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1. Introduction,

The theory of G-stability arises from investigating the stability of the linear
multistep method

k k
E A Yn+j = h Z ,ﬁgf (yn-}-j)

j=0 j:=0

for solving the general non-linear system of differential equations

v=f(Y)
where fz @8 — @8 satisfies some monotonicity condition
Re (f(u) —f(»)u—v) <0 Yuve C5 (1.1)

Here (-,+) is some appropriate inner product in € 5, This condition ensures that
the true solution of the differential equation is stable, For let w and v be two
solutions of y' == f(y). Then it is easy to see that

sz"t““(t) — y{))* = 2Re (f(u) — f(v), u —v)

where ||+]| is the norm corresponding to the given inner product. With the exception
of section 3, in this paper we will restrict ourselves to the case s =1 for simplicity.
By the theory presented in [1], this means no loss of generality. The inner product
is usually simply (u, v) = uv,

In practice it is often easier to study the stability of the “one-leg method”

k k
E ajynt; =hf (Z ﬁjyn-i—j) (1.2)

i=0 j=0

since this involves the function f evaluated at only one point, It has been shown that
results for this problem can be easily transformed into results for the corresponding

linear multistep method.
For the method (1.2), define the generating polynomials p and & by

k

o) = D aig?

=0

ofs) = B’

=0

|



We will often refer to (1.2) as “the method (p,0)". If we define the forward shift
operator E by
E Yn = Yn+1,

then we can rewrite (1.2) as
PE)Yn = hf(o(E)yn).
Frequently we will use capital letters to denote k-vectors with the convention that
Y = (Yrs Ynk-1y -+ » » Yriepke1) -

If G is any real symmetric positive definite matrix, we can define the G-norm of

the vector Yy, by
Yl = Y3 GYn

The method (p, o) is termed G-stable if there is a real symmetric positive
definite matrix G for which

1Z111& — 1Z0ll3 < Re (o(E)a, (E)20) (1.3)

for all vectors Zy = (2, %n+1y+ » + 2ntk—1), 2 € €. This will imply stability
of the numerical procedure in the following sense. Let {yn'} and {yn''} be two
sequences which satisfy (1.2) with different initial conditions, where f is assumed
to satisfy (1.1) and (p,o0) is G-stable, Then if 2, = y,' — y»"", it can easily be
shown that ”Zn—}-l“G < “Zn“G-

It was shown in [1] that G-stability is equivalent to A-stability. So a matrix
G satisfying (1.3) exists for a method (p, o) if and only if the A-stability condition
holds, Re p(¢)/o(¢) > 0 for |¢| > 1. This is equivalent to requiring that the
stability region of the method include the entire left half plane, where the stability
region S of a method is defined as the set of complex points ¢ for which the roots
of the polynomial p(¢)—go(¢) are inside the unit circle, or lie on the unit circle
and are simple roots,

A method for constructing G-stability matrices was originally proposed in
[2]. However, that method is not guaranteed to produce positive definite matrices.
Nonetheless, it has been successfully used by Dan Andrée and has never failed
to produce positive definite matrices in practice. A new algorithm is developed
in [1] which is guaranteed to produce positive definite matrices. That algorithm,
which will hereafter be referred to as I’, has been used to obtain all of the results
presented here.



For any A-stable method (p, o), the algorithm I" will gencratc a complex
matrix M such that the real part of MM is the required G-matrix, More in-
teresting than the matrix itself, however, are some of the quantities which can
be computed from G. These are described in the following sections in which we
summarize some of the important results of [1]. The interested reader should refer
to that paper for a more detailed discussion of the theory,

Section 7 then contains a summary of some numerical results for the backward
differentiation, Adams-Bashforth, and Adams-Moulton methods of various orders.

2. Condition Numbers

One quantity which is of interest to compute is the condition number of the
matrix M produced by the algorithm. This is defined by

(M) = IMl2lIM ]2

This is important because the theory of G-stability guarantees bounded solutions
only in terms of the G-norm, We see that

1Y% =vy?gy
= YHMHEMY
= IMY]3.

Hence we know |[[MYntillz <|[[MY,|: <.+ <|[MYs||2. For a bound on the 2-
norm of the solution Y, itself, we have

1Yntillz = M MYnq1l2
<|IM7Y2lMY g1 ]l
< [IM7|2llMYoll2
< &(M)||Yo]]2.

The G-stability of the method might seem somewhat meaningless if it turned
out that the algorithm produced matrices M with extremely large condition num-
. bers. In most cases of practical interest the condition number is of moderate size,
although in some cases it is on the order of 1000, see section 7.

3. Generalizations of G-stability and the computation of b(0).

If a method is G-stable, its stability region contains the entire left half plane,
{q: Re ¢ <0}. Not all practical methods are G-stable, however, and we often wish
to investigate methods which are not. For such methods there are two questions
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we may want to consider, Firstly, what sort of contractivity condition for f must
we replace (1.1) by in order to ensure that (p,o) provides a stable solution when
applied to y' = f(y). Secondly, we may wish to know how fast the numerical
solution might grow if f fails to satisfy such a condition.

Consider a method (p, o) whose stability region contains the arbitrary “disk”

{¢: Re ( %ﬁ_‘%) < 0}. Define the modified method (*,2") by

p.=ap+bo 3.1
o =cp - da, (3:1)

Then the difference equation p(E)yn = qo(E)yais equivalent to " (E)yn=g"0"(E) yn
where ¢* = (ag =+ b)/(cg + d). So cleal y(p*, a’) is G-stable, since its stability
region contains the left half plane, {g*: Re q < 0}. In other words,

FX0)
o*(¢)

In [1] it is shown that applying the method (p,o) to the differential equation
Y'= f(Y) is equivalent to applying (¢*,0") to the problem y' = f(y), where the
modified function f* is defined by

hi"(y) = ahf(u(y)) + bu(y)

with u(y) given by the solution of

chf(u)+ du =y.

Re

>0 for [¢|>1. (3.2)

So we will obtain a stable numerical solution providedf satisfies the condition
(1.1). Hence f must satisfy the condition

(ah(f (u) () i —v) <o Vu, v. (3.3)

In summary, then, we see that (p,o) will provide a stable solution in some
norm for the problem y' = f(y) provided that f satisfies (3.3). The matrix defining
the norm in question can be obtained by applying the algorithm I’ to the modified
polynomials p" and ¢" as defined in (3.1).

As a special case we could let (a, b, ¢, d) = (1, —m, 0, 1) if the stability region
were to contain the half plane {q: Re ¢ < m}. A method satisfying this condition
has been called (G,m)-stable in [2]. However, rather than handling (G,m)-stability
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in this manner, it is preferable to treat it as a special case of a morc gencral
situation in which (3.2), which guaranteed the G-stability of (0°,6°) , is replaced

by

Re g%;— >m@) for [¢|>8. (3.4)

(G,m)-stability is then equivalent to the condition that (3.4) be satisfied for
(a,b,c,d)=(1,0,0,1)and m({ 1) = m. The reason for considering this generaliza-
tion is that it is useful in studying the growth of solutions to y' == f| (y) when f
does not satisfy (3.3). Or, equivalently, whenf does not satisfy (1.1).

Define the polynomials p** and ™" by

P71 = p706) = m(0)" 0
o"(e) =), 3

The algebraic condition (3.4) is then equivalent to

[ 2]
p () >

Re .~ 0 for > 1,
o) l¢]

50 ($*,a**) is G-stable, The algorithm I’ can be applied to (o**,6"*) to yield a
positive definite matrix G**(0),
Suppose now that " satisfies not (1.1) but rather a condition of the form

Re {/*(w) -£4(v), u —v) < pju—of%

It has been shown in [1] that if we then apply a method (0*,¢") which satisfies
(3.4) to an arbitrary vector Z, for the equation y' = ( Yy ), we will obtain a new
vector Zp4 satisfying

1Zn-4 19y — O%11Z0lls) < 20 — m(O))lo” (Bl (3.8)
. where G*(6) = ©—1G**()0~! with 8 = diag(0, 6%, . . ., 6%). Furthermore,
200" (E)an|* < b(0)(1Zn+1llE+0y + 011 Znllra))s

where

20" (B’ ]

5(0) = max [” Zy||Gov(oy + |20l Emege)

20,1012k
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Using this bound in (3.8) when g4 > m(0) and the bound |o*(E)zq|* 2> 0 when
ph < m(0) gives a bound in the G*(O)-norm for the growth in the solution of the
one leg method:

1 Ynt1llew < 0'll Yalleoy

where

0, if b < m(f)

9 = o2
oI+ E i m(g) < b < i) + 1/5(0).

(3.7)

The quantity b(@) can be calculated in practice as the largest eigenvalue (in modulus)
of the generalized eigenvalue problem

267757 = (5 o)+ (T O

ﬁ“ = (ﬂ;" ﬂ;‘: veny ﬂ:',‘)i

the vector consiting of the coefficients of o**. Values of b(8) are tabulated in section
7.

where

4. Computation of m(f).

For expository purposes we define the region S for a method (p, 0) to be
the set of complex numbers ¢ such that the polynomial p(¢) — go(¢) has roots of
modulus no greater than 6, and only simple roots of modulus 4.

We are often confronted with the problem of trying to determine some of
the important characteristics of the region Sy for some method (p, o). For ex-
ample, we may want to determine the largest value of m for which the half plane
{g: Re ¢ < m} is contained in S;. Or we may want to know the diameter of the
largest disk contained in both S and the left half plane which is tangent to the
imaginary axis at the origin. Wc refer to these as the half-planecase and the
disk case respectively.

These and other such questions can be answered by studying the generalized
method (p*, ") for a judicious choice of the parameters a, b, ¢ and d in (3.1). If
it is assumed that (p’, a') will be (G, m(O))-stable for some value of m(O), we can
compute m(0) as

L p)
m(f) [I‘Il]glo Re — )
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The condition Re 3;(% > m(9) for |¢] > 8 will then be satisfied by the minimum

o
principle for harmoni(f: functions. So m(0) can be easily computed by a good one-
dimensional minimization routine.

As an example, the two questions posed above are answered for the stability
region of the 5-step Backward Differentiation method. Let 8 = 1 and let m; be
the value of m(1) for the half-plane Case, (a, b, ¢, d)==(1, 0, 0, 1). This turns out to
be m; = -2.327, This is the answer to the first question, since S must contain the
half plane {q: Re ¢ <}, Similarly, in the disk case (a, b, ¢, d) = (0, 1, 1,0) and
we find that my = —0.368. Since S must then contain the disk {q: Re 1/¢ < my},
the diameter we seek is —1/mp=2.717.

Figure 1 shows the complement of the region S as well as the two regions
determined above. Values of m(f) computed for different methods and values of

8 are summarized in section 7.

/
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5. Applications to linear systems with variable coefficients: ¢(6).

Consider now the application of the one-leg method (p,o) to a linear system
with variable coefficients,

= J(t, y)y + p(t).

Sl&

The difference equation becomes
P(E)Yn = hJ0(E)yn =+ P,

where Jy, = J(0(E)tn, o(E)yn) and ps = p(o(E)t,). Here y € IR®, we are consider-
ing s-dimensional systems. In this case, the G-norm of a vector Y, (each of whose
components is now an s-vector) is defined by

- k k
IYalZ =3 D 6 {Untim1s Untjm1)-

i=1 =1

From a result in [1] , we know that if {y,} satisfies this one-leg difference
equation, then {o(E)y,} will satisfy the corresponding linear multistep difference
equation. So we would like to bound {lo(E)ya|.

The companion matrix formulation of this difference equation is

o I 0 0 ... 0
o o7 0 ... 0
Yn+1= . : Yn+Pn
0O 0 0 0 ' I
€1 C €3 ¢4 " ocy
=CpYn+ Py

where
¢ = —(awl — hBeln) " (aj—1] —hBi—1Jn)

0
P,=
(alo[ - hﬂkjn)—lpn



Suppose that there exists a matrix G*() as in section 3 such that ||, n+1||?;'(a) <
(03| Y,.Hg;-(o) in the homogeneous case p, = 0. Then it follows that in the in-
homogeneous case, we have

IYn+1llg@) <IICulle*@)ll Yall*oy + \/ 91(0) (@] — hBen) " pall
<@ Yn“c;'(o) + 91:/:(0) l|(awl — hﬁkJ,.)—'lpnll

where gxi(0) is the (k,k) d ement of G*(6). Applying this bound recursively gives

IYalle*ey < ()" YollG~0y

+\/e0) S0 el — bty poll. BV
v=1
In order to bound ||o(E)ynll, note that p(E)yn = hJuo(E)yn+ pn leads to
o(E) yn — (%tha(E)yn = (O(E) - %p(E))yn — %Pn-
So
Br 7y _ B Pe
llo(E)ynll <[{I— 'a—k-]nh) (O(E) akP(E))yn =} akPn . (5.2)
Let . .
A= max ”(O(E)—E; (E))ZOI’ )
ot 1Zel[Eeg)
so that
(o)~ ZoE)u] < VRI¥alor 53

. It follows from Lemma 3.4 of [1] that it is sufficient to consider the one-dimensional
case in the determination of A, that is we need only consider scaler z;. Hence A
can be found by solving a generalized eigenvalue problem of the same form as the
one used to compute b(O).

Combining (5.2) and (5.3) gives

NoE)all < lb— By

(VA Yallgoy =+ 1 2 pal)
Qg
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Using (5.1) then gives

lo(E) ynu<ﬂz— %™ | (VE O 19

+ /AgL(0) Z‘(o')"—"'u (o] —hBy—1) Py Il

=1

+ &Pn)
- ,ch (@)™ 1 Yollga)
< (/A0 o (—
\/ 9ix(0) “ ) r0)
+L Y (] — hBiJy—1)~ 1?&!—1“
v=1
ll apnll
el
Q)

Because of this bound, the quantity

c(8) = \/Ngp(6)

1s of interest and has been tabulated in section 7. Because of the form of the bound,
it may be that the quantity ¢(0)/a, is even more interesting.

6. Checking the algorithm.

It is interesting to test the matrix G constructed numerically by checking to
see whether points in the stability region of the corresponding method do indeed
lead to bounded solutions in the G-norm for the linear test equation y' == Ay. This
is a reassuring test of both the theory and the implementation of the algorithm
I'. For this test equation, the method (2) becomes

P(E)yn = hNo(E)yn,
which can be rewritten as

P(E)yn — go(E)yn=10
10



where ¢ == h\, Letting the polynomial ¢ = p — go gives
$oYn -+ 1Un+1F+** + Prntr =0.
This equation can be solved for yp4, yielding

%o é1 Pe—1
—— e e— — — — 0 0 O Sm— __——y k 1
Yn--k b Un S Yn+1 o n-+k—1)

which can be employed to give the following matrix equation
Yn+1 0 L0 0 .. 0 Y\ v
Yn+2 0 0 I 0 ... 0 Yn+1
Ynt-k—1 o o o0 0 - 1 n-Fk—32
L y"'*"‘J L"% -5 —% -8 - J\Pnte—1

If we denote the above companion matrix by Cg, we have the relationship Yyp+1=
CsYn. Hence, stability means that

ICsYulle < [IYnllay

i.e., that ||Cylle < 1. Thus we would expect |\ < 1 for all solutions N of the
generalized eigenvalue problem

CHGCy = \Gu.

This should hold for all values of g in the stability region, Recall here that ¢ =
p — qo. In practice we have solved this cigenvalue problem for values of q lying
on the boundary of various “disks” {g: Re (fgfﬁS < m} which should lie in
S(p, o). For example, for the disk {¢: Re (1/q) < m}, we calculate max |N| at the
. points g= 0, gg=1/m, and g3={(m—1)/(m?*<4 1). If max |[N| < 1 at ¢1,¢, and
g3, then by other considerations we know that max |A\| < 1 in the convex hull of
{q1, % 93,3} This is the region shown in figure 2.

All experiments have indeed given max |\ < 1. Furthermore, as expected, the
result max |N| = 1 was found whenever the pointg was actually on the boundary

of S(p, o).

11
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Figure 2

7. Numerical results,

The quantities m(6), b(B), c(B), and n(M) h ave been calculated for the backwards
differentiation methods, the Adams-Moulton methods, and the Adams-Bashforth
methods of low order. In each case, the calculations were done for various values
of the stepnumber & and for @ ranging from 1.3 down to 1.0. In the case of half-
plane stability regions for the backwards differentiation methods, values of 8 less

than 1.0 were also allowed,

We recall that
m(6) is defined on page 6, see also fig. 1 on page 7.
b(B) is the factor occurring in the expression on page 6 for the growth
factor 8', when ph > m(6).
c(0) is defined on page 10. It relates a weighted sum of the local errors
to the global error for the linear multistep method.
k(M) is the Euclidean condition number of the transformation from

Euclidean to G-norm, see page 3.
The coefficients of pand a for each method can be found in [3] or [4], for
example. The tests were all run on the modified polynomials p** and o** defined

by (3.5).
All calculations were performed on an IBM 370 computer using double preci-
sion.

12



For k== 2 and k = 3, we have also plotted 8' as a function of 8 for various
values of wh, according to the definition (3.7). These functions are approximated
by piecewise polynomials interpolating the values of @ given in the tables,

13



Backwards Differentiation Methods, half-plane case

0 k=2 k=3 =4 k=5 k=6
m(6) 0.257 0.261 0.211 = -0.255 -1.436
b(6) 1.457 1.186 1.096 0.861 0.606
1.3
c(9) 0.996 1.055 0.994 0.960 1.076
K (M) 6.291 32.70 82.41 246.8 814.0
m(0) 0.181 0.182 0.021 -0.698 -2.401
b(8) 1.397 1.176 1.015 0.749 0.497
1.2
c(8) 1.021 1.070 0.950 0.971 1.154
K (M) 6.064 28.33 62.48 .83.7 583.5
m(8) 0.095 0.081 -0.256 -1.347 -3.840
b(8) 1.352 1.158 0.910 0.629 0.392
1.1
c(9) 1.057 1.027 0.927 1.007 1.278
K (M) 5.897 20.42 47.81 36.1 412.4
m(6) 0.000 -0.083 -0.667 -2.327 -6.075
b(8) 1.333 1.072 0.788 0.506 0.296
1.0
c(8) 1.111 0.959 0.923 1.077 1.471
K (M) 5.828 14.80 36.62 99.88 286.5
m(6) -0.117 -0.330 -1.293 -3.868 -9.719
b(6) 1.237 0.959 0.653 0.388 0.211
9
c(6) 1.047 0.916 0.945 1. 19'8 1.774
K (M) 5.042 11.47 27.92 72.31 195.0




6 k=2 k=3 k=4 k=5 k=6
m(8) -0.281 -0.708 -2.289 -6.426 -16.05
b(6) 1.123 0.824 0.513 0.279 0.141
.8
c(86) 0.989 0.895 1.004 1.400 2.267
K (M) 4.329 9.046 21.10 51.46 130.0
m(8) -0.520 -1.311 -3.969 -10.98 -27.96
b(8) 0.990 0.672 0.377 0.186 0.086
-
c(6) 0.940 0.899 1.120 1.745 3.115
K (M) -- 3.689 7.161 15.75 35.87 83.69
m(06) -0.889 -2.338 -7.031 -19.86 -52.96
b(8) 0.837 0.512 0.254 0.112 0.047
.6
c(8) 0.904 0.942 1.337 2.363 4.705
k (M) 3.120 5.648 11.57 24.39 52.31
m(6) -1.500 -4.245 |-13.26 -39.63 -114.0
b(6) 0.667 0.354 0.152 0.059 0.022
.5
c(8) 0.889 1.051 1.752 3.575 8.076
K (M) 2.618 4.418 8.338 16.09 31.45
m(6) -2.625 -8.279 -28.10 -92.81 -300.3
b(6) 0.485 0.214 0.078 0.026 0.008
A
c(06) 0.911 1.292 2.616 6.331 16.71
k (M) 2.182 3.414 5.864 10. 25 18.06
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8 k=2 k=3 k=4 k=5 k=6
m(8)| -5.056 || -18.74 ~73.65" ~286.7 1111
b(6) 0.305 0.106 0.031 0.008 0.002
-3 c(8) 1.007 1.847 4.772 14.36 46.70
« (M) 1.806 2.596 4.005 6.252 9.806
m(8) | -12.00 -57.85 | -294.7 1519 7928
b(8) 0.148 0.036 0.008 0.002 3.0x10”
2 c(6) 1.289 3.428 12.40 51.34 229.1
< (M) 1.488 1.937 2.640 3.622 6.513
n(6) | -49.50  |-403.9 ~3535 -3.2x10% -3.0x10°
b(8) 0.039 0.005 0.611x107 3 6.8x10 7.3x10°
. c(8) 2.311 11.57 76.00 568.1 4588
« (M) 1.221 1.412 1.667 1.973 2.338




Backwards Differentiation Methods, disk case

6 k=3 k=4 k=5 k=6
m(6) 0.171 0.062 ~0.044 ~0.173
b(6) 5.493 5.013 4.454 3.938
L.3
c(9) 0.896 0.924 0.978 1.055
K (M) 19.07 70.71 274.9 1212
m(8) 0.128 6.024x10"°> ~0.117 ~0.288
b(6) 4.989 4.444 3.935 3.517
L.2
c(6) 0.895 0.944 1.016 1.111
K (M) 16.95 61.62 247.0 1150
m(8) 0.059 ~0.073 ~0.218 ~0.477
b(0) 4.307 3.830 3.462 3.182
1
c(0) 0.930 1.000 1.084 1.192
(M) 16.09 56.41 243 .7 1028
m(6) ~0.071 ~0.183 ~0.368 ~0.893
b(6) 3.365 3.273 3.064 2.820
0
c(8) 1.108 1.120 1.175 1.274
« (M) 20.96 54.36 162.4 526.1




Adams-Bashforth Methods, disk case

6 k=2 k=3 =4 k=5 k=6
m(8) -0.819 -1.386 -2.289 -3.774 -6.261
1.3 b(8) 2.304 1.587 1.176 0.882 0.545
K (M) 2.964 8.812 35.93 132.0 390.8
m(6) -0.871 -1.508 -2.558 -4 .348 -7.454
1.2 b(8) 2.202 1.484 1.083 0.787 0.503
K (M) 2.774 7.888 31.27 104.0 289.0
m(6) -0,931 -1.654 -2.896 -5.101 -9.085
1.1 b(6) 2.100 1.379 1.002 0.697 0.440
K (M) 2.590 7.085 27.65 '81.93 216.0
m(8) -1.000 -1.833 -3.33 -6.122 -11.40
1.0 b(8) 2.000 1.273 0.806 0.482 0.272
K (M) 2.414 6.427 18.14 52.93 155.6
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Adams-Moulton Methods, disk case

0 k=2 k=3 k=4 k=5
m(9) ~0.082 ~0.213 ~0.359 -0.542
b(6) 3.654 3.247 2.925 2.660
1.3
c(8) 1.083 1.172 1.267 1.379
K (M) 4.896 22.35 84.19 338.7
m(8) -0.107 ~0.247 ~0.410 -0.622
b(6) 3.563 3.143 2.814 2.544
1.2
c (8) 1.083 1.173 1.275 1.401
K (M) 4.523 19.14 68.55 276.0
m(6) -0.135 -0.287 -0.471 -0.720
b(6) 3.487 3.048 2.711 2.438
1.1
c(9) 1.083 1.176 1.286 1.432
K (M) 4.149 16.21 55.50 233.4
m(9) -0.167 -0.333 -0.544 -0.844
b(6) 3.429 2.963 2.563 2.167
1.0
c(8) 1.083 1.181 1.301 1.468
K (M) 3.777 13.54 37.94 107.0
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3-step Backwards Differentiation Method, disk case
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2-step Adams-Bashforth Method, disk case
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2-step Adams-Moulton Method, disk case
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