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ABSTRACT

This document describes the current state of the AL system now in

operation at the Stanford Artificial Intelligence Laboratory, and t eaches the reader

. how to use it. The system consists of AL, a high-level programming language for

manipulator control useful in industrial assembly research; POINTY, an interactive

system for specifying representation of parts; and ALAID, an interactive debugger
for AL.
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. HOW TO USE THIS MANUAL

This document at tempts to gather in one place all the information that a

user needs to program a manipulator in the AL programming language at the

St anford Artificial Intelligence Laboratory (SAIL), In addition to meeting the

requests made by other research organizations for detailed information on the

current stat us and configuration of the system at SAIL, it updates the original AL

document which was a design specification of the language. At SAIL, the most up

to date version of the documentation can be obtained by the monitor command DO

ALXGP.DOC[DOC,HE]. Specific chapters may be obtained by the command DO

ALXGP[DOC,HE](n) where n is the chapter you are interested in. The AL system is

growing and continuously evolving as new features are implemented and used.

This edition of the manual includes features not present in the first edition of
November 1977.

Chapter 2 describes the AL programming system and the related hardware

and software configuration at SAIL, It is an overview and description for the

general reader.

Chapter 3 and the succeeding chapters are for the AL user. Chapter 3 is an

example based tutorial illustrating the use of simple AL instructions. This chapter

assumes that the reader is familiar with interactive computer programming in high

level languages such as FORTRAN. Previous knowledge of manipulator

programming or programming in ALGOL is not essential. After completing this

chapter, the user should have at his command a subset of AL instructions which

will enable him to write simple programs.

Chapter 4 describes the AL language, and gives the complete set of

currently implemented AL instructions in a concise manner. This chapter should be

) sufficient for an experienced programmer to use as a reference manual.

Chapter 5 describes how to execute AL programs.

Chapter 6 describes POINTY, a system which allows the user to generate

interactively the frame tree data structure for AL programs,

Chapter 7 describes errors that might occur in the different stages of

compiling and executing the AL program, and how to cope with them.

The Appendices include a list of AL reserved words and brief summaries of

AL and POINTY commands and instructions, and extended AL and POINTY examples.
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2. THE AL SYSTEM AT SAIL

2.1 Design philosophy of AL

2.1.1 Introduction and historv

The WAVE system for manipulator control was designed and implemented by

Lou Paul in 1973 on the Scheinman Stanford model arm and was used extensively

by him and Bob Bolles.

The experience with WAVE led to the initial specifications of AL in 1974 by

both of them and Jerry Feldman, Ray Finkel, and Russ Taylor.

The initial implementation of the compiler and runtime system for Al was

done by Finkel and Taylor, and subsequently taken over by Ron Goldman.

Vic Scheinman designed the arm currently in use at SAIL, while Tom Gafford

and Ted Panofsky are responsible for the computer interface to the manipulator.

Ken Salisbury and Gene Salamin are currently maintaining the hardware.

The work of Paul and Bruce Shimano was responsible for developing the

kinematics of manipulation and the arm servo code. Shimano subsequently

implemented force compliance, while Tatsuzo Ishida has done a theoretical analysis

of two arm cooperative manipulation. Salisbury is currently maintaining the arm

servo code.

ALAID, for debugging AL programs, was initially implemented by Finkel. A

newer version is being implemented by Hamid Nabavi.

The first AL parser was written by Bill Laaser and Pitts Jarvis, and

subsequently taken over by Shahid Mujtaba.

. POINTY, a related system, was conceived in 1975 by Dave Grossman and

Taylor, andinit ialiy implemented by Taylor. Maria Gini, Pina Gini and Mujtaba have

subsequently implemented a newer version. Enrico Pagello has also contributed to

it. POINTY is currently maintained by Mujtaba.

The design of AL has continually been modified and updated on the basis of

new experience and information by Grossman, Shimano, Goldman, and Mujtaba

under the overall guidance of Tom Binford.

The AL system is geared towards batch manufacturing where setup time is a

key fact or. To minimize programming time we rely on a symbolic data base and
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previously defined assembly primitives, and a quick and simple means of putting

into a program the things we want to tell the manipulator to do. By testing out

the system on undergraduate industrial engineering students with minimal

experience in manipulators and robotics, we have found that learning to use the AL

system is relatively simple, and that it is unnecessary to learn the complete

system before putting it to use. Team programming sessions by researchers in

manipulation at the Workshop on Software for Assembly held in November 1977 at

SAIL showed the possibility of learning to program AL in a short time. The AL

system has also been used for term projects in a Robotics course given in the Fall

quarter of 1978.

We assume that the batch manufacturing environment is fairly structured

and known = the positions of fixtures, parts, tools, etc. are known and not

expected to vary from one assembly to another by any appreciable amount. By

simulation it is possible to predict where each object is at any instant of time, and

whether it is held in a manipulator, if it is to be moved, and whether sufficient

information has been given, so that communication with the user is minimized during

execution, Because of the high degree of structure in the manufacturing

environment, we try to do as much computation as possible before an assembly

begins.

2.1.2 Plantime and runtime systems

Experience with WAVE (the predecessor to AL) had shown that calculating

trajectories for manipulators was a desirable feature. It was thus decided that

trajectory calculations, together with ail other calculations which need only be

performed once, should be done at compile time on the assumption that this

allocation of effort would reduce the computing load at execution time and

eliminate recomputation every time a sequence of actions is executed.

This sequence of planning and execution led to the existence of two

) systems - the plantime system and the runtime system.

The plantime system consists of the AL compiler whose function is to take

the user written AL program, simulate it, point out errors to the user, and output

instructions to the runtime system. The compiler performs a simulation of the

program (called world modeiling) to verify that it is indeed possible to do what the

user asks within the limits of what AL is capable of doing, and to warn the user

about unexpected consequences (e.g. if the user accidentally asks that the arm be

moved through the table). The runtime system takes the output of the plantime

system, and proceeds to perform the motions.

This approach is changing because of subsequent developments.

Computation costs have dropped dramatically and this makes possible the future

use of multiple processors in distributed computation. Better arm servo software,
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faster arrn solution and more sophisticated path calculation algorithms tend to

reduce the computation load, thereby permitting more decisions to be made at

runtime. It was also realized that certain trajectories are best computed during

runtime (e.g. force compliant motion, moving belt, when the workplace is highly

unstructured). (See “Discussion of Trajectory Calculation Methods” by Mujtaba in

Progress Report 4.).

2.1.3 Data and control structure

The principal mode of input to AL is textual. The use of symbolic

programming means that for parts in a pallet, for instance, there is no need to

define the position of all the parts, if the distance between parts (which is usually

constant) is known. “Once the corner of a pallet is taught and the part separation

Is known, laborious record-playback programming is no longer necessary given

proper software in an associated minicomputer,” [Engelberger, J.F. in “A Robotics

Prognostication”, Joint Automatic Control Conference Proceedings 1977, p 198.1

Symbolic programming simplifies the interfacing of AL with other means of

generating world models, like interactive graphics and computer aided design. It

permits the setting up of library programs which may be called by supplying the

relevant parameters. The use of symbolic programming eases the job of specifying

complex motions if such motions can be parametrized or described algebraically -

for example, it is easier to tell the hand to move a certain distance along an

arbitrary direction than it is to move it manually when multiple joints have to be

adjusted simultaneously. Teaching by doing, on the other hand, requires the

recording of a very large number of points (tape recorder mode) unless only the

end points of motions are of interest and the nature of the paths between these

end points are unimportant.

There are levels of complexity which are much more readily transmitted

from man to machine through an interface of symbolic text. Simultaneous motions

- of two arms, specifications for termination, and error conditions are more likely to

be unambiguously stated through the medium of text, since these may require

multiple logical relationships to be satisfied. Non-textual forms of input can be a

very useful rneans for defining target locations, suggesting arm trajectories

designed to avoid collisions, initial setup of a workstation, and other purposes of

this nature.

AL makes use of more data types than other conventional high level

| anguages do. In addition to SCALAR numbers, it allows the specification of

VECTOR, ROTATION, FRAME, TRANS, and EVENT data types. AVECTOR

consists of a triple of three real numbers. A ROT consists of a direction vector

and an angle to indicate the amount of rotation. A FRAME describes the position

and orientation of an object, while a TRANS describes the relationships between

FRAMES. In addition, arrays of all these data types may be defined. Arithmetic

operators are available not only for the standard scalar operations but also for
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such operations as rotation and translation.

We want to write programs in a natural manner. The machine-language like

aspect of current manipulation languages makes it cumbersome to write long

programs in any structured way. We want a language which lends itself to a more

syst ematic and easily understood programming style. To this end, the use of

ALGOL-li ke cont roi structures are an improvement over linear machine-language

code with jumps. The block structure of ALGOL is also present in AL.

Experience with languages like SAIL and WAVE has shown that text macros

are a useful feature; they reduce the amount of repetitive typing, and allow

symbolic definition of constants and variables in a way which would be otherwise

Impossible. AL has a general-purpose text macro system.

Procedures are provided, as in other languages, to reduce the amount of

code when similar computations or operations need to be done at numerous places

In a program.

AL also permits the control of parallel processes by allowing the flow of

control of the program to be divided up, which allows certain operations to be

performed simultaneously (e.g. simultaneous movement of different manipulators),

after which the various processes merge back together. Synchronization primitives

are also provided.

2.1.4 Motion of objects

AL has a mechanism to keep track of the location of a component piece of

an assembly automatically as the assembly is moved; this mechanism is called

affixment and used extensively with the concept of FRAME to describe objects.

Frames may be affixed to each other, so that after affixing an object to the

. manipulator, the user can forget about the manipulator completely, and think in

terms only of where objects have to interface with other objects. instead of

having to worry about how to move the arm, the user can specify the final

orientation and position of the object, and AL will take care of working out what

. the arm has to do in order to accomplish the stated objective. The user can think

of movement of the objects rather than the movement of the manipulator. This is

significantly different from other programming schemes where the program consists

of a series of arm motions whose relationship to objects in the real world is known

only to the user, and where the user effectively has to provide explicitly the

distance and angular relationship of the object to the manipulator for each motion

statement,
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2.1.5 Sensory informat ion

AL allows alternative actions on the basis of sensory input during runtime by

checking whether certain conditions have exceeded a specified threshold, and if so

to execute a predetermined action. This is called condition monitoring. When

error conditions are encountered, it is possible to set a sequence of actions into

motion that will try to allow recovery. This is not possible in the case of linear

control where program execution has to be aborted.

2.1.6 Programming aids

AL has several features that help the user during different phases of

compilation and execution of his program to ensure that errors are caught 88 early

as possible, and to simplify programming.

2.1.6.1 AL parser

The AL parser takes the user-writ ten AL program and checks that it is

syntactically correct, generating error messages where necessary. It also makes

use of the AL declarations generated by POINTY if told to do so. It enables

programs to be input through disk files written by means of text editors, or

through the teletype.

The AL parser tries to catch and correct errors early, so that less time is

wasted on a compilation if it needs to be aborted. Also, by catching errors early,

It is possible to generate error messages in the context of the user source

program. Two main checks are used to eiirninate an important class of errors.

Dimension checking across assignments and expressions is done by the parser to

ensure that units have been correctly specified by the user and are compatible

with what is expected. Type checking across assignment statements and across

. the terms and factors of an expression ensure that operations are performed on

arguments of the right data type, and that assignment of an expression is done to a

variable of the same data type.

AL allows interactive error correction by permitting the user to ask for a

standard fixup, or to change (patch) the offending source code for minor errors and

continue from there without having to resort to the system text editor and a

recornpilat ion. Error recovery is local, and permits backing up to the beginning of

the innermost current statement. To back up any further, it is necessary to resort

to the text editor. At the user’s option, a corrected copy of the source file is

made,
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2. 1.6.2 AL compiler

The Al compiler provides a number of semantic checks on the user's

program. Warnings will be issued if an attempt is made to move the arm to an

inaccessible location (e.g. through the table top), if not enough time was allocated

for a mot ion, if incompatible force requests are made, if the user attempts to move

something not connected to an arm, or if the arms are not parked upon program

completion.

To help track down errors the user can request that the planning value AL

maintains for each variable during the world modelling phase of compilation be

printed at some desired point in the program.

2.1.6.3 Interactive model building

POINTY, to be described in detail in Chapter 6, allows the user to create

interactively the frame tree for AL programs with the aid of the manipulator as

well as to try out simple motion statements, The interactive nature of POINTY is

also helpful in testing out small segments of programs before incorporating them in

a larger AL program.

2.1.6.4 Debuggers

Several debuggers are available during execution of the program to enable

the user to correct his mistakes by allowing him to patch his programs, and to let

him examine and change the values of variables.

Debugging an AL program during execution involves examining and modifying

variables, altering the flow of control, triggering condition monitors, and patching

code. ALAID has been designed to permit these actions to be performed and to

; assist the programmer in preparing correct manipulator code. ALAID sets up a

communication link between the PDP-10 and PDP-l1 1 (cf. section 2.2) and allows

debugging to proceed from either machine, It sets up a clean interface between an

AL program running on the POP-1 1 and a higher level strategy program on the

PDP- 10. ALAID enables the two processes to signal each other using the

synchronization primitives in AL and it also allows the program running on the

PDP-10 to examine and set variables in the memory space of the AL manipulator

program on the POP-I 1.

In its current state, ALAID connects the two machines, can examine and set

variables, signal and wait for events, cause the runtime system to enter 1 1 DDT,

allow the user to stop and resume execution of an AL program on the PDP-11, and

examine and modify the pcode.

11 DDT is the PDP-11 machine language symbolic debugger used by AL
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wizards to debug the runtime system, and by the user to continue or restart

execution of his program.

2.2 AL system hardware

The hardware for the AL system consists basically of a PDP KL10 computer

(hereafter referred to as PDP-10) for compiling and loading the AL program, a

POP-11/45 computer (hereafter referred to as PDP-11) for executing the AL

program, and two STANFORD model Scheinman arms in addition to various

peripherals such as terminals and disks.

The relationships between the various components are shown below. The

PDP-1 1 system is interfaced to both the manipulators and the PDP-10 system.

Any communication between the PDP-10 and the manipulators must go through the

PDP-11 runtime system, since there is no direct interface between the PDP-10
and the arms.

INTERACTIVE

TERMINALS

UISKS| &———— | KL-18 | e——————— | CAMERAS

ARMS

DEVICES

Fig. 2.2 Hardware setup for AL at SAIL
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2.3 Soft ware

The software organization of the current AL system at SAIL is shown in Fig.

2.3. Each of the blocks indicates a module of programs that can be in core at one

time, and the files that each module needs and generates are written alongside the

lines connecting the modules.

Data and programs are stored in files which have names of the form

ABCDEF.XYZ where ABCDEF is a combination of one to six alphanumeric characters

making up the name, and XYZ is any combination of zero (in which case the dot is

omitted) to three characters, making up the extension. The extension serves to

distinguish different files in a family of files of the same name.

Affixment information can be generated in AL statement form using POINTY

and saved in a declaration file. The motion program and data can be prepared and

saved on a disk file FOO.AL (where FOO is the name, and .AL is the extension

which serves to identify an AL source program) using the text editor. It can also

be input directly to the AL compiler through the teletype.

The AL parser takes the AL program written by the user, and checks that it

IS syntactically correct, generating error messages where necessary. It generates

an intermediate file (using S-expressions), with extension SEX, that is passed to

the AL compiler. At the option of the user, the AL parser will generate a logging

file with extension .LOG with all the error messages, and a corrected copy of the

source file with extension .NEW. For programs input directly through the teletype,

a disk file copy of the program will be generated with extension .TTY.

The AL compiler reads in the S-expression file generated by the AL parser,

and changes it into an internal form. It then performs a simulation of the program

called world modelling, followed by trajectory calculation and code generation. At

- the end, four files with extensions .ALP,.ALV,.ALT,ALS, are emit ted, which

contain information on the pcode, numerical constants, motion trajectories, and

symbols, respectively.

The first three files are used by PALX, the PDP-11 cross assembler to

assemble a binary load module having extension .BIN for the runtime system.

The binary file with extension .BIN is loaded together with the AL pcode

interpreter and the run time system by a program called 1 1TTY.

The intermediate files with extensions .ALP,.ALV, and .ALT are typically

deleted by the ALSOAP program, which is run automatically after the AL

compilation.

If so desired, ALAID can be run simultaneously on the PDP-10 to provide a
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communication link between the PDP-10 and PDP-11.ALAID makes use of the

ALS file.

POI NTY TEXT

POP-18,POP-11, | ANY OR EDI TOR ANDY OR

ARMS POP-10

oEcLAR. AL FOO.AL TTY: FOO. AL

ALL. PARSER

PDP- 10

| FOO.TTYFOO.NEW

FOO. SEX FOO. LOG

AL COWPI LER

PDP- 10

FOO. ALS FOO. ALP

FOO.ALT I= deleted by ALSOAPFOO. ALV

PALX (POP-11

CROSS- ASSEMBLER)

PDP- 10

LLFOO.LST
FOO.BIN

ALAID 117TTY ———— AL.SAV IAL, HE]

| POP-10 OR PDP- 10

RUNTIME SYS

11007

PDP- 11

ARMS

Fig. 2.3 Software organization
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2.4 Programming in AL

In order to program an assembly in AL, an assembly plan should first be

worked out which includes a rough layout of the parts, and the sequence of

motions to accomplish the assembly.

The parts and fixtures should be laid out in the work place in the desired

physical locations. AL has to be given the information of the object layout, and

this can be done either by direct measurement using a ruler and other measuring

equipment, or with the aid of manipulators and POINTY, an interactive data

gathering aid using the manipulator (c.f. Chap 6). The data must be incorporated

into a file which has AL statements which specify how to move the parts to

accomplish the desired assembly.

Having obtained the program, the user gets it into the computer system by

some means (at SAIL this means through one of the interactive terminals).

The program is compiled, loaded, and executed and debugged much like any

other program.
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3. USING THE AL SYSTEM

3.1 Basic constructs

The purpose of this chapter is to introduce the reader to the AL language,

and through a series of examples, show its use in the programming of manipulator

motions. The basic constructs of the AL language are described in this section.

Other instructions will be described in the the following sections of this chapter.

The notation will be as follows; Within the programs and examples

reserved words will be shown in upper case, while variables and predefined

constants will be shown in lower case. In all other places, they will be

represented in upper and lower case italics respectively.

3.1. 1 Data types

At t he heart of each computer language are the types of data that can be

handled. For example, FORTRAN has INTEGER and REAL numbers; other languages

can handle strings of alphabetic characters. The data types in AL were chosen to

handle the special problems that arise in controlling manipulators, and in working

with three-dimensional objects in the real world which have directed distances,

locations and orientations.

A variable is an identifier that can take on various values. ldentifiers

Colisisi of a string of alphanumeric characters (letters and numbers) and underscore
"_'. Some examples: pump_base, handle, screw_hole_2, and PI32. Note that all
identifiers must start with a letter {(Jinch_screw is no good). Upper and lower case

are equivalent, i.e. ABC, abc, and aBc¢ all refer to the same variable.

) Variables can be given a value by means of an assignment statement, which

consists of the variable name, a left arrow ("«"), and an expression of the correct

type. When an assignment statement is executed, the expression on the right

hand side is evaluated, and the result becomes the new value of the variable on

the -left hand side.

AL, like ALGOL, requires each variable to be declared, that is, one must

state what data type a variable is before it is used. AL also uses ALGOL type

block structure which means that all variables declared between a particular

BEGIN and END are accessible only to code which appears between the same

BEGIN-END pair. It is also possible for the same variable name to be used in

different blocks without conflict. Block structure will be explained more fully later

(3.1.2). We shdlnow look at the data types available in the AL language.
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3.1.1.1 SCALARS

The most elementary data type in AL is the SCALAR, which is internally

represented as a floating-point number. Scalars can be used for dimensionless

quantities, such as the number of times some operation is to be repeated, or for

dimensioned ones like the length of an object or the angle between two parts.

The arithmetic operations available on scalars are addition, subtract ion,

multiplication, division and exponentiation, represented by the normal arithmetic

operators: "+", "-", "i" "/" and "1". Exponentiation has precedence over

multiplication and division which in turn have precedence over addition and

subtraction, as in other algebraic languages. Several commonly used functions are

also available: the square root function, SQRT; the trigonometric functions SIN,

COS, TAN, ASIN, ACOS taking one argument, and ATAN2 taking two arguments; the

natural logarithm LOG; and the exponential function EXP.

Scalar constants are written as (base ten) numbers, possibly with a decimal

point or fractional part; for example 2,1, 3.14159, -123.45 are all scalar
constants.

Below is an example showing the declaration and use of scalar variables. In

the examples in this section we will use a mnemonic scheme for naming variables

to clarify the type of each entity. Note that AL statements are separated by

semicolons. Also curly brackets "{}" are used to enclose comments.

SCALAR sl, s2; (A declaration consists of a data type followed by

a list of variable names separated by commas, and

ending with a semicolon.}

sl « 2;

s2 ~ 3.50; {s] has the value 2.0, and $2 is 3.50)

sl «s2%*(sl- 3.2); {Now sl = -4.20}

It is often desirable to associate a physical dimension with a variable. AL

provides for scalars with the dimensions of TIME, DISTANCE, ANGLE, and FORCE.

- It should be noted that ANGLE is generally considered dimensionless, but that for

our purposes, the definition has been made a little flexible to allow for an entity

which is useful for defining rotations. Dimensioned variables are just like regular

scalar variables, except that they are associated with an appropriate dimensional

unit: sec, inches, deg or ounces, which have the obvious meanings. AL can also handle

CM, 0z,lbs, gm and radians.

Dimensioned variables are used exactly in the same way as simple variables,

except that AL checks for consistent usage. Dimension checking is done for each

arithmetic operation and each assignment. Addit ion, subtract ion and assignment

require exact dimensional match, though if the match fails and one of the two
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arguments is simple (dimensionless), it will be coerced to the right type, after an

appropriate message to the user. Multiplication and division do not require

dimensional match; they produce a result of a dimension different from that of the

arguments which is then propagated through the expression. In this way

intermediate results can be of dimensions not declared. This causes no problems

unless such results are used in an assignment; The square root function may be

used on scalars of arbitrary physical dimensions, and the dimensions of the result

will be the square root of that of the argument. The SIN, COS and TAN functions

are applied to scalars having dimensions of ANGLE and assumed to have units of

degrees. The result is dimensionless. The inverse functions ASIN, ACQOS, and

ATAN2 take dimensionless arguments; the resulting value has dimensions of ANGLE

and units of DEGREES. The exponential and logarithmic functions take

dimensionless arguments and return dimensionless values. The exponentiation

operator presents a problem for the parser, since during parsing, the value of the

power to which the base is raised is unknown. The problem is recognized by

giving an error message if either the base or index is not dimensionless.

Here is a short-example using dimensioned scalars and functions.

SCALAR sl, s2;

DISTANCE SCALAR dsl;

TIME SCALAR tml, tm2;

FORCE SCALAR fsl;

ANGLE SCALAR theta, phi;

dsl« 1.0 ¥ inch;

trnl « 3 *x sec;

fsle 22 % ounces;

trn2« tml + 4.5; {The constant 4.5 will be converted to

seconds after the relevant error message.)

- theta« 90 * deg;

phi « theta * 4 ¥ deg; {This is a mistake: the right hand side has

dimension ANGLE %¥ ANGLE.}

s1«SIN( 30 * deg);
. theta « ACOS(.7);

ds1« SQRT(ds] * 3% inches );
phi « ATANZ( sl, s2); ! same as arctangent(sl/s2)}
sl « LOG(33.0);

se «slT 3;

There are several predeclared scalars in AL:

SCALAR PI; {3.14158...}

nN is also recognized as the constant 3.14159...



TT TEE

i

15

DISTANCE SCALAR bhand, yhand;

{These variables refer to the blue hand and

yellow hand openings)

VELOCITY, ANGULAR _VELOCITY, and TORQUE are defined in terms of the

primary dimensions in the generally accepted way,

It is also possible to define new dimensions, such as acceleration, by means of

the dimension statement. New dirnensional units, such as feet, can be defined with

macros (4.5.8). For inst ance:

DEFINE feet = <{ 12 xinches)>;

DIMENSION acceleration = VELOCITY / TIME;

acceleration SCALAR asl;

asl« 6.7 x feet f(sec*xsec);{=6.7 * 12 *xinches/sec/sec}

3.1.1.2 VECTORS

The world in which AL programs operate has three dimensions, and so we

need rnore than just scalars. We will now introduce another data type: the

VECTOR. it and the other algebraic data types which follow are similar to scalars

in how they comprise arithmetic expressions and assignments.

We describe the world as a Euclidean space with three cardinal orthogonal

axes, which meet at an origin. The actual alignrnent of these station axes is

irnplementation dependent, though at SAIL and for the rest of this manual it will be

assumed that the positive Z axis points upwards.

Vectors may represent entities having both direction and magnitude, e.g.

; displacement, velocity, acceleration, Like scalars, they may be dimensioned.

Vectors can be constructed frorn three scalar expressions by means of the function

VECTOR. The scalar expressions must all be of the same dimension, which the

resulting vector will also have.

The available operations between vectors include addition, subtraction, dot

product, and cross product. A vector may be multiplied or divided by a scalar.

The direction unit vector (dimensionless) may be extracted by the function UNIT.

Addition and subtraction are defined only on vectors of the same dimension. The

dot product, cross product and multiplication by a scalar give results having the

dimensions which are the product of the dimensions of the two arguments. The

scalar magnitude of a vector is obtained by enclosing it within vertical bars. The

operators are defined in the normal manner; for example, if we have a scalar s and

two vectors:
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vl = VECTOR(x1, yl, 21) and v2 = VECTOR(x2,y2, 22)

then we have:

s*¥ vl = vl xs = VECTOR(s* XI, s * yl, s ¥zl)

vl +v2 = VECTOR(xItx2, ylty2, 21+22)
vl -v2 = VECTOR(x!-x2, yl-y2, 21-22)

vl . v2 = Xx1*x2 + ylxy2 + 21%22

There are several predeclared vectors in AL:

VECTOR xhat, yhat, zhat, nilvect; (These have values as follows}

xhat « VECTOR( 1,0,0);

yhat « VECTOR( 0,1,0);

zhat « VECTOR(0,0,1);

ni | vect« VECTOR(0,0,0);

Here is one more example of the use of vectors:

VECTOR v;

DISTANCE VECTOR dvi, dv2, dvg;

SCALAR s;

DISTANCE SCALAR dsl, ds2;

dsl« 2% inches;

dvl « VECTOR(4, 2, 6) ¥ inches;

ds?2 « dvl . yhat; {So ds2 = 2 ¥ inches)

v « VECTOR(2, 1, 3);

V « V = zhat: (So v = VECTOR(2, 1, 2) }

dv2 « VECTOR(3, 0, 4) ¥ inches;

| dsl «|dv2]; {This assigns dsl the magnitude of
the vector dvl, which is a scalar of

the appropriate dimension. So dsl = 5

* Inches.}

~ dv3« VECTOR(4xinches, 2xinches, 6xinches); {dv3 is the same as dvl}

ve UNIT(v); {So v =VECTOR(2/3,1/3,2/3)}

3.1.1.3 ROTATIONS

The next data type we will discuss is the rotation, or ROT, which

represents either an orientation or a rotation about an axis. Rotations can operate

on vectors and rotate them around the origin (without changing their length). They

can also operat e on other rot ations (by matrix multiplication). To rotate a vector

(about the station origin), multiply the vector (on the right) by the rot (on the left).

To compose rots, multiply them together; the one on the right will be applied first.
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The axis of rotation can be extracted by the function AX/S and the angle of

rotation by enclosing the rotation expression within vertical bars. Rotations are
dimensionless, and the user may not specify dimensions for this data type; however

the arnount of rotation about the axis has units of ANGLE.

A rotation can be constructed with the function ROT, which takes two

arguments: a simple vector, which is the axis of rotation, and an angle, which is the

amount to rotate. The direction of rotation follows the right hand rule, so a

rotation of 90 degrees about the X axis moves the Y axis into the Z axis. This

representation is far easier to write and understand than raw matrices. Here is an

example showing the use of rotations:

ROT r 1, r2, r3, r4;

ANGLE SCALAR alpha, beta, gamma;

VECTOR v;

rl « ROT(xhat, 90 * deg);

ver ls zhat {v gets Z rotated 90 degrees about X, so v =

VECTOR(0,- 1,0)}

r 2 « ROT(yhat, 4 5 * deg);
r3 «r2 ri;

{Thus, r3 means first rotate 90 degrees about the X axis, then

45 degrees about the original Y axis. An alternative

interpretation is to first rotate by 45 degrees about Y, and then

to rotate by 90 degrees about the new X axis.}

v « AXIS(r2); {This assigns v the axis of rotation of r2 = yhat.}

alpha «|r2}; (This assigns alpha the angle of rotation of r2 = 45

degrees.}

rl «ROT(xhat, alpha);

r2 « ROT(yhat, beta);

r3 «ROT(zhat, gamma);
rd « r3 % r2 rl;

{r4 is then a rotation with the following two meanings: Rotate

by alpha degrees about the X axis of the station, then by beta

degrees about the station’s Y axis, and finally by gamma

degrees about the station’s Z axis. Or alternatively, rotate by

gamma about the station’s Z axis, then by beta about the new Y

axis, and finally by alpha about the doubly new X axis. Both of

these interpretations yield the same result; use whichever one

you find most comfortable.}

There is one predeclared rot, called nilrot, defined as ROT(zhat, 0 * deg).
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3.1.1.4 FRAMES

In working with objects in the real world we need to specify both their

position and orientation. To do this we introduce a new data type, the FRAME,

which represents a coordinate system. It has two components: the location of the

origin (a dist ance vector) and the orientation of the axes (a rot). Features on an

object can be specified with respect to the object's coordinate system.

There are several predeclared frames in AL. Station represents the

reference frame of the work station. Associated with each manipulator is a frarne

whose value (updated at the end of each motion} is the position of that

rnanipulat or. Currently, there are two such frames: barm and yam, associated with

the blue and yellow arms respectively. Also associated with each arm is a rest, or

park position; these are bpark and ypark.

A frame may be constructed by calling the function FRAME, which has two

arguments: a rot (for the orientation) and a distance vector (for the position). The

orientation or position of a frame can be extracted by the functions ORIENT and

POS. To transform a point specified by a distance vector in the coordinate system

of sorne frame into station coordinates, multiply the frame (on the left) by the

vector (on the right). To translate a frame by some amount, simply add/subtract a

distance vector to/from it. Finally, to construct a vector in station coordinates

which has the same orientation as a vector in some frame, such as xhAat in say fl,

the “with respect to” operator WRT is used and one writes xkat WRT fl. For any

vector v and frame f the following are equivalent (the dimensions of the result are

the sarne as those of v):

v WRT f= (f xv)-POS(f) = ORIENT(f) * v

Here are a few examples using frames.

FRAME fl, f2;

fl FRAME(ROT(zhat, 90 * deg), 2 # xhat * inches);

(The frame f 1 sits 2 inches from the station in the X direction,

Its coordinate system has X where the station’s Y axis points,)

v]le xhat WRT fl; (This evaluates to VECTOR(0,1,0).}
f2 «fl+vl% inches: (Just like fl, but with origin at (2,1,0).}

v2«fl*(zhat* inch); {This evaluates to VECTOR(2,0,1).}

3.1.1.5 TRANSFORMS

The last of the algebraic data types is the transformation or TRANS.

Transes are used to transform frames and vectors from one coordinate system to

anot her, Like frames, they consist of two components: a rotation and a vector,

The application of a trans first rotates its operand about the station origin, and
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then translates the result. Transes can be composed in the same manner as

rotations, the one on the right being applied first.

A t rans consists of a rotation part having units of angle and a translational

(vector) part having some other physical unit = usually distance. When

“multiplying” by a trans, one is really multiplying by the rotational part and then

adding the vector component. The matrix operation of multiplying transes together

produces a trans. The vector parts of two transes multiplied toget her must have

the same dirnensions, and the vector part of the product will have the same result.

For convenience, we will refer to the dimension of a trans as being that of the

vector part. When a trans is applied to a vector, both must have the same

dimension, the one for the trans being defined above. The resulting vector is of

the same dimension, When a t rans operates on a frame, it must be a dist ance

trans. When transes are composed, they must agree in dimension, and the result
will have the same dimension, Unless declared otherwise, transes will be assumed

to have dimensions of distance.

One can construct a transform by use of the function TRANS, which takes

two arguments: a rot (the rotational part) and a vector (the translational part).

Another convenient way to specify a trans is by forming it from two frames. The

arithmetic operator "=" applied to two frames produces a trans which takes the

origin of the first frarne across to the origin of the second, performing a rotation

first to get the axis aligned. When a frame is used in a context dernanding a

transformation, it will be understood as a shorthand for the distance trans leading

to it from the station.

Here are a few examples using transes.

TRANS tl, t2, t3, t4;

t 1 « TRANS(ROT(xhat, 60 x deg), 2 + zhat # inches );

viet 1x yhat * inches;

{t 1 rotates yhat 30 degrees about the X-axis, and then

translates it by 2 inches along Z =(0,.866,2.5).}

2 « fl » f2; (Thus fl t2 = {2.} :

v2«t 2% (xhat ¥ inches);

{v2 is {2's x-axis as seen from fl}

t3 « t2 x tl; 13 means to first perform the transformation given by t 1,

and then that specified by t2.}

f3 « fl * f2; (This expresses the position of f2 in f 1’S coordinate

system. Equivalent to (station =f1)%f2.}

t5 «INV(t 1); (This expresses the inverse transformation of t 1.)

The null transformation, equivalent to TRANS(nilrotnilvect), is called niltrans.

The initial distinction between frames and transes has lessened aS work
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with AL has progressed. The current distinction is that frames may be affixed to

each other, and have deproach points (c.f. section 3.4) associated with them. In

general a trans can appear anywhere a frame can, and vice versa. For example to

get at either of a trans’s two components the extraction operators, ORIENT and

POS, would be used. Whether or not the two data types will be merged rernains

to be seen. An evolving view considers frames to be labels associated with

physical objects or locations in space and transes the relationship between these

physical objects, In such a case, frames would not have dimensions associated

with them, but there will be some relationship between them and other frames.

3.1.2 Block structure =~i.e. “what's a program”

An AL program consists of a sequence of statements which will result in the

rnanipulator successfully performing a desired task. While the simplest AL program

consists of a single simple statement, any reasonable program will be made of

many statements 3/, §2, §3,... separated by semicolons, and surrounded by the

reserved words BEGIN and END. This composite arrangement of

BEGIN

Sl;

S2;

Sn

END

is known as a block statement. The statements (5/,52,..) within the block may

themselves be other block statements. Indentation has no effect on the program

and serves only to make the program more readable.

In order to keep track of blocks within other blocks, they may be named

“with strings within double quotes immediately following the BEGIN and the
corresponding END, The strings after a corresponding BEGIN and END pair

should be the same, or there should be no string after the END; otherwise there

will-be an error message. The following is an example of block naming:

BEGIN “MAIN”

Sl;

S2;

BEGIN “INNER”

S33;

S3b;

END “INNER”;

s4

END
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Like SAIL or ALGOL, AL requires that an identifier be declared before it is

used. The effect of an identifier is only within the block it is declared. Outside

the block, any reference to those identifiers will give an error message, An error

message will result if the same identifier is declared more than once in a given

block, unless subsequent declarations are within blocks internal to the given block.

Consider the following example:

BEGIN "BLK_1"

SCALAR i k,m;

1-13
BEGIN "BLK_2"

SCALAR i; {denotes a new variable "i" distinct from
the "i" declared in BLK_] above}

123

me is {Som=2; i refers to the second declaration of i}
END "BLK_2";
Kei (So k=l since after exiting "BLK_1"i=1 again}

END "BLK_1";

In the inner block "BLK _2" the variable i is a new variable distinct from the

{ defined in "BLK_I!". Had the SCALAR i statement been absent in block "BLK _2",

the value of & and i at the end of execution would have been 2.

3.1.3 A simple program

As mentioned before, an assignment statement consists of a variable name, a

left arrow ("«"), and an expression of the correct type. When an assignment

stat ement is executed, the value of the expression on the right hand side is

computed, and the result becomes the new value of the variable on the left hand

side. Care must be taken to ensure that the data type of the expression is the

same as that of the variable. During compilation, AL will check for type and

dimensional consistency across opposite sides of the left arrow, and complain if it

) finds any incompatibility.

The print statement prints out the values of the variables and the strings

during execution time. It consists of the reserved word PRINT followed by an

open parenthesis, a list of arguments separated by commas and a close

parenthesis, The arguments may be variable names or the names of predefined

constants, or they may be string constants which consist of characters enclosed by

double quotes.

Here is a simple AL program that will compute and print out the current arm

positions and the distance between them;

BEGIN

DISTANCE SCALAR sl;

DISTANCE VECTOR vl! ;

PRINT (“THE BLUE ARM IS AT ", barm);
PRINT (“THE YELLOW ARM IS AT ", yarm);
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vl] « POS(barm) = POS(yarm);
{vl is tho vector distance between tho centers of
t ho hands}

sle| vl |; {sl is the absolute distance between the hands}
PRINT (“THE DISTANCE BETWEEN THE BLUE AND YELLOW FINGERS IS",

sl," INCHES”);
END

Other statements possible within a block will be discussed in the following

sect ions.

3.2 Simple MOVE statement

The simplest motion program is one which will move an arm to a known

position. When the two arms barm or yarm are not being used they are placed in

statically balanced positions with the fingers pointing downwards so that a power

failure does not result in the arms collapsing. The resting positions of the arms

with the described pointing direction (orientation) of the fingers are known as

bpark and ypark.

For purposes of this document when we refer to an arm we shall mean the

blue arm unless otherwise obvious from the context.

Let us assume that the arm is in any arbitrary posit ion, and we want to

move it to the park position under computer control, The statement to do this

would be

MOVE barm TO bpark;

During compilation, AL will try to work out a trajectory (the position of each

of the joints from the initial position to the final position as a function of time) from

the current position to the park position so that the motion is accomplished as fast

* as possible subject to the constraints of maximum acceleration and torque imposed

by the motors. However, during compilation, AL cannot read the arm position, so it

has to be provided with a planned position for the arm which the user may specify.

Unless told otherwise, AL will assume at the beginning of a program that the arm is

at t-he park position. During execution, if the actual position is different from the

assumed starting position, the runtime system will try to modify the trajectory to

accomplish the motion within the length of time originally planned. Thus if a joint

has to go a distance further than originally planned, the motion would have to be

faster than planned in order to be accomplished in the same time.

In the above statement, if AL assumes that barm is already at the park

position, it will very wisely decide that no motion is required, and will thus

compute a trajectory which requires zero time to traverse, Should it happen at

execution that the arm is not initially at the park position, the modified trajectory

will try to bring the arm to the park position in zero time, which will result in large
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accelerations and excessive motor torques being required. In order to slow down

the motion to ensure its success, we should use a DURATION clause to modify the

planned zero time trajectory as follows:

MOVE barm TO bpark WITH DURATION = 4#seconds;

This statement tells the computer that we want to move to the park

position over a time interval of four seconds. Note that there is now no semicolon

after the hpark but rather that it is at the end of the entire move statement after
the DURATION clause.

It is also possible to specify differential motions. The grinch sign, "&", is

used to represent the current position of the arm. The following statement would

cause the arm to move down 2 inches.

MOVE barm TO ®- 2% zhat * inches;

3.2.1 More about barm and bpark

Let us now consider bpark and barm for a moment. Bpark specifies

completely the way the arm is to be parked. It specifies the center of the hand by

giving the Cartesian coordinates, and in addition it indicates that the hand is

pointing downwards. Since there are six joints, specifying only the cart esian

coordinates of the hand is insufficient since it is possible to have an infinite

number of different hand orientations with the center of the finger tips in the same

position.

Barm is the name of a coordinate system whose origin lies centrally between

the fingers of the hand, and whose z-axis points in the same direction as the

fingers, the y-axis passes through the centers of the fingers, and the x-axis is

. determined from these two axes by use of the right hand rule. The value of barm

depends on the position and orientation of the hand, and consists of a vector which

defines the position of the center of the hand in the world coordinate system, and

a rot which defines how the arm coordinate system is rotated in terms of the

. coordinate system of the station. Station is the frame which is the reference

coordinate system, and the vector part is set at (0,0,0). Our station coordinate

system has the z-axis pointing upwards, the y-axis horizontal and parallel to the

short side of the table and pointing towards the window (i.e in a direction pointing

from the pedestal of the yellow arm to the pedestal of the blue arm). The x-axis

Is horizontal and parallel to the long side of the work table, and points towards the

far wall,

In the park position the hand points downward with the center of the hand

at coordinates (43.53, 56.86, 9.96) * inches. The coordinate system is rot at ed

180 degrees about the y-axis. Thus the value of bpark is as follows:
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FRAME{ ROT(YHAT, 180+degrees), VECTOR(43.53, 56.86, 9.96)*inches)

The instruction MO VE barm TO bpark has the effect of moving the

coordinate system whose name is barm to the new position and orientation

described by bpark,

3.3 Using the fingers: OPEN, CLOSE & CENTER

Our manipulator end effector (hand) consists of two fingers which can move

together or apart when instructed to do so by the OPEN or CLOSE command,

which specifies the width to which the hand opening must go. An example of this

particular instruct ion is

OPEN BHAND TO 2.5%inches

The general form of the instruction is

OPEN <hand> TO <scalar_exp>

CLOSE <hand> TO <scalar_exp>

where <hand> is either of the reserved words bhand or yhand, and <scalar_exp>

consists of a scalar expression of dimension distance, |.€. its units should ultimately
be reducible to inches or cm or some such unit of measure of distance.

The OPEN or CLOSE instruction moves both fingers simultaneously at the

same speed. The OPEN command will open the hand to the desired size. The

CLOSE instruction will keep on moving the finger until the touch sensors trigger,

and signal an error if the hand opening is smaller than the desired opening. (The

CLOSE instruction will be implemented in the near future.) If there is a heavy

" object between the fingers, the fingers or motors might get damaged, while a light

object may get moved by the fingers. The CENTER cornmand prevents these

undesirable results by causing the fingers to move toward each other slowly until

one of the touch sensors triggers to let the system know that contact has been

rade with the object. At this point the whole arm will shift to maintain the

position of the finger which is in contact with the object, and the cycle of moving

fingers and arm will continue until both touch sensors trigger. When this happens,

the new position of the arm can be read to determine the position of the object.

Note that the CENTER command does not “center” the object between the

fingers, but rather ensures that the hand grasps the object without moving the

object. The OPEN and CLOSE commands are used when the position of the object

to be grasped is known precisely or when the object is to be moved to a precise

spot. The CENTER command takes an arm as its argument as follows.

CENTER <arm>
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The use of these statements will be illustrated in the following example

used to grab a 2-inch cube, move it over 10 inches in the X direction, and then
release it.

BEGIN

FRAME cube, now-place;

cube « FRAME(ROT(XHAT,180%deg), VECTOR(20,30,1 )*inch);
{ defines position of cube center }

now-place *+cube+*lO0xxhatxinchos;
MOVE barm TO bpark WITH DURATION = 4x%seconds;
OPEN bhand TO 3*inches;

{insure that we get barm and bhand to known positions }
MOVE barm TO cube} { get arm to planned location of cube }
CENTER barm: { grasp cube without moving it }

MOVE barm TO new-place; { put the cube where we want it }
OPEN bhand TO 3.0 inches; { open the hand, releasing the block }
MOVE barm TO bpark; { all done, park the arm }

END

3.4 Intermediate points - VIA,APPROACH and DE PAR TURE

Many objects have shapes which necessitate care as the arm approaches or

departs from them. The motion clause WITH APPROACH = appr will cause the

arm to approach its destination after having passed through the point determined

by vector appr in the coordinate system of the destination. In stat ion coordinates

this point would be dest+apprWRT dest. The motion clause WITH DEPARTURE

= depr similarly specifies a departure point. Section 4.4.3 indicates the effect of

appr or depr taking on non-vector values.

If no approach point is given, a default approach of 3 inches along the £ axis

of the station will be used. If no departure point is specified, the approach point

from the last motion, if any, will be used. The word deproach (which is an

abbreviation for departure and approach) has been coined to specify the general
) approach or departure point. Approach points relate to the destination of the

current move command, while departure points relate to the starting posit ion of

t he arm for the current command. To move the arm directly from the frame

position at the beginning of the motion, the clause WITH DEPARTURE =

NILDEPROACH should be used. To move the arm directly towards the desired

frame position indicated in the current statement, the clause WITH APPROACH =

NILDE PROACH should be used.

If the destination is a frame constant or expression then NILDEPROACH will

be the default approach point.

The predeclared macro DIRECTLY will accomplish the same purpose as the

two clauses
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WITH APPROACH = NILDEPROACH

WITH DEPARTURE = NILDEPROACH

The APPROACH and DEPARTURE clauses allow the user to specify at most

a three segment motion ~ from the current position to the departure point, from

the departure point to the approach point, and from the approach point to the

destination. Usually t hese intermediate points are in terms of the coordinate

system of either the current position or the destination.

Sometimes it is necessary to move an object through additional locations in

space, or to have more than the three segment motions described above.

Examples are cases where objects in the way of the moving manipulator have to

be avoided, or the arm has to pass through an opening. In such situations the V/A

clause maybe used to specify the frames through which the arm must pass. The

I’/I4 clause should generally be associated with points which have values

determinable at the planning stage. Points which can be determined only at

runtime cause problems for the trajectory calculator.

In this example, the arm picks up a brick on the ground and places it on the

floor of the oven, which is at the same level as the ground, but the arm has to

pass through the oven door which is above ground level.

BEGIN “Put brick into oven”

FRAME brick, ovon, oven-door;

brick-FRAME(RQOT(yhat,90%degrees) ,VECTOR(10,30,3)*inches};
{define initial position of brick }

oven-FRAME(ROT(yhat,90%degrees),YECTOR(10,40,3)*inches);
{dafine final position of brick }

oven_door+-FRAME(ROT (yhat,90%degrees),VECTOR(15,40,4)xinches);
{ dafino position of oven door }

MOVE barm TO bpark WITH DURATION = 4%seconds;
OPEN bhand TO 3xinches;

{ make sure arm and hand in known position }
MOVE barm TO brick

WITH APPROACH = 3xzhatkinches;

{ go for brick with hand in horizontal position,
note that brick z-axis is parallel to station x-axis)

CLOSE bhnnd TO |.7 %inches;

{ grasp the brick }
MOVE barm TO oven VIA oven-door

WITH DEPARTURE = =3*xhatkinches;

{ move brick into oven through oven door after lifting vertically }
OPEN bhand TO 3.0xinches;

{release the brick }
MOVE barm TO bpark VIA oven-door;

{ go park the arm }
END



27

3.5 Modelling objects - affixment & indirect moves

Since assembly often involves attaching one object to anot her, AL has an

automatic mechanism to keep track of the location of a subsidiary piece of the

assembly as the main assembly is moved; the mechanism is called affixment. For

example, there might be a frame called pump and another called pump_base. At

some stage in the assembly, the pump is bolted to pump-base. At this time it is

appropriate to execute the statement

AFFIX pump JO pump-base

This statement informs AL that motions of the pump_base are to affect the

locat ion of pump. Note that the AFFIX statement does not call any routines to

generate the code to actually perform the bolting operation. Jhe statement merely

informs AL that at this stage in the program execution, pump Is to be considered

affixed to pump_base.

The particular case in which object frames are attached to the arm frame is

of special import ance. Once pump is affixed to barm, for instance, the user can

forget about the arm, and just concentrate on where and how pump has to move;
AL will take care of how to move the arm to achieve the desired result. This is an

indirect move where the user need not specify arm motion,

When affixing frames to one another, the user must specify the relative

transformation between the frames, and whether the affixment is rigid or nonrigid.

The relative transformation can be specified within the affixment statement, or if

the positions of the two frames are already defined, just stating that they are to

be affixed will automatically compute the necessary trans.

The form of the affixment statement is as follows:

part « <frame exp?;

fixture « <frame exp;

AFFIX part JO fixture NONRJGIDLY;

or alternately,

AFFIX pump JO pump-base AT <transexp> RIGIDLY;

RIGIDLY implies that the affixment is symmetric, so that changes in value of

one frame imply changes in the other, A RIGID affixment is normally used when

the objects are physically joined together rigidly, e.g. the pump being bolted to the

pump _base or an arm grasping an object. In the above example, movement of pump

will affect pump_base, and movement of pump-base will affect pump.
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A NONRIGID affixment is used when one object is resting on another: e.g.

part resting in fixture; part moves with the fixture, but if only part is moved, fixture

stays put.

A frame could be affixed to more than one frame, and affixment s may be

chained together. The affixment relationship can be broken by means of the UNFIX

statement as follows:

UNFIX pump FROM barm;

Ail the frames rooted in pump (e.g. pump_base) will remain rooted in pump,
and will no longer be affected by barm or its motion.

The following examples illustrate the stacking of one block on top of another

with and without the use of affixment to illustrate its usage and convenience

during programming.

BEGIN “block stacking without affixmont”

FRAME bik] , bikl _grasp,blkl_top,blk2,blk2_grasp, finplace;
DISTANCE SCALAR grasphoight, blkl length, bik2length, bikl width,

blk2width,blk] height;
ROT stand;

stand «ROT(XHAT,] 80.%degrees);

blkl width «] 5%inches; bik2widt h «1.5%inches;
blkl length «2.4%inches; bik2length « 2.4xinches;
blkl height «2%inches; grasphoight + 0.75%inches;

{ dofino dimensions of the blocks }

bikl « FRAME (nilrot,VECTOR(!0,30,0)%inches);
blk2 + FRAME(nilrot,VECTOR(6,30,0)%inches);

{ ciefine bottom corner of blocks }
finplace « FRAME (nilrot,VECTOR(8,40,0)*inches);

{define final position of bottom of block 1 }

bik] _grasp « FRAME (stand, VECTOR(blk] length/2,bik] width/2,graspheight));
{ define grasping position of block 1 }

blkl,top *FRAME(niirot,VECTOR(0,0,bikl height);
{ define position of top of block 1 }

blk2_grasp « FRAME (stand,VECTOR(bik2length/2,blk2width/2,graspheight));
{ define grasping position of block 2 }

MOVE barm TO bpark WITH DURATION= 3%seconds;
OPEN bhand TO 3.6%inches;

MOVE barm TO blkl*bikl_grasp WITH APPROACH =3%zhatkinches;
{ arm moves to grasping position of blkl }

CENTER barm; { hand grasps blkl}
MOVE barm TO finplacexblkl _grasp WITH APPROACH =3%zhat¥inches;

{ arm moves so that bikl is in final place}
OPEN bhand TO 3.6%*inches; { hand opens to release blkl}
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MOVE bat-m TO blk2%blk2_grasp WITH APPROACH =3#%zhatxinches;
{ arm moves to grasping position of blk2}

CENTER barm; { hand grasps blk2 }
MOVE barm TO finplacexblkl _topkbik2_grasp WITH APPROACH =3%zhatkinches;

{ arm moves to put blk2 on top of blkl}
OPEN bhand TO 3.6*inches; { hand opens to release blk2 }

MOVE barm TO bpark; PRINT (“all done”);

END “block stacking without affixment”;

Note that for each motion the destination is an expression consisting of a

local coordinate system and a point in that system (e.g. blklwblki_grasp). Another
way to write the same program is as follows, where AL automatically takes care of

the bookkeeping of which coordinate system to use. The same number of

declarations are still needed, but now the motion statements are clearer. Note

that because the destination of each motion is no longer an expression AL will

automatically use the standard approach.

BEGIN “block stacking using affixment”

FRAME blk! | blkl _grasp, blk] _top, bik2,blk2_grasp, finplace;
DISTANCE SCALAR graspheight, bikl length, bikZlength,bikl width,

bik2width,bik] height;
ROT stand;

stand «ROT(XHAT,180.%degrees);

blkl width & | 5%kinches; blk2width « | .bxinches;
blkl length « 2.4%inches; blk2length « 2.4xinches;
blk} height ¢2%inches: graspheight «0.75%inches;

blk] « FRAME (nilrot, VECTOR( 10,30,0)%xinches);
blk2 + FRAME(nilrot,VECTOR(6,30,0)%inches);
finplace + FRAME(niirot,VECTOR(8,40,0)%inches);

AFFIX blk] _grasp TO blkl at
TRANS (standVECTOR(blkllength/2,blkliwidth/2,graspheight}} RIGIDLY;

AFFIXblk] _top TO blk] at
TRANS ((nilrot,VECTOR(0,0,bik] height)) RIGIDLY;

{ top and grasping position of blockl are defined with respect to bottom }
AFFIX blk2_grasp TO blk2 at

TRANS (stand,VECTOR(bik2length/2,bik2width/2,graspheight)) RIGIDLY;
{ grasping position of block2 defined with respect to bottom }

MOVE barm TO bpark WITH DURATION = 3%seconds:

OPEN bhand TO 3.6%inches;
{ normalize arm position };

MOVE barm TO blk} _grasp; { arm moves over the grasping position of blkl}
CENTER barm; { hand closes over bikl}
AFFIX blkl to barm RIGIDLY; {blkl and all its parts are attached to arm }
MOVE blkl TO finplace; { note that blkl is moved, not barm }
OPEN bhand TO 3.6%inches;  { this physically releases the block }
UNFIX blkl from barm; { blkl is released from the arm in the world model }

MOVE barm TO bik2_grasp;
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CENTER barm;
AFFIX blk2 to barm RIGIDLY;

MOVE blk2 TO blkl,top; { move bottom of blk2 LO the top of bikl}
OPEN bhand TO 3.6%inches;
UNFIX blk2 from barm;

MOVE barm TO bpark; PRINT (“all done”);

END “block stacking using affixment”;

3.6 Sensing forces - simple condition monitors

When we want to use threshold values of sensory information to perform

certain actions, we make use of condition monitor clauses. The syntax is as

follows:

ON <condition> DO <action>

A simple example would be to rotate the wrist of the arm (assumed vertical) and

stop when a torque of 50 ounce-inches is encountered - perhaps that indicates

that we have tightened something to the required torque. An example of such a

statement would then be

MOVE barm TO barmxFRAME(ROT(zhat, 90xdegrees),nilvect*inches)

ON TORQUE(zhat)2 50 * ouncesxinches DO STOP barm;

The effect of this statement is obvious; the STOP command stops the motion

of the arm immediately after the force is encountered. Note the specification of

the direct ion of the detected torque, zhat, and the threshold amount (50

ounce-inches),

Assume we want to find the height of an object and that the object is

‘expected to be in a given location, and that its height is expected to be between

2 and 12 inches.

BEGIN

FRAME objoct;
DISTANCE SCALAR height;

MOVE barm TO bpark WITH DURATION=3%seconds;
CLOSE bhand TO Oxinches; { bring fingers together }

MOVE barm TO object ¢14%zhatkinches; { arm is vertically above the object }

MOVE barm TO ® =] 3%zhatxinches { symbol ® here means current position of barm }
WITH DURATION =] 0Q%seconds

ON FORCE(ZHAT)21 0xounces DO STOP:

{ try to move arm down 13 inches slowly and stop when a force is
encountered; i.e. contact is made}

height «POS(barm).zhat = 0.3%inches;
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{ take the z-component of the arm’s current location and subtract the
distance between the center and edge of the fingers to give the actual

height of the object }

PRINT("HEIGHT OF OBJECT IS", height, " INCHES");

END;

3.7 Applying forces & compliance

In addition to detecting forces, AL allows specified forces to be applied.

Since forces have both direction and magnitude, the applied force must have both

specified, either in terms of the resultant magnitude and direction, or in terms of

orthogonal components along the principal axes of a given coordinate system.

Applying a force of magnitude zero means that the arm will be compliant, i.e. move

away from any external force in that direction. In the following example, the arm

Is compliant to forces in the x and y directions (Le., it tends to move away from

any external forces in those directions), while it applies a downward force of 10

ounces in the z direction. The FORCE_FRAME clause indicates the coordinate

system in which the force components are specified, and is needed whenever two

or more force components (which must be orthogonal and along the principal axes)

are used. The above is also applicable to torques. In the example below, this

coordinate system is in world (fixed) coordinates and has the station orientation.

FORCE _FRA ME is described in more detail in Chapter 4.

BEGIN “insert peg into hole”

FRAME peg-bottom, peg-grasp, hole-bottom, hole-top;

MOVE barm TO bpark WITH DURATION=3%seconds;
OPEN bhand to 3%inches; { normal initialization }

peg-bottom «FRAME (nilrot,VECTOR(20,30,0)xinches);
hole-bottom FRAME(nilrot,VECTOR(25,35,0)%inches);

AFFIX peg_grasp TO peg_bottom RIGIDLY

AT TRANS(ROT (xhat,] 80xdegrees),3%zhat*inches);
AFFIX hole-top TO hole-bottom RIGIDLY

AT TRANS(nilrot,3%zhat*inches);

MOVE barm TO peg-grasp;

CENTER barm; { get peg }
AFFIX pog_grasp TO barm RIGIDLY;

MOVE peg-bottom TO hole-top;

MOVE peg_bottom TO hole-bottom DIRECTLY [prevent arm lifting and dropping)
WITH FORCE-FRAME = station IN WORLD

WITH FORCE(zhat)= -1 O%ounces {force components in station coordinates)
WITH FORCE(xhat) = O%ounces

WITH FORCE(yhat) = O%ounces

SLOWLY; { SLOWLY is a macro which slows movements by 3 times
(c.f. section 3.14.4)}

END “insert peg into hole”;

When force is applied, there should be a resisting force, otherwise the arm

will accelerate in the direction specified because of Newton’s Second Law.
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However, compliant motions (forces in certain directions equal zero) currently

cause spont aneous motion even if there is nothing touching the arm because noise

amplification and imprecise modeiling of the arm loads and geometry may cause an

initial velocity which the arm tries to maintain because of Newton's First Law. It is

expected that this problem may be alleviated by the use of damping. Finkel, in

“Constructing and Debugging Manipulator Programs”, discusses some of the

problems associated with compliant motion specifications.

3.8 Control structures: IF, FOR & WHILE statements

AL has many of the traditional ALGOL control structures, including

condi tionals and loops. There are no jumps in AL, because they confuse the flow

analysis needed for rnaintaining planning values. In this section we shall describe

the IF, FOR and WHILE statements.

The /F statement has the form:

IF <condition>

THEN <statement>

ELSE <statement>

The £LSE part is optional. The condition is some boolean expression involving one

of the operators £,>,5,2,= and #. Boolean expressions can be built up out of

relational operators, the logical connectives A{AND), v (ox), ~(NOT),«(XOR,

exclusive or), =(£QV, the logical equivalence) or the logical constants TRUE or

FALSE. The condition may also be some arithmetic scalar expression. If the

condition is true (non-zero) the statement following the THEN is executed.

Otherwise the statement following the ELSE, if present, will be executed.

The FOR loop has the form:

FOR <svar>« <sexpr> STEP <sexpr> UNTIL <sexpr> DO <statement>

where <svar> stands for “scalar variable” and <sexfr> stands for “scalar

expression of same dimension”. The initial value of the variable is the value of the

first expression; every time tho statement is executed, its value is incremented by

the value of the second expression, and the process repeats until the value

exceeds that of the third expression. if the step size is negative, the right things

happen. A test is made before the first iteration, so it is possible that the loop

will not get executed at all.

The WHILE loop is as follows:

WHILE <condition> DO <statement>
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where <condition> is the same as above. The condition is checked and if it is true

the statement is executed. The process is repeated until the condition becomes

false.

The following example illustrates the use of the IF, FOR and WHILE

statements in a program where the arm picks up castings from one place, puts the

good ones on a pallet in 6 rows of 4 and discards the defective ones. The

castings come in batches of 50, but it is not known ahead of time how many

batches there will be.

BEGIN “sort castings”

FRAME pickup, garbage-bin, pallet;

SCALAR pallet_row,pallet_coiumn, good, bad;
DISTANCE SCALAR packing-distance;

SCALAR ok, more-batches, casting-number;

packing _distance«4xinches:

MOVE barm TO pickup WITH DURATION = 3%seconds;
OPEN bhand TO 3%inches;

pallet-row+ 1; pallet_column+0Q; good+0; bad+-0;
casting+ pickups

MOVE barm TO pickup DIRECTLY;

CENTER barm;

IF (bhand <1.5%inches) THEN more_batches+FALSE ELSE more_batches+TRUE;

WHILE more-batches DO

BEGIN “sort 50 castings”

FOR casting-number+ I STEP 1 UNTIL 50 DO
BEGIN “sort casting in hand”

ok ¢ FALSE;

AFFIX casting TO barm RIGIDLY;

MOVE casting TO pickup « 3%zhatkinches

ON FORCE(zhat)2 20%ounces DO ok+TRUE: {see if it weighs enough }

IF ok THEN

BEGIN “good casting”

good+-good+ 1;

|F pallet_column=4
THEN BEGIN pallet_column«0;pallet_rowepallet_row « 1; END
ELSE paliet_column+pallet_column+] ;

MOVE casting TO pallet ¢

VECTOR( pallet-column*packing-distance,
paliet_rowxpacking_distance,0%inches)

WITH APPROACH = 3%zhatxinches;
UNFIX casting FROM barm:;

OPEN bhand TO 3*inches;
IF (pallet_column=4) AND (pallet_row=6)

THEN BEGIN “pallet full”

paliet_column«0;pallet_rowe 1;

{ code to remove this pallet and get new pallet }
END “pallet full”;

MOVE barm TO pickup;

END “good casting”
ELSE
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BEGIN "defective casting”
bad«bad+];

MOVE casting TO garbage-bin DIRECTLY;

OPEN bhand TO 3*inches;

UNFIX casting FROM barm;

MOVE barm TO pickup;

END "defective casting”;

castingepickup;
CENTER barm;

END “sort casting in hand”;

IF (bhand <! .5%inches) THEN more-batches & FALSE;
END “sort 50 castings”;

MOVE barm TO bpark;

PRINT("THERE WERE ", good,” GOOD CASTINGS AND ", bad,© DEFECTIVE CASTINGS");

END “sort castings”;

3.9 Control structures (cont):CASE& UNTIL statements

Two of the other traditional ALGOL control structures in AL are the CASE

and UNTIL statements.

The CASE std ement comes in several forms, The regular CASE statement
has the form:

CASE <index> OF

BEGIN

<st at ement 0>;

<s{ at ement 1>;

<stal oment 22;

<statement n>

END

The. scalar index expression is evaluated and depending on the integer part of its

value one of the following statements is executed. If the index is zero then

statement 0 is chosen, if the index is one then statement 1 is chosen, and so on up

till n. If the index is negative, or greater than the number of statements, an error

is reported. Any of the statements may be null, e.g. “<statement 1>;;<statement

3>", in which case if the index were two nothing would be done.

There is also a numbered version of the CASE statement:

CASE <index> OF

BEGIN
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[CO] <st at ernent>;

[C1] <statement>;

[C2] <st at ement>;

[Cn] <statement>;

ELSE <st at ement>

END

where each statement has one or more non-negative scalar constants labelling it.

Again, the index expression is evaluated and if its integer part is the same as one
of the Ci’s then the st atement with that label is executed, Otherwise, if an ELSE

is present, the statement it labels is executed. If no ELSE is present, an error

occurs if the integer part of the index is negative or greater than the largest Ci,

otherwise nothing is done. Note that the ELSE statement may appear anywhere in

the list of statements; it need not be at the end.

Here is an example using the numbered CASE statement to select the

appropriate action to perform when given one of several possible parts.

BEGIN

SCALAR part-number;

FRAME pick_up,base,base_grasp,cover,cover_grasp,side,side_grasp,...;

(Initialization code including the following macro definitions:

DEFINE base,num =..3

DEFINE cover-num = ...3

DEFINE side-num = ..

which will be used for clarity in a numbered case statement.}

(Now go get the part at pick-up and do whatever is appropriate with it.)

PRINT ("Enter tho part's number: *);
part-number ¢ INSCALAR,; (INSCALAR reads in a scalar from the console keyboard }

(Have the user type in the part’s number. In the future this might

be done automatically using vision,}

CASE part-number OF
BEGIN

(base_num] BEGIN {Code to handle base.)
base ¢ pick-up;

MOVE barm TO base-grasp;

CENTER barm; (Grab it}

AFFIX base TO barm;

{Rest of code for base.}

END;

[cover-t-turn) BEGIN

(Code to handle cover.)

END;

(Repeat for other known parts: side,etc.}

ELSE BEGIN

PRINT("Unknown part number",crif);
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(Code to recover from error)
END

END;

{Rest of program. Note that each of the statements in the above CASE statement

should Icavo the arm in the same position. If not then a plan-time assign (c.f. section
4.5.1) will be required so the world modeller knows the arm’s position when the CASE
statement finishes. (c.f. sections 4.4.1 & 4.6) }
END;

The UNTIL statement is as follows:

DO <statement> UNTIL <condition>

where the statement is repeatedly executed until the condition becomes true.

This is similar to the WHILE statement described in the previous section, with the

exception that the WHILE loops while the condition is true, whereas the UNTIL

loops until the condition becomes true, Note that the body of an UNTIL loop is

always executed at least once.

As an example of the use of the UNTIL statement, here is a program

excerpt that gets a good casting, discarding any bad ones it finds in the process. It

Is similar to the exarnple in the previous section.

BEGIN

SCALAR success;

(Initialization code}

success * false;

castingepickup;

MOVE barm TO casting-grasp;

DO BEGIN (Try to get a good casting}

CENTER barm;

AFFIX casting TO barm RIGIDLY;

MOVE casting TO pickup ¢3%zhatxinches {See if it weighs enough)
ON FORCE 220%ounces ALONG zhat OF station DO success * true;

IF ~success THEN (Get rid of defective casting)
BEGIN

MOVE casting TO garbage-bin DIRECTLY;

OPEN bhand TO 3*inches;

UNFIX casting FROM barm;

casting+pickup;

MOVE barm TO casting-grasp
END

END UNTIL success;

barm &¢ pick-up *3%zhatxinches;
(Plan-time assign so the world modeller will be happy}

{Code for rest of program)

END;
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3.10 Simultaneous motion: COBEGIN-COEND, SIGNAL-WAIT

So far we have considered single arm moves. To perform simultaneous

movements of arms, two new concepts have to be introduced. The

COBEGIN-COEND block has the same effect as the BEGIN-END block, except that

statements within the block are executed simultaneously.

Thus the following will park both arms at the same time.

COBEGIN

MOVE barm TO bpark;

MOVE yarm TO ypark;

COEND;

Simple synchronization is possible within the context of sirnultaneous

execution. This is achieved by means of explicit events and the SIGNAL and WAIT

statements. Every different event that the user wishes to use should be declared
in a declaration.st at ement as follows;

EVENTe 1,e2,e3

The EVENT is distinct from algebraic data types (e.g. scalars) and cannot be

assigned a particular value by the user in his program by means of the regular

assignment statement. With each event is associated a count of how many times it

has been signalled. Initially, the count is zero, that is, no signals have appeared,

and no processes are waiting. The statement

SIGNAL el

increments the count associated with event el, and if the resulting count is zero or

) negative, one of those processes waiting for ¢l is released from its wait and
readied for execution. The statement

WAIT el

decrements the count associated with event ¢/, and if the resulting count is

negative, the process issuing the WAIT is blocked from continuing until a signal

comes along. If the count is zero or positive, there is no waiting.

The following example is used to show the use of the SIGNAL and WAIT

commands, although it rnay be done without these constructs. The blue arm picks

UP an object and moves to a passing location, where it makes sure that the yellow

arm has grasped it before releasing it.
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BEGIN

EVENT passed, caught, ready-pass;

FRAME steel_beam, pass, catch;

COBEGIN

BEGIN “blue”

MOVE barm TO steel-beam;

CENTER barm;

AFFIX steel-beam TO barmg { barm gets steel beam }
MOVE stool-beam TO pass; { takes it to passing position }
SIGNAL ready-pass; { barm says it is ready }
WAIT caught; { waits for yellow arm to catch)
OPEN bhand TO 3.0%inches; { when yellow arm ready releases beam)
UNFIX steel-beam FROM barm;

SIGNAL passed; { barm announces it has released beam }
END “blue”;

BEGIN “yellow”

OPEN yhand TO 3.0%*inches; { meanwhile yellow hand is opened }
MOVE yarm TO catch; { yellow arm goes to catching position }
WAIT ready-pass; { yarm waits till there is something to grab)
CENTER yarm; { grasps it)
SIGNAL caught; { yarm announces it caught it }
WAIT passod; { waits for blue arm to release it }
MOVE yarm TO pallet;

END “yellow”;

COEND:;

END;

A second example illustrates the use of SIGNAL and WAIT in resource

sharing. The example in the last section where castings are sorted will be used

but assume that the two arms are doing similar jobs, and that a single overhead

crane is used to take away the full pallets and bring in empty pallets. Blue and

yellow pallets are used to correspond to the appropriate arms. The code for the

program will be similar to the previous section, except that the section which

states {code to remove this pallet and get new pallet}, in the block labeled "pallet

Jul", will use SIGNAL and WAIT to ensure that the crane is not asked to go to two

locations at the same time, and that it is asked to go to a location only when it is

needed.

BEGIN

EVENT blue_pallet_full, blue-pallet-empty;
EVENT yellow_pallet_fuli, yellow-pallet-empty;
EVENT crane-free;

SCALAR more_blue_pallets, more_yeliow_pallets;

more_blue_pallets« TRUE; more_yellow_paliets«TRUE;
SIGNAL crane-free;

COCEGIN

BEGIN “load blue pallets”

BEGIN “sort castings” {code from section 3.8)
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IF (pallet_column=4) AND (pailet_row=6)
THEN BEGIN “pallet full”

pallet_columne0ypallet_rowe 1;
SIGNAL blue_pallet_full;

WAIT blue-pallet-empty;

END “pallet full”;

END “sort castings”;

SIGNAL blue_paliet_full; (to get last pallet out of the way)
WAIT blue-pallet-empty;
more_blue_paliets-FALSE; {to stop crane waiting for blue pallet,

otherwise crane program will get stuck in

“change blue pallet” block.)
END;

BEGIN “load yellow pallets”

BEGIN “sort castings” (similar to blue pallets except use yellow

arm and yellow pallet)

- IF {pallet_column=4) A ND (pailet_row=6)
THEN BEGIN “pallet full”

pallet_columne0;pallet_row« 1;
SIGNAL yellow_pallet_fulls
WAIT yeliow_paillet_empty;
END “pallet full”;

END “sort castings”;

SIGNAL yeollow_paliet_fulls
WAIT yeliow_pallet_empty;
more_yellow_pailets-FALSE;

END;

WHILE more_blue_pallets
DO BEGIN “change blue pallet”

WAIT bluo_pallet_fulls

WAIT crane-free; { wait for crane to be free }
(code to use crane to change blue pallet}

SIGNAL blue_pallet_emply;
SIGNAL crane-free;

END;

WHILE more_yellow_pallets

DO BEGIN “change yellow pallet”
WAIT yellow_pailet_fuil;

WAIT crane-free; { wait for crane to be free }
{code to use crane to change yellow pallet}

SIGNAL vyellow-pallet-empty;

SIGNAL crane-free;

END;

COEND:;

END;
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3.11 Arrays

Sometimes we would like a variable to refer to more than one value. As an

example consider a base plate with three screw holes in it. During the assembly,

code to insert a screw into each hole will be writ ten. Rat her than repeatedly

writing the same code for each screw hole, it would be preferable to write it once

and somehow use a FOR loop to repeat it for all the holes. An array will allow us

to do this.

An array is a variable that can have multiple values. In the above example

we had three frames; first-hole, second-hole and third-hole. We can define a

frame array: hole[ 1:3] which allows us to reference the three screw holes as:

hole[1], hole[2] and hole[3]. More formally an array definition is of the form:

<type> ARRAY <namel>[bounds], <name2>[bounds]

where type specifies the array’s data type, and bounds indicates the size of the

array and how the elements of it are referenced. Our example above used a one

dimensional array. An example of a two dimensional array is:

SCALAR ARRAY foo[ 1:3,1:4]

which would look like;

foo[l,1] foo[l,2] foo[l,3] foo[l,4]
foo[2,1] foo[2,2] foo[2,3] foo[2,4]

foo[3,1] foo[3,2] foo[3,3] foo[3,4]

There is no upper limit on the number of dimensions an array rnay have. The array

bound pairs may be either scalar constants, variables or expressions. The bounds

-may have positive or negative values, as long as the lower bound is smaller than

the upper bound. For example:

VECTOR ARRAY u[-3:3],v[n:n+5], w[0:3,1:m]

where n and m are scalar variables. Space is allocated for arrays upon entry of

the block in which they are defined, so the sizes of v and w will depend on the

values of n and m when the definition occurs,

Arrays are used in programs just like regular variables. For example:

FOR i « 1 STEP 1 UNTIL 4 DO foo[ 1 ,i] « foo[ 2,i]*fo0[3,i]

At runtime a check is made that each subscript falls within the lower and

upper bounds given for the dimension it specifies. Subscripts out side the bounds
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cause an error message to be printed. Only the integer part of the subscript is
used.

Here is an example to do the screw insertion task mentioned at the

beginning of this section.

BEGIN

FRAME ARRAY hole[1:3];
FRAME base-plate;

SCALAR i;

(Initialization and start of the program including definition of the locations of

the base-plate and the screw holes:

base-plate + FRAME(....);
AFFIX hole[1] TO base-plate RIGIDLY AT TRANS(....);
AFFIX hole[2] TO base-plate RIGIDLY AT TRANS({....);
AFFIX hole[3] TO base-plate RIGIDLY AT TRANS(....);
Screws will bo defined with the z-axis pointing downward.

Code to get the screw driver into the hand is also included. }

(Now insert the three screws}

FOR i «1 STEPI UNTIL 3 DO

BEGIN

scrow+ screw, disponsor; {Define location of new screw}
MOVE driver-tip TO screw; {Get a screw = not really this easy)

AFFIX screw TO driver;

MOVE screw-tip TO hole[i]; (Screw is just above screw hole}

COBEGIN

MOVE screw TO @= 0.75 ¥zhat% inches {Push down with arm)
WITH FORCE = 20 ¥ ounces ALONG zhat OF screw

WITH DURATION = 2.5 seconds;

OPERATE driver (Drive in the screw}

WITH VELOCITY = 200 % rpm

WITH DURATION =3% seconds;

COEND;

UNFIX screw FROM driver {Release the screw)

END;

END

Note that the “driver” used above is not available currently.

3.12 Procedures

There are times when we wish to do the same operation at several places

in the program. Rather than place the entire sequence at each of these points it is

often desirable to code it up once as the body of a procedure or subroutine, and

at each point in the program where the operation is required have a call on the

procedure. As an example during an assembly there may be a number of screws

that need to be inserted. A procedure to do this insertion will be shown after the

syntax for procedures has been explained.
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Procedures are defined as follows:

<type> PROCEDURE <name> (parameter list);
<siatement>

where the statement is executed each time the procedure is called. A simple

procedure to park the arm and open the fingers could be written as:

PROCEDURE park;
BEGIN

MOVE barm TO bpark WITH DURATION = 3 ¥sec;

OPEN bhand TO 3 * inches;

END;

Any time in the program the user wants to move the arm to the park position and

open the hand all she need type is the statement:

park

which will call the procedure. Sometimes a procedure will be used to return a

result needed for computation (i.e. the proceduce will be used as a function). This

is done bY use of the RETURN statement:

RETURN (value)

which returns value as the result of the procedure. For example a procedure to

determine the height of the blue arm might be writ ten:

DISTANCE SCALAR PROCEDURE height,barm;

RETURN{(POS(barm} . zhat );

Any time the height of the blue arm is needed one would call the procedure. Note

the declaration of the data type that the procedure returns. We can generalize

this procedure so that for any frame it returns the height of the frame. To do this

we introduce the use of parameters to pass a value to the procedure. The

generalized procedure and a sample of it in use is as follows:

DISTANCE SCALAR PROCEDURE height (FRAME f);
RETURN{POS(f) . zhat );

PRINT("The height of the pallet is:“, height(pallet_top));

when the procedure is called the parameter f is bound to the value of pallet-top,

and every reference to f in the body of the procedure will refer to pallet-top.

Parameters can be passed by reference, which is the default for variables and

arrays, or by value, the only way expressions are passed. If a variable is passed

by reference then its value can be modified by the procedure. For example a

procedure to refine the location of a frame by grasping it with the arm and then

reading the position of the arm might be written:
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PROCEDURE refine (REFERENCE FRAME obj);
BEGIN

OPEN bhand TO 3%*inches;

MOVE barm TO obj;

CENTER barm; {This will sense the object’s position)

obj & barm

END;

When the procedure returns, the frame passed as its argument will have a new

value.

A traditional example of a procedure used in most programming tutorials is

the factorial function: fact(l) = 1, fact(2) = 21, fact(3) = 3x2%1, etc. Here are

two ways of writing factorial in AL; the first is iterative, while the second is

recursive (i.e. it calls itself).

SCALAR PROCEDURE ifa¢t (SCALAR n);
BEGIN

SCALAR i, prod;

prod + 1;

FOR i « 2 STEP 1 UNTIL n DO prod prod ¥ i;

RETURN( prod );
END;

SCALAR PROCEDURE rfact (SCALAR n);
IF n>} THEN RETURN( n %rfact(n=1))

ELSE RETURN(1);

A procedure to do the screw insertion operation is as follows:

PROCEDURE insert-screw (FRAME hole-location);
BEGIN

screwtscrew_dispenser;
MOVE driver-tip TO screw; (Get a screw = not really this easy)

AFFIX screw TO driver;

MOVE screw_tip TO hole_location; (Screw is just above screw hole}

COBEGIN

MOVE screw TO ®= 0.75 ¥ zhat ¥ inches (Push down with arm)

WITH FORCE = 20%¥ ounces ALONG zhat OF screw

WITH DURATION = 2.5 seconds;

OPERATE driver {Drive in the screw}

WITH VELOCITY = 200 % rpm

WITH DURATION = 3 % seconds;

COEND:;

UNFIX screw FROM driver (Release the screws
END;

Now the loop to insert three screws in the example in the previous section

would be:

FOR i « 1 STEP 1 UNTIL 3 DO insert_screw(hole[i]);
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4.4

It should be mentioned that procedures present certain difficulties to the

world modeller in the AL compiler. Please refer to section 4.6 for a discussion of

these problems and solutions to them.

3.13 Hints to the Programmer

3.13.1 Upward pointing grasping posit ions

The AL user will quickly realize that under normal usage, the frame barm

usually has its Z axis pointing downwards in station coordinates. Since we are

used to thinking in terms of an upward positive Z direction, it is sometimes

convenient to define another frame affixed rigidly to barm but with the Z-axis

pointing upwards, and the Y axis either parallel or anti-parallel to the station Y

axis. With such a frame, the user can define grasping frames with the station

orientation if the hand points downwards. The following statements will set up a

frame called bgrasp to accomplish what we want.

FRAME bgrasp; -

AFFIX bgrasp TO barm AT TRANS(ROT(xhat,180xdeg),nilvect*inches) RIGIDLY;

3.13.2 Initialization and program end

Initialization of the arm and hand to known positions before starting is a

good idea to ensure that the first movement from an unknown position does not

result in the arm trying to move too fast,

The statements recommended are:

MOVE barm TO bpark WITH DURATION = 3*seconds;
OPEN bhand TO 3x*inches;

It is good policy to park the arm at the end of the program by using:

MOVE barm TO bpark

The AL compiler will give a warning message if the arm is not parked upon

program completion.

3.13.3 Slowing down movements

When trying out a program for the first time when it is not known how the

arm will behave, the use of a speed_factor greater than unity will slow down all

motions in the program (c.f. section 4.4.6 for details), The user should assign a

value to speed_factor at the beginning of the program as follows:
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speed-factor « 2.0

For convenience, two predeclared macros SLOW and CAUTIOUS assigning

values of 2.0 and 3.0 respectively to speed_factor may be used instead of the
assignment statement described above.
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4. THE AL LANGUAGE

AL is an ALGOL-like source language extended to handle the problems of

manipulator control. This chapter describes the features of the AL language. It is

presumed that the reader has read the previous chapter which introduces the AL

language in a tutorial fashion.

4.1 Basic constructs

4.1.1 Programs

AL programs are organized in the traditional block structure of ALGOL. A

program in AL consists of either a single statement or a block statement, which is a

sequence of statements, separated by semicolons, and surrounded by the reserved

words BEGIN and END (or COBEGIN and COEND). Blocks may be named by
placing a string constant immediately after the BEGIN (or COBEGIN). This name

will be checked against the string (if any) that follows the matching END (or

COEND), and if the two strings do not match, an error will be reported.

BEGIN “block name” S; S; S; S END “block name”

4.1.2 Variables

A variable name is a string of alphanumeric characters and underscore, "_",

starting with a letter. Variables must be declared before being used. AL follows

normal variable scoping rules: variables may only be referenced within the block

they are deciared in, or in blocks nested within that block, The same variable

name may be declared in several blocks, in which case any references to it refer

to the innermost declaration enclosing the reference.

-4.1.3 Comments

Comments are text inserted into the program to make it more readable.

Comments can be written in two forms. The compiler will ignore all text between

the reserved word COMMENT and the next semicolon encountered. Comments

may also be enclosed by curly brackets "{}".
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4.2 Data types and expressions

4.2.1 Algebraic data types: SCALAR, VECTOR, ROT, FRAME, TRANS

The basic data types in AL were chosen to facilitate working in the three

dimensions of the real world. Scalars are -floating point numbers like reals in other

computer languages. Vectors are 3-tuples specifying (X, Y, Z) values, which

represent quantities like translations, velocities, and locations with respect to

some coordinate system. Rot ations are 3x3 matrices representing either an

orient at ion or a rotation about an axis. A rotation, or rot, is constructed from a

vector, specifying the axis of rotation, and a scalar, giving the angle of rotation.

Frames are used to represent local coordinate systems, They consist of a vector

specifying the location of the origin, and a rotation specifying the orientation of the

axes. Transes are used to transform frames and vectors from one coordinate

system to another. Like frames they consist of a vector and a rotation.

4.2.2 Labels & Events

Labels and events are data types that are declared in the same manner as

the algebraic data types. There are two kinds of labels: statement labels and

condition monitor labels. Condition monitors are labelled for reference by the

ENABLE and DISABLE statements (c.f. section 4.4.5.2). Statements are labelled

for use in debugging. A label consists of an identifier followed by a colon.

Currently labels must be declared before being used.

Events are used in conjunction with the SIGNAL and WAIT statements (c.f.

section 4.5.4) used to synchronize parallel processes.

4.2.3 Arrays

- Multi-dimensional arrays are available in AL. They may be of any algebraic

data type or of type event. Array bounds may be scalar constants, variables, or

expressions; they may be positive or negative integers. The only constraint is that

the lower bound be smaller than the upper bound. At runtime a check is made

. that each subscript falls within the lower and upper bounds given for the

dimension it specifies. Subscripts outside the bounds cause an error message to

be printed.

Arrays are allocated upon entry of the block in which they are defined, and

deallocated upon block exit,
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4.2.4 Dimensions

AL allows physical dimensions to be associated with variables. The known

dimensions are: TIME, DISTANCE, ANGLE, FORCE, TORQUE, VELOCITY,

ANGULAR VELOCITY & DIMENSIONLESS. New dimensions may be defined if
desired by means of the DIMENSION statement.:

DIMENSION <new dimension> = <dimension expression>

where the operators defined in <dimension expressions are (,),%,/ and INV, which

takes the inverse of its argument, e.gINV(TIME) = 1 /TIME.

Dirnensioned quantities are just like regular ones, except that they are

multiplied by the appropriate reserved word: SEC, CM, DEG, GM, INCHES, 0Z&

[.BS (also SECONDS, INCH, OUNCES, DEGREES& RADIANS). For example:

VELOCITY VECTOR v;

v « xhat * inches [sec

Other units rnay be defined using macros (cf. section 4.5.8), e.g.:

DEFINE feet = «( 12 *inches)>

AL checks for consistent usage of dimensioned quantities: addition and

subtraction, along with frame, trans and rot operations require exact dimension

match, while scalar and vector multiplication and division produce a quantity of new

di rnension,

4.2.5 Declarations

. The declaration statement is used to define the data type and dimension of

each variable used in a program. it has the form:

<dimension> <data type> <list of variables>

where <dimension> is one of the predefined dimensions in AL (TIME, DISTANCE,

ANGLE, FORCE, TORQUE, VELOCITY & ANGULAR VELOCITY), or a user defined

dimension. <Datalype> is one of the following: SCALAR, VECTOR, ROT, FRAME,

TRANS, EVENT & LABEL. Only the algebraic data types: SCALAR, VECTOR and

TRANS rnay have a dimension associated with them. Unless otherwise specified,

scalars and vectors are considered dimensionless, while transes are considered to

be of dimension distance (cf. section 3.1.1.5).

Array declarations are of the form;
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<dimension> <data type> ARRAY «list of variables>

where each variable in the list consists of a variable name followed by a list of

lower-upper bounds pairs enclosed in square brackets "[]", e.g. "name[L1:Ul,
L2:U2,.]"

4.2.6 Arithmetic expressions

Here is a summary of the arithmetic operators available. They are grouped

by the data type of their resulting value. These abbreviations are used: ‘s’ =

scalar, ‘v’= vector, ‘r’ = rotation, ‘f' = frame, ‘t’ = trans.

Scalar operators

S +S scalar addition

S -S scalar subtract ion

Ss *s scalar multiplication

s/s scalar division

s Ts scalar raised to a scalar power
s MAX s maximum

s MIN s minimum

INT(s) integer part of s

s DIV s integer quotient after applying INT to each argument

s MOD s integer remainder after applying INT to each argument

V.V dot product of two vectors

1S] absolute value of a scalar

\4 magnitude of vector (vector norm)

1d extracts angle of rot ation

INSCALAR reads a scalar from the console

Scalar functions

) SQRT(s) square root
SIN(s) sine (all trigonometric functions are in degrees)

COS(s) cosine

TAN(S) tangent

. ASIN(s) arc-sine

ACOS(s) arc-cosine

ATANZ2(s,s) arc-tangent of s/s
LOG(s) natural logarithm

EXP(s) e raised to the s power
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Boolean operators
S <rel>s returns true if relation is satisfied, else false

possible relations are: <,%,=,2,2,#

SAS logical and

SVS logical or

S® S$ logical exclusive or

S ES logical equivalence

— 5 logical not

QUERY reads a boolean from the console (c.f. section 4.5.7)

Vector operators

VECTOR{ s,s,S) construct vector given (X,y,2) components
S ¥ V dilation of a vector

v/s contraction of a vector
V + V vector addition

V -V vector subtraction

V kV vector cross product

r* v rotation of a vector

t% v transformation of a vector

fs v transformation of a vector - short hand for (stat ion =f)*v

v WRTf a vector in stat ion coordinates pointing the same way as

v points in fs coordinate system, v WRT f = ORIENT(f)*v
= (f¥v) - POS(f)

UNIT(v) vector of unit length pointing in the same direction as Vv

POS(f) vector position of frame or trans

AXIS(r) axis of rotation

Rotation operators

ROT(v,s) constructs rotation of s degrees about v
ORIENT{ {) orient at ion of a frame or trans

rx composition of two rot at ions (the one on the right is applied

first)

Frame operators

FRAME(r,v) constructs frame of orient at ion r at position v

CONSTRUCT(v,v,v) makes a frame: first vector gives the position, second a

point on the x-axis, third is a point in the xy-plane

f+ v translation of a frame

f-v translation of a frame

t x f transformation of a frame

fr f transformation of a frame - shorthand for (station =f)* f
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Transform operators

TRANS(r,v) constructs trans which will cause a rotation of r followed by
a translation of v

f- f transformation which maps from the first frame to the second

t *t composition of two transes (the one on the right is applied

first)

INV(t) take the inverse of t

The operators in AL generally follow “normal” precedence rules, i.e.,

functions are evaluated first, followed by exponentiat ions before multiplications or

divisions, which in turn are performed before additions and subtractions. The

order of operation can be changed by including parentheses at appropriate points.

In an expression where several operators of the same precedence occur at the

same level, the operations are performed from left to right.

TABLE OF PRECEDENCE

functions, (),|], NOT
WRT - 1

¥/ . MAX MIN DIV MOD
f -

= # <>< >

A

V ®

4.2.7 Predeclared constants

Pl = 3.14159... (can also be written as mn)
STATION is a frame which has standard station coordinates

BARM is the location of the blue arm

. YARM is the location of the yellow arm

BHAND is the distance between the fingers of the blue arm

YHAND is the distance between the fingers of the yellow arm

BPARK is the rest position for the blue arm

= FRAME(ROT(yhat,1 80xdegrees),VECTOR(43.53,56.86,9.96) inches);

YPARK is the rest position for the yellow arm

= FRAME(ROT(yhat,180«degrees),VECTOR(40,14,9)xinches);

TRUE and FALSE have the obvious meanings (TRUE = 1, FALSE = 0)

XHAT is VECTOR{ 1,0,0)

YHAT is VECTOR(0,1,0)

ZHAT is VECTOR(0,0,1)

NILVECT is VECTOR{ 0,0,0)

NILROT is ROT(zhat, 0 x DEG)

NILTRANS is TRANS(nilrot,nilvect)

CRLF is a string constant that prints as a carriage return followed by a line feed
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4.2.8 Some examples

DISTANCE VECTOR v 1,v2; {some declarations)

ANGLE SCALAR t hcta;

SCALAR ARRAY s 1 [ 1:5],82[-3:3,1:2];
FRAMEf 1 ,{2;

EVENT ready;

ROT(zhat,90xdeg) * v | {vl rotated 90 degrees about
the station’s Z axis)

vl, yhat (the Y component of v1}
fl ¥ xhat {f1’s X axis in station coordinates}

3 ¥sl1[2] {the second element of the

array sl multiplied by 3)

4.3 Affixment: AFFIX & UNFIX

The relationships between the various features of an object, and between

different objects, may be modelled by use of the A FFIX statement. The general
form for the AFFIX statement is:

AFFIX fl TO f2 BY t AT <expr> <affix type>

The effect of the above is to establish a trans that expresses the relationship

between fl! and f2. If <B¥Y> is present the resulting trans will be associated with

the variable t making the affixment relation modifiable by the user, otherwise an

internal variable’ will be created. The initial value of the trans is specified by the

<AT expr> part of the statement. If none is given then the current values of fJ and

f2 are used to create a trans taking f2 to fi{f2~ fl). There are two flavors of

. affixment possible, and <affix type> specifies whether the affixment is to be done

RIGIDLY or NONRIGIDLY. Rigid affixment is symmetric; when either frame is

given a new value the other is updated to preserve the relationship between

them, Non-rigid affixment is asymmetric; when f2 is changed, the value of fI is

updated, whereas when f/ is modified, the trans describing the relationship

between fl and f2 is recomputed to express the new relationship between them.

An example of non-rigid affixment would be a plate on a tray; the plate moves

with the tray, but not vice versa. If <affixtype> is not specified, rigid affixment
will be assumed.

An affixment relation can be broken by use of the UNFIX statement:

UNFIX f 1 FROM {2
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4.4 Motions

4.4.1 Compile-time and runt ime considerat ions

In the current AL system, trajectory calculation is done at compile-time.

When the compiler encounters a motion. statement a trajectory is computed to

accomplish it as fast as possible, subject to the constraints of maximum

acceleration and torque imposed by the motors, using the compile-time planning

values for all the relevant expressions that describe the requested motion. During

actual execution these expressions may have different values, so the runtime

system modifies the trajectory immediately prior to executing it. There are limits

to how large a discrepancy can be corrected at runtime. If the planning value is

seriously in error, then the at tempt to make last-minute correct ions rnight

overstrain the arm, causing the motion to be aborted. One simple way of

correcting this problem is to tell the compiler to take more time for the mot ion.

Work is underway to implement runtime path calculation which will avoid this
situation.

The compile-time trajectory calculator will issue error messages if an illegal

motion is requested, such as trying to move to a position inaccessible to the arm,

or requesting the motion to take less time than physically possible. It should also

be noted that many of the parameters to the clauses modifying the motion must be

constants.

4.4.2 The basic MOVE statement

The basic MOVE statement is of the form:

MOVE <controllable frame> TO <dest> <modifying clauses>

; which will cause the specified arm to be moved so it has the same position and

orientation as the destination frame expression <dest>. A grinch sign, "®", can be

used in <dest> to represent the current position of <control/able frame> when the

motion is executed, <Controllable frame> may be either an actual manipulator (barm

or yarm) or a frame which has been affixed to one of the arms. In the latter case,
the physical relationship between the frame and the arm, described by the

affixment chain connecting them, will be used so the motion results in the frame

being moved to <dest>, The motion may be modified in many different ways through

the use of the various <modifying clauses> described below.
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44.3 intermediate points: V/i4, DEPARTURE & APPROACH

in the case where a motion must go through a series of intermediate points

(to avoid obst acles, for inst ance), the intermediate frames may be specified by

means of a VIA clause, such as:

VIA f 1,£2,§3,4,f{5

where fl,.f5 are frame expressions. The motion will pass through the points in

the order they are specified. it is also possible to specify the arm’s velocity at a

via point, and the duration of the motion from the last given point to the via point.

This full ¥IA clause looks as follows:

VIA f WHERE VELOCITY = <v>, DURATION = <n>

where v is a velocity vector and n is a time scalar. One or both modifying clauses

may be present, in either order. Note that unlike the first mentioned form, only

one frame f may be given in this format, if the trajectory calculator believes that

more than n seconds are required for this segment of the motion an error message

will be generated. Both the velocity and duration values must be compile-time

constants.

It is also possible to specify deproach points, which are points associated

with departure of the arm from its current location, or its approach to the

destination location, Unlike via points, deproach points are expressed with respect

to the initial or destination coordinate systems. The clauses are as follows:

WITH DEPARTURE = <eXxp>

and

WITH APPROACH = <exp?

where <exp> may be as follows. Depending on whether the APPROACH or

DEPARTURE clause is used, <fr> represents either the destination frame or the
current posit ion.

type of <exp>: deproach point in stat ion coordinates:

frame <fr> x <exp>
vector <fr>+ <exp> WRT <fr>

scal ar <fr> + (<exp>* zhat) WRT <fr>

it is also possible to indicate that no deproach point is to be used by specifying

<exp>as NILDEPROACH, or to use the deproach point associated with some other

frame using the function DEPROACH (<frame id>).
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Deproach points may be specified implicit iy. The statement:

DEPROACH(<frame id>) « <exp>

will associate <exp> as the deproach point for the variable <frameid>. if then no

approach point is explicitly given in the move statement, the deproach point

associated with the destination frame will be used for the approach. if the

destination frame does not have a deproach point associated with it, the compiler

will search along the frames affixed to it until a deproach point is found. If none

are discovered then the deproach of the station (3s zhat inches) will be used. If

the destination is a frame expression then NILDEPROA CH will be the default

approach used. if no departure point is specified, then the approach point for the

last move will be used.

The AL predeciared macro DIRECTLY expands into the two clauses:

WITH DEPARTURE = NILDEPROACH

WITH APPROACH = NILDEPROACH

4.4.4 Force & Compliance

It is possible to have the arm apply or sense specified forces and moments.

(Sensing forces is discussed in section 4.4.5 below.) To avoid incompatible

requests the force components must always be orthogonal. To insure this, a force

frame must be specified, and the directions of the applied forces and moments

must be aligned with one of the cardinal axes of this current force coordinate

system. Also specified is whether the orientation of the axes changes as the hand

moves, i.e. is the force frame defined relative to the hand or the table (world)

coordinate system. The clauses to do all this are as follows:

. WITH FORCE = <sval> ALONG <axis-vector> OF <frame>

IN <coord sys>
WITH TORQUE = <sval> ABOUT <axis-vector> OF <frame>

IN <coord sys>
. or

WITH FORCE-FRAME = <frame> IN <coordsys>
WITH FORCE = <sval> ALONG <axis-vector>

WITH TORQUE = <sval> ABOUT <axis-vector>

or

WITH FORCE-FRAME = <frame> IN <coordsys>

WITH FORCE(<axis-vect or>) = <sval>

WITH TORQUE(<axis-vector>) = <gval>

where: <axi s-vect or> = xhat, yhat or zhat.

<coord sys> = HAND or WORLD (default = WORLD)
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<sval> = the magnitude of the force
<frame> = the orientation of the axes of the force frame

in the first form the specified force frame in ail of the clauses must be the

same. if IN <coord sys> is not specified, WORLD is assumed, while if OF <frame> is

omit t ed, STATION is assumed. Note that only-one force frame may be specified

per move. Applying a force of magnitude zero means that the arm will be

compliant, i.e. move away from any external force in that direction,

A short form is also available for those motions which only need to apply or

sense one force, but not both. It looks like either;

WITH FORCE = <sval> ALONG <vect> OF <frame> IN <coordsys>
or

WITH FORCE(<vect>) = <sval>

This generalizes in the obvious way for TORQUE and for force sensing. if no

<frame> and <coord sys> are specified then a force frame in world coordinates is

automatically created with it’s x-axis aligned along <wect>. Otherwise the specified

coordinate system is used and a force frame is created with it’s x-axis along <wvect>

WRT <frame>.

4.4.5 Condition monitors

4.451 Types: force, duration, event & boolean

During the course of an arm motion it may be desired to monitor some

condition, or set of conditions, and to execute an act ion if the condition has

occurred, The condition monitor clause is used for this purpose. It has the

following general form:

ON <condition> DO <action>

Currently the conditions that canbe monitored include force sensing, duration,

events, and various boolean expressions of variables. <Action> may be any valid

AL statement or block. The only restriction is that if a motion statement is the

only statement in <action> then it must be surrounded by BEGIN and END to

prevent ambiguity.

The monitoring will begin with the start of the motion and continue until the

mot ion terminates. if the monitor triggers, then after it finishes its action, it will

become dormant and cease checking its condition. It is possible to modify this by

use of the ENABLE and DISABLE statements described below (section 4.4.5.2).

When sensing forces and moments the following clauses are used:
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ON FORCE <rel><sval> ALONG <axis-vector> OF <frame>

IN <co-ord sys®> DO <action>

ON TORQUE <rel><sval> ABOUT <axis-vector> OF <frame>

IN <co-ord sys> DO <action>

or

WITH FORCE-FRAME = <frame> IN <co-ord Sys”

ON FORCE <rel><sval> ALONG <axis-vector> DO <action>

ON TORQUE <rei><sval> ABOUT <axis-vector> DO <action>

or

WITH FORCE-FRAME = <frame> IN <co-ord sys>

ON FORCE(<axis-vect or>) <rel><sval> DO <act ion>

ON TORQUE(<axis-vectors>) <rel><sval> DO <action>

where: <axis-vector>, <co-ord sys>, <sval> and <frame> are the same as in section 4.4.4

above and <rel> is either 2 or €, the condition monitor triggering when the force or

moment exceeds or goes below the specified magnitude respectively. As in

applying forces there is a short form when only one force is being sensed or

applied:

ON FORCE <rel><sval> ALONG <vect> OF <frame>

- IN <co-ordsys> DO <action>
or

ON FORCE(<vect>)<rel><sval> DO <action>

The condition monitor:

ON DURATION 2 n * seconds DO <action>

will trigger its action n seconds after being enabled at the start of the motion.

ON <event> DO <action>

means do the action if <event> is signailed (by another condition monitor or some

other parallel process).

ON <boolean expression> DO <action>

has the effect of evaluating the boolean expression, made up of algebraic

variables, and if it is true (non-zero) performing the desired action. If the

expression is false the condition monitor goes to sleep for a short while (currently

100 milliseconds) before evaluating and checking the expression again.
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4.45.2 ENABLE and DISABLE -labelled condition monitors

A condition monitor has two states: enabled and disabled. in the enabled

state it will trigger its conclusion if the condition it is checking for occurs, in the

disabled state the condition monitor is inactive. As mentioned above a condition

monitor is enabled when the motion is started,--and disabled upon the conclusion of

the rnot ion. Once a condition monitor triggers it will become disabled, unless it is

explicitly reenabied. This reenabling is done by means of an ENABLE statement

placed in the conclusion of the condition monitor.

With the ENABLE and DISABLE statements it is possible to change the

state of an arbitrary condition monitor that has been named by putting a label

immediately before the reserved word ON. The syntax of these statements is:

ENABLE <condition monitor>

and

DISABLE <condition monitor>

Prefacing a condition monitor with the reserved word DEFER will cause it

to be initially disabled. it can then be explicitly enabled later. Here is an example

where a condition monitor is initially disabled, and then after three seconds is

enabled:

MOVE barm TO dest

test: DEFER ON FORCE(zhat)210% oz DO STOP

ON DURATION 2 3 ¥sec DO ENABLE test

4.4.6 Other clauses: DURATION,SPEEDFACTOR, NULLING& WOBBLE

Here are some other clauses that can be used to modify motions. Note that

- the parameters of these clauses are compile-time constants.

WITH DURATION = <sval>

causes the resulting motion to take the amount of time specified by <sval{>, which

should be of dimension TIME. if the trajectory calculator thinks that more time is

needed AL will issue a warning message.

WITH SPEED-FACTOR = <sval>

slows down the motion. The minimum time for the mot ion computed by AL will be

mult ipiied by <sval>, which should be 21, and this product will be used as the time
for the motion.

The default speed factor for motions is 1, so the motion takes as little time
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as possible. This can be changed by assigning the desired default multiplier to the

predeclared variable SPEED _FACTOR with a regular assignment statement:

SPEED-FACTOR ¢« <new default speed factor>

There are also two predefined macros: CAUTIOUS and SLOW, which set the default

speed factor to 2 or 3 respectively.

WITH NULLING

informs the runtime system to null out errors at the end of this motion. There is
also a WITH NONULLING clause which is the current default. There are two

macros PRECISELY and APPROXIMATELY which achieve the same results.

WITH WOBBLE = <sval>

adds a small sinusoidal motion to the outer three joints causing them to shake a

bit. It is useful-for breaking small friction forces and for seating parts. <Sval> is a

small compile-time constant of dimension ANGLE that is usually about 2 or 3

degrees.

4.4.7 Controlling the fingers: OPEN, CLOSE & CENTER

The fingers can be controlled in several ways.

OPEN <hand> TO <sval>

and

CLOSE <hand> TO <sval>

causes the fingers to open or close so that they are a distance <sval> apart. <Sval>

) is any scalar expression of dimension DISTANCE. Currently there is no difference

between the OPEN and the CLOSE statement. Eventually CLOSE will stop the

motion of the fingers if both touch sensors are triggered.

CENTER <arm2>

closes the fingers of the specified arm until both touch sensors indicate contact

has been made. Furthermore if one finger makes contact before the other,

CENTER causes the arm itself to move so that the object being grasped is not

pushed by the finger. OPEN and CLOSE only move the fingers, and if the object

being grasped is not centrally located between the fingers, the object will be

moved or, if it is fixed in place, excessive force might be exerted by the fingers,

thereby aborting the mot ion.
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4.48 STOP & ABORT

There are two ways of terminating motions before they finish:

STOP <device>

and

ABORT(<print list>)

The STOP statement causes the indicated device to stop. <Device> may be a

physical manipulator or a frame affixed to an arm. If <device> is not specified, and

the stop statement appears in the scope of a move statement, then the arm used

for the motion will be the one stopped. The ABORT statement is used for more

drastic occasions. It will stop the motion of all devices, print out the elements of

the <print list> (see the description of the PRINT statement, section 4.5.7, below),
and transfer control to 11DDT. The user may continue the program execution by

typing <alt>P to 11 DDT. Usually these statements appear in the body of condition

monitors, though they may be appear at any point in the program.

4.4.9 Other devices - the OPERA TE statement

The OPERATE statement is provided to control other devices interfaced to

the AL system. lis syntax is similar to that of the M OVE statement:

OPERATE <device> <modifying clauses>

where <device> is the device being controlled, and the <modifying clauses> describe

what action the device shall perform. For example;

OPERATE vise WITH OPENING = 4 * inches

- Currently no devices other than the arms are available. A screwdriver and vise

will be available soon,

4.5 Non-mot ion statements

4.5.1 Assignment statements

The assignment statement;

<variable> « <expression>

causes the value represented by <expression> to be assigned to the variable

appearing to the left of the assignment symbol. The data type and physical

dimension of the expression on the right hand side of the assignment symbol must

be the same as the data type and dimension of the variable on the left hand side.
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There is also another form, the plan-time assignment:

<variable> «¢ <expression>

where <wvariable> and <expression> are the same as above. The plan-time assignment

statement provides a way of passing to the world modelier the values of certain

variables whose values it would not otherwise know until runtime (e.g. barm, yarm,
bhand and ykand). No executable code is generated for plan-time assignments.

They only have an effect during program compilation.

An example of an instance where the plan-time assignment would be

necessary is after a move statement that will terminate early (e.g. stopping on

touch). A better trajectory can be computed by using a plan-time assignrnent to

pass the trajectory calculator the expected position of the arm at the end of the

motion. During runtime the actual value of the manipulator will be determined by

the physical world, and this value will be used to modify the computed trajectory.

4.5.2 Traditional control structures: IF, FOR, WHILE, UNTIL, CASE

AL has many of the traditional ALGOL cont rol structures.

The IF statement has the form;

IF <boolean expression> THEN <statement> ELSE <statement>

The ELSE part is optional. [If <boolean expression> is true (non-zero> the statement

following the THEN is executed. Otherwise the statement following the ELSE, if

present, will be executed.

- The FOR loop has the form:

FOR <svar>«<sexpr> STEP <sexpr> UNTIL <sexpr> DO <statement>

where <svar> is a scalar variable and the <sexpr>’s are scalar expressions of the
same dimension. The initial value of the variable is the value of the first

expression; every time the statement is executed, its value is incremented by the

value of the second expression, and the process repeats until the value exceeds

that of the third expression. if the step size is negative, the right things happen.

The test is made before the first iteration, so it is possible that the loop will not

be executed at all. -

The WHILE loop is as follows:

WHILE <boolean expression> DO <statement>
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The boolean expression is checked and if it is true the statement is executed. This

process is repeated until the condition becomes false.

The UNTIL statement is as follows:

DO <statement> UNTIL <boolean expression

where the statement is repeatedly executed until the condition becomes true.

This is similar to the WHILE statement described above, with the exception that

the WHILE loops while the condition is true, whereas the UNTIL loops until the

condition is true.

There are two forms that the CASE statement may take. The regular CASE

statement has the form:

CASE index OF BEGIN SO; S1; S2; . . . Sn END;

The index is evaluated and depending on the integer part of its value one of the

statements will be executed. if the index is zero then SO is chosen, if the index is

one then Sl is chosen, and so on up till n. if the index is negative, or greater than

the nurnber of statements, an error is reported. Any of the statements may be

null, e.g. “Sl;; 83", in which case if the index were two no statement would be
executed.

There is also a numbered version of the CASE statement:

CASE index OF BEGIN [CO] S; [Cl] [C2] S;.. [Cn] S; ELSE S END

where each stat ernent has one or more non-negative scalar constants labeiling it.

- The index expression is again evaluated and if it is the same as one of the Ci's

then the statement with that label is executed. If no constant matches the index

then nothing is done, unless an erLse is present in which case the statement it

labels is executed. If the index is negative or greater than the largest Ci an error

occurs, unless there is an ELSE present. Note that the ELSE statement may

appear anywhere in the list of statements, not necessarily at the end.

4.5.3 Procedures

Procedures are defined as follows;

<{ype> PROCEDURE <name> (parameters);
<st at ement>;

where the statement is executed each time the procedure is called. Only those
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procedures that return a result need their type specified. The data types of the

parameters may be modified by the reserved words: VALUE & REFERENCE.

Reference is the default. Due to the world modelling performed by the AL compiler

it is necessary when defining a procedure to specify the dimensions of any arrays

that are to be used as a parameter. For example:

PROCEDURE foo(FRAME ARRAY pnt s[ 1:4,1:3));

It is also necessary to make plan time assignments to any formal parameters or

variables that are defined in the same block as the procedure so that when the

procedure is simulated the values will be available (c.f. section 4.6).

Procedures can return a result by means of the RETURN statement which

has the form:

RETURN (value)

which returns value as the result of the procedure. The RETURN statement may

not appear inside condition monitors or COBEGIN-COEND blocks.

Procedure calls take the normal form of the procedure name followed by the

list of arguments: name(arglist). They may appear anywhere an expression might,

or alone by themselves as a procedure statement. If a typed procedure appears

In a procedure statement then the result it returns will be discarded.

4.5.4 Parallel control: COBEGIN-COEND, SIGNAL & WAIT

In addition to the normal sequential execution of statements within a

BEGIN-END pair, AL allows blocks of code to be executed in parallel by placing

them in a COBEGIN-COEND block. Upon entering the COBEGIN block control is

; divided among the various processes to be executed simultaneously. Upon the

termination of all of these processes control will be passed to the part of the

prograrn following the COEND. it is the user's responsibility to ensure that the

code being executed in parallel is sufficiently independent (e.g. two processes

. don’t try to use the same arm at the same time), and that no deadlock situations

occur.

it should be noted that the purpose of the COBEGIN construct is to allow

simultaneous independent manipulator cont rol. It is not particularly useful to

execute purely coraput ational code in parallel, though doing computation while an

arm is moving can save time. The scheduling algorithm used is to start up one

process and execute it until it is blocked, and at that point another process will be

run. A process can be blocked by waiting for an event, by pausing, doing I/O, or

by initiating a motion.
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Parallel processes may be synchronized by means of explicit events and

SIGNAL and WAIT statements. With each event is associated a count of how many

times it has been signalled. initially, the count is zero, that is, no signals have

appeared, and no processes are waiting. The statement:

SIGNAL el

increments the count associated with event ¢l, and if the resulting count is zero or

negative, one of those processes waiting for e/ is released from its wait and

readied for execution, The statement;

WAIT el

decrements the count associated with event ¢l, and if the resulting count is

negative, the process issuing the WAIT is blocked from continuing until another

process signals el. If the count is zero or positive, there is no waiting.

4.5.5 Statement condition monitors

Condition monitors, besides modifying motions, may also appear as

statements, The description in section 4.4.5 also applies to statement condition

monitors+ When its defining statement is executed the statement condition monitor

will become enabled. It will become disabled when it triggers, is explicitly disabled

(it must be labelied for this@ occur), or its local block is exited. The reserved

word DEFER still causes a condition monitor to be defined in an initially disabled

state,

Scope rules come into play regarding when condition monitors may be

enabled or disabled. An enable or disable statement may only refer to a condition

monitor that is defined in the same block as itself or in a block containing it.

45.6 PA USE stat ement

The statement:

PAUSE <sval>

will result in the program going to sleep for the time specified by <sval>, which
should be of dimension TIME.
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4.5.7 1/0

At runtime strings and variable values may be typed out using the PRINT
statement:

PRINT(<argl>,<arg2>,..,<argn>)

where the <arg>’s are either algebraic expressions or variables, or string
constants. Strings are delimited by double quotes. CRLF is a predefined string

which prints as a carriage return followed by a line feed.

The statement:

PROMPT(<print list>)

Is syntactically like the PRINT and ABORT statements. Upon encountering a

PROMPT statement the AL runtime system prints out all the items in the print list

and then prints the message:

“Type P to proceed”

and waits for a P to be typed. Unlike the ABORT statement control does not pass

to DDT and hence any parallel processes (e.g. ALAID or COBEGIN) will continue to

be executed. As an example;

PROMPT("Move barm to work station origin”); org « barm:;

There are two arithmetic operators to read in a value from the VT05

console. INSCALAR reads in a scalar, prompting the user with; “SCALAR, please: ".

QUERY reads in a boolean. It is like PROMPT in that it can have a print list. After

] typing the print list the user is asked to “Type Y or N: ". For example:

PRINT("How tall is casting?“); height « INSCALAR;
WHILE QUERY("More to do?) DO. . .

ALAID, a debugger for AL, may be used to do I/O between AL and another

program (usually one doing a vision task on the PDP-10).(c.f. section 7.6.3.1).

4.5.8 Macros

AL possesses a general purpose text macro facility. The syntax for a macro

definition is:

DEFINE <macro id> <parameters> = €<macro body>>
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where <macroid> is the name of the macro, <macrobody> is the text to be

substituted whenever <macroid> is encountered in the program, <paramecters> if

present is a list of arguments for the macro, separated by commas and enclosed by

parenthesis. Only undeclared identifiers may be used as macro parameters. When

the macro is expanded the actual arguments will be substituted into the macro

body wherever the parameters appear, If this value is anything other than a

simple token it must be surrounded by the delimiters €>. The <macro body> is also

delimited by co,

Here are two examples of the use of macros:

DEFINE feet =cl2% inches>;

DEFINE grasp( frob) = cMOVE barm TO frob;

CENTER barm;

AFFIX frob TO barm RIGIDLY>;

size « 104 % feet; {Expands to 10.4 *¥ 12 %* inches)

grasp( handle); {Expands to;
MOVE barm TO handle;

CENTER barm;

AFFIX handle TO barm RIGIDLY:;)

4.5.9 REQUIRE statement

REQUIRE statements allow the user or his program to communicate with

the AL compiler. No code is generated as a result of a REQUIRE statement, and

the effect of the REQUIRE statement is global and persists after exiting the block

in which it was invoked. Another REQUIRE statement or some other termination

condition is necessary to undo or stop the effect.

REQUIRE SOURCE-FILE "<file_name>"

The file named will be the source of future input until an end of file is

encountered, at which time the code following the require will be read. The

source file will be assumed to be a disk file, unless specified as a teletype file by

“TTY:” in front of its name.

A teletype file does not need a name, but if it has one, the teletype input

will be saved on a disk file with the given name and default extension TTY,

Parsing action on teletype inputs will begin each time a carriage return is hit. The

file is closed by typing a <control><meta><linefeed>. The current operating system

allows only one teletype file to be open at a time.

The file name can be one of:
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“NAME”

"NAME.EXT"

"NAME[P,PN]"

"NAME.EXT[P,PN]"

where P and PN represent the project and programmer names respectively.

REQUIRE MESSAGE “<message>”

Anything appearing within the double quotes will be printed out at the

user's t erminai.

REQUIRE ERROR-MODES "<mode flags>”

While the AL parser may ask for user responses to errors during program

compilation, it is possible to predefine the standard treatment of errors by setting

certain flags with the REQUIREERROR MODES statement, The flags are set by

including the relevant letter within the quotes, and reset by including a minus sign

in front of the code letter. The following flags are available;

L - errors, if any, will be logged in a file with extension LOG

A - compilation will continue automatically after each error message

is printed.

M ~ the system will prompt the user only for modifiable errors

F - strict dimension checking will not be carried out across

assignment statements, condition monitors, etc. Undimensioned

variables will be coerced according to the cont ext in which

they appear. Error messages will be generated only for

inconsistent usage.

REQUIRE COMPILER-SWITCHES “<compile switches>”

Ail the switches that are used in the command line (see Chap 5) can be

. specified here. This is an alternative to specifying the switches in the command

line. Only letters (without the slash) should be within quotes.

4.5.10 Debugging aids: NOTE & DUMP

To facilitate tracking down errors that are reported by the AL compiler the

following two statements may be used. Their action is only at compile time, and no

code is generated for them,

The NOTE statements result in some message being output during compile

time. NOTEI will output the message during the world modeiiing phase, while
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NOTE 2 will output the message during the code emission and trajectory calculation

phase. NOTE will output the message during both of these phases.

The syntax is as follows:

NOTE("message")

NOTE 1 (“message”)

NOTE2("message")

The DUMP command will print the planning values of the desired variables

at the point in the program that it is encountered. It looks like this:

DUMP «id list>

where <id list> is a list of identifiers separated by commas,

4.6 World modelling

As mentioned earlier (section 4.4.1) the current AL system does trajectory

calculation at compile~tirme. To accomplish this the compiler must have a model of

the world containing the position of the arm, the expected values of the variables

specifying the motion, and knowledge of the affixment structure. These values are

different at different points in the program, so the compiler must perform a

simulation of the program in order to obtain the information required for the

trajectory calculator. An AL program goes through several stages during its

compilation: first it is parsed and an internal representation built, then the program

Is simulated (in the world modelling phase), and finally trajectories are calculated

and code is emit ted. Certain problems arise in doing the world modelling due to

the unavailablity of sensory data at compile-time. Also various compromises have

been made in the simulation of loops and parallel processes.

During the world modelling each statement has an input world and an output

world associated with it. The input world gives the current position of the arms,

the value of each variable, and the affixment structure immediately prior to the

statement’s execution, while the output world reflects the effect of the statement.

Most statements (e.g. assignment, affixment) are quite easy to sirnulate. Motion

statements that do not have any associated condition monitors are also easily dealt

with. (The problem of collision avoidance is not currently handled,) However, if a

condition monitor is present the world modeller will be unable to determine

whether or not it is ever triggered, and hence be unable to judge its effect on the

motion. For example, if the arm is holding a box and we wish to set it down on a

table, the code might look like this:

MOVE box TO table = 4 * zhat % inches

ON FORCE(zhat)2 8 * 0z DO STOP;
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We expect the motion to be stopped short when the box encounters the table,

but the world modeller, even if it knows this, cannot determine the position of the

box when the condition monitor triggers, Because of this the current system

ignores the effect of any condition monitors associated with a motion, and assumes

that the motion terminates normally. Fortunately for purposes of planning

trajectories, the inaccuracies introduced in this way are generally unimportant. For

those cases where the effect of the condition monitor is known ahead of time to

be critical, the plan-time assignment statement should be used to inform the world

modeiier.

The next type of statements that give the world modeller trouble are

conditionals. A very liberal approach would assert that any fact that is true in

either one of the output worlds of the conditional branches, except for those that

conflict, should be considered true. AL currently takes a more conservative

approach and treats as true only those facts that are true no matter which way

control goes. The effect of this is that after a conditional statement like;

IF j>5 THEN j¢1 ELSE j«j+1

the variable j will have two different values depending on which half of the

conditional was executed, and as a result the world modeller will not have a

planning value for the variable j. If one is needed for later code then a plan-time

assignment statement giving j an expected value should follow the conditional. The
CASE statement is handled in a similar fashion.

Loops also present difficulties. The world modeller will unroll the loop one

iteration. Note that only one trajectory will be computed for each MOVE in the

loop. This can present problems if the destination of one of the moves takes on

drastically different values, In such a case the user rnay need to include code to

choose from several move statements, based on the possible destination values, or

to allocate more time to the move so the arm will have enough time to complete

the longest of the moves.

As might be expected the COBEGIN construct is also hard for the world

model ler. The way AL handles parallelism is to combine all of the changes

introduced in each branch, excluding any obvious incompatibilit es such as the same

variable being assigned different values by different branches. All of these facts

taken together then form the output world for the COBECIN block.

Procedures present several problems. The body of a procedure is modelled

once upon entry of the block in which it is defined. It is necessary to make plan

time assignments to any formal parameters or variables that are defined in the

same block as the procedure so that when the procedure is simulated the values

will be available. Also note that the same problem that occurs when using MOVE
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statements in a loop also applies to procedures, i.e. only one trajectory is

calculated at compile time, and if the actual motion at runtime is drastically

different the motion will fail. Procedure calls are essentially ignored; they have no

effect in the world model. Typed procedures return a result of zero (nilvect,

nilrot, etc.) as far as the world modeller is concerned.

The world modeller initializes the input world of the first statement in the

program so that the arms are in their park position, the fingers are two inches

apart, and the speed-factor used by motions is one. If the arms in the output
world of the last statement are not again in their park positions the world modeiier

will issue a warning message.
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5. USING AL

This chapter describes the steps involved in compiling and executing an AL

program if there are no errors. Should there be any error messages the reader

should refer to Chapter 7 to find out what to do about them. In the following

description where commands are typed by both the user and by the system, the

system response will be shown in italics,

5.1 Compilation of user programs

To compile and prepare the binary load module for the PDP-11 do the

following:

1. Create a file called "FOQ.AL" with your program in it, where "FOO" may be

any name you wish.

2. Get your job to monitor level and type “COMPILE FOQ".

2a. The system program SNAIL which handles requests like COMPILE will give

the message

Swapping to SYS: AL. DMP

and then start AL at the parser. The parser will then say

AL: FOO

When the parser hits a page boundary in your file, it will type "I" or whatever the

number of the page that it is starting to read.

. 2b. When the parsing is complete, the parser swaps to the AL compiler, which

types 'ALC".

2C. When the compiler completes its world modelling, trajectory calculation, and

. code emission, it swaps to the cross-assembler PALX for the PDP-11. "PA LX n",

where n is the version number of the PALX compiler, is typed out at the user

terminal.

2d. The PALX compiler swaps to ALSOAP, which cleans up the user area by
deleting the intermediate files with extensions .ALP,.ALV,.ALT, and SEX that are

created during the compilation of the AL program.

2e. The job gets back to monitor level.
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If you misspell the name of your file then SNAIL will complain

File not found: FOO

where "FOO" is your misspelling.

At any time during 3 through 6 above, you could get an error message from

the parser, compiler or PALX. See Chapter 7 about these.

5.1.1 Compilation with switches

Compilation may be done with switches if desired by including the desired

switches within parentheses as “COMPILE FOO.AL(KS)". Effects of the different
switches are shown below:

K Keep the intermediate files (.ALP,ALV,.ALT)
S Inhibit deletion of the SEX file

L Generat-e a PALX assembly listing

5.2 Loading and executing the AL program

When your program "FOO.AL" has got through to ALSOAP without grief, you

are ready to execute the program on the PDP-11.

I. Locate the brake control box(es) for the arm(s), and the position{ s) of the

panic butt on{ s). Keep your finger poised over the panic button at all times while

the AL program is being executed (procedure for starting it is in step 3), and be
prepared to press it immediately if it should appear that something unpredictable

or disastrous is about to happen. Pulling the yellow cord that runs around the

table will turn off power to the arm, and can also be used in the event of an

- emergency. Take care not to lean on the cord accidentally.

2. Type “DO AL[ALHE]" followed by carriage return. This initiates a series of

instructions which are described later (5.3). When you see

. f=

type "FOQ", the name of your program, followed by carriage return. You will then

see a number of lines printed out, The last line will be

DDT STARTED AT 130000

3. Now go to the VT05 which is a white colored terminal with a dark screen in

the area of the hand-eye table, and on it, you should see an asterisk "*¥" and a
flashing cursor. Make sure you have the panic button under your thumb and then

type
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# START <alt><alt> G

to begin execution of your program. Note that just <alt>G will also work. AL will

print out at the VTOb:

AL RUNTIME SYSTEM

The VT05 will beep just before the start of each motion by the arm. Messages or

values will be printed where appropriate. When program execution is complete,

the following message will appear;

ALL DONE NOW. SEE YOU AROUND!

NO ACTIVE PROCESSES LEFT. YOU'RE IN DDT.

th

Type "<alt>G" at the VTO5 to re-execute the program from the beginning.

5.3 Complete runt ime execution sequence

The following is the complete sequence of operations required to load and

execute an AL program once a binary file has been prepared. It is given in case

some error occurs when the user types a DO AL[ALHE]

I. Type “A ELF” to have the ELF (PDP-11 interface) assigned to your job, so

that some other job will not try to use it while you are running your program.

2. Type "R11TTY" to execute the program that loads your program into the
POP-1 1. 11TTY will respond with

CORE SIZE = 25K

VERSION USING <device>

TYPE ? FOR HELP

3

where device is either VT05 or TERMINAL. The asterisk is 11TTY’s way of

prompting for user input,

The way to change (toggle) between the two devices is to type "V"
immediately after the asterisk, and 11TTY will fill in the rest of the line and ask

for the next prompt as follows:

*VERSION USING <other device>

He
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An alternate way to get the device of your choice is to use an extended

cornmand by typing “A” followed by "VTO5" or “TERM” to select the desired
device.

AN EXTENDED COMMAND VT05

gt

It is desirable to use the device VT05 so that once execution starts, you

can be totally independent of the PDP-10 (you may need to do so if you are

running ALAID).

3. Type "Z" to zero out the core, followed by the memory size, currently

500000, then a carriage return to confirm the instruction, 11TTY will respond as
follows:

#ERQ CORE [CONFIRM] 500000<cr>

I

4. The AL interpreter and the runtime system is then loaded by typing "G" for
getting the core image binary file, followed by the name of the file AL[ALHE] and a
carriage ret urn.

«GET SA V FILE - AL[AL,HE J<cr>

5. The user's AL prograrn binary file is then loaded by means of typing "O" for
overlay, followed by the name of the file and a carriage return.

«QVERLAY Biv rir E-FOQO<cr>

I

6. The next step is to get the program started by typing "S" then "D" followed

by a carriage return.

«START AT (1000) (D FOR DDT) -D<cr>
DDT STARTED AT 130000

2H

7. Now go to the VTO05 and after making sure you are ready to push the panic

button type

#*START <alt><alt>G

AL will print out at the VTOb:
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AL RUNTIME SYSTEM

Any other input or output will be typed at the VTO5.

When program execution is done, the following message will be printed out

at the VTOb.

ALL DONE NOW. SEE YOU AROUND!

NO ACTIVE PROCESSES LEFT. YOU'RE IN DDT.

He

Typing "<alt>G" on the VTO05 will re-execute the program from the
beginning.
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0. POINTY

6.1 Description of POINTY

6.1.1 Introduction

The concept of FRAMES as a data structure in AL and their affixment to

forrn an object model should be clear to the reader by now, The generation of

such affixments of frames is a non-trivial task, especially if the frames to be

affixed to each other have different orientations. If the object is physically

available, the user would need to measure distances, angles, and positions, and by

doing some rotation of frames would be able to determine the relationships

bet ween the frames. Such a procedure is tedious and error-prone in all but the

simplest cases.

Given the object, a means of generating the affixment structure is needed.

The ideal case would be to present the physical object or its design drawing to

the computer by utilizing vision, etc., and let the system build the affixment

structure. However, the features of interest on the object are dependent on the

nature of the assernbly procedure, and may not bear any relationship to the shape

of the parts. One way of generating an affixment structure is to use human

assist ance. The human operator will point out the features of interest on the

object, and the system will take care of the book-keeping involved in keeping

straight the relationships between the various features.

The interactive construction of world model descriptions for AL programs

has been achieved using POINTY, a system developed and implemented at SAIL. It

makes use of the ability to read arm positions to define points of interest on the

object.

By moving the manipulator around manually and reading the location, the

user is able to record various positions on the object. He then tells the system

how the various locations are related to each other so that an object model can be

generated such that all the required features on the object are known once the

position and orientation of one point is known,

POINTY provides the ability to do limited motion statements, This allows the

user to try out various move statements before putting them into an AL program,

permits the arm to be reoriented, and allows differential moves with the same

orient at ion.
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6.1.2 Pointing with a manipulator

6.1.2.1 Implicit specificat ion of frames

The Scheinman arm has 6 degrees of freedom, which allows it to be

positioned at an arbitrary position and in an arbitrary orientation, Frames also

have 6 degrees of freedom, corresponding to 3 components of translation and 3

angles of rotation. it follows that if a single pointing of the manipulator is to imply

a unique frame explicitly, there are no spare degrees of freedom. The absence of

spare degrees of freedom makes it quite difficult to position the manipulator

accurately, since ail motions fine or gross require the movement of the same

members, and also limits obstacle avoidance.

it is not difficult to guide the arm manually to a good grasping position to

pick a part out of a fixture or pallet. it can be quite difficult to guide it manually

to a good orientation such that when the manipulator attempts to remove the part,

there is no binding. The need for orientation accuracy becomes more crucial when

it is being used to define a world model, since any angular error may be multiplied

by some long moment arm in the AL program.

To avoid this difficulty, it is sometimes convenient to use multiple pointings

to define each frame implicitly. The first pointing may define the origin of the

frame, the second may define one axis of the frame, and the third may define one

plane of the frame. in this manner, each pointing determines position only, and

there is no need to have orientation precision.

A simplification is possible when the orientation is parallel to that of some

other known frame, €.§. stationOr some other predefined frame, in which case, the

orient at ion frame can be specified from the known frame, and the iocat ion

determined by means of a single pointing.

6.1.2.2 Pointer

The manipulator extremity must be provided with some sort of sharp

. pointer so that it can be used as a precise measuring tool. The pointer must have

a shape suitable for reaching into awkward places such as the inside of a screw

hole, the interior of a box, and so forth. in order to make the pointer shape

compatible with ail kinds of unforeseen obstructions, it is desirable to design a

pointer which may be bent by the user into an arbitrary shape. Such a special

device will be referred to as a bendy pointer.

Whenever the user wishes, he may deform the bendy pointer into any new

configuration which appears to be convenient for the next operation. Having

deformed the pointer, the user must calibrate its new end position by using the

pointer to point to a standard fiducial mark at a known location in the iaborat ory.
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From the frame of the fiducial and the frame of the gripper, the system can infer

t hc translation which takes the gripper frame into the bendy pointer. An

alternative to the bendy pointer would be a tool set consisting of an assortment of

rigid pointers of commonly useful shapes which could be quickly attached or

detached. Whatever type of pointer is used, it must be reasonably rigid under

gravity to prevent it deforming accidentally while being positioned.

6.1.3 System hierarchy

The POINTY system resides on two computers during execution = the

PDP-1 0 where the arithmetic and computation is performed, and the PDP-11 which

Is responsible for reading and moving the manipulators.

The PDP- 10 part contains several modules: the affixment editor, arithmetic

routines, manipuiat or interface, file input/output facilities, display routines,

command line scanner (parser), and the user interface.

A subset of AL statements and expressions are accepted by POINTY. The

command line scanner (parser) prompts the user for input of a new statement by

an asterisk "x". if it is waiting for the continuation of a staternent or expression, it

prompts with "sx%i>>>", Parsing of the current input line begins when the user

hits a carriage return. The first token of the input line is compared with entries in

the symbol table. if there is a match, a fixed sequence of parsing will be followed,

depending on the token. if no match is found, the parser checks to see if it is a

variable that is on the left hand side of an assignment statement by checking to

see if the next symbol is a back arrow "«".

The user interface communicates with the user by giving out error messages

when the parser does not recognize something, or if the user wants to edit values

of variables (e.g. orientation of frames) etc, without using an assignment statement.

Display routines update the screen of the user's terminal to reflect the

current state of the affixment editor, arithmetic section, and the manipulator

interface whenever the values change, or shut off the display altogether if

necessary.

The affixment editor contains facilities for creating frames and modifying the

relationships between them.

Arithmetic routines are called by the parser when it recognizes an

expression or an assignment. it contains a fuii set of operations for SCALARS,

VECTORS, ROTS, FRAMES, and TRANSES.

The file input/output facility contains routines for saving and restoring

variables and values in and from a text file of AL declarations. These AL
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declarations and assignments may be used directly by an AL program, or they may

be read in by POINTY if the user needs them for re-initialization to a known world

state.

The manipuiat or interface provides the communication between POINTY and

the manipuiat or, It allows communication with the runtime system residing on the

PDP-11, and has two main functions: to transfer arm joints and wrist readings

from the PDP- 11 to the PDP~ 10, and to transfer commands for movement from the

PDP-10 to the POP-1 |.

The PDP-11 part of the POINTY system essentially consists of the AL arm

code, and a program which reads the arm position, continually displays it on the

VT05, moves the arms when requested to do so by the PDP- 10 part, and prints

out the result of each attempt to move the arm.

6.2 Executing POINTY

6.2.1 Short form execution instructions and display

The simplest way to execute POINTY is to type the instruction (a list of full

commands is given in section 6.2.2).

DO POINTY[PNT, HE]

followed by a carriage return. This instruction first loads the PDP-1 1 with the

POINTY runtime system and starts it up so that it is continuously reading the arm

joints and printing it out on the VTO05 screen, If updating stops on the screen at

any time, typing <alt>G at the VT05 keyboard should start it up again. The

PDP-10 part of the POINTY system is then loaded and started. POINTY generates

a display on the screen which is continuously updated as more instructions are

- executed. The following shows the state of the display after several instructions.
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STATION (NILROT,NILVECT) BHAND 1.20
- BASE (NILROT, (15.8,12.8, .5843)) YHAND . 000

-HANOLE (NILROT, (35.4,32.8,.584)) OFFSET 3.00

*HANDLE-TOP ((Y,189.)%(Z,98.8), (2.18, .348,5,85})

¥»HANDLE _REF (NILROT, (1.10,2.38,.188})

+YARM (NILROT,NILVECT)

+BARM ((Y,188.)%(Z,.882}), (43.5,56.8,18.3))

*BGRASP ((Y,188.)%(Z,-188.),NILVECT)

MOVE

BARM

«0 DECLAR.AL NILROT (Z,.088) NILVECT(.888, .883, .808}

RT_AP(Y,188.)%(Z,-38.8) |APPR (3.88, .0808,.800)

SAVED. TTY

The boxes will be referred to later by the following letters:

A: af f i xment tree,

frames and transes

B B: scalars

A C: default moves

0: output fi les

C E: rotat ions

F: vectors

:

The first thing that POINTY wants to know is where to save the terminal

session output, by printing out

file for TTY output =<file name> <cr> {filename may be omitted)
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A list of ail the POINTY commands given during the terminal session will be

saved in <file name> if one is given. Otherwise the terminal output will not be

saved. The file name is shown at the bottom of box D. Note that carriage return

IS the activation character for most instructions, and that the two forms of the AL

COMMENT statement are valid in POINTY.

POINTY is ready to accept instructions after this exchange, prompting with

an asterisk, as it does each time it awaits a new command. Single instructions may

terminate with a carriage return or with a semi-colon and a carriage ret urn, and

POINTY will then try to execute the instruction. Multiple instructions on the same

line must be separated by semi-colons, and the last instruction followed by a

carriage return. On seeing a carriage return, POINTY tries to execute the

instruction if it is meaningful, otherwise it will await more input and the next

carriage return by prompting with *¥¥%>>>, )

e.g. al«3<cr> (POINTY will assign value 3 to variable al}

al «3 %<cr {POINTY will wait for more input}

in the initial state of the display, Box A indicates the three frames known to

POINTY: station, balm, and yarm. The last currently has its coordinates all zero

because the yellow arm is disconnected. Box B has values of bhand and yhand

corresponding to the hand opening of the blue and yellow arms respectively.

Boxes E and F initially contain the definitions of the predefined rotation nilrot and

the predefined vector nilvect.

6.2.2 Full instructions to run POINTY

The following is a complete sequence of operations required to load and

execute t he POINTY runtime system on the PDP-11 and to load and run POINTY on

: the PDP-10. it is given in case some error occurs when the user does a DO

POINTY[ PNT, HE].

I. Type “A ELF” to have the ELF (PDP-11 interface) assigned to your job, so

. that some other job will not try to use it while you are running your program.

2. Type "R11TTY" to execute the program that loads your program into the

PDP-11. 11TTY will respond with

CORE SIZE = 25K

VE R SION USING <device>

TYPE ? FOR HELP

th

where device is either VT05 or TERMINAL. The asterisk is 11TTY’s way of
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prompting for user input.

The way to change (toggle) between the two devices is to type "V"

immediately after the asterisk, and 1 ITTY fills in the rest of the line and asks for

the next prompt as follows;

VE R SION USING <other device>

It is desirable to use the device VI05 so that once execution starts, the

joint angles and the other information relating to the arm will appear on the VTO05.

3. Type "Z" to zero out the core, followed by a carriage return to confirm the

instruction. 1ITTY will respond as follows:

wZER 0 CORE [CONFIRM| 500000<cr>

HE

4, The POINTY runtime system is then loaded by typing "G" for getting the
core image binary file, foi owed by the name of the file POINTY[PNT,HE] and a

carriage return.

«GE T SA V FILE - POINTY[PNT,HEJ<cr>
HH

5. The next step is to get the program started by typing "S$", then "D" followed
by a carriage return.

«START AT (462452) (D FOR DDT) -D<cr>
DDT STAATED AT 130000

- #

6. Now go to the VT05 and after making sure you are ready to push the panic
button type

#<ait>QG

You will see continuous scanning on the VT05, and continual updating of the joint

angles and other information.

1. You now have to exit from 11TTY by typing X on your terminal.

4

8. You will then be in the monitor, and to run POINTY on the PDP=-10, type the
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following instruction.

R POINT Y<cr>

This will run POINTY and give the display described in the previous section.

6.3 POINTY instruct ions

There are several classes of POINTY instructions.

6.3.1 Assignment statement

In the POINTY assignment statement, as in AL, the expression on the right

hand side is evaluated and assigned to the variable on the left hand side. If the

variable on the left hand side has not been declared, the assignment statement

implicitly declares the variable as having the type of the evaluated expression. An

error rnessage will be generated if the variable has been previously declared, and

the right hand side expression type is different from the left hand side.

Examples:

sf 2%3; declares s&4 as a scalar, will appear in box B

vid«zhat+ yhat; declares v4 as a vector, will appear in box F

r5« nilrot; declares r5 as a rot, will appear in box E

f5« bpark; declares f5 as a frame, will appear in box A

6.3.2 Declaration statement

Explicit declarations of SCALAR, VECTOR, ROT, FRAME and TRANS data

types may be made as in AL,

] The following AL predeclared variables and constants are recognized by

POINTY - scalars: bhand, yhand, vectors: nilvect, xhat, yhat, zhat, rotation: nilrot,

frames: station, barm,yarm,bpark, ypark,trans: niltrans, and dimensional constants;

inch, inches, deg, degree, degrees. Where barm or yarm or a frame attached to an arm

Is used in an expression, the current value computed from the present arm

. position will be used.

POINTY allows greater flexibility in specification of explicit data types than

AL. in particular, since the number and data types of arguments are different for

the various data types (except between FRAME and TRANS), they may be

declared without the qualifier. if POINTY is unsure whether a declaration is for a

frame or a trans, it will assume it is a trans, and will change it to a frame type

when the variable associated with it is used in an affixment statement, Note that

in the display the reserved words VECTOR, ROT, TRANS, FRAME are left out to

save space, and that xhat, yhat, and zhat are abbreviated Xx, y,z, where it is obvious.
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vectors; VECTOR( <scalar> , <scalar> , <scalar> ) or

( <scalar> , <scalar> , <scalar>)

rot at ions: ROT( <vector>, <scalar> ) or

( <vector>, <scalar>)

frames: FRAME( <rot>, <vector>) or

( <rot> <vector>)

t ranses; TRANS( <rot>, <vector> ) or

( <rot>,<vect or>)

Examples:

valid scalars: a, a_b,+.01, 3.001

valid vectors: VECTOR(O,+5, -0.3)

(a_b, a, (.05 = a)
(1,+5,01)

valid rotations: ROT(xhat, 180)

(zhat, 90)

(yhat,a>

valid frames: FRAME(r1xr2, vecl)

FRAME(ROT(yhat,90),(1, 1, 1))

(r1,VECTOR(2.3, a, -.3)

valid t ranses; TRANS(r1xr2, vecl)

: TRANS(ROT(yhat,80), 1, 1, 1)

(r 1,VECTOR( 2.3, a, ~.3)

6.3.3 Deletion statement

Variables may be deleted by means of the delete statement, if the deleted

variable is a frame identifier any subtrees rooted in it are also deleted. Examples
of the delete statement are

DELETE s1,s2,s3,v1,v2,fl,f2:

QDELETE s1,52,83,v1,v2,{1,{;

DELETE ALL; )
QDELETE ALL;
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The use of ALL deletes all the user declared variables. If no argument is given, it

is assumed to be ALL, but in the case of DELETE, the user is asked to confirm

that he does in fact want to delete all the variables. The variables will disappear

from the relevant boxes in the display. If a variable name is given that POINTY

does not understand, POINTY will assume a spelling error, and let the user correct
the name. If the user does not want POINTY to inform him that the variable does

not exist, he should use QDELETE instead of DELETE. The QDELETE command is

useful when macros or identifiers are to be read in from a file whose names may

be the same as those already defined in the symbol table.

6.3.4 Functions and Macros

A facility for text macro substitution is available, The syntax is similar to

that in AL, and defined as shown in the following examples.

DEFINE ARM = cbarmo;

DEFINE V 1{A,B,C)=cVECTOR (A,B,C)>;

Note the delimiters used around the body of the macro definition. In the

macro definition, the parameter names must be hitherto undeclared variable names.

Using those names for some other purpose in the future will not affect the macro

definition.

The macro name can be used just about anywhere where the body gives a

valid statement or statements. Thus the following are valid:

MOVE ARM TO BPARK;

VECT le VI(0,0,1);

VECT 2« V1(c2%35,1,4);

Note also the use of the delimiters when the parameter substituted is not a

single token but an expression or a series of tokens.

Functions may be defined when a complicated expression needs to be

evaluated several times. While they may be stored as text macros, a complicated

expression is best stored as a function, since the storage is then in an internal

form which allows POINTY to check that the expression is valid and has the right

operations performed in the arguments, The function definition has the following

syntax:

<type> FUNCTION <function name> =

<valid POINTY expression>

<type> FUNCTION <function name>{<type> <argument list>) =

<valid POINTY expression>
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<{ype> FUNCTION <function name>{<type> <argument lists;

<type><argument list>;.,,

<type><argument list>) =

<valid POINTY expression>

Here are examples of the use of functions:

SCALAR FUNCTION F]=2%3;

SCALAR FUNCTION SQUARE(SCALAR X) = X1%X1; .

SCALAR FUNCTION DOTPROD(VECTOR V1,V2)=V1.VZ;

VECTOR FUNCTION CHANGEXCOMP(VECTORV1;SCALARS]) =

VECTOR(S1,V1.YHAT,V 1 .ZHAT);

Functions are similar to typed procedures in AL, except that the body

consists of the expression to the returned, For example, the AL equivalent of the

above functions are as follows:

SCALAR PROCEDURE Fi;

RETURN{ 23);

SCALAR PROCEDURE SQUARE(SCALAR X);

RETURN(X 1 %X 1);

SCALAR PROCEDURE DOTPROD(VECTORV1,V2);

RETURN(V 1 .V2);

VECTOR PROCEDURE CHANGEXCOMP(VECTOR V1;SCALARS1);

RETURN{ VECTOR{ S 1,V 1 .YHAT,V 1.ZHAT));

- Functions may reference user defined identifiers, but in that event the function will

be invalidated when the identifier is deleted, The function will be valid when the

identifier is redefined.

. The current value of a global variable, or an expression of global variables

or an arithmetic expression may be evaluated by making use of the EVAL function
within the function definition.

Consider the following cases

V1« VECTOR{ 2,0,0)
FUNCTION Fl=2%V]

FUNCTION F2 = EVAL(2%V1)

V1 « VECTOR( 0,0,2)
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A call to F1 now will give the value VECTOR(0,0,4) while a call to F2 will

gi ve the value VECTOR( 4,0,0).

6.3.5 Expressions

POINTY accepts all the algebraic expressions except boolean expressions

that the AL parser is capable of handling, POINTY does not make any checks for

dimensional compatibility, The following summarizes the valid operations. Where

they have the same meaning as in AL, they are not described in detail.

SCALAR s+s, s-s, $%5, s/s, sts, v.v, ls, [vl Ir], s MAX s, s MIN s,

s DIV s, s MOD s, INT(s),SIN(s),COS(s), TAN(s),

SQRT(s),ASIN(s),ACOS(s),ATANZ(s,s),LOG(s),EXP(s)

VECTOR skV, vis, V/s, V+v, v-v, viv, rxv, POS(f), f¥v,v WRT f, UNIT(v),

AXIS(r), t *V,

v REL f =fxv {vis a vector expressed in the coordinate

- frame f. The expression represents the
coordinates of the vector in station

coordinates.)

ROTATION ORIENT(f), rr

FRAME f+v, f-v, tf, £*t

f1 RELf2=f2%xf1 {fl is a frame expressed in the coordinate
frame f2. The expression determines the

frame expressed in stat ion coordinates.}

CONSTRUCT(v,v,v),CONSTRUCT(1.1)

{constructs a frame using the location part

of the three frames, or the three vectors:

the first position defines the origin, the

second the x-axis and the third the x-y

plane of the desired frame. This avoids

having to guide the manipulator to a desired

orient at ion precisely,}

Tf, vf, 8f, uf {returns a frame having the location part as
that of f but with different orientations. T

gives the vertical component of orient at ion,

i.e. if ORIENT(f) = rot(zhat,a)x rot{yhat,b) %

rot(zhat,e)t h e n Tf = FRAME(rot(zhat,c),

POS(f));¥ gives the orient ation of bpark
position, i.e. rot(yhat,180);8 gives the

station orientation, i.e.nilrot, and a gives the

orientation of bgrasp when the arm is in the

park position, i.e. rot(zhat,180)}
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TRANS ff, txt, INV(t)

6.3.6 Affixment tree operations

6.3.6.1 AFFIX &UNFIX

The A FFIX instruction is similar to the AL A FFIX instruction, but allows

RIGIDLY and NONR IGIDL Y to be abbreviated as "*" and "+" respectively;

AFFIX f 1 TO f2;

AFFIX fl TO f2 RIGIDLY;

AFFIX f 1 TO f2 NONRIGIDLY;

AFFIX f 1 TO 12 ¥;

AFFIX fl TO f2 +;

Frame fl! is affixed to the f2. Unless specified otherwise, the affixment is RIGID.

Every newly defined frame is shown with respect to the station frame (indicated

with a "-" on the display). The affixment trees appear on box A of the display as

they are constructed. Frames may also be affixed with the relative transform

between them being specified as follows;

AFFIX <identifier> TO f3 AT (<rot><vector>);

AFFIX <identifier> TO f3 AT (<rot><vector>) RIGIDLY ;

AFFIX <identifier> TO f3 AT TRANS (<rot>,<vector>) NONRIGIDLY ;

If <identifier> is not a frame, a new frame is defined before it is affixed. This

instruction is used mainly for reading in AL instructions generated during a

previous POINTY session.

; The IJN FIX instruction is written as in AL or in a short form as shown

below. Frame_l is unfixed from frame_2 and affixed independently to stration.

UNFIX frame-| ;

UNFIX frame-1 FROM frame,2;

6.3.6.2 COPY

The COPY instruction is used to affix a copy of a frame and its associated

affixment subtree to another frame. The syntax is as follows:

COPY <frame_l1> INTO <frame_2>;

POINTY prefixes the first part of the name of <frame_2> (the part before the

underscore, if there is an underscore, or the full name, if its length is less than 5
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characters, otherwise the first three characters) or a user defined prefix to the

frames in the subtree of <frame_1>. Any frames in the subtree of <frame_1>

having an underscore will have the part after the underscore suffixed to the prefix

determined from <frame_2> if the procedure results in duplicated frame names,

POINTY allows the user to specify a new name.

A copy of only the subtrees of one frame to another may be made by using

COPY SUBTREE(<frame_1>) INTO <frame_2>;

Examples are given of the use of the COPY command to two affixment trees

rooted in base and handle as shown.

station (nilrot,nilvect)
-base (nilrot,(15.0,12.0,.500))
-handle (nilrot,{(35.0,32.0,.500))
*handle_top ((Y,180.)%(Z,90.),(2.10,.340,5.05))
*handle-ref (nilrot,(1.10,2.30,.100))

The instruction COPY SUBTREE (handle) INTO base produces the following result:

station (nilrot,nilvect)
-base (nilrot,(15.0,12.0,,500))
*base-top ((Y,180.)%(Z2,90.0),(2.10,.340,5.05))
¥base_ref (nilrot,(1.10,2.30,. 100))

-handle (nilrot,(35.0,32.0,.500))
*handle-top ((Y,180.)%(2,90.0),(2.10,.340,5.05))
¥*handie_ref (nilrot,(1.10,2.30,.100))

The names of new frames are obtained with the previously explained

convention: the name of the “receiving” frame, bas¢, is taken as the prefix for the

new names and it is substituted for the part of the names before the underscore.

Ail the sons of the frame handle are copied as sons of the frame base.

- The instruction COPY handle INTO base will produce this result.

station (nilrot,nilvect)
-base (nilrot,(15.0,12.0,.500))
*base_handle (niirot,(35.0,32.0,.500))
*base_top ((Y,180.)%(Z,90.0),(2.10,.340,5.05))
¥base_ref (nilrot,(1.10,2.30,.1 00))

-handle (nilrot,(35.0,32.0,.500))
*handle-top ((Y,180.)%(Z,90.0),{2.10,.340,5.05))
xhandle_ref(niirot,( 1.10,2.30,.100))

Handle together with its subtrees, is copied as a son of the frame base. The

convention used for producing new names generates base, handle, since the name

handle has no underscore.
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6.3.7 Arm interact ion commands

The interface to the POP-1 1 is used for arm interactions. The current

position of the arm is passed back to the POP-10, while instructions to tell the arm

to perform some motion are sent to the POP-11. When arm interaction occurs, a

software interlock prevents execution of the next POINTY instruction until the arm

position is read, or the motion is completed or determined to be unsuccessful.

6.3.7.1 Arm reading commands

Arm positions are read directly each time an expression is evaluated. The

current arm position is used whenever the arm is referred to directly, and to

compute the values of any affixed frames. The user may not assign values to the

frames barm and yarm.

Two particular assignments are required to initialize the system. The arm is

moved to a FIDUCIAL point (an arbitrary reference point whose location is defined

by this statement) and. the following command is given:

FIDUCIAL « <arm>;

To find the position of the pointer, the pointer is grasped in the arm and used to

point to the fiducial point. The following command is given:

POINTER « FIDUCIAL;

An AFFIX statement is then used to affix the pointer rigidly to the relevant
arm.

The FCONSTRUCT command is used to construct a frame from three

readings. A sample call is as follows:

FCONSTRUCT f;

where f is an undeclared identifier, POINTY asks which device (barm, yarm or

pointer) to use and lets the user specify the meaning of three posit ions by pointing
the manipulator at them. The first is always the origin of the desired frame, the

second on one of the principal axes (xhat, yhat or zhat) specified by the user, and
the third on the plane determined by that axis and another of the remaining

principal axes specified by the user. The three locations are used to compute the

desired frame.
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6.3.7.2 MOVE command

The arm motions specified can be absolute or differential. The syntax of

absolute moves is similar to the basic MOVE instruction in AL.

MOVE fl TO <fr_exp>

This is the general move command, f! (assuming it is affixed to an arm) is
moved to the indicated destination. The destination of the movement can be

specified in terms of the location of fI at the start of the motion.

POINTY does not currently know about approach and departure points,

deproaches, force sensing, condition monitors, or VIA points. However, a series of

single segment moves may be specified by giving a a list of frame expressions

instead of a single frame expression, as follows:

MOVEf 1 TO <fr_exp_1><fr_exp_2>,.,<fr_exp_n>

where the maximum number of expressions is 9.

Differential moves (not directly possible in AL but achievable by defining a

macro which expands to €¢TO& +2) can be specified by using a BY instead of TO

and a vector instead of a frame expression, as follows:

MOVE f 1 BY <vector>

MOVE f 1 BY <vector> WRT f 2

These instructions are equivalent to:

MOVEf 1 TO ® + <vector>

MOVE fl TO + <vector> WRT {2

Differential moves parallel to the x, y or z axes of the stat ion may be

specified by the following instructions.

MOVEXf 1 BY <scalar>;

MOVEY f 1 BY <scalar>;

MOVEZ fI BY <scalar>;

These instructions are equivalent to the AL instruction

MOVEf 1 TO @ + <scalar>*<axis>

To reduce repetitive typing, a move instruction similar to the last executed

move instruction (shown in box C of the display) may be given by merely typing
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the last part of the instruction. Hence it is possible to state

TO fl;

TO f 1 + <vector>;

TO f 1 + <vector> WRT {2;

BY <vector>;

BY <vector> WRT f{2;

BY <scalar>;

the last form may be used only after a differential movement instruction along a

principal axis xhat, yhat, or zhat.

Since movement to the park position is done so often, it may be abbreviated

as follows:

PARK BARM,; { same as MOVE BARM TO BPARK; }

PARK YARM; { same as MOVE YARM TO YPARK; }

PARK; { parks both arms }

6.3.7.3 CENTER command

The syntax and use of CENTER is similar to that in AL.

CENTER <arm>: {<arm> may be left out }

closes the fingers slowly, moving the <arm> to accomodate to the location of any

object positioned between the fingers. If <arm> is left out, the last arm moved
will be used.

6.3.7.4 OPEN and cLosE commands

The syntax for hand motions are similar to those in AL except that

differential movements may also be specified.

OPEN <hand> TO <scalar>;

CLOSE <hand> TO <scalar>; { absolute opening or closing }
OPEN <hand> BY <scalar>;

CLOSE <hand> BY <scalar>; { differential opening or closing }

If the next motion statement is to open or close the same hand, the instruction may

be abbreviated as follows:

TO <scalar>;

or BY <scal ar>;
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6.3.7.5DRIVE command

POINTY permits the movement of individual joints (which is not permitted by

AL). The syntax is as follows;

DRIVE BJT(<joint numbers) TO <scalar>;

DRIVE YJT{(<joint numbers) TO <scalar>;

DRIVE BJT(<joint number>) BY <scalar>;

DRIVE YJT(<joint number>) BY <scalar>;

The indicated joint of barm or yarm is moved to <scalar> or by <scalar>. <Joint

number> is an integer which represents the joint; joint 7 is the hand, while joints 1

through 6 are the arm joints. Driving joint 7 is equivalent to the OPEN or CLOSE

instruction. ~~ <Scalar> represents angles in degrees for joints 1,2,4,5,6 and

displacement in inches for the prismatic joint 3 and the hand joint 7.

Short forms exist as for the other motion instructions.

TO <scalar>;

or BY <scalar>;

6.3.8 Display routines

The standard display has been described in section 6.2.1, and it shows as

much useful information as possible by omitting the use of reserved words like

VECTOR, TRANS, etc, and by abbreviating XHAT,YHAT,ZHAT to X, Y, Z, and not

displaying the values of POINTY defined constants. A movable arrow is available

to highlight frame variables of interest.

There are now three display modes available. POINTY is initialized in the

. table display mode, in which scalars, vectors, transes, frames, rots, the default

move statement, and the files used in the current session are shown. Owing to

lack of space on the display, macros and function expression definitions are not

displayed in this mode. The type display mode allows the user to see all the

current definitions of the specified data type.

DISPLAY <data type>{ where <data type> is SCALAR, VECTOR,
ROT,TRANS,FRAME,

MACRO,FUNCTION }

This display mode permits the display of more variables of a data type than

Is possible in the standard display, and the display of macros and functions. When

the user is more interested in seeing what he has typed so far, the display mode

most useful is the no display mode, invoked by the command



94

NODISPLAY

This eliminates the display altogether, and just prints out the series of commands

typed by the user, To get back to the table display mode, the redisplay command

needs to be used.

REDISPLAY

6.3.9 File input/output

File input and output is necessary to generate the affixment trees for AL

instructions, as well as to save the results of a POINTY session and to make use of

the results of previous sessions.

6.3.9.1 Saving current state ~-WRITE. CLOSE

The WRITE instruction is used to write on the indicated file the AL

instructions required (declarations, assignments, and affixments) to define variables

and preserve the current state of the world. The syntax is as follows;

WRITE; { into file last written }
WRITE <id>; { into file last written }

WRITE INTO <file>; { write everything into <file>}
WRITE <id> INTO <file>:

If the <i> part is omit ted, all the variables (except station, fiducial, pointer, arm and

barm and other predeclared variables) are output, otherwise only the indicated

frame and the subtrees rooted in it, or the identifier is output. Since frames are

affixed to other frames in terms of their relative transes, any frame to be saved

should be affixed independently to station in order to obtain its absolute location.

POINTY permits output to different files. If the file named does not exist, it

Is created, and the current time and date written out before the required

information specified by the user. If it exists and is open and previous output has

been done to the file but a CLOSE not done on it, the output is appended. If it

exists but no input has been done to it, the current time and date are put on a

fresh page, followed by the desired output. If no output has been done so far, or

no new output has been performed since the last CLOSE, and no file name is

specified, output will be directed to a file DECLAR.AL on the area of the current
user. Otherwise the last file written is used.

Files should be closed if there is no further output to be directed to them,

and before ending a POINTY session. The command syntax is as follows:

CLOSE; { closes last file written }
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CLOSE <file>; { closes file <file>; future output will go

onto the next page }

CLOSE-FILES; { closes all files currently opened, including
the one collecting the terminal output, after

asking user for confirmation, after which

POINTY asks for a new file name in which to

collect future terminal output }

To ensure that this CLOSE instruction does not interfere with closing a hand, the

user should try not to use a file called BHAND or YHAND. All files will be closed

at normal exit for POINTY if they have not been closed explicitly by the user.

6.3.9.2 Getting a given world state = REAL, & QREAD

The READ and QREAD commands will read the specified file of AL

instructions to bring the state of POINTY’s world to a known state, or to a state

that was saved at the end of the previous terminal session, so that in addition to

being input files to AL, POINTY generated files may be used to store instructions

to build the necessary frame tree structure and assign values to variables.

READ: { reads from DECLAR.AL }
READ <file>;

QREAD;

QREAD <file>;

Since movement commands may also be given in the input file, the user

should be careful that the commands do not C8Usé disastrous motions to occur.

The READ command will print out the input file as it is being read. The QREAD

command will execute faster since it does not print out the input file.

; 6.3.10 Miscellaneous commands

EDIT <variable>;

. loads the line editor with the value of the variable and allows the user to edit it.

This is particularly useful when the user wants to change the rotation part of a

transformation without changing the vector part. It can also be used to change the

definitions of macros and functions.

PRINT <expression>;

prints out the value of the arithmetic expression.

SPRINT “<any text >";
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prints out <anytext>at the user term nal

PROMPT

waits for the user to type 'P", followed by a carriage return before proceeding

any further.

RENAME <variable>;

allows the user to change the name of the variable.

EXIT;

exits from POINTY.

Typing a question mark

?

gives some information to the user about the available instructions and their

meaning. Whenever a syntax error is detected this instruction allows the user to

obtain information about the correct syntax of the statement,

T,4,nT, or nd

shifts the display arrow up or down. n determines the distance the arrow is to be

shifted.

Some error recovery procedures are available, Whenever an undeclared

identifier is used where POINTY expects a known variable or its value, POINTY will

. keep asking for a corrected name until it is given something it can work with, or

the user hits <control>C to get out of the query loop.

<ESCAPE>|

typed on the terminal will cause termination of program execution at the end of

the current input line or statement, whichever comes first. All typeahead will be

flushed, and if POINTY is reading from an input file, it will stop. The next input

accepted will be from the keyboard. This command is used to get out of runaway

executions when instructions are being executed from a file through the READ

command, or out of infinite loops,
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6.4 Hints on using POINTY

6.4.1 Recommended sequence

The following is a recommended sequence of steps for using POINTY after

initializing it:

1) Use the arm to grasp the fiducial point and type the instruction

FIDUCIAL « BARM;

2) Put the pointer in the hand of the arm and grasp it tightly. Point the tip of

the pointer to the fiducial point and type the instruction

POINTER « FIDUCIAL;

3) Now affix the pointer to the arm frame

AFFIX POINTER TO BARM;

4) For any object, it is desirable to find a reference point for the reference

frame. In order to be able to locate the object quickly for future use, it is

desirable to have the orient at ion parallel to the station orient at ion. Thus the

pointer should be used to point at the reference frame, and the following

instruct ion typed

origin « 8 POINTER;

9) The frames for other features of interest are found by using barm,pointer,
CONSTRUCT or FCONSTRUCT. Let us call these new frames fl, f2, f3;

6) These frames should be affixed to the origin by the instruct ions

AFFIX fl TO origin RIGIDLY;

AFFIX f2 TO origin RIGIDLY;

AFFIX f3 TO origin RIGIDLY;

7) Before exiting from POINTY, do not forget to save the frame tree you are
Interested in.
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6.42 Hints

1) It is possible to record the values of variables during a session by asking to

edit those variables. The values will be saved within the file collecting the

terminal output.

2) If the POINTER is physically removed from the arm, the user need not bother

to UNFIX it. So far as POINTY is concerned, there is an imaginary pointer in the

hand. If the user can put back the pointer in the same position later, the values

will still be valid. For access to difficult places, the bendy pointer (6.1.2.2) can be
used; however, it must be redefined each time it is bent.

3) Certain positions may be read more easily by moving the arm there and

grasping, rat her than using the pointer. In that case the value of barm should be

used.

4) It is a good idea to save the current value of a frame within another

variable before moving it, so that if you later decide to backup, the value will be

available.

5) While objects may be in any arbitrary orientation, it is generally easier to

use POINTY if the principal axes of frames are parallel or orthogonal to the stat ion
axes.
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7/7. ERROR CORRECTIONS AND RECOVERY

Errors can occur at various stages during program compilation and execution,

and it is important to be able to continue from the error point as gracefully as

possible. Some errors may be patchedup according to the wishes of the user,

while others may be fixed up by the AL system, with the user having no say other

than whether to continue with the execution or to abort it. This chapter attempts

to describe the kinds of errors encountered during program compilation and

execution, and what action the user can take when such errors do occur.

7.1 Parsing errors

Errors detected in the parsing phase are the easiest to correct and patch.

For minor errors it is possible to proceed after correction without going back to

the source file.

The parser outputs error messages, and gives the user the option of

(a) editing the source file

(b) aborting the compilation

(¢) taking the standard fixup

(d) backing up to and changing the source code from the

beginning of the innermost statement.

The last feature is particularly advantageous when the compilation is a long one,

and the error is a minor one which can be easily corrected - e.g. errors which are

due to misspellings, missing operators, and even some simple cases of syntactically

Incorrect statements.

Error messages are generated whenever the parser comes across something

- it does not like. Some messages are warning messages which tell the user what

he should not do in the future, An example of this is the case where identifiers

are declared in a block but never referenced, resulting in carrying more variables

than necessary, or where an identifier is not expected to have a planning value,

. thereby causing problems in the compilation phase.

The most common errors are dimension and type incompatibility. Dimension

checking is done across assignment statements and force, torque, and duration

expressions and conditions, Whenever there is inconsistency, an error message is

generated. While dimensional inconsistency may not cause any grief during

execution of the program, checks for it enable certain errors (e.g. wrong variables

being used) to be pinpointed early during the compilation phase. A more serious

error occurs when the data types are incompatible (e.g. assigning a vector

expression to a scalar variable), and needs to be corrected, as otherwise the error

will cause trouble in the compilation and execution phases.
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Dimension checking can be made less stringent by including the F switch in

the REQUIRE ERROR-MODES statement, In this case, dimensionless variables will

be coerced to the type that makes them compatible with the other terms in the

expression or stat ernent.

TYPICAL ERROR MESSAGES;

TYPE MISMATCH

This message is printed when an identifier, factor or term is of a different

type than that expected in the context of the expression.

DISTANCEDIMENSIONS DON'T MATCH ON ASSIGNMENT STATEMENT

The meaning is obvious, but the error is not serious and AL will allow the

code to continue compiling, since dimension checking is not done during execution

of the program, --

BLOCK NAME AT END DOES NOT AGREE WITH THAT AT THE BEGINNING

This error occurs when there is a misspelling in the names within strings at

the corresponding places, or if the BEGINS and ENDS are mismatched.

TRYING TO ASSIGN VALUE TO ARM OR DEVICE

The user is trying to assign a value to an arm or a hand. This is disallowed

in a program because the values reflect the state of the real world during

execution, and cannot be changed by the user,

.<vpariable> NOT DEFINED, WILL DEFINE IT.

The user has put an undeclared variable on the left hand side of an

assignment statement. This message could be due to a@ misspelling.

An error message, followed by CONTINUE WILL FLUSH STATEMENT

This means that the parser will be unable to do any form of fixup, and that

it will just flush the statement by ignoring any further text until the next

semi-colon is read.

ERROR CORRECTION

Whenever the parser detects an error, it prompts the user with a "8". The

user should respond with a single character as follows:
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C or <cr> continue with standard fixup

A or <|f> continue automatically with standard fixup for future
errors.

E edit source file at the place the error occurs

R restart the program =~ type in the command line

T terse information giving only the different options

available

V verbose information giving characters and their effects

X exit from program

L log errors in a logging file

M modify source code - user will be presented the

offending line and given the chance to modify it

Any other character will cause either a list of the above information to be

printed out, or just a list of the possible options.

The most useful response for the user is "M","C" or "E". The first is

particularly useful when a minor error (e.g. spelling error) occurs towards the end

of a long compilation, and the user does not want to have to start from the

beginning again. "C" is useful when the error can be corrected by a standard
fixup, while "E" is used to correct more serious problems by going back to the
source file,

Note that the "M" option is not always available. There are situations

where interactive error recovery is impossible - e.g. when in the middle of a

macro expansion, and so the user is not allowed to make any changes.

If any errors have been corrected interactively, at the end of the parsing

phase AL will ask the user if an updated copy of his source file is to be saved.

) 7.2 Compiler errors

The principal compiler error messages are those given when planning values

are not available to variables, (e.g. at the beginning of a procedure its parameters

. are undefined) or the arm is expected to move to some impossible position, e.g.

below the surface of the table, or a position corresponding to joint values beyond

the joint stop limits.

Some messages are WARNING messages, which means that compilation wilt

cont inue automatically. Some others are HAH! messages, which may ask for user

response by means of an up arrow "T". In such cases the user usually has few

options other than to continue with the standard fixup by typing C or to abort the

compilation and change the source program,
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Note that once the parser exits to ALC, the user has no more cont rol over

changing the contents of his original source code without running the parser again

or changing the S-expression file.

TYPJCAL MESSAGES:

WARNING: <variablex HAS NO PLAN VALUE -WILL USE ZERO.

When doing the world modelling (see section 4.6), if the plan tirne value of a

variable is needed, but it has not been assigned one this message is printed with

<variable> equal to the name of the undefined variable. A plan time value of zero,

nilvect, nilrot or niltrans will be used depending on the data type of the variable.

WARNING: BLUE ARM NOT PARKED UPON PROGRAM COMPLETION.

It is good practice to park the arm before exiting from the program.

HAH !You want only 2.000000 for this motion, and I think you need

2.135642 . In order to satisfy your request, 1 am disregarding any

other time constraints you. may have placed on the motion.

Called from 544264 Last SAIL call at 536712

This message is given when the user asks for a motion duration time which

Is too short.

JOINTS OUT OF RANGE:. . .

NAN! This destination location is not accessible.

The closest reasonable point is bsing used.

Called from 544264 Last SAIL call at 536712

- The message here is obvious. It means that there is some mistake in what

the user is asking for - maybe trying to reach below the table, or trying to get to

a location which requires the joints to go beyond their limits, If you think that the

location is accessible, it may be that the desired location is high above the location

of It he table top with the hand pointing downward vertically, and that would not be

possible because joint 5 will run into a stop limit. This problem may occur if the

hand has the park orientation at a height more than 10 inches from the table top.

7.3 PALX errors

The principal PALX error occurs when the program is very long. PALX then

gives the message that there might not be enough space, in which case, the

program should be broken down into smaller subprograms. If any other error

message is given by PALX, it is an AL bug, and the user is requested to report it.



Fo

103

7.4 Loading errors

11 TTY is the program that loads the PDP-11 with the core image of the AL

interpreter and runtime system. The instruction “DO AL[ALHE]" has the effect of a

number of instructions which includes assigning the PDP- 11 to your job, zeroing

the memory of the PDP-11, loading the AL interpreter and runtime system,

overlaying it with the user program load module and starting DDT on the PDP- 11.

Further details are given in Chapter 5.

There are several things that could go wrong during this sequence of

events, The message will be printed out at the terminal of the user,

ELF ASSIGNED TO JOB n.

This message is printed when some other job has the ELF (PDP- 11

interface) assigned to it. When this happens, you should find out whose job has it

assigned, and see if the owner is using it, If the job is not using the ELF, you

should request that the ELF be deassigned, and then try the “DO” instruction again.

If the job is using the ELF, you should try again later.

PDP-II STOPPED, RESTART

Restarting the entire sequence from Zeroing the core will take care of this

problem.

NO RESPONSE WHEN YOU TYPE ANYTHING ON THE VTO5.

If there is no response on the VT05 when you expect some output e.g.

when you do not get the asterisk and the flashing cursor, 11TTY may be in

““TERMINAL” rather than "VT05" mode, Type V several times on the terminal and

) let the mode toggle from one to the other until "VTO5" mode is obtained,

7.5 Runtime errors

During the execution of the user program, several things can cause the

program to stop. The following are the common error messages that are printed

on the VTO5 by the runtirne interpreter.

INCOMPATIBLE PCODE VERSION. PROCEED AT YOUR OWN RISK

This means that the binary file assembled for the user program is

incompatible with the current runtime system. The solution is to recompile the

user AL program.
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FREE STORAGE EXHAUSTED

Only very large programs will cause this error. It has been largely

eliminated with the addition of more memory,

NO VALUE FOR VARIABLE - USING DEFAULT.

This error is caused by at tempting to access a variable before it has been

assigned a value. Proceeding will use a value of zero, nilvect, nilrot, or niltrans,

depending on the data type of the variable.

USER PDL OV

This is a fatal error caused by a bug in either the hardware or the runtime

system. Sometimes restarting the program will cause this error to go away,

Below are the errors associated with the arms that occur during motions.

CAN'T INITIALIZE ARM. REFERENCE POWER SUPPLY OUT OF RANGE.

The arm initialization routine ran into trouble due to the arm reference

power supply drifting. The program may be continued by typing <alt>P, but this

should be done with extreme caution, and the user should be extremely alert with

a finger over the panic button to cause an immediate stop if the arm does

sormet hing unexpected.

PAN ICBUTTON PUSHE D

This error occurs when the panic button is pushed, or someone has leaned

on the edge of the table, thereby pulling on the yellow cord, and shutting off the

- power supply. RETRY<alt>G will try the current motion again if the panic butt on
was pushed, but it will give the next message if the yellow cord was pulled.

ARM INTERFACE POWER SUPPLY TURNED OFF

(CHECK JOINT BRAKE SWITCHES)

When this error message appears, check all the brake switches on the panic

button box, and make sure that all the brakes are applied. If any of the brakes

are in the released position, toggle them to the set position, and then try again by

typing RETRY<alt>G. if you get the same error again, press the large red button
on the underside of the short side of the table nearest the wall to turn on the arm

power, and try again. If you get the error again, it may be that the arm interface

power really is off at the source, in which case you should get help from one of

the personnel in the lab.
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EXCESSIVE FORCE ENCOUNTERED BY JOINTn

This error occurs when the movement to be made requires too high a force.

It could occur:

(1) when the arm encounters an object during the course of the motion

(get it out of the way)

or (2) the time specified for the motion is too short

(make it longer next tirne)

or (3) if the position at the beginning of the motion is

far from the planned position

(user can’t do much about it at runtime except move the arm manually

where it is supposed to go)

The nurnber at the end will tell which joint ran into problems. Numbers 1

through 7 represent joints 1 through 6 and the hand of the yellow arm, while

numbers 10 through 16 represent corresponding joints in the blue arm.

TIME OUT FOR JOINT n

This occurs usually at the end of a motion when the arm is prevented from

going to its final destination but the error is insufficient to cause a high enough

mot or torque requirement to give a joint force error,

STOP LIMIT EXCEEDED FOR JOINT n

There is a software joint operating range which is lower than the hardware

joint operating range for safety purposes, and when the limits are exceeded, this

error message is generated. Usually this message occurs if continuation of

compilation had been allowed in the compilation phase when a “destination location

not accessible” message was generated. Again the offending joint number is

indicated,

CONTINUATION FROM ERRORS

To continue from an error there are several possibilities that are indicated

. on the VTO05.

<alt>G will cause execution to begin from the start of the program.
<alt>P will cause execution to continue from the next statement.

RETRY<alt>G will attempt to retry the aborted move. Note that motions

involving force will currently not use the force system in

the retried motion.
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OTHER ERRORS

Jhe following are internal or hardware errors over which the user has little

control. They are given for the sake of completeness. Such error messages

should be reported. Many of them will leave the error number in RO in which case

typing "RO[" to DDT will print it out.

COULD NOT ATTACH TO REQUESTED JOINT(S)

2 INCORRECT NUMBER OF JOINTS REQUESTED TO BE DRIVEN

3 WIPERS COULD NOT BE READ WITHIN THEIR OPERATING RANGE

4 ARM SOLUTION DOES NOT EXIST

5 UNKNOWN TOUCH SENSOR REQUESTED

6 NO MORE FREE SLOTS IN TOUCH SENSOR EVENT LIST

11 ZERO VELOCITY TACHOMETER READING OUT OF RANGE

12 ATTEMPTED TO SWITCH ARMS WHILE FORCE SERVOING

13 NO MORE FREE SLOTS IN FORCE SENSOR EVENT LIST

14 NEED ALL 6 ARM JOINTS IN ORDER TO DO FORCE SENSING/COMPLIANCE

15 CAN'T FORCE SERVO MOTION WITHOUT POLYNOMIAL

20 JOINT STARTED OUTSIDE OF PERMITTED OPERATING RANGE

400 JOINT IS DOWN, INOPERABLE

1000 CATASTROPHIC A/D ERROR HAS OCCURRED

40000 NO ARM SOLUTION WHILE DOING FORCE COMPLIANCE

7.6 Hints on debugging

There are several instructions that are available for the user to determine

which part of his program is giving him problems.

7.6.1 Parse time debugging aids

REQUIRE MESSAGE COMMAND (cf. section 4.5.9)

The message can be used to inform the user where he is in the program,

but. since the user is normally familiar with his program, it would be used where

there are long compilations of several source files, and the user wants some

description of the contents of some source file. Another use is to output a

message to set parameters during compilation, and follow it directly with a

REQUIRE SOURCE-FILE "TTY:FOO.AL". The user can then make the required

assignments from the teletype.

REQUIRE ERROR-MODES “LA” (cf. sect ion 4.5.9)

This message is particularly useful if the compilation is to be done

non-interactively, Errors (if any) will automatically be collected in a file with
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extension LOG, and the parser will try to continue from errors the best it can.

7.6.2 Compile time debugging aids

NOTE, NOTE1, NOTE2 COMMANDS (cf. section 4.5.10)

If you get messages from the AL compiler that you do not understand, one

way to determine where the cause lies in the source program is to use the NOTE

command as described before. By examining where the error message occurs with

respect to the notes printed out by the program, it is possible to localize the

source of error.

DUMP COMMAND (cf. section 4.5.10)

This prints out the plan-time value of the variables of interest to allow the

user to verify that they are what he expects them to be.

7.6.3 Runtime debugging aids

7.6.3.1 ALAIO

ALAIO is the high level debugger for AL programs that resides on both the

POP-I 0 and POP- 11, providing a communication link between the two computers

that permits the user to examine and change the values of variables and allow

events to be signalled and waited.

ALAID is run after the AL program being debugged has been loaded and

started on the PDP-11 in the usual way.

RU DEBAL[AL,HE J<cr>

results in running a driver program on the POP-10 that communicates with the

ALAIO process which is running on the POP-I 1 in parallel with the AL runtime

interpreter. OEBAL responds with a colon-asterisk-colon whenever it expects a

| user command.

The symbol table for the variables in the user AL program must be given to

ALAIO by means of the following command:

SYMBOL FOQ.ALS<cr>

where FOO.ALS is the name of the user’s AL program symbol table as

generated by the AL compiler. When ALAIO has successfully read in the file {and
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when it successfully performs any commands given to it) it will type:

D ONE

It is possible to use ALAIO to examine and modify the value associated with

the variables in the user's AL program by means of the following two commands:

GETVAL (NAME v)

SETVAL (NAME v)(<data type> <value)

where v is the name of the variable being refered to, <datatype> is the data type
of the variable (e.g. SCALAR, VECTOR, FRAME ), and <value> is the new value to

be assigned.

It is also possible to signal and wait for events with ALAIO. The syntax of

these commands is as follows:

SIGNAL (NAME e)

WAIT (NAME e)

where ¢ is the event being used.

A running AL program may be halted and execution continued by means of
the HALT and GO commands as follows:

HALT

GO

The HALT command halts execution of the AL program upon completion of

execu! ion of the current pcode instruction. ALAIO sends the message “ALL ACTIVE
- INTERPRETERS HALTED” to the user terminal,

The current version of ALAIO is primarily used as an interface between the

AL runtime system and some higher level program (e.g. a vision module) that is

running on the POP-I 0. A more advanced version of ALAIO is currently being

implemented which allows AL wizards to alter the flow of control, set breakpoints,

and examine/modify the pcode.

7.6.3.2 PRINT statement

A second way to help debug the program during execution is to output

values and messages during the execution by means of the PRINT command (c.f.

section 4.5.7). It is useful for printing out actual values of variables at execution,
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7.6.3.31 1 DOT

11 DOT is an assembly-language symbolic debugger for the POP-I 1, and its

use is outside the scope of this document, It is primarily used by AL wizards to

debug the runtime system, The user is exposed to 11 DDT to the extent that he

uses it to start or continue execution of his program using the <alt>G,

RETRY<alt>G, and <alt>P commands.
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Appendix |. AL RESERVED WORDS, PREOECLAREO CONSTANTS AND MACROS

Reserved Words

INT WHILE

ABORT INV WITH
ABOUT INSCALAR WOBBLE
ACOS LABEL WORLD

AFFIX LOG WRT

ALONG MAX XOR

ALSO MESSAGE

AND MIN Predefined constants

ANGLE MOD

ANGULAR_VELQCITY MOVE n
APPROACH NO_NULLING BPARK

ARRAY NONRIGIDLY CM

ASIN NOT CRLF

AT NOTE DEG

ATANZ NOTE 1 DEGREES
AXIS NOTE? FALSE

BEGIN NULLING GM

BY ON INCH
CASE OPEN INCHES

CENTER OPERATE LBS

CLOSE OR OUNCES

COBEGIN ORIENT 0z
COEND PAUSE NILDEPROACH

COMMENT POS NILROT

COMPILEA-SWITCHES PRINT NILTRANS

CONSTRUCT PROCEDURE NILVECT

COS PROMPT Pi

DEFER QUERY RADIANS

DEFINE REFERENCE SEC

DEPARTURE REQUIRE SECONDS

DEPROACH RIGIDLY STATION

DIMENSION ROT TRUE
DIMENSIONLESS SCALAR XHAT
DISABLE SIGNAL YHAT

DISTANCE SIN YPARK

. DIV SOURCE-FILE ZHAT
DO SPEED-FACTOR

DUMP SQRT Predefined identifiers
DURATION STEP -

ELSE STOP BARM
ENABLE TAN BHAND
END THEN YARM
EQV TIME YHAND
ERROR-MODES TO

EVENT TORQUE Predefined macros
EXP TRANS EE —

FIXED UNFIX APPROXIMATELY
FOR UNIT CAUTIOUS
FORCE UNTIL CAUTIOUSLY
FORCE-FRAME VALUE DIRECTLY
FRAME VECTOR PRECISELY
FROM VELOCITY SLOW
HAND VIA SLOWLY
IF WAIT

IN WHERE
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Appendix {l. POINTY RESERVED WORDS & PREDEFINED CONSTANTS

Reserved words

SCALAR

ACOS SIN

free SPRINT
SQRT

ANZ SUBTREE
TAN

BPARK

BY

CENTER vid
CLOSE VECTOR
CLOSE-FILES WRITE

CONSTRUCT JT
COPY YPARK
cos

agar Predefined Identifiers
DISPLAY

DISTANCE - BARM
DIV BGRASP
DRIVE BHAND
EOIT BPARK
EVAL POINTER
EXIT STATION

YARM

EXP YHAND
FCONSTRUCT

FRAME

FROM Predefined Constants
FUNCTION

INT BPARK

INTO DEG

LOG DEGREE

MAX DEGREES

MIN INCH

MOD INCHES

MOVE NILROT
) MOVEX NILTRANS

MOVEZ Pl

NODISPLAY XHAT
OPEN YHAT

. ORIENT YPARK

PARK ZHAT

POS

PRINT

PROMPT

PWRITE

QOELETE

QREAD

READ

REDISPLAY

REL

RENAME

ROT
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Appendix Ill. AL COMMAND SUMMARY

BLOCKS: BEGINS; S; S; ... SEND
COBEGIN Ss; 3; 3; .. S COEND

DECLARATIONS: TIME SCALAR tsl,ts2; LABELi 1,123
DISTANCE VECTOR dvl ,dv2;
ROT ri,r2; FRAME f 1,42

TRANS t1,12; EVENT e 1,02;

FRAME ARRAY f [[s]:82],{2[s3:54,55:56,..];

PROCEDURES: PROCEDURE pl; S;
SCALAR PROCEDURE spl (VALUE SCALAR vsl ,vs2;

REFERENCE ROT rrl;

SCALAR ARRAY asl[2:3]));5;

OPERATIONS:

scalar s: $+5,8-5,5%s,8/s,58Ts,|v/,Ir|,Is|,v.v,s MAX s, sMINs,s MOD s, s DIV s, INT(s)
vector v:  VECTOR(s,s,s),5%v,vks,v/s,vev,v=vviv,rky tiv, fxv,y WRT f,

UNIT (v),POS(f),AXIS(r)
rot r: ROT (v,s),rkr, ORIENT (f)

frame f: FRAME(r,v),fev,t=v1%, CONSTRUCT (v,v,v)
trans ft: TRANS (r,v),f—1 txt INV (1)
boolean b: =b, NOT b, bAb, b AND b, bvb, b OR b, b=b, b EQV b, b&b, b XOR b,

5<5,5¢5,5°5,5 45,876,528

dimension d: d*d,d/d,INV(d)

AL S: n,PI,BHAND,YHAND
CONSTANTS v: XHAT,YHAT,ZHAT,NILVECT
AND r: NILROT

VARIABLES f: BPARK,YPARK,STATION,BPARK,YPARK,®(valid only in MOVE)
t: NILTRANS

b: TRUE, FALSE

units: CM,INCH,INCHES,OUNCES,0Z,GM,LBS,SEC,
SECONDS,DEG,DEGREES,RADIANS

dimensions: DISTANCE, TIME,FORCE, ANGLE, TORQUEANGULAR_VELOCITY,VELOCITY,
DIMENSIONLESS

FUNCTIONS:

scalar SQRT(s),5IN(s),COS(s), TAN(s),ASIN(s),ACOS(s),ATAN2(s,s),LOG(s),
EXP(s),INSCALAR

boolean QUERY {print list)

STATEMENTS:

comment COMMENT <any text without semicolon);
{ <any text> }

control FOR s+ (scalar) STEP <scalar> UNTIL <scalar> DO (statement);
IF (condition) THEN <statement> ELSE <statement);

IF <condition> THEN <statement>;

WHILE <condition> DO (statement);

DO <statement> UNTIL (condition);

CASE <scalar> OF BEGIN $3S:... S END:

CASE <scalar> OF BEGIN [il] s;[i2] s; .ELSE j«0;[i3][i4) S END;

affix AFFIX fl TO f2 ATt 1 RIGIDLY;

AFFIX f3 TO f4 BY {2 NONRIGIDLY;

AFFIX f3 TO f4 BY t2 AT t1 NONRIGIDLY;

unfix UNFIX 5 FROM {6
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condition ON FORCE (<vector>) <rei><{force scalar> DO <statement>;
monitor ON TORQUE <rel> <torque scalar> ABOUT <vector> DO <statement>;
statement ON FORCE <red> (force scalar> ALONG <axis vectd OFfi DO ..3
and ON TORQUE <rel> «torque scalar> ABOUT <axis vect> OF fl IN HAND DO ..;
clauses ON DURATION ? (time scalar> DO <statement>;

<label>: DEFER ON <event> DO <statement>;

<rel> is 2 or

with FORCE, TORQUE, DURATION similar to condition monitor

clauses WITH FORCE-FRAME = <frame> IN (co-ord Sys»
WITH SPEED-FACTOR = <scalar>

WITH APPROACH = «distance scalar> or <distance vector> or <frame>

or DEPROACH (fl)

WITH DEPARTURE =....

enable ENABLE <label>

disable DISABLE <label>

deproach DEPROACH(<frame>) « <scalar> or <vector> or {trans or <frame>;

motion MOVE f 1 TO <fvab;
MOVE f | TO ¢frame> VIA <frame> framed framed;
MOVE f | TO <fvab>

VIA <frame) WHERE DURATION =<time scalar,
VELOCITY = «velocity vectors,

<more clauses>;

MOVE §] TO <fval> <more clauses>;

OPEN <hand> TO <distance scalar);

CLOSE <hand> TO «distance scalar>;

CENTER (arm);

print PRINT (<> <a>,..., e>) @ is an expression, variable or string constant
abort ABORT (<e>,<e>,...,<8>) similar to print
prompt PROMPT (<e><@),...,<€>) similar to print
pause PAUSE <time scalar);

signal SIGNAL el;
wait WAIT el;

assignment <var> « <expression>

plan assign <var> «+ <expression>

require REQUIRE SOURCE-FILE "DSK:FILE.EXT"s
REQUIRE COMPILER_SWITCHES “LSK”;

REQUIRE ERROR-MODES "LAMF";
REQUIRE MESSAGE “<message>“;

macro DEFINE <macro-name> = €<{macro_body>o;

DEFINE <macro_name>(ml,m2,..)2€ <macro-body> =;

note NOTE("<message>")s
NOTE| (“<message>“);

NOTE2("(messaged");

dump DUMP <variable-list>;

return RETURN

RETURN{<expression))
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MACROS: CRLF carriage return and line food
DIRECTLY WITH APPROACH=NILDEPROACH

WITH DEPARTURE=NILDEPROACH

CAUTIOUS SPEED-FACTOR ¢ 3.0

SLOW SPEED-FACTOR ¢ 2.0

CAUTIOUSLY WITH SPEED-FACTOR = 3.0

SLOWLY WITH SPEED-FACTOR = 2.0

PRECISELY WITH NULLING .

APPROXIMATELY WITH NO,NULLING
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Appendix IV. POINTY COMMAND SUMMARY

DECLARATIONS: SCALAR tsi, ts2;
VECTOR dv! ,dv2;
ROT rl,r2;
FRAMEf 1 ,{ 2:

TRANS $1,123

OPERATIONS:

scalar s: 6+5,5-5,5%5,8/5,|v]IrlIs|,v.v
SQRT(s),SIN(s),COS(s),ASIN(s),ACOS(s),ATAN2(s,8),LOG(s),EXP(s)
s MAX s,sMINs,s MOD s,5 DIV s,INT(s)

vector v: VECTOR(s,s,8),(5,5,8), sv, vks,vev,v=v,rkv tkv,fkvy WRT f,
AXIS (v),UNIT(v),POS(f),v REL f

rot r ROT(v,s),(v,s),r¥r,ORIENT(f)
frame f: FRAME(r,v),(r,v),{sv f=v, %t,{] REL f2, CONSTRUCT(f,f,f),CONSTRUCT(v,v,v)
trans i: TRANS r,v),(r,v), (f-1), txt

POINTY 5: BHAND,YHAND

CONSTANTS v: XHAT,YHAT,ZHAT,NILVECT
AND rs NILROTN

VARIABLES fs BARM,YARM,BGRASP,BPARK,YPARK,STATION,BPARK,YPARK,
@(valid only in MOVE),FIDUCIAL, POINTER

ts NILTRANS

STATEMENTS:

comment COMMENT <any text without semicolons;
{ <any text> }

deletion DELETE s 1,52,v1,v2,..3
DELETE;

QDELETE ALL;

function FUNCTION ff 1 = <expression);

<type> FUNCTION ff2(<type>vil, vi2; <type> vi3,vi4...)= <expression>

macro DEFINE ml =€ (macro-body) 23

DEFINE m 1 (mm 1,mm2,..,mmn)=c€ <{macro_body> =;

affix AFFIX {fl TO f2 ;

AFFIX {3 TO f4 NONRIGIDLY:;

AFFIX f3 TO 4 +;

AFFIX f3 TO f4 AT tl RIGIDLY;

AFFIX f3 TO f4 ATt 1 *;

unfix UNFIX f5 FROM {6;
UNFIX 15;

copy COPY fl] INTO f2;
COPY SUBTREE(f1) INTO 2;

motion MOVE f | TO (frame> + <vector exp;
MOVEf 1 TO <f2><{3>,<f4),...
MOVE fl BY <vector exp>;
MOVEX fl BY <scalar>;

OPEN <hand> TO <scalar);

CLOSE <hand> TO <scalar);
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OPEN <hand> BY <scalar>;

CLOSE <hand> BY <scalar>;

DRIVE BJT(¢j1 no>) TO <scalars;
DRIVE YJT (jt no>) BY <scalar>;
CENTER <arm>;

PARK; PARK BARM;

assignment <var>¢ <expression>

construct FCONSTRUCT f

input/output READ; READ <file>; QREAD <file>;

(file) WRITE; WRITE INTO. <file>; WRITE <id>;
WRITE ALL INTO <file>; WRITE <id> INTO <file>;

CLOSE; CLOSE <file>; CLOSE-FILES;
(terminal) PRINT <exp>;

SPRINT “<anything>“;

PROMPT;

edit RENAME <var>;
rename EDIT <var>;

display DISPLAY SCALAR;
REDISPLAY;
NODISPLAY;

macro DEFINE <macro-name> 8 &<{macro_body>2;
DEFINE <macro_name>{ml,m2,..)8€ <macro-body> 2;
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Appendix V. AL EXECUTION SUMMARY

DEVICE USER RESPONSE AL RESPONSES

1. Terminal Create file FOO.AL

2. COMPILE FOO.AL

2a. Swapping to SYS: AL. DMP
AL: FOO 123...

20. ALC

2C. PALX 246

2d. ALSOAP

3. DO AL[AL,HE]

f=
FOO

ELFA ssigned
CORE SIZE =28K

VERSION USING VTO05

GET SAV FILE -AL[ALHE]

OVERLAY BIN FILE - FOO

AN EXTENDED COMMAND -VTO05

START AT (1000) (D FOR DDT) -D

DDT STARTED AT 130000

4, VTO5 ’

START <alt><alt> G

or <alt>G

ALRUNTIME SYSTEM

<any output from Your program>
ALL DONE NOW. SEE YOU AROUND!

NO ACTIVE PROCESSES LEFT. YOU'RE IN DDT.

#

5. <alt>G

(for re-execut ion}
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Appendix VI. AL examples

Here are several sample AL programs. A brief description is given for each

of the programs given.

ENGINE ASSEMBLY

This program causes the arm to pick up a crankshaft assembly and lower it

into t ho body of the engine. It then picks up the top of the engine and places it

over the crankshaft, thereby completing the assembly.

BEGIN “assemble engine”

{ program to place the crankshaft assembly and the engine top on
the engine body)

FRAME engine_top,engine_top_final,crankshaft,crankshaft_finals

FRAME bgrasp;

engine-top « FRAME (ROT(ZHAT,90.000%DEGREES),VECTOR(51.0,34.2,3.13)%INCHES);
engine-top-final « FRAME (ROT(ZHAT,45.000#DEGREES),VECTOR(57.3,49.3,10.2)%INCHES);
crankshaft-final + FRAME -(ROT(ZHAT,45.000xDEGREES),VECTOR(57.3,49.2,8.48)%INCHES):
crankshaft « FRAME (ROT(ZHAT,90.000%DEGREES),VECTOR(51.3,40.3,4.09)%INCHES);

AFFIX bgrasp TO barm AT TRANS(ROT(xhat,]1 80%degrees),nilvectxinches) RIGIDLY;

PRINT ("ASSEMBLING ENGINE”);

MOVE barm TO bpark WITH DURATION=3%seconds;
OPEN bhand TO 3.0%inches; { initialize }

MOVE bgrasp TO crankshaft;

CENTER barm; { grab the crankshaft }

crankshaft ¢ bgrasp;

AFFIX crankshaft TO bgrasp RIGIDLY;

MOVE crankshaft TO crankshaft-final +3%zhatxinches

) WITH DURATION=2%seconds; { take crankshaft above engine }

MOVE crankshaft TO crankshaft-final =0.3%zhatxinches

WITH WOBBLE = 0.1 %DEGREES

WITH DURATION =5%seconds; { insert piston }

UNFIX crankshaft FROM barn

OPEN bhand TO 3.7 ®inches; { release crankshaft }

MOVE Dbgrasp TO engine-top slowly;

CENTER barm;

engine _top+bgrasp;

AFFIX engine_top TO barm RIGIDLY;

MOVE engine-top TO engine_top_final+ 1 .8%zhatkinches;
MOVE engine-top TO engine_top_final+ 1 .0%zhat*inches;

{ by trial and error it was found
that doing this reduced ®sciilation
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of crankshaft assembly }
MOVE engine-top TO engine-top-final =0.3%zhat*inches

WITH FORCE-FRAME = STATION IN FIXED

WITH WOBBLE = 0.1 *DEGREES

WITH DURATION =5%seconds

ON FORCE(zhat)280%ounces DO STOP engine-top;

UNFIX engine-top FROM barm;

OPEN bhand TO 3.8%inches;

MOVE bgrasp TO bgrasp + VECTOR(-4,-4,0)%INCHES;
{ can’t move out straight because elbow joint

(joint 5) will be at limit, so we move the

hand sideways }

Hid MOVE barm TO bpark; { all done now}

END “assemble engine”

SHIFTING CASTINGS

This program causes the arm to shift a row of three castings back and forth

between two positions.

BEGIN “casting shifter”

{program to shift a row of three castings back and forth betwoon two positions}

FRAME casting, casting-grasp, pick-up, set-down, line_l, line2;
DISTANCE VECTOR dpick, dset;
SCALAR i,j,k;

DEFINE TIL =cSTEP LUNTIL 23

line_l « FRAME(ROT(zhat,90 x degrees),VECTOR(28,30,0) % inches);
line_2 « FRAME(nilrotn,VECTOR(32,24,0)% inches);

AFFIX casting-grasp TO casting (describe casting)
AT TRANS(ROT(xhat,180* degrees),VECTOR(1.2,1.5,1.87)% inches) RIGIDLY:

MOVE barm TO bpark WITH DURATION = 4 % seconds; (initialize arm)
. OPEN bhand TO 3.5 % inches;

FOR k «1 TIL 2 DO (do it all twice}

BEGIN “outer loop”

pick-up €« line-l;

sot-down *line_2=- 0.8 ¥zhat% inches; {initialize casting position}

dpick ¢« -4 % yhat % inches;

dset+ @ 4% xhat ¥ inches;

FOR j «ITIL 2 DO (move the castings there and back again}
BEGIN “inner loop”

casting « pick-up;

MOVE barm TO casting-grasp; {go get first one)

FOR i «1 TIL 3 DO {move three castings}
BEGIN

CENTER barm;

casting-grasp * barm; (grab one}
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AFFIX casting TO barm RIGIDLY;
MOVE casting TO set-down + 2%zhat® inches {shift it over]

WITH APPROACH = 2 X inches;

MOVE casting TO set-down DIRECTLY {& place it on the table)
ON FORCE(zhat)? 100 % oz DO STOP;

OPEN bhand TO 3.5 ¥ inches; (release it)

UNFIX casting FROM barm;

pick-up « pick-up *dpick; (update where next one is}
sot-down ¢ set-down +dset; {& where next goes}
casting ¢ pick-up;

IFi <3 THEN MOVE barm TO casting-grasp (go get next one}

WITH DEPARTURE = -3 % inches;

END;

pick-up ¢ line-2; {got ready to move them back)

set-down ¢ line-1 = 0.8 % zhat ¥ inches;

dpicke+4% xhat ¥ inches;
dsete -4 ¥ yhat ¥ inches;

END “inner loop”;

END “outer loop”;

barm «¢ line_1 k FRAME(ROT(xhat,180 * degrees),VECTOR(=8,1,2})¥% inches);
MOVE barm TO bpark WITH DEPARTURE ==4; (when done put the arm away)

END;

CASTING INSPECTOR

. BEGIN “casting inspector”

(The arm is moved to a pick up point where it grabs a casting.

Depending on the weight of the casting it is either rejected or accepted.

Rejected castings are dropped in a garbage bin, while accepted ones

are lined up in a row. The program terminates after finding three

good castings.)

FRAME pick-up, set-down, garbage, casting, casting-grasp;

DISTANCE VECTOR dset;

SCALAR good-castings, heavy;

sot-down +FRAME(nitrotn,VECTOR(15,40,~0.8)% inches); {initial locations}
pick-up « FRAME(ROT(zhat,90x degrees), VECTOR(4,44,0)% inches);

- garbage «FRAME(ROT(zhat,90% degrees), VECTOR(18,45,7)% inches);
dset & -4 ¥% xhat ¥X inches;

AFFIX casting-grasp TO casting {describe casting)

AT TRANS(ROT(xhat,180% degrees), VECTOR(1.2,1.5,1.87)% inches) RIGIDLY;

MOVE barm TO bpark WITH DURATION = 4 % seconds; (initialize arm position}
OPEN bhand TO 3.5 ¥ inches;

good-castings ¢ 0;

DO {loop to find 3 good castings]
BLGIN

casting « pick-up;

MOVE barm TO casting-grasp; (go get a casting)

CENTER barm;

casting-grasp « barm;

AFFIX casting TO barm RIGIDLY;
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heavy & false; {see if it weighs enough)

MOVE casting TO ®+ 2 % zhat% inches DIRECTLY
ON FORCE(-2hat)2 85 % 0z DO heavy * true;

IF heavy THEN

BEGIN “good casting”

MOVE casting TO set-down e 2 %zhat% inches DIRECTLY;
MOVE casting TO set-down DIRECTLY

ON FORCE(zhat)2 90 ¥ 02 DO STOP;. {place it on table with others}
OPEN bhand TO 3.5 ¥ inches;

UNFIX casting FROM barm;

good-castings ¢ good-castings * 1; (update #% good ones}

set-down + set-down +dset; {& where next goes)
MOVE barm TO ®+*3 ¥ zhat ¥ inches;

END “good casting”
ELSE

BEGIN “bad casting”

MOVE casting TO garbage DIRECTLY;

OPEN bhand TO 3.5 ¥ inches; (trash bad one}

PRINT ("defective casting!” crif)s
UNFIX casting FROM barm;
END “bad casting”;

END

UNTIL good-castings 2 3; (repeat until we find 3 good castings}

barm ««FRAME(ROT(xhat,]80 * degrees), VECTOR(12,41,2) ¥ inches);
MOVE barm TO bpark DIRECTLY; (put arm away when done}

END;

VISION INTERACTION

This program utilizes vision through an ALAID interface. The AL program

runs on the PDP- 11, waits for the vision program on the PDP-10 to take a picture

of a human hand and compute the coordinates of the center, On obtaining the

center of the hand, the AL program causes the blue arm to pick up a tool from the

workplace and move it over to the human hand. Both the AL program and the SAIL

. program which incorporates the vision routines are listed below.

BEGIN “tool”

COMMENT This program does SIGNALs events to and WAITs for events from its
counterpart residing on the pdp 10 through an ALAID interface ;

EVENT al, sail;

{ AL will SIGNAL sail, and WAIT al;
SAIL will SIGNAL al, and WAIT sail)

DISTANCE SCALAR handx,handy,handz;

{x,y,z coordinates in inches of the center of
person’s ieft palm facing the camera.

The plane of the palm should be about flush

with the edge of the table }
handx« =| .7 3%INCHES;

handy+ 42.9%INCHES;
handze | | 8%INCHES;{about mean position for human hand position }
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MOVE barm TO bpark WITH DURATION=3%seconds;{ park the arm }
OPEN bhand TO 2.5%inches;

WHILE truo DO

BEGIN “infinite loop”
DISTANCE VECTOR hand-pos;

FRAME tool,tool_tip,tool_store,person;

SIGNAL sail; { tell vision program to look for victim's hand }

PRINT ("WAITING FOR VISION TO GIVE ME LOCATION OF HUMAN HAND”):

WAIT al; { waiting for SAIL to signal to AL
after verification vision has updated values of

handx,handy, and handz}

hand-pos+VECTOR(handx,handy,handz);

{ update vector giving location of human hand }
tool-store & FRAME (ROT(YHAT,| 80.0%DEG), VECTOR(52.996,45.042,2.835)%INCHES);
tool « tool-store;

AFFIX tool-tip TO tool AT TRANS(NILROTN,ZHAT*2%INCHES);
person « FRAME (ROT(ZHAT,151.93%DEG)*ROT(YHAT,125.22%DEG)*ROT(ZHAT,~] 41 .13%DEG),

hand-pos);

{ now let us do the actual motions }
barmee«bparks; bhand+«2 5*inches; { so world modeller will not complain }
tooltool_store;
MOVE barm TO tool SLOWLY;

CLOSE bhand TO 0.0%INCHES APPROXIMATELY:

AFFIX tool TO barm RIGIDLY;

MOVE tool-tip TO person

WITH APPROACH=NILDEPROACH APPROXIMATELY SLOWLY;

PAUSE 2%*seconds;
OPEN bhand TO 2.5%inches APPROXIMATELY;

UNFIX tool FROM barm;

PAUSE | *seconds;

MOVE barm TO bpark;
{ move arm out of view of camera}

END “infinite loop”;

END;

The following is an extract of a SAIL program which shows the parts

relevant to the ALAID communication link. This program runs on the POP-1 0 while

the previous program is running concurrently on the POP-1 I.

BEGIN “vision program”

PRINT ("CALLING ALAID ");

TREATREQUEST("SYMBOLS TOOL.ALS[DEM,HE]",1);
COMMENT treatrequest is the ALAID call.

This call reads in the symbol table for the AL program 3

COMMENT At this point assign nominal values of the human hand position
to variables y0Q,20;

WHILE true DO

BEGIN “more pictures”

REAL newy,newz,dy,dztheta;

PRINT ("Waiting for 11 to Signal me =");
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TREATREQUEST("WAIT (NAME SAIL)“, 1);
COMMENT Here we wait for the ii to tell us it is ready;

WHILE NOT LOCATE(theta,dy,dz)
DO PRINT("Unsuccessful..Trying again”);

COMMENT LOCATE takes the picture and computes the

angular offset theta and the y0 and z0 offsets

dy, dz from the nominal position ¥0,20 which has been
defined earlier. The value of the function

is true if the picture can be matched, otherwise

it is false ;

COMMENT At this point vision has successfully found dy,dz, theta;

newy+dy+y0; newz+d2+20;
PRINT("Sending AL new Y,Z:",nawy,"” ",newzcrif);

COMMENT Now let us set the values of handy and handz;

TREATREQUEST("SETVAL (NAME HANDY) (SCALAR "&cvi(newy)&")",1);
TREATREQUEST("SETVAL (NAME HANDZ) (SCALAR "&cvi(newz)&")",1);

COMMENT Now tell the 11 we are ready ;
TREATREQUEST( SIGNAL (NAME AL)“,1 );
END “more pictures”;

END;
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Appendix VII. POINTY examples

LOCATEZ_UP

LOCATE_ZUP is used to determine the x and y coordinates of the axis of an

upright cylinder. The macro tells the user to move the arm to the approximate

location of the object, and then it does a center, reads the hand position, opens

the hand, rotates it 90 degrees, closes it again and takes a second reading, and

then produces a frame with stat ion orientation. A similar macro which rotates the

wrist 60 degrees is used fo hexagonal cylinders.

JEFINE LOCATE_ZUP(ACTUAL_POS)=c

SPRINT " MOVE ARM TO APPROX POSITION OF ACTUAL,POS ";
PROMPT; { lets user prompt when he is ready }
CENTER BARM; {usesensing to get position }
OPEN BHAND TO BHAND_MAX;

{BHAND_MAX has boon defined elsewhere as 3.8 inches }
MOVE BGRASP TO FRAME(ORIENT(tBARM)*ROT(ZHAT,90),POS(BGRASP));

{ so now we move the arm so that the wrist is rotated
90 degrees but the hand points vertically downwards }

CENTER BARM;-

ACTUAL_POS+FRAME(NILROT,POS(BGRASP));
{ and we determine the final position of the object

but give it station orientation }
OPEN BHAND TO BHAND_MAX;
MOVEZ BGRASP BY 3xinches; { open hand and get the arm out of the way }
23

MOVE-AND-READ

This macro is used to ask the user to move the arm to a certain location.

The position is then recorded.

DEFINE MOVE_AND_READ(POSITION) =
Cc

{ simp! macro that asks user to move arm to a position and records it }
SPRINT “MOVE ARM TO POSITION”;

PROMPT;

POSITION* BARM;

MOVEMACRO03

This macro is used to define three positions and a new macro that will make

the arm go through these positions. It illustrates the use of the MOVE-AND-READ

macro, and may be used to teach motion through a series of three frames that will

avoid obstacles in its path.
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DEFINE MOVEMACR03 (MACNAME,P1,P2,P 3).
Lo

MOVE_AND_READ(PI)s
MOVE_AND_READ(P2);
MOVE_AND_READ(P3);
DEFINE MACNAME =

Cc

MOVE BARM TO P1,P2,P3;
>;

=;
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