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Abstract. We describe a general method for solving path problems on

directed graphs. Such path problems include finding shortest paths,

solving sparse systems of linear equations, and carrying out global

flow analysis of computer programs. Our method consists of two steps,

First, we construct a collection of regular expressions representing sets

of paths in the graph. This can be done by using any standard algorithm,

such as Gaussian or Gauss—-Jordan elimination, Next, we apply a natural

mapping from regular expressions into the given problem domain. We

exhibit the mappings required to find shortest paths, solve sparse

systems of linear equations, and carry out global flow analysis.

Our results provide a general-purpose algorithm for solving any

path problem, and show that the problem of constructing path expressions

1s 1n some sense the most general path problem,
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) A Unified Approach to Path Problems

1. Introduction.

A fundamental problem 1n numerical analysis 1s the solution of a

system of linear equations Ax = b , where A 1s an nxn matrix of

coefficients, x is an nyxl vector of variables, and b 1s an nyxl

vector of constants. Efficient methods for solving Ax = b , such as

Gaussian and Gauss - Jordan elimination, have long been known. These

methods have been repeatedly rediscovered and applied in other contexts.

For example, Floyd's shortest path algorithm [7], which is based on

Warshall's transitive closure algorithm [32], is a version of Gauss -Jordan

elimination. Kleene's method for converting a finite automaton into

a regular expression [20] is a form of Gauss -Jordan elimination;

Gaussian elimination also solves this problem [3]. In all these

- situations the problem of interest can be formulated as the solution

of a system of linear equations defined not over the field of real

numbers but over some other algebra.

In this paper we provide a unified setting for such problems. Our

goal 1s to show that a solution to one of them can be used to solve them

all. One approach to this task 1s to develop a minimal axiom system for

which elimination techniques work (see for instance Aho, Hopcroft, and

Ullman [1] and Lehman [21]) and to show that the problems of interest satisfy

the axioms. Our approach 1s somewhat different and resembles that taken

by Backhouse and Carré [3]; we believe that the proper setting for such

problems 1s the algebra of regular expressions, which 1s simple, well-understood,

- and general enough for our purposes.
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| We shall use a graph-theoretic approach rather than a matrix’
theoretic one because we are interested mainly 1n sparse problems

(problems in which the coefficient matrix A contains mostly zeros),

| Let G be a directed graph with a distinguished source vertex s ,

| The single-source path expression problem 1s to find, for each vertex v

in G , a regular expression R(s,v) representing the set of all paths

froms to v . The all-pairs path expression problem 1s to find, for

each pair of vertices v , w , a regular expression R(v,w) representing

; the set of all paths from v to w . We shall show that it 1s possible

| to use solutions to the single-source and all-pairs path expression
| problems to find shortest paths in G , to solve systems of linear
| equations defined on G , and to solve global flow problems defined on G .
; We solve these problems by providing natural homomorphism that map the

regular expressions representing path sets into the algebras in which

| the given problems are expressed. We define these mappings by reinterpreting
the U ». and *¥ operations used to construct regular expressions. The

technical part of our work 1s 1n showing that these mappings are indeed

| homomorphisms.
: This paper contains nine sections. Section 2 reviews the properties

of regular expressions that we shall use. Section 3 considers shortest

| path problems. Section 4 examines the solution of systems of linear
| equations over the real numbers. Sections 5,6,7, and 8 discuss various

kinds of global flow analysis problems. Section 9 contains some additional

; remarks. The appendix contains the graph-theoretic definitions used in the
: paper.



| 2. Regular Expressions and Path Expressions. |

. Let XZ be a finite alphabet containing neither " A " nor" § ".

A regular expression over 2X 1s any expression built by applying the

following rules:

(la) "A "and" §" are atomic regular expressions; for any

aeZ , "a" is an atomic regular expression.

(1b) If Ry and R, are regular expressions, then (Ry URS)
*

(Ry R,) , and (Ry) are compound regular expressions,

In a regular expression, A denotes the empty string, 0 denotes

the empty set, UU denotes set union, .denotes concatenation, and

Xx

¥ denotes reflexive, transitive closure (under concatenation) .~/ Thus

each regular expression R over I defines a set @(R) of strings

) over 2 as follows:

i (2a) o(p) = {A} ; a (Pp) = ) ; 0(a) = {a) for ae .

(2p) (Ry UR,) = 0(R, JUI(R,) = (w|wed(R)) or wed(R,)]} ;

o(Ry*Ry) = 0(Ry)-0(R,) = {wyw, | wy ¢ 9(Ry) and w, ¢ 0(R,)]} ;
* * k 0 i i-1

= 0] — 9] = 0 oO

o(R,) Yo o(R;)" , where O(R))" = {A} and 0o(R;) (R}) (Ry)

Two regular expressions Ry and R, are equivalent

if 9(Ry) = J(R,) . A regular expression R 1s simple if R = [o or

R does not contain ) as a subexpression. We can transform any regular

RT ————se ————————————————
¥ Note that the symbol pA represents both the regular expression" pg"

) and the empty string. Henceforth we shall avoid using quotation marks
and allow the context to resolve this ambiguity; similarly for § , U,
« , ¥ , We shall also freely omit parentheses in regular expressions

when the meaning 1s clear.
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expression R into an equivalent simple regular expression by repeating

the following transformations until none 1s applicable: (1) replace any

subexpression of the form Pe Ry or Ry f by Y ; (11) replace any

subexpression of the form @+ R, or Ry +p by BR, ; (iii) replace any
»

subexpression of the form § by A .

A regular expression R is non-redundant if each string in d(R)

1s represented uniquely in R . A more precise definition 1s as follows:

(3a) As §, and a for ael are non-redundant.

(3b) Let R; and R, be non-redundant.

Ry UR, is non-redundant if o(Ry) No(R,) = 0 .

R)*R, is non-redundant if each we 0(R; Ry) is uniquely

decomposable into w = WwW, with w,e 0 (Ry) and

Wy cd (R,) .
xX *

R 1s non-redundant 1f each non-empty welR 1s uniquely

decomposable into w = Wy W,...W_ with W, € (R,)
for 1 <i<k,

Note that if Ae o(R) , then R* is redundant.

Let G = (V,E) be a directed graph. We can regard any path in G

as a string over E , but not all strings over E are paths in G .

A path expression P of type (v,w) is a simple regular expression

over E such that every string in c (P) 18 a path from v to w.

Every subexpression of a path expression 1s a pathexpression,whose

type can be determined as follows.
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(4) Let P be a path expression of type (v,w) .

If P= P, UP, , then Py and P, are path expressions of type

(vow)

If P = P, °F, , there must be a unique vertex u such that Py

is a path expression of type (v,u) and P, 1s a path

expression of type (u,w) .

If P = P, , then v = w and Py is a path expression of type
(vow) . (v,v) .

It 1s easy to verify (4) using the fact that P is simple.
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3. Shortest Paths.

B Let G = (V,E) be a directed graph with an associated real-valued

cost c(e) for each edge e . A shortest path from v to w 1s a
k

path p = €,€ 5.0.58 from v to w such that RA c(e, ) is minimum
over all paths from vn to w. If G contains no cycles of negative

total cost, there 1s a shortest path from v to w 1f there 1s any

path from v to w . The single-source shortest path problem is to find,

for each vertex v , the cost of a shortest path from s to v , where s

is a distinguished source vertex. The all-pairs shortest path problem is

to find the cost of a shortest path from v to w for all vertex pairs v, w .

We can use path expressions to solve shortest path problems by means

of two mappings, cost and shortest path , defined as follows.

(5a) cost(p) = O , shortest path(A) = A ;

cost(f) = =» , shortest path($) = no path ;

cost (e) = c(e) , shortest path(e) = e for eck.

(50)  cost(P, UP.) = min{cost(P,),cost(P,)} ,

shortest path(P,UP,) = if cost(P,) < cost(P,) then shortest path(p,)

else shortest path(P,) ;

cost (P+B,) = cost(P) + cost(p,) ,

shortest path(p, -F,) = shortest path (P;) shortest path (P,) ;

cost (P;) =f cost (Py) < 0 then-= else0 ,
shortest path (P, Jf cost (P ) < 0 thenno shortest path elseA .
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Lemma 1. Let P be a path expression of type (vow) . If ¢ost(P) = =,

there is no path in c¢(P) . If cost(P) = -» , there are paths of arbitrarily

small cost in o(P) , Otherwise, shortest path(P) is a minimum cost

path in o(P) , and the cost of shortest path(P) is cost (P) .

Proof. Straightforward by induction on the number of operation symbols

in Pp. O

Theorem 1. Let P(v,w) be a path expression representing all paths

from v. to w . If cost(P(v,w)) = ©» , there is no path from v to w .

If cost (P(v,w)) = -o , there are paths of arbitrarily small cost from v

to w. Otherwise, shortest path(P(v,w)) is a shortest path from v

to w; the cost of this path is_cost(P(v,w)) .

Proof. Immediate from Lemma 1. [J

Theorem 2. Let Py (vw) be a path expression such that 0 (Py (vyw))

contains at least all the simple paths from Vv to w. If there 1s a

shortest path from v to w , shortest path(P(v,w)) gives one such

path; its cost is cost(P(v,w)) .

Proof. Any shortest path is simple. LJ

By applying Theorem 1 we can use a solution to the single-source

(or all-pairs) path expression problem to solve the single-source (or

all-pairs) shortest path problem. By Theorem 2 it is sufficient to

use path expressions representing only the simple paths 1f we have a

separate test for negative cycles. The following theorem provides such

a test.
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Theorem 3. Let s be a distinguished source vertex in G . For' every

3 vertex v , let Py (8,7) be a path expression such that 0 (Py (85v))
contains at least all the simple paths from s to wv. Then G contains

| a negative cycle if and only if there 1s some edge e such that

| cost (Py (s, he) ) +e (e) < cost (P, (s,t(e))) :

; Proof. Straightforward. See Ford and Fulkerson [10]. J
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Lh, Systems of Linear Equations.

The next problem to which we shall apply our technique 1s the

solution of a system Ax = b of linear equations over the set R

of real numbers [11]. This problem has pitfalls not present in the other

problems we examine. The system Ax = b does not always have

a solution; even 1f it does, the solution need not be unique. Furthermore

the standard algorithms for finding a solution, such as Gaussian elimination,

may not succeed even 1f a unique solution exists. (To deal with this

difficulty, numerical analysts have devised more complicated algorithms,

such as Gaussian elimination with pivoting [11].) We shall avoid these

issues by proposing a method that almost always gives a solution when

one exists.

We begin by rewriting Ax = b as -b+ (A-I)x = x , where I is

the nxn identity matrix. Let Xq be a new variable; then the

system -b+ (A-I)x = x is equivalent to

(5) (%) = ™) , where wel] 8O x X -b  A-T

and 0 denotes a zero matrix of the appropriate size. Let G = (V,E)

be the graph having ntl vertices (one for each variable Xs ) and m

edges (one for each non-zero entry in A' ) such that there is an

edge e with h(e) = vs and t(e) = ve 1f and only 1f the entry in
row 1 and column j of A’ 1s non-zero; let a(e) be the value

of this entry. Then the system of equations takes the form

(6) x(s) = 1; x(v) = 2Z{a(e)x(h(e)) |eeE and t(e) = v) if v #5

where s = vo

9
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We solve this system by extending the mapping a to regular.

expressions over E as follows.

(7a) ad) = 1 ; a(p) = 0 .

= + .(To) a(R; UR,) a(R) + a(R) ;

a(R; *R,) = a(R)a(R,)

*

*

Note that a(R;) is defined if and only if a(R; ) £1 . If R

1s a regular expression over E , then a(R) 1s a rational function of

ale) ales)... . a(e ) and is defined except on a set of measure zero

in 1 Note also that the operation of addition into which union 1s

mapped 1s not idempotent. This forces us to deal only with non-redundant

regular expressions.

Lemma 2. If Ry and R, are two equivalent non-redundant regular

expressions over E , then a(R) = a(R,) whenever both a(Ry) and

a(R) are defined.

Lemma 2 1s the hardest result in this paper, and we shall postpone

1ts proof.

Theorem UL, For each vertex v , let P(s,v) be a non-redundant path

expression representing all paths from s to v. If a(P(s,v)) is

defined for all v , then the mapping x defined by x(v) = a(P(s,v))

satisfies(6).
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Proof. The only path from s to s in G is the empty path; by

Lemma 2, x(s) = a(P(s;s)) = a(@) =1 . If v 4s, then

U {P(s,h(e))-e | eeE and t(e) = Vv} is a non-redundant regular expression

representing the set of all paths from s to v . By Lemma 2,

x(v) = a(P(s,v)) = a( U {P(ssh(e)):e| ecE and t(e) = v}

= 2. {a(e)x(h(e) |eeE and t(e) =v} . O

Thus the mapping a almost always gives a solution to (0). It

remains for us to prove Lemma 2. We employ Salomaa's method for showing

the completeness of an axiom system for regular expressions [28]. We

shall use the notation OQ = R to denote that a(Q) = o(R) and a(Q) = a(R)

wherever both a(Q) and a(R) are defined. A non-redundant regular

expression Q is equationally characterized in terms of non-redundant

regular expressions Qs ONEERY UY 1f Q = QQ and

m

= . D(Q. h D{Q. and

(8) y = | Uae) une) where Dlg) e (a)
1 < <a; 5 © {a | < k <g} for all J .

Lemma J. Every non-redundant regular expression over E 1s equationally

characterized.

Proof. By induction on the number of operation symbols in the regular

expression.

m m

p= U pee. ug ) A = U pre. UA ’j=1 J j=1

11
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es = fel. Utes . Upre UP for 1<j<m .

Thus every atomic regular expression 1s equationally characterized.

Suppose Q and R are equatilionally characterized. Let Q 5 Cy UY

be non-redundant regular expressions such that Q = 4 and (8) holds.

Let EE : oR, be non-redundant regular expressions such that R = Ry

and (9) holds.

m

(9) R, = U Rijtey UD(R;) where D(R,) e {#,A} and
J=1

Ry; € {Ry |L <k<r} for all j .

We shall equationally characterize QUR , QR , and Q* , assuming they

are non-redundant.

Let 1<u< gq, 1<v<r, and suppose Q UR, 1s non-redundant.

Combining (8) and (9) we obtain

m

= i .)ee. D(R

m

= ce, D Rgee UR,;)ey | UD(QUR)J=

since if 7(Q,) No(R,) = ¢ , then D(Q,) = 0 or D(R_) =  . Furthermore

3 | Ry; is non-redundant for 1 < j<m. Thus 1f QUR 1s

non-redundant, the set of equations (10) such that Q, UR, is

non-redundant equationally characterizes QUR = Q URy .

Let 1<v<r, s>o, andl<uy <u <...<u <q.
S

Suppose QR _U{ U Q is non-redundant. If D(R) = 0 , weVv . : v
1=1 1

obtain from (8) and (9) that

12
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m S S

= U QR .U U . ec. uD] QR _U U )) .3 Vd [4 i) ;) M uy
S

Furthermore QR, U (2, fu,i) 1s non-redundant for 1 < Jj <m . If
D(R) = A , we obtain from (8) and (9) that

S m S

(12) QR, U| U =| U {QR UU | U y 5) un )Vv $01 u, 321 VJ 9 5 iol “uJ J YU

S

Ul U D(q, )i=1 i

m S

[| 39 ME) yd ) i)
S

UD| QR _U Uv (2 a, ) :
S

Furthermore QR 5 UG; U (5, “, J | 1s non-redundant for 1< jj <m.
It follows that if Q*R is non-redundant, we can equationally characterize

| q

QR = QR; in terms of { QR_U WU %, |1<v<r, s<o0, 1<w, <u,<...<u<q,
q

and QR, U u %) isi=1 1

non-redundan .
Finally we must consider Q* . Suppose Q* 1s non-redundant.

Then D(Q) =f . From (8) we obtain

15
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*

x m

(13) Q = U vo |j=1 157%
m

= [yg ® ey) Usj=1

¥%

Furthermore Q - 9 4 1s non-redundant for 1 < Jj <m .
x S

Let s > 1 and 1 <w <u, <...<u<gq. Suppose Q - U Q
i=1 1

is non-redundant. If D(Q, ) =f for 1< i < s , then
i

(14) So [5 Jus‘ = U . U . 1. JU >

i=1 tu, j=1 i=1 bu, J J
x S

where Q - U Q, : 1s non-redundant for 1 < J < m .: . J —-
1=1 1

If D(Q, ) = A for some (unique) i such that 1 < 1 < s , then
n —_

M S mo s

(15) Ql U «(4 Qf QU U lle JUANi=1 i j=1 EE] "uJ J

x S

where Q - 935 U U AU. 3 1s non-redundant for 1 < j <m . It
i=1 1

follows that we can equationally characterize Q* in terms of

Wn * S *® S
fQluqa-| U  ||s>l,1<uy<u,<...<u<q, and Q-| U Q

1s non-redundant } ]
We are now ready to prove Lemma 2, We extend J , ., = to ordered

f 1 ] by defini =
palrs of regular expressions by defining (Qs RB) U(a,sR,) = (Qua, »Ry UR) ,

@ = Q and Ry = R, .

1h



Proof of Lemma 2. suppose Q and R are non-redundant regular

expressions such that 0(Q) = o(R) . Let Q, R be characterized in

terms of {Q |11<1i<q , {R, |1 < i <r} by (8), (9), respectively.
g

| We construct a set X of pairs (QR) such that (Q,) ) °(R_)

We begin with X = {(QR)} . We process pairs in X and add new

elements to X until all pairs 1n X are processed. We process a

pair (QR) as follows. By (15) and (16) we have
m

R = . )e(e.ye,(Qs ) [5 (9,52 Rs) (e55€5)) u (D(q,)sD(R,)) :
1 8} = — —Since (Q,) o(R_) » We have D(Q,) = D(R_) and 2(Q, 5 I(R, 5) for

1<j<m. We add each pair (Q, oR .) for 1< j<mto X if it

1s not already present.

We obtain a set of pairs X = TC A TP CURACY such

that s < qr , ol 2) = gr (1) for 1 <1 <s, and
i - did m - -

(Ql ), 5) = (o{1) r{1)y. (e.re.) U (D.sD,) , where each pair
21 0 0d 33 i771

af"), BH) appears in X .
m

Consider the system of equations x, = 2; a(e.)x,. 4 a(D.),
i”, J’ ig i
J=1

where x,. = if o{1) =Q (k) This system 1s satisfied by1 "x J )

X, = a(q{P) if a(q!t)) is defined for 1 < i < s and by x, = ar)
if a (rY) 1s defined for 1 <i1< s . We can rewrite this system as

X = AX+b , where each entry in A is a linear combination of

a(e;)ra(ey)s..0ra(e) , or equivalently as (A-I)X = -b . This system

has a unique solution when the determinant of A-I is non-zero, which

is true except for values of a(e;)saley),.. sale) forming a set of

15
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measure zero in Rr" . Thus A(t 1) = ar) for 1< 1 < s 'except
on a set of measure zero. In particular a(Q) = a(R) except on a set

of measure zero. Since a(Q) and a(R) are rational functions of the

ae) 's, a(Q) = a(R) when both are defined.

16
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5. Continuous Data Flow Problems.

Many problems in global code optimization can be formulated as

path problems of the kind we are considering. The general setting 1s

as follows. We represent a computer program by a flow graph

G = (V,E,s). Each vertex represents a basic block of the program

(a block of consecutive statements having a single entry and a single

exit). Each edge represents a possible transfer of control between

basic blocks. The start vertex s represents the start of the program.

We are interested in determining, for each basic block, facts which

must be true on entry to the block regardless of the actual path of

program execution. Such facts can be used for various kinds of code

optimization. See Aho and Ullman[2], Hecht [14], and Shaefer [25].

To represent the universe of possible program facts, we use a set

L having a commutative, associative, idempotent meet operation A ;

such an algebraic structure 1s called a lower semi-lattice. If x and vy

are two possible program facts, X Ay represents the information common

to both. We can define a relation < on L by x < y 1f and only if

XAY = X . The properties of A imply that < is a partial order

on L [27]; we interpret x < y to mean that fact y contains more

information than fact x . We shall assume that L is complete, by

which we mean that every subset X Cc L has a greatest lower bound with

respect to < ; we denote this greatest lower bound by AX . If

X = {X0%50 eer} , then aX = X]ANXA eee AX. We use L to denote

AL , i.e., the minimum element in L . For any functions f and g

having camon domain and range L , we define f < g if and only 1f

f(x) < g(x) for all elements x in the domainof f and g ,



[

To represent the effect of the program on the universe of facts,

we assoclate with each edge e a function fe such that, 1f fact x

1s true on entry to h(e) and control passes through edge e , then

f(x) will be true on entry to t(e) . We can extend these functions

to paths by defining f(x) = x if p is the empty path,
f (x) = (fof cva* 0f (x) if p= e ,e,...,e. . What we want
Pp on 1 e 172 k

to compute is A {E,(0) | Pp 1s a path from s to v) for each vertex v .
(We assume the minimum fact 1. is true on entry to the program.)

This discussion motivates the following definitions.

A continuous data flow framework (L,F) is a complete lower semi-

lattice L with meet operation A and a set of functions F: L - L

satisfying the following axioms:

(16a) (identity) F contains the identity function iz .

(160) (closure) F 1s closed under meet, function composition, and * ,

where (fA g) (x) = f(x) Ag(x) and £* (x) = A (£7 (x) i> 0) .

(16¢) (continuity) For everyfeF and X ¢ L , f( aX)= A (f(x) | xeX} .

A continuous data flow problem consists of a flow graph G = (V,E,s),

a continuous data flow framework (I,F) , and a mapping from E to F;

we use f to denote the function associated with edge e . The meet

over all paths (MOP) solution to this problem 1s the mapping mop from

V to L given by mop (v) = AE) |p is a path from s to v) .
We can use path expressions to solve continuous data flow problems

by means of the mapping f defined as follows.

18
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(17a) £(A) = z 3

f(e) = e .

(17p) £(PjUE,) = £(P)) AL(B,)

(PF) = £(P,) ° £(Py) ;
* ®

£(P,) = £(p,) :

Lemma4. Let P £ § be a path expression of type (v,w) . Then for

all xel, f(P)(x) = A{f (x)|. co(®)}.

Proof. By induction on the number of operation symbols in P . The

lemma is immediate if P is atomic, Suppose the lemma is true for

path expressions containing fewer than k operation symbols, and let

P contain k operation symbols. We have three cases.

Suppose P = P, UP, . Then

£(B) (x) = £(B) (0) A(R) (2) = (A {E,(x) | pe 9(P)}) A (A {£(x) [peoa(B,)])

= AE) | xe oP) Uo(B) 3 = A{E (x) [pea(P)]

Suppose P = Feb, . Then

TO = 2@) EYE) = £E@) (AE, (0) peor)

= A (£5) (Ey, (2) p; € (Py) by continuity

= A{A{E, J (®) [pyc a(By)) | pe 9(By)]
1-2

= App(0) [By ea(ey) ana pyeo(zy)} = A (500) [peo(®)]

19



|

Similarly we can show that if P. has fewer than k operation symbols
i IR 1

then £(p,)" (x) = A {£,(x) | pe o(P,) } for any 1 > 0 .
¥

Suppose P = Py . Then

* i .

£(P) (x) = £(P)) (x) = a {f(P})" (x) |1 > 0]
1 ¥%

=A{A (f(x) | pe o(P,) 1] i >0} =A {£, (x) | pe o(P;)} -

Theorem 5. For any vertex Vv , let P(s,v) be a path expression

representing all paths from s tO Vv. Then mop(v) = £(P(s,v))(s) .

Thus we can use a solution to the single-source path expression

problem to solve continuous data flow problems. [OT examples and extensive

discussions of such problems see Cousot and Cousot [5], Fong, Kam, and

Ullman [9], Graham and Wegman [13], Kam and Ullman [16,17], Kildall [19],

and Rosen [23].
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0. Monotone Data Flow Problems. |

Many important global flow problems are not continuous [17], For

such problems there 1s 1n general no algorithm to compute the meet over

all paths solution [17], and we must be satisfied with less information

than the MOP solution provides. In such situations the following approach

1s appropriate.

A monotone data flow framework (L,F) 1s a complete lower semi-

lattice L with meet operation A and a set of functions F: L -» L

satisfying the following axioms:

(18a) (identity) F contains the identity function iz .

(180) (closure) F is closed under meet and function composition.

(18¢) (monotonicity) For every feF and %xyeL x<y implies

f(x) < £(y)

(184d) (approximation to £ ) For every function feF , there is

a function £9 F such that

(i) £9(x) < (x) for all xeL , 1 > 0 3; and

(ii) if X,yel satisfy f(X)Ay > x , then f2(y) > x .

Monotone frameworks generalize continuous frameworks by requiring only

monotonicity (18c) in place of continuity (16¢) and by requiring only a

pseudo transitive closure function. Note that f£* 1s the maximum

function satisfying (18d).

A monotone data flow problem consists of a flow graph G = (V,E,s) ,

a monotone data flow framework (L,F) , and a mapping from E to F

whose values we denote by £ for ecE . A fixed point for this problem

is a mapping z: V = I, such that
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(19) z(s) = + and f (z(h(e))) > z(t (p)) for any ecE . :

A safe solution to the data flow problem 1s a mapping x: V = L such that

(20a) x (v) < £ (x) for any vertex v andanypath p from s
to v 3; and

(20b ) x(v) >z(v) for any fixed point z and any vertex v .

Thus a safe solution 1s a conservative approximation to the MOP solution which

1s at least as informative as any fixed point. It is easy to prove that

any fixed point satisfies (20a); if the data flow problem is continuous,

the MOP solution is the maximum fixed point [19].

We can use a slight variant of the mapping defined in Section k to

compute a safe solution to a monotone data flow problem. Let f be

¥

defined as in (17), except £(P;) = £(p))® :

Lemma J. Let P # 0 be a path expression of type (v,w) . Then

f(P) (x) < f(x) for all pe S(P) and xel .

Proof. By induction on the number of operation symbols in P , The

lemma 1s 1mmediate if P 1s atomic. Suppose the lemma is true for path

expressions containing fewer than k operation symbols, and let p

contains k operation symbols. We have three cases.

Suppose P = P, UE, and peP . If Pely then

f(P)(x) = (By) (x) A £(7,) (x) < £(P;) x) < £,(x) by the induction hypothesis;

similarly if pel,
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] O = Ld = 1 |
| Suppose p Py P, and p P,P, with pe Py; , Pp, €P . Then

EF) (x) = £(B)(£(R))(x) < £(By) (£, (x)) < (£, » £ )(x) = f(x)
1 D 1

by monotonicity and the induction hypothesis.

*

Suppose P =P; ai yp H np 0 Md) with p,eP, for 1<i<k.
: Then

1 @ k 84) (1| £(P)(x) = £()%(x) < £(p))"(x) by (8a)(1)

< f(x) by monotonicity and the induction
: hypothesis, as above.

Lemma6. Let P £ § be a path expression of type (vow) . If z is

any fixed point, then f(P) (z(v)) > z(w) .

Proof. By induction. The lemma is immediate ifP is atomic. Suppose

| the lemma 1s true for path expressions containing fewer than k operation

symbols, and let P contain k operation symbols. We have the usual

} three cases.

Suppose P = PjUP, . Then £(P) (z(v)) = £(F)) (2(v)) Af(P,) (z(v))

> z(w) by the induction hypothesis.

; Suppose P = Pyeby . Let u be the vertex such that Py 1s of

type (v,u) and Py is of type (u,w) . Then f(P) (z(v)) =

£(p,) (£(P1) (2(v))) > £(p,)(2(u)) > z(w) by the induction hypothesis.

Suppose P =P, . By the induction hypothesis, £(Py)(2(v)) Az(v)
1 x @

| >z(v) . .. (8a)(i1), £(B)(2(v)) . £(2)%(z(v)) > z(v) . O

| 03



Theorem 6. For each vertex v , let P(s,v) be a path expression

representing all paths from s to wv. Then the function x: V = L

definedby x(v) = f(P(s,v))(L) is a safe solution.

| Proof. By Lemma 5, x(v) = £(P(s,v))(s) < £,(1) for all pe S(P(s,v)) ;
| thus x satisfies (20a). Let z be any fixed point. By Lemma 6,

x(v) = £(P(s,v))(L) = £(P(s,v))(2(s)) > z(v) ; thus x satisfies (20b), O

oh



“Me Bounded Data Flow Problems.

Most interesting data flow problems satisfy a stronger condition on L

than completeness, called the descending chain condition; every descending

chain xq > Xx, > % >... 1n L is finite. For semi-lattices satisfying
the descending chain condition, continuity 1s equivalent to distributivity:

f(xAy) = £(x)A £(y) for all feF and xX,yeL . Our continuous data

flow problems are thus a generalization of the distributive data flow

problems considered by Kildall [19]. Although most global flow problems

satisfy the descending chain condition, some, such as type checking [33],

do not.

If the set of functions F 1n a data flow framework satisfies a

boundedness condition, then we can compute an approximation #2 to £

for any function feF using only function meet and composition. If

the framework 1s continuous as well, it 1s possible to compute the MOP

solution from a set of path expressions representing only some of the

paths from the start vertex. We shall consider a hierarchy of boundedness

axioms. For k > 1, a k-bounded data flow framework (L,F) is a

complete lower semi-lattice L with meet operation A and a set of

functions F: L - L satisfying identity (18a), closure (18b),

monotonicity (18e), and

(21) (k-boundedness) (x) > AE (x)] 0 < i < k-1} for all feF and xeL .

For k > 1 , a k-semi-bounded data flow framework (L,F) 1s a complete

lcwer semi-lattice L with meet operation A and a set of functions

F: L - L satisfying (18a), (18b),(18c), and

(22) (k-semi-boundedness) (x) > (A (£5 (x) | 0 <i< k-1)) A £(y)
for all feF and x,yel .
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We define k-bounded and k-semi-bounded data flow problems in the

| obvious way. It 1s easy to show that k-boundedness implies k-semi-
boundedness and k-semi-boundedness implies (k+l) -boundedness.

| Boundedness, being a property of F and not of L , 1s neither

| stronger nor weaker than the descending chain condition. The k-bounded

| and k-semi-bounded data flow problems include some, but not all, of the

| global flow problems mentioned in the literature. Problems that use

| bit vectors, such as finding available expressions [31] and finding
live variables [18] are l-semi-bounded but not l-bounded, Problems

that use "structured partition lattices", such as common subexpression

detection [9,16,19], are 2-bounded but not l-semi-bounded. Type checking

[33] is not k-bounded unless some bound is artificially imposed,

| Lemma 7. In a k-bounded data flow framework (IL,F) ,

Poo NE 0 < i < k-1} for all feF .

| Proof. We prove by induction on j that 1f J > k ,
f(x) >A (et (x) |0 4 < k-1) for all feF and xeL . The claim

1s true for j = k by k-boundedness. Suppose J > k and the claim

1s true for j-1 . Then

| fj(x) = £7 (r(x) > a {£5 (x) | 1 <1i< k) by the induction
hypothesis

> A (eh (x) |0 < i < k-1} by k-boundedness.

The lemma follows from the claim. J

Lemma 8. In a k-bounded data flow framework (I,F) , the function £©

defined by © _ (fA Et for feF satisfies (184).

| 26



Proof. By repeated use of monotonicity, we obtain |

#2 (x) = (f A)Ex) < A {£1 (x) |0 <i < k-1} , which implies (184) (i)

by Lemma 7. We prove by induction on j that if f(x)Ay > x ,

then (fA 219 (y) > x. The result is lmmediate for j = 0 . Suppose

(fa) (y) > x . Then (£A 2) (y) > f(x)Ax > x . Thus

f(x) Ay > x implies £2 (x) = (£ A) (x) > x , and (18d)(ii) holds. O

If (I,F) is a k-bounded data flow framework and feF , we can

compute £7" using O(k) function meets and compositions by Lemma 7.

We can compute an approximation £2 to £7 in O(log k) function meets and

compositions by Lemma 8, (We trade accuracy for time if we compute £¢

instead of f* .) Theorem 6 thus gives a method to solve bounded

data flow problems using only function meet, composition, and application.

Suppose (LF, G,f,) is a data flow problem which is not only

bounded but continuous. In this case £2 = £ » and we can compute

the MOP solution using only function meet, camposition, and application,

with O(log k) such operations replacing each * . We can also use

| path expressions representing only some of the paths from s , as

demonstrated by the next results.

Lemma 9. Let (I,F,G, £.) be a k-bounded continuous data flow problem.

Let v be a vertex in G and let p be a path from s to v that

1s not k-simple. Then there 1s a set S of paths from s to v such

that each path in S is shorter than p and f > A {fy | aes} |

Proof. If p 1s not k-simple, then p contains some vertex u at

least k+l times. Let p = Pq P,P, a. Pp Pryq _ where each P. for

1 <i < kis a cycle from u to u . (Both P, and p,,, may be

the empty path.) Then



=

f > f o(A{f  J1<i<k}) ef by continuity
F Piet 1 Pi Fo

| >fe A{(A{f. |1<i<kDN!|0<I<k-1}of
Pl Py Fo

by k-boundedness

> AME Ta =p 0 0 0 ay By where 0 < { < k-1

| and ase fp; [1 <1 <K] for 1<j<12} . O

| Corollary 1. Let (I,F, GT) be a k-bounded continuous data flow problem.

; Let v be a vertex in G and let p be a path from s to v . Then

| fy, 2A EA | 9 is a k-simple path from s to v } .

| Proof. By induction on the length of p using Lemma 9. [J]

| Theorem 7. Let (L,F, GT) be a k-bounded continuous data flow problem.

| For each vertex vv , let P( s,v) be a path expression such that

| S(P,(s,v)) contains at least all the k-simple paths from s to v .

| Then mop (v) = £(F (s,v)) (1) , where f is defined as in Section 5.

Proof. Immediate from Lemma 4% and Corollary 1. 0

Lemma 10. Let (L, FG, be a k-semi-bounded continuous data flow problem.

Let v be a vertex in G and let p be a path from s to v which

1s not k-semi-simple. Then there is a set S of paths from s to v

such that each path in S is shorter than p and fo > A tf, | ges}
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Proof. If p 1s not k-semi-simple, then p can be partitioned into

P= PoP) PyPs.PyyoPy,s » Where p; and pi for 5 < i < ke are

cycles, and PO , P2 » Piss are possibly empty. Then

f > f o (AN{f_ |3<1i< 2) E f by continuity
iS Pitz P; PoPPo

J
> f o A{(A{f |3 < k+2})° |0 < J < k-1) of
Pras Pi ~ ~ PoP1Po

AT o (A{f | 3 <i< +21)" o f by k-semi-boundedness
D P. - = PAP
k+3% 1 Oo 2 Co

and continuity

> (Aff la=PyP Ppa) ay... Py, where 0 < 4 < k-1

and a € {Py |3 <i <k+t2} for 1<3j<1})

A (A (f, | a = PoPp dy Gp ver Gy Pyys Where qe {p; |3 <1 <k2}

for 1<j<k}) . O

Corollary 2. Let (L,F,G £,) be a k-semi-bounded continuous data flow

problem. Let v be a vertex in G and let p be a path from s to v .

Then fy > A (f, | g is a k-semi-simple path from s to v) .

Proof. By induction on the length of p using Lemma 10. [OJ

Theorem 8. Let (I, Fy GT) be a k-semi-bounded continuous data flow

problem. For each vertex v , let P, (8,7) be a path expression such

that 5(Py(s,v)) contains at least all the k-semi-simple paths from

s to wv. Then mop(v) = £(Py(s5v)) (4) , where f 1s defined as in

Section 5.
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Proof. Immediate from Lemma % and Corollary 2. J |

Corollaries 1 and 2 require continuity; in fact, the MOP solution

1s not effectively computable in a general 2-bounded monotone data

flow problem [17], See Kam and Ullman[1l6] and Tarjan [29] for further

discussion of the effect of boundedness on global flow analysis.



8. An Idiosyncratic Data Flow Problem. |

As a final application of our technique, we shall consider a data

flow problem that does not fit naturally into the semi-lattice

framework, but that can still be solved easily using a mapping from path

expressions. The problem arises 1n the optimization of very-high-level

languages and has been studied by Fong [8].

Let G = (V,E,s) be the flow graph of a program which contains

occurrences of an expression £€ . With each edge e of the program

1s associated an effect, which has one of four values depending upon

what flow of control through edge e does to the value of & .

"gen *the program recomputes &

kill the program makes a large change in the value of ¢&
effect (e) = 1f

injure the program makes a small change 1n the value of gtrans | the program does not affect the current value of g
For any vertex v , we say §€ is implicitly available on entry to v

if there 1s a positive bound b such that, for every path

P = €15€55 000s from s to v , there 1s an 1 such that

(1) effect(e,)= gen , (ii effect(e,) # kill for 1 < j < k,
and (111) the number of values J such that i < J < k and

effect(e) = injure 1s bounded by b . Note that the bound b can
depend upon the vertex v but not upon the path p ,

The problem we wish to solve 1s to determine from (effect (e) | ee e}

the vertices at which & is implicitly available. The idea 1s that if

the most-recently-computed value of € can be injured only a bounded

number of times before entering v , we can compute the value on entry
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to v from the most-recently-computed value by performing a bounded

| number of updates. Otherwise, we must completely recompute ¢& to obtain
its value on entry to v .

| Fong [8] claims that this problem cannot be formulated within the
semi-lattice framework, "at least in the only natural choice of semi-

; lattice." However, Fong observes that the problem can still be solved
| efficiently. We shall define a mapping from path expressions for this

| purpose.
| Let D = {8rtst  w} be a set having operations A,.,@ defined
| by the following tables.

A g ty tw o g ty tw @

g g ty, tt, wu g g 8 8&8 wu g | to

| ty ty t, t, w ty g t, t, Ww t, t,

| t, t, t, t, w tT, g t, t, w t, w
| w Ww www Ww g w wow Ww w

Let the mapping f from path expressions to D be defined as follows.

| (21) £(n) = ty

| I: gen
| . win
] f(e) = if effect(e) = for ech .

t, injure

| ty trans

| 30



(21b ) f(PUP,) = £(P)) Af(R,) ;

£(Py °P,) = T(Py) £(B,) 3
* @

f (B;) = £(p,) .

| We call a path p = €17€5s eer € 1D G a t. —path if

effect (e,) ¢ {injure,trans} for 1 < j < k and the number of edges e.

such that effect (e) = 1lnjure 1s 1 . We call a path p a gs —path

1f 1t can be partitioned into p = Py5€5D, , where effect(e) = gen

: and Pp, is a t, -path. We call a path p an w-path if it can be

partitioned into p = P1,&P, where effect(e) = kill and p is a

t. -path for some 1 .

Lemma 11. Let P be a path expression. Then

(i) f(P) = g if there is a bound b such that every path in o(P)

is a gs -path with 1 < b ;

(11) f£(P) = t 1f there 1s a bound b such that every path in a (P)

is either a g, -path with i <b or a t, -path, and cP)

contains at least one to path.

(iii) £(P) =%, if there is a bound b such that every path in a(P)

is either a gs —-path with 1 < b or a = -path with 1 <b,

and a(P) contains at least one ts -path with 1 > 0 .

(iv) f£(P) = w in all other cases. (For any bound b , 0(P) contains

either a 8; -path with 1 > b , a t, -path with i > 0 , or

an w -path.)

Proof. Straightforward but tedious, by induction on the number of

operation symbols in P . [OO
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Theorem 9. For each vertex v in G , let P(s,v)be a path expression

representing all paths from s to v 1n G . Then € is implicitly

available at v if and only if f(P(s,v))= g .

Proof. Immediate from Lemma 11.

Actual occurrences of the implicit availability problem usually

involve a number of expressions. We can perform the computation

associated with Theorem 9 in parallel for all the expressions by using

bit vector operations. Since D contains four elements, we need two

bit vectors for each value computed (rather than the three proposed by

Fong [8]). By adding an additional element to D we can compute the

explicitly available expressions (those available with no injuries) in

addition to the implicitly available ones.
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9. Remarks.

We have shown how to use path expressions to solve three kinds of

path problems on directed graphs. Our results allow us to build a

general algorithm for solving path problems on directed graphs; to solve

a particular path problem, we merely interpret Uy , ., and *

| appropriately. We can base such an algorithm on Gaussian or Gauss -Jordan

| elimination [21]. Tarjan[30] discusses another algorithm, which is

especially efficient on reducible and almost-reducible graphs [ 15,28].

| Our results serve to formally justify the empirical observation

that the same algorithms work on many different path problems, There

| are of course algorithms that solve only a particular kind

| of path problem, such as Dijkstra's[6] and Fredman's [12] shortest
path algorithms and Pan's improvement to Strassen's algorithm for solving

: linear equations [4,22,26]. However, any algorithm able to compute path
expressions also solves all the path problems we have considered here.

| Our 1deas extend easily to matrix multiplication problems and to

problems requiring the transitive closure of a matrix. See Aho, Hopcroft,

and Ullman [1] and Lehman [21] for discussions of such problems.
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Appendix:  Graph-Theoretic Definitions

A directed graph G = (V,E) is a finite set V of vertices and a

finite set E of edges such that each edge e has a head h(e)eV and

a tail t(e)eV . We regard the edge e as leading from h(e) to t(e) .

A pathp = ep,&, ..,€, 1s a sequence of edges such that t(e;) = he; ,)

for 1 <i <k-1 . The path is from h(e;) to t(ey) . The path contains

edges SELYRPRPLN and vertices h(e;),h(e,)s...oh(e),t(e,) , and

avolds all other edges and vertices. There is a path of no edges from

any vertex to itself. A cycle is a non-empty path from a vertex to

itself.

If there 1s a path from a vertex v to a vertex w , then w is

reachable fromv . A flow graph G = (V,E,s) is a graph containing

a distingulshed start vertex s such that every vertex is reachable

from s.

A simple path p 1s a path containing no vertex twice. For k > 1,

a k-simple path 1s a path containing no vertex k+l times. Thus a

l-simple path 1s simple. A k-semi-simple path is a path p that can

be partitioned as p = P15€ DP, , where p 1s simple, e is an edge,

and p, 1s k-simple.
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