A UNIFIED APPROACH TO PATH PROBLEMS

by
Robert Endre Tarjan

STAN-CS-79-729
April 1979

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY






A Unified Approach to Path Problems

o/
Robert Endre Tarjan
Computer Science Department

Stanford University
Stanford, California 94305

April, 1979

Abstract. We describe a general method for solving path problems on
directed graphs. Such path problems include finding shortest paths,
solving sparse systems of linear equations, and carrying out global

flow analysis of computer programs. Our method consists of two steps,
First, we construct a collection of regular expressions representing sets
of paths in the graph. This can be done by using any standard algorithm,
such as Gaussian or Gauss-Jordan elimination, Next, we apply a natural
mapping from regular expressions into the given problem domain. We
exhibit the mappings required to find shortest paths, solve sparse
systems of linear equations, and carry out global flow analysis.

Our results provide a general-purpose algorithm for solving any

path problem, and show that the problem of constructing path expressions

is in some sense the most general path problem,
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A Unified Approach to Path Problems

1. Introduction.

A fundamental problem in numerical analysis is the solution of a
system of linear equations Ax = b , where A is an nxn matrix of
coefficients, x 1is an nyxl vector of variables, and b is an nyxl
vector of constants. Efficient methods for solving Ax = b , such as
Gaussian and Gauss - Jordan elimination, have long been known. These
methods have been repeatedly rediscovered and applied in other contexts.
For example, Floyd's shortest path algorithm [7T], which is based on
Warshall's transitive closure algorithm [32], is a version of Gauss -Jordan
elimination. Kleene's method for converting a finite automaton into
a regular expression [20] is a form of Gauss -Jordan elimination;

Gaussian elimination also solves this problem [3]. In all these
situations the problem of interest can be formulated as the solution
of a system of linear equations defined not over the field of real
numbers but over some other algebra.

In this paper we provide a unified setting for such problems. Our
goal is to show that a solution to one of them can be used to solve them
all. One approach to this task is to develop a minimal axiom system for
which elimination techniques work (see for instance Aho, Hopcroft, and
Ullman [1] and Lehman [21]) and to show that the problems of interest satisfy
the axioms. Our approach is somewhat different and resembles that taken
by Backhouse and Carré[B]; we believe that the proper setting for such
problems is the algebra of regular expressions, which is simple, well-understood,

and general enough for our purposes.



We shall use a graph-theoretic approach rather than a matrix'
theoretic one because we are interested mainly in sparse problems
(problems in which the coefficient matrix A contains mostly zeros),

Let G be a directed graph with a distinguished source vertex s ,

The single-source path expression problem is to find, for each vertex v

in G, a regular expression R(s,v) representing the set of all paths

from s to v . The all-pairs path expression problem is to find, for

each pair of vertices v , w , a regular expression R(V,w) representing
the set of all paths from v to w . We shall show that it is possible

to use solutions to the single-source and all-pairs path expression
problems to find shortest paths in G , to solve systems of linear
equations defined on G , and to solve global flow problems defined on G .
We solve these problems by providing natural homomorphism that map the
regular expressions representing path sets into the algebras in which

the given problems are expressed. We define these mappings by reinterpreting
the U s.and * operations used to construct regular expressions. The
technical part of our work is in showing that these mappings are indeed
homomorphisms.

This paper contains nine sections. Section 2 reviews the properties
of regular expressions that we shall use. Section 3 considers shortest
path problems. Section 4 examines the solution of systems of linear
equations over the real numbers. Sections 5,6,7, and 8 discuss various
kinds of global flow analysis problems. Section 9 contains some additional
remarks. The appendix contains the graph-theoretic definitions used in the

paper.




2. Reqular Expressions and Path Expressions.

Let Z be a finite alphabet containing neither " A " nor " ¢ ".

A regular expression over L is any expression built by applying the

following rules:

(la) "A"and " 9" are atomic regular expressions; for any
aeX, " a " is an atomic regular expression.
(1v) If Rl and R2 are regular expressions, then (R]_URQ) '

*
(Rl-RE) s and (Rl) are compound regular expressions,

In a regular expression, N\ denotes the empty string, ;é denotes
the empty set, | denotes set union, .denotes concatenation, and
* denotes reflexive, transitive closure (under concatenation).f/ Thus
each reqular expression R over I defines a set 0(R) of strings

over L as follows:

(2a) a(n) = {A} ; U(Jé) =9 ; o(a) = {a) for aecZ

(o) O(R'.'..URE) = o(R, )UG(RE) = {w |weG(Rl) or weO(RQ)} ;

©
k 0 i i-1
o(R) = U o(r)", where o(R)” - {a} and o(R)" = o(R)+0(R))
k=0
Two regular expressions Rl and R2 are equivalent
if o(Rl) = 0(R2) . A regular expression R is simple if R = p or

R does not contain § as a subexpression. We can transform any regular

Y Note that the symbol A represents both the regular expression " A "
and the empty string. Henceforth we shall avoid using quotation marks
and allow the context to resolve this ambiguity; similarly for ;é , Uy,
* 5 ¥ . We shall also freely omit parentheses in regular expressions
when the meaning is clear.



expression R into an equivalent simple regular expression by repeating
the following transformations until none is applicable: (i) replace any
subexpression of the form ¢°Rl or Rl'¢ by ¢ ; (ii) replace any
subexpression of the form @+ Rl or Rl+jb by R, ; (iii) replace any
subexpression of the form ;15* by A .

A regular expression R is non-redundant if each string in d(R)

is represented uniquely in R . A more precise definition is as follows:
(3a) As P, and a for aeZ are non-redundant.
(3v) Let R, and R, be non-redundant.

R; UR, is non-redundant if O(Rl)ﬂc(Rg) = p
Rl-R2 is non-redundant if each wE G(RlRE) is uniquely

decomposable into w = Wo W, with Wy € G(Rl) and

W, eo(RE) )
*
R;f is non-redundant if each non-empty WERl is uniquely

decomposable into w = W, W, +.. W

1%, i, with w, e G(Rl)

for 1<i<k.

Note that if Ae o(R) , then R* is redundant.
Let G = (V,E) Dbe a directed graph. We can regard any path in G
as a string over E , but not all strings over E are paths in G

A path expression P of type (v,w) is a simple reqgular expression

over E such that every string in ¢ (P) is a path from v to w.
Every subexpression of a path expression is a pathexpression,whose

type can be determined as follows.



(4) Let P be a path expression of type (v,w) .

If P= PlUPQ , then Pl and P2 are path expressions of type

(vyw) .
If P = Pl'Pz , there must be a unique vertex u such that Pl

and P, 1s a path

is a path expression of type (v,u) 5

expression of type (u,w)

*
If P =P, then v = w and Pl is a path expression of type
(vsw) . (vsv) .

It is easy to verify (4) using the fact that P is simple.



b Shortest Paths.

Let G = (V,E) be a directed graph with an associated real-valued

cost c(e) for each edge e . A shortest path from v to w is a
k
path p = €,,€e.54.45€ from v to w such that Z c(e.) 1is minimum
1’72 k i1 i
over all paths from v to w. If G contains no cycles of negative

total cost, there is a shortest path from v to w if there is any

path from v to w . The single-source shortest path problem is to find,

for each vertex v , the cost of a shortest path from s to v , where s

is a distinguished source vertex. The all-pairs shortest path problem is

to find the cost of a shortest path from v to w for all vertex pairs v, w

We can use path expressions to solve shortest path problems by means

of two mappings, cost and shortest path , defined as follows.

(5a) cost(p) = O , shortest path(R) = A ;

cost(f) = » , shortest path($) = no path ;

cost(e) = c(e) , shortest path(e) = e for ecE.

(5v)  cost(P, UP,) = min{cost(P;),cost(P )} ,

shortest path(PluPE) = if cost(Pl) < cosi;(Pg) then shortest path(P

then v

else shortest pa’ch(Pg) H

cost (Pl'Pe) = cost(P

1)+ cost(Pg) ,

shortest path(p = shortest path(P,).shortest path(Pg) ;

1)

< 0 then -» else 0 ,

l) [anarar e e a e

.P )
1 2
*
cost(P;)  &f cost(P

*
shortest path(Pf)f:cost(Pl) < 0 then no shortest path else p .

Lo ar ey



Lemma 1. Let P be a path expression of type (v,w) . If ¢ost(P) = =,
there is no path in c¢(P) . If cost(P) = -» , there are paths of arbitrarily

small cost in o(P) ., Otherwise, shortest path(P) is a minimum cost

path in o(P) , and the cost of shortest path(P) is cost (P)

Proof. Straightforward by induction on the number of operation symbols

in Pp. O

Theorem 1. Let P(v,w) be a path expression representing all paths
from v to w . If cost(P(v;w)) = » , there is no path from v to w
If cost(P(v,w)) = -, there are paths of arbitrarily small cost from v

to w. Otherwise, shortest path(P(v,w)) is a shortest path from v

to w; the cost of this path is_cost(P(v,w)) .

Proof. Immediate from Lemma 1. ([
Theorem 2. Let Pi(V)W)Ibe a path expression such that G(Pl(v,w))
contains at least all the simple paths from v to w. If there is a

shortest path from v to w , shortest path(P(v,w)) gives one such

path; its cost is cost(P(v,w)) .

Proof. Any shortest path is simple. O

By applying Theorem 1 we can use a solution to the single-source
(or all-pairs) path expression problem to solve the single-source (or
all-pairs) shortest path problem. By Theorem 2 it is sufficient to
use path expressions representing only the simple paths if we have a

separate test for negative cycles. The following theorem provides such

a test.



Theorem 3. Let s be a distinguished source vertex in G . For' every
vertex v , let Pl(s,v) be a path expression such that G(Pl(s,v))
contains at least all the simple paths from s to wv. Then G contains
a negative cycle if and only if there is some edge e such that

cost (P (s;h(e) ) +e(e) < cost(P;(s,t(e)))

Proof. Straightforward. See Ford and Fulkerson [10]. o



L, Systems of Linear Equations.

The next problem to which we shall apply our technique is the
solution of a system Ax = b of linear equations over the set R
of real numbers [11]. This problem has pitfalls not present in the other
problems we examine. The system Ax = b does not always have
a solution; even if it does, the solution need not be unique. Furthermore
the standard algorithms for finding a solution, such as Gaussian elimination,
may not succeed even if a unique solution exists. (To deal with this
difficulty, numerical analysts have devised more complicated algorithms,
such as Gaussian elimination with pivoting [11].) We shall avoid these
issues by proposing a method that almost always gives a solution when
one exists.

We begin by rewriting Ax = b as -b+ (A-I)x = x , where I is

the nxn identity matrix. Let X. be a new variable; then the

0]
system -b+ (A-I)x = x is eguivalent to

' XO (XO s where A' = ° °

X -b A-I
and 0 denotes a zero matrix of the appropriate size. Let G = (V,E)
be the graph having ntl vertices (one for each variable X, ) and m
edges (one for each non-zero entry in A' ) such that there is an
edge e with h(e) = vj and t(e) = vi if and only if the entry in

row i and column j of A' is non-zero; let a(e) be the value

of this entry. Then the system of equations takes the form
(6) x(s) =1 ; x(v) = Z{a(e)x(h(e)) |ecE and t(e) = v) if v # s>

where s = v



We solve this system by extending the mapping a to regular.

expressions over E as follows.

(7a) a(d) =1 ; a(p) =0 .
(7o) a(RlUR2) = a(Rl) + a(Re) 3
a("R,) = a(R)a(R,) 3

a(Ry) = 1/(1-a(B))

Note that a(RI) is defined if and only if a(R) #1 . If R
is a regular expression over E , then a(R) is a rational function of
a(el),a(eg),,,. a(e ) and is defined except on a set of measure zero
in [Rm . Note also that the operation of addition into which union is
mapped is not idempotent. This forces us to deal only with non-redundant

regular expressions.

Lemma 2. If R and R2 are two equivalent non-redundant regular

1
expressions over E , then a(Rl) = a(RZ) whenever both a(Rl) and

a(RE) are defined.

Lemma 2 is the hardest result in this paper, and we shall postpone

its proof.
Theorem 4, For each vertex v , let P(s,v) be a non-redundant path
expression representing all paths from s to v . If a(P(s,v)) is

defined for all v , then the mapping x defined by x(v) = a(P(s,v))

satisfies (6).

10



Proof. The only path from s to s in G is the empty path; by

Lemma 25 x(s) = a(P(sys)) =a(@) =1 . If v # s, then
U {P(syh(e))-e | ecE and t(e) = v} is a non-redundant regular expression
representing the set of all paths from s to v . By Lemma 2,
x(v) = a(P(s,v)) = a( U {P(s;h(e))+e|ecE and t(e) = v}
= 2 {a(e)x(h(e) |eeE and t(e) = v} . O
Thus the mapping a almost always gives a solution to (6). It

remains for us to prove Lemma 2. We employ Salomaa's method for showing
the completeness of an axiom system for regular expressions [28], we

shall use the notation Q = R to denote that 0(Q) = o(R) and a(Q) = a(R)
wherever both a(Q) and a(R) are defined. A non-redundant regular

expression Q is equationally characterized in terms of non-redundant

regular expressions Ql’QE””’Qq if 0 =¢q and

(8) Q. = jgl Q5 ¢ UD(q;)  where D(Qi) e {#,A} and

Q5 ¢ (@ |1 <k <q for all j

Lemma 3. Every non-redundant regular expression over E is equationally
characterized.

Proof. By induction on the number of operation symbols in the regular
expression.

g = ISfﬁ'e. ug 3 A = El;é-ej)uzx ;

11



e = feeu. . UnesU .. Upee Up for 1< j<m

Thus every atomic regular expression is equationally characterized.
Suppose Q and R are equationally characterized. Let Ql, C Qq
be non-redundant regular expressions such that Q = Ql and (8) holds.

Let Rl’ Cen Rr be non-redundant regular expressions such that R = Rl

and (9) holds.

(9) R; (j? R..-ej) UD(Ri) where D(Ri) e {#,A} and

R]._J.G{Rk | L <k <r} for all j

We shall equationally characterize QUR , QR , and Q* , assuming they
are non-redundant.

Let 1<u<q, 1<v<r, and suppose QuURv is non-redundant.

Combining (8) and (9) we obtain

(10) G UR, ( U (Q; URvj)'ej) uw D(Q)) u D(R)
J=

i

m
(jL:Jl(Quj URVJ.)'eJ.) UD(Q,UR ) s

' ' o o = = =

since if (Qu) n (Rv) = $ , then D(Qu) =9 or D(Rv) ¢ . Furthermore
Quj U Rvj is non-redundant for 1 < j<m . Thus if QUR is
non-redundant, the set of equations (10) such that QuURv is
non-redundant equationally characterizes QUR = QlURl .

Let 1<v<r, s>o, and15u1<u2<, . ,<uS§_q,

S

Suppose Q'RVU (il;Jl Qul) is non-redundant. If D(Rv) = ;z) y we

obtain from (8) and (9) that



i

(j—gl(Q.Rij (151 Quij )) .eJ') Y (igl D(Qui))
i (jgl(Q.R"j U( 121 Q“i‘j )) .ej) UD(Q.R"U (131 Q“i))‘ .

s
Furthermore Q*R._-U Uy R. . is non-redundant for 1 < j <m . If
J u, J = J =

(11) @Ry (iL:Jl Qui)

i=1
D(R) = A , we obtain from (8) and (9) that

(& (wrvas (5 as)) s ) oote

S

(12) Qr, U ( U Qu.)
1

i=1

i (Jiul(q.%u 13" (ll-jl it )) .ej)

s
Furthermore Q°RijQ‘lj U (igl Q‘uij ) is non-redundant for 1< j <m .

It follows that if Q'R is non-redundant, we can equationally characterize

sl %4 1=
q -
and Q'RVU (_U Qu) is
i=1 i

non—-redundan

q
Q'R = Q.Rl in terms of {Q.RVU (U Qu )\livgr, s<0, 1<u, <u <...<uS§_q,

Finally we must consider Q* . Suppose Q* 1s non-redundant.

Then D(Q) = p . From (8) we obtain

3



(13) Q (IS e)
A FlF

m
( e @ Qlj'ej)UA
J=1

*
Furthermore Q - Q’lj is non-redundant for 1 < j < m .

% S
Let s >1 andl<u1<u2<...<us<q. SupposeQ.(U Q‘u)
i=1 i

is non-redundant. If D(Qum) =p for 1< i < s, then
i

* s - * °
)+ . . . LASEN 2
(14) ¢ (131 Qui) (jng (igl Q‘lia) J)w

S
*
where Q@ ( U Qu j) is non-redundant for 1 < j < m .
i=1 i -7

W

If D<Qu ) = A for some (unique) i such that 1 <_i <s, then
i

U Q-«f Q.U U : ce. | UA
(j:l ( 1] (i:l %3 J ’

s
*
where Q - (Qlju ( U Qu J)) is non-redundant for 1 < J<m. It
i=1 i

1]

(15) v (igl Qul)

follows that we can equationally characterize Q* in terms of

* s M s
{Q*}U{Q'( U Q )IS>1, l_<_U1<u2<...<uS§q,a.ndQ-(U Qu)
1 i=1 i

i=1 1

is non-redundant , ]

We are now ready to prove Lemma 2, We extend {J , ., = to ordered
' f 1 i by defini =
pairs of reqular expressions by defining (Q’J_’Rl) U(QQ’RQ) = (QCLUQQ’Rl”RQ) s
(Ql’Rl).(QQ’RE) = (Ql.Qe,Rl.RE) > (Ql’Rl) E(QQ’RE) if and only if
QCL = Q,2 and Rl = R2 .

1k



Proof of Lemma 2. Suppose Q and R are non-redundant regular

expressions such that 0(Q) = o(R) . ©Let Q, R be characterized in
terms of {Ql l1<i<q , {Ri |1 < i< r}by (8),(9), respectively.
We construct a set X of pairs (Qu,Rv) such that G(Qu) ) O(Rv)

We begin with X = {(@R)} . We process pairs in X and add new
elements to X until all pairs in X are processed. We process a
pair (Qu’Rv) as follows. By (15) and (16) we have

m

(auR,) = ( U (@ Ryg)" (250e)) )u(n(qum(a)

1 g = = =
Since (Qu) U(Rv) » We have D(Qu) = D(Rv) and a(%j-) O(Rvj) for
1<j<m. We add each pair (Quj’Rvj) for 1< j<mto X if it
is not already present.

such

e (Q (s) R(S))}

We obtain a set of pairs X = {(Q(l ))
that s < qr , Q(')ER(:L) for 1<i <s, and
(Q(l);R(i)) = UJ (Q(l)j (3)' (ej’ej) U (Di’Di) , where each pair
(Q§i>,R§i)) appears in X

m

Consider the system of equations x, =2, a.(ej)xij + a(Di) ,
J:l

where x.l.J = X if Q§l) =Q (k) . This system is satisfied by

X, = a(Q(i)) if a(Q(i)) is defined for 1 < i < s and by x, = a(R(i))
if a(R(i)) is defined for 1 <i< s . We can rewrite this system as

= Ax+b , where each entry in A is a linear combination of
a(el),a(ee),...,a(em) , or equivalently as (A-I)X = -b . This system
has a unique solution when the determinant of A-I is non-zero, which

is true except for values of a(el>’a(ee)""’a(em) forming a set of

15



measure zero in ﬂfn . Thus a(C§l))= a(R(l)) for 1< i < s 'except

on a set of measure zero. In particular a(Q) = a(R)

except on a set

of measure zero. Since a(Q) and a(R) are rational functions of the

a(ej)'s, a(Q) = a(R) when both are defined. O

16



5. Continuous Data Flow Problems.

Many problems in global code optimization can be formulated as
path problems of the kind we are considering. The general setting is
as follows. We represent a computer program by a flow graph
G = (V,E,s). Each vertex represents a basic block of the program
(a block of consecutive statements having a single entry and a single
exit). Each edge represents a possible transfer of control between
basic blocks. The start vertex s represents the start of the program.
We are interested in determining, for each basic block, facts which
must be true on entry to the block regardless of the actual path of
program execution. Such facts can be used for various kinds of code
optimization. See Aho and Ullman [2], Hecht [14], and Shaefer [25].

To represent the universe of possible program facts, we use a set
L having a commutative, associative, idempotent meet operation A ;

such an algebraic structure is called a lower semi-lattice. If x and y

are two possible program facts, X Ay represents the information common
to both. We can define a relation < on L by x <y if and only if
XAy = X . The properties of A imply that < is a partial order

on L [27]; we interpret x <y to mean that fact y contains more
information than fact x . We shall assume that L is complete, by
which we mean that every subset X c L has a greatest lower bound with
respect to < ; we denote this greatest lower bound by AX . If

X = [xl,xe,...,xn} , then aX = xlAXEA”'AXn‘ We use L to denote
AL , i.e., the minimum element in L . For any functions f and g

having common domain and range L , we define f < g if and only if

f(x) < g(x) for all elements x in the domain of f and g ,

17



To represent the effect of the program on the universe of facts,
we associate with each edge e a function fe such that, if fact x
is true on entry to h(e) and control passes through edge e , then
fé(x) will be true on entry to t(e) . We can extend these functions
to paths by defining fPOQ = x if p is the empty path,

— * 1 _
fb(x) = (fek ofek_lo.a 0 fel}(x) if p=ee,...5¢ . What we want

to compute is A {fp(;)| P is a path from s to v) for each vertex v
(We assume the minimum fact 1 is true on entry to the program.)
This discussion motivates the following definitions.

A continuous data flow framework (L,F) is a complete lower semi-

lattice L with meet operation A and a set of functions F: L - L

satisfying the following axioms:

(16a) (identity) F contains the identity function z .

(16b) (closure) F is closed under meet, function composition, and ¥,

where (fA g) (x) = £(x)Ag(x) and £*(x) = A {fi(x) | i > 0)

(16c) (continuity) For every feF and X ¢ L , f(a X) A (f(x) | xex} .

A continuous data flow problem consists of a flow graph G = (V,E,s) ,

a continuous data flow framework (I,F) , and a mapping from E to F;

we use fe to denote the function associated with edge e . The meet

over all paths (MOP) solution to this problem is the mapping mop from

V to L given by mop(v) = A{fp(L)‘p is a path from s to v)
We can use path expressions to solve continuous data flow problems

by means of the mapping f defined as follows.

18



(17a) £(A) = ¢ ;
f(e) = £

(176) £(P,UF,) = £(P) AL(E,) ;
f(Pl.PE) = f(PE) ° f(Pl) H

*

f(Pl) = £(P
Lemma 4., Let P # f§ be a path expression of type (v,w) . Then for
all xeL, f(P)(x)= A {fp(x)| _ea(p)} .

Proof. By induction on the number of operation symbols in P . The
lemma is immediate if P is atomic. Suppose the lemma is true for
path expressions containing fewer than k operation symbols, and let

P contain k operation symbols. We have three cases.

Suppose P = P:LUP2 . Then
£(B) (x) = £(2) () A £(2) (1) = (A {£,(x) | e o(P)]) A (A {£,(x) [peo(py)})

= A {fp(x) | xe O(Pl) U O(PE) 1= A {fp(x) | pea(P)}

Suppose P = Pl-Pe . Then

£(P)(X) = f(Pe) (f(Pl) (%)) = f(PE) (A {fpl(x) l P, € O(Pl) 1)
= A {f(Pg) (fpl(x) ) | P € U(Pl) } by continuity

1t

AMAE, () [ Bye 0z | B e o7

A{fPlPE(X) |Ple0(Pl) and p,e0(Py)} = A {fp(x) |pea(®)] .

19



Similarly we can show that if Pl has fewer than k operation symbols

then f(Pl)i(x) A {fp(x) | pe O(Pl)i} for any i > 0

Suppose P = PI . Then
£(R) (x) = £(B) (x) = A (2B (x) |1 > 0)

=a{A (£ () | pe o(21)*} | 1 2 0} = A (£,(x) | pe o(2)))

Theorem 5. For any vertex v , let P(s,v) Dbe a path expression

representing all paths from s to v. Then mop(v) = £(P(s,v)) (L) .

Thus we can use a solution to the single-source path expression
problem to solve continuous data flow problems. FOr examples and extensive
discussions of such problems see Cousot and Cousot [5], Fong, Kam, and

Ullman [9], Graham and Wegman [13], Kam and Ullman[16,17], Kildall [19],

and Rosen [23].



0. Monotone Data Flow Problems.

Many important global flow problems are not continuous [17]., For
such problems there is in general no algorithm to compute the meet over
all paths solution [17], and we must be satisfied with less information
than the MOP solution provides. In such situations the following approach
is appropriate.

A monotone data flow framework (L,F) is a complete lower semi-

lattice L with meet operation A and a set of functions F: L - L

satisfying the following axioms:

(18a) (identity) F contains the identity function ¢ .
(180) (closure) F is closed under meet and function composition.

(18c) (monotonicity) For every feF and XxyelL x<y implies

£(x) < £(y) .

3
(18d) (approximation to f ) For every function feF , there is
a function f@e F such that
(i) f@(x) < £7(x) for all xeL, i >0 ; and

(ii) if Xyel satisfy f(x)Ay > x , then f2(y) > x .

Monotone frameworks generalize continuous frameworks by requiring only
monotonicity (18¢) in place of continuity (16c) and by requiring only a
pseudo transitive closure function. Note that f* is the maximum
function satisfying (18d).

A monotone data flow problem consists of a flow graph G = (V,Es) ,

a monotone data flow framework (L,F) , and a mapping from E to F
whose values we denote by fe for eeE . A fixed point for this problem

is a mapping z: V - I such that
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(19) z(s) = + and f_(z(h(e))) > z(t (p)) for any ecE

A safe solution to the data flow problem is a mapping x: V - L such that

(20a) x(v) < fP(_L) for any vertex v andanypath p from s

to v ; and

(20b ) x(v) > z(v) for any fixed point z and any vertex v .

Thus a safe solution is a conservative approximation to the MOP solution which
is at least as informative as any fixed point. It is easy to prove that
any fixed point satisfies (20a); if the data flow problem is continuous,
the MOP solution is the maximum fixed point [19].

We can use a slight variant of the mapping defined in Section b to
compute a safe solution to a monotone data flow problem. ILet £ be

*
defined as in (17), except f(Pl) = f(Pl)@ .

Lemma . Let P £ p be a path expression of type (V,w) . Then

f£(P) (x) < fp(x) for all pe S(P) and xel

Proof. By induction on the number of operation symbols in P , The
lemma is immediate if P is atomic. Suppose the lemma is true for path
expressions containing fewer than k operation symbols, and let p
contains k operation symbols. We have three cases.

Suppose P = El, UE;, and peP . If pePl then
£(P)(x) = f(Pl) (x) A f(Pe) (x) < f(Pl) x) < fp(x) by the induction hypothesis;

similarly if pe P2 ,
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Suppose p = Pi'Pg and p = P;P, with pj e P, , P, €P . Then

() = L) ()W) < 2Ey) (8, (1)) < (5, + 500 = £

2

by monotonicity and the induction hypothesis.

*
Suppose P = By i p @y 0 P& with p;eP; for 1<i<k.

Then
@ k 8 .
£(P)(x) = f£(P)) (x) < £(p)"(x) by (83)(4)
< fp(x) by monotonicity and the induction
hypothesis, as above. O
Lemma 6. Let P # p be a path expression of type (v,w) . If z is

any fixed point, then £(P) (z(v)) > z(w)

Proof. By induction. The lemma is immediate if P is atomic. Suppose
the lemma is true for path expressions containing fewer than k operation
symbols, and let P contain k operation symbols. We have the usual
three cases.

Suppose P = PyUP, . Then £(P)(z(v)) = f(Pl) (z(v)) /\f(PE) (z(v))
> z(w) by the induction hypothesis.

Suppose P = Pl-P2 . Let u be the vertex such that Pl is of
type (v,u) and P, is of type (uy,w) . Then £(P) (z(v)) =
f(P2)(f(Pl)(Z(V))) > f(PE)(zhﬂ) > z(w) by the induction hypothesis.

Suppose P = P By the induction hypothesis, f(Pl)(z(v)) A z(V)

1
>2(v) . .. (BI)(i1), £(B)(2(v)) . £(r)%(2(v)) > z(v) . O
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Theorem 6. For each vertex v , let P(s,v) be a path expression
representing all paths from s to v. Then the function x: V - L

definedby x(v) = £f(P(s,v))(L) is a safe solution.

Proof. By Lemma 5, x(v) = £(P(s,v))(1) < fp(_l_) for all pe S(P(s,v)) ;
thus x satisfies (20a). Let z be any fixed point. By Lemma 6,

x(v) = £(P(s,v)) (1) - £(P(s,v))(z(s)) > z(v) ; thus x satisfies (20b). O
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Te Bounded Data Flow Problems.

Most interesting data flow problems satisfy a stronger condition on L

than completeness, called the descending chain condition; every descending

chain X > X, > }% > ... 1in L is finite. For semi-lattices satisfying

the descending chain condition, continuity is equivalent to distributivity:

f(xAy) = £(x)A f(y) for all feF and X,yeL . Our continuous data
flow problems are thus a generalization of the distributive data flow
problems considered by Kildall [19]. Although most global flow problems
satisfy the descending chain condition, Some, such as type checking [331],
do not.

If the set of functions F in a data flow framework satisfies a
boundedness condition, then we can compute an approximation # to £
for any function feF using only function meet and composition. If
the framework is continuous as well, it is possible to compute the MOP
solution from a set of path expressions representing only some of the
paths from the start vertex. We shall consider a hierarchy of boundedness

axioms. For k >1, a k-bounded data flow framework (L,F) is a

complete lower semi-lattice L with meet operation A and a set of

functions F: L - L satisfying identity (18a), closure (18b),

monotonicity (18e¢), and
(21) (k-boundedness) fk(x) > /\{fl(x)|0 < i < k-1} for all feF and xeL

For k > 1 , a k-semi-bounded data flow framework (L,F) is a complete

lower semi-lattice L with meet operation A and a set of functions

F: L - L satisfying (18a), (18b),(18c), and

i k
(22)  (k-semi-boundedness) fk(X) > (A {f(x) |o<i<xk-1)) Aaf(y)

for all feF and x,yelL .
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We define k-bounded and k-semi-bounded data flow problems in the
obvious way. It is easy to show that k-boundedness implies k-semi-
boundedness and k-semi-boundedness implies (k+l) -boundedness.
Boundedness, being a property of F and not of L , is neither
stronger nor weaker than the descending chain condition. The k-bounded
and k-semi-bounded data flow problems include some, but not all, of the
global flow problems mentioned in the literature. Problems that use
bit vectors, such as finding available expressions [31] and finding
live variables [18] are l-semi-bounded but not l-bounded, Problems
that use "structured partition lattices", such as common subexpression
detection [9,16,19], are 2-bounded but not l-semi-bounded. Type checking

[33] is not k-bounded unless some bound is artificially imposed,

Lemma 7. In a k-bounded data flow framework (I,F) ,

N .
£ = A{f']| 0 <1 <k-1} for all feF .

Proof. We prove by induction on j that if j > k ,
£9(x) > A{f'(x) |04 < k-1) for all feF and xel . The claim

is true for j = k by k-boundedness. Suppose j > k and the claim

is true for j-1 . Then
. J-1 i _ . .
fi(x) = £ 7(f(x)) >a{f (x)| 1 <1i<k) by the induction
hypothesis
> A {fl(x) |0 < i < k-1} by k-boundedness.
The lemma follows from the claim. O

Lemma 8. In a k-bounded data flow framework (L,F) , the function f@

defined by @ _ (fAka-l for feF satisfies (184).
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Proof. By repeated use of monotonicity, we obtain

2(x) = (£ A ) < A (FH(x) |0 < i< k-1} , which implies (184)(1)
by Lemma T. We prove by induction on j that if f(x)Ay > x ,

then (fA L)J(Y) > x . The result is immediate for j = 0 . Suppose
(f/\b)j-l(Y) > x . Then (f/\L)j(Y) > f(x)Ax > x . Thus

f(x) Ay > x implies f@(x) = (f/\z,)k-l(x) > x , and (184)(ii) holds. O

If (L,F) is a k-bounded data flow framework and feF , we can
compute f* using O(k) function meets and compositions by Lemma 7.
We can compute an approximation f@ to f* in 0(log k) function meets and
compositions by Lemma 8, (We trade accuracy for time if we compute f@
instead of f* .) Theorem 6 thus gives a method to solve bounded
data flow problems using only function meet, composition, and application.
Suppose (L, F, G,fe) is a data flow problem which is not only
bounded but continuous. In this case f@' = f* » and we can compute
the MOP solution using only function meet, camposition, and application,
with 0(log k) such operations replacing each * . We can also use
path expressions representing only some of the paths from s , as

demonstrated by the next results.

Lemma 9. Let (I,F, G, fe) be a k-bounded continuous data flow problem.
Let v be a vertex in G and let p be a path from s to v that
is not k-simple. Then there is a set S of paths from s to v such

that each path in S is shorter than p and fp > A {fq | aes} .

Proof. If p is not k-simple, then p contains some vertex u at
least k+1 times. Let p = Py plp2 oo Pkpk+l _ where each Py for
1 <i <k is a cycle from u to u . (Both P, and P, ., may be
the empty path.) Then
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ft > £ o (A{Sf [1 <1< k})ko f by continuity
P Prerl Pj Fo

> T ea{(Af{f |l<i<u)!|0<)<k1}ot
Pl Py o

by k-boundedness

> A[fq‘q=Poq1q2"’q/lpk+l where 0 < ¢ < k-1
and qje{pillSiSK} for 1<j<1:} . O
Corollary 1. Let (L,F, G,fe) be a k-bounded continuous data flow problem.

Let v be a vertex in G and let p be a path from s to v . Then

fp > A {fq | q is a k-simple path from s to v } .

Proof. By induction on the length of p using Lemma 9. [

Theorem 7. Let (L,F,G,fe) be a k-bounded continuous data flow problem.
For each vertex v , let Pk( s,v) be a path expression such that
S(Pk(s,v)) contains at least all the k-simple paths from s to v

Then mop (v) = f(PK(S,V))(.L) , where f is defined as in Section 5.

Proof. Immediate from Lemma 4 and Corollary 1. |

Lemma 10. Let (L,F,G,fe) be a k-semi-bounded continuous data flow problem.
Let v be a vertex in G and let p be a path from s to v which
is not k-semi-simple. Then there is a set S of paths from s to v

such that each path in S is shorter than p and fp > A {fq | qes} .
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Proof. If p is not k-semi-simple, then p can be partitioned into

P= PoPy PpPg.PyypPyys » Where py and pi for 3 < i < k2 are

cycles, @and PO , P2 > Pk+5 are possibly empty. Then

k
£ > f s (A{f |3 <i<k2}) of by continuity
P - Pk+5 Pl - - PoplP2
J :
> £ e Aa{(Aff |3 <x2})° |0< 3 < kD) of
AT o (A{f_ |3<i< k+2})k o f by k-semi-boundedness

and continuity

> (AMf Ja=pyp Ppayay... 9 P,; where O <4< k-l
and qje{pi|5§i§k+2} for 1<j<1})
/\(/\{fq | 4= PyP, 0 Geee qkpk+5 where qje {pi |5 < i < k+2}
for 1<j<k}) . O
Corollary 2. Let (L,F,G,fe) be a k-semi-bounded continuous data flow

problem. Let v be a vertex in G and let p be a path from s to v

Then fp > A {fq | g is a k-semi-simple path from s to v)

Proof. By induction on the length of p using Lemma 10. O

Theorem 8, Let (L,F,G,fe) be a k-semi-bounded continuous data flow
problem. For each vertex v , let Pl'{(s,v) be a path expression such
that S(Pl'{(s,v)) contains at least all the k-semi-simple paths from

s to v. Then mop(v) = f(Pl'{(S,V))(.L) , where f is defined as in

Section 5.
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Proof. Immediate from Lemma % and Corollary 2. O

Corollaries 1 and 2 require continuity; in fact, the MOP solution
is not effectively computable in a general 2-bounded monotone data
flow problem [17]., See Kam and Ullman[16] and Tarjan [29] for further

discussion of the effect of boundedness on global flow analysis.
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8. An Idiosyncratic Data Flow Problem.

As a final application of our technique, we shall consider a data

flow problem that does not fit naturally into the semi-lattice

framework, but that can still be solved easily using a mapping from path

expressions. The problem arises in the optimization of very-high-level

languages and has been studied by Fong [8].

Let G = (V,Es) be the flow graph of a program which contains

occurrences of an expression € . With each edge e of the program

is associated an effect, which has one of four values depending upon

what flow of control through edge e does to the value of & .

" gen h

kill

effect(e) =
injure

trans J

>if<

*the program recomputes &
the program makes a large change in the value of ¢
the program makes a small change in the value of g

the program does not affect the current value of ¢

For any vertex v , we say € is implicitly available on entry to v

if there is a positive bound b such that, for every path

P = €€ 40058 from s to v , there is an i such that

(i) effect(ei) = gen , (ii

effect(ej)¢ kill for 1 < j < k ,

and (iii) the number of values j such that i < j < k and

effaﬂ%ej)= injure is bounded by b . Note that the bound b can

depend upon the vertex

v but not upon the path p ,

The problem we wish to solve is to determine from (effect (e) |e € g}

the vertices at which € is implicitly available. The idea is that if

the most-recently-computed value of € can be injured only a bounded

number of times before entering v , we can compute the value on entry

31




Rt

to v from the most-recently-computed value by performing a bounded
number of updates. Otherwise, we must completely recompute ¢ to obtain

its value on entry to v .

Fong [8] claims that this problem cannot be formulated within the
semi-lattice framework, "at least in the only natural choice of semi-
lattice." However, Fong observes that the problem can still be solved
efficiently. We shall define a mapping from path expressions for this
purpose.

Let D = {g,to,t+,w} be a set having operations A,o,@ defined

by the following tables.

A g ty t, w ° g ty t w @
g g t; t, o g g & & w g | %
to to to t+ w to g to t+ w 'to to
t,o|t, ot ot w t, g t, t, w t, w
w w w w w w g w o ow o ow w w

Let the mapping f from path expressions to D be defined as follows.

(21a) ta) = 5 3
w kill
f(e) = < P if effect(e) = < $ for ecE
t, injure
L tO J L trans
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(21b) £(P UR) = £(p)) AF(R,) ;

£(P, °B,) = £(P,) o £(P;) 3
£(y) = 2(2)® .

We call a path p = €r€sr e cer in G a ti -path if

effect(ej) ¢ {injure,trans} for 1 < j < k and the number of edges e.J
such that effect(ej) = injure is i . We call a path p a g -path
if it can be partitioned into p = Pys& D, where effect(e) = gen
and P, is a ti -path. We call a path p an w-path if it can be
partitioned into p = Ps&P, where effect(e) = kill and p is a

ti -path for some i

Lemma 11. Let P be a path expression. Then

(i) f(P) = g if there is a bound b such that every path in o(P)
is a 95 -path with i < b ;
(ii) £(P) = to if there is a bound b such that every path in a(P)

is either a g, ~path with i < b or a t, -path, and o¢[P)

0
contains at least one to path.

(iii) £(P) =%, if there is a bound b such that every path in o(P)
is either a g; -path with 1 < b or a ti -path with i <b ,
and a(P) contains at least one ti -path with i > 0

(iv) £(P) = w in all other cases. (For any bound b , 0¢(P) contains

either a g; -path with 1 > b , a ti -path with i > 0 , or

an o -path.)

Proof. Straightforward but tedious, by induction on the number of

operation symbols in P . [
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Theorem 9. For each vertex v in G , let P(s,v) be a path expression
representing all paths from s to v in G . Then € is implicitly

available at v if and only if f(P(s,v)) = g
Proof. Immediate from Lemma 11.

Actual occurrences of the implicit availability problem usually
involve a number of expressions. We can perform the computation
associated with Theorem 9 in parallel for all the expressions by using
bit vector operations. Since D contains four elements, we need two
bit vectors for each value computed (rather than the three proposed by
Fong [8]). By adding an additional element to D we can compute the

explicitly available expressions (those available with no injuries) in

addition to the implicitly available ones.



9. Remarks.

We have shown how to use path expressions to solve three kinds of
path problems on directed graphs. Our results allow us to build a
general algorithm for solving path problems on directed graphs; to solve
a particular path problem, we merely interpret Uy , ., and *
appropriately. We can base such an algorithm on Gaussian or Gauss -Jordan
elimination [21]. Tarjan[30] discusses another algorithm, which is
especially efficient on reducible and almost-reducible graphs [ 15,28],

Our results serve to formally justify the empirical observation
that the same algorithms work on many different path problems, There
are of course algorithms that solve only a particular kind
of path problem, such as Dijkstra's[6] and Fredman's [12] shortest
path algorithms and Pan's improvement to Strassen's algorithm for solving
linear equations [4,22,26]. However, any algorithm able to compute path
expressions also solves all the path problems we have considered here.

Our ideas extend easily to matrix multiplication problems and to

problems requiring the transitive closure of a matrix. See Aho, Hopcroft,

and Ullman [1] and Lehman [21] for discussions of such problems.
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Appendix:  Graph-Theoretic Definitions

A directed graph G = (V,E) is a finite set V of vertices and a

finite set E of edges such that each edge e has a head h(e) eV and
a tail t(e)eV . We regard the edge e as leading from h(e) to t(e)
A path p = €585 . . & is a sequence of edges such that t(ei)= h(ei+l)
for 1 < i < k-1 . The path is from h(el) to t(ek) . The path contains
edges e;,e,5...,8, and vertices h(el),h(ee),...,h(ek),t(ek) , and
avoids all other edges and vertices. There is a path of no edges from
any vertex to itself. A cycle is a non-empty path from a vertex to
itself.

If there is a path from a vertex v to a vertex w , then w is
reachable from v.. A flow graph G = (V,E,s) 1is a graph containing

a distinguished start vertex s such that every vertex is reachable

from s.
A simple path p is a path containing no vertex twice. For k >1,

a k-simple path is a path containing no vertex k+l times. Thus a

l-simple path is simple. A k-semi-simple path is a path p that can

be partitioned as p = pl,e,p2 , where p is simple, e 1is an edge,

and p2 is k-simple.
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