FAST ALGORITHMS FOR SOLVING PATH PROBLEMS

by

Robert Endre Tarjan

STAN-CS-79-734
April 1979

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

Fast Algorithms for Solving Path Problems

an/
Robert Endre Tarjam
Computer Science Department
Stanford University
Stanford, California 94305
April, 1979
Abstract.

Let G = (V,E) be a directed graph with a distinguished source vertex s

The single-source path expression problem is to find, for each vertex v ,

a reqular expression ©P(s,v) which represents the set of all paths in G
from s to v . A solution to this problem can be used to solve shortest
path problems, solve sparse systems of linear equations, and carry out
global flow analysis [30]. We describe a method to compute

path expressions by dividing G into components, computing path expressions
on the components by Gaussian elimination, and combining the solutions.
This method requires Of(m Q(mn)) time on a reducible flow graph, where

n 1s the number of vertices in G , m 1is the number of edges in G , and
& is a functional inverse of Ackermann's function. The method makes use
of an algorithm for evaluating functions defined on paths in trees [9,29].
A simplified version of the algorithm, which runs in O(m log n) time on

reducible flow graphs, 1s quite easy to implement and efficient in practice.

CR Categories: 4.12, 4.34, 5.14, 5.22, 5.25, 5.32.

Keywords: Ackermann's function, code optimization, compiling, dominators,
Gaussian elimination, global flow analysis, graph algorithm,
linear algebra, path compression, path expression, path problem,
path sequence, reducible flow graph, regular expression,
shortest path, sparse matrix.

i/ This research was partially supported by the National Science Foundation
under grant MCS75-22870-A02, by the Office of Naval Research under
contracts NROLL-402 and NOOOLL-76-C-0688, by the IBM Corporation, and
by a Guggenheim Fellowship. Reproduction in whole or in part is permitted
for any purpose of the United States government.

1

1. Introduction.

The techniques of Gaussian and Gauss-Jordan elimination, originally
devised to solve systems of equations over the real numbers, have been
repeatedly rediscovered and applied to other problems. These include shortest
path problems [6,10,16], path-finding problems [4], global flow analysis
[2,12,13,23], and conversion of finite automata to regular expressions [18].

The most fundamental of these problems is the (single source) path

expression problem: Given a graph G = (V,E) and a distinguished

source vertex s , find a regular expression P(s,v) for each vertex v
which represents all paths from s to v in G . By reinterpreting
the U ,., and * operations used to construct regular expressions,

we can use a solution to the single-source path expression problem to
solve other kinds of path problems, including those mentioned above [30].
We thus obtain a general-purpose algorithm for solving any path problem
on a given graph.

This paper describes a decomposition method for computing path
expressions. The method divides the graph G into components based
upon the dominator tree of G , computes a path expression for each
cbmponent by Gaussian elimination, and combines the solutions using
an algorithm for evaluating functions defined on trees [9,29]. The
algorithm requires O(m Q(m,n)) time plus time to compute path expressions
within the components, where n is the number of vertices in G,

m 1is the number of edges in G , and & is a functional inverse of
Ackermann's function. If G is a reducible flow graph, each component

of G is a single vertex, and the method requires O(m &(m,n)) time

total. Although the method is rather complicated, a simplified version,
which runs in O(m log n) time, is quite easy to program and efficient
in practice.

The paper contains seven sections. Section 2 reviews the properties
of regular expressions used in the following sections. Section 3
reviews standard methods of numerical linear algebra and describes
their application to the path expression problem. This section introduces

the notion of a path sequence for a graph G and shows how, given a

path sequence, one can solve the single-source path expression problem
for any source in time proportional to the length of the path sequence.
Section 4 presents an O(m @(m,n)) -time algorithm for solving a single-
source path problem on a reducible flow graph if the source is the start
vertex of the graph. Section 5 extends the algorithm so that it

computes path sequences for reducible flow graphs. Section 6 generalizes
the method to non-reducible graphs. Section 7 discusses applications

and suggests further research topics. The appendix contains the basic
graph-theoretic terminology used in the paper, An earlier and much

different version of this paper appeared as a Stanford technical report [27].

2. Regular Expressions and Path Expressions.

Let § be a finite alphabet containing neither "A"™ nor " §".

A reqular expression over £ 1s any expression built by applying the

following rules.

(1a) "A"and " § " are atomic regular expressions; for any acg ,

"a " is an atomic regular expression.

(1v) If R, and R, are regular expressions, then (R1UR2) s

*
(Rl'Rz) , and (Rl) are compound regular expressions.

In a regular expression, A denotes the empty string, }b denotes
the empty set, |J denotes set union, .denotes concatenation, and
*
* denotes reflexive, transitive closure under concatenation.—/ Thus

each reqular expression R over ¥ represents a set c(R) of strings

over ¥ defined as follows:
(2a) o(A) = {0} ; o(f) = P ; o(a) = (a) for aeg

(2b) °(R1UR2) = G(Rl)UU(Rg) = {w‘weO(Rl) or we G(Rz)} 3

o(R *Ry) = 0(By)*0(R,) = {wyw, | w; €0(R)) and w,eo(R,)} 3

U(R*) = Z U(R)k , where CI(R)0 = {A} and G(R)i = G(R)i-l'O(R) .
k=0

f/ Note that each of the symbols A , §,U , ., *¥ stands in the text both
for the symbol itself and for a string, set, or operation. We shall
allow the context to resolve this ambiguity. Also, we shall freely
omit parentheses from reqular expressions when the meaning is clear;

we assume the standard operator precedence: ¥ over . over U .

The reverse Rr of a regular expression R is defined by
(3a) Ar=1\.3¢r=¢;ar=a for aeyg .

(30) (R UR)" = K UE, ;

Two regular expressions Rl and R2 are equivalent if a(Rl) = U(RE)
A regular expression R is simple if R = § or R does not contain p
as a subexpression. We can transform any reqular expression R into an
equivalent simple regular expression by repeating the following
transformations until none is applicable: (i) replace any subexpression
of the form ;é-Rl or Rl-yﬁ by § ; (ii) replace any subexpression of
the form @+ R, or Rl+¢ by R, ; (iii) replace any subexpression

*

of the form § by Aa.

A regular expression R is non-redundant if R represents every

string in a(R) uniquely. We can make this definition precise as

follows:
(ka) A> P, and a for each acy are non-redundant.
(W) Let R, and R, be non-redundant.

R UR, is non-redundant if U(Rl)ﬂU(RE) =p .

R, *R, is non-redundant if each we G(RloRE) is uniquely

decomposable into w = WlW2 with Wy € G(Rl) and

Wy eG(Rg) .

* *
Rl is non-redundant if each we 0(R) is uniquely decomposable

into W = W.W.esoW

Wpeee¥y with wioe o(R)) for 1 <4 < k

Note that if R* is non-redundant, Af£ o(R) .

Let G = (V,E) be a directed graph. Any path in G is a sequence

of edges, which we can regard as a string over E . A path expression P
of (v, w) is a simple regular expression over E such that every
string in o(P) is a path from v to w . Every subexpression of a

path expression is a path expression, whose type can be determined as

follows.

(5) Let P be a path expression of type (v,w) .

If P = PlUIb , then Pl and P2 are path expressions of

type (v,w) .
IfpP = Pl-P2 ;, then there must be a unique vertex u such
that P, 1s a path expression of type (v,u) and P2
is a path expression of type (u,w) ,

*
If P = Pl » then v = w and Pl is a path expression of

type (v,w) = (V,v).

It is easy to verify (4) using the fact that P is simple. Note that
A is a path expression of type (v,v) for any v

In describing algorithms to compute path expressions we shall assume
that each y , ® ,and * operation requires constant time. If we
represent the computed path expressions by a directed acyclic graph as
described by Aho and Ullman [2, pp. 418-426], this is a reasonable

assumption.

3. Path Expression Problems and Path Sequences.

Let G = (V,E) be a directed graph. The single-source path

expression problem for source vertex s 1is the problem of computing,

for each vertex veV , a non-redundant path expression P(s,v) such
that o(P(s,v)) contains all paths from s to v . The single-sink

path expression problem for sink vertex t is the problem of computing,

for each vertex veV , a non-redundant path expression P(v,t) such
that o(P(v,t)) contains all paths from v to t . The all-pairs

path expression problem is the problem of computing, for all pairs v,weV ,

a non-redundant path expression P(v,w) such that o(P(v,w)) contains
all paths from v to w

In this paper we develop a way to solve path expression problems by
using Gaussian elimination in combination with methods for decomposing
G into components. 1In this section we describe how Gaussian elimination
applies to such problems. We also describe a well-known decomposition
method which uses the strong components of G . Ip subsequent sections
we present a more powerful decomposition method based upon the
dominator tree of G

Gaussian elimination was originally developed to solve a system of
linear equations Ax = b , where A is an nxn matrix of real-valued
coefficients, x 1s an nxl vector of variables, and b is an n x1

. vector of real-valued constants [1l]. The method consists of two steps.

Step 1 (LU decomposition). Decompose A into A = LU, where L is
unit lower triangular and U is upper triangular.
Step 2 (Frontsolving and backsolving). Solve the triangular systems

Ly = b (frontsolving) and Ux = y (backsolving).

The resource requirements of Step 1 dominate those of Step 2 and
thus determine the overall requirements of the algorithm [5,28]. The
method has several pleasant features, including its amenability to an
implementation that takes advantage of the sparsity of A , avoiding
arithmetic on numbers known to be zero [8,22]. It is also possible
to solve Ax = b for multiple right-hand sides by carrying out Step 1
once and repeating Step 2 for each value of b .

We apply this method to path expression problems by introducing the

notion of a path sequence, which generalizes Kennedy's node listing

concept [17]. A path sequence for a directed graph G is a sequence

(Plavl:Wl);(Pg;Vé:Wé):...,(P ,V[,wl) such that

b4

(6a) For 1< i <¢, P, is a non-redundant path expression of

type (vi,wi)

(6Db) For 1 < i <t , if v; = w, then pe G(Pi) .
(60) For any non-empty path p in G , there is a unique sequence
of indices 1 §i1 <i2 <. .. < ik <1 and a unique partition

of p into non-empty paths p = P1s3Pps . 0Py such that

pj € 0(Pij)

for 1 < j < k

Given a path sequence, we can solve the single-source path expression

*
problem for any source s by using the following propagation algorithm:—/

i

We shall use a syntax resembling Dijkstra's [7] for expressing
algorithms.

procedure SOLVE;
OIS NSNS NSNS

initialize: P(s, s) := Aj for each veV-{s} do P(s,v) := § od;
Loop: for i = 1 until f do
if vy = W, - P(s,vi) 1= [P(s,vi)-Pi]
D vy # LA P(s,wi) 1= [P(s,wi)u [P(s,vi)'Pi]] fi od
end SOLVE;

In this and subsequent algorithms, the square brackets denote the
following simplification procedure. This procedure, when applied
recursively, produces regular expressions that are not only simple but also

*
contain no subexpressions of the form AR, , Ry*A , or A .

regular expression procedure [R];
if R= R UR, 2ifR _ PR [JR, =4 ~R fi
nR=RyeRy o if (B = Por By =~ pI R =2 =B [[B =0 ~R £
*

L R

By AL Ry = f) or (B = a) ~ A £L 15

-Lemma 1. Let (Pl,vl,wl), (PQ’VQ’WE)’ . ..,(P!, vy wl) be a path sequence
for G and let v be any vertex. After i iterations of the loop in
SOLVE, P(s,v) is a non-redundant path expression representing exactly A

(if s = v) and all non-empty paths p from s to v for which there

is a sequence of indices 1 < il < i2 <. .0 < ik < i and a partition of
P into P = PysPys...,P such that Py € G(Pij) for 1 < j <k

Proof. Straightforward by induction on i . O

Theorem 1. Let (Pl,vi,wl),(PQ,VE,WQ),.@.,(Pl,vl,wl)'be a path sequence
for G and let v be any vertex. After execution of SOLVE, P(s,v) is

a non-redundant path expression representing all paths from s to wv.

SOLVE is a generalization of the frontsolving-backsolving step in

Gaussian elimination; its running time is O(n+{) . To solve a single-—
source path expression problem on a graph G , we construct a path
sequence and apply SOLVE once. To solve an all-pairs path expression
problem, we construct a path sequence and apply SOLVE n times, once

for each possible source. To solve a single-sink path expression problem,
we employ the following theorem to construct a path sequence for Gr p

and then we solve the corresponding single-source problem on Gr .

Theorem 2. Let (Pl’vi’wl)’(P2’V2’W2)’"”(Pz’vl’wl) be a path sequence
r T r .
for a graph G . Then (Pl’wl’vz)”"’(PE’Wé’VE)’(Pl’Wl’vl) is a path

r
sequence for G .

Proof. Immediate. [

By Theorem 2 it is no harder to compute a path sequence for ¢" than

to compute a path sequence for G

We can construct a path sequence for an arbitrary graph by using a
method analogous to Step 1 of Gaussian elimination. The method is similar
to Kleene's algorithm for converting a finite automaton into a regular
expression [18], except that Kleene uses Gauss-Jordan elimination. Let
G = (,E) be a directed graph whose vertices are numbered from 1 to n
and identified by number. The following procedure computes a set of path

expressions which when properly ordered gives a path sequence.

10

Erocedure ELIMINATE;

begin
initialize: for v := 1 until n do for w := 1 until n do P(v,w) := § od od;
for each eeE do P(h(e),t(e)) := [P(h(e),t(e)) ye] od;
loop: for v := 1 until n do
*
P(v, v) := [P(v,v) |;

for each u > v such that P(u,v) # § do

P(w,v) :=[P(w,Vv)+P(v,v)];
for each w > v such that P(v,w) # f do

P(u, w) := [P(u,w) U [P(u,v)-P(v,w)]] od od

end FLIMINATE;
Lemma 2. After the v-th iteration of the loop in ELIMINATE, the following

statements are true.

(1) P(uy,w) for u > w and w < v is a non-redundant path expression

representing exactly the paths from u to w which contain no

intermediate vertex larger than w .

(ii) P(u,w) for u < w or w > V 1is a non-redundant path expression
representing exactly the non-empty paths from uy to w all of

whose intermediate vertices are smaller than min{u,v+l} .

-Proof. Straightforward by induction on v . 0

Theorem 3. After execution of ELIMINATE the following statements are

true.

(i) P(uw,w) for u > w is a non-redundant path expression representing
exactly the paths from u to w which contain no intermediate
vertex larger than w

(ii) P(wyw) for u < w is a non-redundant path expression representing
exactly the paths from u to w all of whose intermediate vertices

are smaller than u

Theorem 4 Let P(w,w) for u,weV be the path expressions computed
by ELIMINATE. Then the following sequence is a path sequence: the
elements of {(P(u,w),u,w) | P(ww) ¢ {#,A} and u < w) in increasing order
on u, followed by the elements of {(P(w,w),u,w) | P(w,w) # p and u > w)

in decreasing order on u

Proof. The sequence specified in the theorem certainly satisfies (6a)

and (6b). To prove (6¢), let p be any non-empty path in G . Let o

be the maximum vertex on p . Let P, be the part of p from the first

occurrence of Vo to the last occurrence of Yo (if Yo only occurs once,

Py = A)« For i>1, let vy be the largest vertex occurring on p
after the last occurrence of Viqo and let Py be the part of p

from the last occurrence of v; ; to the last occurrence of v
Let v, be the last such v, defined.(vl =t(p)) . Fori>1,

let Vi be the largest vertex occurring on p before the first
occurence of V_i+l . Let P-2i+l be the part of p from the last
occurrence of v before P_oito to the beginning of Poojtp 7

and let P-Ei be the part of p from the first occurrence of v_i

12

to the beginning of P-2i+l . Let v_, be the last

k
such V_s defined (v K " h(p)) . Then
P = P P o2 2P 12PprPyreeesl, with Pos€ U(P(V_i,V_i)) for
0<ic<k, P_ps41 € U(P(v_i,v_i+l)) for 1 < i<k, and

p; € O(P(vi_l,vi)) for 1< i £/ . Ignoring empty paths p, » we get

a partition of p which satisfies (6b). It is straightforward but
tedious to show that this partition is unique. O
ELIMINATE thus gives us a way to construct path sequences. The resource

requirements of the method depend in a complicated way upon the sparsity
of G. By rearranging the computation in the loop of ELIMINATE and

using appropriate data structures we can implement ELIMINATE to run in
n
of £+ Z|{Pwv)#plu>vi|-|(Bv,w) 0| w> v} | |} time and 0(2)
v=1

storage space, where [is the length of the computed path sequence
[5,28]. (By only storing P(uw,w) for pairs u, w such that eventually
P(u,w) £ p , we can avoid spending O(nE) time in initialization.)

For dense graphs the time bound is O(n3 +m) and the space bound
is O(nz) . For sparse graphs, the resource requirements depend upon
the vertex numbering chosen. Numerical analysts have devoted much
effort to finding good numbering schemes, both for arbitrary sparse
graphs and for graphs with special. structure ([5,8,22,28].

All their techniques except off-diagonal pivoting [11] apply to the
computation of path sequences.

In order to improve the efficiency of this method, we shall combine

it with two decomposition techniques. The idea is to break the problem

13

graph into subgraphs, apply ELIMINATE to construct a path sequence
for each subgraph, and combine these path sequences into a
path sequence for the original graph. Our first decomposition technique

is well-known to numerical analysts and uses the strong components of G .

Theorem 5. Suppose G = (V,E) is acyclic (i.e., each strong component
is a single vertex) and that the vertices of G are numbered in topological
order. Then the elements of {(e,h(e),t(e)) | ecE} in increasing order

on h(e) comprise a path sequence.
Proof. Immediate. Cl

By Theorem 5, any acyclic graph has a path sequence of length m ,
which can be found in O(n+m) time using a linear-time topological

sorting procedure [19,25].

Theorem 6. Suppose G = (V,E) 1s a directed graph with strong
components Gl’ G2""’Gk » ordered so that no edge leads from a component
Gi toacomponent GJ with j<i. For 1<i<k, let Xi be a
path sequence for Gi , and let Yi be a sequence consisting of the
elements of {(e,h(e),t(e)) |h(e) e G, and t(e){ Gi} ordered arbitrarily.
(Note that Y, is empty.) Then Xl’Yl’Xg’YE’""Xk-l’Yk-l’Xk is a

path sequence for G .

Proof. Immediate. O

Theorem 6 generalizes the method of Theorem S5to arbitrary directed
graphs. We can find the strong components of a directed graph in O(n+m)

time using the algorithm of Tarjan [p4]. Thus Theorem 6 gives a method

14

[|

for finding a path sequence in O(n+m) time plus the time to find
path sequences for the strong components. The length of the sequence

is O(m) plus the total length of the strong components' sequences.

15

4. Computing Path Expressions for Reducible Flow Graphs.

Although decomposition using strong components is efficient and
useful in practice, many problem graphs have one or only a few strong
components. In the remaining sections of this paper we develop a more
powerful decomposition technique based upon dominators. We begin by
considering reducible flow graphs. A flow graph G = (V,E,r) is a

directed graph with a distinguished start vertex r such that every

vertex in G is reachable from r . By Theorem 6we need only consider
strongly connected graphs, so this reachability condition is no restriction.

A reducible flow graph G = (V,E,r) is a flow graph that can be

reduced to the graph consisting of the single vertex r and no edges

by means of the following transformations:

Tl (remove a loop): If e is an edge such that h(e) = t(e) , delete
edge e

Tg (remove a vertex): If w f r 1is a vertex such that all-edges e
with t(e) = w have h(e) = v for some vertex v , contract w

into v by deleting w and all edges entering w , and converting
any edge e with h(e) = w into an edge e' with h(e') = v

and t(e') = t(e)

This definition is due to Hecht and Ullman [1h]; there are many other
equivalent definitions of reducible flow graphs [12,14,15,26]. Intuitively
a flow graph is reducible if every cycle has a single entry from the

start vertex. These graphs play an important role in global flow analysis,
because the control flow of a reasonably well-structured program can be

modelled by a reducible flow graph [3,20].

16

As the reduction by Tl and T2 takes place, each vertex in the
reduced graph represents a subgraph of the original graph, called a
region, and each edge in the reduced graph represents an edge in the

original graph. We define this notion formally as follows.
(7a) Each vertex and edge in the original graph represents itself.

(7o) If Tl is applied to delete an edge e , then vertex h(e) = t(e)
in the reduced graph represents the union of what h(e) and e

represent.

(7C) If T2 is applied to contract vertex w 1into vertex v , then
V in the reduced graph represents the union of what v , w ,
and all the deleted edges e with h(e) =v , t(e) = w

represent. Any new edge e' represents what the corresponding

old edge e represents.

It is not hard to show that each region is indeed a subgraph of G
and that the regions corresponding to the vertices of any reduced graph
are vertex-disjoint [31l]. Furthermore every region I has a unique
header vertex v such that any edge e with h(e)¢I , t(e)e I has
t(e) = v [31]. The header is the unique vertex in the region which has
not yet been contracted into another vertex. When the reduction is
complete, r represents a region comprising the entire graph G .
If a flow graph is reducible, there is a reduction order'v,vb,...,vn_lfv =T

1 n

of the vertices such that the graph can be reduced to r in the following

way[26]; For i from 1 to n-1 , we apply T. to delete all loops

1

at v then we apply T2 to contract vy into another vertex Vj with

.1;

17

J >1 . After deleting all vertices except v, =T, we apply Tl to
delete all loops at r . This way of carrying out the reduction has the
following property. If we regard the repeated application of Tl at a
vertex Vs followed by the application of- T2 to delete vi as a single
step, then between any two steps the entry vertex of any region has no
edges entering it from within the region.

We shall assume henceforth that the vertices of G are numbered
from 1 to n in a reduction order and identified by number. We shall
also assume that header(v) for v # r is the vertex into which v is
eventually contracted, that cycle(v) for any vertex v is the set of
edges in G represented by edges deleted when applying T1 to delete loops
at v , and that noncycle(v) for v # r is the set of edges in G
represented by edges deleted when applying TE to delete v . The following

lemma states some basic properties of header , cycle , and noncycle.

Lemma 3. Suppose G is a reducible flow graph whose vertices are

numbered in a reduction order. Let v be any vertex and let e be

any edge. Then

(1) if v#r, header(v) > v ;

(i1) either h(e) = header(t(e)) orh(e) < t(e) ;

(iii) if eecycle(t(e)) then heﬁii(h(e)) = t(e) for some i>0;and

(iv). if eenoncycle(t(e)) then headerl(h(e)) # t(e) for all 1>0

but header (h(e)) = header@(e)) for some i > 0

Proof. Straightforward. O

18

The algorithm of Tarjan [26] computes a reduction order and

associated arrays header , cycle , and noncycle in O(m a(m,n))

time. Using this information we can solve the single-source path
expression problem whose source vertex is r . The algorithm
resembles the methods of Ullman[31] and Graham and Wegman [1p] for
solving "forward" data flow problems; we discuss this resemblance at
the end of the section.

The algorithm computes path expressions as the reduction proceeds,
using a data structure representing the current regions. The data
structure consists of a forest whose vertices are the vertices of G

and whose edges are the pairs (header(v),v) such that v has been

contracted into header(v) . Thus this header forest consists of one
tree per region; the tree representing a region contains exactly the
vertices in the region and has the header of the region as its root.
With every vertex v in the forest is associated a non-redundant path
expression R(v) . The algorithm manipulates the forest by means of

four operations:

INITIALIZE (v) : Form a tree with one vertex v and associated path
expression R(v) := A .

UPDATE(V, R): If v is a root, assign R(v) := R,

LINK(v,w): If v and w are roots, combine the trees with

roots v and w by making v the parent of w.

EVAL(V): Ifr=v,-V, =V, - Vv, = Vv is the tree

0 1 2 T k
path from the root r of the tree containing v
to v, return a non-redundant path expression

equivalent to R(vo) . R(vl) Ce e R(vk).

19

The algorithm maintains the following invariant: If I is a region and
v is a vertex in I , then EVAL(v) represents exactly all paths in I

from the header of I to v

procedure REDUCE;

initialize: for each veV QSJINITIALIZE(V) od;

loop: EEE,V = 1AEEE£} n-1 QEJ
P:= P Q := 0;
for each e enoncycle(v) do P := [PU [EVAL(h(e))-e]] od;
for each ee_cycle(v) do 0 := [QU[EVAL(h(e))-e]] od;
“UPDATE (v, [P+[q11);
LINK(header(v),v) od;

finalize: P(r,r) := P

for each ee cycle(r) do P(r,r) := [P(r,r)U[EVAL(h(e))-e]] odj
P(r, 7) := [P(r,r) s
for v := 1 until n-1 do P(xr,v) := [P(r,r)-EVAL(v)] od

e e AN

end REDUCE;

Lemma 4. After the v-th iteration of the loop in REDUCE, EVAL(u)
for any vertex u represents exactly all paths in the current region I

containing u from the header of I to u

Proof. By induction on v . The lemma is certainly true before the
first iteration of the loop. Suppose the lemma is true before the v-th

iteration of the loop. Let Il be the current region containing v and

20

let I, Dbe the current region containing header(v) . Let Ig be the

3

region containing v after T. 1is applied to eliminate all loops at v .

1

Let Ih be the region containing v after T

o is applied to contract

v into header(v) ; i.e., after the v-th iteration of the loop.

I, consists of I1 and the edges in cycle(v) . I)+ consists of

I, ,I5 » and the edges in nonecycle(v) ; the header of I, is the

header of I
3 L]

Il contains no edges entering v . It follows from the induction

hypothesis that the value of Q after the v-th iteration is a non-redundant
path expression representing all paths from v to v in 12 which do not
. . . *
contain v as an intermediate vertex. Thus Q represents all paths in
12 from v to v . It also follows from the induction hypothesis that
the value of P after the v-th iteration is a non-redundant path expression

representing all paths in Ih from the header of Ih to v which do not

contain v as an intermediate vertex.

If u is a vertex in 13 then the paths in Ih from the header
14
of Ih to u are exactly the paths in I3 from the header of 13
tou . If u is a vertex in 12 , the paths in Ih from the header

of Ih to u are exactly the paths p partitionable into

* . .
P= PsPyPs 5 where Ppe 0(P), pyeo(Q), and p, is a path in
I, from the header of I, to u . Thus adding edge (header(v),v)
*
to the forest and replacing the old value (p) of P(v) by [P-[Q 1]

guarantees that the lemma holds after the v-th iteration of the loop. O

21

Corollary 1. After execution of REDUCE, R(v) for any vertex v 74 r
is a non-redundant path expression representing exactly the set of
paths from header(v) to v all of whose intermediate vertices are

smaller than header (v)

Proof. For any vertex v % r, let ILL be the region containing v
after the v-th iteration of the loop in REDUCE. Let R(v) be the path
expression computed for v during this iteration. By Lemma &4,

R(v) 1is a non-redundant path expression representing all paths in

Ih from header(v) to v . Any path in G from header(v) to v
which leaves Il; must contain header(v) twice, since the only way

to enter Ih is through header(v) . O

Theorem 7. Let v any vertex. After execution of REDUCE, P(x, V)

is a non-redundant path expression representing all paths from r to wv.

Proof. Lemma 4 holds after the last iteration of the loop in REDUCE.

A proof similar to that of Lemma 4 shows that P(r,r) as computed in

the final part of REDUCE is a non-redundant path expression representing
all paths from r to r in G. It follows from Lemma 4 that the
computed value of P(r,r) for v # r is a non-redundant path expression

representing all paths fromr to v in G . O

Procedure REDUCE requires O(n+m) time plus time for n calls
on INITIALIZE, n-1 calls on UPDATE, n-1 calls on LINK, and m+n-1
calls on EVAL; thus the forest manipulation operations dominate the
running time or the algorithm. Tarjan [29] describes two ways to

implement the forest operations. The first is a simple method

22

called path campression which requires O(m log n) time. The second

is a sophisticated off-line method which by preprocessing the entire
sequence of EVAL and LINK operations is able to perform all the forest
manipulation in O(m @(myn)) time... (It is easy to precompute the
sequence of EVAL and LINK operations performed by REDUCE.) Farrow [9]

presents another O(m a(mn)) -time method called stratified path

compression. This method has the advantage of being on-line, although
the proof of its time bound is very complicated.

By using either of the O(m a(myn)) -time algorithms for forest
manipulation we obtain a moderately complicated O(m a(m,n)) -time
implementation of REDUCE. By using path compression we obtain an
O(m log n) -time implementation of REDUCE which is remarkably simple
and efficient. We favor the latter implementation for practical
applications.

Ullman's algorithm for forward data flow analysis [31] is essentially
identical to REDUCE except that it uses 2-3 trees to carry out the forest
operations. Its time bound is O(m log n) but it is more complicated
than our method using path compression. Graham and Wegman's algorithm [12]
is a version of REDUCE which uses no auxiliary data structure but carries
out a form of path compression on the original graph. 1Its time bound
is O(m log n) but it also is more complicated than our method using
path compression. Experimental comparisons between these methods would

be valuable.

25

5. Computing Path Sequences for Reducible Flow Graphs,

Some kinds of data flow analysis, such as the computation of live
variables [17], require that information be propagated backward rather
than forward through the control flow graph of the program. We can
carry out such backward data flow analysis by solving a single-source
path problem on the reverse of the control flow graph. Since reducibility
i1s not preserved by graph reversal, the algorithm of Section 5 is
inadequate for this purpose. In this section, we shall modify REDUCE
so that it computes a path sequence for any reducible flow graph. By
using such a path sequence and applying Theorem 6 if necessary, we can
solve single- and mplti—source path problems on any flow graph which is
reducible or whose reverse is reducible, This provides an efficient way
to do backward data flow analysis.

In order to develop this algorithm, we need to examine the implementation
of the header forest operations. We shall describe a generic implementation
of which path compression [29] and stratified path compression [9]
are special cases. We shall use this generic implementation in an
extension of REDUCE which computes path sequences.

The generic implementation uses a compressed forest to represent the

header forest. With each vertex Vj of the compressed forest is

associated a path expression $(v) . The method maintains the following
invariants.
(8a) For each tree T in the header forest, there is a corresponding

tree T of the compressed forest which contains the same

vertices as T

2k

(8b)

(ec)

If v-w 1in a tree TC of the compressed forest, then
*
Vv -w in T . In particular, corresponding trees T and Tc

have the same root.

For any vertex v , letr:vo-*vla. . .—ovk=vbethe

path in the header forest from a root to v , and let

r =wO —owl - .o -awl = v be the path in the compressed
forest from a root to v . Then R(vo) . R(vl).. . .R(vk)
and S(wo).S(wl). .o .S(wl) are equivalent non-redundant

path expressions.

The compressed forest is represented by an array ancestor such

that ancestor(v) is the parent of v in the compressed forest; if

ancestor(v) = 0 then v is a root. The following procedures implement

the forest operations.

procedure INITIALIZE (v);

begin ancestor(v) := 0; S(v) := A end;

procedure UPDATE(V,R) ;

procedure LINK(v,w);

ancestor (w) := v;

25

regular expression procedure EVAL(v);
L A e e e el e e e e i Y V)
begin
non-deterministically execute COMPRESS(u) for an
arbitrary sequence of vertices u;

let v C eV be such that v = Vi ancestor(vi) =V q for

0’V -
for 1< i <k, and.ancestor(vb) = 0;

EVAL :=ifk=o~§A

[x#- -.s(v S(vg).@i,f.s(vk)iiv

end EVAL;

procedure COMPRESS (u) ;

if ancestor (ancestor (u) 40 -
S(u) := S(ancestor(u)) . S(u);
ancestor (u) := ancestor(ancestor(u)) fi;

It is evident that COMPRESS preserves (8a)-(8c); thus the procedures
above are a valid implementation of the header forest operations. The

following lemma is easy to prove using the results in Section 4.

Lemma 5. If v is any vertex such that ancestor(v) % 0 , then S(v)
is a non-redundant path expression representing exactly the set of paths

from ancestor(v) to v all of whose intermediate vertices are smaller

than ancestor (v)

EVAL is a non-deterministic procedure which is free to choose an
arbitrary sequence of vertices u on which to execute COMPRESS (u)
We obtain a specific implementation by including a mechanism for making

this choice. Path compression uses the following version of EVAL.

26

regular expression procedure EVAL(v);
if ancestor(v) = 0 = EVAL := A

[l ancestor(v) # 0 -~ PATH COMPRESS(v); EVAL := S(v) £ij

procedure PATH-COMPRESS (V) ;

iz ancestor (ancestor (v)) % 0 -

PATH-COMPRESS (ancestor (v));
S(v) := S(ancestor(v)) .S(v);

ancestor (v) := ancestor(ancestor(v)) £i;

Stratified path compression uses a more complicated compression mechanism
which requires the maintenance of additional data structures [9].

The following version of REDUCE uses the generic implementation of
the header forest operations to compute a path sequence. Procedures
EVAL and COMPRESS are modified so that they add elements to the path

sequence as a side effect.

27

procedure REDUCE AND-SEQUENCE;

begin
initialize: for each veV do INITIALIZE (v) Qd;

loop:

addl:

finalize:

add2:

sequence := the empty sequence;
EQE,V =1 EEEii,n_l QQ,
P:=p; Q= f;
for each e e noncycle(v) c’igv P := [PUEVAL AND SEQUENCE (e)] gi;

for each e e _cycle(v) do Q:= [QUEVAL AND SEQUENCE(e)] od;
if [Q*] £ A - add ([Q*],v,v) to sequence fi;
UPDATE(v, [P+ [']]) ;
LINK(header(v),v) od;
Q= f —-
for each e e cycle(r) do Q :=[QUEVALAND SEQUENCE (e)] od;
Eﬁ[Q*]# A,—vadd([Q*Lr,r)to sequence fi;

for v := n-1 by -1 untill do add (S(v),ancestor(v),v) to sequence od

A~~~

end REDUCE_AND_SEQUENCE;

regular expression procedure EVAL AND SEQUENCE(e);

A A e e R s e et

begin

non-deterministically execute COMPRESS AND SEQUENCE(u) for

an arbitrary sequence of vertices u;

let Vgr Vy» + - ¥y be such that h(e) = vy, ancestor(vi) =V, for
1<i<k, and ancestor(vb) = 0;
if k = O »EVALAND SEQUENCE := e

[l k # O ~ EVAL_ANDTSEQUENCE := S(vy)-e;
for 1 := k-1 by -1 until 1 do

add (EVAL AND SEQUENCE,v,,t(e)) to segquence;

EVAL_AND_SEQUENCE := S(v) « EVAL_AND SEQUENCE od fi

end EVAL AND SEQUENCE;

28

procedure COMPRESS/D—-SEQUENCE (u) ;

if ancestor (ancestor (u)) #0 -
add (S(u),ancestor(u),u) to sequence;

S(u) := S(ancestor(u)).s(u);

ancestor (u) := ancestor(ancestor(u)) fi;

Theorem 8. The sequence computed by REDUCE-AND SEQUENCE is a path

sequence for G

Proof. The proof is similar to the proof of Theorem 4 but a little more
complicated. We shall assume for purposes of the proof that statement
addl always gdds ([Q*],v,v) to sequence , whether or not [Q*] = A ;
similarly for statement add 2. This modification does not affect the
properties of sequence in which we are interested.

Lemma > and an inspection of REDUCE AND SEQUENCE show that the computed

sequence satisfies (6a) and (6b). To prove (6c), let p be an arbitrary

path in G . TLet Vg = h(p) . For i > 1, let v, Dbe the first vertex
on p such that v, > Ve Let vy be the last vertex so defined
(Vk is the largest vertex on p). TLet Vel = t(p) . Let Py be the

part of p from the first occurrence of Vi to the last occurrence of v -

Let p,.,, be the part of p following Dy - For 0 < i < k-1, let

Posiy be the part of p from the last occurrence of v, before Poito
to the beginning of Posin: Let _'p21 be the part of p from the first
occurrence of Vi to the beginning of p21+l . Then p = PO’Pl”"’p2k+l ’
where pzi for O <_i i k is a path from Vi to V.l contaj_nj_ng no

h . .
vertex greater than Vios and Poi+l for 0 < i <k is a path from v1

to v all of whose intermediate vertices are less than v:.L

i+l

29

i <k * (f
For 0<i<k, PEiEO(Q‘ (Vi)) ; where Q‘vi) or v, #r
is the value of Q computed during the vy -th iteration of the loop
in REDUCE_AND SEQUENCE, and Q(r) is the value of Q computed during
the final part of REDUCE-AND-SEQUENCE. In order to represent p as
in (6c), it remains for us to (i) partition each path Pp34p fOT
0 < i< k-1 into a sequence of paths represented by triples appearing
* *
in sequence between ([Q(vi)]’Vi’vi) and ([Q(vi+l)]’vi+l’vi+l) ,
and (ii) partition p2k+l into a sequence of paths represented by
*
triples appearing in sequence after ([Q(vk)] ,vk,vk) .
Consider any path p,;,; for 0 < i < k-1 . Let e, be the last
- - <L

g SRS S

edge on this path-. Then t(e.) = V.

5 541 ¢ and h(ei) is a descendant

of v in the compressed tree just after the v, -th iteration of the

loop in REDUCE-ND-SEQUENCE. We partition Poi+1 into

p21+l = p2i+l,0’p2i+l,l’ ””pgj_+1,g as follows. Let J= 0 and

(o) _ . _— .
Ppoit1 = P21+l . Repeat the following step until it no longer applies.
General step. Suppose h(ei) is not a descendant of h(pgi’_;_l) in

the compressed tree when edge e. is processed by REDUCE.

1

Consider the moment when h(ei) becomes a non-descendant

of h(Péi-:-l) . This event must be caused by an execution
of COMPRESS (u) such that ancestor(u) = h(Péj_il)
') from the beginning

be the part of péi+l

Let Ppiya, j

to (J) to the last occurrence of u . Partition

Poj+1
@By L (J+1) -
p2i+l into p21+1 = p2:’L+l,j 3 P2i+l and replace j
by j+1

30

Consider a single execution of the general step, Path %gi_'_l must

i i h oy X % n in the head h
contain u since (P21+l) - u - (ei) in the header tree. Thus
péiil can be partitioned as stated. Execution of COMPRESS (u) causes

(3) .
(s(u) , h(p21+l) » U) to be added to sequence ; p21+l, j€ o(s(u)) .
. i+
After execution of COMPRESS, h(ei) is a descendant of u = h(pé:&_i))

in the compressed tree.

()

Suppose the general step i1s executed / times, Let p2i+l,£ = Poity .

By the discussion above, there is a subsequence of triples
(PO:UO;WO) ’ (Pl’ul’wl) PR (Pz-l’ul-l’wl-l) appearing in sequence after

*
([Q(Vi)]’vi’vi) and before triples of the form (P,u,vi+l) , and such that

P _. .€P, for 0< j< (-1 . Furthermore h(e.) is a descendant
2i+l,3 3 - - i

of h(P21+l 1) in the compressed tree Jjust after all compression is
s
finished during the execution of EVAL_AND_SEQUENCE(ei) . The operation

of EVAL_AND_SEQUENCE(ei) adds a triple (Pz, h(PEi+l ’e) , vi+l) such

that P2i+l,/z € G(Pl) to sequence . Thus we obtain a satisfactory
partition of Poieq -

The partitioning of Popsl is the same as the partitioning of
p2i+l for 1 < i £ k-1 except that the path P2i+l,£ must be further
partitioned into paths represented by triples (S(v),ancestor(v),v)
added to sequence during the final part of REDUCE_AND SEQUENCE.

The details are straightforward.

We obtain by the method above a partition of an arbitrary path p
which satisfies (6c) if we ignore empty paths in the partition.

Showing that the partition is unique is tedious but not difficult.

The crucial point is that for any pair u > v , only one triple of

31

the form (P,u,V) appears in sequence . We leave the details to the

reader. Cl1

REDUCE_AND_SEQUENCE requires O(m log n) time to construct a path
sequence if path compression is used to implement the forest operations
and O(m @(myn)) if stratified path compression is used. The length of
the path sequence constructed is proportional to the running time. It
is interesting to note that the version of the algorithm which carries
out no compression generates essentially the same path sequence as

ELIMINATE.

32

6. Decomposition Using Dominators.

In this section we generalize the algorithm of Section 5 so that
it becomes a decomposition method applicable to all graphs, The
reducible graphs play a role in this method analogous to the role of
acyclic graphs in decomposition by strong components, Just as a graph
is acyclic if and only if all its strong components are single vertices,
a graph is reducible if and only if all its components in the new
decomposition are single vertices.

The concept we use is that of a single-entry region, which we make
precise as follows. For an arbitrary flow graph G = (V,E,r) , we say
a vertex v dominates another vertex w if v # w and v lies on

every path from r to w.

Lemma 6 [1]. There is a tree T , called the dominator tree of G,

such that v is a proper ancestor of w in T if and only if v
dominates w . Vertex r is the root of T and D contains every

vertex in G .

For any vertex v # r , we denote by idom(v) the parent of v

in T . Vertex idom(v) is called the immediate dominator of v and

is the unique vertex which dominates v and is dominated by every other
dominator of v . The dominator tree defines the single-entry regions
of G; the following lemma is a technical statement of this fact.

(Note the similarity between this lemma and Lemma 3.)

Lemma7. For any edge e , idom(t(e)) is an ancestor of h(e) in T

Proof, Every path from r to t(e) contains idom(t(e)) . By adding

edge e to any path from r to h(e) , we get a path from r to t(e)

33

Thus any path from r to h(e) contains idom(t(e)) , and by Lemma 6

idom(t(e)) A h(e) in T . O

For any edge e , let e be an edge such that t(5)= t(e) and
h(e) = h(e) if h(e) = idom(t(e)) , h(e) = u where
*
idom(t(e)) - u = h(e) in T if t(e) # idom(h(e)) . Let

G =(V}ﬁ,r) , where E ={E ‘e e E} . We call G the derived graph

of G. Figures 1-3 illustrate a graph, its dominator tree, and its
derived graph. Note that there are three kinds of edges in the derived
graph. If t(e) = idom(h(e)) , then e =¢e is an edge in T , If
t(e) ikﬂe) in T then e is a loop. Otherwise e leads from one
sibling to another in T

[Figure 1]

[Figure 2]

[Figure 3]

We call the strong components of G the dominator strong components

of G. It is not hard to prove that a graph is reducible if and only if
all its dominator strong components are single vertices. The idea of
_our algorithm is to use Gaussian elimination (or some other method) to
canpute a path sequence for each dominator strong component of G , and
to combine these path sequences to form a path sequence for G by using
a combination of the methods in Sections 3 and 5. The algorithm
manipulates the dominator tree in the same way that REDUCE_AND SEQUENCE
manipulates the tree defined by the header pointers. Henceforth when

we refer to descendants and ancestors we mean with respect to the

dominator tree T

34

HI

The algorithm assumes that the dominator tree of G is known and
that the vertices are numbered from 1 to n so that idom(v) > v
for each vertex v £ r . The algorithm requires the following information:
for each vertex u the set children(u) of wvertices v such that

idom(v) = u , the set tree(u) of edges e such that t(e) = u and

o
[0}
il

idom(u) , and the set nontree(u) of edges e such that

o+
o
1

u and h(e) # ygggu) ; for each edge e the corresponding
edge e in & « This information and the vertex numbering can be
computed in O(m &(myn)) time using the dominators algorithm of
Lengauer and Tarjan [21].

The algorithm groups together vertices with a common parent and
processes these sibling sets in increasing order by parent. The algorithm
processes the set of siblings children(u) for each vertex u as
follows. For each edge e such that h(e) is a child of u , the
algorithm uses EVAL AND SEQUENCE to compute a path expression p(g)
representing all paths in G fram h(e) to t(e) which end with
edge e and contain only proper descendants of h(g) as intermediate
vertices. Then the algorithm computes a path sequence Xu for the
subgraph au of G induced by children(u) . Substituting P(&) for
for each edge e appearing in this path sequence produces a sequence

Yu that represents every path in G starting and ending at a child
of u and containing only proper descendants of u as intermediate
vertices.

The algorithm concatenates Yu onto the end of the path sequence,
By applying SOLVE to Yﬁ ; the algorithm camputes for each child v

of u a path expression R(v) which represents all paths in G from

35

U to Vv containing only proper descendants of u as intermediate
vertices. The algorithm completes the processing of the sibling set
by executing UPDATE(v,R(v)) ; LINK(u,v) for each child v of u

The algorithm finishes by computing a path expression Q representing
all paths from r to r and adding additional triples to the path
sequence just REDUCE_AND_SEQUENCE does. The algorithm appears in more

detail below.

procedure DECOMPOSE_AND_SEQUENCE;,
begin
initialize: for each veV do INITIALIZE(v) od;

sequence = the empty sequence;

loop: for u := 1 until n do
derive: for each ve children(u) do

for each e ¢ non-tree(v) iov
P(e) := EVAL_AND SEQUENCE(e) od od;
eliminate: compute a path sequence Xu for Gu;
substitute: form Yu from Xﬂuby replacing each occurrence of an

edge € in a path expression by P(e);

sequence := sequence concatenated with Yu;
solve : for each ve children(u) g.g R(v) := p;
for each ectree(v) do R(v) := [R(v)Ue] od od;

for each (P,w,X) ¢ Y, in order do-

if w = x - R(w) := [R(w)-P]
[w#x - R(%) := [R(x) UI[R(w).P]] fi od;
update: for each ve children(u) do

UPDATE(v, R(v)); LINK(u,v) od od;

36

finalize: Q := P

for each e enontree(r) do Q := [QUEVAL AND SEQUENCE(e)] od;
* *
if [@]# A add ([Q 1,r,r) to sequence fi;

for v := n-1 by -1 until 1 do add (S(v), ancestor(v), V)

latarard [o)

to sequence od
e ol

end DECOMPOSE AND-SEQUENCE;

This method combines the techniques of Section 3 with the method

of Section 5, The parts of the program labelled initialize , derive ,

update , and finalize are adapted from REDUCE_AND SEQUENCE and serve

to combine the path sequences computed for the dominator strong components
(in eliminate-- and substitute) into a path sequence for the entire
graph. The two loops labelled solve comprise a version of SOLVE,

We can implement step eliminate using ELIMINATE on the strong
components of éu and combining the results as described in Theorem 6,
Step substitute can be performed either after or during the computation
of Xy ; the latter is preferable.

The next lemma expresses the properties of the values computed by
DECOMPOSE _AND_ELIMINATE; its proof combines the ideas in Theorem 1 and

Corollary 1.

Lemma 8. (1) For each edge e in G such that eenontree(t(e)) ,
'P(E) as computed by DECOMPOSE_AND SEQUENCE is a non-redundant path
expression representing exactly the paths in G from h(e) to t(e)
which end with edge e and contain only proper descendants of h(E)
as intermediate vertices.
(ii) For each vertex v in G , R(v) as computed by DECOMPOSE AND SEQUENCE

is a non-redundant path expression representing exactly the paths in G

37

from idom(v) to v which contain only proper descendants of idom(v)
as intermediate vertices.
(iii) For each vertex u in G , Y, as computed by DECOMPOSE_AND SEQUENCE
is a sequence Y = (Pl’vl’wl)’(Pé’vz’WQ)’ L. .,(Pz,vl,wf) satisfying
(6a), (6b), and
(9) For any non-empty path p in G which starts and ends at a child
of u and contains only proper descendants of u as intermediate vertices,
there is a unique sequence of indices 1 < il < 12 <. . .<ik <t and
a unique partition of p 1into non-empty paths p = D1sPys - v s Py such
that P € G(Pi) for 1 < i <k

d
Proof. Straightforward by induction on the number of times the loop

in DECOMPOSE_AND_SEQUENCE is executed. O

Theorem 9. Procedure DECOMPOSE AND_SEQUENCE correctly computes a path

sequence for G .
Proof. Analogous to the proof of Theorem 8. [

DECOMPOSE_AND_ELIMINATE thus provides a way to compute path sequences
" in arbitrary graphs. The running time of the method is O(m a(mn)+t)

if stratified path compression is used to implement the forest operations
and O((m log n)+t) if path compression is used, where t is the time
to find path sequences for the dominator strong components of G . The
length of the path sequence produced is either O(m a(m,n))+ { or

O(m log n)+ £ , where [is the total length of the path sequences for

the dominator strong components.

38

T Remarks.

In this paper we have described fast algorithms for solving path
expression problems on reducible or almost-reducible graphs. The fastest
method requires O(m CQ(m,n)+t) time to compute a path sequence for an
arbitrary directed graph, where t is the amount of time required to
compute path sequences for the dominator strong components. A slower
but much simpler method requires O(m log n + t) time and promises to
be easy to program and efficient in practice.

By using our algorithms in combination with the mapping technique
described by Tarjan[30], we can solve many kinds of path problems,
including finding shortest paths, carrying out forward and backward
global flow analysis, and solving sparse systems of linear equations.
There are two rather different ways of doing this. The first is to
use the solution to a path expression problem as a general-purpose
straight-line program which solves any particular path problem by
properly interpreting |J , ., and ¥ . The second is to use an algorithm
for solving a path expression problem to solve a particular path problem
by reinterpreting |y , ., and ¥ within the algorithm; this avoids the
intermediate step of first constructing a directed acyclic graph
representing a set of path expressions. The choice between these two

methods depends upon the time and space available and whether we want
to solve one or many path problems on the same graph.

For path problems in which the operation corresponding to + is
idempotent, the non-redundancy and uniqueness conditions in (6) and
Theorem 1 are not necessary and can be dropped [30]. In such cases we

can use the sophisticated algorithm of Tarjan [29] to carry out the

39

forest manipulation operations and achieve an O(m Q(m,n) +t) time
bound [27]. It does not seem possible to adapt this method to satisfy
non-redundancy, however. The only interesting path problem known to
the author which does not have the idempotent property is the solution
of sparse systems of linear equations. For this problem another form
of tree manipulation described by Tarjan [29] gives a rather simple
O(m &(myn) +t) -time algorithm [28].

The method of decomposition by dominators is a kind of single-element
"tearing" [5] in which the clever use of data structures allows us to
make the combining step very efficient. The result may be generalizable
in various directions. For instance, on problem graphs for which there
is no natural start vertex we would like to know how to pick a start
vertex which gives the finest decomposition. It may also be possible
to extend the technique to regions with two or more entry vertices. We

leave these questions to the ambitious reader.

40

Appendix: Graph Theoretic Terminology.

A directed graph G = (V,E) 1is a finite set V of vertices and a

finite set E of edges such that each edge e has a head h(e) eV and

a tail t(e) eV . We regard the edge e as leading from h(e) to t(e)

and we say the edge e leaves h(e) and enters t(e) . We usually
denote the number of vertices by n and the number of edges by m .
A loop is an edge e with h(e) = t(e) . A path p = €178 e is
a sequence of edges such that t(ei) = h(ei+l) for 1 < i < k-1 . The
path is from h(p) = h(el) to t(p) = t(ek) . The path contains edges
€15€55+4.,€, and vertices h(el),h(ee),,,. @h(ek),t(ek) and avoids all
other edges and vertices. There is a path of no edges from any vertex
to itself. A cycle is a non-empty path from a vertex to itself. A graph
is acyclic if it contains no cycles.

The reverse G of a graph G is the graph formed by replacing

each edge e with an edge e’ such that h(er) = t(e) and t(er) = h(e)

If G = (Vl,El) and G, = (VE’ Eg) are graphs, G, is a subgraph of
G2 if Vl < V2 and El c F2 . Gl is the subgraph of G2 induced by
vV, if V; ¢V, and E = {e eE,|h(e),t(e)eV].

A vertex v 1is reachable from a vertex w in a graph G if there

is a path from v to w. G is strongly connected if every vertex is

. reachable from every other vertex. The strong components of G are its

maximal strongly connected subgraphs. These components are uniquely
defined and partition the vertices of G .
A flow graph G = (V,E,r) 1is a graph with a distinguished start

vertex r such that every vertex is reachable from r . A (directed,

rooted) tree T = (V,Br) is a flow graph with |E| = |V|-1 . The start

L1

vertex r is the root of the tree. Any tree is acyclic, and if v

is any vertex in T , there is a unique path from r to v . If v
and w are vertices in a tree T and there is a path from v to w ,
V is an ancestor of w and w is a descendant of v . We denote
this relationship by v fvv. If in addition v # w, v 1is a proper

ancestor of w and w is a proper descendant of v , denoted by v 3w

If there is an edge from v to w , v is the parent of w and w is
a child of v , denoted by v - w . Two vertices with a common parent
are siblings. 1In a tree each vertex has a unique parent (except the

root, which has no parent).

L2

[1]

(2]

(3]

[10]
[11]

[12]

[13]

References

A. V. Aho and J. D. Ullman, The Theory of Parsing, Translation, and

Compiling, Volume II: Compiling, Prentice-Hall, Englewood Cliffs,
N.J. (1972), 915.

A. V. Aho and J. D. Ullman, Principles of Compiler Design,
Addison-Wesley, Reading, Mass., 1977, L08-517.

F. E. Allen, "Control flow analysis," SIGPLAN Notices 5, 7((1970),
1-19.

R. C. Backhouse and B. A. Carré, "Reqular algebra applied to
path-finding problems," J. Inst. Maths. Applies. 15 (1975), 161-186.

J. R. Bunch and D. J. Rose, "Partitioning, tearing, and modification

of sparse linear systems," J. Math. Analysis and Applics. 48 (197h4),
57h-595.

B. A. Carré, "An algebra for network routing problems," J. Inst.
Math. Applics. 7 (1971), 273-29k4.

E. W. Dijkstra, A Discipline of Programming, Prentice-Hall,
Englewood Cliffs, N.J., 1976.

I. s. Duff, "A survey of sparse matrix research, " Proc. Ieee 65 (1977),
500-535.

R. Farrow, "Efficient variants of path compression on unbalanced
trees," unpublished manuscript, 1978.

R. Floyd, "Algorithm 97: shortest path," Comm. ACM 5 (1962), 345.

G. E. Forsythe and C. B. Moler, Computer Solution of Linear Algebraic
Equations, Prentice-Hall, Englewood Cliffs, N.J.,1967.

S. L. Graham and M. Wegman, "A fast and usually linear algorithm for
global flow analysis," Journal acm 23 (1976), 172-202.

M. S. Hecht, Flow Analysis of Computer Programs, Elsevier, New York,

M. S. Hecht and J. D. Ullman, "Flow graph reducibility," SIAM J.
Comput. 1 (1972), 188-202.

M. S. Hecht and J. D. Ullman, "Characterizations of reducible flow
graphs," Journal ACM 21 (1974), 367-375.

D. B. Johnson, "Efficient algorithms for shortest paths in sparse
networks," Journal ACM 24 (1977), 1-13.

43

[(17]

[18]

[19]

[20]

(21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

K. W. Kennedy, "Node listings applied to data flow analysis,"
Conf. Record of the Second ACM Symp. on Principles of Prog. Lang.

(1975), 10-21.
S. C. Kleene, "Representation of events in nerve nets and finite

automata, " Automata Studies, C. Shannon and J, McCarthy, eds.,

Princeton University Press, Princeton, N. J., 1956, 3-40.

D. E. Knuth, The Art of Computer Programming, Volume 1: Fundamental

Algorithms, Addison-Wesley, Reading, Mass., 1968, 258-265.

D. E. Knuth, "An empirical study of FORTRAN programs," Software
Practice and Experience 1 (1971), 105-133.

T. Lengauer and R. E. Tarjan, "A fast algorithm for finding

dominators in flow graphs," Trans. on Prog. Lang. and Systems 1

(1979), to appear.
D. J. Rose, A. H. Sherman, R. E. Tarjan, and G. F. Whitten,

"Algorithms and software for in-core factorization of sparse
symmetric positive definite matrices," Computers and Structures 10
(1979), Li1-ki8.

M. Schaefer, A Mathematical Theory of Global Program Optimization,

Prentice-Hall, Englewood Cliffs, N.J., 1973.

R. E. Tarjan, "Depth-first search and linear graph algorithms,"

SIAM J. Comput. 1 (1972), 1L6-160.

R. Tarjan, "Finding dominators in directed graphs," SIAM J. Comput, 3
(1974), 62-89.

R. E. Tarjan, "Testing flow graph reducibility," J. Comp. and Sys,
Sciences 9(1974), 355-365.

R. E. Tarjan, "Solving path problems on directed graphs," Technical Report

STAN-CS-75-528, Computer Science Department, Stanford University, 1975.

R. E. Tarjan, "Graph theory and Gaussian elimination," Sparse Matrix

Computations, J. R. Bunch and D. J. Rose, eds., Academic Press,
New York, 1976,3-22.

R. E. Tarjan, "Applications of path compression on balanced trees,"

Journal ACM, to appear.

R. E. Tarjan, "A unified approach to path problems," Technical Report
STAN-CS-79-729, Computer Science Department, Stanford University, 1979;

also Journal ACM, submitted.

J. D. Ullman, "Fast algorithms for the elimination of common subexpressions,"

Acta Informatica 2 (1973), 191-213.

44

Figure 1. A flow graph G ,

L5

Figure 2. The dominator tree of G .

L6

Figure 3. The derived graph of G . The vertex sets of the

dominator strong components are {1:2}) {5} ’ {h} ’
5y, {63, {1,8}, {9} , {10} , {11,122}, {13} .

L7

