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ABSTRACT

This document describes the current state of the AL system now in
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system for specifying representation of parts; and ALAID, an interactive debugger
for AL.
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l. HOW TO USE THIS MANUAL

This document at tempts to gather in one place all the information that a
user needs to program a manipulator in the AL programming language at the
St anford Artificial Intelligence Laboratory (SAIL), In addition to meeting the
requests made by other research organizations for detailed information on the
current stat us and configuration of the system at SAIL, it updates the original AL
document which was a design specification of the language. At SAIL, the most up
to date version of the documentation can be obtained by the monitor command DO
ALXGP.DOC[DOC,HE].  Specific chapters may be obtained by the command DO
ALXGP[DOC,HE](n) where n is the chapter you are interested in. The AL system is
growing and continuously evolving as new features are implemented and used.
This edition of the manual includes features not present in the first edition of

November 1977.

Chapter 2 describes the AL programming system and the related hardware
and software configuration at SAIL, It is an overview and description for the
general reader.

Chapter 3 and the succeeding chapters are for the AL user. Chapter 3 is an
example based tutorial illustrating the use of simple AL instructions. This chapter
assumes that the reader is familiar with interactive computer programming in high
level languages such as FORTRAN. Previous knowledge of manipulator
programming or programming in ALGOL is not essential. After completing this
chapter, the user should have at his command asubset of AL instructions which

will enable him to write simple programs.
Chapter 4 describes the AL language, and gives the complete set of

currently implemented AL instructions in a concise manner. This chapter should be
sufficient for an experienced programmer to use as a reference manual.

Chapter 5 describes how to execute AL programs.

Chapter 6 describes POINTY, a system which allows the user to generate
interactively the frame tree data structure for AL programs,

Chapter 7 describes errors that might occur in the different stages of
compiling and executing the AL program, and how to cope with them.

The Appendices include a list of AL reserved words and brief summaries of
AL and POINTY commands and instructions, and extended AL and POINTY examples.



2. THE AL SYSTEM AT SAIL

2.1 Design philosophy of AL

2.1.1 Introduction and historv

The WAVE system for manipulator control was designed and implemented by
Lou Paul in 1973 on the Scheinman Stanford model arm and was used extensively

by him and Bob Bolles.

The experience with WAVE led to the initial specifications of AL in 1974 by
both of them and Jerry Feldman, Ray Finkel, and Russ Taylor.

The initial implementation of the compiler and runtime system for Al was
done by Finkel and Taylor, and subsequently taken over by Ron Goldman.

Vic Scheinman designed the arm currently in use at SAIL, while Tom Gafford
and Ted Panofsky are responsible for the computer interface to the manipulator.
Ken Salisbury and Gene Salamin are currently maintaining the hardware.

The work of Paul and Bruce Shimano was responsible for developing the
kinematics of manipulation and the arm servo code. Shimano subsequently
implemented force compliance, while Tatsuzo Ishida has done a theoretical analysis
of two arm cooperative manipulation. Salisbury is currently maintaining the arm
servo code.

ALAID, for debugging AL programs, was initially implemented by Finkel. A
newer version is being implemented by Hamid Nabavi.

The first AL parser was written by Bill Laaser and Pitts Jarvis, and
subsequently taken over by Shahid Mujtaba.

POINTY, a related system, was conceived in 1975 by Dave Grossman and
Taylor, andinit ialiy implemented by Taylor. Maria Gini,PinaGini and Mujtaba have
subsequently implemented a newer version. Enrico Pagello has also contributed to
it. POINTY is currently maintained by Mujtaba.

The design of AL has continually been modified and updated on the basis of
new experience and information by Grossman, Shimano, Goldman, and Mujtaba
under the overall guidance of Tom Binford.

The AL system is geared towards batch manufacturing where setup time is a
key fact or. To minimize programming time we rely on a symbolic data base and



previously defined assembly primitives, and a quick and simple means of putting
into a program the things we want to tell the manipulator to do. By testing out
the system on undergraduate industrial engineering students with minimal
experience in manipulators and robotics, we have found that learning to use the AL
system is relatively simple, and that it is unnecessary to learn the complete
system before putting it to use. Team programming sessions by researchers in
manipulation at the Workshop on Software for Assembly held in November 1977 at
SAIL showed the possibility of learning to program AL in a short time. The AL
system has also been used for term projects in a Robotics course given in the Fall
quarter of 1978.

We assume that the batch manufacturing environment is fairly structured
and known = the positions of fixtures, parts, tools, etc. are known and not
expected to vary from one assembly to another by any appreciable amount. By
simulation it is possible to predict where each object is at any instant of time, and
whether it is held in a manipulator, if it is to be moved, and whether sufficient
information has been given, so that communication with the user is minimized during
execution, Because of the high degree of structure in the manufacturing
environment, we try to do as much computation as possible before an assembly

begins.

2.1.2 Plantime and runtime systems

Experience with WAVE (the predecessor to AL) had shown that calculating
trajectories for manipulators was a desirable feature. It was thus decided that
trajectory calculations, together with ail other calculations which need only be
performed once, should be done at compile time on the assumption that this
allocation of effort would reduce the computing load at execution time and
eliminate recomputation every time a sequence of actions is executed.

This sequence of planning and execution led to the existence of two
systems - the plantime system and the runtime system.

The plantime system consists of the AL compiler whose function is to take
the user written AL program, simulate it, point out errors to the user, and output
instructions to the runtime system. The compiler performs a simulation of the
program (called world modeiling) to verify that it is indeed possible to do what the
user asks within the limits of what AL is capable of doing, and to warn the user
about unexpected consequences (e.g. if the user accidentally asks that the arm be
moved through the table). The runtime system takes the output of the plantime
system, and proceeds to perform the motions.

This approach is changing because of subsequent developments.
Computation costs have dropped dramatically and this makes possible the future
use of multiple processors in distributed computation. Better arm servo software,



faster arrn solution and more sophisticated path calculation algorithms tend to
reduce the computation load, thereby permitting more decisions to be made at
runtime. It was also realized that certain trajectories are best computed during
runtime (e.g. force compliant motion, moving belt, when the workplace is highly
unstructured). (See “Discussion of Trajectory Calculation Methods” by Mujtaba in
Progress Report 4.).

2.1.3 Data and control structure

The principal mode of input to AL is textual. The use of symbolic
programming means that for parts in a pallet, for instance, there is no need to
define the position of all the parts, if the distance between parts (which is usually
constant) is known. “Once the corner of a pallet is taught and the part separation
is known, laborious record-playback programming is no longer necessary given
proper software in an associated minicomputer,” [Engelberger, J.F. in “A Robotics
Prognostication”, Joint Automatic Control Conference Proceedings 1977, p 198.1
Symbolic programming simplifies the interfacing of AL with other means of
generating world models, like interactive graphics and computer aided design. It
permits the setting up of library programs which may be called by supplying the
relevant parameters. The use of symbolic programming eases the job of specifying
complex motions if such motions can be parametrized or described algebraically -

for example, it is easier to tell the hand to move a certain distance along an
arbitrary direction than it is to move it manually when multiple joints have to be
adjusted simultaneously. Teaching by doing, on the other hand, requires the
recording of a very large number of points (tape recorder mode) unless only the
end points of motions are of interest and the nature of the paths between these
end points are unimportant.

There are levels of complexity which are much more readily transmitted
from man to machine through an interface of symbolic text. Simultaneous motions
- of two arms, specifications for termination, and error conditions are more likely to
be unambiguously stated through the medium of text, since these may require
rultiple logical relationships to be satisfied. Non-textual forms of input can be a
very useful rneans for defining target locations, suggesting arm trajectories
designed to avoid collisions, initial setup of a workstation, and other purposes of
this nature.

AL makes use of more data types than other conventional high level
| anguages do. In addition to SCALAR numbers, it allows the specification of
VECTOR, ROTATION, FRAME, TRANS, and EVENT data types. A VECTOR
consists of a triple of three real numbers. A ROT consists of a direction vector
and an angle to indicate the amount of rotation. A FRAME describes the position
and orientation of an object, while a TRANS describes the relationships between
FRAMES. In addition, arrays of all these data types may be defined. Arithmetic
operators are available not only for the standard scalar operations but also for



such operations as rotation and translation.

We want to write programs in a natural manner. The machine-language like
aspect of current manipulation languages makes it cumbersome to write long
programs in any structured way. We want a language which lends itself to a more
syst ematic and easily understood programming style. To this end, the use of
ALGOL-li ke cont roi structures are an improvement over linear machine-language
code with jumps. The block structure of ALGOL is also present in AL.

Experience with languages like SAIL and WAVE has shown that text macros
are a useful feature; they reduce the amount of repetitive typing, and allow
symbolic definition of constants and variables in a way which would be otherwise
impossible. AL has a general-purpose text macro system.

Procedures are provided, as in other languages, to reduce the amount of
code when similar computations or operations need to be done at numerous places

in a program.

AL also permits the control of parallel processes by allowing the flow of
control of the program to be divided up, which allows certain operations to be
performed simultaneously (e.g. simultaneous movement of different manipulators),
after which the various processes merge back together. Synchronization primitives
are also provided.

2.1.4 Motion of objects

AL has a mechanism to keep track of the location of a component piece of
an assembly automatically as the assembly is moved; this mechanism is called
affixment and used extensively with the concept of FRAME to describe objects.
Frames may be affixed to each other, so that after affixing an object to the
manipulator, the user can forget about the manipulator completely, and think in
terms only of where objects have to interface with other objects. instead of
having to worry about how to move the arm, the user can specify the final
orientation and position of the object, and AL will take care of working out what
. the arm has to do in order to accomplish the stated objective. The user can think
of movement of the objects rather than the movement of the manipulator. This is
significantly different from other programming schemes where the program consists
of a series of arm motions whose relationship to objects in the real world is known
only to the user, and where the user effectively has to provide explicitly the
distance and angular relationship of the object to the manipulator for each motion
statement,
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2.1.5 Sensory informat ion

AL allows alternative actions on the basis of sensory input during runtime by
checking whether certain conditions have exceeded a specified threshold, and if so
to execute a predetermined action. This is called condition monitoring. When
error conditions are encountered, it is possible to set a sequence of actions into
motion that will try to allow recovery. This is not possible in the case of linear
control where program execution has to be aborted.

2.1.6 Programming aids

AL has several features that help the user during different phases of
compilation and execution of his program to ensure that errors are caught &s early
as possible, and to simplify programming.

2.1.6.1 AL parser

The AL parser takes the user-writ ten AL program and checks that it is
syntactically correct, generating error messages where necessary. It also makes
use of the AL declarations generated by POINTY if told to do so. It enables
programs to be input through disk files written by means of text editors, or

through the teletype.

The AL parser tries to catch and correct errors early, so that less time is
wasted on a compilation if it needs to be aborted. Also, by catching errors early,
it is possible to generate error messages in the context of the user source
program. Two main checks are used to eiirninate an important class of errors.
Dimension checking across assignments and expressions is done by the parser to
ensure that units have been correctly specified by the user and are compatible
with what is expected. Type checking across assignment statements and across

. the terms and factors of an expression ensure that operations are performed on
arguments of the right data type, and that assignment of an expression is done to a
variable of the same data type.

AL allows interactive error correction by permitting the user to ask for a
standard fixup, or to change (patch) the offending source code for minor errors and
continue from there without having to resort to the system text editor and a
recornpilat ion. Error recovery is local, and permits backing up to the beginning of
the innermost current statement. To back up any further, it is necessary to resort
to the text editor. At the user’s option, a corrected copy of the source file is
made,



2. 1.6.2 AL compiler

The Al compiler provides a number of semantic checks on the user’s
program. Warnings will be issued if an attempt is made to move the arm to an
inaccessible location (e.g. through the table top), if not enough time was allocated
for a mot ion, if incompatible force requests are made, if the user attempts to move
something not connected to an arm, or if the arms are not parked upon program
completion.

To help track down errors the user can request that the planning value AL
maintains for each variable during the world modelling phase of compilation be
printed at some desired point in the program.

2.1.6.3 Interactive model building

POINTY, to be described in detail in Chapter 6, allows the user to create
interactively the frame tree for AL programs with the aid of the manipulator as
well as to try out simple motion statements, The interactive nature of POINTY is
also helpful in testing out small segments of programs before incorporating them in
a larger AL program.

2.1.6.4 Debuggers

Several debuggers are available during execution of the program to enable
the user to correct his mistakes by allowing him to patch his programs, and to let
him examine and change the values of variables.

Debugging an AL program during execution involves examining and modifying
variables, altering the flow of control, triggering condition monitors, and patching
code. ALAID has been designed to permit these actions to be performed and to
assist the programmer in preparing correct manipulator code. ALAID sets up a
communication link between the PDP-10 and PDP-I 1 (cf. section 2.2) and allows
debugging to proceed from either machine, It sets up a clean interface between an
AL program running on the POP-1 1 and a higher level strategy program on the
PDP- 10. ALAID enables the two processes to signal each other using the
synchronization primitives in AL and it also allows the program running on the
PDP-10 to examine and set variables in the memory space of the AL manipulator
program on the POP-| 1.

In its current state, ALAID connects the two machines, can examine and set
variables, signal and wait for events, cause the runtime system to enter 1 1 DDT,
allow the user to stop and resume execution of an AL program on the PDP-11, and
examine and modify the pcode.

11 DDT is the PDP-11 machine language symbolic debugger used by AL
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wizards to debug the runtime system, and by the user to continue or restart
execution of his program.

2.2 AL system hardware

The hardware for the AL system consists basically of a PDP KL10 computer
(hereafter referred to as PDP-10) for compiling and loading the AL program, a
PDP-11/45 computer (hereafter referred to as PDP-11) for executing the AL
program, and two STANFORD model Scheinman arms in addition to various
peripherals such as terminals and disks.

The relationships between the various components are shown below. The
PDP-1 1 system is interfaced to both the manipulators and the PDP-10 system.
Any communication between the PDP-10 and the manipulators must go through the
PDP-11 runtime system, since there is no direct interface between the PDP-10
and the arms.

INTERACTIVE
TERMINALS

DISKS| &—— | KL-18 | « » | CAMERAS

] 11 /45 l ¢ » | VTB5

ARMS
DEVICES

Fig. 2.2 Hardware setup for AL at SAIL



2.3 Soft ware

The software organization of the current AL system at SAIL is shown in Fig.
2.3. Each of the blocks indicates a module of programs that can be in core at one
time, and the files that each module needs and generates are written alongside the
lines connecting the modules.

Data and programs are stored in files which have names of the form
ABCDEF.XYZ where ABCDEF is a combination of one to six alphanumeric characters
making up the name, and XYZ is any combination of zero (in which case the dot is
omitted) to three characters, making up the extension. The extension serves to
distinguish different files in a family of files of the same name.

Affixment information can be generated in AL statement form using POINTY
and saved in a declaration file. The motion program and data can be prepared and
saved on a disk file FOO.AL (where FOO is the name, and .AL is the extension
which serves to identify an AL source program) using the text editor. It can also
be input directly to the AL compiler through the teletype.

The AL parser takes the AL program written by the user, and checks that it
is syntactically correct, generating error messages where necessary. It generates
an intermediate file (using S-expressions), with extension SEX, that is passed to
the AL compiler. At the option of the user, the AL parser will generate a logging
file with extension .LOG with all the error messages, and a corrected copy of the
source file with extension .NEW. For programs input directly through the teletype,
a disk file copy of the program will be generated with extension .TTY.

The AL compiler reads in the S-expression file generated by the AL parser,
and changes it into an internal form. It then performs a simulation of the program
called world modelling, followed by trajectory calculation and code generation. At
the end, four files with extensions .ALP,.ALV,.ALT,.ALS, are emit ted, which
contain information on the pcode, numerical constants, motion trajectories, and
symbols, respectively.

The first three files are used by PALX, the PDP-11 cross assembler to
assemble a binary load module having extension .BIN for the runtime system.

The binary file with extension .BIN is loaded together with the AL pcode
interpreter and the run time system by a program called 1 1TTY.

The intermediate files with extensions .ALP,.ALV, and .ALT are typically
deleted by the ALSOAP program, which is run automatically after the AL
compilation.

If so desired, ALAID can be run simultaneously on the PDP-10 to provide a



10

communication link between the PDP-10 and PDP-11.ALAID makes use of the

ALS file.
POI NTY TEXT
POP-18,P0OP-11, | ANLY OR EDI TOR ANDY OR
ARNB POP-18
DECLAR. AL FOO. AL TTY:FOO. AL
AL PARSER
PDP- 10
FOO.TTY
FOO.NEW
FOO. SEX FOO0.LOG
AL COWPI LER
PDP- 10
FOO.ALS F00. ALP
FOO.ALT :}—— deleted by ALSOAP
FOO. ALV
PALX (POP-11
CROSS- ASSEMBLER)
PDP- 10
» FOO.LST
FOOC.BIN
ALAID 1177Y ¢————— AL.SAV[AL,HE]
POP-10 OR PDP- 10

I

RUNTIME SYS
11007

PDP- 11
ARMS

Fig. 2.3 Software organization
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2.4 Programming in AL

In order to program an assembly in AL, an assembly plan should first be
worked out which includes a rough layout of the parts, and the sequence of
motions to accomplish the assembly.

The parts and fixtures should be laid out in the work place in the desired
physical locations. AL has to be given the information of the object layout, and
this can be done either by direct measurement using a ruler and other measuring
equipment, or with the aid of manipulators and POINTY, an interactive data
gathering aid using the manipulator (c.f. Chap 6). The data must be incorporated
into a file which has AL statements which specify how to move the parts to
accomplish the desired assembly.

Having obtained the program, the user gets it into the computer system by
some means (at SAIL this means through one of the interactive terminals).

The program is compiled, loaded, and executed and debugged much like any
other program.
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3. USING THE AL SYSTEM

3.1 Basic constructs

The purpose of this chapter is to introduce the reader to the AL language,
and through a series of examples, show its use in the programming of manipulator
motions. The basic constructs of the AL language are described in this section.
Other instructions will be described in the the following sections of this chapter.

The notation will be as follows; Within the programs and examples
reserved words will be shown in upper case, while variables and predefined
constants will be shown in lower case. In all other places, they will be
represented in upper and lower case italics respectively.

3.1. 1 Data types

At t he heart of each computer language are the types of data that can be
handled. For example, FORTRAN has INTEGER and REAL numbers; other languages
can handle strings of alphabetic characters. The data types in AL were chosen to
handle the special problems that arise in controlling manipulators, and in working
with three-dimensional objects in the real world which have directed distances,
locations and orientations.

A variable is an identifier that can take on various values. Identifiers
consist of a string of alphanumeric characters (letters and numbers) and underscore
"1 Some examples: pump_base, handle, screw_hole_2, an d P132. Note that all
identifiers must start with a letter (JincA_screw is no good). Upper and lower case
are equivalent, i.e. ABC, abc, and aBc¢ all refer to the same variable.

i Variables can be given a value by means of an assignment statement, which
consists of the variable name, a left arrow ("«"), and an expression of the correct
type. When an assignment statement is executed, the expression on the right
hand side is evaluated, and the result becomes the new value of the variable on

the -left hand side.

AL, like ALGOL, requires each variable to be declared, that is, one must
state what data type a variable is before it is used. AL also uses ALGOL type
block structure which means that all variables declared between a particular
BEGIN and END are accessible only to code which appears between the same
BEGIN-END pair. It is also possible for the same variable name to be used in
different blocks without conflict. Block structure will be explained more fully later
(3.1.2). We shdlnow look at the data types available in the AL language.
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3.1.1.1 SCALARS

The most elementary data type in AL is the SCALAR, which is internally
represented as a floating-point number. Scalars can be used for dimensionless
quantities, such as the number of times some operation is to be repeated, or for
dimensioned ones like the length of an object or the angle between two parts.
The arithmetic operations available on scalars are addition, subtract ion,
multiplication, division and exponentiation, represented by the normal arithmetic
operators: "+", "-", ", "/" and "1". Exponentiation has precedence over
multiplication and division which in turn have precedence over addition and
subtraction, as in other algebraic languages. Several commonly used functions are
also available: the square root function, SQRT; the trigonometric functions SIN,
COS, TAN, ASIN,ACOS taking one argument, and ATAN 2 taking two arguments; the
natural logarithm LOG; and the exponential function EXP.

Scalar constants are written as (base ten) numbers, possibly with a decimal
point or fractional part; for example 2, 1., 3.14159, -123.45 are all scalar
constants.

Below is an example showing the declaration and use of scalar variables. In
the examples in this section we will use a mnemonic scheme for naming variables
to clarify the type of each entity. Note that AL statements are separated by
semicolons. Also curly brackets "{}" are used to enclose comments.

SCALAR sl, s&; (A declaration consists of a data type followed by
a list of variable names separated by commas, and
ending with a semicolon.}

sl « 2;
s2 « 3.50; {sl has the value 2.0, and s2 is 3.50)
sl «s2x(sl- 3.2); {Now sl = -4.20}

It is often desirable to associate a physical dimension with a variable. AL
provides for scalars with the dimensions of TIME, DISTANCE, ANGLE, and FORCE.
- It should be noted that ANGLE is generally considered dimensionless, but that for
our purposes, the definition has been made a little flexible to allow for an entity
which is useful for defining rotations. Dimensioned variables are just like regular
scalar variables, except that they are associated with an appropriate dimensional
unit: sec, inches, deg or ounces, which have the obvious meanings. AL can also handle
CM, 0z,{bs, gm and radians.

Dimensioned variables are used exactly in the same way as simple variables,
except that AL checks for consistent usage. Dimension checking is done for each
arithmetic operation and each assignment. Addit ion, subtract ion and assignment
require exact dimensional match, though if the match fails and one of the two
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arguments is simple (dimensionless), it will be coerced to the right type, after an
appropriate message to the user. Multiplication and division do not require
dimensional match; they produce a result of a dimension different from that of the
arguments which is then propagated through the expression. In this way
intermediate results can be of dimensions not declared. This causes no problems
unless such results are used in an assignment; The square root function may be
used on scalars of arbitrary physical dimensions, and the dimensions of the result
will be the square root of that of the argurent. The SIN, COS and TAN functions
are applied to scalars having dimensions of ANGLE and assumed to have units of
degrees. The result is dimensionless. The inverse functions ASIN,ACQOS, and
ATAN 2 take dimensionless arguments; the resulting value has dimensions of ANGLE
and units of DEGREES. The exponential and logarithmic functions take
dimensionless arguments and return dimensionless values. The exponentiation
operator presents a problem for the parser, since during parsing, the value of the
power to which the base is raised is unknown. The problem is recognized by
giving an error message if either the base or index is not dimensionless.

Here is a short-example using dimensioned scalars and functions.

SCALAR sl, s2;
DISTANCE SCALAR dsl;
TIME SCALAR tml, tm2;
FORCE SCALAR fsl;
ANGLE SCALAR theta, phi;

dsle 1.0 % inch;

trnl « 3 xsec;

fsle 22 % ounces;

trn2 « tml + 4.5; {The constant 4.5 will be converted to
seconds after the relevant error message.}

theta « 90 % deg;

phi < theta * 4 ¥ deg; {This is a mistake: the right hand side has
dimension ANGLE % ANGLE.}

s1«SIN( 30 * deg);

. theta « ACOS(.7);

ds1l« SQRT(ds] #3# inches );

phi « ATAN2( sl, s2); { same as arctangent(sl1/s2)}

sl « LOG(33.0);

s2«slT3;

There are several predeclared scalars in AL:

SCALAR PI; {3.14159..}
N is also recognized as the constant 3.14158....
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DISTANCE SCALAR bhand, yhand;
{These variables refer to the blue hand and

yellow hand openings)

VELOCITY, ANGULAR_VELOCITY, and TORQUE are defined in terms of the
primary dimensions in the generally accepted way,

It is also possible to define new dimensions, such as acceleration, by means of
the dimension statement. New dirnensional units, such as feet, can be defined with
macros (4.5.8). For inst ance:

DEFINE feet = c{ 12 xinches)>;
DIMENSION acceleration = VELOCITY / TIME;

acceleration SCALAR asl;
asl« 6.7 % feet /(secxsec);{=6.7 x 1 2 xinches/sec/sec}

3.1.1.2 VECTORS

The world in which AL programs operate has three dimensions, and so we
need rnore than just scalars. We will now introduce another data type: the
VECTOR. it and the other algebraic data types which follow are similar to scalars
in how they comprise arithmetic expressions and assignments.

We describe the world as a Euclidean space with three cardinal orthogonal
axes, which meet at an origin. The actual alignrnent of these station axes is
implementation dependent, though at SAIL and for the rest of this manual it will be
assumed that the positive Z axis points upwards.

Vectors may represent entities having both direction and magnitude, e.g.
displacement, velocity, acceleration, Like scalars, they may be dimensioned.
Vectors can be constructed frorn three scalar expressions by means of the function
VECTOR. The scalar expressions must all be of the same dimension, which the
resulting vector will also have.

The available operations between vectors include addition, subtraction, dot
product, and cross product. A vector may be multiplied or divided by a scalar.
The direction unit vector (dimensionless) may be extracted by the function UNIT.
Addition and subtraction are defined only on vectors of the same dimension. The
dot product, cross product and multiplication by a scalar give results having the
dimensions which are the product of the dimensions of the two arguments. The
scalar magnitude of a vector is obtained by enclosing it within vertical bars. The
operators are defined in the normal manner; for example, if we have a scalar s and

two vectors:
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vl = VECTOR(x1, yl, z1) and v2 = VECTOR(x2, y2, 22)

then we have:

s%¥ vl = vl ¥s =VECTOR(s* xI, s * yl, s ¥2zl)
vl +v2 = VECTOR(xItx2, ylty2, 21+22)

vl -v2 = VECTOR(x]-x2, yl-y2, 21-22)

vl . v2 = x1¥x2 +ylsy2 +21x22

There are several predeclared vectors in AL:

VECTOR xhat, yhat, zhat, nilvect; (These have values as follows}
xhat «VECTOR( 1,0,0);

yhat « VECTOR( 0,1,0);

zhat « VECTOR(0,0,1);

ni | vect+ VECTOR(0,0,0);

Here is one more example of the use of vectors:

VECTOR v;

DISTANCE VECTOR dvl, dv2, dv3;
SCALAR s;

DISTANCE SCALAR dsl, ds2;

dsl« 2% inches;
dvl « VECTOR(4, 2, 6) ¥ inches;

ds2 « dvl . yhat; {So ds2 = 2 ¥ inches)

v « VECTOR(2, 1, 3);

V « V - zhat; (So v = VECTOR(2, 1, 2) }

dv2 « VECTOR(3, 0, 4) ¥ inches;

dsl «|dv2] {This assigns dsl the magnitude of

the vector dvl, which is a scalar of
the appropriate dimension. So dsl = 5

* inches.}
dv3 « VECTOR(4xinches, 2xinches, bxinches); {dv3 is the same as dvl}
V& UNIT(v); {So v =VECTOR(2/3,1/3,2/3)}

3.1.1.3ROTATIONS

The next data type we will discuss is the rotation, or ROT, which
represents either an orientation or a rotation about an axis. Rotations can operate
on vectors and rotate them around the origin (without changing their length). They
can also operat e on other rot ations (by matrix multiplication). To rotate a vector
(about the station origin), multiply the vector (on the right) by the rot (on the left).
To compose rots, multiply them together; the one on the right will be applied first.
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The axis of rotation can be extracted by the function AX/S and the angle of
rotation by enclosing the rotation expression within vertical bars. Rotations are
dimensionless, and the user may not specify dimensions for this data type; however
the arnount of rotation about the axis has units of ANGLE.

A rotation can be constructed with the function ROT, which takes two
arguments: a simple vector, which is the axis of rotation, and an angle, which is the
amount to rotate. The direction of rotation follows the right hand rule, so a
rotation of 90 degrees about the X axis moves the Y axis into the Z axis. This
representation is far easier to write and understand than raw matrices. Here is an
example showing the use of rotations:

ROT r 1, r2, r3, r4;
ANGLE SCALAR alpha, beta, gamma;

VECTOR v;
rl « ROT(xhat, 90 * deg);
verl* zhat; {v gets Z rotated 90 degrees about X, so v =

VECTOR(0,- 1,00}
r 2 « ROT(yhat, 4 5 x deg);

r3er2#*rl;
{Thus, r3 means first rotate 90 degrees about the X axis, then
45 degrees about the original Y axis. An alternative

interpretation is to first rotate by 45 degrees about Y, and then
to rotate by 90 degrees about the new X axis.}

v « AXIS(r2); {This assigns v the axis of rotation of r2 = yhat.}
alpha «|r2|; (This assigns alpha the angle of rotation of r2 = 45
degrees.}

rl «ROT(xhat, alpha);

r2 « ROT(yhat, beta);

r3 «ROT(zhat, gamma);

r4 « r3 £ r2 ¥rl;
{r4 is then a rotation with the following two meanings: Rotate
by alpha degrees about the X axis of the station, then by beta
degrees about the station’s Y axis, and finally by gamma
degrees about the station’s Z axis. Or alternatively, rotate by
gamma about the station’s Z axis, then by beta about the new Y
axis, and finally by alpha about the doubly new X axis. Both of
these interpretations yield the same result; use whichever one
you find most comfortable.}

There is one predeclared rot, called nilrot, defined as ROT(zhat, 0 + deg).
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3.1.1.4 FRAMES

In working with objects in the real world we need to specify both their
position and orientation. To do this we introduce a new data type, the FRAME,
which represents a coordinate system. It has two components: the location of the
origin (a dist ance vector) and the orientation of the axes (a rot). Features on an
object can be specified with respect to the object’s coordinate system.

There are several predeclared frames in AL.  Sration represents the
reference frame of the work station. Associated with each manipulator is a frarne
whose value (updated at the end of each motion} is the position of that
rnanipulat or. Currently, there are two such frames: barm and yam, associated with
the blue and yellow arms respectively. Also associated with each arm is a rest, or
park position; these are bpark and ypark.

A frame may be constructed by calling the function FRAME, which has two
arguments: a rot (for the orientation) and a distance vector (for the position). The
orientation or position of a frame can be extracted by the functions ORIENT and
POS. To transform a point specified by a distance vector in the coordinate system
of sorne frame into station coordinates, multiply the frame (on the left) by the
vector (on the right). To translate a frame by some amount, simply add/subtract a
distance vector to/from it. Finally, to construct a vector in station coordinates
which has the same orientation as a vector in some frame, such as xAat in say fl,
the “with respect to” operator WRT is used and one writes xhat WRT fl. For any
vector v and frame f the following are equivalent (the dimensions of the result are
the sarne as those of v):

v WRT f= (f=*v)-POS(f)

ORIENT(f) * v
Here are a few examples using frames.

FRAME fl, f2;
fl1« FRAME(ROT(zhat, 90 * deg), 2 * xhat * inches);
(The frame f 1 sits 2 inches from the station in the X direction,
Its coordinate system has X where the station’s Y axis points,)
vle xhat WRT fl; (This evaluates to VECTOR(0,1,0).}
fo «fl+vlxinches; (Just like fl, but with origin at (2,1,0).}
v2«flx(zhat*xinch); {This evaluates to VECTOR(2,0,1).}

3.1.1.5 TRANSFORMS

The last of the algebraic data types is the transformation or TRANS.
Transes are used to transform frames and vectors from one coordinate system to
anot her, Like frames, they consist of two components: a rotation and a vector,
The application of a trans first rotates its operand about the station origin, and
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then translates the result. Transes can be composed in the same manner as
rotations, the one on the right being applied first.

A t rans consists of a rotation part having units of angle and a translational
(vector) part having some other physical unit -~ usually distance. When
“multiplying” by a trans, one is really multiplying by the rotational part and then
adding the vector component. The matrix operation of multiplying transes together
produces a trans. The vector parts of two transes multiplied toget her must have
the same dirnensions, and the vector part of the product will have the same result.
For convenience, we will refer to the dimension of a trans as being that of the
vector part. When a trans is applied to a vector, both must have the same
dimension, the one for the trans being defined above. The resulting vector is of
the same dimension, When a t rans operates on a frame, it must be a dist ance
trans. When transes are composed, they must agree in dimension, and the result
will have the same dimension, Unless declared otherwise, transes will be assumed
to have dimensions of distance.

One can construct a transform by use of the function TRANS, which takes
two arguments: a rot (the rotational part) and a vector (the translational part).
Another convenient way to specify a trans is by forming it from two frames. The
arithmetic operator "=" applied to two frames produces a trans which takes the
origin of the first frarne across to the origin of the second, performing a rotation
first to get the axis aligned. When a frame is used in a context dernanding a
transformation, it will be understood as a shorthand for the distance trans leading
to it from the station.

Here are a few examples using transes.

TRANS tl, t2, t3, t4;

t 1 « TRANS(ROT(xhat, 60 *deg), 2 ¥ zhat * inches );

vlet1x yhat * inches;
{t 1 rotates yhat 30 degrees about the X-axis, and then
translates it by 2 inches along Z =(0,.866,2.5).}

2 « fl > 2 (Thus fl* t2 = {2.}

v2«t 2% (xhat *# inches);
{v2is f2’s x-axis as seen from fl}

t3 «t2#*tl; {t3 means to first perform the transformation given by t 1,
and then that specified by t2.}

3 « fl * f2 (This expresses the position of f2 in f I’S coordinate
system. Equivalent to (station =fl)%f2.}

t5 «INV(t 1); (This expresses the inverse transformation of t 1)

The null transformation, equivalent to TRANS(nilrot,nilvect), is called niltrans.

The initial distinction between frames and transes has lessened aS work
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with AL has progressed. The current distinction is that frames may be affixed to
each other, and have deproach points (c.f. section 3.4) associated with them. In
general a trans can appear anywhere a frame can, and vice versa. For example to
get at either of a trans’s two components the extraction operators, OR/IENT and
POS, would be used. Whether or not the two data types will be merged rernains
to be seen. An evolving view considers frames to be labels associated with
physical objects or locations in space and transes the relationship between these
physical objects, In such a case, frames would not have dimensions associated
with them, but there will be some relationship between them and other frames.

3.1.2 Block structure ~i.e. “what’s a program”

An AL program consists of a sequence of statements which will result in the
ranipulator successfully performing a desired task. While the simplest AL program
consists of a single simple statement, any reasonable program will be made of
many statements S/, S2, S3, ... separated by semicolons, and surrounded by the
reserved words BEGIN and END. This composite arrangement of

BEGIN
Sl;
sS2;

Sn
END

is known as a block statement. The statements (S/,52,..) within the block may
themselves be other block statements. Indentation has no effect on the program
and serves only to make the program more readable.

In order to keep track of blocks within other blocks, they may be named
“with strings within double quotes immediately following the BEGIN and the
corresponding END, The strings after a corresponding BEGIN and END pair
should be the same, or there should be no string after the END; otherwise there
will-be an error message. The following is an example of block naming:

BEGIN “MAIN”
Sl;
s2;
BEGIN “INNER”
S34q;
S3b;
END “INNER”;
s4
END
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Like SAIL or ALGOL, AL requires that an identifier be declared before it is
used. The effect of an identifier is only within the block it is declared. Outside
the block, any reference to those identifiers will give an error message, An error
message will result if the same identifier is declared more than once in a given
block, unless subsequent declarations are within blocks internal to the given block.
Consider the following example:

BEGIN "BLK_1"

SCALAR ik,m;
i«ls
BEGIN "BLK_2"

SCALAR i; {denotes a new variable "i" distinct from

the "i" declared in BLK_} above}

€23

meis {Som=2; i refers to the second declaration of i}
END "BLK_2";
keis (So k=l since after exiting "BLK_1"i=1 again}

END "BLK_I"

In the inner block "BLK_2" the variable i is a new variable distinct from the
i defined in "BLK_I". Had the SCALAR i statement been absent in block "BLK_2",
the value of & and i at the end of execution would have been 2.

3.1.3 A simple program

As mentioned before, an assignment statement consists of a variable name, a
left arrow ("«"), and an expression of the correct type. When an assignment
stat ement is executed, the value of the expression on the right hand side is
computed, and the result becomes the new value of the variable on the left hand
side. Care must be taken to ensure that the data type of the expression is the
same as that of the variable. During compilation, AL will check for type and
dimensional consistency across opposite sides of the left arrow, and complain if it
finds any incompatibility.

The print statement prints out the values of the variables and the strings
during execution time. It consists of the reserved word PRINT followed by an
open parenthesis, a list of arguments separated by commas and a close
parenthesis, The arguments may be variable names or the names of predefined
constants, or they may be string constants which consist of characters enclosed by
double quotes.

Here is a simple AL program that will compute and print out the current arm
positions and the distance between them;

BEGIN
DISTANCE SCALAR sl;
DISTANCE VECTOR VI ;
PRINT (“THE BLUE ARM IS AT ", barm);
PRINT (“THE YELLOW ARM IS AT ", yarm);
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vl & POS{barm) = POS(yarm);
{vlis tho vector distance between tho centers of
t ho hands}
sle| vl | {s] is the absolute distance between the hands}
PRINT (“THE DISTANCE BETWEEN THE BLUE AND YELLOW FINGERS is",
sl , " INCHES");
END

Other statements possible within a block will be discussed in the following
sect ions.

3.2 Simple MOVE statement

The simplest motion program is one which will move an arm to a known
position. When the two arms barm or yarm are not being used they are placed in
statically balanced positions with the fingers pointing downwards so that a power
failure does not result in the arms collapsing. The resting positions of the arms
with the described pointing direction (orientation) of the fingers are known as
bpark and ypark.

For purposes of this document when we refer to an arm we shall mean the
blue arm unless otherwise obvious from the context.

Let us assume that the arm is in any arbitrary posit ion, and we want to
move it to the park position under computer control, The statement to do this
would be

MOVE barm TO bpark;

During compilation, AL will try to work out a trajectory (the position of each
of the joints from the initial position to the final position as a function of time) from
the current position to the park position so that the motion is accomplished as fast

- as possible subject to the constraints of maximum acceleration and torque imposed
by the motors. However, during compilation, AL cannot read the arm position, so it
has to be provided with a planned position for the arm which the user may specify.
Unless told otherwise, AL will assume at the beginning of a program that the arm is
at t-he park position. During execution, if the actual position is different from the
assumed starting position, the runtime system will try to modify the trajectory to
accomplish the motion within the length of time originally planned. Thus if a joint
has to go a distance further than originally planned, the motion would have to be
faster than planned in order to be accomplished in the same time.

In the above statement, if AL assumes that barm is already at the park
position, it will very wisely decide that no motion is required, and will thus
compute a trajectory which requires zero time to traverse, Should it happen at
execution that the arm is not initially at the park position, the modified trajectory
will try to bring the arm to the park position in zero time, which will result in large
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accelerations and excessive motor torques being required. In order to slow down
the motion to ensure its success, we should use a DURATION clause to modify the
planned zero time trajectory as follows:

MOVE barm TO bpark WITH DURATION = 4iseconds;

This statement tells the computer that we want to move to the park
position over a time interval of four seconds. Note that there is now no semicolon
after the hpark but rather that it is at the end of the entire move statement after
the DURATION clause.

It is also possible to specify differential motions. The grinch sign, "&", is
used to represent the current position of the arm. The following statement would

cause the arm to move down 2 inches.
MOVE barm TO -2 % zhat * inches;

3.2.1 More about barm and bpark

Let us now consider bpark and barm for a moment. Bpark specifies
completely the way the arm is to be parked. It specifies the center of the hand by
giving the Cartesian coordinates, and in addition it indicates that the hand is
pointing downwards.  Since there are six joints, specifying only the cart esian
coordinates of the hand is insufficient since it is possible to have an infinite
number of different hand orientations with the center of the finger tips in the same
position.

Barm is the name of a coordinate system whose origin lies centrally between
the fingers of the hand, and whose z-axis points in the same direction as the
fingers, the y-axis passes through the centers of the fingers, and the x-axis is
determined from these two axes by use of the right hand rule. The value of barm
depends on the position and orientation of the hand, and consists of a vector which
defines the position of the center of the hand in the world coordinate system, and
a rot which defines how the arm coordinate system is rotated in terms of the
. coordinate system of the station. Station is the frame which is the reference
coordinate system, and the vector part is set at (0,0,0). Our station coordinate
system has the z-axis pointing upwards, the y-axis horizontal and parallel to the
short side of the table and pointing towards the window (i.e in a direction pointing
from the pedestal of the yellow arm to the pedestal of the blue arm). The x-axis
is horizontal and parallel to the long side of the work table, and points towards the
far wall,

In the park position the hand points downward with the center of the hand
at coordinates (43.53, 56.86, 9.96) * inches. The coordinate system is rot at ed
180 degrees about the y-axis. Thus the value of épark is as follows:
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FRAME{ ROT(YHAT,180xdegrees), VECTOR(43.53, 56.86, 9.96)*inches)

The instruction MO VE barm TO bpark has the effect of moving the
coordinate system whose name is barm to the new position and orientation
described by bpark.

3.3 Using the fingers: OPEN, CLOSE & CENTER

Our manipulator end effector (hand) consists of two fingers which can move
together or apart when instructed to do so by the OPEN or CLOSE command,
which specifies the width to which the hand opening must go. An example of this
particular instruct ion is

OPEN BHAND TO 2.5%inches

The general form of the instruction is

OPEN <hand> TO <scalar_exp>
CLOSE <hand> TO <scalar_exp>

where <hand> is either of the reserved words bhand or yhand, and <scalar_exp>
consists of a scalar expression of dimension distance, i.e. its units should ultimately
be reducible to inches or cm or some such unit of measure of distance.

The OPEN or CLOSE instruction moves both fingers simultaneously at the
same speed. The OPEN command will open the hand to the desired size. The
CLOSE instruction will keep on moving the finger until the touch sensors trigger,
and signal an error if the hand opening is smaller than the desired opening. (The
CLOSE instruction will be implemented in the near future.) If there is a heavy

" object between the fingers, the fingers or motors might get damaged, while a light
object may get moved by the fingers. The CENTER cormand prevents these
undesirable results by causing the fingers to move toward each other slowly until
one of the touch sensors triggers to let the system know that contact has been
rmade with the object. At this point the whole arm will shift to maintain the
position of the finger which is in contact with the object, and the cycle of moving
fingers and arm will continue until both touch sensors trigger. When this happens,
the new position of the arm can be read to determine the position of the object.
Note that the CENTER command does not “center” the object between the
fingers, but rather ensures that the hand grasps the object without moving the
object. The OPEN and CLOSE commands are used when the position of the object
to be grasped is known precisely or when the object is to be moved to a precise
spot. The CENTER command takes an arm as its argument as follows.

CENTER <arm>
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The use of these statements will be illustrated in the following example
used to grab a 2-inch cube, move it over 10 inches in the X direction, and then
release it.

BEGIN
FRAME cube, now-place; :
cube *FRAME(ROT(XHAT,180%deg), VECTOR(20,30,1 )%inch);
{ defines position of cube center }
now-place *cube+l0%xhat*inchas;
MOVE barm TO bpark WITH DURATION = 4xseconds;
OPEN bhand TO 3%inchaes;
{insure that we get barm and bhand to known positions }
MOVE barm TO cube; { get arm to planned location of cube }
CENTER barm; { grasp cube without moving it }
MOVE barm TO new-place; { put the cube where we want it }
OPEN bhand TO 3.0 inches; { open the hand, releasing the block }
MOVE barm TO bpark; { all done, park the arm }

END

3.4 Intermediate points - ¥IA,APPROACH and DE PAR TURE

Many objects have shapes which necessitate care as the arm approaches or
departs from them. The motion clause W/ITH APPROACH = appr will cause the
arm to approach its destination after having passed through the point determined
by vector appr in the coordinate system of the destination. In stat ion coordinates
this point would be dest+appr WRT dest. The motion clause WITH DEPARTURE
= depr similarly specifies a departure point. Section 4.4.3 indicates the effect of
appror depr taking on non-vector values.

If no approach point is given, a default approach of 3 inches along the Z axis
of the station will be used. If no departure point is specified, the approach point
from the last motion, if any, will be used. The word deproach (which is an
abbreviation for departure and approach) has been coined to specify the general
approach or departure point. Approach points relate to the destination of the
current move command, while departure points relate to the starting posit ion of
the arm for the current command. To move the arm directly from the frame
position at the beginning of the motion, the clause WITH DEPARTURE =
“NILDEPROACH should be used. To move the arm directly towards the desired
frame position indicated in the current statement, the clause WITH APPROACH =
NILDE PROACH should be used.

If the destination is a frame constant or expression then NILDEPROACH will
be the default approach point.

The predeclared macro DIRECTLY will accomplish the same purpose as the
two clauses
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WITH APPROACH = NILDEPROACH
WITH DEPARTURE = NILDEPROACH

The APPROACH and DEPARTURE clauses allow the user to specify at most
a three segment motion - from the current position to the departure point, from
the departure point to the approach point, and from the approach point to the
destination. Usually t hese intermediate points are in terms of the coordinate
system of either the current position or the destination.

Sometimes it is necessary to move an object through additional locations in
space, or to have more than the three segment motions described above.
Examples are cases where objects in the way of the moving manipulator have to
be avoided, or the arm has to pass through an opening. In such situations the V//4
clause maybe used to specify the frames through which the arm must pass. The
14 clause should generally be associated with points which have values
determinable at the planning stage. Points which can be determined only at
runtime cause problems for the trajectory calculator.

In this example, the arm picks up a brick on the ground and places it on the
floor of the oven, which is at the same level &s the ground, but the arm has to
pass through the oven door which is above ground level.

BEGIN “Put brick into oven”

FRAME brick, ovon, oven-door;

brick-FRAME(ROT (yhat,90%degrees) ,VECTOR(10,30,3)xinches);
{define initial position of brick }

oven-FRAME(ROT(yhat,90%degrees),VECTOR(10,40,3)xinches);
{dofine final position of brick }

oven_door+FRAME(ROT(yhat,90%degrees),VECTOR(15,40,4)xinches);
{ dafino position of oven door }

MOVE barm TO bpark WITH DURATION = 4%seconds;
OPEN bhand TO 3x%inchas;
{ make sure arm and hand in known position }
MOVE barm TO brick
WITH APPROACH = 3xzhatxinches;
{ go for brick with hand in horizontal position,
note that brick z-axis is parallel to station x-axis)
CLOSE bhnnd TO |.7 %inches;
{ grasp the brick }
MOVE barm TO oven VIA oven-door
WITH DEPARTURE = =-3%xhatxinches;
{ move brick into oven through oven door after lifting vertically }
OPEN bhand TO 3.0%inches;
{reloase the brick }
MOVE barm TO bpark VIA oven-door;
{ go park the arm }
END
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3.5 Modelling objects - affixment & indirect moves

Since assembly often involves attaching one object to anot her, AL has an
automatic mechanism to keep track of the location of a subsidiary piece of the
assembly as the main assembly is moved; the mechanism is called affixment. For
example, there might be a frame called pump and another called pump_base. At
some stage in the assembly, the pump is bolted to pump-base. At this time it is
appropriate to execute the statement

AFFIX pump JO pump-base

This statement informs AL that motions of the pump_base are to affect the
iocat ion of fump. Note that the AFFIX statement does not call any routines to
generate the code to actually perform the bolting operation. Jhe statement merely
informs AL that at this stage in the program execution, pump is to be considered
affixed to pump_base.

The particular case in which object frames are attached to the arm frame is
of special import ance. Once pump is affixed to barm, for instance, the user can
forget about the arm, and just concentrate on where and how pump has to move;
AL will take care of how to move the arm to achieve the desired result. This is an
indirect move where the user need not specify arm motion,

When affixing frames to one another, the user must specify the relative
transformation between the frames, and whether the affixment is rigid or nonrigid.
The relative transformation can be specified within the affixment statement, or if
the positions of the two frames are already defined, just stating that they are to
be affixed will automatically compute the necessary trans.

The form of the affixment statement is as follows:

part « <frame exp>;
fixture « <frame exp>;
AFFIX part JO fixture NONRJGIDLY;

or alternately,
AFFIX pump JO pump-base AT <transexp> RIGIDLY;

RIGIDLY implies that the affixment is symmetric, so that changes in value of
one frame imply changes in the other, A RIGID affixment is normally used when
the objects are physically joined together rigidly, e.g. the pump being bolted to the
pump_base or an arm grasping an object. In the above example, movement of pump
will affect pump_base, and movement of pump-base will affect pump .
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A NONRIGID affixment is used when one object is resting on another: e.g.
part resting in fixture; part moves with the fixture, but if only part is moved, fixture
stays put.

A frame could be affixed to more than one frame, and affixment s may be
chained together. The affixment relationship can be broken by means of the UNFIX
statement as follows:

UNFIX pump FROM barm;

Ail the frames rooted in pump (e.g. pump_base) will remain rooted in pump,
and will no longer be affected by barm or its motion.

The following examples illustrate the stacking of one block on top of another
with and without the use of affixment to illustrate its usage and convenience
during programming.

BEGIN “block stacking without affixmont”

FRAME blkl | bikl _grasp,blkl_top,b!k2,bik2_grasp, finplace;

DISTANCE SCALAR grasphoight, blkl length, bik2length, bikl width,
blk2width, blk] height;

ROT stand;

stand «ROT(XHAT,180 %degrees);

blkl width «} .5%inches; blk2widt h « 1 .5%inches;
blkl length «2.4%inches; blk2length « 2.4%inches;
blkl height «2%inches; grasphoight «0.75%inches;

{ dofino dimensions of the blocks }

blkl « FRAME(nilrot,VECTOR(10,30,0)%inches);
blk2 «FRAME(nilrot,VECTOR(6,30,0)%inchos);
{ ciefine bottom corner of blocks }
finplace + FRAME(nilrot,VECTOR(8,40,0)*inches);
{define final position of bottom of block 1 }

blkl _grasp « FRAME(stand,VECTOR(blk1 length/2,blk] width/2,graspheight));
{ define grasping position of block 1 }

blkl,top «FRAME(niirot, VECTOR(0,0,bikl height));
{ define position of top of block 1 }

blk2_grasp + FRAME(stand, VECTOR(bik2length/2,blk2width/2,graspheight));
{ define grasping position of block 2 }

MOVE barm TO bpark WITH DURATION =3%seconds;
OPEN bhand TO 3.6%inches;

MOVE barm TO blkl*blkl_grasp WITH APPROACH =3%zhat*inches;

{ arm moves to grasping position of blkl }
CENTER barm; { hand grasps blkl}
MOVE barm TO finplacexblkl _grasp WITH APPROACH =3x%zhatxinches;

{ arm moves so that blkl is in final place }
OPEN bhand TO 3.6*inches; { hand opens to release blkl}
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MOVE bat-m TO blk2%blk2_grasp WITH APPROACH =3#*zhatxinches;
{ arm moves to grasping position of blk2}

CENTER barm; { hand grasps blk2 }

MOVE barm TO finplacexblkl _topkblk2_grasp WITH APPROACH =3%zhatxinches;
{ arm moves to put blk2 on top of blkl}

OPEN bhand T0 3.6 *inches; { hand opens to release blk2 }

MOVE barm TO bpark; PRINT (“all done”);

END “block stacking without affixment”;

Note that for each motion the destination is an expression consisting of a

local coordinate system and a point in that system (e.g. blklublki_grasp). Another
way to write the same program is as follows, where AL automatically takes care of
the bookkeeping of which coordinate system to use. The same number of
declarations are still needed, but now the motion statements are clearer. Note
that because the destination of each motion is no longer an expression AL will
automatically use the standard approach.

BEGIN “block stacking using affixment”

FRAME blkl | blkl _grasp, blkl_top,bik2,blk2_grasp, finplace;

DISTANCE SCALAR graspheight, bikl length, bik2iength, bikl width,
blk2width, blkl height;

ROT stand;

stand « ROT(XHAT,180.%degrees);

blkl width & I .5xinches; blk2width ¢ | Bxinches;
blkl length «2.4xinches; blk2length « 2.4%inches;
blk} height «2x%inches; graspheight ¢0.75x%inches;

blkl « FRAME(nilrot, VECTOR( 10,30,0)*inches);
blk2 «FRAME(nilrot,VECTOR(6,30,0)%inches);
finplace « FRAME(nilrot,VECTOR(8,40,0)xinches);

AFFIX blkl _grasp TO blkl at

TRANS (stand, VECTOR(blkllength/2,blkiwidth/2,graspheight)) RIGIDLY;
AFFIXblk] _top TO blkl at

TRANS(nilrot, VECTOR(0,0,blk] height)) RIGIDLY;

{ top and grasping position of blockl are defined with respect to bottom }
AFFIX bik2_grasp TO blk2 at

TRANS(stand,VECTOR(blk2length/2,bik2width/2,graspheight)) RIGIDLY;

{ grasping position of block2 defined with respect to bottom }

MOVE barm TO bpark WITH DURATION = 3%seconds;
OPEN bhand TO 3.6*inches;
{ normalize arm position };

MOVE barm TO blki_grasp; { arm moves over the grasping position of bikl}
CENTER barm; { hand closes over blki}

AFFIX blkl to barm RIGIDLY; {blkl and all its parts are attached to arm }

MOVE blkl TO finplace; { note that blkl is moved, not barm }

OPEN bhand TO 3.6%inches;  { this physically releases the block }

UNFIX blkl from barm; { blkl is released from the arm in the world model }

MOVE barm TO blk2_grasp;
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CENTER barm;

AFFIX blk2 to barm RIGIDLY;

MOVE blk2 TO blkl,top; { move bottom of blk2 tO the top of bikl}
OPEN bhand TO 3.6xinches;

UNFIX blk2 from barm;

MOVE barm TO bpark; PRINT (“all done”);

END “block stacking using affixment”;

3.6 Sensing forces - simple condition monitors

When we want to use threshold values of sensory information to perform
certain actions, we make use of condition monitor clauses. The syntax is as
follows:

ON <condition> DO <action>

A simple example would be to rotate the wrist of the arm (assumed vertical) and
stop when a torque of 50 ounce-inches is encountered - perhaps that indicates
that we have tightened something to the required torque. An example of such a
statement would then be

MOVE barm TO barm+FRAME(ROT(zhat, 90xdegrees),nilvectxinches)
ON TORQUE(zhat) 2 50 * ouncesxinches DO STOP barm;

The effect of this statement is obvious; the STOP command stops the motion
of the arm immediately after the force is encountered. Note the specification of
the direct ion of the detected torque, zhat, and the threshold amount (50
ounce-inches),

Assume we want to find the height of an object and that the object is
‘expected to be in a given location, and that its height is expected to be between
2 and 12 inches.

BEGIN
FRAME objact;
DISTANCE SCALAR height;

MOVE barm TO bpark WITH DURATION=3%seconds;
CLOSE bhand TO Oxinches; { bring fingers together }

MOVE barm TO object +14%zhatxinches; { arm is vertically above the object }

MOVE barm TO ®=13%zhatxinches { symbol ® here means current position of barm }
WITH DURATION =]0Q%seconds
ON FORCE(ZHAT) 21 0%ounces DO STOP;
{ try to move arm down 13 inches slowly and stop when a force is
encountered; i.e. contact is made }

height «POS(barm).zhat = 0.3%inches;
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{ take the z-component of the arm’s current location and subtract the
distance between the center and edge of the fingers to give the actual
height of the object }

PRINT("HEIGHT OF OBJECT IS ", height, " INCHES");
END;

3.7 Applying forces & compliance

In addition to detecting forces, AL allows specified forces to be applied.
Since forces have both direction and magnitude, the applied force must have both
specified, either in terms of the resultant magnitude and direction, or in terms of
orthogonal cornponents along the principal axes of a given coordinate system.
Applying a force of magnitude zero means that the arm will be compliant, i.e. move
away from any external force in that direction. In the following example, the arm
is compliant to forces in the x and y directions (Le., it tends to move away from
any external forces in those directions), while it applies a downward force of 10
ounces in the z direction. The FORCE_FRAME clause indicates the coordinate
system in which the force components are specified, and is needed whenever two
or more force components (which must be orthogonal and along the principal axes)
are used. The above is also applicable to torques. In the example below, this
coordinate system is in world (fixed) coordinates and has the station orientation.
FORCE _FRA ME is described in more detail in Chapter 4.

BEGIN “insert peg into hole”
FRAME peg-bottom, peg-grasp, hole-bottom, hole-top;

MOVE barm TO bpark WITH DURATION=3%seconds;
OPEN bhand to 3xinches; { normal initialization }

peg-bottom « FRAME(nilrot, VECTOR(20,30,0)xinches);
hole-bottom ¢FRAME(nilrot,VECTOR(25,35,0)%inches);

AFFIX peg_grasp TO peg_bottom RIGIDLY

AT TRANS(ROT(xhat,l 80xdegrees),3%zhat*inches);
AFFIX hole-top TO hole-bottom RIGIDLY

AT TRANS(nilrot,3%zhat*inches);

MOVE barm TO peg-grasp;

CENTER barm; { get peg }
AFFIX peg_grasp TO barm RIGIDLY;
MOVE peg-bottom TO hole-top;

MOVE peg_bottom TO hole-bottom DIRECTLY [prevent arm lifting and dropping)
WITH FORCE-FRAME = station IN WORLD
WITH FORCE(zhat) = -1 O%ounces {force components in station coordinates)

WITH FORCE(xhat) = Oxounces
WITH FORCE(yhat) = O%ounces
SLOWLY; { SLOWLY is a macro which slows movements by 3 times
(c.f. section 3.14.4)}
END “insert peg into hole”;

When force is applied, there should be a resisting force, otherwise the arm
will accelerate in the direction specified because of Newton’s Second Law.
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However, compliant motions (forces in certain directions equal zero) currently
cause spont aneous motion even if there is nothing touching the arm because noise
amplification and imprecise modeiling of the arm loads and geometry may cause an
initial velocity which the arm tries to maintain because of Newton’s First Law. It is
expected that this problem may be alleviated by the use of damping. Finkel, in
“Constructing and Debugging Manipulator Programs”, discusses some of the
problems associated with compliant motion specifications.

3.8 Control structures: IF, FOR & WHILE statements

AL has many of the traditional ALGOL control structures, including
condi tionals and loops. There are no jumps in AL, because they confuse the flow
analysis needed for rnaintaining planning values. In this section we shall describe
the /F, FOR and WHILE statements.

The /F statement has the form:

IF <condition>
THEN <statement>
ELSE <statement>

The ELSE part is optional. The condition is some boolean expression involving one
of the operators %,>,%,2,=, and #. Boolean expressions can be built up out of
relational operators, the logical connectives A {(AND), v (0 x), ~{NOT),«(XOR,
exclusive or), =(EQV, the logical equivalence) or the logical constants TRUE or
FALSE. The condition may also be some arithmetic scalar expression. If the
condition is true (non-zero) the statement following the THEN is executed.
Otherwise the statement following the ELSE, if present, will be executed.

The FOR loop has the form:

FOR <svar>«<sexpr> STEP <sexpr> UNTIL <sexpr> DO <statement>

where <svar> stands for “scalar variable” and <sexpr> stands for “scalar
expression of same dimension”. The initial value of the variable is the value of the
first expression; every time tho statement is executed, its value is incremented by
the value of the second expression, and the process repeats until the value
exceeds that of the third expression. if the step size is negative, the right things
happen. A test is made before the first iteration, so it is possible that the loop
will not get executed at all.

The WHILE loop is as follows:

WHILE <condition> DO <statement>
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where <condition> is the same as above. The condition is checked and if it is true
the statement is executed. The process is repeated until the condition becomes
false.

The following example illustrates the use of the /F, FOR and WHILE
statements in a program where the arm picks up castings from one place, puts the
good ones on a pallet in 6 rows of 4 and discards the defective ones. The
castings come in batches of 50, but it is not known ahead of time how many

batches there will be.

BEGIN “sort castings”
FRAME pickup, garbage-bin, pallet;
SCALAR pallet_row,pallet_column, good, bad;
DISTANCE SCALAR packing-distance;
SCALAR ok, more-batches, casting-number;
packing_distance«~4xinches;

MOVE barm TO pickup WITH DURATION = 3%seconds;
OPEN bhand TO 3#*inches;

pallet-row+ 1; pallet_columne0; good+0; bad+-0;
casting+pickup;

MOVE barm TO pickup DIRECTLY;
CENTER barm;
IF (bhand <1.5%inches) THEN more_batches~FALSE ELSE more_batches+TRUE;

WHILE more-batches DO
BEGIN “sort 50 castings”

FOR casting-number+ | STEP 1 UNTIL 50 DO
BEGIN “sort casting in hand”
ok ¢« FALSE;
AFFIX casting TO barm RIGIDLY;
MOVE casting TO pickup e 3%zhatxinches
ON FORCE(zhat)2 20%ounces DO okeTRUE; {see if it weighs enough }

IF ok THEN

BEGIN “good casting”

good+-good+ 1;

IF pallet_column=4
THEN BEGIN pallet_column«0;pallet_row«pallet_row « 1; END
ELSE pallet_columnepallet_columne];

MOVE casting TO pallet ¢

VECTOR( pallet-column*packing-distance,
paliet_rowxpacking_distance,0%inches)
WITH APPROACH = 3%zhatkinches;

UNFIX casting FROM barm;

OPEN bhand TO 3inches;

IF {pallet_column=4) AND (pallet_row=6)
THEN BEGIN “pallet full”
pallet_column+0; pallet_row+ 1;
{ code to remove this pallet and get new pallet }
END “pallet full”;

MOVE barm TO pickup;

END “good casting”

ELSE
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BEGIN "defective casting”

badebad+];

MOVE casting TO garbage-bin DIRECTLY;
OPEN bhand TO 3*inches;

UNFIX casting FROM barm;

MOVE barm TO pickup;

END "defective casting”;

castingepickup;
CENTER barm;
END “sort casting in hand”;

IF (bhand <1 .5%inches) THEN more-batches & FALSE;
END “sort 50 castings”;

MOVE barm TO bpark;

PRINT("THERE WERE ", good,” GOOD CASTINGS AND ", bad,* DEFECTIVE CASTINGS”);

END “sort castings”;

3.9 Control structures (cont):CASE & UNTIL statements

Two of the other traditional ALGOL control structures in AL are the CASE
and UNTIL statements.

The CASE std ement comes in several forms, The regular CASE statement
has the form:

CASE <index> OF
BEGIN
<st at ement 0>;
<st at ement 1>;
<stat oment 2>;

<statement n>
END

The. scalar index expression is evaluated and depending on the integer part of its
value one of the following statements is executed. If the index is zero then
statement 0 is chosen, if the index is one then statement 1 is chosen, and so on up
till n. If the index is negative, or greater than the number of statements, an error
is reported. Any of the statements may be null, e.g. “<statement 1>;<statement
3>", in which case if the index were two nothing would be done.

There is also a numbered version of the CASE statement:

CASE <index> OF
BEGIN
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[CO] <st at ernent>;
[C1] <statements;
[C2]<st at ement>;

[Cn] <statement>;
ELSE <st at ement>
END

where each statement has one or more non-negative scalar constants labelling it.
Again, the index expression is evaluated and if its integer part is the same as one
of the Ci’s then the st atement with that label is executed, Otherwise, if an ELSE
is present, the statement it labels is executed. If no ELSE is present, an error
occurs if the integer part of the index is negative or greater than the largest Ci,
otherwise nothing is done. Note that the ELSE statement may appear anywhere in
the list of statements; it need not be at the end.

Here is an example using the numbered CASE statement to select the
appropriate action to perform when given one of several possible parts.

BEGIN
SCALAR part-number;
FRAME pick_up,base,base_grasp,cover,cover_grasp,side,side_grasp,...;

(Initialization code including the following macro definitions:
DEFINE base,num =..3

DEFINE cover-num = ...}

DEFINE side-num = ..3

which will be used for clarity in a numbered case statement.}

(Now go get the part at pick-up and do whatever is appropriate with it.)

PRINT{"Enter tho part's number: ");
part-number ¢ INSCALAR,; (INSCALAR reads in a scalar from the console keyboard }
(Have the user type in the part’s number. In the future this might
be done automatically using vision,}
CASE part-number OF
BEGIN
{base_num] BEGIN {Code to handle base.)
base ¢ pick-up;
MOVE barm TO base-grasp;
CENTER barm; (Grab it}
AFFIX base TO barm;
{Rest of code for base.}
END;

[cover-t-turn) BEGIN
(Code to handle cover.)
END;

(Repeat for other known parts: side,etc.}

ELSE BEGIN
PRINT("Unknown part number" crif);
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(Code to recover from error)
END
END;

{Rest of program. Note that each of the statements in the above CASE statement
should Icavo the arm in the same position. If not then a plan-time assign (c.f. section
4.5.1) will be required so the world modeller knows the arm’s position when the CASE
statement finishes. (c.f. sections 4.4.1 & 4.6) }

END;

The UNTIL statement is as follows:
DO <statement> UNTIL <condition>

where the statement is repeatedly executed until the condition becomes true.
This is similar to the WHILE statement described in the previous section, with the
exception that the WHILE loops while the condition is true, whereas the UNTIL
loops until the condition becomes true, Note that the body of an UNTIL loop is
always executed at least once.

As an example of the use of the UNTIL statement, here is a program
excerpt that gets a good casting, discarding any bad ones it finds in the process. It
is similar to the exarnple in the previous section.

BEGIN
SCALAR success;
(Initialization code}

success ¢ false;
casting+pickup;
MOVE barm TO casting-grasp;

DO BEGIN (Try to get a good casting}

CENTER barm;

AFFIX casting TO barm RIGIDLY;

MOVE casting TO pickup +3%zhatxinches {See if it weighs enough)
ON FORCE 220%ounces ALONG zhat OF station DO success * true;

IF ~success THEN (Get rid of defective casting)
BEGIN
MOVE casting TO garbage-bin DIRECTLY;
OPEN bhand TO 3x*inches;
UNFIX casting FROM barm;
casting+pickup;
MOVE barm TO casting-grasp
END

END UNTIL success;

barm ¢« pick-up *3%zhatkinches;
(Plan-time assign so the world modeller will be happy}

{Code for rest of program)
END;
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3.10 Simultaneous motion: COBEGIN-COEND, SIGNAL-WAIT

So far we have considered single arm moves. To perform simultaneous
movements of arms, two new concepts have to be introduced. The
COBEGIN-COEND block has the same effect as the BEGIN-END block, except that
statements within the block are executed simultaneously.

Thus the following will park both arms at the same time.

COBEGIN
MOVE barm TO bpark;
MOVE yarm TO ypark;
COEND;

Simple synchronization is possible within the context of sirnultaneous
execution. This is achieved by means of explicit events and the SIGNAL and WAIT
staterents. Every different event that the user wishes to use should be declared
in a declaration st at ement as follows;

EVENT e 1,e2,e3

The EVENT is distinct from algebraic data types (e.g. scalars) and cannot be
assigned a particular value by the user in his program by means of the regular
assignment statement. With each event is associated a count of how many times it
has been signalled. Initially, the count is zero, that is, no signals have appeared,
and no processes are waiting. The statement

SIGNAL el

increments the count associated with event e/, and if the resulting count is zero or
negative, one of those processes waiting for el is released from its wait and
readied for execution. The statement

WAIT el

decrements the count associated with event ¢/, and if the resulting count is
negative, the process issuing the WAIT is blocked from continuing until a signal
comes along. If the count is zero or positive, there is no waiting.

The following example is used to show the use of the SIGNAL and WAIT
commands, although it rnay be done without these constructs. The blue arm picks
Up an object and moves to a passing location, where it makes sure that the yellow
arm has grasped it before releasing it.
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BEGIN
EVENT passed, caught, ready-pass;
FRAME steel_beam, pass, catch;

COBEGIN
BEGIN “blue”
MOVE barm TO steel-beam;
CENTER barm;
AFFIX steel-beam TO barmg
MOVE stool-beam TO pass;
SIGNAL ready-pass;
WAIT caught;
OPEN bhand TO 3.0xinches;
UNFIX steel-beam FROM barm;
SIGNAL passed;
END “blue”;

BEGIN “yellow”

OPEN yhand TO 3.0%inches;
MOVE yarm TO catch;
WAIT ready-pass;

CENTER yarm;

SIGNAL caught;

WAIT passod;

{ barm gets steel beam }

{ takes it to passing position }

{ barm says it is ready }

{ waits for yellow arm to catch)

{ when yellow arm ready releases beam)

{ barm announces it has released beam }

{ meanwhile yellow hand is opened }

{ yellow arm goes to catching position }

{ yarm waits till there is something to grab)
{ grasps it)

{ yarm announces it caught it }

{ waits for blue arm to release it }

MOVE yarm TO pallet;
END “yellow”;
COEND;
END;

A second example illustrates the use of SIGNAL and WAIT in resource
sharing. The example in the last section where castings are sorted will be used
but assume that the two arms are doing similar jobs, and that a single overhead
crane is used to take away the full pallets and bring in empty pallets. Blue and
yellow pallets are used to correspond to the appropriate arms. The code for the
program will be similar to the previous section, except that the section which
states {codeto remove this pallet and get new pallet}, in the block labeled "pallet
Juwll", will use SIGNAL and WAIT to ensure that the crane is not asked to go to two
locations at the same time, and that it is asked to go to a location only when it is
needed.

BEGIN
EVENT blue_pallet_full, blue-pallet-empty;
EVENT yellow_palliet_full, yellow-pallet-empty;
EVENT crane-free;
SCALAR more_blue_pallets, more_yellow_pallets;
more_blue_pallets~TRUE; more_yellow_pallets<TRUE;
SIGNAL crane-free;

COBEGIN
BEGIN “load blue pallets”

BEGIN “sort castings” {code from section 3.8)
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IF (pallet_column=4) AND (pallet_row=6)
THEN BEGIN “pallet full”
pallet_columne0;pallet_rowe 1;
SIGNAL blue_pallet_full;
WAIT blue-pallet-empty;
END “pallet full”;

END “sort castings”;

SIGNAL biue_pallet_full; (to get last pallet out of the way)

WAIT blue-pallet-empty;

more_blue_pallets-FALSE; {to stop crane waiting for blue pallet,
otherwise crane program will get stuck in
“change blue pallet” block.)

END;

BEGIN “load yellow pallets”
BEGIN “sort castings” (similar to blue pallets except use yellow
arm and yellow pallet)

~ IF {pallet_column=4) A N D (pallet_row=6)
THEN BEGIN “pallet full”
pallet_column«0;pallet_row+ 1 ;
SIGNAL yellow_pallet_fulls
WAIT yellow_pallet_empty;
END “pallet full”;

END “sort castings”;

SIGNAL yellow_paliet_full;

WAIT yellow_paliet_empty;

more_yellow_pallets+-FALSE;
END;

WHILE more_blue_paliets

DO BEGIN “change blue pallet”
WAIT biuo_paliet_fuil;
WAIT crane-free; { wait for crane to be free }

(code to use crane to change blue pallet}
SIGNAL blue_pallet_empty;
SIGNAL crane-free;
END;

WHILE more_yellow_pallets

DO BEGIN “change yellow paliet”
WAIT yellow_pallet_fuil;
WAIT crane-free; { wait for crane to be free }

{code to use crane to change yellow pallet}
SIGNAL yellow-pallet-empty;
SIGNAL crane-free;
END;

COEND;

END;
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3.1 1 Arrays

Sometimes we would like a variable to refer to more than one value. As an
example consider a base plate with three screw holes in it. During the assembly,
code to insert a screw into each hole will be writ ten. Rat her than repeatedly
writing the same code for each screw hole, it would be preferable to write it once
and somehow use a FOR loop to repeat it for all the holes. An array will allow us
to do this.

An array is a variable that can have multiple values. In the above example
we had three frames; first-hole, second-hole and third-hole. We can define a
frame array: hole[1:3] which allows us to reference the three screw holes as:
hole[1],hole[2] and hole[3]. More formally an array definition is of the form:

<type> ARRAY <namel>[bounds], <name2>[bounds]

where type specifies the array’s data type, and bounds indicates the size of the
array and how the elements of it are referenced. Our example above used a one
dimensional array. An example of a two dimensional array is:

SCALAR ARRAY foo[ 1:3,1:4]

which would look like;

foo[1,1] foo[l,2] foo[1,3] foo[l,4]
foo[2,1] foo[2,2] foo[2,3] foo[2,4]
foo[3,1] foo[3,2] foo[3,3] foo[3,4]

There is no upper limit on the number of dimensions an array rnay have. The array
bound pairs may be either scalar constants, variables or expressions. The bounds
-may have positive or negative values, as long as the lower bound is smaller than
the upper bound. For example:

VECTOR ARRAY u[-3:3],v[n:n+5], w[0:3,1:m]
where n and m are scalar variables. Space is allocated for arrays upon entry of
the block in which they are defined, so the sizes of v and w will depend on the
values of n and m when the definition occurs,
Arrays are used in programs just like regular variables. For example:

FOR i « 1 STEP 1 UNTIL 4 DO foo[ 1 ,i] « foo[ 2,i]*fo0[3,i]

At runtime a check is made that each subscript falls within the lower and
upper bounds given for the dimension it specifies. Subscripts out side the bounds
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cause an error message to be printed. Only the integer part of the subscript is
used.

Here is an example to do the screw insertion task mentioned at the
beginning of this section.

BEGIN
FRAME ARRAY hole[1:3];
FRAME base-plate;
SCALAR i;

(Initialization and start of the program including definition of the locations of
the base-plate and the screw holes:

base-plate « FRAME(...);

AFFIX hole[1] TO base-plate RIGIDLY AT TRANS(....);

AFFIX hole[2] TO base-plate RIGIDLY AT TRANS({....);

AFFIX hole[3] TO base-plate RIGIDLY AT TRANS{....);

Screws will bo defined with the z-axis pointing downward.

Code to get the screw driver into the hand is also included. }

(Now insert the three screws}

FOR i # | STEP | UNTIL 3 DO

BEGIN
screw ¢ screw,disponsor; {Define location of new screw}
MOVE driver-tip TO screw; {Get a screw = not really this easy)
AFFIX screw TO driver;
MOVE screw-tip TO hole[i]; (Screw is just above screw hole}
COBEGIN
MOVE screw TO ®= 0.75 % zhat% inches {Push down with arm)

WITH FORCE = 20 % ounces ALONG zhat OF screw
WITH DURATION = 2.5 seconds;
OPERATE driver (Drive in the screw}
WITH VELOCITY = 200 % rpm
WITH DURATION =3 % seconds;
COEND;

UNFIX screw FROM driver {Release the screw)
END;
END

Note that the “driver” used above is not available currently.

3.12 Procedures

There are times when we wish to do the same operation at several places
in the program. Rather than place the entire sequence at each of these points it is
often desirable to code it up once as the body of a procedure or subroutine, and
at each point in the program where the operation is required have a call on the
procedure. As an example during an assembly there may be a number of screws
that need to be inserted. A procedure to do this insertion will be shown after the
syntax for procedures has been explained.
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Procedures are defined as follows:

<type> PROCEDURE <name> (parameter list);
<st at ement>

where the statement is executed each time the procedure is called. A simple
procedure to park the arm and open the fingers could be written as:

PROCEDURE park;
BEGIN
MOVE barm TO bpark WITH DURATION = 3 *sec;
OPEN bhand TO 3 * inches;
END;

Any time in the program the user wants to move the arm to the park position and
open the hand all she need type is the statement:

park

which will call the procedure. Sometimes a procedure will be used to return a
result needed for computation (i.e., the proceduce will be used as a function). This
is done by use of the RETURN statement:

RETURN (value)

which returns value as the result of the procedure. For example a procedure to
determine the height of the blue arm might be writ ten:

DISTANCE SCALAR PROCEDURE height,barm;
RETURN(POS(barm) . zhat )3

Any time the height of the blue arm is needed one would call the procedure. Note
the declaration of the data type that the procedure returns. We can generalize
this procedure so that for any frame it returns the height of the frame. To do this
we introduce the use of parameters to pass a value to the procedure. The
generalized procedure and a sample of it in use is as follows:

DISTANGE SCALAR PROCEDURE height (FRAME f);
RETURN(POS(f) . zhat );

PRINT("The height of the pallet is:*, height(pallet_top));

when the procedure is called the parameter f is bound to the value of pallet-top,
and every reference to f in the body of the procedure will refer to pallet-top.
Parameters can be passed by reference, which is the default for variables and
arrays, or by value, the only way expressions are passed. If a variable is passed
by reference then its value can be modified by the procedure. For example a
procedure to refine the location of a frame by grasping it with the arm and then
reading the position of the arm might be written:
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PROCEDURE refine (REFERENCE FRAME 0bj);
BEGIN
OPEN bhand TO 3%inches;
MOVE barm TO obj;
CENTER barm; {This will sense the object’s position)
obj ¢ barm
END;

When the procedure returns, the frame passed as its argument will have a new
value.

A traditional example of a procedure used in most programming tutorials is
the factorial function: fact(l) = 1, fact(2) = 2¢1, fact(3) = 3x2«1, etc. Here are
two ways of writing factorial in AL; the first is iterative, while the second is
recursive (i.e. it calls itself).

SCALAR PROCEDURE ifact (SCALAR n);
BEGIN
SCALAR i, prod;
prod ¢ 1;
FOR i & 2 STEP 1 UNTIL n DO prod ¢« prod * i;
RETURN( prod )3
END;

SCALAR PROCEDURE rfact (SCALAR n);
IF n >} THEN RETURN( n % rfact{n=1))
ELSE RETURN(1);

A procedure to do the screw insertion operation is as follows:

PROCEDURE insert-screw (FRAME hole-location);
BEGIN
screwtscrew_dispenser;
MOVE driver-tip TO screw; (Get a screw = not really this easy)
AFFIX screw TO driver;
MOVE screw_tip TO hole_location; (Screw is just above screw hole}

COBEGIN
MOVE screw TO ®= 0.75 % zhat ¥ inches (Push down with arm)
WITH FORCE = 20 % ounces ALONG zhat OF screw
WITH DURATION = 2.5 seconds;
OPERATE driver {Drive in the screw}
WITH VELOCITY = 200 % rpm
WITH DURATION =3 % seconds;
COEND;

UNFIX screw FROM driver (Release the screws
END;

Now the loop to insert three screws in the example in the previous section
would be:

FOR i « 1 STEP 1 UNTIL 3 DO insert_screw(hole[i]);



44

It should be mentioned that procedures present certain difficulties to the
world rnodeller in the AL compiler. Please refer to section 4.6 for a discussion of
these problems and solutions to them.

3.13 Hints to the Programmer

3.13.1 Upward pointing grasping posit ions

The AL user will quickly realize that under normal usage, the frame barm
usually has its Z axis pointing downwards in station coordinates. Since we are
used to thinking in terms of an upward positive Z direction, it is sometimes
convenient to define another frame affixed rigidly to barm but with the Z-axis
pointing upwards, and the Y axis either parallel or anti-parallel to the station Y
axis. With such a frame, the user can define grasping frames with the station
orientation if the hand points downwards. The following statements will set up a
frame called bgrasp to accomplish what we want.

FRAME bgrasp; -
AFFIX bgrasp TO barm AT TRANS(ROT(xhat,180%deg),nilvectxinches) RIGIDLY;

3.13.2 Initialization and program end

Initialization of the arm and hand to known positions before starting is a
good idea to ensure that the first movement from an unknown position does not
result in the arm trying to move too fast,

The statements recommended are:

MOVE barm TO bpark WITH DURATION = 3%seconds;
OPEN bhand TO 3x*inches;

It is good policy to park the arm at the end of the program by using:
MOVE barm TO bpark

The AL compiler will give a warning message if the arm is not parked upon
program completion.

3.13.83 Slowing down movements

When trying out a program for the first time when it is not known how the
arm will behave, the use of a speed_factor greater than unity will slow down all
motions in the program (c.f. section 4.4.6 for details), The user should assign a
value to speed_factor at the beginning of the program as follows:
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speed-factor « 2.0
For convenience, two predeclared macros SLOW and CAUTIOUS assigning

values of 20 and 3.0 respectively to speed_factor may be used instead of the
assignment statement described above.
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4. THE AL LANGUAGE

AL is an ALGOL-like source language extended to handle the problems of
manipulator control. This chapter describes the features of the AL language. It is
presumed that the reader has read the previous chapter which introduces the AL

language in a tutorial fashion.

4.1 Basic constructs

4.1.1 Programs

AL programs are organized in the traditional block structure of ALGOL. A
program in AL consists of either a single statement or a block statement, which is a
sequence of statements, separated by semicolons, and surrounded by the reserved
words BEGIN and END (or COBEGIN and COEND). Blocks may be named by
placing a string constant immediately after the BEGIN (or COBEGIN). This name
will be checked against the string (if any) that follows the matching END (or
COEND), and if the two strings do not match, an error will be reported.

BEGIN “block name” S; S; S; S END “block name”

-4,1.2 Variables

" "

A variable name is a string of alphanumeric characters and underscore, _,
starting with a letter. Variables must be declared before being used. AL follows
normal variable scoping rules: variables may only be referenced within the block
they are deciared in, or in blocks nested within that block, The same variable
name may be declared in several blocks, in which case any references to it refer
to the innermost declaration enclosing the reference.

-4.1.3 Comments

Comments are text inserted into the program to make it more readable.
Comments can be written in two forms. The compiler will ignore all text between
the reserved word COMMENT and the next semicolon encountered. Comments

may also be enclosed by curly brackets "{}".
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4.2 Data types and expressions

4.2.1 Algebraic data types: SCALAR, VECTOR, ROT, FRAME, TRANS

The basic data types in AL were chosen to facilitate working in the three
dimensions of the real world. Scalars are -floating point numbers like reals in other
computer languages. Vectors are 3-tuples specifying (X, Y, Z) values, which
represent quantities like translations, velocities, and locations with respect to
some coordinate system. Rot ations are 3x3 matrices representing either an
orient at ion or a rotation about an axis. A rotation, or rot, is constructed from a
vector, specifying the axis of rotation, and a scalar, giving the angle of rotation.
Frames are used to represent local coordinate systems, They consist of a vector
specifying the location of the origin, and a rotation specifying the orientation of the
axes. Transes are used to transform frames and vectors from one coordinate
system to another. Like frames they consist of a vector and a rotation.

4.2.2 Labels & Events

Labels and events are data types that are declared in the same manner as
the algebraic data types. There are two kinds of labels: statement labels and
condition monitor labels. Condition monitors are labelied for reference by the
ENABLE and DISABLE statements (c.f. section 4.4.5.2). Statements are labelled
for use in debugging. A label consists of an identifier followed by a colon.
Currently labels must be declared before being used.

Events are used in conjunction with the SIGNAL and WAIT statements (c.f.
section 4.5.4) used to synchronize parallel processes.

4.2.3 Arravs

Multi-dimensional arrays are available in AL. They may be of any algebraic
data type or of type event. Array bounds may be scalar constants, variables, or
expressions; they may be positive or negative integers. The only constraint is that
the lower bound be smaller than the upper bound. At runtime a check is made
. that each subscript falls within the lower and upper bounds given for the
dimension it specifies. Subscripts outside the bounds cause an error message to
be printed.

Arrays are allocated upon entry of the block in which they are defined, and
deallocated upon block exit,
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4.2.4 Dimensions

AL allows physical dimensions to be associated with variables. The known
dimensions are: TIME, DISTANCE, ANGLE, FORCE, TORQUE, VELOCITY,
ANGULAR _VELOCITY & DIMENSIONLESS. New dimensions may be defined if
desired by means of the DIMENSION statement.:

DIMENSION <new dimension> = <dimension expression>

where the operators defined in <dimension expression> are (,),%,/ and INV, which
takes the inverse of its argument, e.g. INV(TIME) = 1 /TIME.

Dirnensioned quantities are just like regular ones, except that they are
multiplied by the appropriate reserved word: SEC, CM, DEG, GM, INCHES, 0Z &
l.BS (also SECONDS, INCH,OUNCES,DEGREES& RADIANS). For example:

VELOCITY VECTOR v;
v « xhat * inches [sec

Other units rnay be defined using macros (cf. section 4.5.8),e.g.:
DEFINE feet = <( 12 *inches)>
AL checks for consistent usage of dimensioned quantities: addition and
subtraction, along with frame, trans and rot operations require exact dimension

match, while scalar and vector multiplication and division produce a quantity of new
di rnensi on,

4.2.5 Declarations

- The declaration statement is used to define the data type and dimension of
each variable used in a program. it has the form:

<dimension> <data type> <list of variables>

where <dimension> is one of the predefined dimensions in AL (TIME, DISTANCE,
ANGLE, FORCE, TORQUE, VELOCITY & ANGULAR _VELOCITY), or a user defined
dimension. <Datatype> is one of the following: SCALAR, VECTOR, ROT, FRAME,
TRANS, EVENT & LABEL. Only the algebraic data types: SCALAR, VECTOR and
TRANS rnay have a dimension associated with them. Unless otherwise specified,
scalars and vectors are considered dimensionless, while transes are considered to
be of dimension distance (cf. section 3.1.1.5).

Array declarations are of the form;
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<dimension> <data type> ARRAY <list of variables>
where each variable in the list consists of a variable name followed by a list of
lower-upper bounds pairs enclosed in square brackets "[]", e.g. "name[L1:Ul,

L2:U2,.]"

4.2.6 Arithmetic expressions

Here is a summary of the arithmetic operators available. They are grouped
by the data type of their resulting value. These abbreviations are used: ‘s’ =
scalar, ‘v’= vector, ‘¥’ = rotation, ‘' = frame, ‘' = trans.

Scalar operators

S +s scalar addition

s -5 scalar subtract ion

s*s scalar multiplication

s/s scalar division

sTs scalar raised to a scalar power

s MAX s maximum

s MIN s minimum

INT(s) integer part of s

s DIV s integer quotient after applying INT to each argument
s MOD s integer remainder after applying INT to each argument
V.V dot product of two vectors

11 absolute value of a scalar

V] magnitude of vector (vector norm)

I extracts angle of rot ation

INSCALAR reads a scalar from the console

Scalar functions

SQRT(s) square root

SIN(s) sine (all trigonometric functions are in degrees)
COS(s) cosine

TAN(s) tangent

ASIN(s) arc-sine

ACOS(s) arc-cosine

ATANZ2(s,s) arc-tangent of s/s

LOG(s) natural logarithm

EXP(s) e raised to the s power
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Boolean operators

s <rel>s returns true if relation is satisfied, else false
possible relations are: <,5,=,2,>,#
SAS logical and
SVSs logical or
S®S logical exclusive or
S=S logical equivalence
-s logical not
QUERY reads a boolean from the console (c.f. section 4.5.7)

Vector operators

VECTOR{ s,s,s) construct vector given (x,y,z2) components

S ¥ V dilation of a vector

v/s contraction of a vector

V + Vv vector addition

vV -V vector subtraction

vV ok Vv vector cross product

r*v rotation of a vector

t® v transformation of a vector

f+v transformation of a vector - short hand for (stat ion =f)*v
v WRT f{ a vector in stat ion coordinates pointing the same way as

v points in f's coordinate system, v WRT f =ORIENT(f)xv
(trv) - POS(f)

1]

UNIT(v) vector of unit length pointing in the same direction as V
POS(f) vector position of frame or trans
AXIS(r) axis of rotation

Rotation operators

ROT(v,s) constructs rotation of s degrees about v

ORIENT{ 1) orient at ion of a frame or trans

r*r composition of two rot at ions (the one on the right is applied
first)

Frame operators
FRAME(r,v) constructs frame of orient at ion r at position v
CONSTRUCT(v,v,v) makes a frame: first vector gives the position, second a
point on the x-axis, third is a point in the xy-plane

f+v translation of a frame
f-v translation of a frame
t % f transformation of a frame

frf transformation of a frame - shorthand for (station - f) % f



51
Transform operators
TRANS(r,v) constructs trans which will cause a rotation of r followed by
a translation of v
f-f transformation which maps from the first frame to the second
t*t composition of two transes (the one on the right is applied
first)
INV(t) take the inverse of t

The operators in AL generally follow “normal” precedence rules, i.e.,
functions are evaluated first, followed by exponentiat ions before multiplications or
divisions, which in turn are performed before additions and subtractions. The
order of operation can be changed by including parentheses at appropriate points.
In an expression where several operators of the same precedence occur at the
same level, the operations are performed from left to right.

TABLE OF PRECEDENCE
functions, ()]}, NOT
WRT » 1
*/ . MAX MIN DIV MOD
f -
= # <> <>
A
\

®

]

4.2.7 Predeclared constants

Pl = 3.14159... (can also be written as n)
STATION is a frame which has standard station coordinates
BARM is the location of the blue arm
YARM is the location of the yellow arm
BHAND is the distance between the fingers of the blue arm
YHAND is the distance between the fingers of the yellow arm
BPARK is the rest position for the blue arm
= FRAME(ROT(yhat,180«degrees),VECTOR(43.53,56.86,9.96)inches);
YPARK is the rest position for the yellow arm
= FRAME(ROT(yhat,180«degrees),VECTOR(40,14,9)*inches);
TRUE and FALSE have the obvious meanings (TRUE = 1, FALSE = 0)
XHAT is VECTOR{ 1,0,0)
YHAT is VECTOR(0,1,0)
ZHAT is VECTOR(0,0,1)
NILVECT is VECTOR{ 0,0,0)
NILROT is ROT(zhat, 0 ¥ DEG)
NILTRANS is TRANS(nilrot,nilvect)

CRLF is a string constant that prints as a carriage return followed by a line feed
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4.2.8 Some examples

DISTANCE VECTOR v 1,v2; {some declarations)
ANGLE SCALAR t hcta;

SCALAR ARRAY s 1 [ 1:5],52[-3:3,1:2];
FRAME f 1,f2;

EVENT ready;

ROT(zhat,80%deg) * v | {vl rotated 90 degrees about
the station’s Z axis)

vl yhat (the Y component of v1}
fl ¥ xhat {f1’s X axis in station coordinates}
3 ¥s1[2] {the second element of the

array sl multiplied by 3)

4.3 Affixment: AFFIX & UNFIX

The relationships between the various features of an object, and between
different objects, may be modelled by use of the A FFIX statement. The general
form for the AFFIX statement is:

AFFIX fl TO f2 BY t AT <expr> <affix type>

The effect of the above is to establish a trans that expresses the relationship
between fl and f2. If <BY > is present the resulting trans will be associated with
the variable t making the affixment relation modifiable by the user, otherwise an
internal variable’ will be created. The initial value of the trans is specified by the
<AT expr> part of the statement. If none is given then the current values of f/ and
f2 are used to create a trans taking f2to fI{f2- fI). There are two flavors of
. affixment possible, and <affix type> specifies whether the affixment is to be done
RIGIDLY or NONRIGIDLY. Rigid affixment is symmetric; when either frame is
given a new value the other is updated to preserve the relationship between
them, Non-rigid affixment is asymmetric; when f2 is changed, the value of fIis
updated, whereas when f/ is modified, the trans describing the relationship
between f/ and f2 is recomputed to express the new relationship between them.
An example of non-rigid affixment would be a plate on a tray; the plate moves
with the tray, but not vice versa. If <affixtype> is not specified, rigid affixment
will be assumed.

An affixment relation can be broken by use of the UNFIX statement:

UNFIX f 1 FROM f2
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4.4 Motions

441 Compile-time and runt ime considerat ions

In the current AL system, trajectory calculation is done at compile-time.
When the compiler encounters a motion. statement a trajectory is computed to
accomplish it as fast as possible, subject to the constraints of maximum
acceleration and torque imposed by the motors, using the compile-time planning
values for all the relevant expressions that describe the requested motion. During
actual execution these expressions may have different values, so the runtime
system modifies the trajectory immediately prior to executing it. There are limits
to how large a discrepancy can be corrected at runtime. If the planning value is
seriously in error, then the at tempt to make last-minute correct ions rnight
overstrain the arm, causing the motion to be aborted. One simple way of
correcting this problem is to tell the compiler to take more time for the mot ion.
Work is underway to implement runtime path calculation which will avoid this
situation.

The compile-time trajectory calculator will issue error messages if an illegal
motion is requested, such as trying to move to a position inaccessible to the arm,
or requesting the motion to take less time than physically possible. It should also
be noted that many of the parameters to the clauses modifying the motion must be
constants.

442 The basic MOVE statement

The basic MOVE statement is of the form:
MOVE <controllable frame> TO <dest> <modifying clauses>

which will cause the specified arm to be moved so it has the same position and
orientation as the destination frame expression <dest>. A grinch sign, "®", can be
used in <dest> to represent the current position of <control/able frame> when the
motion is executed, <Controllable frame> may be either an actual manipulator (barm
or yarm) or a frame which has been affixed to one of the arms. In the latter case,
the physical relationship between the frame and the arm, described by the
affixment chain connecting them, will be used so the motion results in the frame
being moved to <dest>. The motion may be modified in many different ways through
the use of the various <modifying clauses> described below.
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44.3 intermediate points: VI4, DEPARTURE & APPROACH

in the case where a motion must go through a series of intermediate points
(to avoid obst acles, for inst ance), the intermediate frames may be specified by
means of a VI/A clause, such as:

VIA 1 1,£2,£3,{4,f5

where fi,.f5 are frame expressions. The motion will pass through the points in
the order they are specified. it is also possible to specify the arm’s velocity at a
via point, and the duration of the motion from the last given point to the via point.
This full ¥IA4 clause looks as follows:

VIA f WHERE VELOCITY = <v>, DURATION = <n>

where v is a velocity vector and n is a time scalar. One or both modifying clauses
may be present, in either order. Note that unlike the first mentioned form, only
one frame f may be given in this format, if the trajectory calculator believes that
more than n seconds are required for this segment of the motion an error message
will be generated. Both the velocity and duration values must be compile-time
constants.

It is also possible to specify deproach points, which are points associated
with departure of the arm from its current location, or its approach to the
destination location, Unlike via points, deproach points are expressed with respect
to the initial or destination coordinate systems. The clauses are as follows:

WITH DEPARTURE = <exp>

and
WITH APPROACH = <exp>

where <exp> may be as follows. Depending on whether the APPROACH or
DEPARTURE clause is used, <fr> represents either the destination frame or the
current posit ion.

type of <exp>: deproach point in stat ion coordinates:
frame <fr> ¥ <exp>
vector <fr>+ <exp> WRT <fr>
scal ar <fr> + (<exp>* zhat) WRT <fr>

it is also possible to indicate that no deproach point is to be used by specifying
<exp>as NILDEPROACH, or to use the deproach point associated with some other
frame using the function DEPROACH (<frameid>).
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Deproach points may be specified implicit iy. The statement:
DEPROACH(<frame id>) « <exp>

will associate <exp> as the deproach point for the variable <frameid>. if then no
approach point is explicitly given in the move statement, the deproach point
associated with the destination frame will be used for the approach. if the
destination frame does not have a deproach point associated with it, the compiler
will search along the frames affixed to it until a deproach point is found. If none
are discovered then the deproach of the station (3szhat* inches) will be used. If
the destination is a frame expression then NILDEPROA CH will be the default
approach used. if no departure point is specified, then the approach point for the
last move will be used.

The AL predeciared macro DIRECTLY expands into the two clauses:

WITH DEPARTURE = NILDEPROACH
WITH APPROACH = NILDEPROACH

4.4.4 Force & Compliance

It is possible to have the arm apply or sense specified forces and moments.
(Sensing forces is discussed in section 4.4.5 below.) To avoid incompatible
requests the force components must always be orthogonal. To insure this, a force
frame must be specified, and the directions of the applied forces and moments
must be aligned with one of the cardinal axes of this current force coordinate
system. Also specified is whether the orientation of the axes changes as the hand
moves, i.e. is the force frame defined relative to the hand or the table (world)
coordinate system. The clauses to do all this are as follows:

WITH FORCE = <sval> ALONG <axis-vector> OF <frame>
IN <coord sys>
WITH TORQUE = <sval> ABOUT <axis-vector> OF <frame>
IN <coord sys>
. or
WITH FORCE-FRAME = <frame> IN <coordsys>
WITH FORCE = <sval> ALONG <axis-vector>
WITH TORQUE = <sval> ABOUT <axis-vector>
or
WITH FORCE-FRAME = <frame> IN <coord sys>
WITH FORCE(<axis-vect or>) = <sval>
WITH TORQUE(<axis-vector>) = <gval>

where: <axi s-vect or> = xhat, yhat or zhat.
<coord sys> = HAND or WORLD (default = WORLD)
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<sval> = the magnitude of the force
<frame> = the orientation of the axes of the force frame

in the first form the specified force frame in ail of the clauses must be the
same. if IN <coord sys> is not specified, WORLD is assumed, while if OF <frame> is
omit t ed, STAT/ON is assumed. Note that only-one force frame may be specified
per move. Applying a force of magnitude zero means that the arm will be
compliant, i.e. move away from any external force in that direction,

A short form is also available for those motions which only need to apply or
sense one force, but not both. It looks like either;

WITH FORCE = <sval> ALONG <vect> OF <frame> IN <coordsys>

or
WITH FORCE(<vect>) = <sval>

This generalizes in the obvious way for TORQUE and for force sensing. if no
<frame> and <coord sys> are specified then a force frame in world coordinates is
automatically created with it’s x-axis aligned along <wect>. Otherwise the specified
coordinate system is used and a force frame is created with it’s x-axis along <wvect>
WRT <frame>.

4.4.5 Condition monitors

4.45.1 Types: force, duration, event & boolean

During the course of an arm motion it may be desired to monitor some
condition, or set of conditions, and to execute an act ion if the condition has
occurred, The condition monitor clause is used for this purpose. It has the
following general form:

ON <condition> DO <action>

Currently the conditions that canbe monitored include force sensing, duration,
events, and various boolean expressions of variables. <Action> may be any valid
AL statement or block. The only restriction is that if a motion statement is the
only statement in <action> then it must be surrounded by BEGIN and END to

prevent ambiguity.

The monitoring will begin with the start of the motion and continue until the
mot ion terminates. if the monitor triggers, then after it finishes its action, it will
become dormant and cease checking its condition. It is possible to modify this by
use of the ENABLE and DISABLE statements described below (section 4.4.5.2).

When sensing forces and moments the following clauses are used:
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ON FORCE <rel><sval> ALONG <axis-vector> OF <frame>
IN <co-ord sys> DO <action>
ON TORQUE <rel><sval> ABOUT <axis-vector> OF <frame>
IN <co-ord sys> DO <action>

or
WITH FORCE-FRAME = <frame> IN <co-ord sys>
ON FORCE <rel><sval> ALONG <axis-vector> DO <action>
ON TORQUE <rel><sval> ABOUT <axis-vector> DO <action>
or

WITH FORCE-FRAME = <frame> IN <co-ord sys>
ON FORCE(<axis-vect or>) <rel><sval> DO <act ion>
ON TORQUE(<axis-vector>) <rel><sval> DO <action>

where: <axis-vector>, <co-ord sys>, <sval> and <frame> are the same as in section 4.4.4
above and <re/> is either 2 or <, the condition monitor triggering when the force or
moment exceeds or goes below the specified magnitude respectively. As in
applying forces there is a short form when only one force is being sensed or

applied:

ON FORCE <rel><sval> ALONG <vect> OF <frame>
IN <co-ordsys> DO <action>

or
ON FORCE(<vect>) <rel><sval> DO <action>

The condition monitor:
ON DURATION 2 n * seconds DO <action>
will trigger its action n seconds after being enabled at the start of the motion.
ON <event> DO <action>

means do the action if <event> is signailed (by another condition monitor or some
other parallel process).

ON <boolean expression> DO <action>

has the effect of evaluating the boolean expression, made up of algebraic
variables, and if it is true (non-zero) performing the desired action. If the
expression is false the condition monitor goes to sleep for a short while (currently
100 milliseconds) before evaluating and checking the expression again.
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4452 ENABLE and DISABLE -labelled condition monitors

A condition monitor has two states: enabled and disabled. in the enabled
state it will trigger its conclusion if the condition it is checking for occurs, in the
disabled state the condition monitor is inactive. As mentioned above a condition
monitor is enabled when the motion is started,--and disabled upon the conclusion of
the rnot ion. Once a condition monitor triggers it will become disabled, unless it is
explicitly reenabied. This reenabling is done by means of an ENABLE statement
placed in the conclusion of the condition monitor.

With the ENABLE and DISABLE statements it is possible to change the
state of an arbitrary condition monitor that has been named by putting a label
immediately before the reserved word ON. The syntax of these statements is:

ENABLE <condition monitor>

and
DISABLE <condition monitor>

Prefacing a condition monitor with the reserved word DEFER will cause it
to be initially disabled. it can then be explicitly enabled later. Here is an example
where a condition monitor is initially disabled, and then after three seconds is
enabled:

MOVE barm TO dest

test: DEFER ON FORCE(zhat)210% o0z DO STOP
ON DURATION 2 3%sec DO ENABLE test

4.4.6 Other clauses: DURATION,SPEED _FACTOR,NULLING& WOBBLE

Here are some other clauses that can be used to modify motions. Note that
the parameters of these clauses are compile-time constants.

WITH DURATION = <sval>

causes the resulting motion to take the amount of time specified by <sval>, which
should be of dimension TIME. if the trajectory calculator thinks that more time is
needed AL will issue a warning message.

WITH SPEED-FACTOR = <sval>

slows down the motion. The minimum time for the mot ion computed by AL will be
mult ipiied by <sval>, which should be 21, and this product will be used as the time
for the motion.

The default speed factor for motions is 1, so the motion takes as little time
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as possible. This can be changed by assigning the desired default multiplier to the
predeclared variable SPEED_FACTOR with a regular assignment statement:

SPEED-FACTOR ¢« <new default speed factor>

There are also two predefined macros: CAUTIOUS and SLOW, which set the default
speed factor to 2 or 3 respectively.

WITH NULLING

informs the runtime system to null out errors at the end of this motion. There is
also a WITH NONULLING clause which is the current default. There are two
macros PRECISELY and APPROXIMATELY which achieve the same results.

WITH WOBBLE = <sval>

adds a small sinusoidal motion to the outer three joints causing them to shake a
bit. It is useful-for breaking small friction forces and for seating parts. <Swval> is a
small compile-time constant of dimension A NGLE that is usually about 2 or 3
degrees.

4.4.7 Controlling the fingers: OPEN, CLOSE & CENTER

The fingers can be controlled in several ways.

OPEN <hand> TO <sval>

and
CLOSE <hand> TO <sval>

causes the fingers to open or close so that they are a distance <sval> apart. <Sval>
is any scalar expression of dimension DISTANCE. Currently there is no difference
between the OPEN and the CLOSE statement. Eventually CLOSE will stop the
motion of the fingers if both touch sensors are triggered.

CENTER <arm>

closes the fingers of the specified arm until both touch sensors indicate contact
has been made. Furthermore if one finger makes contact before the other,
CENTER causes the arm itself to move so that the object being grasped is not
pushed by the finger. OPEN and CLOSE only move the fingers, and if the object
being grasped is not centrally located between the fingers, the object will be
moved or, if it is fixed in place, excessive force might be exerted by the fingers,
thereby aborting the mot ion.
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448 sToP & ABORT

There are two ways of terminating motions before they finish:

STOP <device>

and
ABORT(<print list>)

The STOP statement causes the indicated device to stop. <Device> may be a
physical manipulator or a frame affixed to an arm. If <device> is not specified, and
the stop statement appears in the scope of a move statement, then the arm used
for the motion will be the one stopped. The ABORT statement is used for more
drastic occasions. It will stop the motion of all devices, print out the elements of
the <print list> (see the description of the PRINT statement, section 4.5.7, below),
and transfer control to 11DDT. The user may continue the program execution by
typing <alt>P to 11 DDT. Usually these statements appear in the body of condition
monitors, though they may be appear at any point in the program.

4.4.9 Other devices - the OPERA TE statement

The OPERATE statement is provided to control other devices interfaced to
the AL system. lts syntax is similar to that of the M OV E statement:

OPERATE <device> <modifying clauses>

where <device> is the device being controlled, and the <modifying clauses> describe
what action the device shall perform. For example;

OPERATE vise WITH OPENING = 4 * inches

- Currently no devices other than the arms are available. A screwdriver and vise
will be available soon,

4.5 Non-mot ion statements

4.5.1 Assignment statements

The assignment statement;
<variable> ¢ <expression>

causes the value represented by <expression> to be assigned to the variable
appearing to the left of the assignment symbol. The data type and physical
dimension of the expression on the right hand side of the assignment symbol must
be the same as the data type and dimension of the variable on the left hand side.
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There is also another form, the plan-time assignment:
<variable> <« <expression>

where <wariable> and <expression> are the same as above. The plan-time assignment
statement provides a way of passing to the world modeller the values of certain
variables whose values it would not otherwise know until runtime (e.g. barm, yarm,
bhand and yhand). No executable code is generated for plan-time assignments.
They only have an effect during program compilation.

An example of an instance where the plan-time assignment would be
necessary is after a move statement that will terminate early (e.g. stopping on
touch). A better trajectory can be computed by using a plan-time assignrnent to
pass the trajectory calculator the expected position of the arm at the end of the
motion. During runtime the actual value of the manipulator will be determined by
the physical world, and this value will be used to modify the computed trajectory.

4.5.2 Traditional control structures: IF, FOR, WHILE, UNTIL, CASE

AL has many of the traditional ALGOL cont rol structures.
The IF statement has the form;
IF <boolean expression> THEN <statement> ELSE <statement>

The ELSE part is optional. [If <boolean expression> is true (non-zero> the statement
following the THEN is executed. Otherwise the statement following the ELSE, if
present, will be executed.

The FOR loop has the form:
FOR <svar>«<sexpr> STEP <sexpr> UNTIL <sexpr> DO <statement>

where <svar> is a scalar variable and the <sexpr>’s are scalar expressions of the
same dirension. The initial value of the variable is the value of the first
expression; every time the statement is executed, its value is incremented by the
value of the second expression, and the process repeats until the value exceeds
that of the third expression. if the step size is negative, the right things happen.
The test is made before the first iteration, so it is possible that the loop will not
be executed at all. .

The WHILE loop is as follows:

WHILE <boolean expression> DO <statement>
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The boolean expression is checked and if it is true the statement is executed. This
process is repeated until the condition becomes false.

The UNTIL statement is as follows:
DO <statement> UNTIL <boolean expression>

where the statement is repeatedly executed until the condition becomes true.
This is similar to the WHILE statement described above, with the exception that
the WHILE loops while the condition is true, whereas the UNTIL loops until the
condition is true.

There are two forms that the CASE statement may take. The regular CASE
statement has the form:

CASE index OF BEGIN SO; S1; S2; ... Sn END;

The index is evaluated and depending on the integer part of its value one of the
statements will be executed. if the index is zero then SO is chosen, if the index is
one then Sl is chosen, and so on up till n. if the index is negative, or greater than

the nurnber of statements, an error is reported. Any of the statements may be
null, e.g “Sl;; S3", in which case if the index were two no statement would be
executed.

There is also a numbered version of the CASE statement:
CASE index OF BEGIN [CQO] S; [Cl] [C2]s; .. [Cn] S; ELSE S END

where each stat ernent has one or more non-negative scalar constants labeiling it.
- The index expression is again evaluated and if it is the same as one of the Ci’s
then the statement with that label is executed. If no constant matches the index
then nothing is done, unless an eLseis present in which case the statement it
labels is executed. If the index is negative or greater than the largest Ci an error
occurs, unless there is an ELSE present. Note that the ELSE statement may
appear anywhere in the list of statements, not necessarily at the end.

4.5.3 Procedures

Procedures are defined as follows;

<type> PROCEDURE <name> (parameters);
<st at ement>;

where the statement is executed each time the procedure is called. Only those
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procedures that return a result need their type specified. The data types of the
parameters may be modified by the reserved words: VALUE & REFERENCE.
Reference is the default. Due to the world modelling performed by the AL compiler
it is necessary when defining a procedure to specify the dimensions of any arrays
that are to be used as a parameter. For example:

PROCEDURE foo(FRAME ARRAY pnt s[ 1:4,1:3]);

It is also necessary to make plan time assignments to any formal parameters or
variables that are defined in the same block as the procedure so that when the
procedure is simulated the values will be available (c.f. section 4.6).

Procedures can return a result by means of the RETURN statement which
has the form:

RETURN (value)

which returns value as the result of the procedure. The RETURN statement may
not appear inside condition monitors or COBEGIN-COEND blocks.

Procedure calls take the normal form of the procedure name followed by the
list of arguments: name(arglist). They may appear anywhere an expression might,
or alone by themselves as a procedure statement. If a typed procedure appears
in a procedure statement then the result it returns will be discarded.

4.5.4 Parallel control: COBEGIN-COEND, SIGNAL & WAIT

In addition to the normal sequential execution of statements within a
BEGIN-END pair, AL allows blocks of code to be executed in parallel by placing
themin a COBEGIN-COEND block. Upon entering the COBEGIN block control is
divided among the various processes to be executed simultaneously. Upon the
termination of all of these processes control will be passed to the part of the
prograrn following the COEND. it is the user’s responsibility to ensure that the
code being executed in parallel is sufficiently independent (e.g. two processes
. don’t try to use the same arm at the same time), and that no deadlock situations

occur.

it should be noted that the purpose of the COBEGIN construct is to allow
simultaneous independent manipulator cont rol. It is not particularly useful to
execute purely coraput ational code in parallel, though doing computation while an
arm is moving can save time. The scheduling algorithm used is to start up one
process and execute it until it is blocked, and at that point another process will be
run. A process can be blocked by waiting for an event, by pausing, doing /O, or
by initiating a motion.
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Parallel processes may be synchronized by means of explicit events and
SIGNAL and WAIT statements. With each event is associated a count of how many
times it has been signalled. initially, the count is zero, that is, no signals have
appeared, and no processes are waiting. The statement:

SIGNAL el

increments the count associated with event ¢/, and if the resulting count is zero or
negative, one of those processes waiting for ¢/ is released from its wait and
readied for execution, The statement;

WAIT el
decrements the count associated with event ¢/, and if the resulting count is
negative, the process issuing the WAIT is blocked from continuing until another

process signals el. If the count is zero or positive, there is no waiting.

4.5.5 Statement condition monitors

Condition monitors, besides modifying motions, may also appear as
statements, The description in section 4.4.5 also applies to statement condition
monitors+ When its defining statement is executed the statement condition monitor
will become enabled. It will become disabled when it triggers, is explicitly disabled
(it must be labelied for th’is @ occur), or its local block is exited. The reserved
word DEFER still causes a condition monitor to be defined in an initially disabled

state,

Scope rules come into play regarding when condition monitors may be
enabled or disabled. An enable or disable statement may only refer to a condition
monitor that is defined in the same block as itself or in a block containing it.

456 PA USE stat ement

The statement:
PAUSE <sval>

will result in the program going to sleep for the time specified by <sval>, which
should be of dimension TIME.



65

4.5.7 1/0

At runtime strings and variable values may be typed out using the PRINT
statement:

PRINT(<argl>,<arg2>,...,<argn>)

where the <arg>’s are either algebraic expressions or variables, or string
constants. Strings are delimited by double quotes. CRLF is a predefined string
which prints as a carriage return followed by a line feed.

The statement:
PROMPT(<print list>)

is syntactically like the PRINT and ABORT statements. Upon encountering a
PROMPT statement the AL runtime system prints out all the items in the print list
and then prints the message:

“Type P to proceed”

and waits for a P to be typed. Unlike the ABORT statement control does not pass
to DDT and hence any parallel processes (e.g. ALAID or COBEGIN) will continue to

be executed. As an example;
PROMPT("Move barm to work station origin”); org « barm;
There are two arithmetic operators to read in a value from the VT05
console. INSCALAR reads in a scalar, prompting the user with; “SCALAR, please: "
QUERY reads in a boolean. It is like PROMPT in that it can have a print list. After

typing the print list the user is asked to “Type Y or N: ". For example:

PRINT("How tall is casting?“); height « INSCALAR;
WHILE QUERY("More to do?“) DO. ..

ALAID, a debugger for AL, may be used to do I/O between AL and another
program (usually one doing a vision task on the PDP-10Q).(c.f. section 7.6.3.1).

4.5.8 Macros

AL possesses a general purpose text macro facility. The syntax for a macro
definition is:

DEFINE <macro id> <parameters> = €<macro body>>
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where <macroid>is the name of the macro, <macrobody> is the text to be
substituted whenever <macroid> is encountered in the program, <parameters> if
present is a list of arguments for the macro, separated by commas and enclosed by
parenthesis. Only undeclared identifiers may be used as macro parameters. When
the macro is expanded the actual arguments will be substituted into the macro
body wherever the parameters appear, If this value is anything other than a
simple token it must be surrounded by the delimiters €. The <macro body> is also
delimited by eo.

Here are two examples of the use of macros:

DEFINE feet =cl2% inches>;
DEFINE grasp( frob) = cMOVE barm TO frob;
CENTER barm;
AFFIX frob TO barm RIGIBLY>5;

size « 104 * feet; {Expands to 10.4 x 12 % inches)
grasp( handle); {Expands to;
MOVE barm TO handle;
CENTER barm;
AFFIX handle TO barm RIGIDLY;)

4.5.9 REQUIRE statement

REQUIRE statements allow the user or his program to communicate with
the AL compiler. No code is generated as a result of a REQUIRE statement, and
the effect of the REQUIRE statement is global and persists after exiting the block
in which it was invoked. Another REQUIRE statement or some other termination
condition is necessary to undo or stop the effect.

REQUIRE SOURCE-FILE "<file_name>"

The file named will be the source of future input until an end of file is
encountered, at which time the code following the require will be read. The
source file will be assumed to be a disk file, unless specified as a teletype file by
“TTY:” in front of its name.

A teletype file does not need a name, but if it has one, the teletype input
will be saved on a disk file with the given name and default extension TTY,
Parsing action on teletype inputs will begin each time a carriage return is hit. The
file is closed by typing a <control><meta><linefeed>. The current operating system
allows only one teletype file to be open at a time.

The file name can be one of:
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“NAME”
"NAME.EXT"
"NAME[P,PN]"
"NAME.EXT[P,PN]"

where P and PN represent the project and programmer names respectively.
REQUIRE MESSAGE *“<message>"

Anything appearing within the double quotes will be printed out at the
user's t erminai.

REQUIRE ERROR-MODES "<mode flags>"

While the AL parser may ask for user responses to errors during program
compilation, it is possible to predefine the standard treatment of errors by setting
certain flags with the REQUIRE ERROR_MODES statement, The flags are set by
including the relevant letter within the quotes, and reset by including a minus sign
in front of the code letter. The following flags are available;

L - errors, if any, will be logged in a file with extension LOG

A - compilation will continue automatically after each error message
is printed.

M - the system will prompt the user only for modifiable errors

F - strict dimension checking will not be carried out across

assignment statements, condition monitors, etc. Undimensioned
variables will be coerced according to the cont ext in which
they appear. Error messages will be generated only for
inconsistent usage.

REQUIRE COMPILER-SWITCHES “<compile switches>"
Ail the switches that are used in the command line (see Chap 5) can be
. specified here. This is an alternative to specifying the switches in the command

line. Only letters (without the slash) should be within quotes.

4.5.10 Debugging aids: NOTE & DUMP

To facilitate tracking down errors that are reported by the AL compiler the
following two statements may be used. Their action is only at compile time, and no
code is generated for them,

The NOTE statements result in some message being output during compile
time. NOTE I will output the message during the world modeiiing phase, while
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NOTE 2 will output the message during the code emission and trajectory calculation
phase. NOTE will output the message during both of these phases.

The syntax is as follows:
NOTE("message")
NOTE 1 (“message”)
NOTE2("message”)

The DUMP command will print the planning values of the desired variables
at the point in the program that it is encountered. It looks like this:

DUMP <«id list>
where <idlist> is a list of identifiers separated by commas,

4.6 World modelling

As mentioned earlier (section 4.4.1) the current AL system does trajectory
calculation at compile~time. To accomplish this the compiler must have a model of
the world containing the position of the arm, the expected values of the variables

specifying the motion, and knowledge of the affixment structure. These values are
different at different points in the program, so the compiler must perform a
simulation of the program in order to obtain the information required for the
trajectory calculator. An AL program goes through several stages during its
compilation: first it is parsed and an internal representation built, then the program
is simulated (in the world modelling phase), and finally trajectories are calculated
and code is emit ted. Certain problems arise in doing the world modelling due to
the unavailablity of sensory data at compile-time. Also various compromises have
been made in the simulation of loops and parallel processes.

During the world modelling each statement has an input world and an output
world associated with it. The input world gives the current position of the arms,
the value of each variable, and the affixment structure immediately prior to the
statement’s execution, while the output world reflects the effect of the statement.
Most statements (e.g. assignment, affixment) are quite easy to sirnulate. Motion
statements that do not have any associated condition monitors are also easily dealt
with. (The problem of collision avoidance is not currently handled,) However, if a
condition monitor is present the world modeller will be unable to determine
whether or not it is ever triggered, and hence be unable to judge its effect on the
motion. For example, if the arm is holding a box and we wish to set it down on a
table, the code might look like this:

MOVE box TO table -4 % zhat * inches
ON FORCE(zhat)2 8 ¥ 0z DO STOP;
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We expect the motion to be stopped short when the box encounters the table,
but the world modeller, even if it knows this, cannot determine the position of the
box when the condition monitor triggers, Because of this the current system
ignores the effect of any condition monitors associated with a motion, and assumes
that the motion terminates normally. Fortunately for purposes of planning
trajectories, the inaccuracies introduced in this way are generally unimportant. For
those cases where the effect of the condition monitor is known ahead of time to
be critical, the plan-time assignment statement should be used to inform the world

modeiier.

The next type of statements that give the world modeller trouble are
conditionals. A very liberal approach would assert that any fact that is true in
either one of the output worlds of the conditional branches, except for those that
conflict, should be considered true. AL currently takes a more conservative
approach and treats as true only those facts that are true no matter which way
control goes. The effect of this is that after a conditional statement like;

IF j>5 THEN je1 ELSE jej+1

the variable j will have two different values depending on which half of the
conditional was executed, and as a result the world modeller will not have a
planning value for the variable j. If one is needed for later code then a plan-time
assignment statement giving j an expected value should follow the conditional. The
CASE statement is handled in a similar fashion.

Loops also present difficulties. The world modeller will unroll the loop one
iteration. Note that only one trajectory will be computed for each MOVE in the
loop. This can present problems if the destination of one of the moves takes on
drastically different values, In such a case the user rnay need to include code to
choose from several move statements, based on the possible destination values, or
to allocate more time to the move so the arm will have enough time to complete
the longest of the moves.

As might be expected the COBEGIN construct is also hard for the world
model ler.  The way AL handles parallelism is to combine all of the changes
introduced in each branch, excluding any obvious incompatibilit es such as the same
variable being assigned different values by different branches. All of these facts
taken together then form the output world for the COBECIN block.

Procedures present several problems. The body of a procedure is modelled
once upon entry of the block in which it is defined. It is necessary to make plan
time assignments to any formal parameters or variables that are defined in the
same block as the procedure so that when the procedure is simulated the values
will be available. Also note that the same problem that occurs when using MOVE
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statements in a loop also applies to procedures, i.e. only one trajectory is
calculated at compile time, and if the actual motion at runtime is drastically
different the motion will fail. Procedure calls are essentially ignored; they have no
effect in the world model. Typed procedures return a result of zero (nilvect,
nilrot, etc.) as far as the world modeller is concerned.

The world modeller initializes the input world of the first statement in the
program so that the arms are in their park position, the fingers are two inches
apart, and the speed-factor used by motions is one. If the arms in the output
world of the last statement are not again in their park positions the world modeiier
will issue a warning message.
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5. USING AL

This chapter describes the steps involved in compiling and executing an AL
program if there are no errors. Should there be any error messages the reader
should refer to Chapter 7 to find out what to do about them. In the following
description where commands are typed by both the user and by the system, the
system response will be shown in italics,

5.1 Compilation of user programs

To compile and prepare the binary load module for the PDP-11 do the
following:

1. Create a file called "FOO.AL™ with your program in it, where "FOO" may be
any name you wish.

2. Get your job to monitor level and type “COMPILE FOQ".

2a. The system program SNAIL which handles requests like COMPILE will give
the message

Swapping to SYS: AL. DMP
and then start AL at the parser. The parser will then say
AL: FOO

When the parser hits a page boundary in your file, it will type "I" or whatever the
number of the page that it is starting to read.

2b. When the parsing is complete, the parser swaps to the AL compiler, which
types "ALC".
2c. When the compiler completes its world modelling, trajectory calculation, and

. code emission, it swaps to the cross-assembler PALX for the PDP-11. "PA Lx n",
where n is the version number of the PALX compiler, is typed out at the user
terminal.

2d. The PALX compiler swaps to ALSOAP, which cleans up the user area by
deleting the intermediate files with extensions .ALP,.ALV,.ALT, and SEX that are

created during the compilation of the AL program.

2e. The job gets back to monitor level.
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If you misspell the name of your file then SNAIL will complain
File not found: FOO
where "FOQ" is your misspelling.

At any time during 3 through 6 above, you could get an error message from
the parser, compiler or PALX. See Chapter 7 about these.

5.1.1 Compilation with switches

Compilation may be done with switches if desired by including the desired
switches within parentheses as “COMPILE FOO.AL(KS)". Effects of the different

switches are shown below:

K Keep the intermediate files (.ALP,ALV,.ALT)
Inhibit deletion of the SEX file
L Generat-e a PALX assembly listing

5.2 Loading and executing the AL program

When your program "FOO.AL" has got through to ALSOAP without grief, you
are ready to execute the program on the PDP-11.

1. Locate the brake control box(es) for the arm(s), and the position{ s) of the
panic butt on{s). Keep your finger poised over the panic button at all times while
the AL program is being executed (procedure for starting it is in step 3), and be
prepared to press it immediately if it should appear that something unpredictable
or disastrous is about to happen. Pulling the yellow cord that runs around the
table will turn off power to the arm, and can also be used in the event of an
emergency. Take care not to lean on the cord accidentally.

2. Type “DO AL[ALHE]" followed by carriage return. This initiates a series of
instructions which are described later (5.3). When you see
f=

type "FOQ", the name of your program, followed by carriage return. You will then
see a number of lines printed out, The last line will be

DDT STARTED AT 130000

3. Now go to the VTO5 which is a white colored terminal with a dark screen in
the area of the hand-eye table, and on it, you should see an asterisk "*" and a
flashing cursor. Make sure you have the panic button under your thumb and then

type
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# START <alt><alt> G

to begin execution of your program. Note that just <alt>G will also work. AL will
print out at the VTOS5:

AL RUNTIME SYSTEM

The VTO05 will beep just before the start of each motion by the arm. Messages or
values will be printed where appropriate. When program execution is complete,
the following message will appear;

ALL DONE NOW. SEE YOU AROUND!
NO ACTIVE PROCESSES LEFT. YOU'RE IN DDT.
B

Type "<alt>G" at the VT05 to re-execute the program from the beginning.

5.3 Complete runt ime execution sequence

The following is the complete sequence of operations required to load and
execute an AL program once a binary file has been prepared. It is given in case
some error occurs when the user types a DO AL[AL,HE]

1. Type “A ELF” to have the ELF (PDP-11 interface) assigned to your job, so
that some other job will not try to use it while you are running your program.

2. Type "R11TTY" to execute the program that loads your program into the
POP-1 1. 11TTY will respond with

CORE SIZE = 2SK
VERSION USING <device>
TYPE ? FOR HELP

§e

where device is either VT05 or TERMINAL. The asterisk is 11TTY’s way of
prompting for user input,

The way to change (toggle) between the two devices is to type "V"
immediately after the asterisk, and 11TTY will fill in the rest of the line and ask
for the next prompt as follows:

#VE R SION USING <other device>
£
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An alternate way to get the device of your choice is to use an extended
cornmand by typing “A” followed by "VT05" or “TERM” to select the desired
device.

«AN EXTENDED COMMAND VT05
3§

It is desirable to use the device VT05 so that once execution starts, you
can be totally independent of the PDP-10 (you may need to do so if you are
running ALAID).

3. Type "Z2" to zero out the core, followed by the memory size, currently
500000, then a carriage return to confirm the instruction, 11TTY will respond as
follows:

*ZERQ CORE [CONFIRM] 500000<cr>

4. The AL interpreter and the runtime system is then loaded by typing "G" for
getting the core image binary file, followed by the name of the file AL[ALHE] and a
carriage ret urn.

+*GET SA V FILE - AL[ALHE]<cr>
i

5. The user’s AL prograrn binary file is then loaded by means of typing "0" for
overlay, followed by the name of the file and a carriage return.

«*QVERLAY sin riLE-FOO<er>
I

6. The next step is to get the program started by typing "S" then "D" followed
by a carriage return.

#START AT (1000) (D FOR DDT) -D<cr>
DDT STARTED AT 130000
Ed

7. Now go to the VT05 and after making sure you are ready to push the panic
button type

#*START <alt><alt>G

AL will print out at the VTO5:
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AL R UNTIME SYSTEM

Any other input or output will be typed at the VTO5.
When program execution is done, the following message will be printed out
at the VTO5.

ALL DONE NOW.  SEE YOU AROUND!
NO ACTIVE PROCESSES LEFT. YOU’RE IN DDT.

Typing "<alt>G" on the VTO05 will re-execute the program from the
beginning.
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6. POINTY

6.1 Description of POINTY

6.1.1 Introduction

The concept of FRAMES as a data structure in AL and their affixment to
forrn an object model should be clear to the reader by now, The generation of
such affixments of frames is a non-trivial task, especially if the frames to be
affixed to each other have different orientations. If the object is physically
available, the user would need to measure distances, angles, and positions, and by
doing some rotation of frames would be able to determine the relationships
bet ween the frames. Such a procedure is tedious and error-prone in all but the
simplest cases.

Given the object, a means of generating the affixment structure is needed.
The ideal case would be to present the physical object or its design drawing to
the computer by utilizing vision, etc., and let the system build the affixment
structure. However, the features of interest on the object are dependent on the
nature of the assernbly procedure, and may not bear any relationship to the shape
of the parts. One way of generating an affixment structure is to use human
assist ance. The human operator will point out the features of interest on the
object, and the system will take care of the book-keeping involved in keeping
straight the relationships between the various features.

The interactive construction of world model descriptions for AL programs
has been achieved using POINTY, a system developed and implemented at SAIL. It
makes use of the ability to read arm positions to define points of interest on the
object.

By moving the manipulator around manually and reading the location, the
user is able to record various positions on the object. He then tells the system
how the various locations are related to each other so that an object model can be
generated such that all the required features on the object are known once the
position and orientation of one point is known,

POINTY provides the ability to do limited motion statements, This allows the
user to try out various move statements before putting them into an AL program,
permits the arm to be reoriented, and allows differential moves with the same
orient at ion.
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6.1.2 Pointing with a manipulator

6.1.2.1 Implicit specificat ion of frames

The Scheinman arm has 6 degrees of freedom, which allows it to be
positioned at an arbitrary position and in an arbitrary orientation, Frames also
have 6 degrees of freedom, corresponding to 3 components of translation and 3
angles of rotation. it follows that if a single pointing of the manipulator is to imply
a unique frame explicitly, there are no spare degrees of freedom. The absence of
spare degrees of freedom makes it quite difficult to position the manipulator
accurately, since ail motions fine or gross require the movement of the same
members, and also limits obstacle avoidance.

it is not difficult to guide the arm manually to a good grasping position to
pick a part out of a fixture or pallet. it can be quite difficult to guide it manually
to a good orientation such that when the manipulator attempts to remove the part,
there is no binding. The need for orientation accuracy becomes more crucial when
it is being used to define a world model, since any angular error may be multiplied
by some long moment arm in the AL program.

To avoid this difficulty, it is sometimes convenient to use multiple pointings
to define each frame implicitly. The first pointing may define the origin of the
frame, the second may define one axis of the frame, and the third may define one
plane of the frame. in this manner, each pointing determines position only, and
there is no need to have orientation precision.

A simplification is possible when the orientation is parallel to that of some
other known frame, €.g. station Or some other predefined frame, in which case, the
orient at ion frame can be specified from the known frame, and the iocat ion
determined by means of a single pointing.

6.1.2.2 Pointer

The manipulator extremity must be provided with some sort of sharp
pointer so that it can be used as a precise measuring tool. The pointer must have
a shape suitable for reaching into awkward places such as the inside of a screw
hole, the interior of a box, and so forth. in order to make the pointer shape
compatible with ail kinds of unforeseen obstructions, it is desirable to design a
pointer which may be bent by the user into an arbitrary shape. Such a special
device will be referred to as a bendy pointer.

Whenever the user wishes, he may deform the bendy pointer into any new
configuration which appears to be convenient for the next operation. Having
deformed the pointer, the user must calibrate its new end position by using the
pointer to point to a standard fiducial mark at a known location in the iaborat ory.
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From the frame of the fiducial and the frame of the gripper, the system can infer
t hc translation which takes the gripper frame into the bendy pointer. An
alternative to the bendy pointer would be a tool set consisting of an assortment of
rigid pointers of commonly useful shapes which could be quickly attached or
detached. Whatever type of pointer is used, it must be reasonably rigid under
gravity to prevent it deforming accidentally while being positioned.

6.1.3 System hierarchy

The POINTY system resides on two computers during execution - the
PDP-I 0 where the arithmetic and computation is performed, and the PDP-11 which
is responsible for reading and moving the manipulators.

The PDP- 10 part contains several modules: the affixment editor, arithmetic
routines, manipuiat or interface, file input/output facilities, display routines,
command line scanner (parser), and the user interface.

A subset of AL statements and expressions are accepted by POINTY. The
command line scanner (parser) prompts the user for input of a new statement by
an asterisk "*". if it is waiting for the continuation of a staternent or expression, it
prompts with “xxx%>>>".  Parsing of the current input line begins when the user
hits a carriage return. The first token of the input line is compared with entries in
the symbol table. if there is a match, a fixed sequence of parsing will be followed,
depending on the token. if no match is found, the parser checks to see if it is a
variable that is on the left hand side of an assignment statement by checking to

see if the next symbol is a back arrow "«

The user interface communicates with the user by giving out error messages
when the parser does not recognize something, or if the user wants to edit values
of variables (e.g. orientation of frames) etc, without using an assignment statement.

Display routines update the screen of the user’s terminal to reflect the
current state of the affixment editor, arithmetic section, and the manipulator
interface whenever the values change, or shut off the display altogether if
necessary.

The affixment editor contains facilities for creating frames and modifying the
relationships between them.

Arithmetic routines are called by the parser when it recognizes an
expression or an assignment. it contains a fuii set of operations for SCALARS,
VECTORS, ROTS, FRAMES, and TRANSES.

The file input/output facility contains routines for saving and restoring
variables and values in and from a text file of AL declarations. These AL
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declarations and assignments may be used directly by an AL program, or they may
be read in by POINTY if the user needs them for re-initialization to a known world

state.

The manipuiat or interface provides the communication between POINTY and
the manipuiat or, It allows communication with the runtime system residing on the
PDP-11, and has two main functions: to transfer arm joints and wrist readings
from the PDP- 11 to the PDP- 10, and to transfer commands for movement from the

PDP-10 to the POP-1 1.

The PDP-11 part of the POINTY system essentially consists of the AL arm
code, and a program which reads the arm position, continually displays it on the
VT05, moves the arms when requested to do so by the PDP- 10 part, and prints
out the result of each attempt to move the arm.

6.2 Executing POINTY

6.2.1 Short form execution instructions and display

The simplest way to execute POINTY is to type the instruction (a list of full
commands is given in section 6.2.2).

DO POINTY[PNT, HE ]

followed by a carriage return. This instruction first loads the PDP-1 1 with the
POINTY runtime system and starts it up so that it is continuously reading the arm
joints and printing it out on the VT05 screen, |If updating stops on the screen at
any time, typing <alt>G at the VT05 keyboard should start it up again. The
PDP-10 part of the POINTY system is then loaded and started. POINTY generates
a display on the screen which is continuously updated as more instructions are
executed. The following shows the state of the display after several instructions.



&0

STATION (NILRGT,NILVECT) BHAND 1.20
-BASE (NILROT, (15.8,12.8, .583)) YHAND . 000
-HANDLE (NILROT, (35.8,32.9,.5083)) OFFSET 3.00

*HANDLE- TOP ((Y,183.)%(Z,93.8), (2.18,.348,5,05})
*HANOLE _REF (NILROT, (1.180,2.38,.1808))

+YARM (NILROT,NILVECT)

+BARM ((Y,188.)%(Z,.882), (43.5,56.8,18.3))
*BGRASP ((Y,188.)%(Z,-188.),NILVECT)

MOVE
BARM

«0 DECLAR.AL NILROT (Z,.088) NILVECT (. @08, .203, .08008)
RT_AP{Y,188.)x(Z,-98.8) | APPR (3.09,.008,.08088)

SAVED.TTY

The boxes will be referred to later by the following letters:

A: af f i xment tree,
frames and transes
B B: scalars
A C: default moves

0: output fi les

C E. rotat ions
F: vectors

D E F

The first thing that POINTY wants to know is where to save the terminal
session output, by printing out

file for TTY output =<file name> <cr> {filename may be omitted)
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A list of ail the POINTY commands given during the terminal session will be
saved in <file name> if one is given. Otherwise the terminal output will not be
saved. The file name is shown at the bottom of box D. Note that carriage return
is the activation character for most instructions, and that the two forms of the AL
COMMENT statement are valid in POINTY.

POINTY is ready to accept instructions after this exchange, prompting with
an asterisk, as it does each time it awaits a new command. Single instructions may
terminate with a carriage return or with a semi-colon and a carriage ret urn, and
POINTY will then try to execute the instruction. Multiple instructions on the same
line must be separated by semi-colons, and the last instruction followed by a
carriage return. On seeing a carriage return, POINTY tries to execute the
instruction if it is meaningful, otherwise it will await more input and the next
carriage return by prompting with x¥¥¥>>>, .

€g. a l« 3 <cr> (POINTY will assign value 3 to variable al}
al«3%<cr {POINTY will wait for more input}

in the initial state of the display, Box A indicates the three frames known to
POINTY: station, balm, and yarm. The last currently has its coordinates all zero
because the yellow arm is disconnected. Box B has values of bhand and yhand
corresponding to the hand opening of the blue and yellow arms respectively.
Boxes E and F initially contain the definitions of the predefined rotation nilrot and
the predefined vector nilvect.

6.2.2 Full instructions to run POINTY

The following is a complete sequence of operations required to load and
execute t he POINTY runtime system on the PDP-11 and to load and run POINTY on
the PDP-10. it is given in case some error occurs when the user does a DO

POINTY[ PNT,HE].

1. Type “A ELF” to have the ELF (PDP-11 interface) assigned to your job, so
that some other job will not try to use it while you are running your program.

2. Type "R11TTY" to execute the program that loads your program into the
PDP-11. 11TTY will respond with

CORE SIZE = 2SK

VE R SION USING <device>
TYPE ? FOR HELP

#

where device is either VT05 or TERMINAL. The asterisk is 11TTY’s way of
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prompting for user input.

The way to change (toggle) between the two devices is to type "V"
immediately after the asterisk, and 1 1TTY fills in the rest of the line and asks for

the next prompt as follows;

#VE R SION USING <other device>
¥

It is desirable to use the device VT05 so that once execution starts, the
joint angles and the other information relating to the arm will appear on the VTO5.

3. Type "Z" to zero out the core, followed by a carriage return to confirm the
instruction.  11TTY will respond as follows:

+ZER 0 CORE [CONFIRM ] 500000<cr>
EY

4. The POINTY runtime system is then loaded by typing "G" for getting the
core image binary file, foi owed by the name of the file POINTY[PNT,HE] and a

carriage return.

*GE T SA V FILE - POINTY[PNT,HE]<cr>

EY

5. The next step is to get the program started by typing "S", then "D" followed
by a carriage return.

#START AT (462452) (D FOR DDT) -D<cr>
DDT STAATED AT 130000
Py

6. Now go to the VT05 and after making sure you are ready to push the panic
button type

#<alt>QG

You will see continuous scanning on the VT05, and continual updating of the joint
angles and other information.

1. You now have to exit from 11TTY by typing X on your terminal.
:l:X

8. You will then be in the monitor, and to run POINTY on the PDP=-10, type the
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following instruction.
R POINTY<cr>
This will run POINTY and give the display described in the previous section.

6.3 POINTY instruct ions

There are several classes of POINTY instructions.

6.3.1 Assignment statement

In the POINTY assignment statement, as in AL, the expression on the right
hand side is evaluated and assigned to the variable on the left hand side. If the
variable on the left hand side has not been declared, the assignment statement
implicitly declares the variable as having the type of the evaluated expression. An
error rnessage will be generated if the variable has been previously declared, and
the right hand side expression type is different from the left hand side.

Examples:
sde 2¢3; declares s4 as a scalar, will appear in box B
v4ezhat+ yhat; declares V4 as a vector, will appear in box F
r5« nilrot; declares r5 as a rot, will appear in box E
{5« bpark; declares {5 as a frame, will appear in box A

6.3.2 Declaration statement

Explicit declarations of SCALAR, VECTOR, ROT, FRAME and TRANS data
types may be made as in AL,

The following AL predeclared variables and constants are recognized by
POINTY - scalars: bhand, yhand, vectors: nilvect, xhat, yhat, zhat, rotation: nilrot,
frames: station, barm,yarm,bpark, ypark,trans: niltrans, and dimensional constants;
inch, inches, deg, degree, degrees. Where barm or yarm or a frame attached to an arm
is used in an expression, the current value computed from the present arm
. position will be used.

POINTY allows greater flexibility in specification of explicit data types than
AL. in particular, since the number and data types of arguments are different for
the various data types (except between FRAME and TRANS ), they may be
declared without the qualifier. if POINTY is unsure whether a declaration is for a
frame or a trans, it will assume it is a trans, and will change it to a frame type
when the variable associated with it is used in an affixment statement, Note that
in the display the reserved words VECTOR, ROT, TRANS, FRAME are left out to
save space, and that xhat, yhat, and zhat are abbreviated X, ¥,z, where it is obvious.
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vectors; VECTOR( <scalar> , <scalar> , <scalar> )
( <scalar> , <scalar> , <scalar>)

rot at ions: ROT( <vector>, <scalar> ) or
( <vector>, <scalar>)

frames: FRAME( <rot>, <vector> ) or
( <rot>,<vector>)

t ranses; TRANS( <rot>, <vector> ) or
( <rot>,<vect or>)

Examples:

valid scalars:

valid vectors:

valid rotations:

valid frames:

valid t ranses;

a, a_b,+.01, 3.001

VECTOR(O, +5, -0.3)
(a_bp a, (-05 - a))
(1,+5,01)

ROT(xhat, 180)
(zhat, 90)
(yhat, a>

FRAME(r1xr2, vecl)
FRAME(ROT(yhat,80),(1, 1, 1))
(r1,VECTOR(23, a, ~.3)

TRANS(r1xr2, vecl)
TRANS(ROT(yhat,80),( 1, 1, 1))
(r1,VECTOR( 23, a, ~.3)

6.3.3 Deletion statement

Variables may be deleted by means of the delete statement, if the deleted
variable is a frame identifier any subtrees rooted in it are also deleted. Examples

of the delete statement are

DELETE s 1,s2,s3,v1,v2,f1,f2:
QDELETE s 1,s2,83,v 1,v2,{1,{2;

DELETE ALL;

QDELETE ALL;

or
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The use of ALL deletes all the user declared variables. If no argument is given, it
is assumed to be ALL, but in the case of DELETE, the user is asked to confirm
that he does in fact want to delete all the variables. The variables will disappear
from the relevant boxes in the display. If a variable name is given that POINTY
does not understand, POINTY will assume a spelling error, and let the user correct
the name. If the user does not want POINTY to inform him that the variable does
not exist, he should use QDELETE instead of DELETE. The QDELETE command is
useful when macros or identifiers are to be read in from a file whose names may
be the same as those already defined in the symbol table.

6.3.4 Functions and Macros

A facility for text macro substitution is available, The syntax is similar to
that in AL, and defined as shown in the following examples.

DEFINE ARM = cbarms;
DEFINE V 1(A,B,C)=cVECTOR (A,B,C)>;

Note the delimiters used around the body of the macro definition. In the
macro definition, the parameter names must be hitherto undeclared variable names.
Using those names for some other purpose in the future will not affect the macro
definition.

The macro name can be used just about anywhere where the body gives a
valid statement or statements. Thus the following are valid:

MOVE ARM TO BPARK;
VECT1« VI1(0,0,1);
VECT 2« V1(c2435,1,4);

Note also the use of the delimiters when the parameter substituted is not a
single token but an expression or a series of tokens.

Functions may be defined when a complicated expression needs to be
evaluated several times. While they may be stored as text macros, a complicated
expression is best stored as a function, since the storage is then in an internal
form which allows POINTY to check that the expression is valid and has the right
operations performed in the arguments, The function definition has the following

syntax:

<type> FUNCTION <function name> =
<valid POINTY expression>

<type> FUNCTION <function name>(<type> <argument list>) =
<valid POINTY expression>
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<type> FUNCTION <function name>(<type> <argument list>;
<type><argument list>;.,,
<type><argument list>) =
<valid POINTY expression>

Here are examples of the use of functions:

SCALAR FUNCTION F1=243;

SCALAR FUNCTION SQUARE(SCALAR XI) = X1%X1;

SCALAR FUNCTION DOTPROD(VECTOR V1,V2)=V1.V2;

VECTOR FUNCTION CHANGEXCOMP(VECTORVI1;SCALARS]) =
VECTOR(S1,V1.YHAT\V 1 ZHAT),

Functions are similar to typed procedures in AL, except that the body

consists of the expression to the returned, For example, the AL equivalent of the
above functions aeas follows:

SCALAR PROCEDURE F1;
RETURN{ 2%3);

SCALAR PROCEDURE SQUARE(SCALAR X);
RETURN(X 1 %X 1);

SCALAR PROCEDURE DOTPROD(VECTORV1,V2);
RETURN(V 1 .V2);

VECTOR PROCEDURE CHANGEXCOMP(VECTOR V1;SCALARSI);
RETURN{ VECTOR{ S 1,V 1 .YHAT,V 1.ZHAT));

- Functions may reference user defined identifiers, but in that event the function will

be invalidated when the identifier is deleted, The function will be valid when the
identifier is redefined.

The current value of a global variable, or an expression of global variables

or an arithmetic expression may be evaluated by making use of the EVAL function
within the function definition.

Consider the following cases

V1« VECTOR{ 2,0,0)
FUNCTION Fi=2x%V1
FUNCTION F2 = EVAL(2xV1)
V1« VECTOR( 0,0,2)
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A call to F1 now will give the value VECTOR(0,0,4) while a call to F2 will
gi ve the value VECTOR( 4,0,0).

6.3.5 Expressions

POINTY accepts all the algebraic expressions except boolean expressions
that the AL parser is capable of handling, POINTY does not make any checks for
dimensional compatibility, The following summarizes the valid operations. Where
they have the same meaning as in AL, they are not described in detail.

SCALAR s+s, s-s, s¥s, s/s, sTs,v.v,]s|,[V|,|r], s MAX s, s MIN s,
s DIV s, s MOD s, INT(s), SIN(s),COS(s), TAN(s),
SQRT(s),ASIN(s),ACOS(s),ATANZ(s,s),LOG(s),EXP(s)

VECTOR s*V, Vs, V/s, V+v, v-v, vkv,rxv, POS(f), f¥v,v WRT f, UNIT(v),

AXIS(r), t *®v,

v REL f =fxv {v is a vector expressed in the coordinate
frame f. The expression represents the
coordinates of the vector in station
coordinates.)

ROTATION ORIENT(f), rsr

FRAME fv, f-v, t«f, £t

f1 RELf2=f2%f 1 {fl is a frame expressed in the coordinate
frame f2. The expression determines the
frame expressed in stat ion coordinates.}

CONSTRUCT(v,V,v),CONSTRUCT( 1)

{constructs a frame using the location part
of the three frames, or the three vectors:
the first position defines the origin, the
second the x-axis and the third the x-y
plane of the desired frame. This avoids
having to guide the manipulator to a desired
orient at ion precisely,}

T, ¥f, 8f, uf {returns a frame having the location part as
that of f but with different orientations. T
gives the vertical component of orient at ion,
i.e. if ORIENT(f) = rot(zhat,a) *xrot(yhat,b) %
rot(zhat,c) t h e n Tf = FRAME(rot(zhat,c),
POS(f)); ¥ gives the orient ation of bpark
position, i.e. rot(yhat,180); 8 gives the
station orientation, i.e.nilrot, and a gives the
orientation of bgrasp when the arm is in the
park position, i.e. rot(zhat,180)}
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TRANS f=f, txt, INV(t)

6.3.6 Affixment tree operations

6.3.6.1 AFFIX &UNFIX

The A FFIX instruction is similar to the AL A FFIX instruction, but allows
RIGIDLY and NONR IGIDL Y to be abbreviated as "*" and "+" respectively;

AFFIX f 1 TO f2;

AFFIX fI TO f2 RIGIDLY;
AFFIX f 1 TO f2 NONRIGIDLY;
AFFIX f 1 TO f2 %;

AFFIX fl TO f2 +

Frame fI is affixed to the f2. Unless specified otherwise, the affixment is RIGID.
Every newly defined frame is shown with respect to the station frame (indicated

with a "=~ on the display). The affixment trees appear on box A of the display as
they are constructed. Frames may also be affixed with the relative transform

between them being specified as follows;
AFFIX <identifier> TO f3 AT (<rot><vector>);

AFFIX <identifier> TO f3 AT (<rot><vector>) RIGIDLY ;
AFFIX <identifier> TO 3 AT TRANS (<rot><vector>) NONRIGIDLY ;

If <identifier> is not a frame, a new frame is defined before it is affixed. This
instruction is used mainly for reading in AL instructions generated during a
previous POINTY session.

The IJN FIX instruction is written as in AL or in a short form as shown
below. Frame_l is unfixed from frame_2 and affixed independently to station.

UNFIX frame-| ;
UNFIX frame-1 FROM frame,2;

6.3.6.2 COPY

The COPY instruction is used to affix a copy of a frame and its associated
affixment subtree to another frame. The syntax is as follows:

COPY <frame_1> INTO <frame_2>;

POINTY prefixes the first part of the name of <frame_2> (the part before the
underscore, if there is an underscore, or the full name, if its length is less than 5
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characters, otherwise the first three characters) or a user defined prefix to the
frames in the subtree of <frame_1>. Any frames in the subtree of <frame_1>
having an underscore will have the part after the underscore suffixed to the prefix
determined from <frame_2>. if the procedure results in duplicated frame names,
POINTY allows the user to specify a new name.

A copy of only the subtrees of one frame to another may be made by using
COPY SUBTREE(<frame_1>) INTO <frame_2>;

Examples are given of the use of the COPY command to two affixment trees
rooted in base and handle as shown.

station (nilrot,nilvect)

-base (nilrot,(15.0,12.0,.500))

-handle (nilrot,(35.0,32.0,.500))
*handle_top ((Y,180.)%(Z,90.),(2.10,.340,5.05))
*handle-ref (nilrot,(1.10,2.30,.100))

The instruction COPY SUBTREE (handle) INTO base produces the following result:

station (nilrot,nilvect)

-base (nilrot,(15.0,12.0,500))
*base-top ((Y,180.)%(2,90.0),(2.10,.340,5.05))
%base_ref(nilrol,(1.10,2.30,. 100))

-handle (nilrot,(35.0,32.0,.500))
*handle-top ((Y,180.)%(Z,90.0),(2.10,.340,5.05))
*handle_ref (nilrot,(1.10,2.30,.100))

The names of new frames are obtained with the previously explained
convention: the name of the “receiving” frame, base, is taken as the prefix for the
new names and it is substituted for the part of the names before the underscore.
Ail the sons of the frame handle are copied as sons of the frame base.

The instruction COPY handle INTO base will produce this result.

station (nilrot,nilvect)
-base (nilrot,(15.0,12.0,.500))

%base_handle (nilrot,(35.0,32.0,500))
*base_top ((Y,180.)%(Z,90.0),(2.10,.340,5.05))
*base_ref (nilrot,(1.10,2.30,.1 00))

-handle (nilrot,(35.0,32.0,.500))

*handle-top ((Y,180.)%(Z,90.0),(2.10,.340,5.05))

¥handle_ref(nilrot,( 1.10,2.30,.100))

Handle together with its subtrees, is copied as a son of the frame base. The
convention used for producing new names generates base,handle, since the name

handle has no underscore.
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6.3.7 Arm interact ion commands

The interface to the POP-1 | is used for arm interactions. The current
position of the arm is passed back to the PDP-10, while instructions to tell the arm
to perform some motion are sent to the POP-11. When arm interaction occurs, a
software interlock prevents execution of the next POINTY instruction until the arm
position is read, or the motion is completed or determined to be unsuccessful.

6.3.7.1 Arm reading commands

Arm positions are read directly each time an expression is evaluated. The
current arm position is used whenever the arm is referred to directly, and to
compute the values of any affixed frames. The user may not assign values to the
frames barm and yarm.

Two particular assignments are required to initialize the system. The arm is
moved to a FIDUCIAL point (an arbitrary reference point whose location is defined
by this statement) and. the following command is given:

FIDUCIAL ¢ <arms>;

.To find the position of the pointer, the pointer is grasped in the arm and used to
point to the fiducial point. The following command is given:

POINTER « FIDUCIAL;

An AFFIX statement is then used to affix the pointer rigidly to the relevant
arm.

The FCONSTRUCT command is used to construct a frame from three
readings. A sample call is as follows:

FCONSTRUCT f;

where f is an undeclared identifier, POINTY asks which device (barm,yarm or
poinicr) to use and lets the user specify the meaning of three posit ions by pointing
the manipulator at them. The first is always the origin of the desired frame, the
second on one of the principal axes (xhat,yhat or zhat) specified by the user, and
the third on the plane determined by that axis and another of the remaining
principal axes specified by the user. The three locations are used to compute the
desired frame.
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6.3.7.2 MOVE command

The arm motions specified can be absolute or differential. The syntax of
absolute moves is similar to the basic MOVE instruction in AL.

MOVE f1 TO <fr_exp>

This is the general move command, f/ (assuming it is affixed to an arm) is
moved to the indicated destination. The destination of the movement can be
specified in terms of the location of fI at the start of the motion.

POINTY does not currently know about approach and departure points,
deproaches, force sensing, condition monitors, or VIA points. However, a series of
single segment moves may be specified by giving a a list of frame expressions
instead of a single frame expression, as follows:

MOVE f 1 TO <fr_exp_1><fr_exp_2>,.,<fr_exp_n>
where the maximum number of expressions is 9.

Differential moves (not directly possible in AL but achievable by defining a
macro which expands to €¢TO& +2) can be specified by using a BY instead of TO
and a vector instead of a frame expression, as follows:

MOVE f 1 BY <vector>
MOVE f 1 BY <vector> WRT f 2

These instructions are equivalent to:

MOVE f 1 TO ® + <vector>
MOVE fl TO ®+ <vector> WRT f2

Differential moves parallel to the x, y or z axes of the stat ion may be
specified by the following instructions.

MOVEX f 1 BY <scalar>;

MOVEY f 1 BY <scalar>;
MOVEZ I BY <scalar>;

These instructions are equivalent to the AL instruction
MOVE f 1 TO @ + <scalar>*<axis>

To reduce repetitive typing, a move instruction similar to the last executed
move instruction (shown in box C of the display) may be given by merely typing
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the last part of the instruction. Hence it is possible to state

TO fl;

TO f 1 + <vector>;

TO f 1 + <vector> WRT f2;
BY <vector>;

BY <vector> WRT f2;

BY <scalar>;

the last form may be used only after a differential movement instruction along a
principal axis xhAat, yhat, or zhat.

Since movement to the park position is done so often, it may be abbreviated
as follows:

PARK BARM; { same as MOVE BARM TO BPARK; }
PARK YARM; { same as MOVE YARM TO YPARK; }
PARK; { parks both arms }

6.3.7.3 CENTER command

The syntax and use of CENTER is similar to that in AL.
CENTER <arm>; {<arm> may be left out }
closes the fingers slowly, moving the <arm> to accomodate to the location of any
object positioned between the fingers. If <arm> is left out, the last arm moved

will be used.

6.3.7.4 OPEN and cLoSE commands

The syntax for hand motions are similar to those in AL except that
differential movements may also be specified.

OPEN <hand> TO <scalar>;

CLOSE <hand> TO <scalar>; { absolute opening or closing }
OPEN <hand> BY <scalar>;
CLOSE <hand> BY <scalar>; { differential opening or closing }

If the next motion statement is to open or close the same hand, the instruction may
be abbreviated as follows:

TO <scalar>;
or BY <scalar>;
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6.3.7.5DRIVE command

POINTY permits the movement of individual joints (which is not permitted by
AL). The syntax is as follows;

TO <scalar>;
TO <scalar>;
BY <scalar>;
BY <scalar>;

DRIVE BJT(<joint number>
DRIVE YJT(<joint number>
DRIVE BJT(<joint number>
DRIVE YJT(<joint number>

~ — — L

The indicated joint of barm or yarm is moved to <scalar> or by <scalar>. <Joint
number> is an integer which represents the joint; joint 7 is the hand, while joints 1
through 6 are the arm joints. Driving joint 7 is equivalent to the OPEN or CLOSE
instruction.  <Scalar> represents angles in degrees for joints 1,2,4,5,6 and
displacement in inches for the prismatic joint 3 and the hand joint 7.

Short forms exist as for the other motion instructions.

TO <scalar>;
or BY <scalar>;

6.3.8 Display routines

The standard display has been described in section 6.2.1, and it shows as
much useful information as possible by omitting the use of reserved words like
VECTOR, TRANS, etc, and by abbreviating XHAT,YHAT,ZHAT to X, Y, Z, and not
displaying the values of POINTY defined constants. A movable arrow is available
to highlight frame variables of interest.

There are now three display modes available. POINTY is initialized in the
table display mode, in which scalars, vectors, transes, frames, rots, the default
move statement, and the files used in the current session are shown. Owing to
lack of space on the display, macros and function expression definitions are not
displayed in this mode. The type display mode allows the user to see all the
current definitions of the specified data type.

DISPLAY <data type>{ where <data type> is SCALAR, VECTOR,
ROT,TRANS,FRAME,
MACRQ,FUNCTION }

This display mode permits the display of more variables of a data type than
is possible in the standard display, and the display of macros and functions. When
the user is more interested in seeing what he has typed so far, the display mode
most useful is the no display mode, invoked by the command
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NODISPLAY

This eliminates the display altogether, and just prints out the series of commands
typed by the user, To get back to the table display mode, the redisplay command
needs to be used.

REDISPLAY

6.3.9 File input/output

File input and output is necessary to generate the affixment trees for AL
instructions, as well as to save the results of a POINTY session and to make use of

the results of previous sessions.

6.3.9.1 Saving current state ~-WRITE. CLOSE

The WRITE instruction is used to write on the indicated file the AL
instructions required (declarations, assignments, and affixments) to define variables
and preserve the current state of the world. The syntax is as follows;

WRITE; { into file last written }
WRITE <id>; { into file last written }
WRITE INTO <file>; { write everything into <file> }

WRITE <id> INTO <file>;

If the <id> part is omit ted, all the variables (except station, fiducial, pointer, yarm and
barm and other predeclared variables) are output, otherwise only the indicated
frame and the subtrees rooted in it, or the identifier is output. Since frames are
affixed to other frames in terms of their relative transes, any frame to be saved
should be affixed independently to station in order to obtain its absolute location.

POINTY permits output to different files. If the file named does not exist, it
is created, and the current time and date written out before the required
information specified by the user. |If it exists and is open and previous output has
been done to the file but a CLOSE not done on it, the output is appended. If it
exists but no input has been done to it, the current time and date are put on a
fresh page, followed by the desired output. If no output has been done so far, or
no new output has been performed since the last CLOSE, and no file name is
specified, output will be directed to a file DBECLAR.AL on the area of the current
user. Otherwise the last file written is used.

Files should be closed if there is no further output to be directed to them,
and before ending a POINTY session. The command syntax is as follows:

CLOSE; { closes last file written }
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CLOSE <file>; { closes file <file>; future output will go
onto the next page }
CLOSE-FILES; { closes all files currently opened, including

the one collecting the terminal output, after
asking user for confirmation, after which
POINTY asks for a new file name in which to
collect future terminal output }

To ensure that this CLOSE instruction does not interfere with closing a hand, the
user should try not to use a file called BHAND or YHAND. All files will be closed

at normal exit for POINTY if they have not been closed explicitly by the user.

6.3.9.2 Getting a given world state - REAL, & QREAD

The READ and QREAD commands will read the specified file of AL
instructions to bring the state of POINTY’s world to a known state, or to a state
that was saved at the end of the previous terminal session, so that in addition to
being input files to AL, POINTY generated files may be used to store instructions
to build the necessary frame tree structure and assign values to variables.

READ; { reads from DECLAR.AL }
READ <file>;

QREAD;

QREAD <file>;

Since movement commands may also be given in the input file, the user
should be careful that the commands do not Causeé disastrous motions to occur.
The READ command will print out the input file as it is being read. The QREAD
command will execute faster since it does not print out the input file.

6.3.10 Miscellaneous commands

EDIT <variable>;

loads the line editor with the value of the variable and allows the user to edit it.
This is particularly useful when the user wants to change the rotation part of a
transformation without changing the vector part. It can also be used to change the
definitions of macros and functions.

PRINT <expression>;
prints out the value of the arithmetic expression.

SPRINT “<any text >"
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prints out <any text>at the user term nal

PROMPT

waits for the user to type "P", followed by a carriage return before proceeding
any further.

RENAME <variable>;

allows the user to change the name of the variable.

EXIT;
exits from POINTY.

Typing a question mark

gives some information to the user about the available instructions and their
meaning. Whenever a syntax error is detected this instruction allows the user to
obtain information about the correct syntax of the statement,

T4, nT, or nt

shifts the display arrow up or down. n determines the distance the arrow is to be
shifted.

Some error recovery procedures are available, Whenever an undeclared
identifier is used where POINTY expects a known variable or its value, POINTY will
. keep asking for a corrected name until it is given something it can work with, or
the user hits <control>C to get out of the query loop.

<ESCAPE>|

typed on the terminal will cause termination of program execution at the end of
the current input line or statement, whichever comes first. All typeahead will be
flushed, and if POINTY is reading from an input file, it will stop. The next input
accepted will be from the keyboard. This command is used to get out of runaway
executions when instructions are being executed from a file through the REA D

command, or out of infinite loops,
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6.4 Hints on using POINTY

6.4.1 Recommended seduence

The following is a recommended sequence of steps for using POINTY after
initializing it:

1) Use the arm to grasp the fiducial point and type the instruction
FIDUCIAL ¢« BARM;

2) Put the pointer in the hand of the arm and grasp it tightly. Point the tip of
the pointer to the fiducial point and type the instruction

POINTER ¢« FIDUCIAL;
3) Now affix the pointer to the arm frame
AFFIX POINTER TO BARM,;

4) For any object, it is desirable to find a reference point for the reference
frame. In order to be able to locate the object quickly for future use, it is
desirable to have the orient at ion parallel to the station orient at ion. Thus the
pointer should be used to point at the reference frame, and the following
instruct ion typed

origin « 8 POINTER;

5) The frames for other features of interest are found by using barm,pointer,
CONSTRUCT or FCONSTRUCT. Let us call these new frames fI, f2, f3;

6) These frames should be affixed to the origin by the instruct ions
AFFIX fl TO origin RIGIDLY;
AFFIX f2 TO origin RIGIDLY;
AFFIX f3 TO origin RIGIDLY;

7) Before exiting from POINTY, do not forget to save the frame tree you are
interested in.
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6.42 Hints

1) It is possible to record the values of variables during a session by asking to
edit those variables. The values will be saved within the file collecting the
terminal output.

2) If the POINTER is physically removed from the arm, the user need not bother
to UNFIX it. So far as POINTY is concerned, there is an imaginary pointer in the
hand. If the user can put back the pointer in the same position later, the values
will still be valid. For access to difficult places, the bendy pointer (6.1.2.2) can be
used; however, it must be redefined each time it is bent.

3) Certain positions may be read more easily by moving the arm there and
grasping, rat her than using the pointer. In that case the value of barm should be

used.

4) It is a good idea to save the current value of a frame within another
variable before moving it, so that if you later decide to backup, the value will be
available.

5) While objects may be in any arbitrary orientation, it is generally easier to
use POINTY if the principal axes of frames are parallel or orthogonal to the stat ion
axes.
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7. ERROR CORRECTIONS AND RECOVERY

Errors can occur at various stages during program compilation and execution,
and it is important to be able to continue from the error point as gracefully as
possible. Some errors may be patched up according to the wishes of the user,
while others may be fixed up by the AL system, with the user having no say other
than whether to continue with the execution or to abort it. This chapter attempts
to describe the kinds of errors encountered during program compilation and
execution, and what action the user can take when such errors do occur.

7.1 Parsing errors

Errors detected in the parsing phase are the easiest to correct and patch.
For minor errors it is possible to proceed after correction without going back to
the source file.

The parser outputs error messages, and gives the user the option of
(a)  editing the source file
(b) aborting the compilation
(c)  taking the standard fixup
(d) backing up to and changing the source code from the
beginning of the innermost statement.

The last feature is particularly advantageous when the compilation is a long one,
and the error is a minor one which can be easily corrected - e.g. errors which are
due to misspellings, missing operators, and even some simple cases of syntactically
incorrect statements.

Error messages are generated whenever the parser comes across something
it does not like. Some messages are warning messages which tell the user what
he should not do in the future, An example of this is the case where identifiers
are declared in a block but never referenced, resulting in carrying more variables
than necessary, or where an identifier is not expected to have a planning value,
thereby causing problems in the compilation phase.

The most common errors are dimension and type incompatibility. Dimension
checking is done across assignment statements and force, torque, and duration
expressions and conditions, Whenever there is inconsistency, an error message is
generated. While dimensional inconsistency may not cause any grief during
execution of the program, checks for it enable certain errors (e.g. wrong variables
being used) to be pinpointed early during the compilation phase. A more serious
error occurs when the data types are incompatible (e.g. assigning a vector
expression to a scalar variable), and needs to be corrected, as otherwise the error
will cause trouble in the compilation and execution phases.
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Dimension checking can be made less stringent by including the F switch in
the REQUIRE ERROR-MODES statement, In this case, dimensionless variables will
be coerced to the type that makes them compatible with the other terms in the
expression or stat ernent.

TYPICAL ERROR MESSAGES;
TYPE MISMATCH

This message is printed when an identifier, factor or term is of a different
type than that expected in the context of the expression.

DISTANCEDIMENSIONS DON'T MATCH ON ASSIGNMENT STATEMENT

The meaning is obvious, but the error is not serious and AL will allow the
code to continue compiling, since dimension checking is not done during execution
of the program,

BLOCK NAME AT END DOES NOT AGREE WITH THAT AT THE BEGINNING

This error occurs when there is a misspelling in the names within strings at
the corresponding places, or if the BEGINS and ENDS are mismatched.

TRYING TO ASSIGN VALUE TO ARM OR DEVICE

The user is trying to assign a value to an arm or a hand. This is disallowed
in a program because the values reflect the state of the real world during
execution, and cannot be changed by the user,

-<variable> NOT DEFINED, WILL DEFINE IT.

The user has put an undeclared variable on the left hand side of an
assignment statement. This message could be due to a misspelling.

An error message, followed by CONTINUE WILL FLUSH STATEMENT

This means that the parser will be unable to do any form of fixup, and that
it will just flush the statement by ignoring any further text until the next
semi-colon is read.

ERROR CORRECTION

Whenever the parser detects an error, it prompts the user with a "8". The
user should respond with a single character as follows:
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C or <cr>  continue with standard fixup

A or <|f> continue automatically with standard fixup for future
errors.

E edit source file at the place the error occurs

R restart the program - type in the command line

T terse information giving only the different options
available

\ verbose information giving characters and their effects

X exit from program

L log errors in a logging file

M modify source code - user will be presented the

offending line and given the chance to modify it

Any other character will cause either a list of the above information to be
printed out, or just a list of the possible options.

The most useful response for the user is "M","C" or "E". The first is
particularly useful when a minor error (e.g. spelling error) occurs towards the end
of a long compilation, and the user does not want to have to start from the
beginning again. "C" is useful when the error can be corrected by a standard
fixup, while "E" is used to correct more serious problems by going back to the

source file,

Note that the "M" option is not always available. There are situations
where interactive error recovery is impossible - e.g. when in the middle of a
macro expansion, and so the user is not allowed to make any changes.

If any errors have been corrected interactively, at the end of the parsing
phase AL will ask the user if an updated copy of his source file is to be saved.

7.2 Compiler errors

The principal compiler error messages are those given when planning values
are not available to variables, (e.g. at the beginning of a procedure its parameters
. are undefined) or the arm is expected to move to some impossible position, e.g.
below the surface of the table, or a position corresponding to joint values beyond
the joint stop limits.

Some messages are WARNING messages, which means that compilation wilt
cont inue automatically. Some others are HAH! messages, which may ask for user
response by means of an up arrow "T". In such cases the user usually has few
options other than to continue with the standard fixup by typing C or to abort the
compilation and change the source program,
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Note that once the parser exits to ALC, the user has no more cont rol over
changing the contents of his original source code without running the parser again
or changing the S-expression file.

TYPJCAL MESSAGES:
WARNING: <variable> HAS NO PLAN VALUE -WILL USE ZERO.

When doing the world modelling (see section 4.6), if the plan tirne value of a
variable is needed, but it has not been assigned one this message is printed with
<variable> equal to the name of the undefined variable. A plan time value of zero,
nilvect, nilrot or niltrans will be used depending on the data type of the variable.

WARNING: BLUE ARM NOT PARKED UPON PROGRAM COMPLETION.
It is good practice to park the arm before exiting from the program.

HAH!Youwant only 2.000000 for this motion, and I think you need
2.135642 . In oder to satisfy your request, 1 am disregarding any

other time constraints you. may have placed on the motion.

Called from 544264 Last SAIL call at 536712

This message is given when the user asks for a motion duration time which
is too short.

JOINTS OUT OF RANGE: . ..

NAN! This destination location is not accessible.
The closest reasonable point is bsing used.
Called from 544264 Last SAIL call at 536712

The message here is obvious. It means that there is some mistake in what
the user is asking for - maybe trying to reach below the table, or trying to get to
a location which requires the joints to go beyond their limits, If you think that the
location is accessible, it may be that the desired location is high above the location
of It he table top with the hand pointing downward vertically, and that would not be
possible because joint 5 will run into a stop limit. This problem may occur if the
hand has the park orientation at a height more than 10 inches from the table top.

7.3 PALX errors

The principal PALX error occurs when the program is very long. PALX then
gives the message that there might not be enough space, in which case, the
program should be broken down into smaller subprograms. If any other error
message is given by PALX, it is an AL bug, and the user is requested to report it.
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7.4 Loading errors

11 TTY is the program that loads the PDP-11 with the core image of the AL
interpreter and runtime system. The instruction “DO AL[ALHE]" has the effect of a
number of instructions which includes assigning the PDP- 11 to your job, zeroing
the memory of the PDP-11, loading the AL interpreter and runtime system,
overlaying it with the user program load module and starting DDT on the PDP- 11.
Further details are given in Chapter 5.

There are several things that could go wrong during this sequence of
events, The message will be printed out at the terminal of the user,

ELF ASSIGNED TO JOB n.

This message is printed when some other job has the ELF (PDP- 11
interface) assigned to it. When this happens, you should find out whose job has it
assigned, and see if the owner is using it, If the job is not using the ELF, you
should request that the ELF be deassigned, and then try the “DO” instruction again.
If the job is using the ELF, you should try again later.

PDP-II STOPPED, RESTART

Restarting the entire sequence from Zeroing the core will take care of this
problem.

NO RESPONSE WHEN YOU TYPE ANYTHING ON THE VTO5.

If there is no response on the VT05 when you expect some output e.g.
when you do not get the asterisk and the flashing cursor, 11TTY may be in
““TERMINAL” rather than "VT05" mode, Type V several times on the terminal and
let the mode toggle from one to the other until "VT05" mode is obtained,

7.5 Runtime errors

During the execution of the user program, several things can cause the
program to stop. The following are the common error messages that are printed
on the VT05 by the runtirme interpreter.

INCOMPATIBLE PCODE VERSION. PROCEED AT YOUR OWN RISK

This means that the binary file assembled for the user program is
incompatible with the current runtime system. The solution is to recompile the
user AL program.
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FREE STORAGE EXHAUSTED

Only very large programs will cause this error. It has been largely
eliminated with the addition of more memory,

NO VALUE FOR VARIABLE - USING DEFAULT.

This error is caused by at tempting to access a variable before it has been
assigned a value. Proceeding will use a value of zero, nilvect, nilrot, or niltrans,
depending on the data type of the variable.

USER PDLOV

This is a fatal error caused by a bug in either the hardware or the runtime
system. Sometimes restarting the program will cause this error to go away,

Below are the errors associated with the arms that occur during motions.
CAN'T INITIALIZE ARM. REFERENCE POWER SUPPLY OUT OF RANGE.

The arm initialization routine ran into trouble due to the arm reference

power supply drifting. The program may be continued by typing <alt>P, but this

should be done with extreme caution, and the user should be extremely alert with

a finger over the panic button to cause an immediate stop if the arm does
soret hing unexpected.

PAN ICBUTTON PUSHE D

This error occurs when the panic button is pushed, or someone has leaned
on the edge of the table, thereby pulling on the yellow cord, and shutting off the
power supply. RETRY<alt>G will try the current motion again if the panic butt on
was pushed, but it will give the next message if the yellow cord was pulled.

ARM INTERFACE POWER SUPPLY TURNED OFF
(CHECK JOINT BRAKE SWITCHES)

When this error message appears, check all the brake switches on the panic
button box, and make sure that all the brakes are applied. If any of the brakes
are in the released position, toggle them to the set position, and then try again by
typing RETRY<alt>G. if you get the same error again, press the large red button
on the underside of the short side of the table nearest the wall to turn on the arm
power, and try again. If you get the error again, it may be that the arm interface
power really is off at the source, in which case you should get help from one of
the personnel in the lab.
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EXCESSIVE FORCE ENCOUNTERED BY JOINTn

This error occurs when the movement to be made requires too high a force.

It could occur:
(1) when the arm encounters an object during the course of the motion

(get it out of the way)

or (2)  the time specified for the motion is too short
(make it longer next tirne)
or (3) if the position at the beginning of the motion is

far from the planned position
(user can’t do much about it at runtime except move the arm manually
where it is supposed to go)
The nurnber at the end will tell which joint ran into problems. Numbers 1
through 7 represent joints 1 through 6 and the hand of the yellow arm, while
numbers 10 through 16 represent corresponding joints in the blue arm.

TIME OUT FOR JOINT n

This occurs usually at the end of a motion when the arm is prevented from
going to its final destination but the error is insufficient to cause a high enough
mot or torque requirement to give a joint force error,

STOP LIMIT EXCEEDED FOR JOINT n

There is a software joint operating range which is lower than the hardware
joint operating range for safety purposes, and when the limits are exceeded, this
error message is generated. Usually this message occurs if continuation of
compilation had been allowed in the compilation phase when a “destination location
not accessible” message was generated. Again the offending joint number is
indicated,

CONTINUATION FROM ERRORS

To continue from an error there are several possibilities that are indicated
. on the VTO05.

<alt>G will cause execution to begin from the start of the program.
<alt>P will cause execution to continue from the next statement.
RETRY<alt>G will attempt to retry the aborted move. Note that motions

involving force will currently not use the force system in
the retried motion.
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OTHER ERRORS

Jhe following are internal or hardware errors over which the user has little
control. They are given for the sake of completeness. Such error messages
should be reported. Many of them will leave the error number in RO in which case
typing "RO[" to DDT will print it out.

COULD NOT ATTACH TO REQUESTED JOINT(S)

1

2 INCORRECT NUMBER OF JOINTS REQUESTED TO BE DRIVEN

3 WIPERS COULD NOT BE READ WITHIN THEIR OPERATING RANGE
4 ARM SOLUTION DOES NOT EXIST

5 UNKNOWN TOUCH SENSOR REQUESTED

6 NO MORE FREE SLOTS IN TOUCH SENSOR EVENT LIST

11 ZERO VELOCITY TACHOMETER READING OUT OF RANGE

12 ATTEMPTED TO SWITCH ARMS WHILE FORCE SERVOING

13 NO MORE FREE SLOTS IN FORCE SENSOR EVENT LIST

14 NEED ALL 6 ARM JOINTS IN ORDER TO DO FORCE SENSING/COMPLIANCE
15 CAN'T FORCE SERVO MOTION WITHOUT POLYNOMIAL

20 JOINT STARTED OUTSIDE OF PERMITTED OPERATING RANGE
400 JOINT IS DOWN, INOPERABLE

1000 CATASTROPHIC A/D ERROR HAS OCCURRED
40000 NO ARM SOLUTION WHILE DOING FORCE COMPLIANCE

7.6 Hints on debugging

There are several instructions that are available for the user to determine
which part of his program is giving him problems.

7.6.1 Parse time debugging aids

REQUIRE MESSAGE COMMAND (cf. section 4.5.9)

The message can be used to inform the user where he is in the program,
but. since the user is normally familiar with his program, it would be used where
there are long compilations of several source files, and the user wants some
description of the contents of some source file. Another use is to output a
message to set parameters during compilation, and follow it directly with a
REQUIRE SOURCE-FILE "TTY:FOO.AL". The user can then make the required
assignments from the teletype.

REQUIRE ERROR-MODES “LA” (cf. sect ion 4.5.9)

This message is particularly useful if the compilation is to be done
non-interactively, Errors (if any) will automatically be collected in a file with
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extension LOG, and the parser will try to continue from errors the best it can.

7.6.2 Compile time debugging aids

NOTE, NOTE1, NOTE2 COMMANDS (cf. section 4.5.10)

If you get messages from the AL compiler that you do not understand, one
way to determine where the cause lies in the source program is to use the NOTE
command as described before. By examining where the error message occurs with
respect to the notes printed out by the program, it is possible to localize the
source of error.

DUMP COMMAND (cf. section 4.5.10)

This prints out the plan-time value of the variables of interest to allow the
user to verify that they are what he expects them to be.

7.6.3 Runtime debugging aids

7.6.3.1 ALAIO

ALAIO is the high level debugger for AL programs that resides on both the
POP-I 0 and POP- 11, providing a communication link between the two computers
that permits the user to examine and change the values of variables and allow
events to be signalled and waited.

ALAID is run after the AL program being debugged has been loaded and
started on the PDP-11 in the usual way.

RU DEBAL[ALHEJ<cr>

results in running a driver program on the POP-10 that communicates with the

ALAIO process which is running on the POP-I 1 in parallel with the AL runtime

interpreter. OEBAL responds with a colon-asterisk-colon whenever it expects a
| user command.

The symbol table for the variables in the user AL program must be given to
ALAIO by means of the following command:

SYMBOL FOO.ALS<cr>

where FOO.ALS is the name of the user’s AL program symbol table as
generated by the AL compiler. When ALAIO has successfully read in the file {and
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when it successfully performs any commands given to it) it will type:

D ONE

It is possible to use ALAIO to examine and modify the value associated with
the variables in the user’s AL program by means of the following two commands:

GETVAL (NAME v)
SETVAL (NAME v)(<data type> <values)

where v is the name of the variable being refered to, <datatype> is the data type
of the variable (e.g. SCALAR, VECTOR, FRAME ), and <value> is the new value to
be assigned.

It is also possible to signal and wait for events with ALAIO. The syntax of
these commands is as follows:

SIGNAL (NAME e)
WAIT (NAME e)

where ¢ is the event being used.

A running AL program may be halted and execution continued by means of
the HALT and GO commands as follows:

HALT
GO

The HALT command halts execution of the AL program upon completion of
execut ion of the current pcode instruction. ALAIO sends the message “ALL ACTIVE
- INTERPRETERS HALTED” to the user terminal,

The current version of ALAIO is primarily used as an interface between the
AL runtime system and some higher level program (e.g. a vision module) that is
running on the POP-I 0. A more advanced version of ALAIO is currently being
implemented which allows AL wizards to alter the flow of control, set breakpoints,
and examine/modify the pcode.

7.6.3.2 PRINT statement

A second way to help debug the program during execution is to output
values and messages during the execution by means of the PRINT command (c.f.
section 4.5.7). It is useful for printing out actual values of variables at execution,
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7.6.3.3 1 1 DOT

11 DOT is an assembly-language symbolic debugger for the POP-l 1, and its
use is outside the scope of this document, It is primarily used by AL wizards to
debug the runtime system, The user is exposed to 11 DDT to the extent that he
uses it to start or continue execution of his program using the <alt>G,

RETRY<alt>G, and <alt>P commands.
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Appendix |. AL RESERVED WORDS, PREOECLAREO CONSTANTS AND MACROS

Reserved Words

ABORT
ABOUT
ACOS
AFFIX
ALONG
ALSO
AND
ANGLE
ANGULAR_VELOCITY
APPROACH
ARRAY
ASIN

AT
ATANZ
AXIS
BEGIN
BY

CASE
CENTER
CLOSE
COBEGIN
COEND

COMMENT

COMPILEA-SWITCHES
CONSTRUCT
cos

DEFER
DEFINE
DEPARTURE
DEPROACH
DIMENSION
DIMENSIONLESS
DISABLE
DISTANCE
DIv

DO

DUMP
DURATION
ELSE

ENABLE

END

EQV
ERROR-MODES
EVENT

EXP

FIXED

FOR

FORCE
FORCE-FRAME
FRAME

FROM

HAND

IF

IN

INT

INV
INSCALAR
LABEL
LOG

MAX
MESSAGE
MIN

MOD

MOVE
NO_NULLING
NONRIGIDLY
NOT

NOTE
NOTE 1
NOTE2
NULLING
ON

OPEN
OPERATE
OR

ORIENT
PAUSE
POS

PRINT
PROCEDURE
PROMPT
QUERY
REFERENCE
REQUIRE
RIGIDLY
ROT
SCALAR
SIGNAL
SIN
SOURCE-FILE
SPEED-FACTOR
SQRT
STEP

STOP

TAN

THEN

TIME

TO
TORQUE
TRANS
UNFIX

UNIT

UNTIL
VALUE
VECTOR
VELOCITY
VIA

WAIT
WHERE

WHILE
WITH
WOBBLE
WORLD
WRT
XOR

Predefined constants

n
BPARK
CM
CRLF
DEG
DEGREES
FALSE
GM
INCH
INCHES
LBS
OUNCES

(o4
NILDEPROACH
NILROT
NILTRANS
NILVECT
Pi
RADIANS
SEC
SECONDS
STATION
TRUE
XHAT
YHAT
YPARK
ZHAT

Predefined identifiers

BARM
BHAND
YARM
YHAND

Predefined macros

APPROXIMATELY
CAUTIOUS
CAUTIOUSLY
DIRECTLY
PRECISELY
SLOW

SLOWLY
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Reserved words

ROT

SCALAR
ACOS oN
QEI"N SPRINT
SQRT
ﬁ;,‘;”? SUBTREE
TAN
BPARK 0
E\J(T TRANS
CENTER EEFTIX
CLOSE VECTOR
CLOSE-FILES WRITE
COMMENT WRT
CONSTRUCT ot
CcOoPY YPARK
cos
BEEQE Predefined Identifiers
DISPLAY
DISTANCE BARM
DIV BGRASP
DRIVE BHAND
EQIT BPARK
EVAL POINTER
EXIT STATION
EXP YARM
FCONSTRUCT YHAND
FRAME
FROM Predefined Constants
FUNCTION
INT BPARK
INTO DEG
LOG DEGREE
MAX DEGREES
MIN INCH
MOD INCHES
MOVE NILROT
MOVEX NILTRANS
MOVEY NILYECT
MOVEZ Pl
NODISPLAY XHAT
OPEN YHAT
. ORIENT YPARK
PARK ZHAT
POS
PRINT
PROMPT
PWRITE
QOELETE
QREAD
READ
REDISPLAY
REL
RENAME



Appendix [l AL COMMAND SUMMARY

BLOCKS: BEGINS; S;S; ... SEND
COBEGIN S;' S; S; ... S COEND

DECLARATIONS:  TIME SCALAR tsl,ts2; LABEL i 1,123
DISTANCE VECTOR dvl ,dv2;
ROT rl,r2; . FRAME f 1,25
TRANS 1,123 EVENT e 1,02;

FRAME ARRAY f I[s1:s2),f2[s3:54,55:56,...];

PROCEDURES: PROCEDURE pl; S;

OPERATIONS:

scalar s:
vector v:

rot r:
frame f:
trans {:
boolean b:

dimension d:

AL

SCALAR PROCEDURE spl (VALUE SCALAR vsl ,vs2;
REFERENCE ROT rrl;
SCALAR ARRAY asl[2:3]);S;

§+5,5-5,5%8,8/5,51s,|v|,r],ls|,v.v,s MAX s, sMINs,s MOD s, s DIV s, INT(s)

VECTOR(s,s,8),6%v,v¥s,v/s,vev,v=v,vkv,rky,tkv v,y WRT f,
UNIT(v),POS(f),AXIS(r)

ROT(v,s),r¥r,ORIENT(f)

FRAME(r,v),f+v,t=v,{xt,CONSTRUCT (v,v,v)

TRANS (r,v),f=1,txt INV(t)

~b, NOT b, bAb, b AND b, bvb, b OR b, bzb, b EQV b, b&b, b XOR b,
5<5,5$5,525,5 45,685,528

dxd,d/d,INV(d)

s: n,PI,BHAND,YHAND

CONSTANTS v: XHAT,YHAT,ZHAT,NILVECT

AND
VARIABLES

units:

r: NILROT

f: BPARK,YPARK,STATION,BPARK,YPARK,®(valid only in MOVE)
t: NILTRANS

b: TRUE, FALSE

CM,INCH,INCHES,0UNCES,02,GM,LBS,SEC,
SECONDS,DEG,DEGREES,RADIANS

dimensions: DISTANCE,TIME,FORCE,ANGLE,TORQUE,ANGULAR_VELOCITY,VELOCITY,

FUNCTIONS:
scalar

boolean

DIMENSIONLESS

SQRT(s),SIN(s),C0S(s), TAN(s),ASIN(s),ACOS(s),ATAN2(s,s),LOG(s),
EXP(s),INSCALAR
QUERY(print list)

STATEMENTS:

comment

control

affix

unfix

COMMENT <any text without semicolon);
{ <any text> }

FOR s+ (scalar) STEP <scalar> UNTIL¢scalar> DO (statement);

IF (condition) THEN <statement> ELSE <statement);

IF <condition> THEN <statement>;

WHILE <condition> DO (statement);

DO <statement> UNTIL (condition);

CASE <scalar> OF BEGIN $;S;... S END;

CASE <scalar> OF BEGIN [il] s; [i2] S; ..ELSE j«~0;[i3])[i4) S END;

AFFIX fl TO f2 ATt 1 RIGIDLY;
AFFIX f3 TO f4 BY t2 NONRIGIDLY;
AFFIX 3 TO {4 BY t2 AT t] NONRIGIDLY;

UNFIX 5 FROM {6;



condition
monitor
statement
and
clauses

with
clauses

enable
disable

deproach

motion

print
abort
prompt
pause

signal
wait

assignment
plan assign

require

macro

note

dump

return
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ON FORCE(<vector>)<rel><force scalar> DO <statements;
ON TORQUE <rel> <torque scalar> ABOUT <vector> DO <statement>;
ON FORCE <rel> (force scalar> ALONG <axis vect> OF {1 DO .3
ON TORQUE <rel> <torque scalar> ABOUT <axis vect> OF {1 IN HAND DO ..;
ON DURATION ? (time scalar> DO <statement>;
<label>: DEFER ON <event> DO <statement>;
<rely is 2 or ¢

FORCE, TORQUE, DURATION similar to condition monitor

WITH FORCE-FRAME = <frame> IN (co-ord sys>

WITH SPEED-FACTOR = <scalar>

WITH APPROACH = <distance scalar> or <distance vector> or <frame>
or DEPROACH (f1)

WITH DEPARTURE =. ...

ENABLE <label>
DISABLE <labeb

DEPROACH(<(frame>) « <scalar> or <vector> or <transd or <frames;

MOVE f 1 TO <fvab;

MOVE f ] TO <frame> VIA <frame> <frame> framed;

MOVE f | TO <fvab>
VIA <frame) WHERE DURATION =<time scalar>,

VELOCITY = <velocity vector>,

<more clauses>;

MOVE f} TO<fval> <more clauses>;

OPEN <hand> TO <distance scalar);

CLOSE <hand> TO <distance scalar>;

CENTER (arm);

PRINT (<e> <e>,...,<e>) @ is an expression, variable or string constant
ABORT(<e> <e,...,.(eD) similar to print

PROMPT(<e>,<@),...,<€>)  similar to print

PAUSE <time scalar);

SIGNAL el
WAIT el

{var)> & <expression>
<var> &+ <expression>

REQUIRE SOURCE-FILE "DSK:FILE.EXT";
REQUIRE COMPILER_SWITCHES “LSK”;
REQUIRE ERROR-MODES "LAMF";
REQUIRE MESSAGE “<message>";

DEFINE <macro-name> = €<macro_body>2;
DEFINE <macro_name>(ml,m2,..})2c <macro-body> 2

NOTE("¢messagoe>");
NOTE | (“<message>");
NOTE2("¢messaged>");
DUMP <variable-list>;

RETURN
RETURN(<expression>)
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MACROS:

CRLF
DIRECTLY

CAUTIOUS
SLOW
CAUTIOUSLY
SLOWLY
PRECISELY
APPROXIMATELY

carriage return and line food
WITH APPROACH=NILDEPROACH
WITH DEPARTURE=NILDEPROACH
SPEED-FACTOR ¢ 3.0
SPEED-FACTOR ¢ 20
WITH SPEED-FACTOR = 3.0
WITH SPEED-FACTOR = 2.0
WITH NULLING .
WITH NO,NULLING
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DECLARATIONS:  SCALAR isl, ts2;
VECTOR dvl ,dv2;
ROT rl,r2;
FRAME f 1,1 2;
TRANS t1,t2;

OPERATIONS:
scalar s: 5+5,8-5,5%5,8/8,|v],Irl Is|,v.v
SQRT(s),SIN(s),COS(s),ASIN(s),ACOS(s),ATAN2(s,8),LOG(s),EXP(s)
s MAXs,sMINs,s MODs,s DIV s,INT(s)
vector v: VECTOR(s,s8,5), (5,5,8), s%v,v¥s,vev,v=v,rkv tkv,fxvyy WRT f,
AXIS (v),UNIT(v),POS(f),v REL f
rot r: ROT(v,s),(v,s),r¥r,ORIENT(f)
frame f: FRAME(r,v),(r,v),{+v f=v xt, f] REL f2, CONSTRUCT(f,f,f),CONSTRUCT(v,v,v)
trans {: TRANS(rv),(r,v), (f-1), txt

POINTY [} BHAND,YHAND
CONSTANTS vt XHAT,YHAT,ZHAT,NILVECT
AND r: NILROTN

VARIABLES f:-  BARM,YARM,BGRASP,BPARK,YPARK,STATION,BPARK,YPARK,
@(valid only in MOVE),FIDUCIAL, POINTER
i NILTRANS

STATEMENTS:
comment COMMENT <any text without semicolon>;
{ <any text> }

deletion DELETE s 1,82,v1,v2,..3
DELETE;
QDELETE ALL,;

function FUNCTION ff 1 = <expression);
<type> FUNCTION ff2(<type> vtl vi2; <type> vi3,vt4..)= <expression>

macro DEFINE ml =€ (macro-body) 23
DEFINE m 1 (mm 1,mm2,..,mmn)= € <macro_body> >

affix AFFIX ] TO f2 ;
AFFIX 13 TO f4 NONRIGIDLY;
AFFIX 3 TO f4 +;
AFFIX 3 TO f4 AT t1 RIGIDLY;
AFFIX {3 TO f4 ATt 1 %;

unfix UNFIX 5 FROM 163
UNFIX {53
copy COPY f1 INTO f2;

COPY SUBTREE(f1) INTO f2;

motion MOVE f 1 TO (frame> + <vector exp>;
MOVE f 1 TO <f2> <f3><f4)>,...
MOVE fl BY <vector exp>;
MOVEX fl BY <scalar>;
OPEN <hand> TO <scalar);
CLOSE <hand> TO <scalar);
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OPEN <hand> BY <scalar>;
CLOSE <hand> BY <scalar>;
DRIVE BJT(¢jt no>) TO <scalar>;
DRIVE YJT(¢jt no>) BY <scalar>;
CENTER <arm>;

PARK; PARK BARM;

assignment <var>¢ <expression>

construct FCONSTRUCT f

input/output READ; READ <file>; QREAD <file>;

(file) WRITE; WRITE INTO. <file>; WRITE <id>;
WRITE ALL INTO <file>; WRITE <id> INTO <ile>;
CLOSE; CLOSE <file>; CLOSE-FILES;

(terminal) PRINT <exp>;
SPRINT “<anything>"“;

PROMPT;
edit RENAME <vard;
rename EDIT <var>;
display DISPLAY SCALAR;
REDISPLAY;
NODISPLAY;
macro DEFINE <macro-name> ® €<{macro_body> ;

DEFINE <macro_name>{m],m2,..) =€ <macro-body> 3j



1.

2a.

2b.

2c.

2d.

4.

DEVICE

Terminal

VTO5

or
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Appendix V. AL EXECUTION SUMMARY

USER RESPONSE AL RESPONSES
Create file FOO.AL

COMPILE FOO.AL

Swapping to SYS: AL. DM P
AL: FOO 123...

ALC
PALX 246

ALSOAP
DO AL[AL,HE]

f-

FOO
ELF A ssigned
CORE SIZE = 28K
VERSION USING VTO05
GET SAV FILE -AL[ALHE]
OVERLAY BIN FILE -FOO
AN EXTENDED COMMAND -VTO05
START AT (1000) (D FOR DDT) -D
DDT STARTED AT 130000

*
START <alt><alt> G
<alt>G
ALRUNTIME SYSTEM
<any output from your program>
ALL DONE NOW. SEE YOU AROUND!
NO ACTIVE PROCESSES LEFT. YOU'RE IN DDT.

#

<alt>G
(for re-execution}
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Appendix VI. AL examples

Here are several sample AL programs. A brief description is given for each
of the programs given.

ENGINE ASSEMBLY

This program causes the arm to pick up a crankshaft assembly and lower it
into t ho body of the engine. It then picks up the top of the engine and places it
over the crankshaft, thereby completing the assembly.

BEGIN “assemble engine”
{ program to place the crankshaft assembly and the engine top on
the engine body)

FRAME engina_top,engine_top_final,crankshaft,crankshaft_final;
FRAME bgrasp;

engine-top « FRAME (ROT(ZHAT,90.000%DEGREES),VECTOR(51.0,34.2,3.13)%INCHES);
engine-top-final « FRAME (ROT(ZHAT,45.000%DEGREES),VECTOR(57.3,49.3,10.2)%INCHES)3
crankshaft-final + FRAME ROT(ZHAT,45.000%DEGREES),VECTOR(57.3,49.2,8.48 )%*INCHES);
crankshaft « FRAME (ROT(ZHAT,90.000%DEGREES),VECTOR(51.3,40.3,4.09)%INCHES);

AFFIX bgrasp TO barm AT TRANS(ROT(xhat,1 80%degrees),nilvectxinches) RIGIDLY;
PRINT("ASSEMBLING ENGINE”);

MOVE barm TO bpark WITH DURATION=3%seconds;
OPEN bhand TO 3.0x%inches; { initialize }

MOVE bgrasp TO crankshaft;
CENTER barm; { grab the crankshaft }

crankshaft « bgrasp;
AFFIX crankshaft TO bgrasp RIGIDLY;

MOVE crankshaft TO crankshaft-final +3%zhatkinches
) WITH DURATION=2%seconds; { take crankshaft above engine }

MOVE crankshaft TO crankshaft-final =0.3%zhat*inches
WITH WOBBLE = 0.] *xDEGREES
WITH DURATION =5%seconds; { insert piston }

UNFIX crankshaft FROM barny
OPEN bhand TO 3.7 *inches; { release crankshaft }

MOVE bgrasp TO engine-top slowly;

CENTER barm;
engine_top«bgrasp;

AFFIX engine_top TO barm RIGIDLY;

MOVE engine-top TO engine_top_final ¢ 1 .8%zhat*inches;

MOVE engine-top TO engine_top_final+ 1 .0%zhat*inches;
{ by trial and error it was found
that doing this reduced ®sciilation



of crankshaft assembly }
MOVE engine-top TO engine-top-final =0.3%zhat¥inches
WITH FORCE-FRAME = STATION IN FIXED
WITH WOBBLE = 0.1 *DEGREES
WITH DURATION =5%seconds
ON FORCE(zhat)280%ounces DO STOP engine-top;

UNFIX engine-top FROM barm;
OPEN bhand TO 3.8%inches;

MOVE bgrasp TO bgrasp + YECTOR(-4,-4,0)%INCHES;
{ can’t move out straight because elbow joint
(joint 5) will be at limit, so we move the
hand sideways }

MOVE barm TO bpark; { all done now }

END “assemble engine”

SHIFTING CASTINGS

This program causes the arm to shift a row of three castings back and forth
between two positions.

BEGIN “casting shifter”
{program to shift a row of three castings back and forth betwoon two positions}

FRAME casting, casting-grasp, pick-up, set-down, line_l, line,2;
DISTANCE VECTOR dpick, dset;
SCALAR i,j,k;

DEFINE TiL=cSTEP IUNTIL 23

line_l « FRAME(ROT(zhat,90 % degrees),VECTOR(28,30,0) % inches);
line_2 « FRAME(nilrotn,VECTOR(32,24,0) % inches);

AFFIX casting-grasp TO casting (describe casting)
AT TRANS(ROT (xhat,1 80 * degrees),VECTOR(1.2,1.5,1.87)% inches) RIGIDLY;

MOVE barm TO bpark WITH DURATION =4 % seconds; (initialize arm)
OPEN bhand TO 3.5 % inches;

FOR k «1TIiL 2 DO (do it all twice}
BEGIN “outer loop”
pick-up ¢ line-l;
sot-down «line_2- 0.8 ¥zhat% inches; {initialize casting position}
dpick ¢ -4 % yhat ¥ inches;
dset+ @ 4%xhat % inches;

FOR j «ITIiL 2 DO (move the castings there and back again}
BEGIN “inner loop”

casting + pick-up;

MOVE barm TO casting-grasp; {go get first one)
FOR i «1TiL 3 DO {move three castings}
BEGIN

CENTER barm;
casting-grasp ¢ barm; (grab one}
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AFFIX casting TO barm RIGIDLY;
MOVE casting TO set-down ¢ 2%zhat% inches  {shift it over}
WITH APPROACH = 2 % inches;

MOVE casting TO set-down DIRECTLY {& place it on the table)
ON FORCE(zhat)2 100 % oz DO STOP;
OPEN bhand TO 3.5 ¥ inches; (release it)
UNFIX casting FROM barm;
pick-up € pick-up *dpick; (update where next one is}
sot-down ¢ set-down +dset; {& where next goes}
casting ¢ pick-up;
IFi<3 THEN MOVE barm TO casting-grasp (go get next one}
WITH DEPARTURE = -3 ¥ inches;
END;
pick-up ¢ line-2; {got ready to move them back)

set-down ¢ line-1 = 0.8 ¥ zhat ¥ inches;
dpick e +4% xhat % inches;
dset« -4 % yhat ¥ inches;
END “inner loop”;
END *“outer loop”;

barm «¢ line_l * FRAME(ROT(xhat,1 80 % degrees),VECTOR(=8,1,2) % inches);
MOVE barm TO bpark WITH DEPARTURE &-4; (when done put the arm away)

END;

CASTING INSPECTOR

. BEGIN “casting inspector”

(The arm is moved to a pick up point where it grabs a casting.
Depending on the weight of the casting it is either rejected or accepted.
Rejected castings are dropped in a garbage bin, while accepted ones
are lined up in a row. The program terminates after finding three
good castings.)

FRAME pick-up, set-down, garbage, casting, casting-grasp;

DISTANCE VECTOR dset;

SCALAR good-castings, heavy;

sot-down +FRAME(nilrotn,VECTOR(15,40,~0.8) % inches); {initial locations}
pick-up « FRAME(RQOT(zhat,90 x degrees),VECTOR(4,44,0) % inches);

- garbage « FRAME(ROT(zhat,30 % degrees),VECTOR(18,45,7) % inches);
dset ¢« -4 % xhat ¥ inches;

AFFIX casting-grasp TO casting {describe casting)
AT TRANS(ROT(xhat,1 80 * degrees),VECTOR(1.2,1.5,1.87) % inches) RIGIDLY;

MdVE barm TO bpark WITH DURATION =4 % seconds; (initialize arm position}
OPEN bhand TO 3.5 % inches;

good-castings ¢ 0;

DO {loop to find 3 good castings]
BEGIN

casting « pick-up;

MOVE barm TO casting-grasp; (go get a casting)
CENTER barm;

casting-grasp ¢ barm;

AFFIX casting TO barm RIGIDLY;



heavy & false; {see if it weighs enough)
MOVE casting TO ® ¢ 2 % zhat % inches DIRECTLY
ON FORCE(~zhat)2 85 % 0z DO heavy * true;

IF heavy THEN
BEGIN “good casting”
MOVE casting TO set-down e 2%zhat* inches DIRECTLY;
MOVE casting TO set-down DIRECTLY
ON FORCE(zhat) 2 90 ¥ 02 DO STOP;. {place it on table with others}
OPEN bhand TO 3.5 ¥ inches;
UNFIX casting FROM barm;
good-castings ¢ good-castings ¢ 1; (update # good ones}
set-down + set-down +dset; {& where next goes)
MOVE barm TO @+ 3 % zhat ¥ inches;
END “good casting”
ELSE
BEGIN “bad casting”
MOVE casting TO garbage DIRECTLY;
OPEN bhand TO 3.5 ¥ inches; (trash bad one}
PRINT("defective casting!”,crif);
UNFIX casting FROM barm;
END “bad casting”;

END
UNTIL good-castings 2 3; (repeat until we find 3 good castings}
barm «+FRAME(ROT(xhat,] 80 * degrees),VECTOR(12,41,2)* inches);
MOVE barm TO bpark DIRECTLY; (put arm away when done}
END;

VISION INTERACTION
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This program utilizes vision through an ALAID interface. The AL program
runs on the PDP- 11, waits for the vision program on the PDP-10 to take a picture
of a human hand and compute the coordinates of the center, On obtaining the
center of the hand, the AL program causes the blue arm to pick up a tool from the
workplace and move it over to the human hand. Both the AL program and the SAIL

program which incorporates the vision routines are listed below.

BEGIN “tool”
COMMENT This program does SIGNALs events to and WAITs for events from its

counterpart residing on the pdp 10 through an ALAID interface ;

EVENT al, sail;
{ AL will SIGNAL sail, and WAIT al;
SAIL will SIGNAL al, and WAIT sail)
DISTANCE SCALAR handx,handy,handz;
{x,y,2 coordinates in inches of the center of
person’s ieft palm facing the camera.
The plane of the palm should be about flush
with the edge of the table }
handx¢« =1.7 3%INCHES;
handy+ 42.9%INCHES;
handz+ 1 | 8%INCHES;{ about mean position for human hand position }
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MOVE barm TO bpark WITH DURATION=3%seconds;{ park the arm }
OPEN bhand TO 2.5%inches:

WHILE truo DO
BEGIN “infinite loop”
DISTANCE VECTOR hand-pos;
FRAME tool,tool_tip,tooi_store,person;

SIGNAL sail; { tell vision program to look for victim’s hand }
PRINT("WAITING FOR VISION TO GIVE ME LOCATION OF HUMAN HAND");
WAIT al; { waiting for SAIL to signal to AL

after verification vision has updated values of

handx,handy, and handz}

hand-pos+VECTOR(handx,handy,handz);
{ update vector giving location of human hand }

tool-store + FRAME (ROT(YHAT,180.0%DEG), VECTOR(52.996,45.042,2.835)%INCHES);

tool « tool-store;
AFFIX tool-tip TO tool AT TRANS(NILROTN,ZHAT*2%INCHES);

person « FRAME (ROT(ZHAT,151.93%DEG)*ROT(YHAT,125.22%DEG)*ROT(ZHAT,~1 41 .13%DEG),

hand-pos);

{ now let us do the actual motions }

barm««bpark; bhand+«2.5xinches; { so world modeller will not complain }

tool«-tool_store;
MOVE barm TO tool SLOWLY;
CLOSE bhand TO 0.0%INCHES APPROXIMATELY;
AFFIX tool TO barm RIGIDLY;
MOVE tool-tip TO person
WITH APPROACH=NILDEPROACH APPROXIMATELY SLOWLY;
PAUSE 2xseconds;
OPEN bhand TO 2.5%inches APPROXIMATELY;
UNFIX tool FROM barm;
PAUSE | *seconds;
MOVE barm TO bpark;
{ move arm out of view of camera }
END “infinite loop”;
END;

The following is an extract of a SAIL program which shows the parts
relevant to the ALAID communication link. This program runs on the POP-1 0 while

the previous program is running concurrently on the POP-1 1.

BEGIN *“vision program”

PRINT("CALLING ALAID ");
TREATREQUEST("SYMBOLS TOOL.ALS[DEM,HE]",1);
COMMENT treatrequest is the ALAID call.
This call reads in the symbol table for the AL program 3}

COMMENT At this point assign nominal values of the human hand position
to variables y0,z0;
WHILE true DO
BEGIN “more pictures”
REAL newy,newzdy,dz,theta;
PRINT("Waiting for 11 to Signal me =");



END;
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TREATREQUEST("WAIT (NAME SAIL)*, 1);
COMMENT Here we wait for the il to tell us it is ready ;

WHILE NOT LOCATE (theta,dy,dz)
DO PRINT("Unsuccessful..Trying again”);

COMMENT LOCATE takes the picture and computes the
angular offset theta and the y0 and 20 offsets
dy, dz from the nominal position y0,20 which has been
defined earlier. The value of the function
is true if the picture can be matched, otherwise
it is false ;

COMMENT At this point vision has successfully found dy,dz, theta;

newy«dy+y0; newz+d2+20;
PRINT("Sending AL new Y,Z:",newy,” ",newz,crif);

COMMENT Now let us set the values of handy and handz;
TREATREQUEST("SETVAL (NAME HANDY) (SCALAR "&cvi{newy)&")",1);
TREATREQUEST("SETVAL (NAME HANDZ) (SCALAR "&cvil{newz)&™)",1);

COMMENT Now tell the 11 we are ready ;
TREATREQUEST("SIGNAL (NAME AL)“,1 );
END “more pictures”;
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Appendix VII. POINTY examples

LOCATEZ_UP

LOCATE_ZUP is used to determine the x and y coordinates of the axis of an
upright cylinder. The macro tells the user to move the arm to the approximate
location of the object, and then it does a center, reads the hand position, opens
the hand, rotates it 90 degrees, closes it again and takes a second reading, and
then produces a frame with stat ion orientation. A similar macro which rotates the
wrist 60 degrees is used fo hexagonal cylinders.

JEFINE LOCATE_ZUP(ACTUAL_POS)=c
SPRINT " MOVE ARM TO APPROX POSITION OF ACTUAL,POS "
PROMPT; { lets user prompt when he is ready }
CENTER BARM,; {usesensing to get position }
OPEN BHAND TO BHAND_MAX;
{BHAND_MAX has boon defined elsewhere as 3.8 inches }
MOVE BGRASP TO FRAME(ORIENT(t BARM)*ROT(ZHAT,90),POS(BGRASP));
{ so now we move the arm so that the wrist is rotated
90 degrees but the hand points vertically downwards }
CENTERBARM;-
ACTUAL_POS+FRAME(NILROT,POS(BGRASP));
{ and we determine the final position of the object
but give it station orientation }
OPEN BHAND TO BHAND_MAX;
MOVEZ BGRASP BY 3%inches; { open hand and get the arm out of the way }

23

MOVE-AND-READ

This macro is used to ask the user to move the arm to a certain location.
The position is then recorded.

_DEFINE MOVE_AND_READ(POSITION) =
c
{ simel macro that asks user to move arm to a position and records it }
SPRINT “MOVE ARM TO POSITION”;
PROMPT;
POSITION* BARM;

.:;

MOVEMACRO03

This macro is used to define three positions and a new macro that will make
the arm go through these positions. It illustrates the use of the MOVE-AND-READ
macro, and may be used to teach motion through a series of three frames that will

avoid obstacles in its path.
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DEFINE MOVEMACR03 (MACNAME,P1,P2,P 3) .

[ =4
MOVE_AND_READ(P1);
MOVE_AND_READ(P2);
MOVE_AND_READ(P3);
DEFINE MACNAME =

[ =4

MOVEBARM TO P} ,P2,P3;

>3
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