
FAST ALGORITHMS FOR SOLVING PATH PROBLEMS

by

Robert Endre Tarjan

STAN-CS-79-734

April 1979

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNIVERSITY

a

H

Fast Algorithms for Solving Path Problems

anRobert Endre Tarjan

Computer Science Department
Stanford University

Stanford, California 94305

April, 1979

Abstract.

LetG = (V,E) be a directed graph with a distinguished source vertex s .

The single-source path expression problem is to find, for each vertex v ,

a regular expression P(s,v) which represents the set of all paths in G

froms to v . A solution to this problem can be used to solve shortest

path problems, solve sparse systems of linear equations, and carry out

global flow analysis [30]. We describe a method to compute

path expressions by dividing G into components, computing path expressions

on the components by Gaussian elimination, and combining the solutions.

This method requires O(m Q(myn)) time on a reducible flow graph, where

n is the number of vertices in G , m 1s the number of edges in G , and

®¢ is a functional inverse of Ackermann's function. The method makes use

of an algorithm for evaluating functions defined on paths in trees [9,29].

A simplified version of the algorithm, which runs in O(m log n) time on

reducible flow graphs, 1s quite easy to implement and efficient in practice.

CR Categories: 4.12, 4.34, 5.14, 5.22, 5.25, 5.32.

Keywords: Ackermann's function, code optimization, compiling, dominators,
Gaussian elimination, global flow analysis, graph algorithm,

linear algebra, path compression, path expression, path problem,
path sequence, reducible flow graph, regular expression,
shortest path, sparse matrix.

*

wi This research was partially supported by the National Science Foundation
under grant MCS75-22870-A02, by the Office of Naval Research under
contracts NRO44-LO2 and NOOOlL-T76-C-0688, by the IBM Corporation, and
by a Guggenheim Fellowship. Reproduction in whole or 1n part 1s permitted
for any purpose of the United States government.

1

1. Introduction.

The techniques of Gaussian and Gauss—-Jordan elimination, originally :

devised to solve systems of equations over the real numbers, have been

repeatedly rediscovered and applied to other problems. These include shortest

path problems [6,10,16], path-finding problems [4], global flow analysis

[2,12,13,23], and conversion of finite automata to regular expressions [18].

The most fundamental of these problems is the (single source) path

expression problem: Given a graph G = (V,E) and a distinguished

source vertex s , find a reqular expression P(s,v) for each vertex v

which represents all paths from s to v in G6. By reinterpreting

the | ,., and ¥ operations used to construct regular expressions,

we can use a solution to the single-source path expression problem to

solve other kinds of path problems, including those mentioned above [30].

We thus obtain a general-purpose algorithm for solving any path problem

on a given graph.

This paper describes a decomposition method for computing path

expressions. The method divides the graph G into components based

upon the dominator tree of G , computes a path expression for each

component by Gaussian elimination, and combines the solutions using

an algorithm for evaluating functions defined on trees [9,29]. The

algorithm requires O(m Q(m,n)) time plus time to compute path expressions

within the components, where n is the number of vertices in G,

m 1s the number of edges in G , and ®& 1s a functional 1nverse of

Ackermann's function. If G is a reducible flow graph, each component

of G is a single vertex, and the method requires O(m a(m,n)) time

=

total. Although the method 1s rather complicated, a simplified version,

which runs in O(m log n) time, is quite easy to program and efficient

in practice.

The paper contains seven sections. Section 2 reviews the properties

of regular expressions used in the following sections. Section 3

reviews standard methods of numerical linear algebra and describes

their application to the path expression problem. This section introduces

the notion of a path sequence for a graph G and shows how, given a

path sequence, one can solve the single-source path expression problem

for any source 1n time proportional to the length of the path sequence.

Section 4 presents an O(m &(m,n)) -time algorithm for solving a single-

source path problem on a reducible flow graph if the source is the start

vertex of the graph. Section 5 extends the algorithm so that it

computes path sequences for reducible flow graphs. Section 6 generalizes

the method to non-reducible graphs. Section7 discusses applications

and suggests further research topics. The appendix contains the basic

graph-theoretic terminology used in the paper, An earlier and much

different version of this paper appeared as a Stanford technical report [27].

|

2. Regular Expressions and Path Expressions.

Let § be a finite alphabet containing neither "A" nor " pn.

A regular expression over EL 1s any expression built by applying the

following rules.

(1a) "A"and " P" are atomic regular expressions; for any aeg ,

"a" is an atomic regular expression.

(1b) If Ry and R, are regular expressions, then (Ry UR,) ’
*

(R;*R,) , and (R,) are compound regular expressions.

In a regular expression, A denotes the empty string, [0 denotes

the empty set, |) denotes set union, .denotes concatenation, and

*

*¥ denotes reflexive, transitive closure under concatenation. = Thus

each regular expression R over § represents a set c(R) of strings

over ¥ defined as follows:

(2a) (pA) = fA} ; of) = 9 ; o(a) = (a) for aex .

(2b) o(R; UR,) = o(R,) Ua(R,) = {wwe (Ry) or Wwe (Ry) ;
e} ° = * = pe(RB, R,) o(R,;) o(R,) {ww | wy e o(Ry) and Ww, e0(R,)] ;

* @ k ‘ .
dg(R) = a O(R)" , where o(R)° = {A} and a(R)" = a(R)" Lor) :

k=0

*

*/ Note that each of the symbols A , §,U , ., ¥ stands in the text both
for the symbol itself and for a string, set, or operation. We shall

allow the context to resolve this ambiguity. Also, we shall freely

omit parentheses fram regular expressions when the meaning 1s clear;

we assume the standard operator precedence: ¥ over . over U .

4

The reverse RY of a regular expression R is defined by

r r

(3a) AM=pA; 8 =9 ; a =a for aeyg.

I r r

(3p) (R; UR,) = Ry UR, ’ ;

r r _Tr

Xr rr. Xx

Two regular expressions Ry and R, are equivalent if a(Ry) = o(R,) .

A regular expression R 1s simple if R = [or R does not contain [)

as a subexpression. We can transform any regular expression R into an

equivalent simple regular expression by repeating the following

transformations until none 1s applicable: (1) replace any subexpression

of the form pry or R +p by © ; (ii) replace any subexpression of

the form 0 + Ry or Ry +P by Ry ; (111) replace any subexpression
*®

of the form§ by A.

A regular expression R 1s non-redundant if R represents every

string in a(R) uniquely. We can make this definition precise as

follows:

(ka) As Pp, and a for each acy are non-redundant.

(bp) Let R, and R, be non-redundant.2

R, UR, is non-redundant if (Ry) NO(R,) =p .

R,*R, is non-redundant if each we 0(R,‘R,) is uniquely

decomposable into w = W,W, with we o(R;) and

W, e9(R,) .

d

iu

Ry is non-redundant if each we 0(R) is uniquely decomposable

into w = ww ...w with vw, e o(R,) for 1 <i < k .

Note that if R* is non-redundant, A# o(R) .

Let G = (V,E) be a directed graph. Any path in G is a sequence

of edges, which we can regard as a string over E . A path expression P

of (v,w) 1s a simple regular expression over E such that every

string in o(P) is a path from v to w . Every subexpression of a

path expression 1s a path expression, whose type can be determined as

follows.

(5) Let P be a path expression of type (v,w) .

If P = P, UP, , then Py and FP, are path expressions of

type (v,w) .

If P = PiF, , then there must be a unique vertex u such

that P, 1s a path expression of type (v,u) and P,

is a path expression of type (u,w)

x [] 1

If P = Py sy then v = w and Py 1s a path expression of

type (v,w) = (vov)

It 1s easy to verify (4) using the fact that P is simple. Note that

A is a path expression of type (v,v) for any v .

In describing algorithms to compute path expressions we shall assume

that each y, @® ,and * operation requires constant time. If we

represent the computed path expressions by a directed acyclic graph as

described by Aho and Ullman [2, pp. 418-426], this is a reasonable

assumption.

6

—

3. Path Expression Problems and Path Sequences.

Let G = (V,E) be a directed graph. The single-source path

expression problem for source vertex s 1s the problem of computing,

for each vertex veV , a non-redundant path expression P(s,v) such

that o(P(s,v)) contains all paths from s to v . The single-sink

path expression problem for sink vertex t is the problem of computing,

for each vertex veV , a non-redundant path expression P(v,t) such

that 0(P(v,t)) contains all paths from v to t . The all-pairs

path expression problem is the problem of computing, for all pairs v,weV ,

a non-redundant path expression P(v,w) such that ¢(P(v,w)) contains

all paths from v to w .

In this paper we develop a way to solve path expression problems by

using Gaussian elimination in combination with methods for decomposing

G into components. In this section we describe how Gaussian elimination

applies to such problems. We also describe a well-known decomposition

method which uses the strong components of G . In subsequent sections

we present a more powerful decomposition method based upon the

dominator tree of G .

Gaussian elimination was originally developed to solve a system of

linear equations Ax = b , where A 1s an nxn matrix of real-valued

coefficients, x 1s an nxl vector of variables, and b is an n x1

. vector of real-valued constants [1l]. The method consists of two steps.

Step 1 (LU decomposition). Decompose A into A = LU, where L 1s

unit lower triangular and U 1s upper triangular.

Step 2 (Frontsolving and backsolving). Solve the triangular systems

Ly = b (frontsolving) and Ux = y (backsolving).

|

|

i

The resource requirements of Step 1 dominate those of Step 2 and

thus determine the overall requirements of the algorithm [5,28]. The

method has several pleasant features, including its amenability to an

implementation that takes advantage of the sparsity of A , avoiding

arithmetic on numbers known to be zero [38,22]. It is also possible

to solve Ax = b for multiple right-hand sides by carrying out Step 1

once and repeating Step 2 for each value of b .

We apply this method to path expression problems by introducing the

notion of a path sequence, which generalizes Kennedy's node listing

concept [17]. A path sequence for a directed graph G is a sequence

(6a) For 1< i <1, P. is a non-redundant path expression of

type (vy,w;)

(6b) For 1 <i <4, if v, = w, then Ae o(P.) :

(6C) For any non-empty path p in G , there is a unique sequence

of indices 1 < i, < 1, <. .. < 1 < 1 and a unique partition

of p into non-empty paths p = SEIN : 0 Py such that

D; € o(P,;) for 1 < j <k .
J

Given a path sequence, we can solve the single-source path expression

*

problem for any source s by using the following propagation algorithm: ij

<r

We shall use a syntax resembling Dijkstra's [7] for expressing
algorithms.

8

I

procedure SOLVE;

begin

initialize: ©P(s, s) := A; for each ve V-{s} do P(s,v) := 0 od;

loop: for 1 := 1 until { do

if v, = Wy P(s,7;) r= [P(s,v,)P,]

i Vs # ws = P(syw,) = [P(s;w;)U [P(syv,)°P, 1] fi od
end SOLVE;

In this and subsequent algorithms, the square brackets denote the

following simplification procedure. This procedure, when applied

recursively, produces regular expressions that are not only simple but also
*

contain no subexpressions of the form AR, , R,*A , or A .

regular expression procedure [R];

ifR= RYUR, if R _ p-R, [IR =f ~R fi

* - [] -

|| R=2R -if (R) =p) or (Ry = A) » A £i fi

-Lemma 1. Let (Pysvyswy)s (Posvosvy)s vor (Ps Vs Ww) be a path sequence
for G and let v be any vertex. After i iterations of the loop in

SOLVE, P(s,v) is a non-redundant path expression representing exactly A

(if s = v) and all non-empty paths p from s to v for which there

1s a sequence of indices 1 < 1, < i, <. 00 < i < 1 and a partition of

P into P = PysPpseeesPy such that 1 € op,) for 1 <j <k .
J

Proof. Straightforward by induction on 1 . [O

—

Theorem 1. Let (Ps Vys1y)s (Pos Vins Wy)s eves (Pysv,5w,) be a path sequence
for G and let v be any vertex. After execution of SOLVE, P(s,v) is

a non-redundant path expression representingall paths from s to wv.

SOLVE 1s a generalization of the frontsolving-backsolving step in

Gaussian elimination; its running time is O(nt+f) . To solve a single-

source path expression problem on a graph G , we construct a path

sequence and apply SOLVE once. To solve an all-pairs path expression

problem, we construct a path sequence and apply SOLVE n times, once

for each possible source. To solve a single-sink path expression problem,

we employ the following theorem to construct a path sequence for a ,

and then we solve the corresponding single-source problem on oo .

Theorem 2. Let (PysvysWy)s (Pos VosWy)s ees (PV sw) be a path sequence

for a graph G . Then (Pys,5V,)s ee 5 (Poy Vy) 5 (B55) is a path
sequence for ta .

Proof. Immediate. [I

By Theorem 2 it 1s no harder to compute a path sequence for on than

to compute a path sequence for G .

We can construct a path sequence for an arbitrary graph by using a

method analogous to Step 1 of Gaussian elimination. The method 1s similar

to Kleene's algorithm for converting a finite automaton into a regular

expression [18], except that Kleene uses Gauss-Jordan elimination. Let

G = (V,E) be a directed graph whose vertices are numbered from 1 to n

and 1dentified by number. The following procedure computes a set of path

expressions which when properly ordered gives a path sequence.

10

Bn

procedure ELIMINATE;

initialize: for v := 1 untiln doforw := 1 until n do P(v,w) := p od od;

for each eedo P(h(e);t(e)) := [P(h(e),t(e)) ye] od;

Pv, v) := [B(v,v);

for each u > v such that P(u,v)# # do

P(u,v) := [P(u,Vv)+P(v,v)];

for each w > v such that P(v,w) # f do

P(uy w) := [P(u,w) U [P(u,Vv) P(v,w)]] od od

end ELIMINATE;

Lemma 2. After the v-th iteration of the loop in ELIMINATE, the following

statements are true.

(1) P(u,w) for u > w and w < v is a non-redundant path expression

representing exactly the paths from u to w which contain no

intermediate vertex larger than w .

(ii) P(u,w) for u < w or w > V is a non-redundant path expression

representing exactly the non-empty paths from yu to w all of

whose intermediate vertices are smaller than min{u,v+l} .

-Proof. Straightforward by induction on v . [J

11

—

Theorem 3. After execution of ELIMINATE the following statements are

true.

(1) P(u,w) for wu > w is a non-redundant path expression representing |

exactly the paths from u to w which contain no intermediate

vertex larger than w .

(ii) P(u,w) for u < w is a non-redundant path expression representing

exactly the paths from u to w all of whose intermediate vertices

are smaller than u .

Theorem Lk. Let P(u,w) for u,weV be the path expressions computed

by ELIMINATE. Then the following sequence 1s a path sequence: the

elements of {(P(u,w),u,w) | P(ww) ¢ {#,A} and u < w) in increasing order

on u, followed by the elements of {(P(u,w),u,w)| P(w,w)# # and u > w)

in decreasing order on u .

Proof. The sequence specified 1n the theorem certainly satisfies (6a)

and (6b). To prove (6c), let p be any non-empty path in G . Let Vo

be the maximum vertex on p . Let Py be the part of p from the first

occurrence of Le to the last occurrence of Vo (1f vq only occurs once,

2, = A Je For1 > 1, let Vs be the largest vertex occurring on p

after the last occurrence of wv,; and let Ps be the part of p

from the last occurrence of v;_q to the last occurrence of v.

Let v, be the last such Vv, defined (v, = t(p)) . For i>1,

let v_i be the largest vertex occurring on p before the first

occurence of V_i41 Let IPNY be the part of p from the last

occurrence of V_s before P_niio to the beginning of P_oitp ,

and let P_os be the part of p from the first occurrence of V_s

12

=.

to the beginning of P oii] . Let V1 be the last

such v_; defined (v_, = h(p)) . Then

P= PoP oyqpr ee esP_19PgrPysessP, With Dp.e o(P(V_s5V_3)) for

0<i<k, P_pisq © O(P(V_5V_ 547) for 1 <1i<k , and

D; € o(P(vy_10¥;)) for 1< i £1 . Ignoring empty paths Pp, , we get

a partition of p which satisfies (6b). It 1s straightforward but

tedious to show that this partition is unique. [O

ELIMINATE thus gives us a way to construct path sequences. The resource

requirements of the method depend in a complicated way upon the sparsity

of G. By rearranging the computation in the loop of ELIMINATE and

using appropriate data structures we can implement ELIMINATE to run 1n

n

| + REA Pwv)£ plu>vi|-|{P(v,w) #0 |w>v)) time and 0(f)
storage space, where [| 1s the length of the computed path sequence

[5,28]. (By only storing P(u,w) for pairs u, w such that eventually

P(u,w) # p , we can avoid spending 0(n°) time in initialization.)

For dense graphs the time bound 1is 0 (nS +m) and the space bound

1s (n°) . For sparse graphs, the resource requirements depend upon

the vertex numbering chosen. Numerical analysts have devoted much

. effort to finding good numbering schemes, both for arbitrary sparse

graphs and for graphs with special. structure [5,8,22,28].

All their techniques except off-diagonal pivoting [ll] apply to the

computation of path sequences.

In order to improve the efficiency of this method, we shall combine

it with two decomposition techniques. The idea is to break the problem

15

nmr——__—_— ——_- gg --

graph into subgraphs, apply ELIMINATE to construct a path sequence

for each subgraph, and combine these path sequences into a

path sequence for the original graph. Our first decomposition technique

1s well-known to numerical analysts and uses the strong components of G .

Theorem 5. Suppose G = (V,E) is acyclic (i.e., each strong component

is a single vertex) and that the vertices of G are numbered in topological

order. Then the elements of {(e,h(e),t(e)) | ecE} in increasing order

on h(e) comprise a path sequence.

Proof. Immediate. Cl

By Theorem 5, any acyclic graph has a path sequence of length m ,

which can be found in O(n+m) time using a linear-time topological

sorting procedure [19,25].

Theorem 0. Suppose G = (V,E) 1s a directed graph with strong

components Gy 5 CYERRF ICH » ordered so that no edge leads from a component

Gy toacomponent G. with j<i. For 1<i<k, let Xs be a

path sequence for Gs , and let Y. be a sequence consisting of the

elements of {(e,h(e),t(e)) | he) € Gy and t (e){ G, } ordered arbitrarily.

(Note that Y, is empty.) Then X15 YX Ys eees X10 %y 40% is a

path sequence for G .

Proof. Immediate. UO

Theorem 6 generalizes the method of Theorem Dto arbitrary directed

graphs. We can find the strong components of a directed graph in O(nt+m)

time using the algorithm of Tarjan [24]. Thus Theorem 6 gives a method

14

=

for finding a path sequence in O(n+m) time plus the time to find

path sequences for the strong components. The length of the sequence

1s O(m) plus the total length of the strong components' sequences.

15

2

4, Computing Path Expressions for Reducible Flow Graphs.

Although decomposition using strong components 1s efficient and

useful 1n practice, many problem graphs have one or only a few strong

components. In the remaining sections of this paper we develop a more

powerful decomposition technique based upon dominators. We begin by

considering reducible flow graphs. A flow graph G = (V,E,r) is a

directed graph with a distinguished start vertex r such that every

vertex in G is reachable from r . By Theorem 6 we need only consider

strongly connected graphs, so this reachability condition is no restriction.

A reducible flow graph G = (V,E,r) is a flow graph that can be

reduced to the graph consisting of the single vertex r and no edges

by means of the following transformations:

I, (remove a loop): If e 1s an edge such that h(e) = t(e) , delete

edge e .

T, (remove a vertex): If w# r 1s a vertex such that all-edges e

with t(e) = w have h(e) = v for some vertex v , contract w

into v by deleting w and all edges entering w , and converting

any edge e with h(e) = w into an edge e' with h(e') = v

and t(e!') = t(e) .

This definition is due to Hecht and Ullman [14]; there are many other

equivalent definitions of reducible flow graphs [12,14,15,26]. Intuitively

a flow graph 1s reducible if every cycle has a single entry from the

start vertex. These graphs play an important role in global flow analysis,

because the control flow of a reasonably well-structured program can be

modelled by a reducible flow graph [3,20].

16

|

As the reduction by Tl and T2 takes place, each vertex in the

reduced graph represents a subgraph of the original graph, called a

region, and each edge in the reduced graph represents an edge in the

original graph. We define this notion formally as follows.

(7a) Each vertex and edge in the original graph represents itself.

(7p) If T; is applied to delete an edge e , then vertex h(e) = t(e)

in the reduced graph represents the union of what h(e) and e

represent.

(70) If T, is applied to contract vertex w into vertex vv , then
V in the reduced graph represents the union of what v , w ,

and all the deleted edges e with h(e) =v , t(e) = w

represent. Any new edge e' represents what the corresponding

old edge e represents.

It 1s not hard to show that each region 1s indeed a subgraph of G

and that the regions corresponding to the vertices of any reduced graph

are vertex-disjoint [31]. Furthermore every region I has a unique

header vertex v such that any edge e with h(e)¢1I , t(e)e I has

t (e) = v [31]. The header is the unique vertex in the region which has

not yet been contracted into another vertex. When the reduction is

complete, Ir represents a region comprising the entire graph G .

If a flow graph 1s reducible, there 1s a reduction order VisVoseoes Vy, 57 =T

of the vertices such that the graph can be reduced to r in the following

way [26]: For i from 1 to n-1 , we apply T, to delete all loops

at Ve oi then we apply I, to contract vs into another vertex vs with

17

—

J >1 . After deleting all vertices except v,=T , We apply Ty to

delete all loops at r . This way of carrying out the reduction has the

following property. If we regard the repeated application of Ty at a

vertex ve followed by the application of- I, to delete v. as a single

step, then between any two steps the entry vertex of any region has no

edges entering it from within the region.

We shall assume henceforth that the vertices of G are numbered

from 1 to n 1n a reduction order and identified by number. We shall

also assume that header (v) for v # r is the vertex into which v is

eventually contracted, that cycle (v) for any vertex v 1s the set of

edges 1n G represented by edges deleted when applying Ty to delete loops

at v , and that noncycle(v) for v £ r is the set of edges in G

represented by edges deleted when applying Ty to delete v . The following

lemma states some basic properties of header , cycle , and noncycle.

Lemma, 3. Suppose G 1sa reducible flow graph whose vertices are

numbered in a reduction order. Letv be any vertex and let e be

any edge. Then

(1) if v£ r, header(v) > v ;

(ii) either h(e) = header(t(e)) orh(e) < t(e) ;

(111i) if eecycle(t(e)) then header” (h(e)) = t(e) for some 1i>0; and

(iv). if ee noncycle(t(e)) then header” (h(e)) # t(e) for all 1>0

but header™ (h(e)) = header@(e)) for some 1 > 0 .

Proof. Straightforward. [J

18

|__|

a

The algorithm of Tarjan [26] computes a reduction order and

associated arrays header , cycle , and noncycle in O(m Q(m,n))

time. Using this information we can solve the single-source path

expression problem whose source vertex 1s r . The algorithm

resembles the methods of Ullman[31]and Graham and Wegman [12] for

solving "forward" data flow problems; we discuss this resemblance at

the end of the section.

The algorithm computes path expressions as the reduction proceeds,

using a data structure representing the current regions. The data

structure consists of a forest whose vertices are the vertices of G

and whose edges are the pairs (header(v),v) such that v has been

contracted into header(v) . Thus this header forest consists of one

tree per region; the tree representing a region contains exactly the

vertices 1n the region and has the header of the region as 1ts root.

With every vertex v in the forest 1s associated a non-redundant path

expression R(v) . The algorithm manipulates the forest by means of

four operations:

INITIALIZE (Vv) : Form a tree with one vertex v and associated path

expression R(v) := A .

UPDATE(V,R) : If v is a root, assign R(v) :=R ,

. LINK(v,w): If v and w are roots, combine the trees with

roots v and w by making v the parent of w.

EVAL(V) : If r=Vy-V >V, =». . .>V =v is the tree

path from the root r of the tree containing v

to wv, return a non-redundant path expression

equivalent to R(V,) : R(v,) Coe. . R(v,) .

19

—

The algorithm maintains the following invariant: If I 1s a region and

v is a vertex in I , then EVAL(v) represents exactly all paths in I

from the header of I to v .

procedure REDUCE;

initialize: for each veV do INITIALIZE(v) od;

loop: for v := 1 until n-1 do

P:= 05 Q := 0;

for each e ¢ noncycle(v) do P := [PU [EVAL(h(e))-e]] od;

for each ee_cycle(v) do Q := [QUI[EVAL(h(e))-e]] od;

UPDATE(v, [P-[Q 11);

LINK(header(v),v) od;

finalize: P(r,r) := 0;

for each ee cycle(r) do P(ryr) := [P(r,r)U[EVAL(h(e))-e]] od;

P(r, r) := [P(r,r) 1;

for v := 1 until n-1 do P(r,v) := [P(r,r)-EVAL(v)] od

end REDUCE;

Lemma 4, After the v-th iteration of the loop in REDUCE, EVAL(u)
for any vertex u represents exactly all paths in the current region I

containing u from the header of I to u .

Proof. By induction on v . The lemma 1s certainly true before the

first iteration of the loop. Suppose the lemma is true before the v-th

iteration of the loop. Let I be the current region containing v and

20

=

let 13 be the current region containing header (v) . Let I, be the

region containing v after T, is applied to eliminate all loops at v .

Let I be the region containing v after I, 1s applied to contract

v into header (v) ; 1i.e., after the v-th iteration of the loop.

Is consists of I and the edges in cycle (v) . I), consists of

I, > Is » and the edges in noncycle(v) ; the header of I, is the

header of Ia

I, contains no edges entering v . It follows from the induction

hypothesis that the value of Q after the v-th iteration 1s a non-redundant

path expression representing all paths from v to v in I, which do not

contaln v as an intermediate vertex. Thus Q represents all paths in

1s from v to v . It also follows from the induction hypothesis that

the value of P after the v-th iteration 1s a non-redundant path expression

representing all paths in I) from the header of I), to v which do not
contain v as an intermediate vertex.

If u is a vertex in I; then the paths in I), from the header

of Ty, to u are exactly the paths in I from the header of Ia

tou. If u is a vertex in Is , the paths in I), from the header

] of Ty, to u are exactly the paths p partitionable into
*

P= Py5PyPz 5» where Py€ a(P) , Pp, €0(Q) , and Pq is a path in

I, from the header of I, to u . Thus adding edge (header(v),v)

to the forest and replacing the old value (A) of P(v) by (P-[Q 1]

guarantees that the lemma holds after the v-th iteration of the loop.

21

—

Corollary 1. After execution of REDUCE, R(v) for any vertex v # r

1s a non-redundant path expression representing exactly the set of

paths from header(v) to v all of whose intermediate vertices are

smaller than header (v) .

Proof. For any vertex v # r , let I) be the region containing v

after the v-th iteration of the loop 1n REDUCE. Let R(v) be the path

expression computed for v during this iteration. By Lemma 4,

R(v) is a non-redundant path expression representing all paths in

Ty from header (v) to v . Any path in G from header (v) to v

which leaves I must contain header (v) twice, since the only way

to enter I), is through header (v) . O

Theorem 7. Let v any vertex. After execution of REDUCE, P(r, v)

1s a non-redundant path expression representing all paths from r to wv.

Proof. Lemma 4 holds after the last iteration of the loop in REDUCE.

A proof similar to that of Lemma 4 shows that P(r,r) as computed in

the final part of REDUCE 1s a non-redundant path expression representing

all paths from r to r in G. It follows from Lemma 4 that the

computed value of P(r,r) for v Nt r 1s a non-redundant path expression

representing all paths from r to v in G . [QO

Procedure REDUCE requires O(n+m) time plus time for n calls

on INITIALIZE, n-1 calls on UPDATE, n-1 calls on LINK, and m+n-1

calls on EVAL; thus the forest manipulation operations dominate the

running time or the algorithm. Tarjan [29] describes two ways to

implement the forest operations. The first is a simple method

22

=

called path compression which requires O(m log n) time. The second

1s a sophisticated off-line method which by preprocessing the entire

sequence of EVAL and LINK operations 1s able to performall the forest

manipulation in O(m Q(myn)) time... (It is easy to precompute the

sequence of EVAL and LINK operations performed by REDUCE.) Farrow [9]

presents another O(m Q{myn)) -time method called stratified path

compression. This method has the advantage of being on-line, although

the proof of its time bound 1s very complicated.

By using either of the O(m a(myn)) -time algorithms for forest

manipulation we obtain a moderately complicated O(m Q(m,n)) -time

implementation of REDUCE. By using path compression we obtain an

O(m log n) -time implementation of REDUCE which 1s remarkably simple

and efficient. We favor the latter implementation for practical

applications.

Ullman's algorithm for forward data flow analysis [31] is essentially

identical to REDUCE except that 1t uses 2-3 trees to carry out the forest

operations. Its time bound 1s O(m log n) but it is more complicated

than our method using path compression. Graham and Wegman's algorithm [12]

. 1s a version of REDUCE which uses no auxiliary data structure but carries

out a form of path compression on the original graph. Its time bound

1s O(m log n) but 1t also 1s more complicated than our method using

path compression. Experimental comparisons between these methods would

be valuable.

25

—

5, Computing Path Sequences for Reducible Flow Graphs,

Some kinds of data flow analysis, such as the computation of live

variables [17], require that information be propagated backward rather

than forward through the control flow graph of the program. We can

carry out such backward data flow analysis by solving a single-source

path problem on the reverse of the control flow graph. Since reducibility

1s not preserved by graph reversal, the algorithm of Section 5 is

inadequate for this purpose. In this section, we shall modify REDUCE

so that 1t computes a path sequence for any reducible flow graph. By

using such a path sequence and applying Theorem 6 if necessary, we can

solve single- and multi-source path problems on any flow graph which 1s

reducible or whose reverse 1s reducible, This provides an efficient way

to do backward data flow analysis.

In order to develop this algorithm, we need to examine the implementation

of the header forest operations. We shall describe a generic implementation

of which path compression [29] and stratified path compression [9]

are speclal cases. We shall use this generic implementation in an

extension of REDUCE which computes path sequences.

_ The generic implementation uses a compressed forest to represent the

header forest. With each vertex vs of the compressed forest 1is
associated a path expression §(v) . The method maintains the following

invariants.

(8a) For each tree T 1n the header forest, there 1s a corresponding

tree 7° of the compressed forest which contains the same

vertices as T .

24

-

C
(8b) If Vv -Ww in a tree T of the compressed forest, then

Xx

Vv -w in T . In particular, corresponding trees T and T°

have the same root.

(8C) For any vertex v , let r=v,-+v,» . . . =v =V be the

path 1n the header forest from a root to v , and let

r =v, Wee Ww, = v be the path in the compressed

forest from a root to v . Then R{(v,) : R(vy).. . + -R(v)

and (wg). 8(wy). . . 8(vw,) are equivalent non-redundant
path expressions.

The compressed forest 1s represented by an array ancestor such

that ancestor(v) 1s the parent of v in the compressed forest; 1f

ancestor(v) = 0 then v is a root. The following procedures implement

the forest operations.

procedure INITIALIZE (Vv);

begin ancestor(v) := 0; S(v) := A end;

procedure UPDATE(V,R);

- S(v) := R;

procedure LINK(v,w);

ancestor(w) := vj;

25

||

H

regular expression procedure EVAL(V);
(a aa Wott a a a a a a Sd i TA a Wo WY LD

begin

non-deterministically execute COMPRESS(u) for an

arbitrary sequence of vertices uj;

let vy, ves. . .yV De such that v = vy, ancestor (v.,) = Vv,q for

for 1< i < k, and ancestor (v,) = 0;
EVAL := if k= 0 =» A

[] k # . = 8(vy) . 8(v,,) cow 8(vy) £1
end EVAL;

procedure COMPRESS (u);

if ancestor (ancestor(u)) # 0 =

S(u) := S(ancestor(u)) . S(u);

ancestor(u) := ancestor(ancestor(u)) fi;

It is evident that COMPRESS preserves (8a)-(8c); thus the procedures

above are a valid implementation of the header forest operations. The

following lemma is easy to prove using the results in Section 4.

Lemma DO. If v 1s any vertex such that ancestor(v) # 0 , then S(v)

1s a non-redundant path expression representing exactly the set of paths

from ancestor(v) to v all of whose intermediate vertices are smaller

than ancestor(v) .

EVAL 1s a non-deterministic procedure which 1s free to choose an

arbitrary sequence of vertices u on which to execute COMPRESS(u) .

We obtain a specific implementation by including a mechanism for making

this choice. Path compression uses the following version of EVAL,

20

a

regular expression procedure EVAL(v);

1f ancestor(v) = 0 = EVAL := A

[| ancestor(v) # O » PATHCOMPRESS(v); EVAL := S(v) fi;

procedure PATH-COMPRESS(v);

if ancestor (ancestor (v)) # 0 =

PATH-COMPRESS (ancestor (v)) ;

S(v) := S(ancestor(v)) .S(v);

ancestor(v) := ancestor(ancestor(v)) fi;

Stratified path compression uses a more complicated compression mechanism

which requires the maintenance of additional data structures [9].

The following version of REDUCE uses the generic implementation of

the header forest operations to compute a path sequence. Procedures

EVAL and COMPRESS are modified so that they add elements to the path

sequence as a side effect.

27

—

procedure REDUCE AND-SEQUENCE;

initialize: for each veV do INITIALIZE(v) od;

sequence := the empty sequence;

loop: for voi= 1 until n-1 do

P:= 0; q := 0;

for each eenoncycle(v) doP := [PUEVAL AND SEQUENCE (e)] od;

for each e ¢ cycle(v) do Q := [QUEVAL AND SEQUENCE (e)] od;

addl: if [Q) £ A - add (1Q 1,7,v) to sequence fi;
UPDATE(v, [P+ [@]]) ;

LINK (header (v),v) od;

finalize: Q := 0; —-

for each eecycle(r) doQ :=[QUEVALAND SEQUENCE (e)] od;

add2: if [Q]4 A - add (1 1,757) to sequence fi;

for v := n-1 by -1 untill do add (8(v),ancestor(v),v) to sequence od

end REDUCE AND SEQUENCE;

regrlar expression procedure EVAL AND SEQUENCE(e);

non-deterministically execute COMPRESS AND SEQUENCE(u) for

an arbitrary sequence of vertices u;

let Vo» Vy» - . «»V, be such that h(e) = vi, ancestor (v,) = V. oq for

1<1i<k, and ancestor (v,) = 0;

if k = O -EVALAND SEQUENCE := e

[] k # 0 ~ EVAL_ANDT SEQUENCE := S(v,)-e;

for 1 t= k=1 by -1 until 1 do

add (EVAL AND SEQUENCE, v,,%t(e)) to sequence;

EVAL ANDSEQUENCE := S(v,) ¢ EVAL AND SEQUENCE od fi
end EVAL AND SEQUENCE;

28

|]

Hu

procedure COMPRESS/D-SEQUENCE (u) ;

if ancestor (ancestor (u)) # 0 =

add (S(u),ancestor(u),u) to sequence;

S(u) := S(ancestor(u)).s(u);

ancestor(u) := ancestor(ancestor(u)) fi;

Theorem 8. The sequence computed by REDUCE-AND SEQUENCE is a path

sequence for G .

Proof. The proof 1s similar to the proof of Theorem LI but a little more

complicated. We shall assume for purposes of the proof that statement
®

add1 always adds ([Q],v,v) to sequence , whether or not [Q] = A ;

similarly for statement add 2. This modification does not affect the

properties of sequence in which we are interested.

Lemma > and an inspection of REDUCE AND SEQUENCE show that the computed

sequence satisfies (6a) and (6b). To prove (6c), let p be an arbitrary

path in G . Let Vo = h(p) . For i > 1, let v. be the first vertex

on p such that v, > Ve Let wv, be the last vertex so defined

(vy is the largest vertex on p). Let Vip = t(p) . Let Poy be the

_ part of P from the first occurrence of Vie to the last occurrence of Vy .

Let Poipy be the part of p following Poy - For 0 < i < k-1 , let

Py;,q Pe the part of p from the last occurrence of Vv. before Posin

to the beginning of Posyn: Let 199 be the part of p from the first

occurrence of v. to the beginning of Posy; + Then p = Por Pir eesPoyyq

where Poy for 0 <1 < k 1s a path from v. to ve containing no
h

vertex greater than Vi os and Posi] for 0 <1 <k 1s a path from vy
to Viiq all of whose intermediate vertices are less than veo

29

|

-

*

For 0<i<k, Py; €9(Q (v;)) » where avy) for v, # Tr

1s the value of Q computed during the \ -th iteration of the loop

in REDUCEAND SEQUENCE, and Q(r) is the value of Q computed during

the final part of REDUCE-AND-SEQUENCE. In order to represent p as

in (6c), it remains for us to (i) partition each path Post] for

0 <1 < k-1 into a sequence of paths represented by triples appearing
* *

in sequence between (ralvy) Lvesv,) and (falviyq) IPR AETA SID ,

and (11) partition Poyrl INt0a sequence of paths represented by
*

triples appearing in sequence after ([avy)] Viv) .

Consider any path p,.,,; for 0 < 1 < k-1 . Let e, be the last
[amg Sa _ - oo

edge on this path-. Then t(e.) = Vi, + and h(e,) is a descendant

of Ve in the compressed tree just after the vs -th iteration of the

loop in REDUCE-ND-SEQUENCE. We partition Poit1 into

Prsisq = Poi+1,0’Poit1, 1’ ee e1Poiiy yg as follows. Let J = 0 and

(0) =P Repeat the following step until it no longer applies
2i+1 2i+l .

General step. Suppose h(e,) is not a descendant of h(p5yi;) in

the compressed tree when edge €: 1s processed by REDUCE.

) Consider the moment when h(e;) becomes a non-descendant

of h(p3y1;) . This event must be caused by an execution

of COMPRESS(u) such that ancestor(u) = h(pS),) .
1.) Co

Let Poit1, ; be the part of Poi from the beglnning
(3) "

to Post] to the last occurrence of u . Partition

p {J into p tl = p+) and replace 70i+l 2i+l = Poit+l,j? Poivl p]

by +1 .

30

|

Consider a single execution of the general step, Path bid must
{5 * *

. . \dJ/ 5 = .contain u since h(p35i1) u h(e,) in the header tree. Thus

1 can be partitioned as stated. Execution of COMPRESS(u) causes

(S(u) n(ptd))su) to be added to sequence ; P e o(s(u))? 21i+1 dzz= 7 2i+1, 3 .

: +

After execution of COMPRESS, he,) 1s a descendant of u = hipL Jr)
in the compressed tree.

: £)1 =p!
Suppose the general step 1s executed { times, Let Poised, s I

By the discussion above, there is a subsequence of triples

(Bsus Wy) ’ (Pou, wy) PR (P,_12u,_12%,_1) appearing in sequence after
*

(falv;) Lvsv,) and before triples of the form (Pru, v1) , and such that

D_. .eP for 0< j< t-1 . Furthermore h(e.) is a descendant
2itl,J J - - i

of h(p,i4q ,) in the compressed tree just after all compression 1sJ

finished during the execution of EVAL_AND_SEQUENCE(e.) . The operation

of EVAL AND SEQUENCE (e,) adds a triple (®,, h(Ppyrq 4) , Vii) such

that Poit1,; © o(P,) to sequence . Thus we obtain a satisfactory

partition of Posy

The partitioning of Por 1s the same as the partitioning of

; 1S for 1 < 1 < k-1 except that the path Poit1,; must be further
partitioned into paths represented by triples (S8(v),ancestor(v),v)

added to sequence during the final part of REDUCEAND SEQUENCE.

The details are straightforward.

We obtain by the method above a partition of an arbitrary path p

which satisfies (6c) if we ignore empty paths in the partition.

Showing that the partition is unique is tedious but not difficult.

The crucial point is that for any pair u > v , only one triple of

31

|

[

the form (P,u,Vv) appears 1n sequence . We leave the details to the

reader. Cl

REDUCE_AND_ SEQUENCE requires O(m log n) time to construct a path

sequence 1f path compression 1s usedto implement the forest operations

and O(m &(myn)) if stratified path compression is used. The length of

the path sequence constructed is proportional to the running time. It

1s interesting to note that the version of the algorithm which carries

out no compression generates essentially the same path sequence as

ELIMINATE.

32

—

6. Decomposition Using Dominators.

In this section we generalize the algorithm of Section 5 so that

1t becomes a decomposition method applicable to all graphs, The

reducible graphs play a role in this method analogous to the role of

acyclic graphs in decomposition by strong components, Just as a graph

1s acyclic if and only if all its strong components are single vertices,

a graph 1s reducible 1f and only 1f all its components in the new

decomposition are single vertices.

The concept we use 1s that of a single-entry region, which we make

precise as follows. For an arbitrary flow graph G = (V,E,r) , we say

a vertex v dominates another vertex w 1f v 4 w and v lies on

every path from r to w.

Lema 6 [1]. There is a tree T , called the dominator tree of ¢ ,

such that v 1s a proper ancestor of w in T if and only if v

dominates w . Vertex r is the root of T and D contains every

vertex in G .

For any vertex v #r , we denote by idom(v) the parent of v

in T . Vertex idom(v) is called the immediate dominator of v and

1s the unique vertex which dominatesv and is dominated by every other

dominator of v. The dominator tree defines the single-entry regions

of G; the following lemma 1s a technical statement of this fact.

. (Note the similarity between this lemma and Lemma 3.)

Lemma’. For any edge e , idom(t (e)) 1s an ancestor of h(e) in T .

Proof, Every path from r to t(e) contains idom(t(e)) . By adding

edge e to any path from r to h(e) , we get a path from r to t(e) .

55

Thus any path from r to h(e) contains idom(t(e)) , and by Lemma 6

idom(t(e)) > h(e) in T . O

For any edge e , let © be an edge such that t(e)= t(e) and

h(e) = h(e) if h(e) = idom(t(e)) , h(e) = u where

idom(t(e)) - u 4 h(e) in T if t(e) # idom(h(e)) . Let

G = (V,E, r) , Where E = {e | e €e BE} . We call G the derived graph

of G. Figures 1-3 illustrate a graph, its dominator tree, and its

derived graph. Note that there are three kinds of edges in the derived

graph. If t(e) = 1dom(h(e)) , then e = e is an edge in T , If

t(e) X hie) in T then e is a loop. Otherwise e leads from one

sibling to another in T .

[Figure 1]

[Figure 2]

[Figure 3]

We call the strong camponents of G the dominator strong components

of G. It 1s not hard to prove that a graph is reducible 1f and only if

all its dominator strong components are single vertices. The idea of

our algorithm is to use Gaussian elimination (or some other method) to

compute a path sequence for each dominator strong component of G , and

to combine these path sequences to form a path sequence for G by using

a combination of the methods in Sections 3 and 5. The algorithm

manipulates the dominator tree in the same way that REDUCE AND SEQUENCE

manipulates the tree defined by the header pointers. Henceforth when

we refer to descendants and ancestors we mean with respect to the

dominator tree T .

34

| i

The algorithm assumes that the dominator tree of G 1s known and

that the vertices are numbered from 1 to n so that idom(v) > V

for each vertex v# r . The algorithm requires the following information:

for each vertex u the set children(u) of vertices v such that

idom(v) = u , the set tree(u) of edges e such that t(e) = u and

h(e) = idom(u) , and the set nontree(u) of edges e such that

t(e) =u and hie) # idom(u) ; for each edge e the corresponding

edge e in a . This information and the vertex numbering can be

computed in O(m &(myn)) time using the dominators algorithm of

Lengauer and Tarjan [21].

The algorithm groups together vertices with a common parent and

processes these sibling sets in increasing order by parent. The algorithm

processes the set of siblings children(u) for each vertex u as

follows. For each edge e such that h(e) is a child of u , the

algorithm uses EVAL ANDSEQUENCE to compute a path expression p(e)

representing all paths in G fram h(e) to t(e) which end with

edge e and contain only proper descendants of h(e) as 1ntermediate

vertices. Then the algorithm computes a path sequence xy for the

- subgraph G, of G induced by children(u) . Substituting P(e) for
for each edge e appearing in this path sequence produces a sequence

X, that represents every path in G starting and ending at a child

of u and containing only proper descendants of u as intermediate

vertices.

The algorithm concatenates 1 onto the end of the path sequence,

By applying SOLVE to LS , the algorithm computes for each child v

of u a path expression R(v) which represents all paths 1n G from

35

a

U to V containing only proper descendants of u as intermediate

vertices. The algorithm completes the processing of the sibling set

by executing UPDATE(v,R(v)) 3; LINK(u,v) for each child v of u .

The algorithm finishes by computing a path expression Q representing

all paths from r to r and adding additional triples to the path

sequence just REDUCEAND SEQUENCE does. The algorithm appears in more

detail below.

procedure DECOMPOSE AND SEQUENCE;

initialize: for each veV do INITIALIZE (v) 0d;

sequence = the empty sequence;

derive: for each ve children(u) do

for eache ¢ non-tree(v) do

P(e) := EVAL ANDSEQUENCE(e) od od;

eliminate: compute a path sequence X, for G5

substitute: form I. from X. by replacing each occurrence of an

edge e in a path expression by P(e);

: sequence := sequence concatenated with 1

solve : for each ve children(u) do R(v) := 0;

for each eectree(v) do R(v) := [R(v)Ue] od od;

for each (Pyw,X%) ¢ Y in order do-

if w= x » R(wW) := [R(w)-P]

[w#x ~ R(x) := [R(x) UI[R(W)-P]] fi od;

update: for each ve children(u) do

UPDATE(v,R(v)); LINK(u,Vv) od od;

36

—

finalize: Q := 0;

for each e gnontree(r)do Q := [QUEVAL ANDSEQUENCE(e)] od;

if [Q] # A add (1a 1,7,7) to sequence fi;

for v i= n-1 by -1 until1 do add (s(v), ancestor (v), Vv)

to sequence od

end DECOMPOSE AND-SEQUENCE;

This method combines the techniques of Section 3 with the method

of Section 5, The parts of the program labelled initialize , derive ,

update , and finalize are adapted from REDUCEAND SEQUENCE and serve

to combine the path sequences computed for the dominator strong components

(in eliminate-- and substitute) into a path sequence for the entire

graph. The two loops labelled solve comprise a version of SOLVE,

We can implement step eliminate using ELIMINATE on the strong

components of G, and combining the results as described in Theorem 6.
Step substitute can be performed either after or during the computation

of xy s The latter 1s preferable.

The next lemma expresses the properties of the values computed by

DECOMPOSEAND ELIMINATE; its proof combines the ideas in Theorem 1 and

) Corollary 1.

Lemma OJ. (i) For each edge e 1n G such that e e nontree(t(e)) ,

"P(e) as computed by DECOMPOSEAND SEQUENCE 1s a non-redundant path

expression representing exactly the paths in G from h(e) to t(e)

which end with edge e and contain only proper descendants of h(e)

as 1ntermediate vertices.

(11) For each vertex v in G , R(v) as computed by DECOMPOSEAND SEQUENCE

1s a non-redundant path expression representing exactly the paths in G

57

|

a

from idom(v) to v which contain only proper descendants of idom(v)

as 1ntermediate vertices.

(111) For each vertex u in G , Y as computed by DECOMPOSEAND SEQUENCE

is a sequence Y= (Pvp) (By vps Wy), oo oy (Bp ,w)) satisfying
(6a), (6b), and

(9) For any non-empty path p in G which starts and ends at a child

of u and contains only proper descendants of u as 1ntermediate vertices,

there 1s a unique sequence of indices 1 <i; <i, < . . .< 1k <I and

a unique partition of p into non-empty paths p = P1sPos sees Pp such

that py e o(P;) for 1 < i <k .
J

Proof. Straightforward by induction on the number of times the loop

in DECOMPOSEAND SEQUENCE is executed. UI

Theorem 9. Procedure DECOMPOSEAND SEQUENCE correctly computes a path

sequence for G .

Proof. Analogous to the proof of Theorem 8. ([O

DECOMPOSEAND ELIMINATE thus provides a way to compute path sequences

"in arbitrary graphs. The running time of the method is O(m a(m,n)+t)

1f stratified path compression 1s used to implement the forest operations

and O((m log n)+t) if path compression is used, where t 1s the time

to find path sequences for the dominator strong components of G . The

length of the path sequence produced is either 0(m a(m,n))+f or

O(m log n)+£2 , where [1s the total length of the path sequences for

the dominator strong components.

38

Me Remarks.

In this paper we have described fast algorithms for solving path

expression problems on reducible or almost-reducible graphs. The fastest

method requires O(m Q(m,n)+1t) time to compute a path sequence for an

arbitrary directed graph, where t is the amount of time required to

compute path sequences for the dominator strong components. A slower

but much simpler method requires O(m log n + t) time and promises to

be easy to program and efficient in practice.

By using our algorithms in combination with the mapping technique

described by Tarjan[30], we can solve many kinds of path problems,

including finding shortest paths, carrying out forward and backward

global flow analysis, and solving sparse systems of linear equations.

There are two rather different ways of doing this. The first 1s to

use the solution to a path expression problem as a general-purpose

straight-line program which solves any particular path problem by

properly interpreting {J , ., and *¥ . The second 1s to use an algorithm

for solving a path expression problem to solve a particular path problem

by reinterpreting yy , ., and * within the algorithm; this avoids the

- intermediate step of first constructing a directed acyclic graph

representing a set of path expressions. The choice between these two

methods depends upon the time and space available and whether we want

to solve one or many path problems on the same graph.

For path problems 1n which the operation corresponding to + 1s

idempotent, the non-redundancy and uniqueness conditions in (6) and

Theorem 1 are not necessary and can be dropped [30]. In such cases we

can use the sophisticated algorithm of Tarjan[29] to carry out the

59

-

forest manipulation operations and achieve an O(m a(m,n) +t) time

bound [27]. It does not seem possible to adapt this method to satisfy

non-redundancy, however. The only interesting path problem known to

the author which does not have the idempotent property is the solution

of sparse systems of linear equations. For this problem another form

of tree manipulation described by Tarjan [29] gives a rather simple

O(m (myn) +t) -time algorithm [28].

The method of decomposition by dominators 1s a kind of single-element

"tearing" [5] in which the clever use of data structures allows us to

make the combining step very efficient. The result may be generalizable

in various directions. For instance, on problem graphs for which there

1s no natural start vertex we would like to know how to pick a start

vertex which gives the finest decomposition. It may also be possible

. to extend the technique to regions with two or more entry vertices. We

leave these questions to the ambitious reader.

40

Appendix: Graph Theoretic Terminology.

A directed graph G = (V,E) is a finite set V of vertices and a

finite set E of edges such that each edge e has a head h(e) eV and

a tail t(e) eV . We regard the edge e as leading from h(e) to t(e) ,

and we say the edge e leaves h(e) and enters t(e) . We usually

denote the number of vertices by n and the number of edges by m .

A loop 1s an edge e with h(e) = t(e) . A path p = €15€n) ST is

a sequence of edges such that t(e;) = hie; 1) for 1 < i <k-1 . The

path is from h(p) = h(e,) to t(p) = t(e,) . The path contains edges

€5€55+0.5€, and vertices he)sh(e,)s..o «(ey), (ey) and avoids all

other edges and vertices. There 1s a path of no edges from any vertex

to itself. A cycle is a non-empty path from a vertex to itself. A graph

1s acyclic 1f it contains no cycles.

The reverse G’ of a graph G 1s the graph formed by replacing

each edge e with an edge e’ such that h(e”) = t(e) and t(e) = h(e) .

If G = (V5 Eq) and. G, = (Vs E,) are graphs, G, is a subgraph of

G, if Vy € v5 and E; C k, . Gy is the subgraph of Gy induced by

V, if V; cV, and Ej = {e cE|h(e),t(e)eV].

A vertex v 1s reachable from a vertex w in a graph G if there

1s a path from wv to w. G 1s strongly connected 1f every vertex 1s

. reachable from every other vertex. The strong components of G are its

maximal strongly connected subgraphs. These components are uniquely

defined and partition the vertices of G .

A flow graph G = (V,E,r) is a graph with a distinguished start

vertex r such that every vertex 1s reachable from r . A (directed,

rooted) tree T = (V,Er) is a flow graph with |E| = |V|-1 . The start

L1

-

vertex r 1s the root of the tree. Any tree is acyclic, and if v

1s any vertex in T , there is a unique path from r to v . If v

and w are vertices 1n a tree T and there is a path from v to w ,

V 1s an ancestor of w and w 1s a descendant of v . {ee denote

this relationship by v og . If 1n addition wv # W, V 1S a proper

ancestor of w and w 1s a proper descendant of v , denoted by v RAE

If there 1s an edge from v to w , «vv is the parent of w and w is

a child of v , denoted by v » w . Two vertices with a common parent

are siblings. In a tree each vertex has a unique parent (except the

root, which has no parent).

42

—

References

[1] A. V. Ano and J. D. Ullman, The Theory of Parsing, Translation, and

Compiling, Volume II: Compiling, Prentice-Hall, Englewood Cliffs,

N.J. (1972), 915.

[2] A. V. Aho and J. D. Ullman, Principles of Compiler Design,

Addison-Wesley, Reading, Mass., 1977, 408-517.

[3] F. E. Allen, "Control flow analysis," SIGPLAN Notices 9, 7 (1970),

1-19.

[4] R. C. Backhouse and B. A. Carré, "Regular algebra applied to

path-finding problems," J. Inst. Maths. Applics. 15 (1975), 161-186.

[5] J. R. Bunch and D. J. Rose, "Partitioning, tearing, and modification

of sparse linear systems," J. Math. Analysis and Applics. 48 (1974),

5Th=593.

[6] B. A. Carré, "An algebra for network routing problems," J. Inst.

Math. Applics. 7 (1971), 273-294.

[7] E. W. Dijkstra, A Discipline of Programming, Prentice-Hall,

Englewood Cliffs, N.J., 1976.

[8] I. s. Duff, "A survey of sparse matrix research, " Proc. Ieee 65 (1977),

200-535.

[9] R. Farrow, "Efficient variants of path compression on unbalanced

trees," unpublished manuscript, 1978.

[10] R. Floyd, "Algorithm 97: shortest path," Comm. ACM 5 (1962), 345.

[11] G. E. Forsythe and C. B. Moler, Computer Solution of Linear Algebraic

Equations, Prentice-Hall, Englewood Cliffs, N.J.,1967.

) [12] Ss. L. Graham and M. Wegman, "A fast and usually linear algorithm for

global flow analysis," Journal acm 23 (1976), 172-202.

[13] M. S. Hecht, Flow Analysis of Computer Programs, Elsevier, New York,

[14] M. S. Hecht and J. D. Ullman, "Flow graph reducibility,"™ SIAM J.

Comput. 1 (1972), 188-202.

[15] M. S. Hecht and J. D. Ullman, "Characterizations of reducible flow

graphs," Journal ACM 21 (1974), 367-375.

[16] D. B. Johnson, "Efficient algorithms for shortest paths in sparse

networks," Journal ACM 24 (1977), 1-13.

43

Hl

[17] K. W. Kennedy, "Node listings applied to data flow analysis,"

Conf. Record of the Second ACM Symp. on Principles of Prog. Lang.

(1975), 10-21.

[18] S. C. Kleene, "Representation of events in nerve nets and finite

automata," Automata Studies, C. Shannon and J. McCarthy, eds.,

Princeton University Press, Princeton, N. J., 1956, 3-L0,

[19] D. E. Knuth, The Art of Computer Programming, Volume 1: Fundamental

Algorithms, Addison-Wesley, Reading, Mass., 1968, 258-265.

[20] D. E. Knuth, "An empirical study of FORTRAN programs," Software

Practice and Experience 1 (1971), 105-133.

[21] T. Lengauer and R. E. Tarjan, "A fast algorithm for finding

dominators in flow graphs," Trans. on Prog. Lang. and Systems 1

(1979), to appear.

[22] D. J. Rose, A. H. Sherman, R. E. Tarjan, and G. F. Whitten,

"Algorithms and software for in-core factorization of sparse

symmetric positive definite matrices," Computers and Structures 10

(1979), 411-418,

[23] M. Schaefer, A Mathematical Theory of Global Program Optimization,

Prentice-Hall, Englewood Cliffs, N.J., 1973.

[24] R. E. Tarjan, "Depth-first search and linear graph algorithms,"

SIAM J. Comput. 1 (1972), 1L6-160,

[25] R. Tarjan, "Finding dominators in directed graphs," SIaM J. Comput, 3

(197k), 62-89.

[26] R. E. Tarjan, "Testing flow graph reducibility," J. Comp. and Sys,

Sciences 9(197k), 355-365.

[27] R. E. Tarjan, "Solving path problems on directed graphs," Technical Report

STAN-CS-75-528, Computer Science Department, Stanford University, 1975.

[28] R. E. Tarjan, "Graph theory and Gaussian elimination," Sparse Matrix

Computations, J. R. Bunch and D. J. Rose, eds., Academic Press,

New York, 1976,3-22.

[29] R. E. Tarjan, "Applications of path compression on balanced trees,"

Journal ACM, to appear.

[30] R. E. Tarjan, "A unified approach to path problems," Technical Report

STAN-CS-79-729, Computer Science Department, Stanford University, 1979;

also Journal ACM, submitted.

[31] J. D. Ullman, "Fast algorithms for the elimination of common subexpressions,"

Acta Informatica 2 (1973), 191-213.

Gtk

—

(start)

(12)
e

e, e

2; 6
\G e “1k ®18

a oT
®o0 6 (8) © cs “16

(19 |

“71 “10/ Je, els ©
e

ON a
9 (7) (2)

\ p1
20

©

Figure 1. A flow graph G ,

L5

SSS

(2

((2 (8) © © & 22)

i" 5 &
O ©

Figure 2. The dominator tree of G .

LO

|

e

Reo
] e,
® 1

e € e
20 715 ~ 10

e

(r—= (6) Ys (18) (e——12
°o1 ©17 NO Go IE%~ ~ e ~

® © T@
16 Se

. |

Figure 3. The derived graph of G . The vertex sets of the

dominator strong components are {1,2} , {3}, {4},

{>}, {6}, {1,8}, {9} , {10} , {11,12}, {13} .

Ly

