
Knuth (unpublished memorandum) has written a pre-processor Blaise for Pascal
programs which pretty prints them using his text processor TEX.

8. In Conclusion.

The primitives described in the previous sections seem satisfactory for most
purposes. Of course, they are not perfect. For instance, we do not allow offsets
which are a function of the next block in the stream. Thus, we may get

cases | ;. ..

2:...

3:ifz=1
then 5 :== j(2)
eliez:= Q(z);

where we might have preferred to indent the cases slightly less, if we knew that
this would allow the if . . . then . . . else statement to fit on one line as follows:

14



cases
1: ...
2:...
3 :if z==1 then x := f(z)else x := g(z);

Another deficiency of the algorithm is that it can do nothing if there is not
room on the line for a string. This might happen if we have indented k& spaces
and want to print a string of size greater than margin — k. The author does not
know of any simple and graceful way to solve this problem; two crude solutions
are to just wrap around the screen or else forcibly reduce the indentation just
enough to right justify the offending string.

This illustrates a general drawback of the algorithm — it does only constant
space (one linewidth) lookahead and its logic is not as sophisticated as it might
be.

' But hopefully the algorithm with its optional modifications strikes the right
balance between simplicity and speed on one hand, and sophistication on the
other, to be useful in the applications envisaged. It is perhaps worth repeating one
desirable feature of the algorithm — it starts printing more or less 3s soon as it
has received a linefull of input, and printing never lags more than a linefull behind
the input routine. This we consider an inportant point in “human engineering”.
It is also important as more systems begin to take advantage of thc notion of
“delayed evaluation”, where parts of expressions may be output before the entire
expression is computed.
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Appendix

The following is the augmented pretty printing algorithm implemented by
Philip Karlton and the author in Mesa (some details have been left out concerning
input/output and memory allocation). Comments are prcccded by two dashes;
numbers are either in octal or in binary (if followed by b) .

The pretty printer receives tokens which are records of various types. A
token of type string contains a string. A token of type break denotes an op-
tional line break; if the pretty printer outputs a line break, it indentsoffact
spaces relative to the indentation of the enclosing block; otherwiscit outputs
blankSpace blanks; these values are defaulted to 0 and 1 respectively. Tokens
of type begin and end correspond to our [ and ] except that the type of breaks is
associated with the begin rather than with the break itself (the type is defaulted
toinconsi stent), and an offset value may be assocated with thebegin(the
offset applies to the whole block and is defaulted to 2). A token of typceof
initiates cleanup. Finally, a 1 inebreak is a distinguished instance of break
which forces a linebreak (by setting blankSpace to be a very large integer).

PrettyPrint: DEFINITIONS =
BEGIN
-— typos
TokenType: TYPE = {string,broak,bogin, end, oof};
Tokon: TYPE = RECORD[
SELECT type: TokenType FROM
string => [string: stringl,

breoak => [
blankSpace: [0..MaxBlanks] ¢ 1, —— number of spacespor blank
offset: [0..31] « 03, —— Indent for overflow lineos
begin => [
offsot: [0..127] « 2, -— indent for this group
breakType: Break8 t inconsistent], —— default °"“inconsistont’’

and => NULL,
oof => NULL,
ENDCASE] ;

MaxBlanks: CARDINAL = 127;
Broaks: TYPE = {conaistcnt, inconuistont};
LineBreak: break Token = [break[blankSpace: MaxBlanksll;

END.
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PrettyPrinter: PROGRAM
EXPORT6 PrettyPrint=
BEGIN
margin, space: INTEGER;
left, right: INTEGER;
token: DESCRIPTOR FOR ARRAY OF Token + DESCRIPTORCNIL, 0J;
8ize: DESCRIPTOR FOR ARRAY OF INTEGER + DESCRIPTOR({NIL, O];
leftTotal, rightTotal: INTEGER;
slzeInfinity: INTEGER = 777778;
scanStack: DESCRIPTOR FOR ARRAY OF INTEGER + DESCRIPTORCNIL,
scanStackEmpty: BOOLEAN;
top, bottom: CARDINAL;
printStack: PrintBtack + CreatePrintBtack[63];

PrettyPrintInit: PROCEDURE[line¥idth: CARDINAL « T5] =
BEGIN
n: CARDINAL;
space « margin « lineWidth;
n t 3*margin;
top t bottom « O;
scanBtackEmpty+ TRUE;
token + Memory.Got[n«BIZE[Token], n);
size + Memory.Get[n*S8IZE[INTEGER], nl;
scanBtack t Memory.Get[n*SIZE[CARDINAL],n];

END;

PrettyPrint: PROCEDURE[tkn: Token] =
BEGIN
WITH t: tkn SELECT FROM
eof =>

BEGIN

IF ~vscanBtackEmpty THEN
BEGIN
CheckStack[0] ;
AdvanceoLeft[token[loft] ,size[lertl]];
END;

Indent[0] ;

Memory .Free[BABE{tokenl];

Memory.Free[BABE([size]];

Memory. Free [BABE[scanBtack]];

END;

begin =>

BEGIN

IF scanStackEmpty THEN
BEGIN
leftTotal t rightTotal « 1;
left t right t 0;
END

ELSE AdvanceRight([];

token[right] « t;

size[right] « -rightTotal;

BcanPush([right];
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END;
end =>
BEGIN
IF scan8tackEmpty THEN Print[t, 0]
ELSE
BEGIN
AdvanceRight[];
token[right] t t;
sizelright] « -1;
ScanPush[right];
END;
END;
break =>
BEGIN
IF scanBtackEmpty THEN
BEGIN
leftTotal t rightTotal t 1;
left t right « 0;
END
ELSE AdvanceRight[];
CheckBStack([0] ;
ScanPush[right];
token[right] t t;
size[rightle -rightTotal;
rightTotal« rightTotal + t.blankSpace;
END;
string =>
BEGIN
IF scanBtackEmpty THEN Print[t, t.lengthl
ELSE
BEGIN
AdvanceRight(];
token[rightl t t;
size[right] t t. length;
rightTotal +« rightTotal + t.length;
CheockBtream[] ;
END;
END;
ENDCASE;
END;

CheckB8tream: PROCEDURE =
BEGIN
IF rightTotal -~ leftTotal > space THEN
BEGIN
IF -8canStackEmpty THEN
IF loft = scanBtack[bottom] THEN
gize[ScanPopBottom[]1] + 800;
AdvanceLeft[token[left] ,sizel[left]];
IF ~(left = right) THEN Check8tream[];
END;
END;

18



ScanPush: PROCEDURE[x: CARDINAL] =
BEGIN
IF scanBtackEmpty THEN scanS8tackEmpty+ FALSE
ELSE
BEGIN
top + (top + 1) MOD LENGTH[scanBtack];
IF top = bottom THEN ERROR 8canBtackFull;

END;
ecanBtack [toplt «x ;
END;
8canPop : PROCEDURE RETURN6 [x : CARDINAL] =
BEGIN

IF scanBtackEmpty THEN ERROR ScanStackEmpty;

x + scanBtack[top];

IF top = bottom THEN scanStackEmpty t TRUE

ELSE top ¢ (top + LENGTH[scanBtack] - 1) MOD LENGTH[scanStack];

END;

B8canTop: PROCEDURE RETURNS[CARDINAL] =

BEGIN
IF scanBtackEmpty THEN ERROR 8canStackEmpty;

RETURN [BcanStack [top]]
END;

B8canPopBottom: PROCEDURE RETURNS[x: CARDINAL] =

BEGIN
IF scanBtackEmpty THEN ERROR BcanStackEmpty;

X t scanBtack[bottom];

IF top = bottom THEN scanBtackEmpty t TRUE

ELSE bottom ¢ (bottom + 1) MOD LENGTH[scanBtack];
END;

AdvanceRight: PROCEDURE =

BEGIN
right « (right + 1) MOD LENGTH[scanStack];
IF right = left THEN ERROR TokenQueueFull;

END;
AdvanceLeft: PROCEDURE[x: Token, 1: INTEGER] = BEGIN
IF 1 >= 0 THEN
BEGIN
Print[x, 1];

WITH x SELECT FROM
break => leftTotal t leftTotal + blankSpace;
string => leftTotal « leftTotal + 1;
ENDCASBE;

IF left ¥ right THEN BEGIN
left + (left + 1) MOD LENGTH[scanSBtack];
AdvancelLeft[token[left]), size[left]];
END;

END;

END;
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Check8tack: PROCEDURE[k: INTEGER]
BEGIN
x: INTEGER;
IF ~~scanBtackEmpty THEN
BEGIN
x + BcanTopll;
WITH token[x] SELECT FROM
begin =>
IF k > 0 THEN
BEGIN
size[BcanPop[l] t sizelx] + rightTotal;
CheckBtack[k - 11;

END;
end => BEGIN size[ScanPop[]] + 1; CheckBtack(k + 1]; END;
ENDCABE =>
BEGIN

sizo[BcanPop [1] t sizelx] + rightTotal;
IF k > 0 THEN CheckBtack[k];
END;
END;
END;

PrintNewLine: PROCEDURE[amount: CARDINAL] =

BEGIN

PutChar [output, CR]; —-- output a carriage return

THROUGH [O..amount) DO PutCharloutput,.I ENDLOOP; —- indent
END;

Indent: PROCEDURE[amount: CARDINAL] =
BEGIN
THROUGH [0..amount) DO PutChar[output, °* ] ENDLOOP; —— indent
END;

- print stack handling

— We assume Push, Pop and Top are defined on the stack printBtack;
— printBtack 18 a stack of records; each record contains two fields:
— the integer "offset" and a flag "break" (which equal8 "fits"
if no break8 are needed (the block fitse on the line), or
"coneietent" or °‘‘*inconsistent’’)

PrintBtack: TYPE = POINTER TO PrintBtackObject;
PrintStackObject: TYPE = RECORD[

index: CARDINAL t O,

length: CARDINAL t O,

itoms: ARRAY [0..0) OF PrintS8tackEntry];
PrintStackEntry: TYPE = RECORD [

offset: [0..127],

break: PrintStackBreak];
PrintStackBreak: TYPE = {fita, inconsistent, coneietent};

Print: PROCEDURE([x: Token, 1: INTEGER1l =
BEGIN
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WITH x SELECT FROM
begin =>
BEGIN
IF 1 > space THEN
Push[[space~offset,
IF breakTypo = consistent THEN conelstent ELSE inconsistent]]
ELSE Push[{0, fitell;
END;
end =>» Cl « Popll;
break =>
BEGIN
SELECT Topl[].break FROM
fit8 =>
BEGIN
space t space-blankspace;
Indent[blankBpace];
END;
conelstent =>
BEGIN
epace t Topl[] .offeset — offset;
PrintNewLine[margin-space];
END;
inconsistent =>
BEGIN
IF 1 » epace THEN
BEGIN
space + Topll.offset — offset;
PrintNewLine[margin-space];
END
ELSE
BEGIN
space +« space-blankBpace;
Indent[blankSpace] ;
END;
END;
ENDCASBE;
END;
string =>
BEGIN
IF 1 » epace THEN ERROR LineToolLong;
space t epace - 1;
Charl0.PutStringloutput, stringl;
END;
ENDCABE => ERROR;
END;

END.
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