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Abstract

A program is described which computes Schwarz-Christoffel transformations
that map the unit disk conformally onto the interior of a bounded or unbounded
polygon in the complex plane. The inverse map is also computed. The computa-
tional problem is approached by setting up a nonlinear system of equations whose
unknowns are essentially the “accessory parameters” z;. This system is then solved
with a packaged subroutine.

New features of this work include the evaluation of integrals within the disk
rather than along the boundary, making possible the treatment of unbounded
polygons; the use of a compound form of Gauss-Jacobi quadrature to evaluate the
Schwarz-Christoffel integral, making possible high accuracy at reasonable cost;
and the elimination of constraints in the nonlinear system by a simple change of
variables.

Schwarz-Christoffel transformations may be applied to solve the Laplace and
Poisson equations and related problems in two-dimensional domains with irregular
or unbounded (but not curved or multiply connected) geometries. Computational
examples are presented. The time required to solve the mapping problem is roughly
proportional to N3, where N is the number of vertices of the polygon. A typical
set of computations to 8-place accuracy with N < 10 takes 1 to 10 seconds on

an IBM 370/168.
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[. INTRODUCTION

1. Conformal mapping and its applications

One of the classical applications of complex analysis is conformal map-
ping: the mapping of one open region in the complex plane C onto another
by a function which is analytic and one-to-one and has a nonzero deriva-
tive everywhere. Such a map preserves angles between intersecting arcs in
the domain and image regions; hence the name conformal. The Riemann
Mapping Theorem asserts that any simply connected region in the plane
which is not all of C can be mapped in this way onto any other such
region. The theorem does not say what this mapping may look like, however,
and the determination of particular conformal maps for particular mapping
problems has been an active problem since at least 1850.

The usefulness of conformal mapping for applied problems stems from
the fact that the Laplacian operator transforms in a simple way under a
conformal map. Let j:C —C map a region I, in the z-plane conformally
onto a region {1, in the w-plane, and let A, and A,, denote the Laplacian

2 2 2 2 . .
operators £y + g;; and £y + £y, respectively, where 2= x 4ty and
w == U + tv. Then we may easily show,

£,(z) = If (@) Aud(f(w) (L.1)
for ¢:0, =R suitably differentiable, A conformal map has |f'(z)| > 0 every-
|



where; thus from (1.1) it follows that if ¢(2) is the solution to the Laplace
equation A,¢$ =0 in 2, subject to Dirichlet boundary condition6 ¢(z)=
g(z) on the boundary Iy, then ¥)(w) = ¢(f—!(w)) is a solution to the Laplace
equation Ay¥ = 0 in the image region €y, = f(€,), subject to the image
boundary condition6 {w)= g(f~!(w)) on the boundary I'y, = f(T;). (We
have assumed that f map6 I', bijectively onto the boundary of §2,. This is
not always true, but it is true if both region6 are bounded by Jordan curves.
See [Henrici, 1974), Thm. 5.10e.)

More generally, from (1.1) we can see that Poisson’s equation, A,¢(2) =
p(z), transforms under a conformal transformation into a Poisson equation
in the w-plane with altered right hand side:

Aup(w) = |7 W)~ o(fH(w)) . (1.2)

Furthermore, more general boundary condition6 than Dirichlet also trans-
form in a simple way. For example, the Neumann condition 5‘3;¢(z) = h(z),
where g2~ is a normal derivative in the x-plane, transforms to zZ-(w) =

1(F(w)) |7 h(f—(w)). We do not pursue such possibilities further here;
for a systematic trecatment 6ee chapter VI of [Kantorovich & Krylov, 1958].
Some computed example6 are given in Section V.,

Traditionally, conformal mapping ha6 been applied most often in two
areas. One is plane electrostatics, where the electrostatic potential ¢ satisfies
. Laplace’s equation. The other is irrotational, nonviscous fluid flow in the
plane, which may be described in term6 of a velocity potential @ that also
satisties Laplace’s equation.

2. The Schwarz-Christoffel transformation

The problem of mapping one complex region conformally onto another
is in general very difficult, but for the special case of polygonal region6 it
can be greatly simplified, Suppose that we seek a conformal map from the
unit disk in the x-plane to the interior of a polygon P in the w-plane whose
vertices are wy,..., wn, numbered in counterclockwise order, For each k,
denote by Bk the exterior angle of P at wg:




For any polygon we have a simple relationship among the numbers B:

N
D h=12. (13)
k=1

If wy is a finite vertex, we have —1 < f < 1. We need not require, however,
that P be bounded, It may have a number of vertices at complex infinity, and
the exterior angle6 corresponding to these may fall anywhere in the range
1 < Bk < 3. Such angle6 are defined to be equal to 2% minus the external
angle formed in the plane by the intersection of the two sides involved, if
they are extended back away from infinity. The following example should
illustrate what is meant by various values of f: it is a polygon with five
vertices wg (in this case w; == wy), with corresponding values (B, . . . . f5) =

(%»%:%)%"1):

w2=oo
B, =4/3
W
o5
/N
w W4=Wl

As always, (1.3) holds for this example.

Let us now pick at random N point6 2z (“prevertices”) in counterclock-
wise order around the unit circle and two complex constants C and w,, and
consider the Schwarz-Christoff el formula:

w= flz) = wc-I-Cf H(l——)_mdz'. (1.4)




The quantities (1 —2'/2) always lie in the disk |w — 1| << 1 for |2 < 1.
Therefore, if we choose a branch of log(z) with a branch cut on the negative
real axis by mean6 of which to define the power6 in (1.4), w(2) define6 an
analytic function of z in the disk [2|]< 1, continuous on |2/ < 1 except
possibly at the vertices z.

The Schwarz-Christoffel formula is chosen 60 as to force the image of
the unit disk to have corner6 in it with the desired exterior angles Fgw. It
is not hard to see from (1.4) that at each point z, the image w(z) must
turn a corner of precisely this angle. This is in keeping with our purpose of
mapping the disk onto the interior of P. What the map will in general fail
to do is to reproduce the lengths of sides of rcorrectly, and to be a one-
to-one correspondence. For a suitable choice of parameter6 {2}, C, and w,
the image under f of the unit disk might be, for example,

or

Only the angle6 are guaranteed to come out right.

The variable6 z, . . .. 2N, C, and w, are the accessory parameters of the
Schwarz-Christoffel mapping problem. Our first problem-the parameter
problem-k to dctermine value6 of the accessory parameter6 so that the
length6 of sides of the image polygon do come out right. The central theorem
of Schwarz-Christoffel transformations asserts that there always exists such
a set of accessory parameters:

Theorem 1 (Schwarz-Christoffel transformation). Let obe a simply
connected region in the complex plane bounded by a polygon »with vertices
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21, ...,2N and exterior angle6 wf, where -1 < Bk < 1 if 2 is finite and
1 < Bk < 3if zx = 00, Then there exists an analytic function mapping the
unit disk in the complex plane conformally onto D, and every such function

may be written in the form (1.4).
Proof: [Henrici, 1974}, Thm. 5.12e.

In fact, for any given polygon there is not just one but infinitely many
such conformal mappings, To determine the map uniquely we may fix ex-
actly three points 2, at will, or fix one point 2, and also fix the complex
valuc w, or (a6 in a standard proof of the Riemann mapping theorem) fix
we and the argument of the derivative f'(0).

The simplicity of the explicit formula (1.4) is attractive. But because
the problem of determining the accessory parameter6 is intractable analyti-
cally, application6 of it have almost always been restricted to problem6
simplified by having very few vertices or one or more axes of symmetry.
General Schwarz-Christoffel map6 do not appear to have been used a6 a
computational tool, although experiment6 have been made in computing
them.

3. Numerical computation of the Schwarz-Christoffel Transformation

In the early day6 of computers, when a number of relatively pure
mathematicians were growing interested in computational mathematics,
the numerical computation of conformal map6 in general and Schwarz-
Christoflel transformations in particular received a flurry of attention, As
carly as 1949, the National Bureau of Standard6 sponsored a symposium on
numcrical conformal mapping. It wa6 too early, however, for algorithms to
result from this period which we could now consider practical.

In more recent years interest in numerical conformal mapping ha6 been
modest. Gaier [1964] produced a comprehensive work describing method6
for various problems in constructive conformal mapping. For the Schwarz-
Christollel problem, he proposed determining the accessory parameters 2z
by setting up a constrained nonlinear system of N — 3 equation6 relating
(1.4) to the known distances |wg— wjy|, and solving it iteratively by Newton's
method [Gaier, p.171]. Such a procedure ha6 been tried by at least three sets
of pcople: [Meyer, 1979], [Howe, 1973], and [Vecheslavov&Kokoulin, 1973].

The present work follow6 Gaier and others in formulating the parameter
problem a6 a constrained nonlinear system of equations, We believe that
this is the first fully practical program for computing Schwarz-Christoffel
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transformations, however, and the first which is capable of high accuracy
without exorbitant cost.

One innovation which make6 accurate but cheap computations possible
here is the use of a compound form of Gauss-Jacobi quadrature to evaluate
the integral in (1.4). The evaluation of this integral is central in all Schwarz-
Christoffel computations, both in determining the accessory parameters and
in evaluating the map and it6 inverse once the accessory parameters are
known. We have found that a straightforward application of Gauss-Jacobi
quadrature, a6 6ome other6 have used, can achieve only very low accuracy
in realistic problems, and we have developed a compound form of Gauss-
Jacobi quadrature to get around this difficulty (see IL3).

A second innovation here is that the computation may be performed
not just for bounded polygons, but for polygon6 with any number of vertices
at infinity. This is made possible by taking the unit disk as the model
domain rather than the upper half plane, which other6 have used, and
evaluating complex contour integrals within the disk rather than only along
the boundary. The ability to handle unbounded polygon6 is important for
applications, since one of the attraction6 of conformal mapping is that it
can reduce an unbounded problem domain to a bounded one.

The treatment of the constraints in the nonlinear system is a third
ncw fecature in this work. We have employed a simple change of variables
. to eliminate these constraints directly. This approach appear6 to be more
eflicient than other technique6 which have been tried (see [Howe,1973] and
[Vecheslavov&Kokoulin,1973]), and eliminates the need for an initial guess
of the accessory parameters.

Wc have depended in several place6 on the use of a sophisticated library
of “black box” numerical routines. Library program6 come into play here
for Gauss-Jacobi quadrature, for the solution of the nonlinear system, and
for the solution of an ordinary differential equation. Others have been used
in various experiment6 with applications. The Schwarz-Christoffel problem
is essentially a simple problem numerically once the machinery is in place,
but it is only in recent year6 that this kind of numerical machinery has
begun to be broadly available,



II. DETERMINATION OF THE ACCESSORY PARAMETERS

1. Formulation as a con&rained nonlinear system (subroutine SCFUN)

The first matter to be settled in formulating the parameter problem
numerically is, what parameter6 in the map (1.4) shall we fix at the outset
to determine the Schwarz-Christoffel transformation uniquely? One choice
would be to fix three of the boundary points 2: say, 21 == 1, =1, 2Ny = —1,
-This normalization ha6 the advantage that the resulting nonlinear system
ha6 size only (N — 3)-by-(N — 3), which for a typical problem with N=8
may lead to a solution in less than half the time that a method involving
an (N — 1)-by-(N — 1)sy6tem requires. Nevertheless, we have chosen here
to normalize by the conditions:

o =1 (2.1)

w, == arbitrary point within r

which lead to an (N — 1)-by—(N — 1) system. This choice is motivated
by considerations of numerical scaling: it allow6 the vertices to distribute
themselves more evenly around the unit circle than they might otherwise.
(An carlier version of the program mapped from the upper half plane instead
of the unit disk, but wab6 rejected: once points # began appearing far from
the origin at x = 10% scaling became a problem,) After a map has been
computed according to any normalization, it is of course an easy matter to
transform it analytically to a different domain or a different normalization
by a Mobius transformation.

Now the nonlinear system must be formulated. The final map must
satisfy N complex conditions,

wk—wc—C'/ H(l——)_pjdz’, 1<k<N. (22

=1

These amount to 2N real condition6 to be satisfied, but they are heavily over-
dctermincd, for the form of the Schwarz-Christoffel formula (1.4) guarantees
that the angles will be correct no matter what accessory parameters are
chosen. We must reduce the number of operative equations to N — 1. This
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is a tricky matter when unbounded polygons are allowed, for one must be
careful that enough information about the polygon P is retained that no
degrees of freedom remain in the computed solution.

We proceed as follows. First, we require that every connected com-
ponent of P contain at least one vertex wg. Thus even an infinite straight
boundary must be considered to contain a (degenerate) vertex. This restric-
tion eliminatcs any translational degrees of freedom. Second, at least one
component of P must in fact contain two finite vertices, and wny and w; will
be taken to be two such, This restriction eliminates rotational degrees of
freedom.

Now define

ZN N —b;
C = (wNy—w) / 1—-—) d? , (2.3)
J=I1

where 2y = 1 is fixed permanently by (2.1). Next, impose the complex
condition (real equations 1,2)

21 N Z’ _ﬁl
w) — W, = C/; H(l - ;) dZ . (2.40)
Jo= 7]

This amounts to two real equations to be satisfied.

Denote by I'y, . . . . 'y, the distinct connected components of P, numbered
in counterclockwise order. For each ¢ 2> 2, impose one more complex con-
dition: if 2z, is the last vertex of I'y in the counterclockwise direction, then

(real equations 3,4,...,2m)

—w,=C / " H (1 — —)_ﬂldz'. (2.4b)

Finally, N — 2m — 1 conditions of side length are imposed. For each
pair (2, 2k+1) beginning at & = 1 and moving counterclockwise, where both
vertices are finite, we require (real equations 2m 4 1,....N — 1)

s N o
|Weg-1 — wi| = IC/ H( 1— z_) d7
j=1 ]

(2.4¢c)




until a total of N — 1 conditions have been imposed. If P contains at least
one vertex at infinity, then every bounded side will have been represented in
a condition of the form (2.4¢c) except for the side (wn, wi), which is already
taken care of by (2.1) and (2.4a). If P is bounded, then the last two sides
in counterclockwise order—(wy—3, wn—1) and (wy—1, wy)—will not be 60
represented.

We have not stated over what contours the integrals of eqgs. (2.4) are
defined. This does not matter mathematically, as the integrand is analytic,
but it may matter numerically. In this work we have evaluated them always
over the straight line segment between the two endpoints, a procedure which
poses no domain problem6 since the unit disk is strictly convex. Figure 2.1
illustrates what contours are involved in computing the integrals in (2.3)
and (2.4), for a sample case with N = 10, m =3.

The nonlinear system is now determined, and its unique solution will
give the unknown parameters C and 2, . . .,2y—] for the Schwarz-Christoffel
mapping. We must, however, take notice of two special cases in which the
solution is not completely determined by eqs. (2.4). It was remarked that
if Pis bounded, then nowhere in egs. (2.4) does the point wn—1 appear. If
BN—154—1 or 0, then this omission is of no consequence, for the geometry
of the problem forces wy—j to be correct. If Ay—; = 0 or -1, however, then
wp -1 1s not determined a priori. The former case is of little consequence,
for since fn—1 = 0 the value taken for zy— has no effect on the computed
mapping, as may be seen in (1.4), nor is there any purpose in including wn—1
among the vertices of P in the first place. (Still, there may be problems
in solving the system (2.4) numerically, for it is now underdetermined.)
The latter case, fn—1= —1, is more serious, and must be avoided in the
numbering of the vertices wg.

2. Transformation to an unconstrained system (subroutine YZTRAN)

The nonlinear system (2.4) ostensibly involves N — 1 complex unknown
points #j, ...,2N—} on the unit circle, In dealing with such a system, we
naturally begin by considering not the points 2 themselves, but their argu-

ments G, given by
zk=c‘0*, 0 <60 <2rx. (25)

Now the system depends on N — 1 real unknowns, and the solution in terms
of the Ok is fully determined.
However, the system (2.4) as it stands must be subject to a set of strict

9



Figure 2.1 - Contours of integration within the disk. A sample Schwarz-
Christoffel problem is shown with N = 10 vertices of which m = 3 vertices are
at infinity, illustrating what integrals are computed to evaluate the system (2.4):

e 1 radial integral along (0 — 2¢) defines C (eq. 2.3)

o lradial integral along (0 — 2;) determines two real equations to fix w; (eq.
2.4a)

e 2 radial integrals along (0 — z5) and (0 — 27) determine four real equations
to fix ws and wy (eq. 2.4b)

o 3 chordal integrals along (23 —24), (2 — 25), and (g — 2;¢) determine three
rcal equations to fix |wy — wy|,[ws — wy, and  |wyg — wp| (eq. 2.4c)

TOTAL: N — 1 = 9 real equations

10



incquality constraints,

0< b <Oey1, I1<k<SN-—I, (2.6)

which embody the fact that the vertices 2 must lie in ascending order coun-
tcrclockwise around the unit circle. To solve the system numerically, it is
desirable to eliminate these constraints somehow. We do this by transform-
ing egs. (2.4) to a system in N — 1 variables ¥, . . . . Yynv—1, defined by the
formula

e—bot o <kgN—1, (2.7)

where 0y and 8y, two different names for the argument of zy == 1, are taken
for convenience as 0 and 2w, respectively.

At each iterative step in the solution of the nonlinear system (2.4),
we begin by computing a set of angles {f¢} and then vertices {2z} from
the current trial set {yx}. This is easy to do, though not immediate since
the equations (2.7) are coupled. In this way the problem is reduced to one
of solving an unconstrained nonlinear system of equations in N —1 real
variables.

3. Integration by compound Gauss-Jacobi quadrature (subroutine ZQUAD)

The central computation in solving the parameter problem, and indeed
in all Schwarz-Christoffel computations, is the numerical evaluation of the
Schwarz-Christoffel integral (1.4) along some path of integration. Typically
onc or both endpoints of this path are prevertices 2 on the unit circle, and
in this case a singularity of the form (1 —z/2)# is present in the integrand
at one or both endpoints.

A natural way to compute such integrals quickly is by means of Gauss-

Jacobi quadrature (see [Davis & Rabinowitz, 1975}, p. 75). A Gauss-Jacobi

quadrature formula is a sum Zf:lm wif(z;), where the weights w; and

nodes z; have been chosen in such a way that the formula computes the
integral fjll f(z)(1 — 2)%(1 + z)P dx exactly for f(z) a polynomial of as
high a degree as possible. Thus Gauss-Jacobi quadrature is a generalization
of pure Gaussian quadrature to the case where singularities of the general
form (1 —z)*(L + z)f (a, B > -1) are present. The required nodes and
weights can be computed numerically; we have used the program GAUSSQ
by Golub and Welsch [Golub & Welsch,1969] for this purpose.

11



Gauss-Jacobi quadrature appears made-to-order for the Schwarz-Chris-
tofTel problem, and at least two previous experimenters have used it or or
a closely rclated technique ([Howe,1973], [Vecheslavov & Kokoulin,1973]).
We began by doing the same, and got good results for many polygons with
a small number of vertices, In general, however, we found this method of
integration very inaccurate. For a typical sample problem with N == 12
and NPTS = 16, it produced integrals accurate to only about 10—2, and
it does much worse if one chooses polygons designed to be troublesome.

What goes wrong is a matter of resolution. Consider a problem like the
one shown in Figure 2.2. We wish to compute the integral (1.4) along the
scgment from 2 to some point p. (In the parameter problem p might be 0 or
zx—1;in later computations it might be any point in the disk.) Now direct
application of a Gauss-Jacobi formula will involve sampling the integrand
at only NPTS nodes between z and p. If the singularity z; is so close to
the path of integration that the distance € = |z — 2%/ is comparable to
the distance between nodes, then obviously the Gauss-Jacobi formula will
yicld a very poor result. It turns out that in Schwarz-Christoffel problems
the correct spacing of prevertices 2 around the unit circle is typically very
irrcgular, so the appearance of this problem of resolution is the rule, not
the cxccption. (See examples in V.)

To maintain high accuracy without giving up much speed, we have
. switched to a kind of compound Gauss-Jacobi quadrature (see [Davis &
Rabinowitz, 1975}, p. 56). We adopt, somewhat arbitrarily, the following
quadrature principlc:

No singularity z shall lie closer to an interval of
integration than half the Jength of that interval,

To achieve this goal, the quadrature subroutine ZQUAD must be able to
dividc an intcrval of integration into shorter subintervals as necessary, work-
ing from the endpoints in. On the short subinterval adjacent to the endpoint
Gauss-Jacobi quadrature will be applied; on the longer interval (or intervals)
away from thc endpoint pure Gaussian quadrature will be applied. The
effect of this procedure is that number of integrand evaluations required to
achicve a given accuracy is reduced from O(%) to O(logy 1)

Figure 2.2 shows the intervals of integration that come into play in
compound Gauss-Jacobi quadrature. For a plot comparing the accuracy of
simple and compound Gauss-Jacobi quadrature in another typical problem,
see IV.1.
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k+1

Figure 2.2 - Compound Gauss-Jacobi quadrature. Division of an interval
of integration into subintcrvals to maintain desired resolution.

With the use of compound Gauss-Jacobi quadrature, we now achieve
high accuracy in little more than the time that direct Gauss-Jacobi quad-
rature takes. This is possible because only a minority of integrals have a
singularity close enough that subdivision of the interval of integration is re-
quired. In the 12-vertex example mentioned above, the switch to compound
Gauss-Jacobi integration decrcased the error from 1072 to 2 .10,

There remains one circumstance in which integration by compound
Gauss-Jacobi quadrature as described here is unsuccessful. This is the case
of an integration interval with one endpoint quite near to some prevertex
2z, corresponding to a vertex wg = 00. We cannot evaluate such an integral
by considering an interval which begins at 2, for the integral would then
be infinite. The proper approach to this problem is probably the use of
integration by parts, which can reduce the singular integrand to one that
is not infinite Depending on the angle S, one to three applications of in-
tegration by parts will be needed to achieve this. We have not implemented
this proccdure.

The subtlety of the integration problem in Schwarz-Christoffel com-
putations is worth emphasizing. It is customary to dispatch the integration
problem as quickly as possible, in order to concentrate on the “difficult” ques-
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Gions: computation of accessory parameters and inversion of the Schwarz-
Christoflfel map. We believe, however, that the more primary problem of
computing Schwarz-Christoffel integrals-the “forward” problem-should
always remain a central concern. Any numerical approach to the parameter
problem or the inversion problem is likely to employ an iterative scheme
which depends at each step on an evaluation of the integral (1.4), and so
the results can only be as accurate as that evaluation.

4. Solution of system by packaged solver (subroutine SCSOLV)

The unconstrained nonlinear system is now in place and ready to be
solved, For this purpose we employ a library subroutine: NSOIA, by M.J.D.
Powell ([Powell, 1968]yy lichuses a steepest descent search in early itera-
tions if necessary followed by a variant of Newton’s method later on. (The
routine does not USC analytic derivatives.) It is assumed that a variety of
other routines would have served comparably well,

Wc rnake no attempt to tailor the numerical solution procedure to the
particular Schwarz-Christoffel problem under consideration, In particular,
a.l1 iterations begin with the trivial initial estimate yy=0 (1 <k<N —
1). This corresponds to trial vertices spaced evenly around the unit circle.
. The following input parameters to NSOIA have generally remained fixed:
DSTEP=10"8 (stcp size uscd to estimate derivatives by finite differences),
DMAX = 10 (maximum step size), MAXFUN = 15(N — 1) (maximum
number of iterations).

A fourth paramcter, EPS, defines the convergence criterion-how large
a function vector (square root of sum of squares of functions values) will
be considered to be satisfactorily close to zero. We have most often taken
10—8 or 10— here. The choice of EPS is not very critical, however, as
convergence in NSOIA is generally quite fast in the later stages.

In the course of this work about a hundred Schwarz-Christoffel trans-
formations have been computed, ranging in complexity from N = 3 to
N = 18, NSOIA has converged successfully to an accurate solution in all
of these trials. Section V.1 gives a series of plots showing this convergence
graphically for a simple example,
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III. COMPUTATION OF THE S-C MAP AND ITSINVERSE

Dctermining the accessory parameters is the most formidable task
in computing numerical Schwarz-Christoffel transformations, Once this is
done, evaluation of the map and of its inverse follow relatively easily. The

foundation of these computations continues to be compound Gauss-Jacobi

quadrature.

1. From disk to polygon: w = w(z) (subroutine WSC)

To evaluate the forward map w(z) for a given point z in the disk or on
the circle, we must compute the integral

z N 1\ —By
= C 1—1) dz 3.1
w=wtc E( : @.1)

with wp = w(z), where the endpoint z may be any point in the closed disk
at which the image w(z) is known and not infinite. Three possible choices

for z suggest themselves-
(1) 20 = 0; hence wp = w;
(2) 2 == # for some k; hence wy = wy, a vertex of P;
(3) 20 = some other point in the disk at which w has previously been

computed.

In cascs (1) and (3), neither endpoint has a singularity, and an evaluation of
(3.1) by compound Gauss-Jacobi quadrature reduces to the use of compound
Gauss quadrature. In case (2) a singularity of the form (1 —z/zk)'“ﬂ is
present at one of the endpoints and the other endpoint has no singularity.
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The best rule for computing w(z) is: if z is close to a singular point 2
(but not one with wg == 00), use method (2); otherwise, use method (1). In
cither case we employ compound Gauss-Jacobi quadrature, taking normally
the same number of nodes as was used in solving the parameter problem.
By this proccdurce wc evaluate w(z) readily to “full” accuracy-that is, the
accuracy to which the accessory parameters have been computed, which is
dircctly related to the number of points chosen for Gauss-Jacobi quadrature
(see IV.1). Quadrature nodes and weights need only be computed once, of
course.

We should emphasize that even in the vicinity of a singularity 2, the
evaluation of the map w = w(z) is inherently very accurate. This very
satisfactory treatment of singular vertices is a considerable attraction of
the Schwarz-Christoffel approach for solving problems of Laplace type.
In particular, in a potential problem the Schwarz-Christoffel transforma-
tion “automatically” handles the singularities correctly at any number of
rcentrant corners,

2. From polygon to disk: z = z(w) (subroutine ZSC)

For computing the inverse mapping z = x(w) at least two possibilities
cxist, both of them quite powerful, The most straightforward approach is
to view the formula w(z) = w as a nonlinear equation to be solved for z,
given some fixed value w. The solution may then be found iteratively by
Newton's method or a related device, w(z) should be evaluated at each step
of such a process by compound Gauss-Jacobi quadrature along a straight
line segment whose initial point remains fixed throughout the iteration.

An alternative approach is to invert the Schwarz-Christoffel formula,

N —fn
dw z
& =cll(-2)

to yield the formula

~+ B
dz 1 z
il H(1 — z—k) : (3.2)

This inversion is possible because w = w(z) is a conformal mapping, which
means |[dw/dz| > 0 everywhere. (3.2) may now be thought of as an ordinary

16



differential equation (o.d.e.),

dﬁ:_ = g(w, ), (3.3)

in one complex variable w. If a pair of values (2, wp) is known and the new
value 2z = z(w) is sought, then 2 may be computed by applying a numerical
o.d.e. solver to the problem (3.3), taking as a path of integration any curve
from wp to w which lies within the polygon P.

In our program we have chosen to combine these two methods, using the
second method to generate an initial estimate for use in the first. We begin
with the o.d.e. formulation, using the code ODE by Shampine and Gordon,
and for convenience we integrate whenever possible along the straight line
segment from w, to w. (ODE, like most o.d.e. codes, is written for problem6
in real arithmetic, so that we must first express (3.2) as a system of first-
order o.d.e.'s in two real variables.) Since P may not be convex, more than
one line segment step may be required to get from wp to w in this way. It
will not do to take wp == wg for some vertex wx without special care, because
(3.2) is singular at wy.

From ODE we get a rough estimate # of z(w), accurate to roughly 1072,
This estimate is now used a6 an initial guess in a Newton iteration to solve
the equation w(z) = w. This method is faster than the o.d.e. formulation for
getting a high-accuracy answer, More important, it is based on the central
Gauss-Jacobi quadrature routine, unlike the o.d.e. computation.

In summary, we compute the inverse map z==2(w) rapidly to full
accuracy by the following steps:

(1) Solve (3.2) to low accuracy with package ODE, integrating when-
ever possible along the line segment from w, to w; call the result
z

(2) Solve the equation w(z) = w for z by Newton’s method, using Z
a6 an initial guess.
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IV. ACCURACY AND SPEED

1. Accuracy

The central computational step is the evaluation of the Schwarz-Chris-
toffel integral, and the accuracy of this evaluation normally determine6
the accuracy of the overall computation. A6 a consequence of the quadra-
ture principle adopted in II.3—that no quadrature interval shall be longer
than twice the distance to the nearest singularity zx—the compound Gauss-
Jacobi formulation achieve6 essentially the full accuracy typical of Gaussian
quadrature rules operating upon smooth integrands. That is, the number of
digits of accuracy is closely proportional to NPTS, the number of quadrature
node6 per half-interval, with a very satisfactory porportionality constant in
practice of approximately 1.

It is important not only to be capable of high accuracy, but to be
able to measure how much accuracy one has in fact achieved in a given
computation, To do this we employ a subroutine TEST, which is regularly
called immediately after the parameter problem is solved. Given a computed
set of accessory parameter6 C and {%} , TEST computes the distances
jwx — we| for each wx 5% oo and the distances |wg—j— wg+1| for each
wg == 00, making use of the standard subroutine ZQUAD for compound
Gauss-Jacobi quadrature. The numbers obtained are compared with the
cxacf distance6 specified by the geometry of the polygon, and the maximum
error, RADEMX, is printed as an indication of the magnitude of error6 in
the converged solution. It is now probable that subsequent computations of
w(z) or z(w) will have errors no greater than roughly RADEMX,

Most often wc have chosen to use an 8-point quadrature formula. Since
cach interval of integration is initially divided in half by subroutine ZQUAD,
this mcan6 in reality at least 16 node6 per integration. With this choice
RADEMX consistently ha6 magnitude ~1078 for polygons on the scale of
unity.

Figure 4.1 gives an indication of the relationship between number of
quadrature node6 and error RADEMX; it shows RADEMX a6 a function of
NPTS for a 6-gon which is shown at the top of the next page. Two curve6
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are shown: one for simple Gauss-Jacobi quadrature, and one for compound
Gauss-Jacobi quadrature. The exact quantities here should not be taken too
seriously; examples could easily have been devised to make the difference in
performance of the two quadrature methods much smaller or much greater.

2, Speed

Any application of Schwarz-Christoffel transformations consists of a
sequence of steps:
INIT - set up problem
QINIT - compute quadrature nodes and weights
SCSOLYV - solve parameter problem
TEST - estimate accuracy of solution

ZSC, WSC, etc. — compute forward and inverse transformation6 in
various applications

Among these tasks INIT, QINIT, and TEST all take negligible amounts
of time relative to the other computations: typically less than 0.1 secs. on
the IBM 370/168 for INIT and QINIT, and for TEST a variable time that
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ol2 L

Figure 4.1 - Quadrature accuracy as a function of number of nodes.
The error estimate RADEMX is plotted as a function of NPTS for the
polygon shown on p. 19. The upper and lower curves correspond to
simple Gauss-Jacobi and compound Gauss-Jacobi quadrature, respec-
tively.
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is usually less than 5% of the time required by SCSOLV, What remains are
three main time consumers: SCSOLV, ZSC, and WSC.

We begin with WSC, which performs the central evaluation of (1.4)
by compound Gauss-Jacobi quadrature. This evaluation takes time propor-
tional to NPTS (the number of quadrature nodes) and to N (the number of
vertices). The first proportionality is obvious, and the second results from
the fact that the integrand of (1.4) is an N-fold product. Very roughly, we
may estimate

time to solve w == w(z) ! 0.25: NPTS + N msec. (4. 1a)

for double precision computations on the IBM 370/188. Taking a typical
value of NPTS=S8, which normally leads to &digit accuracy, (4.1a) may be
rewritten

time to solve w=w(2): 2N msec. ] (4. 1b)

For the minority of cases in which the interval must be subdivided to
maintain the required resolution, these figures will be larger.

To estimate the time required to solve the parameter problem, we com-
bine (4.1) with an cstimate of how many integrals must be computed in the
course of solving this problem. To begin with, at each iteration about N
integrals arc required by NSO1A (the exact number depends on the number
of vertices at infinity). On top of this, it is a fair estimate to say that 4N
iterations will be required by NSOIA to achieve a high-accuracy solution.
We are therefore led to the estimate

time 7o solve parameter problem:  NPTS N*® msec. (4.2a)

or, taking again NPTS=S8,

time to solve parameter problem: — 8N* msec. (4.2b)

These estimates correspond fairly well with observed computation times
for the parameter problem: two problems with N = 5 and N = 18 may
be expected to take about 1 and 50 seconds, respectively. It is clear that
computing a Schwarz-Christoffel transformation becomes quite a sizeable
problem for polygons with more than ten vertices, In particular, such com-
putations are much too time-consuming for it to be practical to approximate
a curved domain by a polygon with a large number of vertices.
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Finally, we must consider the time taken by subroutine ZSC to invert
the Schwarz-Christoffel map. This too is proportional to NPTS, and quite
problem dependent. We estimate very roughly:

time to solve z=2(w):  NPTS N msec. (4.3a)

or, with NPTS=S,

time to solve z=2(w): 8N msec. (4.3b)

Note that inverting the Schwarz-Christoffel map is only about four
times as time-consuming as computing it in the forward direction.

In practice, computational applications will vary considerably in the
use they make of a Schwarz-Christoffel transformation once the parameter
problem is solved. If only a few dozen applications of ZSC or WSC are
required, then the computational time for solving the parameter problem
will dominate. If thousands of such computations are needed, on the other
hand, then the parameter problem may become relatively insignificant. The
latter situation is most likely to hold when plotting is being done, or when
a high-accuracy solution in the model domain is to be computed by means
of finite differences.

In summary, high accuracy is cheap in Schwarz-Christoffel transfor-
mations; what consumes time is solving problems involving a large number
of vertices.
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V. COMPUTED EXAMPLES AND APPLICATIONS

1. Iterative process for a single example

Figure 5.1 shows graphically the process of convergence from the ini-
tial estimate in an example involving a 4-gon. Routine NSO1A begins by
evaluating the function vector (2.4) at the initial guess, then at each of
N — 1 input vectors determined by perturbing the initial guess by the small
quantity DSTEP in each component, As a result, the first N pictures always
look almost alike, which is why the series shown begins at NEVAL==4 rather
than NEVAL==1. Each plot shows the current image polygon together with
the images of concentric circles in the unit disk (which appear as “contours”)
and theimages of radii leading from the center of the disk to the current
prever t ices 2.

These pictures have a beautiful bonus feature about them: they may
be interpreted as showing not only the image polygon but simultaneously
the domain disk, including the prevertices 2 along the unit circle. To see
this, look at one of the inner “contour” curves, one which is apparently
circular, and the radii within it. Since w = w(2) is a conformal map within
the interior of the disk, the radii visible in this circle must intersect at the
same angles as their preimages in the domain disk, Thus the inner part of
any one of these image plots is a faithful representation on a small scale of
the circular domain, We see in Figure 5.1 that the prevertices are equally
spaced around the unit circle initially (NEVAL = 4), but move rapidly to
a very uneven distribution. This behavior, which is typical, indicates why
the usc of a compound form of Gauss-Jacobi quadrature is so important (see
1r.3).

The sum-of-squares error in solving the nonlinear system is plotted as
a function of iteration number in Figure 5.2, for the same 4-vertex example,
Convergence is more or less quadratic, as one would expect for Newton’s
method. The irregularity at iteration 19 is caused by the finite difference
step size of 108 used to estimate derivatives, and would have been repeated
at each alternate step thereafter if the iteration had not terminated.
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Figure 5.1 - Convergence to a solution of the parameter problem. Plots
show the current image polygon at each step as the accessory parameters
{#} and C are determined iteratively, for a problem with N = 4.
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Figure 5.2 - Rate of convergence. Sum-of-squares error in the nonlinear
system (2.4) as a function of iteration number, for the same problem
a8 in Figure 5.1.
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2. Sample Schwarz-Christoffel maps

Figures 5.3 and 5.4 show plots of computed Schwarz-Christoffel maps
for representative problems. The polygons of Figure 5.3 are bounded and
those of Figure 5.4 are unbounded, Observe that contour lines bend tightly
around rcentrant corners, revealing the large gradients there, while avoiding
the backwater regions near outward-directed corners and vertices at infinity.
Like the plots of Figure 5.1, these may be viewed as showing simultaneously
the image polygon and the domain disk.

Figure 5.5 shows similar plots in which streamlines rather than con-
tour lines have been plotted, so that the configuration may be thought of
as portraying ideal irrotational fluid flow through a two-dimensional chan-
nel. To plot these streamlines an analytic transformation of the disk to an
infinite channel with straight parallel sides was used in conjunction with the
Schwarz-Christoffel transformation from the disk to the problem domain.

3. Laplace's equation

Conformal maps do not solve problems, but they may reduce hard
problems to easier ones. How much work must be done to solve the easier

problem will vary considerably with the application.

(1) In th ds 6 dircumstances, the original problem may be reduced
to a model problem whose solution is known exactly. This is the
case in the fluid flow problems of Figure 5.5, in which a crooked
channel may be mapped to an infinite straight channel of constant
width.

(2) If a problem of Laplace’s equation with pure Dirichlet or Neumann
boundary conditions can be mapped conformally to a disk, then
Poisson’s formula or Dini's formula [Kantorovich & Krylov, 1958]
providc integral representations of the solution at each interior
point. Such integrals may be evaluated readily on the computer
to yield high accuracy solutions. The primary disadvantage of
this approach is that a new integral must be evaluated for each
point at which the solution is desired.

(3) If the solution will be required at many points in the domain,
then it is probably more efficient to solve Laplace’s equation by
a trigonometric expansion of the form ao—+ Y 1., r"(a;c sin k9 -
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Figure 5.3 - Sample Schwarz-Christoffel transformations (bounded

polygons). Contours within the polygons are images of concentric circles
at radii .03, .2, .4, .6, .8, .97 in the unit disk, and of radii from the
center of the disk to the prevertices 2.
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(a) A\Qﬁ\/

Figure 5.5 — Sample Schwarz-Christoff el transformations. Contours
show streamlines for ideal irrotational, nonviscous Auid flow within each
channel.
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bk co6 kﬂ); coefficient6 a, and by, are selected 60 as to fit the boundary
conditions closely. A disadvantage of this method is that conver-
gence of the expansion may be slow if the boundary conditions
are not smooth,

(4) Finally, if simpler methods fail, a solution in the model domain
may be found by a finite-difference or finite-element technique.
For problems of Poisson’s equation or more complicated equations
this will probably normally be necessary,

Figure 5.6 presents an example of type (1). We are given an infinite
region bounded by one straight boundary fixed at potential ¢ == 0 and one
jagged boundary fixed at ¢ = 2. We may think of this as an electrostatics
problem. The central question to be answered computationally will be: what
are the voltage @ and the electric field £ = —V at a given point, either
within the field or on the boundary?

We proceed by mapping the given region onto the disk by a Schwarz-
Christoffel transformation, then analytically onto an infinite straight chan-
nel (as in the examples of Figure 5.5). In the straight channel ¢ and E are
known trivially, and this information may be transferred to the problem
domain through a knowledge of the conformal map that connects them and
of its (complex) derivative. We omit the details, which are straightforward.

Figure 5.6b shows |E/| as a function of & on the upper and lower bound-
aries of the region. To see more of the behavior of the solution field near
a reentrant corner, we also compute the field at three points near 3 - 1.5¢.
These results are given in Figure 5.6c.

4. Poisson’s equation

Consider the ‘I-sided region shown in Figure 5.7a. We wish to solve
Poisson’6 equation

1
Ag(e,y) = sin 2x( 1 =2y + 1))

on this region subject to Dirichlet conditions

é(z,y) =plz,y) = % sin 2z(y 4+ 1)2

on the boundary. We proceed by mapping the domain to the disk and
solving a transformed problem in the disk in polar coordinates by mean6 of
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(b) Field strength along the top boundary
(solid line) and bottom boundary (broken

line)

W ¢ |E| arge/m
3.1 +1.4 i 1.7564 1.3082 -.3823
3.01 +1.49 i 1.9486 2.4403 -.2833
3.001+1,4991 1.9889 5.2137 -.2572
3.000+1.50041 2.0000 © -.2500

(c) Computed potential and field strength at
three points near 3 +1.5i

Figure 5.6 — Laplace equation example: electric
potential and field between two infinite sheets.
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a second-order fast finite difference solver (PWSPLR, by P. Swarztrauber
and R. Sweet), p(z, y) is the correct solution in the interior as well as on the
boundary, so we can determine the accuracy of the numerical solution.
This is not as satisfactory a procedure as was available for Laplace
equation problems, According to (1.2), the model problem here is Poisson’s
equation in the disk with an altered right hand side containing the factor
|/'(2)|?, where f is the composite map from the disk to the 7-gon. Two
difficluties arise. The first is that to set up the transformed equation in the
disk, p(wy;) must be computed for every w;; = w(z;) which is an image of
a grid point in the disk, This is time consuming, one hundred times more
so in this experiment than the fast solution of Poisson’s equation once it
is set up. Second, | _f'(z)l2 is singular (unbounded, in this example) at each
prevertex 2k, and this appears to interfere with the second-order accuracy
which we would like to observe. The table in Figure 5.7b attests to both of

these problems.

5. Eigenfrequencies of the Laplace operator

Petter Bjgrstad (Computer Science Dept., Stanford University) has
recently combined the present Schwarz-Christoffel computation with a fast
finite-difference scheme to successfully compute eigenvalues and eigenvec-
tors of the Laplacian operator on polygonal regions. These results may be
interpreted as giving the normal modes and frequencies of a thin membrane
in two dimensions, or of a three-dimensional waveguide with constant cross-
section. This work will be reported elsewhere.
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(a) 7-sided problem domain, including image of 16%32
finite-difference arid in the unit disk

Transformation
Grid and setup Fast Poisson
(rx0) time solver time Max. error RMS error
4x8 1.3 secs. <.01l secs. 0.132 0.0309
8x16 2 secs. .01 secs. 0.055 0.0085
16x32 5 secs. .03 secs. 0.031 0.0037
32x64 16 secs. .15 secs. 0.026 0.0012

(b) Computed results for four different grids. Time

estimates are for an IBM 370/168.

Figure 5.7 — Poisson equation example. Problem is

transplanted conformally to the unit disk and solved
by finite differences.
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VI. CONCLUSION

A program has been described which computes accurate Schwarz-Chris-
toffel transformations from the unit disk to the interior of a simply connected
polygon in the complex plane, which may be unbounded. Key features of
the computation have been:

(1) Choice of the unit disk rather than the upper half plane as the
model domain, for better numerical scaling (II.1)

(2) Use of complex contour integrals interior to the model domain
rather than along the boundary, making possible the treatment
of unbounded polygons (11.1)

(3) Use of compound Gauss-Jacobi quadrature in complex arithmetic
to evaluate the Schwarz-Christoffel integral accurately (II.3,III. 1)

(4) Formulation of the parameter problem as a constrained nonlinear
system in N — 1 variables (II.1)

(5) Elimination of constraints in the nonlinear system by a simple
variable transformation (11.2)

(6) Solution of the system by a packaged nonlinear systems solver;
no initial estimate required (IE.4)

(7) Computation of a reliable estimate of the accuracy of further
computations, once the parameter problem has been solved (IV.1)

(8) Accurate evaluation of the inverse mapping in two steps by means
of a packaged o.d.e. solver and a packaged complex rootfinder
(OL2)

Previous efforts at computing Schwarz-Christoffel transformations nu-
merically include [Cherednichenko & Zhelankina, 1975), [Hopkins & Rob-
erts, 1978}, [Howe, 1973], [Meyer, 1979), and [Vecheslavov & Kokoulin,
1973]. The present work differs from these in that it deals directly with
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complex arithmetic throughout, taking the unit disk rather than the upper
half planc as the model domain and evaluating complex contour integrals.
This makes possible the computation of transformations involving general
unbounded polygons. (Cherednichenko & Zhelankina [1975] also treat un-
bounded polygons, by a different method.) Two other important differences
are the use of compound Gauss-Jacobi quadrature, and the application of
a change of variables to eliminate constraints in the nonlinear system ( (5),
above). Wc believe that our program computes Schwarz-Christoffel trans-
formations faster, more accurately, and for a wider range of problems than
previous attempts.

A variety of directions for further work suggest themselves. Here are
some of them:

(1) More attention should be paid to the problem of inverting the
Schwarz-Christoflel map. The two-step method described in I11.2

1s only one of many possibilities.

(2) The program could easily be extended to construct maps onto the
exterior of a polygon—that is, the interior of a polygon whose
interior includes the point at infinity. This extension would be
necessary for applications to airfoil problems.

(3) It should not be too great a step to raise the present program to the
level of “software” by packaging it flexibly, portably, and robustly
enough that naive users could apply it to physical problems.

(4) The program might be extended to handle the rounding of corners
in Schwarz-Christoffel transformations [Henrici,1974]. What about
mapping doubly or multiply connected polygonal regions, per-
haps by means of an iterative technique which computes an S-C
transformation at each step? What about applying S-C transfor-
mations to eliminate corners in the conformal mapping of curved
domains?

Most important, further work is needed in the direction of applications
to Laplace’s equation, Poisson’s equation, and related problems. Irregular
or unbounded domains are generally troublesome to deal with by standard
techniques, particularly when singularities in the form of reentrant corners
arc present. Schwarz-Christoffel transformations offer a means of getting
around such difficulties in a natural way. Much more experience is needed
here.
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APPENDIX: PROGRAM LISTING

The boundaries of this program are not sharply defined, for the configu-
ration changes according to what applications are being treated. The present
listing includes only the core routines used to solve the parameter problem
and to evaluate the Schwarz-Christoffel function and its inverse,

An experimental copy of the package may be obtained in machine-
readable form from the author,

Control program:
SC

Set-up:
INIT initializes variables and reads input data
QINIT computes quadrature nodes and weights

Solution of parameter problem:

SCSOLYV controls solution of parameter problem
YZTRAN transforms to an unconstrained system
SCFUN sets up the nonlinear system to be solved
SCOUTP prints output from SCSOLV

TEST estimates accuracy of computed solution

Compound Gauss-Jacobi quadrature:
ZQUAD divides the integral into two halves
ZQUADI evaluates the half-integral (compound)
DIST finds the distance to the nearest singularity
ZQSUM sums a Gauss-Jacobi quadrature rule

Forward and inverse S-C map:
WSC evaluates map from disk to polygon
ZSC evaluates map from polygon to disk
ZFODE computes initial estimate
ZNEWT inverts map by Newton’s method

Miscellaneous routines:
ZPROD evaluates N-fold Schwarz-Christoffel integrand
FINITE returns “truc” if the argument is finite
ENTER begins timing of the current subroutine
EXIT concludes timing of the current subroutine
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Library routines not listed:
GAUSSQ (Golub&Welsch) computes Gauss-Jacobi nodes and wts
(called by QINIT)

NSO1A (Powell) solves the nonlinear system
(called by SCSOLV)

ODE (Shampine & Gordon) solves the inverse mapping problem
(called by ZSC)
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o k=1

10

TC SCLVE THZ PROBLEM WE BEGIN BY PINDING THE ACCESSORY PARAMETERS
-- VERTTCPS 2 (K) AND CONSTANT C ~-- FOR THE MAP OF (V). THIS IS DONE
BY SUBRCUTINE SCSOLYV.

[

(]

THE INAGE POLYGON BAY BE UNBOUNDED; PERMITTED ANGLES LIE IN THE
RANGE ~-3.1%.3ETAM(K) .LE.1. W(N) AND W (1) MUST BE FINITE.
WE N7RMALIZZ BY THE CONDITICNS:

B0 00O

ZN) =1 2. 1)
W(0.C) = WC (A PCINT IN THE INTERICR OF THE POLYGON) (2.2
Z NOTATION:

a0

W(K) - VERTEX K 2P THE IMAGE POLYGON

Z(K) - POINT GN THE UNIT DISK MAPPED TO U (K)

(K) - NEGATIVE )F EXTERIOR ANGLE AT ¥ (K) DIVIDED BY PI
N - NUMRER OF VERTICES W (K)
N = ¥=1 - NOMBER JF UNKNOWN POINTS: Z (1 ,...,Z(N=1)
NPTSQ - NUKMBER CF POINTS PCR GAUSS-JACOBI CQUADRATURE

ZTNF - C2MPLEX INFINITY

[

Qo
w
tat]
-
g

]

(o]

LCTAL S.OTINES:

SC - MATN PROGRAM

C TNIT - TNITIALIZES CONSTANTS AND DEPINES PROBLEN
2 QINIT - ZOMPUTES QUADRATTRE NODES AND WEIGHTS
2 SCSOLY - COMPUTES ACCESSOEY PARAMETERS FOR S-C MAP (1)
- YZTRAN - TRANSPORMS UNKNOWNS FROM Y (K) TO 2Z(K)
c S CPIN - NONLINEAR SYSTEM OF BQUATIONS TO BE SCLVED BY SCSOLV
SCAUTP - PRINTS OUTPUT PRGM SCSOLV
WST - C7MPUTES U2
zsc - COMPUTES Z (W)

PLTCON - DRAYS PLOTS CF IMAGE POLYGON WITH CONTOURS
ZPFND - COMPUTES N-FZLD PRCDUCT IN (1)

7ZQUAD - 30M3 TO EVALUATE INTEGRAL BY GAUSS-JACOBI QUADRATURE
PINITE - BETUBNS TROE IF ARGUMENT IS PINITE

Qa0 an

LIRFARY ROUIINBS BREQUIRED: NSO1A, GAUSSQ, ODER

(9]

Z L.N, TRTFUTHEN JANUARY, 1978

PLICIT REAL*8 (A~-B,D-H,0~-V,X-Y) COMELEX*16 (C,¥,2)

M¥ON /SC/,/ WC,W (20),BETAF(20) ,C,Z(20),N,NM,NE
C™MON /CCNSTIS/ PI,TWOPI,ZERO, ZINF,EPS

PEAL*8 CDABS

Z SET UP PRCBLEM:
EPS = 1.D-8
CALL INIT

> COMPUTE NODES AND WEIGHTS POR PARANETER PROBLEN:
NPTSQ = 8
CALL OINIT (NPTSQ)

(9]

SCLVE PARAMETEE PROBLEM:
IPRINT =1
CALL SCSOLV(NM,IPRINT)

an

TEST ACTUPACY OF SOLOUTION:
CALL TEST

a2

DFAW CONTCUR PLOT OP SOLUTION:
CALL PLTCOUN

103 TCNTINOE
STOP |
END
//GJ.SYSIN DD =*
7 N
.0 .0 uc
2. 0. 99,
2. 8, -.5
1.370 1.070 -1,
-.2 -2, -.5
-.2 -1, 99,
.7 -2.5 93.
.8 -2.7 99,
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C* INIT PRIMARY SUBROUTINE e *
AR R L L Y T P PPy

c
SUBROUTINE INIT

INITIALIZES CONSTANTS IN /CONSTS/ AND PROBLENM DEFINITION

PAKAMETERS IN /SC/., DATA FPOE THZ GECMETEY OF THF PROBLEX
IS READ IN PROM OUNIT S.

[sEeNeNeXe]

IMPLICIT REAL*8(A-B,D-H,C-V,X~Y), CCMPLEX*16(C,#,Z)
LOGICAL PINITE

ZCMPLEX*16 DCMPLX

COMMON /SC/ WC,W (20) ,BETAR(20) ,C,Z(20),N,HN,NP
COMMON /CONSTS/ PI,TWOPI,ZERO,ZINF,EES

COMMON /GEOM/ KPIX(20) ,KRAT (20) ,NCONE

DATA SBNAEE /'INIT'/

CALL ENTEE (SBNANE)

C 3BT CINSTANTS:
PI = 3.14159 26535 89793 23 DO
TWOPI = PI e 2,D0
Z2RO = (0.D0,0.D0)
ZIRF = (1.D70,1.D70)

an

READ INPUT PARAMETERS:
READ (5,201) R
NN =N-1
NP = N+1
Z(MN) = (1.00,0,D0)
READ (5,202) WC
R3AD (5,203) (W(K),BETAM(K) ,K=1,N)

C CSEPUTE ANGLES AS REQUIRED (WHERE VALUE INPOT IS 99.0):
DIM1IEK = 1. XN
IP (3ETAM (K).NE.99.D0) GCTO 10
KM = NOD(K+N-2,K) ® 1
KP = MOD(K,N)+1
JETAN(K) = DIMAG(CDLOG ((W (KM)=W (K)) /(N (KP)~W(K))))/PI = 1.DO
IP (BETAX (K).LE.-1,D0) BETANM(K) - BETAM(K) e 2.D0
10 CONTINOE

C
C CHECK PO® vARIOUS INPUT EPRORS:
308 = 0.D0
DO 1 K = 1,N
1 SUR = SUN e BETAM(K)
IF (DABS (SU%+2.D0) .LT.EPS) GOTO 2
WRITZ (6,30 1)
STCP 2
2 IF (PINITE(W( 1))) GOTO 3
ARITE  (6,302)
STOP 2
3 IP (PINITE(¥(N))) GOTO 4
4RITZ (6,303)
STOP 2
4 TF (3ETAM(N®).NE.0.DQ) GCTO 5
WRITE (6,300)
s IF (BETAM (N¥).NE,1.D0) GOCTO 20
YRITE (6,305)
sTOP 2
-
Z DITIBMINZ NUMBER OF BOUNDARY COMPONENTS, ETC.:
C  PASS 1: ONE PIXED POINT POE EACH INPINITE VERTEX:

20 NCOMP = 0
DO 21 K = 2,NH
IF (PINITE(W(K))} GOTO 21
NCOMP = NCCMP o 1
KPIX (NCOMP) = K - 1
IF (NCOMP.BEQ, 1) KPIX(NCOME) = 1
21 CONTINOE
IP (NCONMP.GT.0) GOTO 22
NCOMP = |
KPIL (NCONP) = |
C PASS 2: ONE BRATIC POR EACH LINE SEGMENT:
22 CONTINUE
NEQ= 2%*NCOMP
po 23 K = 1,8H
I?P (NEQ.EQ.NM) GOTO 30
IP (.NOT.FINITE(W(K)).OR., .NOT,PINITE (W (K+1))) Goro 23
NEQ = NEQ + 1
KRAT (NBQ) = K
23 CONTINOUE

30 CALL EXIT
RETURN

221 FORMAT (IJ)

202 POKMAT (2FB8.0)

203 PORMAT (2D8.0,FP8.9)

3)1 PURMAT (/' #*+#% FRROR IN INIT: ANGLES DO NOT ADD UP TO 2'/

302 PORMAT (/' *** ERROR IN INIT: W(1) MUST BE PINITE'/)

303 PORMAT (/' *** FRROR IN INIT: W(N) MUST BE FINITE'/)

3)4 PORMAT (/' *** WARNING IN INIT: W (N-1) NOT DETERMINED'/)

305 FORMAT (/' e ** ERROR IN INIT: W(N-1) NOT DETERMINED'/)
END
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C* QINIT PRIMARY SUBROUTINE e *

CRERREERRFRE EEF SR KRR RA RS R EERIERRARS R R ARSI KBRS RERRARR R AR R RRARER S
SUBROUTINE QINIT(NPTS)

c
= ZOIMPUTES NODES AND WEIGHTS FOR GAUSS—JACOBI QUADRATURE
c
IMPLICIT REAL*8(A-B,D~H,0-V,X-Y), COMPLEX*16(C,W,2)
LOGICAL PINITE
COMNON /SC/ WC,W¥(20) ,BETAM (20),C,Z(20),N, NN, NP
COMMON /QUAD/ QNODES (32,21) ,QdTS(32,21),NETSQ
DIMENSION QESCR(2), QSCR(32)
DATA SSNANE /'QINIT'/
CALL ENTER (SBNAME)
WRITE (6,201) NPTS
C
NPTSQ = NPTS
c
C P>k EACH PINITE VERTEXW(K), COMPUTE NODES AND WEIGHTS POR
C JNE-SIDED GAUSS—JACOBI QUADRATURE ALONG A CORVE BEGINNING AT Z(K):

DO 1 K=1,N
1 IP (PINITE(W(K))) CALL GAUSSQ(S,NPTSC,0.DO,BETAN(K),O,
& QESCH,QSCR,QNODES (1,K) ,QW#TS{ 1,K))

aa

CJEPUTE NODES AND WEIGHTS FOR PURE GAUSSIAN QUADRATURE:
CALL GAUSSQ(5,¥PTSQ,0.00,0.D9,0,QESCR,QSCR,QNODES (1,NP),
&EQWTS (1,NP))

TALL EXIT
FEZTURN

231 PORMAT (' NPTS =',I5)
END

TEEEENERRSEUIERRFERASRR SRR SRR E AR BHE RS AR IS SA RSN KB ER SRR SR KR SRR RS
C* TE2ST PRIMARY SUBROUTINE e *
CEESXEERENXEIXXBERARERERENARERNE R SRR R RSB B AR X SR RXRERARN RS AR RXERE RS S

Cc
SUERJUTINE TEST

C
C T2SIS THE COMPUTED RAP PFOR ACCUBACY.
C
IMPLICIT REAL*8(A-B,D-H,0-V,X-Y), COMPLEX*16(C,W¥,2Z)
REAL*S8 CDABS
LOGICAL PINITE
CCMMON /SC/WC,% (20 ,BETAM(20),C,Z(20),N,NH,NP
COMMON /CONSIS/ PI,TWOPI,ZERO,ZINF,EES
DATA S ENAME /'TEST'/
CALL ENTER (SBNAME)
c

C T3ST LENGTH OF RADITI:
RADENX = 0.DO
DO 10 K= 2,N
IP (PINITE(W(K))) RADE = CDABS (WC - WSC(ZERO,Z(K),¥W(K),K))
IP (.NOT.FINITE(VW(K))) RADB =
& CDABS (WSC((. 1DO,. 1D0),2 (K-1), W (K-1) ,K-1)
& - WSC( (. 1D0,.1D0),Z(K+1) ,W(K+1),K+1))
RADEMX = DNAX1(RADENX,RADE)
10 CONTINUE
WRITE (6,20 1) RADEMX

of
TALL BXIT
RETURN
(o
201 POBMAT (/' RADEMX:',D12,4)
END
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C* 3CsoLV PRIMABY SUBROUTINE #*#*
CRESEEAETARAIBEEERNER RS LS R EBAAR AR RR SRR RR SRR XXX E A NAR KSR AR ERAE RN XS
c

SUBROUTINE SCSOLV (NN,IPRINT)

C
C THIS SUBROUTINE COMPUTES THE ACCESSORY PARAMETERS C AND Z(K).
C THE PROBLEN IS SOLVED BY PINDIEG THE
C SOLUTICN TO A SISTER OP N-1 YONLINEAB BEQUATIONS IN THE NI
C UNKNOWNS Y (1) 4.0.,Y(N-1), WHICE ABE RELATED TO TAE POINTS
Z ZKk BY THE FORMULA:
C
c Y (K) = LOG ((TH(K)-TH(K-1))/(TH(K+1)-TH(K))) (R}
C
C WHERE TH(K) DENOTES THE ARGUMENT OP Z (K).
C SUBROUTINE SCPUN DEPINES THIS SYSTENM OP EQUATIOBS.
C THE JRIGINAL PROBLEM IS SUBJECT TO TEE CCNTRAINTS TH(K) < TH(K+1),
C 30T THESE VANISH IN THE TRANSPORMATICNFROMZ TO Y.
C SEE MAIN PROGRAM POR FPURTHER COMMENTS.
C
TYPLICIT REAL*8 (A-B,D~H,0-V,X~Y), COMPLEX*16(C,W,2)
COMMON /CONSTS/ PI,TWOPI,ZBRO,ZINF,EES
DIMENSION AJINV(20,20), SCR (900), PVAL(19), Y (19)
EXTERNAL SCFUN
DATA SENAME /'SCSOLV'/
CALL ENTER (SBNAPE)
C
C INITIAL GUESS (VERTICES EQUALLY SPACED AROUND CIRCLE) :
DO 3K =1,KNH
3 Y(K) = 0.D0
(o4
C NSC1A COYTROL PARAMETERS:
DSTEP = 1.D-8
DMAX = 1.D1
ACC = EPS
MAXFUN = NM o 15
o
C SILVE NONLINEAR SISTER ¥ITH NSO M:

CALL NSO1A(NM,Y,FVAL,AJINV,DSTEP,DMAX,ACC,HAXFUN,IPRINT,SCR,SCFUN)
CALL YZTRAN (Y)

C PRINT RESULTS:
CALL SCOUTP

CALL EXIT

RETURN
~

END
CRAEERERRARREIAARRABIER SRR S RAEREE BB R AR AR B ERRRR A RN A RKRK K KRR RE RSN KR
C* YZTRAN SUBCRCTNATE (SCSOLV) SUBROUTINE e *

CHARAB AR BRAERA R AR E KA E RN SRS AR RRE SR AR SRR AR N KSR RSB A SRR REB SRS S
SUBROUTINE YZTRAK(Y)

TRANSPORMS Y (K) TO Z(K). SEE COMMERTS IN SUBROUTINE SCSOLV.

a0

IMPLICIT REAL*8 (A-B,D-H,0-V,X-Y), COXPLEX#*16(C,W,Z)
COMPLEX®16 DCMPLX

COMMON /SC/ WC,W(20) ,BETAM (20),C,Z(20) ,¥,NH,NP
COMMON /CCHESTS/ PI,TWOPI,ZEBO,ZINE,RES

DIMENSION Y (1)

DTH = 1.D0
TASUM = DTH
DO 1 K = 1,88
DTA = DTH / DEXP(Y(K))
1 THSUB = THSUB ¢+ DTH

O

DTA = TWOPI ,/ THSOM
THSO® = DTH
2 (1) = DCMPLX(DCOS (DTH) ,DSIN(DTH))
DO 2 K =2,NN
DTR = DTHB / DEXP(Y (K-1))
THSUB = THSOM t DTH
z (K) = DCMPLX(DCOS (THSUN) ,DSIN(THSUN))

©

RETURN
END
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C* SCFUN SOBORDINATE (SCSOLV) SUBROUTINE o
CHERERARERAERRKKRRARRIRRAKRERRAX R k3 0 IHIHEEHEEEEEES ¢ HEEEENEEEEEEEEES

SUBRIUTINE SCFUN (NDIN,Y,FVAL)

THIS IS THE FUNCTION WHOSE ZERO MUST BE FOUND IN SCSOLV.

[sKaKe]

INPLICIT REAL*8(A-B,D-H,0-V,X-¥Y), COMPLEX®*16(C,¥,Z2)
REAL*8 CDABS

LIGICAL PINITE

DIMENSION PVAL (NDIN),Y (SDIN)

COMMOM /SC/ WC,W (20) ,BETAM (20) ,C,Z(20) ,§,NN, NP
COMMON /CCNSTS/ PI,TWOPI,ZEBRO,ZINP,EES

COMNON /GEOM/ KPIX(20) ,KRAT (20) ,NCONF

0

TRANSFORN Y(K) TO Z(K):
CALL YZTRAN(Y)

C 32T UP: COMPUTE INTEGRAL PROM 0 TO Z(N):
WDENOM = ZQUAD(ZERO,0,Z (§) ,N)
C = (¥ (N)~WC) / WDENON

CASE 1: W(K) AND W(K+ 1) FPINITE:
(CCMPUTE INTEGRAL ALONG CHORD Z (K)-Z (K+1)):
NPIKST = 2*NCOMP e |
IP (NPIRST.GT.NM) GOTO 11
DY 10 NEQ = NPIFST,NHM
KL = KRAT (NEQ)
KR = KL+ |
ZINT = 2QUAD(Z(KL) ,KL,Z (KR) ,KR)
FVYAL (NEQ) = CDABS (W(KR)~W (KL)) - CDABS (C*ZINT)
13 CONTINUE

[EETHe]

CASE Z: W(K+1) INFINITE:
(ZOMPUTE CCNTOUR INTEGRAL ALCNG RADIUS 0-Z(K)):
11 DI 23 NVERT = 1,NCOMP
KR = KPIX (NVERT)
ZINT = ZQUAD(ZERO,0,Z (KR) ,KR)
ZPVAL = W (KR) - WC - C*Z2INT
PVYAL (2%*NVERT-1) = DREAL (ZFVAL)
FVAL (2*NVERT) = DIMAG (ZFVAL)
20 CONTINOE

[eNeXe!

RETURN
c

END
o Ly T T T T
C* 3C0UTP SUEORDINATE (SCSOLV) SUBROUTINE *=

CEEER N EXEREEREERRERERERRE N ERRA AR AR R R R RPN R A AR E R R SR E AR R R AR R R R

C
SUBROUTINE SCOUTP

C
C PEINTS RESULTS (VARIABLES IN COMMCN BLOCK /SC/)
[

IMPLICIT REAL*8 (A-B,D-H,0-V,X-Y), COMPLRX®*16(C,W,Z)
LOGICAL FINITE

COMMON /SC/ WC, W (20) ,BETAM (20),C,Z (20) ,N,NH,NP
COMMON /CONSTS/ PI,TWOPI,ZERO,ZINF,EES

c
WRITE (6,102)
DO1 K = I.N
THDPI = DIMAG (CDLOG(Z(K)))  PI
IF (TADPT.LE.0.DO) THDPI = THDPI e 2.DO
1P (FINITE(W(K))) WRITE (6, 103) K, (K),THDPI,BETAN(K) ,Z (K
1 IP (. NDT.PINITE(W(K))) WRITE (6,104) K,THDPI,BETAN (K),Z(K)
WBITE (6,105) WC,C
RETURN
c

102 POREAT (//' RESULTS:'//
& ' I',10X,'W(K)',13X,'TH(K)/PI',11X,'BETAN(K)",
& 1BX,'Z(K)'/

§ ¥ =eet 39X, tme=mt 13,V Yo,
& 18X,'=-=='//)

103 PORMAT (13,°' (*,P6.3,',',P6.3,')",P20.14,714,5,
& 3X,'(',P15.12,',',F15.12,% ")

104 POBEMAT («x3,’ INPINITY ',P20, 14,F 14, 5,

&€ 3X,'(',P15.12,',',F15,12,"% ")

105 PORMAT (//' WC = (',D22,15,°',',D22.1¢%,')"'/

& ' ¢ = (',D22,15,1,',D22,15,') /)
BND
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SECONDARY SUBROUTINE e #*

C* ZQUAD

CHEEERRARTARAAXTAXKERREXEXEEXREXXE BN S SR AN BB SR ERSAEEX A KRR EREE SRR D

anan

a

CH¥E 222X R IEEERRRRRRERAE AR RZR LR MR A RN ISR RERAEN A RKB SRR SRS RERER A

PUNCTICN ZQUAD(ZA,KA,2ZB,KB)

ZOMPUTES THE COMELEX LINE INTEGRAL OF ZPROD FROMZATO 2ZB ALONG A
STEAIGHT LINE SEGMENT WITHIN THE OUNIT DISK. FPUNCTION 2ZQUAD?

CALLED TWICE, ONCE POR EACH HALF OF THiS INTEGFAL.

IMPLICIT REAL*8 (A-B,D-H,C-V,X-Y), CCHPLEX*16(C,W,2)

ZMID = (2A + ZB) / 2.D0
ZQUAD = ZQUAD1(ZA,ZMID,KA) - ZQUADI1(ZB,ZMID,KB)
RETORN

END

C* ZQUAD1

C

nnan0aa

00

ChREEX AT XEEZRXEERERERER R AR KR ELEERRERNE B IXSE XX R EREERAR X KRR HEERR XX R SR E SR

SUBORDINATE (2QUAD) SUBROUTINE
CRRXASEERRARE XS ARS SRS RREXEEIEXBEFXRA XSS IRE XA TRXRNESERA R XD KR RBEEXE RS

PUNCTION ZQUAD1(ZA,ZB,KA)

COMPUTES THE COMPLEX LINE INTEGBRAL op ZPROD FRONZATC ZBALO16 A

Is

%

STEAIGHT LINE SEGMENT WITHIN THE UNIT DISK, COMPOUND ONE-SIDED

GAUSS-JACOBI QUADRATURE IS USED,

THE DISTANCE TO THE NEAREST SINGULARITY Z(K).

IXPLICIT REAL*8 (A-B,D-H,0-V,X~-Y), COMPLEX*16(C,HW,2Z)
CCrMON /CONSTS/ PI,TWOPI,ZERO,ZINF,RES

REAL*3 CDABS

DATA RESPRH /2.D0/

CHECKFORZERO-LENGTH INTEGRAND:
IF (CDABS (ZA-2B).GT.0.D0) GOTO 1
ZQUADY = ZERO
RZTURN

STEP 1:
1R =
ZAA

ONE-SIDED GAOSS-JACOBI CUADRATURE FOR LEFPT ENDPOINT:
DMIN1(1.D0,DIST (ZA,KA) *RESPRM/CLABS (ZA-2B))
= ZA + P*(ZB-ZA)

ZQUADY = ZQSUM(ZA,ZAA,K))

STEP 2:

10 IP
R =
ZBB

ADJOIN INTERVALSQF PURE GAUSSIAW QUADBATURE IF NECESSARY:

(R.EQ. 1.D0) RETURN

DMIN1(1,D0,DIST (ZAA,0) *RESPRM/CDABS (ZAA-2B))
= ZAA e R*(ZB-ZAA)

ZQUADY = ZQUAD1 + ZQSUM(ZAA,ZBB,0)

ZAA
GOT
END

C* DIST

~

ana

o IR I RIS SRS R RIS 2R R R R 22 SRR RS RS R RS2SR 22 21 2 1)

o

= 2BB
10

SUBORDINATE (ZQUAD) SUBRQUTINE *#
CRREXRERAERRAREEREERERARA R AR RRRE R KSR B AABAEIRRNERAKRE AR R R AR KRR KR RS

PUNCTICN DIST(ZZ,KS)

DETERMINES THE DISTANCEPROHZZ TO THE NEAREST SINGULABRITY Z(K)

JTHERTHAN Z(KS).

IMPLICIT RTAL*8(A-B,D-H,0-V,X-Y), COMPLEX*16(C,W,2)
CorMON /SC/ WC,W(20) ,BETAM(20),C,2(20),N,NN,NP
REAL*8 CDABS

DIS
DO

T
1

= 99.D0
K = I,N

IF (K.EQ.KS) GOTO 1

DIS

T

= DMIN | (DIST,CDABS (22-72(K)))

I CONTINUOE
RETURN

END

C* 2Qs0n

o

aaac

SUBORDINATE (EQUAD) SOUBROUTINE *=*
CHEBRRESTSER SEREESERALR S S SR XA AR ANS R A BAR RS RN S AL SENB S SE SR AREE SRS

PUNCTION ZQSUM(ZA,ZB,KAd)

CIOMPUTES THE INTEGRAL OP ZPROD PRON ZA TO ZB BY APPLYING A

DNE-SIDED GUASS-JACOBI PORMULA WITH POSSIBLE SINGULARITY AT ZA.

IMPLICIT REAL*8 (A-B,D-H,0-V,X-Y), COMELEX*16(C,¥,2)
COMMCN /Sc,' WC,W(20) ,BETAK(20),C,Z(20),N,NN,NP
COMMON /CONSTS/ PI,TWOPI,2ERO,ZINF,EES

COMMON /QUAD/ QNODES (672) ,QWTS (672) ,NPTSQ

32AL*8 CDABS

s
ZR
2C
K =
IF
11

12
[ Je]

12s

(

=
1

ZERO
(ZB-ZA) s 2.D0
(ZA+2B) / 2,D0
KA
K. 2Q.0) K = NP
32% (K=1) + |
11 e NPTSQ -
I = 1I1,12
ZS + QWTS (I) *ZPROD(ZC+ZH*QNODES (I) ,KA)

2QS0M = 7S*ZH

IF (CDABS (ZH) .NE.O.DO.AND.K.NE,NP)
& 2QSUM = ZQSUM*CDABS (ZH) **BETAHN (K)

A2TURN

E¥D
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C* WsSC PRIMARY SUBROUTINE e =
CEHRBBREE AU AR BB R SR AR B E RS R R R AR R AR B RN RN R RS NN R R RN RN AR R RN DR R RN RO RN

FUNCTIOMN WSC(Z2Z,20,w0,KZ0)
c
C INTEGRATES FROM 20 TO ZZ TO COMPUTE W VALUE CORRESPONDING TO ZZ
1%

IMPLICIT htAL*8(A-B,D-H,0-V,X-Y), COMPLEX*16(C,w,2Z)

COMMON /SC/ WC,W(20),BETAM(20),C,2(20),N,NM,NP

WSC = W0 + C e 2QUAD(20,K20,22,0)

O

RETURN
END

CHERRXXSIXME XA ARG BRI SRS IXASR SR AN A S EPUE RS SRR TEBR ISR KRS RE NSRS RS &S
C* zsC PRINARY SUBROUTINE =*=
CHERBEREEREE IR AR TR ASR SRR ARA SRR SRR AR RR KRS R R AN RS SRR AR KRR EERER S S
~

FUNCTION 2SC(Ww,20,%0,K20)

Z2MPUTES Z (WW), FIRST ODE IS CALLED TO GET AN INITIAL ESTIMATE;
THEN ZNEWT IS CALLED TO GET THE PINAL ANSWER,

Qa0

IMPLICIT BEAL*8(A-B,D-H,0-V,X-Y), COMPLEX*16(C,¥,Z2)
DIMENSTION SCR (182), ISCR(5)

EXTERNAL ZFPODE

CCKMIN /sc/ WC,W(20) ,BETAM (20),C,2(20) ,N,NM,NP
COMMON /CCNSTS/ PI,TWOPI,ZERO,ZINF,EES

CONMIN /ZSCCOM/ CDWDT

aa

NITIAL GUESS Z1 VIA ODE:
1 = ZERO
T = 0,D0

IFLAG = -1

RELERR = 0,DO

ABSERR = S.D-3

CDWDT =(WW-WC)/C

CALL ODE(ZFODE,2,21,T,1.D0, RELERR,ABSERR, IFLAG,SCR,ISCR)
IP (IFLAG.NE.2) WRITE (6,201) IPLAG

e Ne]

REPINE ANSWER VIA ZNEWT:
CALL ZNEWT (21,WW,EPS,K20)
zsc = 21

23 | PORMAT ('/ **% NONSTANDARD RETUBN PROM ODE IN ZSC: IPLAG =',I2/)
RETURN

END
o R L e P P PSS TSIt
C* ZFODE SUBORDINATE (2SC) SUBRQUTINE e *
P s T Y T T R Lttt

~

SUBRJIUTINE ZFODE(T,22,Z2DZDT)
C ZIMPUYTES THE PUNCTION ZDZDT NEEDED BY ODE IN zsc

IMPLICIT REAL*8 (A-8,D-H,0-V,X-Y), COMPLEX* 16 (C,¥, Z)
COMMON /ZSCCCHM/ CDWDT

c
2DZDT = CDWDT / ZPROD(Z2Z,0)
RETOURN
ZND
TEREEEXEEETE AR AR EREEER R R SRR AL SN BNE R X XIS RS R LR AR EE R R BNA R AR AE AR KRR AR K K
T* ZNEWT SUBCRDINATE (2SC) SUBROUTINE %=
CEEEXERSXERARER RS AR R EXK SRR SE R AR R0 [([IPPINI S SS S S SRE RSN A MRS N h® kb
c
SUBRJUTINE ZNEWT (ZROOT,W¥W,EPS,K20)
¢

C IMPLEMENTS NZWTON'S MBETHOD TO SOLVE :c- EQUATION
C 4{ZROQOT) = WW POR ZFOOT.

INPLICIT REAL*8 (A-B,D-H,0-V,X-Y), COMELEX*16 (C,R,2)
COMMON /SC/WC,W (20) ,BETAM(20),C,Z(20),N, NN, NP

09 1 ITER = 1,10

ZROOTO = ZROOT
IP (K20.E0.0) ZPNWT =WW - WSC(ZROOTO, (0.D0,0.D0),HC,0)
IF (KZO.NE.O) ZFNWT = #¥ - WSC(ZROOTO,Z (KZ0),W (KZ0) ,KZ0)

ZROOT = ZROOTO + ZPNWT/(C*ZEFROD (ZRO0TO0,0))

IF (CDABS (ZPNST).LT.EPS) REZTURN

| CONTINUE
4RITE (6,201)
RETURN

201 PORMAT (/' e ** PRROR IN ZNEWT: UC CCNVERGENCE II 10 ITERATIONS')
END
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2L E LRSI RS 2RSS R RS2 R 2 R 2 R R R R R 22 R 22 2 R 2222 22 22 22 2 2]

C*® ZPRID SECONDARY SUBROUTINE ##*
e L R T T T Y]

C
PUNCTICN ZPROD(ZZ,KS)

CJMPUTES THE INTEGRAND

N
PROD  (1-2Z/Z (K)) **BETAN(K) ,

TAKING ARGUMENT ONLY (NOT MODOULOS) FOR TERM K = KS.

QOO aaa

IHPLICIT REAL*8 (A-B,D-H,0-V,X-Y), COBPLEX*16(C,¥W,2)
REAL*8 CDABS
COMMON /SC/ WC,W(20) ,BETAX(20),C,2(20),N,NN,NP

zso = (0.D0,0.D0)
po 1K = |, N
ZT¥P = (1.D00,0.D0) - 22/ (K)
IF (K.EQ.KS) 2TMP = ZTEP s CDABS (ZTHMP)
1 zsutl = ZSUM + BETANM(K)*CDLOG (ZTMP)
ZPROD = CDEXP(ZS5UN)
EETURN
END

Ctt!‘ttt‘tttttt‘t““‘.‘l‘.““““‘t‘.““‘.““.““It“t".“‘...
C* FINITE SECONDARY SUBROUTINE e *
Ctltl#‘*t‘t*‘tt‘t""“tt"‘t.t"‘t‘“‘t‘.‘tt“‘*t“‘t#“t‘t“!ti“‘
c

FUNCTI )N FINITE(Z)
C
C RZTUANS TRUE IF AND ONLY IF Z IS NOT INFINITE

[g]

IMPLICTT REAL*8 (A-B,D-H,0-V,X-Y), CCNPLEX*16(C,¥,2)
L2GICAL FINITE
ZOMMON /CONSTS/ PI,TWOPI,ZERO,ZINF,FES

(3]

PINITE = DREAL(Z) .NE.DREAL (ZINF)
RETURN
END

Ctutltl““t“t.lt“““‘tt“"‘.‘t"““t‘t‘."“‘t“““““‘#‘il‘

C* ZNTER SECONDARY SUBROUTINE e *
CEERERRRREARRAE B ARERRRR R R RS R ERRRE SRR AR BRI R R A SRR KRR RR R RS SR

SUBROUTINE ENTER (SBNAME)

3TARTS TIMING TIRE SPENT IN SUBROUTINE YITH NAME SBNAME.

e Ko}

IMPLICITREAL*8 (A-8,D-H,0-V,X-Y), COMELRXY*16(C,¥W,Z)
CIMMON /TIME/ TENTER

CALL LEPT1A (TENTER)
WRITE (6,20 1) SBNAME
RETURN

201 PORMAT (//1X,80('X'),' ENTERING ',A8)

END
ct‘#tt"tit‘"t‘#l‘tt"t't““"tl‘l.l‘l““‘t".t.#"“.““.“..“

c* 2XIT SECONDARY SUBROUTINE #**
Clt‘tltt“tt‘t#ttt“tt““tt‘.‘t‘!i‘l“.‘l“‘#‘l“.t"t...“tllttt‘t

c
SUBRJUTINE EXIT

PRINTS TIME SPENT IN SUBROUTINE.

(s NeNe]

IMPLICIT REAL*8 (A-B,D-H,0-V,X-Y), COMPLEX*16(C,¥,1)
COMMON /TIME/ TENTER

(@]

CALL LEPT1A (TEXIT)
TIME = TENTER = TEXIT
WRITE (6,20 1) TIME
BETURN

201 PORMAT (1X,80(*X'),' TIME ELAPSED:',F7.3,' SECS.'/)
END
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