
Stanford Artificial Intelligence Laboratory January 1979
Memo AIM-322

Computer Science Department
Report No. STAN-CS-79-716

A FRAMEWORK FOR CONTROL IN PRODUCTION SYSTEMS

| by

Michael Georgeff

Research sponsored by

Advanced Research Projects Agency

COMPUTER SCIENCE DEPARTMENT

Stanford University

ROIUNIORY,

NATE,
xR\ 4ANIZEDWH

em

A FRAMEWORK FOR CONTROL IN PRODUCTION SYSTEMS

by

Michael ‘Georgeff *

Abstract

A formal model for representing control in production systems is defined. The formalism

allows control to be directly specified independently of the conflict resolution scheme, and

thus allows the issues of control and nondeterminism to be treated separately. Unlike pre-

vious approaches, it allows control to be examined within a uniform and consistent framework,

It is shown that the formalism provides a basis for implementing control constructs

which, unlike existing schemes, retain all the properties desired of a knowledge based
system --- modularity, flexibility, extensibility and explanatory capacity. Most importantly,

it is shown that these properties are not a function of the lack of control constraints, but

of the type of information allowed to establish these constraints.

Within the formalism it is also possible to provide a meaningful notion of the power of

control constructs. This enables the types of control required in production systems to be

examined and the capacity of various schemes to meet these requirements to be determined.

Schemes for improving system efficiency and resolving nondeterminism are examined,

and devices for representing such meta-level knowledge are described. In particular, the

objectification of control information is shown to provide a better paradigm for problem

solving and for talking about problem solving. It is also shown that the notion of control

provides a basis for a theory of transformation of production systems, and that this provides

a uniform and consistent approach to problems involving subgoal protection.

Present address:

School of Mathematical Sciences,

Flinders University,

Bedford Park,

South Australia, 5042,

Australia.

T he views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of Stanford
University, or any agency of the V. §. Government.

1. INTRODUCTION 1

1. Introduction

Over the years a range of different mechanisms have been proposed for representing

and using knowledge about general and possibly ill-defined problem domains. Of these,

production systems [Post 1943] have been among the most promising, and have been applied

to a diverse collection of problems, including mass spectroscopy [Feigenbaum 197 1], medi-

cal diagnosis [Shortliffe 1976], electronic circuit design [McDermott 1977] and automated

theory formation in mathematics [Lenat 1977). Most theorem provers can also be viewed

as production systems (e.g. PROLOG [Warren 1877]).

Informally, a production system consists of a set of modules or procedures called

production rules and a data base on which the production rules operate. Now one of the most

fundamental and significant characteristics of production systems is the lack of explicit

control information =--- that is, production invocation can only be achieved indirectly through

the data base. The primary effect of this indirect means of production invocation is to

produce a system which is strongly modular, flexible and adaptive, and thus well-suited

as an expert knowledge system. However, it is also perhaps the most significant factor

in complicating the programming of production systems, in making the behaviour flow more

difficult to analyse, and in increasing the difficulty of an adequate formalization [see Davis

1976-J

Now there are two reasons why we would like to have control. The first, and to which

we alluded above, Is that the solutions to many problems are most naturally represented

by sequences of actions rather than by sets of actions in which the order of application

is unimportant. We tend to use plans or strategies, even when we are manipulating decla-

rative knowledge or facts about the world (e.g. consider the wide use made of slot fiiiing

specifications and procedural attachment in most knowledge-based systems). Secondly,

any large production system that does not somehow constrain the number of productions

that are active at any one time becomes so inefficient as to be unworkable. The problem is:

how do we achieve such control without sacrificing the raison d'etre of production systems.

~ Many production systems use some form of control information. Usually, this remains

hidden in the productions or in the data base in the form of special flags and other hand-

crafted markers [e.g. Moran 1978]. Other systems use more explicit means of control (e.g.

NASL [McDermott 1977], annotated systems [Goldstein & Grimson1977]), but the control

| structures are limited and are often difficult to access or modify. But most importantly,
no system provides a uniform framework in which control Issues can be addressed, nor a

|wa

2 CONTROLLED PRODUCTION SYSTEMS 1.

uniform means of implementing control constraints --- in every case the control schemes

are essentially ad hoc.

In this paper we approach the problem from the other direction. That is, we formally

characterize the notion of control applied to production systems, and then consider how

best to implement such a scheme, The scheme we propose, which we will call a controlled

production system, simply consists of a production system together with a control device

called a control language. This provides us with a uniform framework for representing control

in production systems, and allows us to examine in a very general way how the various

approaches to realizing (or Implementing) control affect the properties and behaviour of

the system as a whole.

In fact, it first appears that the notion of control In production systems is quite ob-

vious, and hardly needs formalizing. However, If we examine the control schemes of current

production systems --- apart from their ad hoc nature --- we see control being used in quite

different ways. For example, in most schemes (e.g. PROLOG) control is intended to simply

enhance the efficiencyof the system --- given enough time, the system without the control

component would find the same solutions as the system with control. In other schemes [e.g.

Rychener 1977], and in fact in most of the aforementioned schemes (e.g PROLOG), control

can be used in the same manner as in procedural languages --- that is, the solutions obtained

-depend critically on the order in which the productions are invoked. Such confusion leads

to ad hoc systems the behaviour of which it is very difficult to predict and the solutions to

which it Is very difficult to validate, That is, it leads to a programming methodology quite

the opposite of that favoured for procedural languages. Further, domain specific control

knowledge is difficult to realize as it becomes confused with efficiency issues [cf. Davis

& Buchanan 1977]. Formalizing the notion of control avoids these difficulties, and allows

system efficiency to be treated as a separate Issue.

E_

2. CONTROLLED PRODUCTION SYSTEMS 3

2. Controlled Production Systems

2.1, An Informal Description.

Informally, a production system (PS) consists of a set of modules or procedures called

production rules and a data base or working memory to which these rules are applied. Each

production rule is an expression or string of symbols which consists of two parts called

the lefthandside (LHS), or antecedent, and the righthandside (RHS), or consequent. These

respectively denote a condition which is to be satisfied before the production can be

applied or invoked, and an action which specifies the result of application of the production

to the data base.

In the simplest execution scheme, the conditions in each production are evaluated for

the current state of the data base, one of the satisfied productions is selected, and the

action specified by that production then executed. The procedure is then repeated for
this new state of the data base. Execution terminates either when there are no satisfied

productions or when some desired state of the data base is achieved. In general execution

Is nondeterministic, as at any stage during execution more than one production may be

applicable. The set of productions applicable at each stage of execution is known as the

conflict set, and the selection procedure is usually called conflict resolution.

Such an execution scheme is said to be forward-chaining or data-driven. However, in

essence a sequence of productions simply defines a relation on states of the data base, and

there is no reason why evaluation of this relation cannot proceed differently. Thus backward-

chaining or hypothesis-driven schemes proceed from a final state to an initial state, and

bi-directional schemes proceed from both ends towards the middle. Alternatively, partial

evaluation may be made in one direction, and then full evaluation in the other direction.

Schemes that in this way proceed from a final state (or set of states) to an initial state

"and then back to a final state are usually called backward-unwinding schemes.

For example, consider the following production system where states of the data base

are words over the alphabet {S,A,B, C,a,b, c} and where the productions (which are to
be interpreted in the normal rewriting sense) include

Pi: ss — ABC

py: A — dA

P3. B — bb

Ps Cc — cC

psi: A — a

4 CONTROLLED PRODUCTION BYSTEMS 2.

pg: B — b

pi. C —

For an initial state S of the data base, the set of possible final states is the set of strings

{ab™c": I> I,m> lyandn> 1}

Depending on how the system is implemented, It can be used either as a generator of

these strings or as a recogniser for these strings.

Now it is well known that the solutions to many problems of practical significance are

best represented by sequences of actions rather than by sets of actions in which the

order of application Is unimportant. The question arises as to how this can be achieved

in a production system. One way to achieve such sequencing is for each production in

the sequence to throw some special symbol into the data base that only invokes the next

production in the sequence [e.g. Moran 1973]. However, this scheme has a number of

significant drawbacks. Firstly, in order that the correct production is invoked, it is necessary

to invest the productions that respond to these special symbols with a higher priority of

invocation than all other productions that might also be satisfied by the current state of the

data base. We thus end up with two classes of symbols in the data base, or eqivalently, two

classes of productions. Nothing Is wrong with this, of course, except that we have changed

. the nature of the production system. Secondly, the philosophy of modular programming

upon which production systems largely rest requires that the details of other independent

modules be of no consequence to one another. However, it is clear that the above scheme

will not work unless the special symbols are known to be unique to the invoking and the

Invoked productions, and such uniqueness can only be established by reference to the

condtion part of all other productions, Other problems are also present in the above scheme.

The system loses its potential extensibility as these special symbols essentially invoke

productions by name rather than by content. Further, augmentation and modification of

control Information is extremely difficult. Most other schemes for Introducing control [e.g.

Rychener 1977] suffer from similar failings,

We thus adopt an alternative approach whereby we specify control information ex-

plicitly and outside the object-level productions, To do this we will simply require that

any constraints on production invocation be specified by means of a language over the

production set. We will call such a language a control language. A production sequence and

the relation it defines on the data base Is then only allowed if this production sequence

is included in the control language. Thus at each stage of execution, the control language

restricts the set of productions that may be considered for invocation and only a subset of

the total production set is active. The only productions that can enter the conflict set are

FE

2. CONTROLLED PRODUCTION SYSTEMS S

those that both have their condition satisfied by the current state of the data base and

are contained in the active production set. The important point to note is that control is not

achieved indirect/y through the conflict resolution scheme (as, for example, in [Rychener

1977]), but is specified independently of it. We will call a production system together with

a control language a controlled production system (CPS).

For example, consider the above production system together with a control language

defined by the regular expression

P1(p2p3p4)* pspepr

Then the set of final states of the data base given the initial state S is the set of strings

{amc :n > 1}

Note that this controlled production system is nondeterministic and that after executing

production py4 the conflict set will contain two productions (namely, pg and ps).

Thus it is seen that a controlled production system differs from the more usual produc-

tion systems only in that it has an explicit and independently specified control structure,

This control structure acts as a constraint on production invocation --- it effectively reduces

the possible interactions between productions. In one sense, the control structure provides

private channels of communication between productions This allows the power of a produc-

~ tion system to be increased without increasing the complexity of the productions. For

example,if we allow productions that check for a symbol not being in the current state

of the data base, then it can be shown that context-free rewriting systems with regular

control languages generate all the recursively enumerable languages [see Salomaa 1973).

On the other hand, it is important to stress that anything of which a controlled production

system is capable so is some production system. One simply places the control information in

the data base (see, for example, ACTS [Anderson 1976]). However, as pointed out above,

there are serious disadvantages to the latter approach. It remains for us to demonstrate

that such disadvantages are not a necessary consequence of Introducing control.

’ In the context of most of the literature on control In production systems, it is very

important to note that here we are distinguishing between two types of control --- the

one that is essential to the determination of the Intended solutions and the other which

relates to system efficiency and the resolution of nondeterminism. The control language

models the former of these --- that is, it acts in exactly the same way as control acts in

the procedural languages (or more formally as in program schemes [Engelfriedt 7 874]), and

has nothing to do with the selection mechanism involved in conflict resolution.

One should also note that a controlled production system is a very general abstract

machine and encompasses all systems that are characterized by a sequence of transfor-

6 CONTROLLED PRODUCTION SYSTEMS 2.

mations from one state to another. In particular, we are not intending any restrictions on

the structure or size of the data base or on the complexity of the productions [cf.Lenat

and McDermott 1977].

The following section may be skipped by those who have managed to unambiguously

interpret the above description of controlled production systems. In any case, it should

probably be skipped at first reading as it may induce certain unintended biases.

2.2. Formal Definitions.

A production system (PS) is a triple

9 =< L,D,h > (2.1.)

where 2 is an alphabet called the set of production names, D is a set called the data base

and h, called the interpretation of 2, assigns to each element of 2 a pair << p, r >>, where

p is a total predicate on DD and r is a relation on DD. For any production name a, we will

say that @ denotes h(a}. We will also say that the first co-ordinate of h(a) is the condition
denoted by a and that the second co-ordinate of h(a) is the action denoted by a. Elements
of D will usually be referred to as states of the data base.

If for some a EX and x &€ D we have some p,r such that h(a) =< p, r > and

plz) == {rue, then we will assume that there exists y € [J such that <x, y>&r. This
Is simply requiring that If the condition part of a production Is satisfied for some state of

the data base, then this state of the data base will be in the domain of the action part of

the production.

Although formally it is sufficient to consider only production names and their inter-

pretation, in any concrete PS, each production name will correspond to a string of symbols

called a production. Thus where no ambiguity can arise, we will often refer to a production

name simply as a production.

] Before we define the notion of execution for a PS, we will formally define a controlled

production system. We take as our control device a language over 2. Formally, a control

language over X is any subset of 2%, where Z*is the free monoid over 2 with identity A.

We define a controlled production system (CPS) to be a quadruple

¢ =< X,D,h,C > (2.2.)

where C is a control language over 2 and <%,D,h> Is a production system .

A CPS LX, D, h, C > with C= E* is equivalent to the PS <4, D, h >. We can
therefore consider a PS to be a special case of a CPS.

 —

2. CONTROLLED PRODUCTION SYSTEMS (f

We are now in a position to define the execution of a CPS. Let C be a CPS as defined

in (2.2.). We first define a state of execution (or simply state) of C to be a pair

§ = U,T> (2.3.)

where u is a prefix of some word in C and x is an element of I). Now let u and ua be

prefixes for some word in C, where uE€X* and a € XJ. Then we say a state << ua, Zo >
is directly computed from a state << u, x; >, denoted << u, I} >=g<< ua, Ty >, if

and only if for some p,r, we have p(z;) = true, <z1,z3>Er and h(a) =< p, r >.
If the above holds, we will also say that the state <Cua,zz > results from execution of

the production a in state << u, 71>.

Let = * denote the reflexive transitive closure of the relation =. Then the reiation
computed by C is defined to be the set

RC)={<z,y>:<\z>=¢*< wy > for some win C}

Informally, a CPS C may be (nondeterministically) executed for some initial state zx of

the data base D in the following manner. At each moment of time, execution is at some

state, Initially this state is <A, x>. Suppose that execution has arrived at some state

<u,y >. Now a production a can be considered for evaluation if ua is a prefix of some

word in C. Let us call the set of all such productions the active production set. Suppose

there is no active production a. Then execution terminates successfully if u is an element

of C' and terminates unsuccessfully if u is not in C. Otherwise, execution may either

terminate successfully (if u is in C) or continue by evaluating the condition of each active

production with respect to the current state of the data base. All of those productions

which are satisfied form what is known as the conflict set. If the conflict set is empty, then

execution terminates unsuccessfully. Otherwise, a production a is (nondeterministically)

- selected from this set, and execution continued from a (not necessarily unique) state

<< ua,z>>, where < vy, 2> is an element of the action denoted by a. The final state of

the data base is obtained on successful termination of execution.

The above execution scheme is a forward-chaining scheme, Other methods for deter-

mining the relation computed by a CPS are not difficult to construct.

We could now go on to prove properties of this formal system. For example, it is

not difficult to show that the power of deterministic CPSs is equal to the power of non-

deterministic CPSs. However, such is not the intent of this paper and we will leave formal

considerations here. -

8 CONTROLLED PRODUCTION SYSTEMS 2.

3. The Control Language

Having defined what we mean by control, the question arises as to how we are going to

realize such control, and how different realizations will affect the behaviour and properties

of the system as a whole,

3.1. Specification of Control languages.

Perhaps the most obvious way to specify the control language is syntactically, where

the alphabet for such a specification is taken to be the set of production names.

For example, consider the problem of cascading two amplifiers [McDermott 1977]. We

could represent this problem using productions of the form

to: cascade —amp — (collector 1z)(emitter Ty)(couple ’z ?y)
£1: collector =

to: emitter -- —

t3: couple -

together with the control constraint given by the regular expression

(tita + toti)ts

in English, this simply says that to cascade two amplifiers we first construct a com-

mon collector and a common emitter (in any order) and then couple them. To achieve the

same effect using a production system, it is necessary either to make tasks ti and tg pre-

conditions for task £3, or to include the control information in the data base (e.g. using

SUCCESSOR indicators [McDermott 1977]). The former approach is simply inappropriate,

and the latter can suffer from the disadvantages to which we have earlier referred. But the

approach given above Is not much better --- it allows more general control constructs, but

-many of the desirable features of production systems are lost. For example, if we add to

the production set another method for making collectors then unless we explicitly augment

the control language this new method will never be used for cascading amplifiers.

The problem clearly lies in the means used for specifying the control language. Let

us briefly consider what's going on. Most languages are specified syntactically because

of a desire to describe the language solely in terms of its alphabet without regard to any

semantic interpretation of the language. But in the present case their is no need to be

so restrictive. As the interpretation is a component of the formal model (see eqn 2.1), it

can also be used in specifying the control language, that is, the control language can be

specified by its semantic content rather than its syntactic form.

3. THE CONTROL LANGUAGE 9

Thus in the above example, we could have specified the control constraint semantically

if p1 Is a production that makes a collector (or whose LHS mentions ‘collector’)

and pg is a production that makes an emitter

and p3 is a production that couples them,

then pip2p3 and pap1p3 are in the control language.

P1, P2, and p3 are variables ranging over the set of productions, and the specification

says, in effect, that a production that makes a common collector and a production that makes

a common emitter should be invoked before a production that couples the two components.

Such a specification clearly retains the additivity of the system. In fact, there is not one

desirable property of production systems that is lost when control is specified in this way.

The system remains highly modular, is potentially extensible, and retains its explanatory

capacity [cf. Davis 1975]. Of course, the dependence of these properties on the means

of production reference is well known [e.g. Davis 1877a] --- the only difference is that

here we are using it to effect control constraints rather than to improve system performance.

Because the semantic specification of control information (or content-directed invoca-

tion as it is usually called) makes possible any amount of information transfer between

sender and receiver, it is potentially a very powerful control mechanism. it allows private

channels of communication to be established between productions, in effect, through a

~ mutual exchange of information among the productions themselves. Most importantly, this

information is not constrained to passing through the object-level data base as it is in most

other approaches [e.g. Rychener 1977, McDermott 1977].

Semantic control information is also the type of information most likely to be possessed

by an expert interacting with such a knowledge based system. For example, consider

implementing an interrupt where the action b is to be taken if the variable X obtains a value

less than 1019, We could achieve this by introducing a production

int: true — 1fX << 1.0E— 10 then b else no— op

’ and inserting the production name 'int' between each pair of symbols in each control

word. That is, we just simulate the usual hardware interrupt. However, it is more natural,

and requires less knowledge of the implementation, to express the desired behaviour of

the interrupt semantically

if the last production used assigns a value to the variable X, then invoke int before

proceeding further

Not only have we been able to effect the interrupt by such a specification, but we

have also achieved a more efficient implementation of the interrupt --- at the object level

--- than through the syntactic approach [cf. Petterson 1876]. Of course, we could do the

r—

10 CONTROLLED PRODUCTION SYSTEMS 3.

same syntactically, but only at considerable expense on the part of the programmer --- in

any case, one would be reluctant to call the resulting syntactic equivalent an interrrupt.

Other examples of semantically based control information are not difficult to find (e.g. robot

plans).

One problem with implementing such a scheme is that it in the general case it is very

difficult to extract the required semantic information from a body of code. The problem is

not so severe in (controlled) production systems because the code usually consists of a

number of relatively small, independent chunks of knowledge, and these often represent

computationaily primitive operations. More important, however, is that in a CPS the control

information is specified in such a way that semantic criteria can be used as a means of

invocation --- how the semantic information is obtained can be treated as a separate issue

[e.g. Davis 1977b].

The other problem is one of system efficiency. Even in cases where the object level

system is made more efficient, the time spent in evaluating semantic criteria can easily

offset these gains. However, if the production set is fixed then it is not necessary that

the semantic criteria be evaluated at execution time --- in many cases, such as for the

above interrupt, it will be more efficient to transform the semantic specification into a

syntactic specification at compile time. in these cases, semantically based invocation can

. be expected to provide both a powerful and relatively efficient means of control.

3.2. Devices for Specifying the Control Language,

We have so far said nothing about the device to be used in specifying the control

language. if the specification is to be syntactic, then any of the standard methods --- ex-

plicit enumeration, property specification, finite state automata, phrase structure grammars,

augmented transition networks, etc. --- could be used. These devices are inappropriate,

however, if the control language is to be specified semantically, that is, on the basis of the

content of the productions. We could program some scheme in some procedural language,

but we then limit the additivity and fiexibiity of the system to the object level. A potentially

more powerful approach is thus to specify the control language using a second level or

control level CPS. This reflects very closely what McDermott had in mind when designing

NASL [McDermott 1977] --- that the order of steps within and between subplans be itself

rule governed.

One advantage of this approach is that the programmer has available a language and

framework in which he can easily define his own invocation criteria. Furthermore, the repre-

sentation of knowledge at both the object-level and control-level is uniform, and additivity

and flexibility is preserved at both levels. it is also worth noting that much exp ert knowledge

EE

3. THE CONTROL LANGUAGE 11

involving control will be piecemeal --- thus, as in the example of the interrupt, we will often

have an accumulation of control constraints ~=- the original control language specification,

modified by subsequent specifications, and these perhaps further modified. In a sense,

the control language is approached by a sequence of approximations. It is just this kind of

knowledge that is best manipulated by production systems,

The distinction between the control-level CPS and the object-level CPS is an important

one. The advantages of maintaining a conceptual distinction are hopefully obvious. But

advantages also exist at the implementation level. The active production set is usually much

smaller than the entire production set and thus considerable gains in efficiency are achieved

if the non-active productions are masked before the conditions on object-level productions

are evaluated. As the active production set is determined by the control language, this

requires that control-level productions be executed before object-level productions. In

fact, most systems that include some form of control-level productions (e.g. NASL) indeed do

just this. (in this respect the architecture of such a system is quite different to TEIRESIAS

[Davis 1877a] where_meta-level productions must be evaluated after the conditions on
object level productions are evaluated. The difference arises because the meta-level

productions of TEIRESIAS are used solely for conflict resolution which, quite clearly, must

take place after the conflict set has been determined).

Formally, the data base of the control-level CPS should include sequences of produc-

tions together with their interpretations, so that the set of final states of the data base

would constitute the control language. In such a scheme, any dependence of control on

object-level conditions would have to be handled by the introduction of appropriate object-

level productions. However, it is most likely that one would want to interleave execution of

the control-level CPS and the object-level CPS, and this may be more easily and efficiently

achieved if such restrictions on the elements of the control-level data base where relaxed.

The control language of the control level CPS will also need to be specified, and one

could envisage a hierarchy of CPSs, each determining the control language of the one below

"it. We do not see much advantage in such a wealth of control language CPSs, although in
Section 4 we will suggest the desirability for a further CPS of different purpose.

3.3, Types of Control Language.

In designing control devices of the sort mentioned In the previous section, it is important

to know how the complexity of the control language affects the power and usefulness of

the system.

One of the simplest classes of languages is the type 3 or regular languages. As control

languages they are surprisingly powerful --- thus, as mentioned in Section 2.1, they can

12 CONTROLLED PRODUCTION SYSTEMS 3.

increase the power of context-free rewriting systems to that of a Turing machine. As the

solutions to many problems are often conceptualized as a sequence of actions, regular

control languages also greatly improve constructibiiity.

For example, consider the problem of adding two positive integers. This problem is

considered representative of a class of problems unsuited to production system architec-

ture (see [Davis 1975); the example is by [Waterman 1874]). However, as a controlled

production system, the solution is very simple. We let the productions be as follows

a: true — read(n, m)
b: true — count — 0;nn «—n

c: count = m — count « succ(count);nn «— succ(nn)
d : count = m — write(nn)

and let the control language be the regular expression

abcd

Note that for readability we have allowed composite actions on the RHS of produc-

tions. Whereas for a production system this is against the spirit of things”, for a controlled

production system composite actions are just syntactic sugar. Looked at another way,

each production of a controlled production system is decomposable into (sequences of)

. more prirnitive productions. With standard production systems this cannot be done without

explicitly placing control Information in the data base, thus changing the character of the

entire problem space.

Regular control languages are also powerful enough to define partitioned production

systems (also called procedures [Moran 19783], packets or multiple production memories

[Lenat and McDermott 19771). If we consider the control language to be generated by a

transition network, then each state in that network defines a set of active productions,

these being the productions that label the outgoing arcs. Each transition either loops and

_thus leaves control in the same state (i.e. with the same set of active productions) or

transfers control to another state (i.e. to another set of active productions). Thus as long

as we continue to loop on a given state we effectively operate on a subset of the entire

production memory. If, for each state, the set of productions labelling the outgoing arcs is

disjoint from the set of productions labeling the outgoing arcs of the other states in the

network, then the resulting CPS is equivalent to a partitioned PS. On the other hand, CPSs

with regular control languages offer more flexibility than partitioned PSs because there is

no need to keep these sets disjoint.

Most other types of sequencing used in production systems or knowledge based sys-

tems are also readily described by regular control languages. For example, the slot filling

EE

3. THE CONTROL LANGUAGE 13

operations in frame-like representations (e.g.to-fill, when-filled) are simple successor and

predecessor specifications.

Context-free control languages allow of more interesting constructions. For example,

the control language (dk >1} allows constructs of the form
do Sj until B; do Sy the same number of times

without the explicit use of counters.

Context-free control languages may also be used to define recursive programs (In

fact, the above construction may be realized by a call to a procedure that executes @ on

entry, then calls itself, then on exit executes b). Informally, let the control language be

generated by a context-free grammar. We can interpret each non-terminal symbol appear-

ing in the grammar as the name of a subroutine or procedure in the CPS, and each terminal

symbol simply as the name of a production in the CPS, Now (top-down) left-right generation

of control language sentences produces possible execution sequences of the CPS, where

each expansion of a non-terminal symbol is interpreted as a call to the procedure having

that name.

Let us consider again the problem of constructing a cascade of amplifiers. The solution

proposed in Section 3.1 was not realty sufficient, as firstly it did not restrict the scope of

the control constraint to the case of cascading amplifiers, and secondly because it required

the subtasks (i.e. the making of the common collector, etc.) to be primitive. However, we

can overcome both these difficulties by letting the production names stand as non-terminals

in a context-free grammar which contains the rules

to — thts

to — tatita

The result is that in trying to achieve tp, we have to achieve tj and fg before t3, where

this time £;,¢y and £3 may themselves be expanded into further (sequences of) subtasks.

(In fact, we have realty changed the entire nature of the object level production system,

- as it now need contain only primitive productions (i.e. productions with no subtasks). For

our purposes, this is not important, but it does indicate that much of the object level system

is better transferred to the control level).

Some existing systems use similar devices for controlling production invocation. For

example, the SUCCESSOR and SUBTASK relations in NASL can be used to explicitly represent

control information in the same way that the rewrite rules do in the above context-free

control grammar. Most of the other control-level productions of NASL (e.g. the CONSTRAINT

relation) are also realizable as context-free rewrite rules.

It is also interesting that specification of the control language by means of a phrase

14 CONTROLLED PRODUCTION SYSTEMS 3.

structure grammar is simply a special case of specification by a control level production

system. That is, the classical means of language specification have directly resulted in

a uniform formalism for specifying object-level and control-level information. On the other

hand, if we are to allow context-free control languages --- and the above considerations

suggest that we should --- then the type of productions used in TEIRESIAS [Davis 1977a]

for specifying production orderings at the meta-level are not going to be powerful enough

at the control level as they can only describe regular languages. Of course, we are not

suggesting that we should use phrase structure grammars for specifying control languages

--- what we are saying is that we need to make sure our control device, whatever it is,

has the power to describe the types of control that we need.

The similarity of context-free CPSs to augmented transition networks [Woods 1870]

should not have escaped the reader. An ATN is simply a controlled production system where

the context-free control language is specified not by a phrase structure grammar but by

a recursive transition net. The conditions and actions on each arc of the transition net

are simply the conditions and actions denoted by the LHS and RHS of the production cor-

responding to that arc. Thus an input word to an ATN simply acts as a control word over

the productions attached to each arc of the network.

From this point of view it is interesting that in natural language applications the natural

‘language input to the ATN acts purely as a control word --- that is, the natural language

sentences simply constrain the generation of semantic structures. In one sense, the very

thing that production systems throw away Is precisely that which provides the mapping

from surface strings to semantic structures. In fact, the success of ATNs in many different

domains demonstrates quite convincingly the significance of control information, even when

this control is specified syntactically.

The control language of a CPS need not be restricted to being context-free, and other

language types may prove useful, For example, macro languages [Fischer 1868] allow one

.to represent procedures with parameters. Interested masochists should refer to Engelfriet

[1974].

3.4. Bridging the Gap.

. It should be clear that the standard functional and procedural languages are formally

a restricted class of controlled production system. In the case where the control language

is regular, a controlled production system is simply a representation of a flowchart for a

(nondeterministic) sequential algorithm. Context-free control languages give us recursive

procedures (see Section 3.3), and macro languages procedures with parameters. (For

a more formal treatment see [Engelfriedt1874]). This is a nice property of controlled

3. THE CONTROL LANGUAGE 15

production systems. We see at the one extreme, where the control language places no

constraints on production invocation, we have the declarative languages, and at the other

extreme, where the control language constraints give determinacy, we have the sequential

procedural languages. (in fact, the similarity between controlled deduction and procedural

programs is well known).

in previous sections we discussed the usefulness of semantically based invocation and

separate specification of control for systems which in general were non-deterministic. What

are the implications of these types of control when applied at the deterministic extreme

of the spectrum?

In the first instance, it means that such systems, even though deterministic, will retain

most of the desirable properties of nondeterministic CPSs, and in particular remain exten-

sible. That is, the addition, deletion, or replacement of a functional unit need not require

modification of other functional units to provide for the change. Thus, for example, a con-

dition or test can be appended to the main stream algorithm --- without modification to the

original text --- after an error in execution is observed. Similarly, unlike most programming

languages, deletion of a functional unit may injure but does not necessarily kill a deterministic

CPS.

Further, because no restrictions are placed on the distribution of control, separate

chunks of knowledge can be separately specified, independently of how they are used. In

contrast, the standard procedural languages require that control always lie with the sender,

never with a (possible) recipient. Thus to test for special conditions one has to place some

command in the main stream program text, and this very easily obscures the purpose of the

algorithm --- consider a program that begins with a long sequence of conditionals, some

of these embedded within one another, and ail of which are to test for rarely encountered

conditions.

We thus see that the notion of a controlled production system, and consideration of the

various means of realizing the control device, provides a uniform programming methodology.

- The techniques and schemes that provide powerful, constructible and flexible knowledge

based systems are exactly those that provide the properties desired of deterministic

programming languages [cf. Winograd 1979]. In the other direction, the formalization of

control aiiows us to apply the methods of program verification and program synthesis that

are used in the procedural language domain to knowledge based systems.

 —

16 CONTROLLED PRODUCTION SYSTEMS 3.

4. Non-determinism

At any stage during the execution of a non-deterministic CPS the conflict set may con-

tain more than one production. Production invocation must therefore be handled using some

form of backtracking scheme or parallel processing scheme. Such schemes are charac-

terized by the existence of multiple environments representing the state of the computation

either at previous choice points (backtracking schemes) or for the current (or suspended)

processes (parallel processing schemes). For each such environment, we will say that an

applicable production is open if it has not yet been invoked (tried) in that environment, Any

conflict set containing an open production is also said to be open; otherwise it is closed.

Usually, there is no need to retain an environment with a closed conflict set, unless one

wants to check for recurrence of states of the data base.

Non-determinism of course presents no problem if we have an infinite amount of time

with which to play around. As this is rarely the case, we need to consider means by which the

amount of computation required to find a solution can be reduced. There are essentially two

means of achieving this, one being to to avoid multiple evaluation of equivalent production

sequences and the other being to order the execution of productions so that one has the

highest probability of successful termination with the least amount of effort. In the next

section we consider the first of these approaches.

4.1. Equivalent Production Sequences.

in order to throw more light on the nature of non-determinism in CPS's, we will approach

this problem from a somewhat unusual, and at first appearance rather clumsy, perspective.

For a CPS C=<<%,D,h,C>, we will call the control word corresponding to a

sequence of productions that computes a state yinD) from a state inl) an associate word

for < Z,y >. Thus an associate word, and similarly an associate subword, determines a
relation on D. The associate language of C is then defined to be the set of words w eC

such that w is an associate word for some element of the relation computed by C. Intuitively,

an associate word for << &,y> is simply a successful execution trace for <z,y >>.

Therecognition problem for a pair < z,Y >in D XD is thus to determine whether there

exists an associate word for < x,y>>. This can be established by evaluating the relation

determined by each word in the associate language, either sequentially or In parallel, until

one is found that contains << x, y >.

Now an important property of associate words is that they provide a reasonably direct

measure of computational effort, so that we may be able to achieve significant gains in

E

4. NON-DETERMINISM 17

efficiency if we can either reduce the number of associate words that require evaluation or

somehow avoid total evaluation of each associate word. The first of these can be achieved

if we can establish equivalences between associate words, where equivalence between

words is to mean that they determine the same relation on the data base.

For example, in many problems each state of the data base consists of a set of ele-

ments which we will call state elements. These could be symbols, variables and their bindings,

representations of subproblems, etc. Let us call two sequences of productions disjoint if

the set of state elements modified by the one sequence is disjoint from the set of state

elements accessed (observed or modified) by the other. Clearly, the relation computed by

two disjoint production sequences does not depend on the order in which the sequences

are executed. On this basis we can define equivalence classes of associate words, and

in the recognition problem thus need only evaluate one representative member from each

class. The derivations of a context-free grammar, for example, form equivalence classes

for which we can take leftmost derivations as the normal form. Intuitively, where we can

view a sequence of productions as representing the solution to a particular problem, then

disjointness of production sequences corresponds to problem independence (or what is

often called linearity"of the problem space). In such cases the above equivalences can

be used to achieve considerable savings in computational effort, as is done, for example,

in the standard problem reduction methods involving AND/OR tree search [Nilsson1971].

Similar equivalences on associate words and similar savings in computational effort

can be made in other problem domains, as, for example, when productions or production

sequences commute, (in fact the type of problem described above is simply a special case

of commutivity which allows the Church-Rosser property to be satisfied). The essential

point is that by establishing such equivalences we are saved the necessity of evaluating

every associate word. Unfortunately, in many interesting problem domains it is difficult to

determine these equivalences on associate words, and we often have no choice but to

exhaustively try all alternatives.

) In many cases it is also possible to avoid total evaluation of all associate words, in

the sense that each production need not separately be executed for each associate word

in which it appears. As each associate subword uniquely determines a relation on the data

base, multiple evaluation of identical (matching) subwords is often unnecessary. For ex-

ample, if two associate words have matching prefixes, then the relation determined by this

prefix need only be evaluated once, provided that other constraints (such as storage re-

quirements) are satisfied. The resulting reduction in computational effort can be very large,

especially in problem domains which are characterized by disjoint production sequences.

As mentioned above, problems which can be represented by AND/OR trees fall into this

18 CONTROLLED PRODUCTION SYSTEMS 4.

class, and the classical AND/OR search methods exploit subword matching to some degree.

However, the standard methods still re-evaluate matching subwords if they occur on dif-

ferent OR branches, and this can be grossly inefficient. In the area of language processing,

a number of schemes exist which make better use of matching subwords [Eariey 1967,

Kaplan 1973], but such do not seem to have been used in other problem domains.

4.2. Ordering the Alternatives,

The second means of improving the efficiency of production systems is by ordering

the open productions or associate words so that the more promising ones are tried first.

This problem has received considerable attention, and a large number of schemes have

been proposed [see Davis 1975). In most of these schemes the ordering of productions is

specified for the current conflict set only and cannot be subsequently updated or altered.

However, greater control over the efficiency of the system can be obtained by allowing

the open productions in earlier conflict sets to be (dynamically) re-ordered.

The question then arises as to whether one can do better than an optimum dynamic

ordering and re-ordering of the productions occurring in the current and predecessor conflict

sets. In a standard backtrack scheme we usually backtrack to the most recent choice point

i.e. to the closest open conflict set. Clearly, it may be that none of the open productions in

. this conflict set are very promising, and we may wish to return to an earlier choice point.

We could effect such a return by closing all subsequent conflict sets. However, a more

flexible scheme would expand the highest priority production, irrespective of which conflict

set it appeared in. Thus we could backtrack to the conflict set containing the highest

priority production while retaining ail the conflict sets so far generated, Such best-first

schemes are quite well known in AND/OR tree search [see Niisson 1971] but have rarely

been Incorporated in production systems.

We can adopt a different perspective and view the choice as being between associate

_ words rather than productions. This choice may simply be based on such properties as

length of associate word, or may at the other extreme be dynamically determined on the

basis of success indicators in the data base, For a pure production system, however, we

are faced with two problems, one being that the associate language is usually difficult to

ascertain and the other being that it is difficult to ascribe any intuitive meaning to the

associate words. One consequence Is that providing heuristic guidance on the choice of

associate words is extremely difficult. The situation is different for a controlled production

system. The associate language is a subset of the control language, so that any ordering

of control words provides an ordering for associate words. Secondly, to the extent that

the control language has an intuitive basis, so, to a greater or lesser degree, would this

| —

4, NON-DETERMINISM 19

ordering reflect intuitively meaningful knowledge of the problem domain.

Perhaps at this stage we should try and provide some of that intuitive support. A

control language can be viewed as a class of strategies or plans for using our knowledge

about the problem domain. Now we could attempt to obtain a solution to a given problem

by trying first one strategy, and then others, until one proved to be successful --- that

is, by trying one control word, then another, etc. If we have no knowledge of the likely

outcomes of the various competing strategies, the order in which we attempt the strategies

will depend on such properties as strategy depth (control word length), strategy similarities

(subword matching), etc., and perhaps various implementation characteristics. The usual

backtrack and parallel processing schemes are just two of the numerous possibilities. On

the other hand, if we have knowledge about the problem domain that enables us to order

the strategies on the basis of likelihood of success, then this information can be used to

dynamically select the most promising strategy.

What we are suggesting, then, is that if a problem is well modelled by a controlled

production system, then we should be looking at choosing between strategies or lines of
reasoning” (as, for example, in NASL) rather than between individual productions (as in

TEIRESIAS). Implementation-wise the two approaches amount to the same thing, but the dif-

ference in conceptual viewpoints can lead to quite different problem solving methodologies.

In particular, we can free ourselves of the backtracking mentality --- backtracking to the

most recent choice point is seen as a general but very weak meta-strategy. It takes no

account of information that may have been derived since that choice point, and does not

allow for dynamically changing lines of reasoning. More powerful schemes are suggested

by the alternative paradigm. For example, the presence of two alternative strategies at a

particular stage of execution may suggest a third and completely different strategy [see

McDermott 1977 J], or the lack of success of a certain strategy may suggest a corrective

strategy with which we can continue [again, see McDermott 1877].

© 4.3. Meta-level Knowledge.

Any system that treats a controlled production system as an object to be manipulated

or reasoned about is called a meta-level system relative to that CPS, and the knowledge

invested in that system is called meta-level knowledge.

Knowledge of the equivalence classes of production sequences is of such type. On

the other hand, knowledge about the ordering of open productions or associate words,

and similarly about the direction of evaluation (forward-chaining, backward-chaining, etc.),

constitutes a somewhat different type of meta-level knowledge. Unlike the first type of

meta-level knowledge, the latter is relative not to the abstract CPS but rather to the im-

|—

20 CONTROLLED PRODUCTION SYSTEMS 4,

plementation of the CPS on a sequential machine. It is an important distinction to make, but

having made it, it is sufficient for our purposes to treat the two types of meta-knowledge

as the same.

Now in all the above cases, the meta-level knowledge functions solely as a means for

improving efficiency. Given enough time, the same solutions would be achieved by a system

without meta-level knowledge as with meta-level knowledge. /n contrast to the control-level

component of the system, solutions are independent of the meta-level component, although

the order in which they are produced is so dependent.

The difference between control-level knowledge and meta-level knowledge is critical,

both on intuitive and formal grounds. Intuitively, control knowledge specifies a sequence of

actions to take, perhaps dependent on conditions maintaining in the object-level world. For

example, it may be that we first move our hand to a block and then grasp it [Rychener 1877],

or that we construct a collector and emitter before coupling them [McDermott 1977]. On

the other hand, meta-level knowledge is about the utility of such plans and which are the

most appropriate in a given situtation. If lost in the jungle, you may decide to opt for a plan

that takes you back to your starting point or, alternatively, for one that tries to correct

for your error. You reason about plans or strategies, deciding which is the best one in the

circumstances.

On a formal level the distinction is even more important. The relation computed by a

controlled production system is completely defined by the production set and the control

language. Meta-level knowledge cannot alter that relation.

Unfortunately, the distinction between control-level knowledge and meta-level knowledge

Is simply never made. For example, in one of the nicer studies on invocation in production

systems [Davis 1977a], meta-level knowledge is viewed as “information about which chunk

of knowledge to invoke next when more than one chunk may be applicable” --- a definition

which is equally applicable to control-level knowledge. The problem arises from the nature

_ of production system architecture. When a conflict set contains more than one production,

some conflict resolution scheme needs to be employed to select one of these productions

for evaluation. Now if the conflict resolution scheme allows for all (non-equivalent) produc-

tion sequences to be tried (under some backiracking or parallel processing scheme), then

only system performance is affected, On the other hand, if the conflict resolution scheme

is such that some alternative (and non-equivalent) production sequences are never tried,

then it acts as a constraint on production invocation that affects solution in the same way

as does a control language. Because there are no other means available, conflict resolution

schemes are usually used in both ways --- partly to gain efficiency and partly to effect

control [e.g. Rychener 1977]. What a solution then represents is anybody's guess.

a

4, NON-DETERMINISM 21

There is another way in which one may wish to use meta-level knowledge --- that

is, as a means for determining, rather than just guiding, solution. Some of the corrective

strategies of McDermott [1977] may be seen in this way, as also can some of the schemes

used in PLANNER [Hewitt 1972] (e.g THNOT construct) and other production systems (e.g.

resource limited reasoning [Winograd 1878]). However, the “solutions,, obtained by using

such meta-ieveiknowledge would not be solutions of the object-level CPS, and from a formal

viewpoint this is highly undesirable, A particular case in point is PROLOG [Warren 1976],

where so-called control information is primarily meant to enhance efficiency, and in this

sense functions as a rather limited form of meta-level knowledge. However, certain useages

of control information also throw away proofs that would otherwise be obtainable (e.g. the

slash symbol), and thus act as constraints on solution in the manner of a control language.

This confusion of control-level and meta-level knowledge can lead to serious error. Further,

some control information (e.g. the slash symbol) is used to obtain solutions not otherwise

obtainable (in a sense like THNOT of PLANNER), and this aggravates the problem. Similar

difficulties are found in other systems (e.g. if you've been trying to determine investment

timescale for more than 5 cycles, give and try something else [Davis 1977a]).

Of course one way around this difficulty is to change the controlled production system

so that the knowledge contained In those meta-level rules that constrain solution is em-

bedded either in new object-level productions or in a new control language. A less drastic

course is to define the object that the "solutions" are solutions to. Perhaps one of the nicest

ways of doing this is to represent the meta-level knowledge in a meta-level CPS, so that

the “solutions,, are solutions of the meta-level CPS (in effect, this allows the interpreter

to be dynamically modified [Lenat& McDermott 1977], see also [Weyhrauch 1979)). As

soon as we do this, we allow that control-level knowledge be represented at the meta level

rather than at the object level. The question then arises as to why we bothered to objectify

the control component at all, This can be answered in two ways, If one likes, the control

component can be treated as meta-level knowledge of a certain kind which does not depend

"on previous states of the data base or on previous attempts at solution. Its importance,

and the reason we distinguish it from other types of meta-level knowledge, is that it is

particularly common and natural in problem solving, and Is Intultlvely and practically distinct

from other forms of knowledge. But a more fundamental reason for having a formal model

that includes a control component is that the underlying interpreter --- which operates at

the topmost level --- can then order production execution. If, in contrast, this interpreter is

modelled by a (pure) production system without control, then there is no means of ordering

execution --- one can mention orderings on productions, but the order in which they are

actually evaluated will depend on the order in which the interpreter chooses to evaluate

22 CONTROLLED PRODUCTION SYSTEMS 4.

the top-level productions. Consequently, a necessary component of such schemes is the

appendum "We have chosen to evaluate expressions in such and such an order,,.

4.4. Representation of Meta-level Knowledge.

The objects of the meta-level system are the-productions, control words and the data

base of the object-level controlled production system, and can be specified either syntac-

tically or semantically, Most of the schemes used in present production systems limit meta-

level knowledge to ordering productions in the current conflict set, and most specify this

ordering syntactically (i.e. in terms of the names of the productions). As one would expect,

the additivity of the system quickly deteriorates. Additivity can be preserved, however, if

the ordering on productions appearing in each conflict set is specified, not syntactically,

but semantically i.e. in terms of the interpretation of the productions. Furthermore, seman-

tic specification is richer than syntactic specification, and more complex forms of meta-

level knowledge are more easily represented. Such schemes have been successfully used

in both the MYCIN system [Shortliffe 1978] and the TEIRESIAS system [Davis 1977a].

Both these systems specify the ordering of productions in terms of their properties rather

than their names. Systems like HEARSAY II [Ermann & Lesser 1976] and STRIPS [Fikes &

Nilsson1971] also use semantically based ordering schemes, but the amount of accessible

semantic information is limited.

Control words appear as objects of meta-level knowledge in NASL [McDermott 1977],

where CHOICE procedures are based on task and plan analysis. Recent work with ATNs has

also seen the introduction of such meta-level knowledge [e.g.Finen&Hadden1977], al-

though this is represented syntactically rather than, as in NASL, in terms of the interpretation

or function of the control words.

As in the case of specifying control-level knowledge, there are considerable ad-

vantages in using a controlled production system to represent meta-level knowledge [see

also Davis 1977a]. Such an approach has the practical advantage that the same inter-

- preter can be used for both the object-level CPS and the meta-level CPS. More important,

however, is that it allows of a uniform formalism. In particular, this means that we can

recursively provide higher and higher levels of meta-knowledge. Secondly, it allows an

adequate formalism of the type of meta-knowledge that is used in determining, rather than

just’ guiding, solution. That is, the solutions can be seen as solutions of the meta-level CPS,

rather than as some intuitive object somehow arising from the execution of the object-

level CPS.

4, NON-DETERMINISM 23

4.6. Subgoal Dependencies and Subgoal Protection,

As we mentioned in Section 4.1, considerable gains In efficiency can be achieved

if the production system is disjoint (or decomposable). Not only can we readily establish

equivalences on production sequences but we can treat each subtask independently of

other subtasks and thus further reduce the amount of computation required. However,

many interesting problems do not satisfy this property. One approach to such problems is

simply to assume disjointness, and then to interleave or patch the solution where violations

of subgoal preconditions occur [e.g. Sacerdoti 1975, Dawson & Siklossy 1977, Rieger &

London 1977]. However, all these schemes are essentially ad hoc, and it is difficult either

to establish the validity of the solutions obtained or to ascertain which kind of problems

are suited to such an approach.

These difficulties arise primarily because there is no adequate notion of control in

production systems. When we do have a model of control it becomes apparent that what we

are really trying to do is to transform the given production system into an equivalent disjoint

production system with control constraints, It is not too difficult to provide a formalism

defining such equivalences, and it is then relatively straightforward to construct schemes

for realizing such transformations in a uniform and consistent way.

We can indicate what we have in mind using the classical 3-block problem of Sussman

~ [1973]. Consider a simple blocks world environment consisting of three blocks, A, B and C,

and a table. In the initial state, blocks A and B are on the table and block C is on block A.

The goal is to achieve a new configuration of blocks where block A is on block B which in

turn is on block C. The only action that can be applied to the blocks is PUTON (x,y), which

places block x on y.PUTON(x,y) is not applicable unless x has a clear top and either y is

the table or y is a block with a clear top. The problem is to develop a sequence of actions

that will achieve the goal state.

Let us represent the goal state by the statement AND(ON(A,B),ON(B,C)). Then using a

recursive backward-unwinding scheme the subgoals ON(A,B) and ON(B,C) would be set up.

" Now suppose the system tries to achieve ON(A,B) first. This can be done by PUTON(A,B),

but requires that the subgoals CLEARTOP(A) and CLEARTOP(B) be set up. The second of

these is achieved immediately, and the first by doing PUTON(C,TABLE). Having thus achieved

ON(A,B), the system will attempt to achieve ON(B,C). But in order to achieve this goal, B

will have to be cleared, thus undoing the subgoal it achieved first.
On the other hand, if the system tries to achieve ON(B,C) first, it will end up even

further away from the goal state than it was initially.

Now consider what happens if we use a CPS to represent the blocks world. The problem

is, of course, to find an (optimal) control language sentence having the specified initial and

§

24 CONTROLLED PRODUCTION SYSTEMS 4.

goal states. So it would appear that we really have not got very far by our reformulation.

However, we do have some information about the control language, which is to the effect

that the post-conditions resulting from the application of an operator should not violate

the pre-conditions required of a subsequent operator. Now this is fio more than a control

constraint, and can be semantically specified as follows

if the action part of an (instantiation of a) production contains PUTON{x,y)

where y a TABLE, then it cannot be immediately followed by an
(instantiation of a) production whose condition part contains CLEARTOP(y)

Further, we know that In an optimum solution we will never place one block on top

of another block that has to be subsequently cleared, This means that we can drop the

“immediately” from the above constraint on the control language. Given, then, this partial

specification of the control language, let us run through the actions of a backward-unwinding

recognizer.

As before, the initial goal will cause the subgoals ON(A,B) and ON(B,C) to be set up. Now

in order to satisfy the above condition on the control language, the production that achieves

ON(A,B) must follow the production that achieves ON(B,C). This means that prior to achieving

ON(A,B) we must achieve not only CLEARTOP(A) and CLEARTOP(B), but also ON(B,C). Of these

subgoals, the condition on the control language, plus matching with the initial state, requires

"that ON(B,C) be achieved after CLEARTOP(A). The new set of subgoals (to be achieved

before ON(B,C)) is then CLEARTOP(A), CLEARTOP(B) and CLEARTOP(C). The latter two are

satisfied Immediately, and CLEARTOP(A) is directly achieved by PUTON(C,TABLE).(PUTON(C,B)

cannot be used as it would violate the conditions on the control language).

The conditions placed on the control language have thus resulted in achieving an

optimum solution without backtracking (i.e. deterministically). While determinism is not

guaranteed in all such blocks world problems, the degree of non-determinacy is considerably

reduced. On the other hand, a PS in which all production sequences are tried will be non-

_ deterministic, and one which assumes independence of subproblems, and thus uses the

equivalences on production sequences to reduce the degree of non-determinacy, will fail

to achieve a solution. This is because the subproblems are not independent and the problem

reduction operators do not have the Church-Rosser property --- that is, the solution is not

independent of the order of their evaluation, In particular, the "depth-first" orderings on

production invocation that are realized in a recursive scheme do not represent all possible

orderings and in this case fail to contain the solution.

Most other approaches also have difficulty with the above problem, essentially on the

same grounds. STRIPS [Fikes and Nilsson1971]}, ABSTRIPS [Sacerdoti 1974] and HACKER

[Sussman1873] only manage non-optimal solutions, whereas most methods that do find

 “S—

4, NON-DETERMINISM 25

optimal solutions (e.g. Manna & Waldinger [1974], INTERPLAN [Tate,1974]) use extensive

backtracking. A number of more powerful systems have been more successful. Sacerdoti

[1975] describes a system that finds an optimal solution deterministically, using a collection

of “critics” to perform the same role as the control language condition does in the above

CPS. Dawson & Siklossy[1977) obtain a solution using a preprocessing scheme, and Rieger

& London [1977] use “guardian clusters" to protect against subgoal annihilation, Again,

both of these schemes can be viewed as somewhat restricted means for achieving control

language constraints.

The common characteristic of most of these approaches is that subgoal dependence

is viewed as a problem rather than an asset. However, as should be clear from the above,

such dependencies can be used to as much advantage as the independencies in other

problem domains, To paraphrase Rieger [1877], a controlled production system gives us the

best of both worlds: modularity in problem solving knowledge, yet harmony in the synthesis

of large plans.

26 CONTROLLED PRODUCTION SYSTEMS 4,

5. Some Issues

In this section we will touch on some of the issues raised in earlier sections.

5.1. Syntax and Semantics,

There are two occasions on which we need to refer to productions: one when specify-

ing the control language, and the other when representing meta-level knowledge. Now

each production has a name and an interpretation (Defn.2.1.), and either may be used to

reference that production. We will call reference to a production or production sequence

a syntactic specification if it is by name alone, and a semantic specification if it depends

on the interpretation of the production(s).

Now the syntactic specification of productions or production sequences is well under-

stood. The problem that concerns us is how to specify the semantic content of productions,

or in more general terms, of procedures, modules or knowledge sources. Of course, the

semantic content of a production is simply its interpretation, but this is not usually explicitly

represented. Now as a production is, in general, going to be represented by a string of

symbols, one means of obtaining semantic information is by analysis of this symbol string.

. That is, if we wish to know whether the action of a production P assigns the variable X

the value 2, we check the RHS code of P to see whether it contains, say, 'X «— 2’. More

rigidly specified, this information may be represented as

substring(RHS(P),'X « 2’).

Similar devices are used in TEIRESIAS (e.g. the MENTIONS predicate).

One problem with this approach is that it is in direct opposition to the currently prevalent

view that only the effect of a production or module should be visible to the external world.

-Consequently, should the RHS of the production be recoded to look something like

2Xe—2

the above rule for specifying the semantic content of the production would fail.

A better approach may be to provide some language for describing the semantic domain

together with an Inference device for determining the semantics associated with each

production. For example,the above semantic information could be expressed in a predicate

calculus like form:

action(P, assign(X, 2)))

Ee

S. SOME ISSUES 27

and the inference device have rules of the form:

Vpzzy . RHS(p, 2) A contains(z, x + y) D action(p, assign(z, y))

Of course, the inference rules would need augmenting if recoding as above was allowed,

but to the external world the workings of the production would remain hidden. Perhaps the

most sophisticated approach along these lines is the use of rule models in TEIRESIAS [Davis

1977b].

One problem with this approach is that the inference rules become exceedingly com-

plex when the productions are allowed to take more complex forms. This may be an argument

in favour of keeping productions relatively simple [cf.Lenat & McDermott 1977]. In fact,

much of the power of a controlled production system may well lie in the extent to which

the semantics of productions are machine recoverable from their syntactic form.

Another alternative is to include with each production a specification (in the language

of the semantic domain) of its effect or intent. In the simplest case, this may be a list of

external descriptors or a list of pre-conditions and post-conditions (e.g. the add and delete

lists of STRIPS [Fikes &Nilsson1971]). More complex descriptions would require some

inference device, but the inference rules would be independent of the actual coding of

the productions (for arguments against this approach, see [Davis 1877a]). Such a system

“would also enhance the explanation facilities of the system (cf. the “rationale " commentary

in annotated production systems (Goldstein & Grimson1877]).

Of course, the difficult task is to define the language of the semantic domain and to

construct the inference device. Again, there is considerable advantage to using a controlled

production system to represent the inference device (see Section 3.2). In the above ex-

ample, the above implication simply becomes a production (see also [Davis 1977a]). Such

an inference device could then be directly Included In the control level CPS, although if

meta-level information is also semantically based it may be desirable to keep the inference

.system separate.

5.2. Distribution of Control.

Formally, the control information in a controlled production system is not available to

the object level productions --- in a sense, it takes place above them. Thus object level

productions cannot of themselves send control to other productions (on either syntactic or

semantic grounds), nor can they take control from other productions (on either syntactic or

semantic grounds), However, in an implementation of a controlled production system it may

be desirable to specify some control level information along with each production. We will

call such units of object-level and control-level knowledge modules or knowledge sources.

28 CONTROLLED PRODUCTION SYSTEMS 5.

In order to retain the flexibility and extensibility of the system, there should be few

restrictions on the forms of control allowed to modules. Thus a module may specify a

successor module or set of modules and thus "send" control, or It may specify a predeces-

sor module or set of modules and thus "take" control, In fact, there is no reason why a

module could not specify an nth successor or predecessor, although the usefulness of such
schemes would appear limited.

Similarly, both syntactic and semantic forms of control should be allowed. Semantic

specification allows modules to send tasks to other modules that satisfy given properties,

or to restrict the modules from which it will take or receive tasks, Thus invocation need

not be solely dependent on the state of the data base returned by the preceding module

--- as it is in the usual production system --- but can be specified in terms of any of the

properties of either the sending module or of the receiving modules. Further, specifications

can go both ways, so that a given module m will only be invoked if m is contained in the

successor set of the current module and the current module is contained in the predecessor

set of m. If these specifications are semantically based, then there is the potential for

any degree of information transfer between the caller and the respondent. Contract nets

[Davis & Smith 1978) provide one means of implementing such a scheme.

6.3. Additivity and Learning,

As for production systems, controlled production systems are potentially extensible

and able to accept new information additively without major re-organization. The reasons

for this are twofold. Firstly, and most importantly, invocation criteria can be based on

the semantic content of productions rather than on name, This, together with the non-

deterministic nature of invocation, renders the system quite resilient to changes in the

production set. Secondly, invocation does not have to reside with the sender, so that there

iS no need to modify existing productions to provide for the invocation of new productions.

The relative ease of augmenting and modifying the productions in a controlled produc-

"tion rystem augers well for their ability to aquire new knowledge, either through instruction

or experience. For a controlled production system there are three areas in which such

learning can take place, viz.

(i) object level knowledge

(if) control level knowledge

(ii) meta leve! knowledge

Knowledge acquistion in the latter two areas is of particular importance as, apart from

the possible effect on the solutions obtained, It is here that significant improvements In

efficiency can be achieved. Interestingly, the more we know about the control language

5. SOME ISSUES 29

the closer we get to a deterministic algorithm, and consequently the less we need know

at the meta-level.

There is a considerable body of literature on learning in production systems [e.g. Davis

1976, SIGART 1977], although in all cases this is limited solely to the modification of object

level knowledge. Although we will not address the problem here, it is not difficult to see

how many of these schemes could be extended to handle the other levels as well.

Another area of learning concerns production reference. If the system is reasonably

stable, it is clear that we can achieve considerable gains in efficiency by transforming

semantically specified invocation information into syntactically specified information during

execution. Thus as the system discovers that certain productions or modules satisfy the

required semantic properties, it could replace the semantic specification with a syntactic

specification, perhaps retaining the former in the background in case these productions are

modified or deleted. From a cognitive point of view, we could consider this to correspond

to a transfer of invocation criteria from the conceptual (or formal operations) domain to a

subconscious (stimulus-response) domain. Memo functions are somewhat analagous. The

advantage of such a mechanism is that it achieves the best of both the semantic and
syntactic worlds: the power, flexibility and robustness of the semantic specification is

retained while at least approaching the efficiency of the syntactic specification.

30 CONTROLLED PRODUCTION SYSTEMS 5.

4. Conclusions

A formal model for representing control In production systems has been defined, provid-

ing a uniform framework in which control issues can be addressed. Most importantly, the

formalism allows control to be directly specified independently of the conflict resolution

scheme, and thus allows the issues of control and nondeterminism to be treated separately.

Most control constructs were shown to be easily specified within this formalism --- in

particular, multiple production memories {Lenat& McDermott 1 977], subtask and successor

relations [e.g. McDermott 1977], slot filling advice, augmented transition networks [Woods

1970], and the standard control constructs of procedural languages.

It was also shown that the formalism provides a basis for implementing control con-

structs which retain all the properties desired of a knowledge based system --- modularity,

flexibility, extensibility and explanatory capacity. The introduction of a separate control

component was shown to provide additional channels of communication between knowledge

sources, and to remove most of the difficulties associated with the single, public channel

available to production systems without control. Most importantly, it was seen that all of the

properties desired of a knowledge based system are not a function of the lack of control

~ constraints, but of the type of information allowed to establish these constraints.

Within the formalism it was also possible to provide a meaningful notion of the power of

control constructs. This enabled the types of control required in production systems to be

examined and the capacity of various schemes to meet these requirements to be determined.

Schemes for improving system efficiency and resolving nondeterminism were examined,

and devices for representing such meta-ievel knowledge were described. In particular, the

objectification of control information was shown to provide a better paradigm for problem

solving and for taiking about problem solving --- we have plans or strategies for solving

_ problems, and we have meta-plans or meta-strategies for reasoning about them. It was

also shown how the notion of control provides a basis for a theory of transformation of

production systems, and how this provides a uniform and consistent approach to problems

involving subgoal protection.

. The importance of control information should not be underemphasized. In placing con-

straints on production invocation, control reduces the interaction between knowledge units.

The more control constraints we impose, the fewer patterns of interaction have to be ex-

plored, and the smaller and less complex the search space, To paraphrase Hayes [1977],

it is precisely the restrictions on interactions in controlled production systems that makes

them so useful.

4, CONCLUSIONS 31

Acknowledgements

| would like to acknowledge the value of my discussions with Jorge Phillips, Nils Niisson

and Wolfgang Polak.

32 CONTROLLED PRODUCTION SYSTEM6 4.

References

Anderson, J. (1976) Language, Memory and Thought L. Erlbaum Assoc., N.Y.

Davis, BR. (1976) “An Overview of Production Systems”, Report STAN-CS-76-624, Stanford

Al Lab.)

Davis, R. (1977a) “Generalized Procedure Calling and Content-Directed Invocation” SIGPLAN/SIGART

Newsletter (August), pp. 45--64.

Davis, R.(1977b) “Interactive Transfer of Expertise: Acquisition of New Inference Rules”,

Proc. lJCA! 5, pp. 321--328.

Davis, R.& Buchanan, B.G. (1977) "Meta-Level Knowledge: Overview and Applications”,

Proc. lJCAI 5, pp. 820--927.

Davis, BR, & Smith, R.G. (1978) " Distributed Problem Solving: the Contract Net Approach”,

TR-CS-688, Stanford Unl. Comp. Sci. Dept.

Dawson, C.& Siklossy, L. (1977) “The Role of Preprocessing in Problem Solving Methods”,

Proc. lJCAl 5, pp. 466--471.

Earley, J.C. (1967) “Generating a Recognizer for a BNF Grammar” Computing Center Paper,

Carnegie-Mellon Uni.

Engelfriedt, J. (1974) Simple Program Schemes and Forma/ Languages, Lecture Notes in

Comp. Sci. Series, ed. G. Goos & J. Hartmanis, No. 20, Springer Verlag, N.Y.

Ermann, L.D.& Lesser, V.R., (1975) “A Multi-level Organization for Problem Solving using

many diverse cooperating Sources of Knowledge”, Proc. IJCAI 4, pp. 483--490.

Feigenbaum, E.A., Buchanan, B.G.& Lederberg, J, (1971) “On Generality and Problem

Solving --- a case study involving the DENDRAL program”, STAN-AIM-1 31 Stanford Uni., Ca.

Fikes, R.E.& Nilsson, N.J. (1971) “STRIPS: A New Approach to the Application of Theorem

Proving to Problem Solving”, A/ Journal, 2, pp. 189--208.

Finin, T. & Hadden, G. (1977) “Augmenting ATNs", Proc. IJCAI 5, pp. 198.

Fischer, M.J. (1968) “Grammars with Macro-like Productions”, IEEE 9th Annual Symposium

on Switching & Automata Theory, pp. 131--142,

Goldstein, I.P. & Grimson, E, (1977) “Annotated Production Systems: A Model for Skil

Acquisition" Proc. [JCAl 5, pp. 311--317.

Hayes, P.J. (1977) "In Defense of Logic”, Proc.lJCAI 5, pp. 669--666.

Hewitt, C. (1972) “Description and Theoretical Analysis (using Schemata) of PLANNER: a

Language for Proving Theorems and Manipulating Models in a Robot”, TR-268, MIT Al Lab. |

Kaplan, R.M. (1973) "A General Syntactic Processor” in Natural Language Processing,

Courant Comp. Sci. Series, ed. R. Rustin, Algorithmics Press, N.Y.

|w——

4. CONCLUSIONS 33

Lenat,D.B. (1077) “Automated Theory Formation in Mathematics”, Proc.lJCAI §&, pp. 833-

-842.

Lenat,D.B., & McDermott, J. (1077) “Less Than General Production System Architectures”,

Proc. IJCAIl 5, pp. 28--932. .

McDermott, D. (1077) “Flexibility and Efficiency in a Computer Program for Designing

Circuits’,, Al-TR-402, MIT Al Lab.

Manna, Z. & Waldinger, R. (1074) “Knowledge and Reasoning in Program Synthesis,’, Tech.

Note 08, Al Center, SRI, Menlo Park, Ca.

Moran, T.P. (1073) "The Symbolic Imagery Hypothesis: A Production System Model’,, Comp.

Sci. Dept., Carnegie-Mellon University, (December).

Nilsson, N.J. (1071) Problem Solving Methods in Artificial Intelligence, McGraw-Hill, N.Y.

Pettersen, O. (1075) “Procedural Events as Software Interrupts,, Report STAN-CS-75-

501, Stanford Uni.

Post, E. (1943) " Formal Reductions of the General Combinatorial Problem’,, Am Jnl Math,

65, pp. 197--268. --

Rieger, C. & London, P. (1077) “Subgoal Protection and Unravelling during Plan Synthesis”,

Proc. JCAl 5, pp. 487--4938.

Rychener, M.D. (1977) “Control Requirements for the Design of Production System Architectures”

SIGPLAN/SIGART Newsletter (August), pp. 37--44.

Sacerdoti, E.D. (1074) “Planning in a Hierarchy of Abstraction Spaces,,, Al Journal, 6,2,

pp. 116--1 35.

Sacerdoti, E.D. (19786) “The Nonlinear Nature of Plans,,, Proc.!JCAl 4,

Salomaa,A. (1073) Forma/ Languages, Academic Press, N.Y.

Shortliffe, E.H., Davis, R., Buchanan, B.G., Axline, S.G., Green, C.C, & Cohen, B. N.

(1975) “Computer-Based Consultations in Clinical Therapeutics --- explanation and rule

acquisition capabilities of the MYCIN system,’, Computers and Biomedical Research.

" SIGART Newsletter No, 63 (1977) Proceedings of the Workshop on Pattern Directed

Inference Systems

Sussman, G.J. (1073) “A Computational Model of Skill Acquisition”, Al-TR-207, MIT Al Lab.

Tate, A, (1074) “INTERPLAN: A Plan Generation System which can deal with Interactions

| between Goals,,, Mem. MIP-R-109, Machine Int. Research Unit, Edinburgh Uni.
Warren, D.H.D. (1077) “Implementing Prolog --- Compiling Predicate Logic Programs” Al-

Report, Edinburgh Uni.

Weyhrauch, R.W., (1070) "Prolegomena to a Theory of Mechanized Formal Reasoning”, fo

appear in Al Journal.

EE

34 CONTROLLED PRODUCTION SYSTEMS 4.

Winograd, T. (1078) “Extended Inference Modes in Reasoning by Computer Systems,, to

appear in the Proceedings of the Conference on Inductive Logic, Oxford Uni.

Winograd, T. (1070) “Beyond Programming Languages,, to appear.

Woods, A.T. (1070) “Transition Network Grammars for Natural Language Analysis,,, Comm.

ACM, 13,10.

