SHOULD TABLES BE SORTED?

by
Andrew Chi-Chih Yao

STAN-CS-79-753
July 1979

DEPARTMENT OF COMPUTER SCIENCE
School of Humanities and Sciences
STANFORD UNIVERSITY

*
Should Tables Be Sorted? —/

Andrew Chi-Chih Yao
Computer Science Department

Stanford University
Stanford, California 94305

Abstract.

We examine optimality questions in the following information
retrieval problem: Given a set S of n keys, store them so that
queries of the form "Is xe¢ S ?" can be answered quickly. It is shown
that, in a rather general model including all the commonly-used schemes,
[Lg(ntl)] proyes to the table are needed in the worst case, provided
the key space is sufficiently large. The effects of smaller key space

and arbitrary encoding are also explored.

Key Words and Phrases: Information retrieval, lower bound, optimality,

query, Ramsey's theorem, search strategy,
sorted table.

CR Categories: 3.74, 4.34, 5.25, 5.31.

*
~/This research was supported in part by National Science Foundation under
grant MCS-77-05313.

1. Introduction.

Given a set S of n distinct keys from a key space M = {1,2,...,m} ,
a basic information retrieval problem is to store S so that membership
queries "Is j in S ?" can be answered quickly, Two commonly used
schemes are the sorted table and the hash table. 1In the first case,
a query can be answered in [1lg(n+l)] probes by means of a binary
search.i/ The hash table scheme has a good average-case cost, but requires
O(n) probes in the worst case for typical hashing schemes. Looking through
various alternative methods, one gets the feeling that ~ log n probes
must be necessary in the worst case, if the key space M is large and
we only use about minimal storage space. Our purpose is to study the
truth of this statement. The question is nontrivial, as the existence
of hashing suggests the possibility of schemes drastically different
from, and perhaps superior to, the sorted table.

Before presenting technical results, let us try to put the subject
of this paper in perspective. In the literature, efficient methods have
been devised to perform various primitives in data manipulations [1][7].
For example, a sequence of n "DELETE", "INSERT", "MIN" instructions
can be performed in O(n log n) time. However, lower bounds to the
complexity of these problems are lacking, except in rather restricted
models (for example, [8][14][16]). Since efficient data structures
may utilize the full power of a random access machine (e.g. [19]), it
is of great interest to study the complexity problems in more general
models, i.e., those equipped with some address-computing capabilities,

This paper is one step in that direction, by studying perhaps the simplest

*
Y lg denotes logarithm with base 2.

of such data structuring problems. Hopefully, one can derive interesting
results for other problems in similar frameworks. (For related study

regarding bitwise-random-access-machines, see [5],[6],[9].)

2. The_Wisdom of Using Sorted Tables.

—

In this section we show that for large key space, flg(n+1l)]
probes are required to answer the membership problem in a rather general
model. This model encompasses all common schemes such as hashing, sorted
tables, and linked list structures. For clarity, we first prove the
result in a simplified model. The general result will be given in

Theorem 1'.

The Basic Model.

Let the key space be M = {L,2,...,m} . We are interested in storing

n distinct keys of M into a table of size n . A table structure T

specifies how any particular set of n keys are to be placed in the

table T . A search strategy o/ corresponding to T specifies, for

any given key K , how to perform a series of probes T(il)= 2, T(i2)= 25 eee

into the table T , until one can claim whether K is in T or not. The

search strategy is fully adaptive, in the sense that each probing location

can depend on K and on all the previous probing results. The cost

c(T,o/) of a (table structure, search strategy) pair is measured by the

number of probes needed in the worst case. The complexity f(n,m) is

the minimum cost achievable by any such pair. Clearly f(n,m) < [1lg(n+l)]
To get some feeling on possible improvements over the sorted table

scheme, and on the ultimate limitation, we look at the simple case n = 2 ,

m=23% . It is easy to see that 2 probes are needed to decide whether

K= 2 is in T if a sorted table is used. However, the "cyclic" table

in Figure 1 allows us to answer any query in Jjust 1 probe, as the first

entry of T determines the entire table. Note that these are the only two

non-isomorphic table structures (up to the renaming of keys and table

locations) for this case.

sorted table

1,2} —> | 1 2

(2,3} —> 2 p)

(L3} —> |1 3

2 probes

cvelic table

{23} = | 2 5

1,3} — | 3 [2

1 probe

Figure 1. The sorted table is not optimal for n =2 , m =3 .

Thus, sorted table is not optimal for n =2 , m =3 . We shall
now show, however, that sorted table is optimal as soon as n =2 ,
m =4 (hence for all n =2 , m >4).

Any table structure for n =2 , m = I can be uniquely represented
as a directed graph on four labelled vertices {l,2,3,h} . We draw an
edge i - J if the pair {i, j} 1is stored as a.il j{ . For example,

the graph in Figure 2 represents a table structure with {1,4} stored

as Il! E » and {2,&} as| 42 , etc. For any three vertices

in the graph, the edges between them may or may not form a directed cycle.
It is not hard to show that, for any such graph on four vertices, there
exist three vertices among which the edges are acyclic. In Figure 2,
{1,3,4} 1is such a set of three vertices. If we consider the set of
keys corresponding to these vertices as a subspace with m =3 , we find
that we are storing these keys as a "permuted" sorted table, i.e., it
differ; from the sorted table only in a new ordering 3 <1 < 4 of the
elements (Figure 3)., But this means that any searching strategy for this
table structure must make 2 probes in the worst case. This proves that
£f(2,4) > 2 , hence the sorted table is optimal for n =2 , m >4 .

The preceding statement generalizes to any fixed n . That is, the
sorted table scheme is optimal for any fixed n , provided that the key

space 1s large enough.

Theorem 1. For every n , there exists an N(n) such that

f(n, m) =T 1lg(ntl) 1 for all m > N(n)

Proof. We need the following lemma, which can be proved by an adversary

argument.

Figure 2. A typical table structure for n =2 , m =154,

3 1
1 L
3 L
Figure 3. The "permuted" sorted table corresponding to

{1,3,4} from Figure 2.

Lemma 1. If a table structure stores the keys of a table in sorted
order (or according to some fixed permutation), then [1g(ntl)1 probes
are needed in the worst case by any search strategy, provided that

m22n-l and n > 2 .

Proof of Lemma 1. We will construct an adversary strategy to show that

[1g(ntl)] probes are required to search for the key value K = n of

the space {1,2,...,m} . The construction is by induction on n . For
n=2and m>3, it is easy to see that 2 probes are required. Let
n

0> 2 . Assume the induction hypothesis to be true for all n < n, ,

we will prove it for n = m > 2no-l and K = Oy - By symmetry,

Ny,
assume that the first probe position p satisfies p < rno/2_l . The

adversary answers T(p) = p . Then the key ny may be in any position
i where FnO/E'l 1< i<, In fact, T(rno/2—|+l) through T(no)
is a sorted table of size n'= LnO/EJ which may contain any subset
éf{rno/2-1+l, Fno/2'1+2, . . .,m}, and hence in particular any subset
of the key space M' = {rn0/2'1+l, fn0/21+2, .. ,,m-['nO/EW} . The
size m' of M' satisfies
m' = m-2[ny/27 > (2ny-1) - 2l'no/21

> 2]_no/2_;-l

= 2n' -1 ,
and the desired key n, has relative value K' = no-an/E‘W =n' in
the key space M' . By the induction hypothesis, [1lg(n'+l)7] more

probes will be required. Hence the total number of probes is at least

1+ [lg(n'+1)] =1+ ['lg(Lno/E_Hl)"l > ['lg(noi-l)—l . This completes

the induction step. O

To prove Theorem 1, the idea is to show that, if m is large enough,
then for any table structure T , there is a set SO of 2n-1 keys with
the following property: given any n-key subset A C SO , the table
structure always arranges the keys of A according to same fixed
permutation. Lemma 1 will then imply the [1g(n+l)7 bound.
To this end, let us partition ¢, the family of n-key subsets
of M, into n! ©parts as follows. For each A = {jl << < jn}ea,
let TA be the table formed under T . We assign A to the group
O(ipiy ool 3£T,(3).9) 5T, (1) 3,500 ., T,(3) =, . The
collection {o(i,, 12,...,in)|(il, i,5..e51)) 1is a permutation of f{1,2,0 F“Q0

forms a partition of ¢ .

Claim. If m is sufficiently large, then there exists a set of 2n-1

keys SO c {1,2,...,m} such that, for all n-key subsets A c § we

O 4

have Ace U(il, ig"""in) , where (il’ie""’in> is a fixed permutation.

By our earlier discussion, this would imply Theorem 1. It remains to
prove the claim. We make use of the following famous combinatorial

theorem (see, e.g. [3]).

Ramsey's Theorem. For any k, r, t , there exists a finite number R(k,r,t)

such that the following is true. ©Let S = {1,2,...,m} with m > R(k,r,t) .
If we divide the family of all r-element subsets of S into t parts,
then at least one part contains all the r-element subsets of some k

elements of S

Cur claim follows from Ramsey's Theorem, by choosing r =n , t = n!

and k = 2n-1 . This proves Theorem 1 with N(n) = R(én-1, n, n!) . O

Generalization. As mentioned at the beginning of this section,

Theorem 1 holds under more general conditions. In the general setting,
a table may contain "pointers" and duplicated keys. Formally, we have

a universe M of m keys, a set P of p special symbols (pointers),
and an array T containing g cells. Let S «M be any subset of n
keys. We store S in T where each cell may contain any element in
the set SUP . Each key in S may appear several times or none at all.
A rule for determining the above assignment is a table structure 7T .
Defining search strategies . as before, we measure the cost c(T,/)

by the number of probes to answer the membership query in the worst case.

The complexity f(n, myp,q) 1is the minimum cost achievable by such a pair.

Theorem 1'. For any n, p, g , there exists an N(n,p,q) such that
f(n,mp,q) = rlg(n+tl)l for all m > N(n,p,q) .
*Proof. As the proof is very similar to that of Theorem 1, we shall only

sketch it. Clearly, we need only prove that f(n,m,p,q) > [1g(n+l)]
for all large m
Let T be any table structure. To each n-key subset S , we assign

< n+p , where i, = k 1if T[s]

a g-tuple (il’ie"“’iq) with 1 <1 J

)/

contains the k-th smallest key in S and iz = n+j 1if T[4] contains

the j -th pointer. This partitions the family of all n-key subsets into
(n+p)? classes. If m > R(2n-1, n, (n+p)q) , then by Ramsey's theorem,
there exists a set SO of 2n-1 keys all whose n-key subsets are in

the same class. By definition, all tables for n-key subsets S C SO
contain identical pointers in each location, and hence tables are

distinguished only by the keys stored in the tables. Now, in these

10

tables, the set of locations containing a given key depends only on
the relative ranking of the key in the n-key subset. Therefore,

from the viewpoint of search strategies, these are sorted tables (with
possible missing keys). By Lemma 1, it takes [1lg(n+l)7 probes in

the worst case. As T is arbitrary, this proves the theorem. [J

We may further allow the set S to have non-unique representations
as a table (as is the case of hash tables, search trees), since this
obviously will not improve the worst-case cost. Thus, the present model
allows for the use of linked lists, search trees, and all common hashing

techniques, etc.

11

3. When Is One Probe Sufficient'?

The numbers N(n) in Theorem 1 are extremely large even for
moderate n . Thus the result is not too useful in practical terms.
It is of interest to understand f(n,m) for smaller m , We therefore
ask the following equivalent question: Given n, k , what is the maximum
m such that f(n,m) = k ? Call this number g(n,k) . Hence if, and
only if, there are more than g(n,k) possible keys, then we have to use
more than k probes in the worst case. The determination of g(n,k)
is difficult, but we can determine it in one special case.

3 if n=2,

Theorem 2. g(n,1) =
2n-2 if n>2.

Proof. We shall give a proof for the lower bound to g(n,1) , by

exhibiting a l-probe table structure for the asserted number of keys.
The other part of the proof, i.e., that no table structure can achieve
a l-probe search for a larger key space, involves lengthy case analysis
and will be left to Appendix A.
For the case n =2 , m=3%, the "cyclic" table discussed earlier
has an obvious l-probe search strategy. Now, let n > 2 and m = 2n-2 ,
we describe a table structure allowing a l-probe search strategy.
Consider the situation as m people sharing an apartment building
with n rooms. We need a method so that, no matter which n people
appear at the same time, we can assign them in such a way that it is
possible to determine if person j 1is here by looking up the occupant

of one particular room (dependent on j).

12

We shall use K:T to stand for the person j (1 g_j i_m) . Let
us call KD and Kn+j the tenants of room j , for 1 < j < n-2 ;

K3 is the lower tenant and Kn+j the upper tenant. For room n-1 ,

Kn—l is a lower tenant, and for room n , Kn is a lower tenant, There
are no upper tenants for these two special rooms, (See Figure 4.)
When a group of n people show up, we make the assignment by the

following steps.

(1) If room j (1 < j < n-2) has only one tenant present, assign that
tenant to the room.

(ii) If a room j (1 <_j < n-2) has both tenants present, let the
upper tenant go to a room which has no tenants here.

(1ii) Those people left unassigned are either tenants whose upper tenants
are also here, or are keys Kn—l’ Kh . We assign them so that they
do not occupy the rooms of which they are tenants (e.g., a cyclic

shift will do).

The last step can always be accomplished, for we can argue that if there

is at least one person left in (iii), then there are at least two. Indeed,

either (a) assume neither Kh 1 nor Kn , 1s present, then at least two

rooms Jj (1 < j < n-2) have both tenants present, or (b) assume exactly

one of K %n is present, then there must be another j (1 < j < n-2)

n-1'
with both tenants present, or (c) both Kn 1 and K are present.
For example, assume in Figure 5, the group {1,2,3,6,7,9,10,12} show up.
Steps (i), (ii), (iii) are illustrated.

To answer if K.J is in the table, we look at the room of which it

is a tenant.

15

tenants 9 10 11 12 13 14

room 1 2 3 4 5) 7

Figure L. The association between tenants and rooms in the proof

of Theorem 2.

9 10 12
1 2 3 6 7
step (i) l
. 31 12 6
step (ii) l
~
0
_ 3 12] 9 5 1

step (iii) l

2 71 3{ 12 9| 61} 1|10

Figure 5. An illustration of steps (i) - @ii) in the

assignment.

14

(a) If KD is there, then it is in the table.
(b) If an upper tenant of some other room is there, then Kj is not
in the table.

(c) If a lower tenant of some other room is there, then KJ is in

the table.

It is straightforward to verify the correctness of the answers. Thisg
proves g(n,1) > 2n-2 for n > 2

It remains to prove the upper bounds for g(n,1) . We have shown
g(2,1) < 4 in Section 2. The proof of g(n,1) < 2n-2 for n > 3

will be left to Appendix A. O

Remark. It is somewhat surprising that the l-probe schemes used in

the above proof are optimal, as they look quite arbitrary. 1In particular,
why do we need two special rooms n-1 and n ? Figure 6 shows that the
scheme fails if we have only_gge special room (and 2n-1 keys). The

arrival of keys 1,2,...,n-1,n+tl will make the accomodation impossible.

15

@ 10 11 12 13 14 15

OOV OO :

Figure 6. Failure of the l-probe scheme with 2n-1 keys.

16

4, Searching in Two Probes.

How strong is Theorem 1'? It appears to be a robust result,
considering its generality. However, the following surprising result
demonstrates that it depends heavily on the fact that keys outside of

the set S may not be present in the table.

Theorem 3. There exists a number N'(n) such that, if m > N'(n) ,

then by adding 1 extra cell in a sorted table, the search can always

be accomplished in 2 probes. (The content in the extra cell is allowed

to be any integer between 1 and m .)

Proof. We define a concept called "k-separating systems?. Let

M= {1,2,...,m} and n > 0 an integer. An n-separator F = (Al’AZ"

is an ordered n-tuple of subsets Ai C M which are mutually disjoint.

An n-separating system for M is a family of n-separators such that,

for any n elements xl < x.2 <. . . < Xn of M , there exists (not
necessarily unique) a member F = (Ai'é ,“.,An)eg with x.lEA.l for

i=12.,.,n . Let us use ¢(xl,x2,...,xn) to denote this F . For

n
Ve UI% , use J(F,y) to denote the j with yeAﬁ,
J=1

We now show how to design a 2-probe structure with the help of
an n-separating system % for M. ILet % = {Fl’FE""’Fz} . For
each n-tuple a = (x1 <%, <.l < xn) drawn from M , let
Fi(a) = w(xl,xe,...,xh) . For the moment assume that Fr= 4 <m
We organize the table as shown in Figure 7.

To test if a number yeM 1is in the table, one first probes at

Coh)

cell 0 to find i(a) , then makes a second probe at position J(Fi(a)’y)

The number y 1is in the table if and only if it is in this location.

17

sorted table

.
r
ifa) | x x | %
cell O 1 2 3
Figure 7. A 2 -probe table.

18

Reason: Let Fi(a)= UﬁfAQ’“"An); if y is in the table, then yeAj

with j = J(Fi(a)’y) » and hence must be in the j -th cell. It remains to

examine the condition that £ <m . We need the following combinatorial
lemma.
Lemma 2. There exists an n-separating system % for S with

|%| < Lna-(lg S

Proof. See Appendix B. O

)n-l

2
It follows from the lemma that, if e (lg m <m , then the

16n°

2-probe scheme works. The condition is satisfied if m > N'(n) = 2

This proves Theorem 3. [J

Bob Tarjan [private communication] has improved the bound N' (n)
in Theorem 3 to exp(c n log n) by a somewhat different construction.

In the proof of Theorem 3, the table structure used has a "directory"
at cell 0 . To retrieve a key y , one consults the directory to probe
a cell which would contain j if and only if y is in the table.
(Tarjan's construction also follows this pattern.) It is of interest
to find tight bounds on m , n for such table structures (call them

canonical 2 -probe structures) to exist. Define a primitive n-separating

system F for M = {1,2,...,m} to be a family of n-separators such
that, for any n distinct elements xl,xe,...,;n of M , there exists

a member F = (AlJE""’An)e % with each Ai containing exactly one Xj'
Let b(myn) be the minimum size of such a primitive n-separating system.

It can be shown that m >b(mn) 1is a necessary and sufficient condition

for a canonical 2-probe structure to exist, Ron Graham [private communication]
showed that asymptotically b(m,n)‘<*5; e log m by a nonconstructive

argument, which implies the existence of a canonical 2-probe structure

whenever m > exp(cn) for some constant ¢ > 0

19

5 . Conclusions.

We have discussed the complexity of the "membership" retrieval
problem. The main conclusions are, roughly, when the wordsize is large,
sorted tables are optimal structures if only the addressing -power of
a random-access machine can be used, but far from optimal once arbitrary
encoding of the information is allowed in the table. These results are
mainly of theoretical interest, although Theorem 3 suggests that there
may be fast retrieval schemes in more practical situations. The Ramsey
type technique used in the proof of Theorem 1 may have wider applications.
Ron Rivest [private communication] has used it to prove a conjecture
concerning [12]. Below we mention some subjects for future research.

We have proved the optimality of sorted tables in a rather general
framework (Theorem 1'). It would be nice if the threshold value N(n)
can be substantially lowered. Also the exact determination of quantities
such as g(n,2) poses challenging mathematical questions.

When arbitrary encoding is allowed, we obtained a rather curious

. 6n°
result (Theorem 3). In either of the extreme cases m~ n and m > 2l n

one needs at most 2 probes to decide if an item is in a table. In the
former case the addressing power, and in the latter case, the encoding
power contribute to fast retrieval. It would be interesting to study
the problem for intermediate values of m . Tarjan and Yao [18] have
shown that, when m grows at most polynomially in n , one can retrieve
in O0(1l) -probes with a 0(n) -cell table. The question is still open

\‘E.

is to study the effect of restricting the decoding procedures.

for other ranges of m , say, m = 2 Another direction of research

20

2

A main theme of this paper is to discuss the membership problem in
a word-length-independent framework (by letting m - «), We list some
open problems of prime importance in this framework, which are indirectly

related to the membership problem.

(1) It is easy to construct similar models for more complex data
manipulation problems such as executing a sequence of "INSERT", "DELETE",
"MIN" . We conjecture that, unlike the membership problem, non-constant

lower bounds exist even if arbitrary encoding is allowed.

(2) The Post-Office Problem [L4] [13]: Consider n points Vs VpseeesV
on an mym lattice (with m - »), Can we encode them in cn cells so
that, given any point on the lattice, one can find the nearest A in
0(1l) probes? In fact, this problem is unresolved even in the one-

dimensional case.

(3) Sorting Networks: In the usual Boolean networks for sorting n
inputs in {0,1} , it is known [10] that one need only use O(n) gates
As Vs . If we consider gates that are functions from MxM to M ,
can one build a sorting network for n inputs from M , with O(n) gates
as m = » ? In general, the study of such networks for function
computation would be interesting, See Vilfan [20] for some discussions

on the formula size vproblems,

21

A Bibliographic Note. The complexity of the membership problem was first

raised in Minsky and Papert [9, pp. 215-221], where it was called the
exact match problem. The model was formulated on a bitwise-access machine,
with the complexity defined as the average number of bits needed to be
examined for a random table. This model, especially the n = 1 case,

was further examined by Elias and Flower [6], but the problem has not

been solved completely even for this special case, Wordwise-access models
were used in several recent papers. Sprugnoli's work [15] dealt with
efficient hash functions, and is closely related to the materials in
Section 4 of the present paper. Tarjan [17] showed that tables of size
O(n) and retrieval time OUﬂg* n) can be achieved, if m is at most
polynomial in n ; the retrieval time was improved to O(l) by Tarjan
and Yao [18]. Also see Bentley, et. al. [2] and Munro and Suwanda [11]

for other recent studies on related problems.

Acknowledgement. I wish to thank Bob Tarjan for many helpful comments,

which led me to include Theorem 1' in the paper.

22

Appendix A. Proof of Optimality in Theorem 2.

In this appendix we complete the proof of Theorem 2 by showing that
g(n,1) < 2n-2 for n > 3 . For convenience, the inductive proof will be
organized in the following way. We shall first prove that, for any n > 3
and m = 2n-1 , a table structure allowing a l-probe search induces

a l-probe table structure for n' = n-1 and m'

2n'-1 . Then we
shall demonstrate that, for n = 3 and m = 2n-1 =5 , there cannot be
any l-probe table structure. This immediately implies g(n,1) < 2n-1
for all n >3 , completing the proof.

Suppose there is a l-probe table structure T for n,m = 2n-1 where
n>3., Forl<j <2n-1, let lj be the location to examine when
key J 1is to be retrieved. Clearly, some location will be fj for at
least two distinct j . Without loss of generality, assume that
Zl = 12 =1, i.e., the content in T{l] determines whether key 1
and/or key 2 are in the table. For i = 1,2, let Yi denote the set
of keys j such that T[1] = j implies the presence of key i in the
table, and let Ni = {l,2,...,m}-Yi . Certainly, T[1]¢€ N, if and only
if key i 1is not in the table. Note that leYl and eng , We

distinguish 4 possibilities:

Case I. 2€Yl, leYE;
Case II. 2€Nl,leN2;
Case ITI. 2e¥; , lel, ;
Case 1IV. 2€Nl 3 leY2 .

We shall show that these cases either are impossible or imply the existence
of a l-probe table structure for n'=n-1 gnd m' =2n'-1 . The

following simple fact is relevant.

25

Fact 1. .| >n-1 for i =1, 2

Proof. Otherwise, let Y; ¢ Y -{i] with\Yi|= n . The table T

storing Yi will have T[1] e Yi 5 contradicting the absence of key i . [

Lemma Al. Case I is impossible.

Proof. By Fact 1, f\IlI >n-1 . Let }L_L,Xg,...,xn leNl . Then the
set {l’xl’x2""’xn-l} cannot be satisfactorily arranged in a table T
A key X3 in cell 1 would imply the absence of key 1 , and key 1

in cell 1 would imply the presence of key 2 . O

Lemma A2, Case II is impossible.

Proof. By Fact 1, |Nj| > n-1 . Let 2/% 9%,y ¢ azs® 5 EN, Then the
set {l,2,xl,x?,...,xn_2} cannot be arranged in a table T . A key XU

or 2 in cell 1 would imply the absence of key 1 , and key 1 in

cell 1 would imply the absence of key 2 . O

Lemma A3. Case III and Case IV both imply the existence of a l-probe

table structure for n' = n-1 and n' = 2n'-1

Proof. We need only prove the lemma for Case III; Case IV merely switches

the roles of keys 1 and 2 in Case 111.
Claim 1. w2| = n-1

Proof. By Fact 1, |N2|2> n-1 . Suppose ‘Nel > n-1, let
l,xl,xg,...,xn_leN2 . Then there is no way to accomodate{2,xl,x2,...,xn l}
in a table T . A key XU in cell 1 would imply the absence of key 2 ,
and key 2 in cell 1 would imply the presence of key 1 , We conclude
that |N,| = n-1 . O

24

Because of Claim 1, we can write N, = {1,3,4,.. .,n} and

T, = {2, n+l, n#¥2, . . ., 2n-1} , renaming the keys in {3,4,...,2n-1}

if necessary.
Claim 2. Yl = {L,2} .

Proof. Otherwise, let {1,2,x} ¢ ¥; . If xe {3,4%...,n} , then we
cannot arrange the set {x, ntl,n+2, 2n-1} in T , since T[1] = x
would imply the presence of key 1 and T[1l] = n+j would imply the
presence of key 2 . If xef{ntl, nt2, . . . , 2n-1} , then we cannot

arrange the set ({x%,2,3,...,n} in T by a similar reasoning. [
It follows from Claim 2 that Ny = (3s4 .. .y2n-1} .

Claim 3. In a table T formed from an n-key subset {l’xl’XE""’xn l} p

where X # 2 for all j , key 1 always appears in cell 1

Proof. Otherwise, T[1] = x.J for some j , implying the absence of

key 1 . O
Claim 4. For 3 < j <on-1, zj;él.

Proof. By Claim 3, any n-key subset §, with le 8y r 2¢ 8, will have
key 1 in cell 1 . Therefore, the key stored in T[1l] cannot decide

if jes O

Consider the set of tables for storing all the n-key subsets
{1, x__L,xg,,,.,xn_l} with XJ. 4 2 for all j . Because of Claims 3 and b,
cell 1 always contains key 1 , and if we eliminate cell 1 from
all these tables, we are left with a l-probe table structure for all the

(n-1) -key subsets of ({3,4,...,2n-1} . This proves Lemma A3. (J

25

We have campleted the first part of the proof for g(m,1) < 2n-2 .
Namely, the existence of a l-probe table structure for n,m = 2n-1
(n >3) implies the existence of such a structure for n'=n-1,

m' = 2n'-1 .

It remains to prove that no l-probe table structure exists for
n=3%,m=5,., Assume that such a structure exists, we proceed to
demonstrate a contradiction, By the preceding analysis, we can assume
that £y =4, =1, 54,4 £1,% ={L2}, N = (3,45},

YE = {2,4,5} , and N2 = {1,533} .

As the naming of keys 4 and 5 is still arbitrary, we can assume
that the tables storing sets ({1,3,4} ,{1,3,5} ,{1,4,5} are as shown
in Figure Al. (Note that key 1 has to be in cell 1 , and the remaining
have to be in a cyclic order.) Next consider how the table structure
arranges S = {2,3,4} and {2,3,5} . Keys 2 and 3 cannot be in

cell 1 because T[l] = 2 would imply 1le¢8 and because T[1l] =3

would imply 2¢ 8 , Thus the arrangements can only be:

{2,3,4} - either (a) (4,2,3) ,
or (®) (®3,2),

and
{2,3,5} =~ either (a)' (5,2,3) ,

or (b)' (553,2) ,

where (i,j,k) means that cells 1, 2, 3 contain keys i, j, k ,

respectively. There are four possibilities, namely (a) x (a)',

(a) x (B)', (b) x (a)', and (b) , (D).

26

test for
keys 1, 2

{195:)*} - 1 3 Y
(1,45} - 1 L 5
1,3,5} > 1 5 3

Figure Al. A partial configuration for the l-probe table

structure.
test for
keys 1, 2

1 3 L

1 L 5

1 5 3

L 3 2

5 2 3

Figure A2. Our knowledge about the table structure after

taking Claim 5 into consideration.

27

Claim 5. only (b) x(a)' may be possible,

Proof. If (a) x (a)' or (b) x (b)' , then one cannot test in one probe
whether key 4 1is in the table (recall that f), £1). If (a) x (B)',
again one cannot test in one probe whether key 4 is in the table --

if £) = 2 then the tables (1,3,4%) and (5,3,2) cannot be distinguished,
and if f) = 3 then (1,5,3) and (L,2,3) cannot be distinguished,

Therefore, the table structure must contain the tables shown in Figure A2, J

How is the set {5,1#,5} arranged as a table? One cannot put key 4
or 5 into cell 1 since that would imply the presence of key 2 , Also,
the arrangement as (3,4,5) would make it impossible to test for key 3
(since there is a (1,4,5)). Thus, it has to be arranged as (3,5,4) .

We now assert that (£ 2 and lh =3 , To test for key 5 at

5 =
cell 3 cannot distinguish (%,3,4) and (3,5,4) , and to test for

key 4 at cell 2 cannot distinguish (2,5,3) and (3,5,4%) . our
knowledge about the l-probe table structure thus far is summarized in
Figure A3.

To fill in the slots for {1,2,4} and {1,2,5} , we note that key 2
has to be put into cell 1 since both keys 1 and 2 are here. The
only possibility for {1,2,5} is (2,5,1) ; the alternative (2,1,5)
would jeopardize the test for key L , since (1,45) 1is already there.
This also means that T[3] = 1 implies the absence of key L4 , It
follows that {1,2,4} has to be arranged as (2,1,4) . The known part
of the table structure is shown in Figure Ak,

However, there is now no way to test for key 3 ! If we probe at

cell 2 , the two tables (3,5,4) and (2,5,1) cannot be distinguished;

28

test for test for test for

keys 1,2 key 5 key L
YV /
1 3 4
1 L 5
i 5 3
L3 2
> 2 3
3 5 L

Figure A3. More knowledge about the table structure.

test for test for test for

keys 1, 2 key 5 key 4
Y oL/
|

1 3 4
i L 5
1 5 3
L 3 2
5 2 3
3 5 4
2 5 1
2 1 L

Figure Ak, Adding (2,5,1) and (2,1,4) to the

structure.

29

if we probe at cell 3 , the tables (1,3,4%) and (2,1,4) will look
the same. This contradicts the definition of a table structure allowing
a l-probe search strategy.

We have thus proved that no l-probe table structure can exist for
n=3, m=5. This completes the proof for g(n,1l) < 2n-1 (n >3)

and hence Theorem 2. O

30

Appendix B, Proof of Lemma 2,

Let m > k > 2 and S = {1,2,...,m} . We shall construct a

2
k-separating system & for S , such that |%| < 3K (1g m)k'l

We agree that the O-separating system is @ , and the l-separating

system for any Tis {T} . The system % will be recursively constructed,
in the lexicographic order of (k,m) ., Divide S consecutively into k
almost equal blocks 8158,...,5 with [8;| = m = | (mi-1)/k] . We
shall define % as the union of the following families of k-separators,

to be described in a moment: ¢ , and B(nl,nz,...,nk) , Where 0 < n:.L < k

are integers satisfying 2 n, = k.
i

Let F, = (Ail’AiE’ .. "Aik) be a k-separator for the set §, ,

1<i< k. The direct sum F1®F2®...®Fk is the k-separator

(Al’AQ"”’Ak> , where Aj = Ui Aij . Let £t > 0 and, for each
1<i<k, ¥ = {Fil"'_’_Fit} be a family of k-separators

for Si . Define the direct sum "f’l@%@...@%k to be the family
of k-separators for S , % = {El,FZ...,F% , Where

FJ = Fl,j®F2j®"‘®ij for 1 <j<t . We now construct ¢ as
follows. Let "fi (1 <_i < k) be a k-separating system for S.1 '

*
constructed recursively.—/ For each j , add arbitrary k-separators

into szj so that the resulting family yl'] has t = max |551| elements.
i

1 — t t t
We now define ¢ = 3’1®512®...@?u< . For each Xy < x2 <. .. < X
there is clearly a k-separator F = (Al’AE"“’Ak) eg that "separates"
the x's (i.e., such that xJ. € Aj for all j), if all xj are in the

same block Si .

*
X We agree that %, = pif k > |Si| . Also note that, when k > |Si\ ,
any k-separator (Al’Az"“’Ak) for Si must have some Aj =0

31

For each (nl’ne""’nk) that satisfies O < n, < k and %}ni =k,

the family of separators B(nl,ne,,,mnk) is constructed as follows. The
family B(nl,nz,...,nk) is empty, if there is some i such that ng > m.
Otherwise, for each 1 < i <k , let "f{ bean n. -separating system

for Si , recursively constructed. Denote by B(nl,ng, . ..,nk) the family

of all k-separators of the form

F = (All)A:lz:oo.,Alnl)Ael,noa,Agnz,a-o,Aknk)) where each

(Ail,AiE,...,Aini)e&'l.'_L. For any ¥ < x, < . . . <x in S such
that exactly n; of the x's are in Si for each i , clearly there
is some k-separator in ﬁ(nl,ne,,,. l&j) that separates the x 's.
Let % = @qu U B(nl,ng,...,nk) . Then % is a k-separating
ny 's
system for S , as implied by the properties of ¢ and /B stated above.

Let f, (n) denote the size of % constructed this way, Then, by

k
definition,
k
£y (m) = max{f, (Tn/K1), £, (Lm/k])} + o_<_r?i<k T ()
Zn, =k
for m >k >2 . (B1)

We adopted in (Bl) the convention that fo(mi) =1, and f (m,) = 0

i
i
if n., >m.. .
i 1
Fact 2. For each k > 2 , f, (m) is a non-decreasing function of m ,
Proof. Using (Bl), one can prove it by induction on (kym) ,

lexicographically. O

32

1

*
We shall now prove, by induction on k , the following formula:—/

2
f, (m) < hk (1g m)k_:L for m>k >1 . (B2)
The formula is obviously true for k =1 . Let k >1 , we shall prove
(B2), assuming that it is true for all smaller values of k . First we
prove the following fact.
t . .
Fact 3. For m = k , where t > 1 is an integer, we have
2 k-1
k(1
fk(m) < & (E lgm) .
Proof. Using Bl), Fact 2, and the induction hypothesis, we have
£l p (1) .
£, (m) < £ (m/k) + Z L (lg m) . (B3)

Oin.l<k for all 1

Zni=k

In (B3), the summations y' are over those i with ng # 0 . The second

term in (B3) is at most

2 2 -
(2;;__]?_)h(k-l) +l(lg m)k-z i L5 -k+2(lg m)k 2

Thus, (B3) implies

ﬂ We interpret OO to be 1.

53

2 k-2
fk(m) < fk(m/k) + hk (% 1g m)

2 k-2
2 k[l
< fk(m/k) + 2.4 (K 1g m)
< e 00
2 k-2
kK1
< (logk m) L (E 1lg m)
2 k-1
< W (%ﬁ lg m) : O
t-1 t 1 and
For general m , let k <m<k where t > 2 . By Facts and 3,
2 k-1
k /1 t
—1lg k
fk(m) < b (h g)
2
< &1 mF
This completes the inductive proof for (B2), and hence Lemma 2. O

34

[1]

(2]

(3]

[L]

(5]

(6]

(7]

[9]

[10]

[11]

References

A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis

of Computer Algorithms, Addison-Wesley, Reading, Mass., 197k,
J. Bentley, D. Detig, L. Guibas, and J. Saxe, "An Optimal Data

Structure for Minimal-Storage Dynamic Member Searching," unpublished
manuscript.

C. Berge, Graphs and Hypergraphs, North-Holland, Amsterdam, 1973.

D, Dobkin and R. J. Lipton, "Multidimensional Search Problems,"
siav J. on Computing 5(1976),181-186.

P. Elias, "Efficient Storage and Retrieval by Content and Address
of Static Files," Journal ACM 21 (1974), 246-260.

P. Elias and R. A. Flower, "The Complexity of Same Simple Retrieval
Problems," Journal ACM 22 (1975), 367-379.
D. E. Knuth, The Art of Computer Programming, Vol. 1, Fundamental

Algorithms, Addison-Wesley, Reading, Mass., 1968.
D. E. Knuth, The Art of Computer Programming, Vol. 3, Sorting and

Searching, Addison-Wesley, Reading, Mass., 1973,

M. Minsky and S. Paper-t,_Perceptrons, MIT Press, Cambridge, Mass,,
1969.

D. E. Muller and F. P. Preparata, "Bounds to Complexities of Networks
for Sorting and Switching," Journal ACM 22 (1975), 195-201.

J. I. Munro and H. Suwanda, "Implicit Data Structures," Proc. 11l-th
Annual ACM Symp. on Theory of Computing, Atlanta, Georgia, 1979,
108-117.

R. L. Rivest, "Optimal Arrangement of Keys in a Hash Table,"
Journal ACM 25 (1978), 200-209.

M. I. Shamos, "Geometric Complexity," Proc. 7th Annual ACM Symp. on
Theory of Computing, Albuquerque, N.M., 1975, 224-233,

L. Snyder, "On Uniquely Representable Data Structures," Proc. 18th
Annual IEEE Symp. on Foundations of Computer Science, Providence, R.I.,
1977, 1lhke-1L6,

R. Sprugnoli, "Perfect Hashing Functions: A Single Probe Retrieving
Method for Static Files," Communications acm 20 (1977),8L1-8L49.

R. E. Tarjan, "A Class of Algorithms which Require Nonlinear Time
to Maintain Disjoint Sets," J. Compter Syst. Sci, 18 (1979), 110-127.

35

[17] R. E. Tarjan, "Storing a Sparse Table," Stanford Computer Science
Department Report STAN-CS-78-683, December 1978. (This is a
preliminary version of [18].)

[18] R. E. Tarjan and A. C. Yao, "Storing a Sparse Table," Communications
ACM, submitted.

[19] P. Van Emde Boas, R. Kaas, and E. Zijlstra, "Design and Implementation
of an Efficient Priority Queue," Math. Sys. Theory 10 (1977), 99-127.

[20] B. Vilfan, "Lower Bounds for the Size of Expressions for Certain
Functions in d-ary Logic," Theoretical Computer Science 2 (1976),

249-269,

36

