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Abstract

A program is described which computes Schwarz-Christoffel transformations

that map the unit disk conformally onto the interior of a bounded or unbounded

polygon in the complex plane. The inverse map is also computed. The computa-

tional problem is approached by setting up a nonlinear system of equations whose

unknowns are essentially the “accessory parameters” 2. This system is then solved

with a packaged subroutine.

New features of this work include the evaluation of integrals within the disk

rather than along the boundary, making possible the treatment of unbounded

polygons; the use of a compound form of Gauss-Jacobi quadrature to evaluate the

Schwarz-Christoffel integral, making possible high accuracy at reasonable cost;

and the elimination of constraints in the nonlinear system by a simple change of
variables.

Schwarz-Christoffel transformations may be applied to solve the Laplace and

Poisson equations and related problems in two-dimensional domains with irregular

or unbounded (but not curved or multiply connected) geometries. Computational

examples are presented. The time required to solve the mapping problem is roughly

proportional to N3, where N is the number of vertices of the polygon. A typical
set of computations to 8place accuracy with N << 10 takes 1 to 10 seconds on

an IBM 370/168.
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[. INTRODUCTION

1. Conformal mapping and its applications

One of the classical applications of complex analysis 1s conformal map-

ping: the mapping of one open region in the complex plane C onto another

by a function which is analytic and one-to-one and has a nonzero deriva-

tive everywhere. Such a map preserves angles between intersecting arcs in

the domain and image regions; hence the name conformal. The Riemann

Mapping Theorem asserts that any simply connected region in the plane

which 1s not all of C can be mapped in this way onto any other such

region. The theorem does not say what this mapping may look like, however,

and the determination of particular conformal maps for particular mapping

problems has been an active problem since at least 1850.

I T
Z Ww
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The usefulness of conformal mapping for applied problems stems from

the fact that the Laplacian operator transforms in a simple way under a

conformal map. Let j:C —C map a region £1, in the z-plane conformally

onto a region §2,, in the w-plane, and let A, and A,, denote the Laplacian
2 2 2 2 . .

operators yo + 2 and 2 + Z, respectively, where 2==x 4-1y and
w == u + tv. Then we may easily show,

=f (2) Ausf (w)) 1.1

for ¢:0, —R suitably differentiable, A conformal map has |f(2)| > 0 every-
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| where; thus from (1.1) it follows that if ¢(z) is the solution to the Laplace
| equation A,p = 0 in ,, subject to Dirichlet boundary condition6 ¢(z)=
] g(z) on the boundary I, , then y¥(w) == ¢(f*(w)) is a solution to the Laplace

equation Ay¥ = 0 in the image region £2, = f(€,), subject to the image
| boundary condition6 (w)== g(f~!(w)) on the boundary I'y, = f([,). (We
| have assumed that f map6 I', bijectively onto the boundary of £2. This is

not always true, but it 1s true if both region6 are bounded by Jordan curves.

| See [Henrici, 1974], Thm. 5.10e.)
More generally, from (1.1) we can see that Poisson’s equation, A(z) =

p(z), transforms under a conformal transformation into a Poisson equation

in the w-plane with altered right hand side:

App(w) = [FSH w)72 pf (w)) . (1.2)

Furthermore, more general boundary condition6 than Dirichlet also trans-

form in a simple way. For example, the Neumann condition 72 9(2) = h(z),
where g2- is a normal derivative in the x-plane, transforms to 52-4 (w)=

(fw) I~ h(f1{w)). We do not pursue such possibilities further here;
for a systematic treatment 6ee chapter VI of [Kantorovich & Krylov, 1958].
Some computed exampleb are given in Section V,

Traditionally, conformal mapping ha6 been applied most often in two

areas. One 1s plane electrostatics, where the electrostatic potential ¢ satisfies

. Laplace’s equation. The other is irrotational, nonviscous fluid flow in the

plane, which may be described in term6 of a velocity potential ¢ that also

satisfies L.aplace’s equation.

2. The Schwarz-Christoffel transformation

The problem of mapping one complex region conformally onto another

1s in general very difficult, but for the special case of polygonal region6 it

| can be greatly simplified, Suppose that we seek a conformal map from the
unit disk in the x-plane to the interior of a polygon FP in the w-plane whose

vertices are wy,..., wn, numbered in counterclockwise order, For each k,

| denote by fiw the exterior angle of P at wg:

NoBm

Wo 1 -|x
wx ~~
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For any polygon we have a simple relationship among the numbers Fk:

N

Y Be=2. (1.3)
k=1

If wg is a finite vertex, we have —1 << fx <1. We need not require, however,
that PP be bounded, It may have a number of vertices at complex infinity, and

the exterior angle6 corresponding to these may fall anywhere in the range

1 < Bx << 3. Such angle6 are defined to be equal to 2% minus the external
angle formed in the plane by the intersection of the two sides involved, if

they are extended back away from infinity. The following example should

illustrate what is meant by various values of fk: it is a polygon with five
vertices wg (in this case w; = wy), with corresponding values (fi, . . . . f5)=

(3%% 45-1):

wy, = @

: B, =4/3

V5

__
[NV
W3 Wy = Wq

As always, (1.3) holds for this example.

Let us now pick at random N point6 2; (“prevertices”) in counterclock-
wise order around the unit circle and two complex constants C and w,, and
consider the Schwarz-Christoff el formula:

zg N a. — On

— %
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The quantities (1 —2'/z) always lie in the disk |w —1| << 1 for [2] < 1.
Therefore, if we choose a branch of log(z) with a branch cut on the negative

: real axis by mean6 of which to define the power6 in (1.4), w(z) define6 an
| analytic function of z in the disk |#|< 1, continuous on |z|< 1 except
| possibly at the vertices z.

The Schwarz-Christoffel formula is chosen 60 as to force the image of

the unit disk to have corner6 in it with the desired exterior angles Fim. It

| is not hard to see from (1.4) that at each point z, the image w(z) must
turn a corner of precisely this angle. This 1s in keeping with our purpose of

mapping the disk onto the interior of P. What the map will in general fail

: to do 1s to reproduce the lengths of sides of correctly, and to be a one-
| to-one correspondence. For a suitable choice of parameter6 {2}, C, and w,
| the image under f of the unit disk might be, for example,

Only the angle6 are guaranteed to come out right.

| The vanableb 2, . ... zn, C, and w, are the accessory parameters of the
| Schwarz-Christoffel mapping problem. Our first problem-the parameter

problem-k to determine value6 of the accessory parameter6 so that the

length6 of sides of the image polygon do come out right. The central theorem

| of Schwarz-Christoffel transformations asserts that there always exists such

| a set of accessory parameters:

| Theorem 1 (Schwarz-Christoffel transformation). Let obe a simply
connected region in the complex plane bounded by a polygon » with vertices



zi, ...,2N and exterior angle6 mf, where -1 <fc < 1 if 2 is finite and
1 < Gx < 3 if zx = 00, Then there exists an analytic function mapping the

unit disk in the complex plane conformally onto DJ, and every such function
may be written in the form (1.4).

Proof: [Henrici, 1974], Thm. 5.12e.

In fact, for any given polygon there 1s not just one but infinitely many

such conformal mappings, To determine the map uniquely we may fix ex-

actly thrce points 2, at will, or fix one point zx and also fix the complex
value wg, or (a6 in a standard proof of the Riemann mapping theorem) fix

we and the argument of the derivative f'(0).
The simplicity of the explicit formula (1.4) 1s attractive. But because

the problem of determining the accessory parameter6 is intractable analyti-

cally, application6 of it have almost always been restricted to problem6

simplified by having very few vertices or one or more axes of symmetry.

General Schwarz-Christoffel map6 do not appear to have been used a6 a

computational tool, although experiment6 have been made in computing
them.

3. Numerical computation of the Schwarz-Christoffel Transformation

In the early day6 of computers, when « number of relatively pure

mathematicians were growing interested in computational mathematics,

the numerical computation of conformal map6 in general and Schwarz-

ChristofTel transformations in particular received a flurry of attention, As
carly as 1949, the National Bureau of Standard6 sponsored a symposium on

numerical conformal mapping. It wab too early, however, for algorithms to

result from this period which we could now consider practical.

In more recent years interest in numerical conformal mapping ha6 been

modest. Gaier [1964] produced a comprehensive work describing method6
for various problems in constructive conformal mapping. For the Schwarz-

Christollel problem, he proposed determining the accessory parameters zi

by setting up a constrained nonlinear system of N — 3 equation6 relating

(1.4) to the known distances |wx— wjyl, and solving it iteratively by Newton's
method [Gaier, p.171]. Such a procedure ha6 been tried by at least three sets
of pcople: [Meyer, 1979], [Howe, 1973], and [VecheslavovéKokoulin, 1973].

The present work follow6 Gaier and others in formulating the parameter

problem a6 a constrained nonlinear system of equations, We believe that
this is the first fully practical program for computing Schwarz-Christoffel

J



transformations, however, and the first which 1s capable of high accuracy
without exorbitant cost.

Once innovation which make6 accurate but cheap computations possible

here 1s the use of a compound form of Gauss-Jacobi quadrature to evaluate

the integral in (1.4). The evaluation of this integral is central in all Schwarz-

Christoffel computations, both in determining the accessory parameters and

in evaluating the map and 1t6 inverse once the accessory parameters are

known. We have found that a straightforward application of Gauss-Jacobi

quadrature, a6 6ome other6 have used, can achieve only very low accuracy

in realistic problems, and we have developed a compound form of Gauss-

Jacobi quadrature to get around this difficulty (see IL3).
A second innovation here 1s that the computation may be performed

not just for bounded polygons, but for polygon6 with any number of vertices

at infinity. This is made possible by taking the unit disk as the model

domain rather than the upper half plane, which other6 have used, and

evaluating complex contour integrals within the disk rather than only along

the boundary. The ability to handle unbounded polygon6 is important for

applications, since one of the attraction6 of conformal mapping is that it

can reduce an unbounded problem domain to a bounded one.

The treatment of the constraints in the nonlinear system 1s a third

ncw feature in this work. We have employed a simple change of variables

. to eliminate these constraints directly. This approach appear6 to be more

efficient than other technique6 which have been tried (see [Howe,1973] and
[Vecheslavov&Kokoulin,1973]), and eliminates the need for an initial guess
of the accessory parameters.

Wc have depended in several place6 on the use of a sophisticated library

of “black box” numerical routines. Library program6 come into play here

for Gauss-Jacobi quadrature, for the solution of the nonlinear system, and

for the solution of an ordinary differential equation. Others have been used
in various experiment6 with applications. The Schwarz-Christofiel problem

is essentially a simple problem numerically once the machinery is in place,
but it 1s only in recent year6 that this kind of numerical machinery has

begun to be broadly available,



II. DETERMINATION OF THE ACCESSORY PARAMETERS

1. Formulation as a con&rained nonlinear system (subroutine SCFUN)

The first matter to be settled in formulating the parameter problem

numerically is, what parameter6 in the map (1.4) shall we fix at the outset
to determine the Schwarz-Christoffel transformation uniquely? One choice
would be to fix three of the boundary points zx: say, 21 == 1, zp ==1, 2N = —1.
‘This normalization ha6 the advantage that the resulting nonlinear system

ha6 size only (N — 3)-by-(N — 3), which for a typical problem with N==8
may lead to a solution in less than half the time that a method involving

an (N — 1)-by-(N — 1)syotem requires. Nevertheless, we have chosen here
to normalize by the conditions:

zy =1 (2.1)

w, == arbitrary point within »

| which lead to an (N — 1)-by-(N — 1) system. This choice is motivated
| by considerations of numerical scaling: it allow6 the vertices to distribute

themselves more evenly around the unit circle than they might otherwise.

(An carlicer version of the program mapped from the upper half plane instead
of the unit disk, but wab rejected: once points 2 began appearing far from

the origin at x == 10%, scaling became a problem,) After a map has been
computed according to any normalization, it is of course an easy matter to

transform 1t analytically to a different domain or a different normalization

by a Mobius transformation.

Now the nonlinear system must be formulated. The final map must

satisfy N complex conditions,

zx N 5 —B;j

ww, = C [ I1(1-2) dz, 1<k<N. (2.2)0 i 7;

These amount to 2N real condition6 to be satisfied, but they are heavily over-

dctermincd, for the form of the Schwarz-Christoffel formula (1.4) guarantees
| that the angles will be correct no matter what accessory parameters are

chosen. We must reduce the number of operative equations to N — 1. This

| 7



1s a tricky matter when unbounded polygons are allowed, for one must be

careful that enough information about the polygon P is retained that no
degrees of freedom remain in the computed solution.

We proceed as follows. First, we require that every connected com-

ponent of P contain at least one vertex wg Thus even an infinite straight

boundary must be considered to contain a (degenerate) vertex. This restric-

tion eliminates any translational degrees of freedom. Second, at least one
component of P must in fact contain two finite vertices, and wn and w; will

be taken to be two such, This restriction eliminates rotational degrees of
freedom.

Now define

ean N A\ Ps

0 oC Z4J==1

where zy = 1 is fixed permanently by (2.1). Next, impose the complex

condition (real equations 1,2)

wp— We == c (1-2) dz . (2.4a)0 24
1=l

This amounts to two real equations to be satisfied.

Denote by I'y, . . . . I’, the distinct connected components of P, numbered
in counterclockwise order. For each € > 2, impose one more complex con-

dition: if 2, is the last vertex of I'g in the counterclockwise direction, then
(real equations 3,4,...,2m)

[" N 5 —Aywg, —w, = C ] — — dz. 2.4boe 11( :) 245
i=l

Finally, N — 2m — 1 conditions of side length are imposed. For each

pair (zk, zk-+1) beginning at k == 1 and moving counterclockwise, where both
vertices are finite, we require (real equations 2m -1,...,N — 1)

vty N JS\ Pi

| Wee-1 — wie] = lo [ I1( 1 — 2) a2) (2.4¢)Zh s zyj=l

8
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until a total of N — 1 conditions have been imposed. If P contains at least

one vertex at infinity, then every bounded side will have been represented in

a condition of the form (2.4¢) except for the side (wn, wi), which is already
taken care of by (2.1) and (2.4a). If P is bounded, then the last two sides
in counterclockwise order—(wn—z, wn—1) and (wy—1, wy)—will not be 60
represented.

We have not stated over what contours the integrals of eqs. (2.4) are

defined. This does not matter mathematically, as the integrand is analytic,

but it may matter numerically. In this work we have evaluated them always

over the straight line segment between the two endpoints, a procedure which

poscs no domain problem6 since the unit disk is strictly convex. Figure 2.1
illustrates what contours are involved in computing the integrals in (2.3)

and (2.4), for a sample case with N = 10, m = 3.

The nonlinear system 1s now determined, and its unique solution will

give the unknown parameters C and 2, . . .,2nv—) for the Schwarz-Christoffel

mapping. We must, however, take notice of two special cases in which the

solution 1s not completely determined by eqs. (2.4). It was remarked that

if P is bounded, then nowhere in eqs. (2.4) does the point wny—i1 appear. If

AN—15%—1 or 0, then this omission is of no consequence, for the geometry
of the problem forces wy—;j to be correct. If fy—1 = 0 or -1, however, then
wp1 1s not determined a priori. The former case 1s of little consequence,

for since fn—1 = 0 the value taken for zy—; has no effect on the computed

mapping, as may be seen in (1.4), nor is there any purpose in including wn—1
among the vertices of P in the first place. (Still, there may be problems

in solving the system (2.4) numerically, for it is now underdetermined.)

The latter case, fn—j= —1, is more serious, and must be avoided in the

numbering of the vertices wg.

2. Transformation to an unconstrained system (subroutine YZTRAN)

The nonlinear system (2.4) ostensibly involves N — 1 complex unknown

points 2, ...,2N—1 on the unit circle, In dealing with such a system, we
naturally begin by considering not the points 2 themselves, but their argu-

ments Gg, given by

Ze=¢e% 0 <0 <2r. (2.5)

Now the system depends on N — 1 real unknowns, and the solution in terms

of the Ok is fully determined.

However, the system (2.4) as it stands must be subject to a set of strict

;
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Figure 2.1 — Contours of integration within the disk. A sample Schwarz-

Christoffel problem is shown with NV = 10 vertices of which m = 3 vertices are

at infinity, illustrating what integrals are computed to evaluate the system (2.4):

e 1 radial integral along (0 — 2;9) defines C' (eq. 2.3)

o lradial integral along (0 — 2;) determines two real equations to fix wy (eq.
2.4a)

e 2 radial integrals along (0 — 25) and (0 — 27) determine four real equations
to fix ws and wy (eq. 2.4b)

o 3 chordal integrals along (23 — 24), (24 — 25), and (zg — 2;¢) determine three
rcal equations to fix [wy — wj|,jws — wy, and |w;¢ — wy| (eq. 2.4c)

TOTAL: N — 1 = 9 real equations
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incquality constraints,

<b <bpt1, 1<kSN-—I, (2.6)

which embody the fact that the vertices z must lie in ascending order coun-

tcrclockwise around the unit circle. To solve the system numerically, it 1s

desirable to eliminate these constraints somehow. We do this by transform-

ing eqs. (2.4) to a system in N — 1 variables yj, . . . . YN—1, defined by the
formula

Oe—0ye =log —, 1<kSN-—1, (2.7)
Ok+1— Ok

where 0p and 0p, two different names for the argument of 2y = 1, are taken

for convenience as 0 and 2m, respectively.
At each iterative step in the solution of the nonlinear system (2.4),

we begin by computing a set of angles {fk} and then vertices {zx} from
the current trial set {yx}. This is easy to do, though not immediate since
the equations (2.7) are coupled. In this way the problem is reduced to one

of solving an unconstrained nonlinear system of equations in N —1 real
variables.

3. Integration by compound Gauss-Jacobi quadrature (subroutine ZQUAD)

The central computation in solving the parameter problem, and indeed

in all Schwarz-Christoffel computations, 1s the numerical evaluation of the

Schwarz-Christoffel integral (1.4) along some path of integration. Typically

one or both endpoints of this path are prevertices 2 on the unit circle, and

in this case a singularity of the form (1 —z/2)~" is present in the integrand
at one or both endpoints.

A natural way to compute such integrals quickly is by means of Gauss-

Jacobi quadrature (see [Davis& Rabinowitz, 1975},p. 75). A Gauss-Jacobi

quadrature formula is a sum SNITS w;f(z;), where the weights w; and
nodes z; have been chosen in such a way that the formula computes the

integral [Tr f(z)(1 — z)2(1 + 2)? dx exactly for f(z) a polynomial of as
high a degree as possible. Thus Gauss-Jacobi quadrature 1s a generalization

of pure Gaussian quadrature to the case where singularities of the general

form (1 — z)2(1 + z)f (a, B > -1) are present. The required nodes and
weights can be computed numerically; we have used the program GAUSSQ

by Golub and Welsch [Golub & Welsch,1969] for this purpose.

11



Gauss-Jacobi quadrature appears made-to-order for the Schwarz-Chris-
toffel problem, and at least two previous experimenters have used it or or

a closely related technique ([Howe, 1973], [Vecheslavov & Kokoulin,1973}).
We began by doing the same, and got good results for many polygons with

a small number of vertices, In general, however, we found this method of

integration very inaccurate. For a typical sample problem with N == 12

and NPTS = 16, it produced integrals accurate to only about 1072, and
it does much worse if one chooses polygons designed to be troublesome.

What goes wrong 1s a matter of resolution. Consider a problem like the

one shown in Figure 2.2. We wish to compute the integral (1.4) along the

scgment from 2; to some point p. (In the parameter problem p might be 0 or

2x—1; in later computations it might be any point in the disk.) Now direct

application of a Gauss-Jacobi formula will involve sampling the integrand

at only NPTS nodes between z and p. If the singularity z,.; 1s so close to
the path of integration that the distance € = |2.) — 2 is comparable to
the distance between nodes, then obviously the Gauss-Jacobi formula will

yicld a very poor result. It turns out that in Schwarz-Christoffel problems

the correct spacing of prevertices z; around the unit circle is typically very

irregular, so the appearance of this problem of resolution is the rule, not

the cxccption. (See examples in V.)

To maintain high accuracy without giving up much speed, we have

. switched to a kind of compound Gauss-Jacobi quadrature (see [Davis &

Rabinowitz, 1975}, p. 56). We adopt, somewhat arbitrarily, the following
quadrature principle:

No singularity z shall lie closer to an interval of

integration than half the Jength of that interval,

To achieve this goal, the quadrature subroutine ZQUAD must be able to

dividc an interval of integration into shorter subintervals as necessary, work-

ing from the endpoints in. On the short subinterval adjacent to the endpoint

Gauss-Jacobi quadrature will be applied; on the longer interval (or intervals)

away from the endpoint pure Gaussian quadrature will be applied. The

effect of this procedure 1s that number of integrand evaluations required to

achicve a given accuracy is reduced from O(1) to O(log, 2).
Figure 2.2 shows the intervals of integration that come into play in

compound Gauss-Jacobi quadrature. For a plot comparing the accuracy of

simple and compound Gauss-Jacobi quadrature in another typical problem,
see IV.1.

14



| Zr +1
2) le

Figure 2.2 - Compound Gauss-Jacobi quadrature. Division of an interval

of integration into subintcrvals to maintain desired resolution.

With the use of compound Gauss-Jacobi quadrature, we now achieve

high accuracy in little more than the time that direct Gauss-Jacobi quad-

rature takes. This 1s possible because only a minority of integrals have a

singularity close enough that subdivision of the interval of integration is re-

quired. In the 12-vertex example mentioned above, the switch to compound

Gauss-Jacobi integration decreased the error from 10% to 2.107.
There remains one circumstance in which integration by compound

Gauss-Jacobi1 quadrature as described here 1s unsuccessful. This is the case

of an integration interval with one endpoint quite near to some prevertex

2, corresponding to a vertex wg = 00. We cannot evaluate such an integral

| by considering an interval which begins at 2, for the integral would then

be infinite. The proper approach to this problem 1s probably the use of

integration by parts, which can reduce the singular integrand to one that

is not infinite Depending on the angle fk, one to three applications of in-

tegration by parts will be needed to achieve this. We have not implemented

this procedure.

| The subtlety of the integration problem in Schwarz-Christoffel com-
putations 1s worth emphasizing. It is customary to dispatch the integration

problem as quickly as possible, in order to concentrate on the “difficult” ques-

13



Gions: computation of accessory parameters and inversion of the Schwarz-
Christoffel map. We believe, however, that the more primary problem of
computing Schwarz-Christoffel integrals-the “forward” problem-should

always remain a central concern. Any numerical approach to the parameter
problem or the inversion problem is likely to employ an iterative scheme

which depends at each step on an evaluation of the integral (1.4), and so
the results can only be as accurate as that evaluation.

4. Solution of system by packaged solver (subroutine SCSOLYV)

The unconstrained nonlinear system 1s now in place and ready to be

solved, For this purpose we employ a library subroutine: NSOIA, by M.J.D.

Powell ([Powell, 1968] hichuses a steepest descent search in early itera-
tions if necessary followed by a variant of Newton’s method later on. (The

routine does not USC analytic derivatives.) It is assumed that a variety of

other routines would have served comparably well,

Wc rnake no attempt to tailor the numerical solution procedure to the

particular Schwarz-Christoffel problem under consideration, In particular,

a.11 iterations begin with the trivial initial estimate gy, =0 (1 <k<N —
1). This corresponds to trial vertices spaced evenly around the unit circle.

. The following input parameters to NSOIA have generally remained fixed:

DSTEP=10"2 (stcp size used to estimate derivatives by finite differences),
DMAX = 10 (maximum step size), MAXFUN =15(N — 1) (maximum
number of iterations).

A fourth paramcter, EPS, defines the convergence criterion-how large

a function vector (square root of sum of squares of functions values) will

bc considered to bc satisfactorily close to zero. We have most often taken
10—8 or 10—14 here. The choice of EPS is not very critical, however, as
convergence in NSOIA 1s generally quite fast in the later stages.

In the course of this work about a hundred Schwarz-Christoffel trans-

formations have been computed, ranging in complexity from N = 3 to

N == 18, NSOIA has converged successfully to an accurate solution in all

of these trials. Section V.1 gives a series of plots showing this convergence

graphically for a simple example,
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III. COMPUTATION OF THE S-C MAP AND ITSINVERSE

Determining the accessory parameters is the most formidable task
in computing numerical Schwarz-Christoffel transformations, Once this is

done, evaluation of the map and of its inverse follow relatively easily. The

foundation of these computations continues to be compound Gauss-Jacobi

quadrature.

1. From disk to polygon: w = w(z) (subroutine WSC)

To evaluate the forward map w(z) for a given point z in the disk or on
the circle, we must compute the integral

z N AN

Ww = w+ [ I1(1-2) dz! (3.1)a =I %

with wp == w(z), where the endpoint 2 may be any point in the closed disk
at which the image w(z) is known and not infinite. Three possible choices
for zp suggest themselves-

(1) 20 == 0; hence wp = wy;

(2) 20 = 2 for some k; hence wp = wg, a vertex of P;

(3) 2 = some other point in the disk at which w has previously been
computed.

In cascs (1) and (3), neither endpoint has a singularity, and an evaluation of
(3.1) by compound Gauss-Jacobi quadrature reduces to the use of compound

Gauss quadrature. In case (2) a singularity of the form (1 — 2/2)" is
present at one of the endpoints and the other endpoint has no singularity.

| 15



The best rule for computing w(z) is: if 2z is close to a singular point 2
(but not one with wg == 00), use method (2); otherwise, use method (1). In

cither case we employ compound Gauss-Jacobi quadrature, taking normally
the same number of nodes as was used in solving the parameter problem.

By this procedure wc evaluate w(z) readily to “full” accuracy-that is, the
accuracy to which the accessory parameters have been computed, which 1s

dircctly related to the number of points chosen for Gauss-Jacobi quadrature

(sce IV.1). Quadrature nodes and weights need only be computed once, of
course.

We should emphasize that even in the vicinity of a singularity zx, the

evaluation of the map w = w(z) is inherently very accurate. This very
satisfactory treatment of singular vertices 1s a considerable attraction of

the Schwarz-Christoffel approach for solving problems of Laplace type.
In particular, in a potential problem the Schwarz-Christoffel transforma-

tion “automatically” handles the singularities correctly at any number of
rcentrant corners,

2. From polygon to disk: z = z(w) (subroutine ZSC)

For computing the inverse mapping z = x(w) at least two possibilities

~ cxist, both of them quite powerful, The most straightforward approach is

to view the formula w(z) = w as a nonlinear equation to be solved for 2,
given some fixed value w. The solution may then be found iteratively by

Newton's method or a related device, w(z) should be evaluated at each step
of such a process by compound Gauss-Jacobi quadrature along a straight

line segment whose initial point remains fixed throughout the iteration.

An alternative approach 1s to invert the Schwarz-Christoffel formula,

dw N 2"

dz © 11(: )
to yield the formula

N + Bx

az _ SI(1-2) (3.2)dw C= 2k

This inversion is possible because w = w(z) is a conformal mapping, which
means |dw/dz| > 0 everywhere. (3.2) may now be thought of as an ordinary

16



differential equation (o.d.e.),

E = gw,3), 3:3)
in one complex variable w. If a pair of values (2, wp) is known and the new
value z = z(w) is sought, then 2 may be computed by applying a numerical
o.d.e. solver to the problem (3.3), taking as a path of integration any curve
from wp to w which lies within the polygon FP.

In our program we have chosen to combine these two methods, using the

second method to generate an initial estimate for use in the first. We begin

with the o.d.e. formulation, using the code ODE by Shampine and Gordon,
and for convenience we integrate whenever possible along the straight line

segment from w, to w. (ODE, like most o.d.e. codes, is written for problem6

in real arithmetic, so that we must first express (3.2) as a system of first-

order o.d.e.'s in two real variables.) Since P may not be convex, more than
one line segment step may be required to get from wp to w in this way. It

will not do to take wy == wy for some vertex wx without special care, because

(3.2) 1s singular at wy.

From ODE we get a rough estimate # of z(w), accurate to roughly 102,
This estimate 1s now used a6 an initial guess in a Newton iteration to solve

the equation w(z)== w. This method is faster than the o.d.e. formulation for
getting a high-accuracy answer, More important, it is based on the central

| Gauss-Jacobi quadrature routine, unlike the o.d.e. computation.

In summary, we compute the inverse map 2 == z(w) rapidly to full
accuracy by the following steps:

(1) Solve (3.2) to low accuracy with package ODE, integrating when-

ever possible along the line segment from w, to w; call the result

z;

(2) Solve the equation w(z) = w for z by Newton’s method, using 2
| a6 an initial guess.

17



IV. ACCURACY AND SPEED

1. Accuracy

The central computational step is the evaluation of the Schwarz-Chris-

toffel integral, and the accuracy of this evaluation normally determine6

the accuracy of the overall computation. A6 a consequence of the quadra-

ture principle adopted in II.3—that no quadrature interval shall be longer

than twice the distance to the nearest singularity 2—the compound Gauss-

Jacobi formulation achieve6 essentially the full accuracy typical of Gaussian

quadrature rules operating upon smooth integrands. That is, the number of

digits of accuracy is closely proportional to NPTS, the number of quadrature
node6 per half-interval, with a very satisfactory porportionality constant in

practice of approximately 1.

It 1s important not only to be capable of high accuracy, but to be

able to measure how much accuracy one has in fact achieved in a given

computation, To do this we employ a subroutine TEST, which 1s regularly

called immediately after the parameter problem is solved. Given a computed

set of accessory parameter6 C and {z} , TEST computes the distances
we — we| for each wg 4 oo and the distances |wg—j— wk+1| for each
wy = oo, making use of the standard subroutine ZQUAD for compound

Gauss-Jacob1 quadrature. The numbers obtained are compared with the

cxact distance6 specified by the geometry of the polygon, and the maximum

error, RADEMX, 1s printed as an indication of the magnitude of error6 in

the converged solution. It is now probable that subsequent computations of

w(z) or z(w) will have errors no greater than roughly RADEMX,

Most often wc have chosen to use an 8-point quadrature formula. Since
cach interval of integration is initially divided in half by subroutine ZQUAD,
this mcan6 1n reality at least 16 node6 per integration. With this choice

RADEMX consistently hab magnitude ~10728 for polygons on the scale of
unity.

Figure 4.1 gives an indication of the relationship between number of

quadrature node6 and error RADEMX; it shows RADEMX a6 a function of

NPTS for a 6-gon which is shown at the top of the next page. Two curve6

18



-1-1

are shown: one for simple Gauss-Jacobi quadrature, and one for compound

Gauss-Jacobi1 quadrature. The exact quantities here should not be taken too

seriously; examples could easily have been devised to make the difference in

performance of the two quadrature methods much smaller or much greater.

2. Speed

Any application of Schwarz-Christoffel transformations consists of a
sequence of steps:

INIT - set up problem

QINIT - compute quadrature nodes and weights

SCSOLY - solve parameter problem

TEST - estimate accuracy of solution

ZSC, WSC, etc. — compute forward and inverse transformation6 in

various applications

Among these tasks INIT, QINIT, and TEST all take negligible amounts

of time relative to the other computations: typically less than 0.1 secs. on
the IBM 370/168 for INIT and QINIT, and for TEST a variable time that
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The error estimate RADEMX is plotted as a function of NPTS for the
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simple Gauss-Jacobi and compound Gauss-Jacobi quadrature, respec-

tively.
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is usually less than 5% of the time required by SCSOLV, What remains are
three main time consumers: SCSOLV, ZSC, and WSC.

We begin with WSC, which performs the central evaluation of (1.4)

by compound Gauss-Jacobi quadrature. This evaluation takes time propor-

tional to NPTS (the number of quadrature nodes) and to N (the number of

vertices). The first proportionality 1s obvious, and the second results from

the fact that the integrand of (1.4) is an N-fold product. Very roughly, we

may estimate

time to solve w = w(z) 0.25: NPTS + N msec. (4. 1a)

for double precision computations on the IBM 370/168. Taking a typical
value of NPTS==8, which normally leads to &digit accuracy, (4.1a) may be
rewritten

time to solve w == w(z) : 2N msec, | (4. 1b)

For the minority of cases in which the interval must be subdivided to

maintain the required resolution, these figures will be larger.
To estimate the time required to solve the parameter problem, we com-

bine (4.1) with an cstimate of how many integrals must be computed in the

course of solving this problem. To begin with, at each iteration about N

integrals arc required by NSOIA (the exact number depends on the number
of vertices at infinity). On top of this, it is a fair estimate to say that 4N

iterations will be required by NSOIA to achieve a high-accuracy solution.
We are therefore led to the estimate

time to solve parameter problem: NPTS +N? msec. (4.2a)

or, taking again NPTS=S,

time fo solve parameter problem:  8N® msec. (4.20)

These estimates correspond fairly well with observed computation times
for the parameter problem: two problems with N = 5 and N = 18 may

be expected to take about 1 and 50 seconds, respectively. It is clear that

computing a Schwarz-Christoflel transformation becomes quite a sizeable
problem for polygons with more than ten vertices, In particular, such com-

putations are much too time-consuming for it to be practical to approximate

a curved domain by a polygon with a large number of vertices.
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Finally, we must consider the time taken by subroutine ZSC to invert

2 the Schwarz-Christoffel map. This too is proportional to NPTS, and quite
problem dependent. We estimate very roughly:

| time to solve z=2(w):  NPTS :N msec. (4.3a)

or, with NPTS==S§,

| | time to solve z = z(w) : 8N msec. (4.3b)
Note that inverting the Schwarz-Christoffel map is only about four

times as time-consuming as computing it in the forward direction.

| In practice, computational applications will vary considerably in the
use they make of a Schwarz-Christoffel transformation once the parameter

| problem is solved. If only a few dozen applications of ZSC or WSC are

required, then the computational time for solving the parameter problem

will dominate. If thousands of such computations are needed, on the other

hand, then the parameter problem may become relatively insignificant. The

latter situation 1s most likely to hold when plotting 1s being done, or when

a high-accuracy solution in the model domain 1s to be computed by means
of finite differences.

J In summary, high accuracy 1s cheap in Schwarz-Christoffel transfor-

mations; what consumes time 1s solving problems involving a large number

| of vertices.
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| V. COMPUTED EXAMPLES AND APPLICATIONS

1. Iterative process for a single example

Figure 5.1 shows graphically the process of convergence from the ini-

tial estimate in an example involving a 4-gon. Routine NSOIA begins by
evaluating the function vector (2.4) at the mmitial guess, then at each of

| N — 1 input vectors determined by perturbing the initial guess by the small

quantity DSTEP in each component, As a result, the first N pictures always

| look almost alike, which is why the series shown begins at NIEVAL==4 rather

than NEVAL==1. Each plot shows the current image polygon together with

| the images of concentric circles in the unit disk (which appear as “contours”)

and the images of radii leading from the center of the disk to the current
: prever t ices 2.

These pictures have a beautiful bonus feature about them: they may

be interpreted as showing not only the image polygon but simultaneously

the domain disk, including the prevertices 2 along the unit circle. To see

this, look at one of the inner “contour” curves, one which is apparently

circular, and the radii within it. Since w = w(z) is a conformal map within
the interior of the disk, the radii visible in this circle must intersect at the

same angles as their preimages in the domain disk, Thus the inner part of

any one of these image plots is a faithful representation on a small scale of

the circular domain, We see in Figure 5.1 that the prevertices are equally

spaced around the unit circle initially (NEVAL == 4), but move rapidly to
a very uneven distribution. This behavior, which is typical, indicates why

the usc of a compound form of Gauss-Jacobi quadrature 1s so important (see

11.3).

The sum-of-squares error in solving the nonlinear system 1s plotted as

a function of iteration number in Figure 5.2, for the same 4-vertex example,
Convergence is more or less quadratic, as one would expect for Newton's
method. The irregularity at iteration 19 1s caused by the finite difference

step size of 1078 used to estimate derivatives, and would have been repeated
at each alternate step thereafter if the iteration had not terminated.
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{2c} and C are determined iteratively, for a problem with N = 4.
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2. Sample Schwarz-Christoffel maps

Figures 5.3 and 5.4 show plots of computed Schwarz-Christoffel maps

for representative problems. The polygons of Figure 5.3 are bounded and

those of Figure 5.4 are unbounded, Observe that contour lines bend tightly

around reentrant corners, revealing the large gradients there, while avoiding

the backwater regions near outward-directed corners and vertices at infinity.

Like the plots of Figure 5.1, these may be viewed as showing simultaneously

the image polygon and the domain disk.

Figure 5.5 shows similar plots in which streamlines rather than con-

tour lines have been plotted, so that the configuration may be thought of

as portraying ideal irrotational fluid flow through a two-dimensional chan-

nel. To plot these streamlines an analytic transformation of the disk to an

infinite channel with straight parallel sides was used in conjunction with the

Schwarz-Christoffel transformation from the disk to the problem domain.

3. Laplace's equation

Conformal maps do not solve problems, but they may reduce hard

problems to easier ones. How much work must be done to solve the easier

problem will vary considerably with the application.

(1) In th ds ® circumstances, the original problem may be reduced

to a model problem whose solution is known exactly. This is the

case in the fluid flow problems of Figure 5.5, in which a crooked
channel may be mapped to an infinite straight channel of constant
width.

(2) If a problem of Laplace’s equation with pure Dirichlet or Neumann

boundary conditions can be mapped conformally to a disk, then

| Poisson’s formula or Dini's formula [Kantorovich & Krylov, 1958]
| provide integral representations of the solution at each interior

point. Such integrals may be evaluated readily on the computer

to yield high accuracy solutions. The primary disadvantage of

this approach is that a new integral must be evaluated for each

point at which the solution is desired.

(3) If the solution will be required at many points in the domain,

then it is probably more efficient to solve Laplace’s equation by

| a trigonometric expansion of the form ap PINE rk(ax sin kd
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bi. cob ko); coefficient6 a, and by; are selected 60 as to fit the boundary
2 conditions closely. A disadvantage of this method is that conver-

gence of the expansion may be slow if the boundary conditions
are not smooth,

| (4) Finally, if simpler methods fail, a solution in the model domain

may be found by a finite-difference or finite-element technique.

For problems of Poisson’s equation or more complicated equations

| this will probably normally be necessary,

Figure 5.6 presents an example of type (1). We are given an infinite

region bounded by one straight boundary fixed at potential ¢ = 0 and one
jagged boundary fixed at @ == 2. We may think of this as an electrostatics

problem. The central question to be answered computationally will be: what

are the voltage @ and the electric field B= —Vg at a given point, either
within the field or on the boundary?

We proceed by mapping the given region onto the disk by a Schwarz-
| Christoffel transformation, then analytically onto an infinite straight chan-

nel (as in the examples of Figure 5.5). In the straight channel ¢ and E are

known trivially, and this information may be transferred to the problem

domain through a knowledge of the conformal map that connects them and

| of its (complex) derivative. We omit the details, which are straightforward.
| Figure 5.6b shows |F| as a function of z on the upper and lower bound-

aries of the region. To see more of the behavior of the solution field near

| a reentrant corner, we also compute the field at three points near 3 = 1.51.

These results are given in Figure 9.6c.

| 4. Poisson’s equation

Consider the ‘I-sided region shown in Figure 5.7a. We wish to solve
| Poisson’6 equation

A(z, y)=1 sin 2x( 1 — Ay+ 1)
on this region subject to Dirichlet conditions

1

#z, y) = pla, y) = 7 sin 2e(y +1)?
| on the boundary. We proceed by mapping the domain to the disk and

solving a transformed problem in the disk in polar coordinates by mean6 of
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(c) Computed potential and field strength at
three points near 3 + 1.51

Figure 5.6 —Laplace equation example: electric
potential and field between two infinite sheets.
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a second-order fast finite difference solver (PWSPLR, by P. Swarztrauber
and R. Sweet), p(z, y) is the correct solution in the interior as well as on the
boundary, so we can determine the accuracy of the numerical solution.

This is not as satisfactory a procedure as was available for Laplace

equation problems, According to (1.2), the model problem here is Poisson’s
equation in the disk with an altered right hand side containing the factor

|f(2)|%, where f is the composite map from the disk to the 7-gon. Two
difficluties arise. The first is that to set up the transformed equation in the

disk, p(w;y) must be computed for every wy; = w(z;) which is an image of
a grid point in the disk, This 1s time consuming, one hundred times more

so in this experiment than the fast solution of Poisson’s equation once it

is set up. Second, |f'(z)|? is singular (unbounded, in this example) at each
prevertex 2x, and this appears to interfere with the second-order accuracy

which we would like to observe. The table in Figure 5.7b attests to both of

these problems.

5. Eigenfrequencies of the Laplace operator

Petter Bjgrstad (Computer Science Dept., Stanford University) has
recently combined the present Schwarz-Christoffel computation with a fast

finite-difference scheme to successfully compute eigenvalues and eigenvec-
tors of the Laplacian operator on polygonal regions. These results may be

interpreted as giving the normal modes and frequencies of a thin membrane

in two dimensions, or of a three-dimensional waveguide with constant cross-

section. This work will be reported elsewhere.
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(a) 7-sided problem domain, including image of 16x32
finite-difference arid in the unit disk

Transformation

Grid and setup Fast Polsson
(rx0) time solver time Max. error RMS error

4x8 1.3 secs. <.0l1 secs. 0.132 0.0309

8x16 2 secs. .01 secs. 0.055 0.0085

16x32 5 secs. .03 secs. 0.031 0.0037

32x64 16 secs. .15 secs. 0.026 0.0012

(b) Computed results for four different grids, Time
estimates are for an IBM 370/168.

Figure 5.7— Poisson equation example. Problem is
transplanted conformally to the unit disk and solved
by finite differences.
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VI. CONCLUSION

A program has been described which computes accurate Schwarz-Chris-

toffel transformations from the unit disk to the interior of a simply connected

polygon in the complex plane, which may be unbounded. Key features of

the computation have been:

(1) Choice of the unit disk rather than the upper half plane as the

model domain, for better numerical scaling (IL1)

(2) Use of complex contour integrals interior to the model domain

rather than along the boundary, making possible the treatment

of unbounded polygons (11.1)

(3) Use of compound Gauss-Jacobi quadrature in complex arithmetic

to evaluate the Schwarz-Christoffel integral accurately (IL.3,III. 1)

(4) Formulation of the parameter problem as a constrained nonlinear

system in N — 1 variables (I.1)

(5) Elimination of constraints in the nonlinear system by a simple

variable transformation (11.2)

(6) Solution of the system by a packaged nonlinear systems solver;

no initial estimate required (IE.4)

(7) Computation of a reliable estimate of the accuracy of further

computations, once the parameter problem has been solved (IV.1)

(8) Accurate evaluation of the inverse mapping in two steps by means

of a packaged o.d.e. solver and a packaged complex rootfinder

(111.2)

Previous efforts at computing Schwarz-Christoffel transformations nu-

merically include [Cherednichenko& Zhelankina, 1975], [Hopkins & Rob-
erts, 1978], [Howe, 1973], [Meyer, 1979], and [Vecheslavov & Kokoulin,
1973]. The present work differs from these in that it deals directly with
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complex arithmetic throughout, taking the unit disk rather than the upper

half plane as the model domain and evaluating complex contour integrals.

This makes possible the computation of transformations involving general

unbounded polygons. (Cherednichenko & Zhelankina [1975] also treat un-
bounded polygons, by a different method.) Two other important differences

are the use of compound Gauss-Jacobi quadrature, and the application of

a change of variables to eliminate constraints in the nonlinear system ( (5),
above). Wc believe that our program computes Schwarz-Christoffel trans-
formations faster, more accurately, and for a wider range of problems than

previous attempts.

A variety of directions for further work suggest themselves. Here are
some of them:

(1) More attention should be paid to the problem of inverting the

Schwarz-Christoflel map. The two-step method described in II1.2

1s only one of many possibilities.

(2) The program could easily be extended to construct maps onto the

exterior of a polygon—that is, the interior of a polygon whose

interior includes the point at infinity. This extension would be

necessary for applications to airfoil problems.

(3) It should not be too great a step to raise the present program to the

level of “software” by packaging it flexibly, portably, and robustly

enough that naive users could apply it to physical problems.

(4) The program might be extended to handle the rounding of corners
in Schwarz-Christoffel transformations [Henrici,1974). What about
mapping doubly or multiply connected polygonal regions, per-

haps by means of an iterative technique which computes an S-C

transformation at each step? What about applying S-C transfor-

mations to eliminate corners in the conformal mapping of curved
domains?

Most important, further work is needed in the direction of applications

to Laplace’s equation, Poisson’s equation, and related problems. Irregular

or unbounded domains are generally troublesome to deal with by standard

techniques, particularly when singularities in the form of reentrant corners

arc present. Schwarz-Christoffel transformations offer a means of getting

around such difficulties in a natural way. Much more experience 1s needed
here.
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APPENDIX: PROGRAM LISTING

The boundaries of this program are not sharply defined, for the configu-

ration changes according to what applications are being treated. The present

listing includes only the core routines used to solve the parameter problem
and to evaluate the Schwarz-Christoffel function and its inverse,

An experimental copy of the package may be obtained in machine-
readable form from the author,

Control program:
SC

Set-up:

INIT initializes variables and reads input data

QINIT computes quadrature nodes and weights

Solution of parameter problem:

SCSOLV controls solution of parameter problem

YZTRAN transforms to an unconstrained system

SCFUN sets up the nonlinear system to be solved

SCOUTP prints output from SCSOLV

TEST estimates accuracy of computed solution

Compound Gauss-Jacobi quadrature:

ZQUAD divides the integral into two halves

ZQUADI evaluates the half-integral (compound)

DIST finds the distance to the nearest singularity

ZQSUM sums a Gauss-Jacobi quadrature rule

Forward and inverse S-C map:

WSC evaluates map from disk to polygon

ZSC evaluates map from polygon to disk

ZFODE computes initial estimate

ZNEWT inverts map by Newton's method

Miscellaneous routines:

ZPROD evaluates N-fold Schwarz-Christoffel integrand

FINITE returns “true” if the argument is finite

ENTER begins timing of the current subroutine

EXIT concludes timing of the current subroutine
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Library routines not listed:

GAUSSQ (Golub&Welsch) computes Gauss-Jacobl nodes and wts

(called by QINIT)

NSO1A (Powell) solves the nonlinear system

(called by SCSOLV)

ODE (Shampine & Gordon) solves the inverse mapping problem

(called by ZSC)
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~% SC MAIN PROGRAM 0

ob ZX ZEEE ISS ERE RSS 2 EE SRS ERE ERE 2 Ed RE nN DARPA RADAR PIDPADAPARAPA PADARAPARIDAES We 28 2

J PRTAPAM SC ~- "SCHWARZ-CHRISTCFFEL®

2 THTS PRP "GRAN ZOMPOITES THF SCHWARZ-CHRISTOFFEL TEANSPORMATION

7 WHICH STNDS THE UNIT DISK TO THE INTERIOR DJF THE PCLYGON

[ CRY, ,W{(N). THIS EAPPING IS OF THE FORM:

c yA N
~ a = iC + C eo INT PROD(1-2/Z(K) )**BETANM (KX) DZ, (1)

=) K=1

7 TC SCLYE THZ PROBLEM WE BEGIN BY PINDING THE ACCESSORY PARAMETERS

CZ ~-- VERTTCPS Z (K) AND CONSTANT C -- FOR THE MAP OF (1). THIS IS DONE
> BY SOUBPCUTINE SCSOLY.

7 THT IMAGE POLYGON BAY BE UNBOUNDED: PERMITTED ANGLES LIE IN THE

TZ RANGE ~-3.1%. 3ETAM(K) .LE. 1. W(N) AND W (1) MUST BE FINITE.
Z WE NTRMALIZZ BY THE CONDITICNS:

= Z(N) = 1 (2.1)
W({(0.7") = WC (A PCINT IN THE INTERIOR OF THE PCLYGON) (2.2)

CZ NOTATION:

- W(K) - VERTEX K JF THE IMAGE POLYGON
z Z{(K} —- POINT CON THE ONIT DISK MAPPED TO U(K)

T BETAM (KY - NEGATIVE 2F EXTEFIOR ANGLE AT ¥ (KY DIVIDED BY PI

~ N - NUMRER OF VCRTICES W (K)

= NY = ¥=1 - NUMBER JF UNKNOWN POINTS: Z(V,...,Z(N~1)
z NDPTSQ - NUMBER CFP POINTS PCR GAUSS-JACOBI CUADRATURE
TZ ZINP = CZMPLEX INPINITY

CT LCTAL S.UOTINES:

z SC - MATN PROGEANM

< TNIT ~ TNITIALIZES CONSTANTS AND DEFINES PROBLEN

2 QINIT ~- COMPUTES QUADRATNRE NODES AND WEIGHTS

2 SCSOLV - COMPUTES ACCESSOEY PARAMETERS POR S-C MAP (1)

~ YZTRAN ~ TRANSPDRMS UNKNOWNS FROM Y (K) TO 2Z(K)

c S CPUN - NONLINEAR SYSTEM OF EQUATIONS TO BE SCLVYED BY SCSOLV
SCNUTP - PRINTS OUTPUT FRCM SCSQLY

CT WEST =~ C°MPUTES uz)

c Z8c¢ - COMPUTES Z (W)
z PLTCON - DRAYS PLOTS CF IMAGE POLYGON WITH CONTOURS

C ZPFND ~- TZOMPUTES N-FJLD PRODUCT IN (1)

~ 7Z0UAD -—- 30M53 TO EVALUATE INTEGRAL BY GAOSS-JACOBI QUADRATURE

cC PTNITE - RETORNS TRUE TF ARGUMENT IS FPINKITE

C LIRFARY RTUILINES BEQUIRED: NSO1 A, GAUSSQ, ODE,

Z L.N, TRTFRTHEN JANUARY, 1978

IMPLICIT REAL*8 (A~-B,D-H,0-V,X-Y) COMELEX®*16 (C,i,2)
CCM™ON /SC,s WC,W (20) ,BETANM (20) ,C,2(20),N,NN,NE
C"“MIN /CCNSIS/ PI,TWOPI,ZERO, ZINF,EPS

REAL*8 CTDABS

Z SET UP FPRCBLEM:

EPS = 1.D-8

CALL INIT

Z COMPUTE NODES AND WEIGHTS FOR PARAMETER PROBLEN:

NPTSQ = 8

CALL OINIT (NPTSQ}

C SCLVE PARAMETER PROBLEM:

IPRINT = 1

CALL SCS5OLV(NM,IPRINT)
C

ZT TEST ACTUPACY OF SOLUTION:

CALL TEST

CT DPAW CONTCUR PLOT OP SOLUTION:

TALL FLTCuUN

103 ZTCNTINOE

STOP 1

END

//G).SYSIN DD =
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C* INIT PRIMARY SUBROUTINE eo *
Cred R RAR REXXAR XR ERX NRE RX EEE RABE R NT ARE EEC ER ER ERAN SRA ARE EEE EER XEN RE EX

c

SUBRJUTINE INIT

Cc

C INITIALIZES CONSTANTS IN /CONSTS/ AND PROBLEM DEFINITION

C PARAMETERS IN /SC/., DATA POE THZ GECMETEY OF THF PROBLEX
C IS READ IN PROM UNIT 5S.

C

IMPLICIT REAL*8 (A-B,D-H,C-V,X~Y), CCMPLEX*16(C,#,2)
LOGICAL PINITE

CCMPLEX*16 DCMPLX

COMMON /SC/ WC,¥ (20) ,BETAN({20) ,C,2(20),N,HN, NP
COMMON /CONSTS/ PI,THWOPI,ZERO,ZINP,FPES
COMMON /GEOM/ XKPIX (20) ,KEAT (20) ,NCOKE
DATA SBNAFE /'INIT'/

CALL ENTER (SBNANE)
C

C 3BT ZINSTANTS:

PI = 3.14159 26535 89793 23 DO

TWOPI = PI eo 2.D0

Z2R0 = (0.D0,0,D0)
ZINF = (1.D70,1.D70)

c

C READ INPUT PARAMETERS:

READ (5,201) WN
NY =N-1

NP = N+

Z(M = (1.00,0,D0)
READ (5,202) WC

RIAD (5,203) (W(K),BETAR(K) ,K=1,N)

C CJEPUTE ANGLES AS REQUIRED (WHERE VALUE INPUT IS 99.0):
DO1)K = 1,N

IF (3ETAM(K).NP,.99,.D0) GCTO 10

KM = MOD(K+N-2,K) © 1
KP = MID (K,N)+1

JETAN(K) = DIMAG(CDLOG((W(KM)-W (K))/(W(KP)-W(K)}))/PI - 1.DO
IP (BETAM (K).LR.-1.D0) BETAM(K) = BETAM(K) e 2.DO

10 CONTINOE

C

C CHECK POR various INPUT EFROES:

SOM = 0.D0

DO t+ XK = 1,N

1 SUX = SUM e RPTAMN(K)
IF (DABS (SU™+2,.D0).LT.EPS) GOTO 2

WRIT (6,301)
STCP 2

2 IF (PINITE(W( 1))) GOTO 3

ARITE (6,302)
5TOP 2

3 IF (PINITE(W (N))) GOTO 4
WRITE (6,303)
STOP 2

4 IP (3ETAM(NM).NE.O.DQ) GOTO 5
WRITE (6,304)

5 IF (BETAM (NM).NE,1.D0) GOCTO 20
YRITE (6,305)
35T0P 2

~

T DITZIBMINZ NUMBER OF BOUNECARY COMPONENTS, ETC.:

C PASS |: ONE FIXED POINT POE EacH INFINITE VERTEX:

20 NCOMP = 0

DO 21 Kk = 2,NH

IP (PINITE(W(K))) GOTO 21
NCOMP = NCCHMP o 1

KPIX (NCOMP) = K - 1

IP (NCOMP.BQ. 1) KPIX(NCOME) = 1
21 CONTINOU®

IP (NCONP.GT.O0) GOTO 22
NCOMP = |

KPIX (NCONP) = |
C PASS 2: ONE RATIO POR EACH LINE SEGNENT:

22 CONTINUE

NEQ= 2®NCONMP

po 23 K = 1,NH

I? (NEQ.EQ.NM) GOTO 30

IP (.NOT.PINITE(¥W({K)).OR,NOT, PINITE (¥W (K+1))) GOTO 23
NEQ = NEQ + 1

KRAT (NBQ) = K
23 CONTINUE

C

30 CALL EXIT

RETURN

C

221 FORMAT (I3)

202 POKMAT (2F8.0)
203 PORMAT (2D08.0,F8.9)
3)1 PURMAT (/' **% FRROR IN INIT: ANGLES DO NOT ADD UP TO 2'A
302 PORMAT (/' *** ERROR IN INIT: W (1) MUST BE PINITE'/)
303 PORMAT (/' *=*==* FRROR IN INIT: W(N) MUST BE FPINITE'/)
304 PORMAT (/° *%* WARNING IN INIT: W(N-1) NOT DETERMINED'/)
305 PORMAT (/' e ** ERRORIN INIT: W (N-1) NOT DETERMINED'/)

END
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| C* QINIT PRIMARY SUBROUTINE eo =

CEEXXX ERR E EE EET EXER ARRAN REX SE REE ER ERE RR LEDS IRE RARE RE RE EER EERE REE R EER ES
SUBROUTINE QINIT(NPTS)

C

~ COMPUTES NODES AND WEIGHTS FOR GAUSS-JACOBRI QUADRATURE

C

IMPLICIT REAL*8 (A~-B,D~-H,0-V,X-Y), COMPLEX*16(C,¥W,Z)
LOGICAL FPINITE

COMMON /SC/ WC,¥ (20) ,BETAN (20) ,C,2(20) ,N,NH NP
: COMMON /QUAD/ QNODES (32,21) ,QWTS(32,21),NETSQ

DIMENSION QESCR (2), QSCR(32)

DATA SONAME /'QINIT'/
CALL ENTER (SBNAME)

| WRITE (6,201) NPTS
C

NPTSQ = NPTS
C

C PF-EK EACH PINITE VERTEXW(K), COMPUTE NODES AND WEIGHTS POR

C IJNE-SIDED GAUSS-JACOBI QUADRATURE ALONG A CUORVE BEGINNING AT Z (K):

DO 1 K = 1,N

1 IP (PINITE(W (K))) CALL GAUSSQ(S,NPTSC,0.D0O,BETAN(K),O,
& QESCK,QSCR,QNODES (1,K),QW81IS{ 1,K))

C

T CJFMPUTE NODES AND WEIGHTS POR PURE GAUSSIAN QUADRATURE:

CALL GAUSSQ(S5,NPTSQ,0.D00,0.D0,0,QESCR,QSCR,QNODES(1,NP),
&QWTS (1,NP))

C

~ALL EXIT

F2TURN

231 PORMAT (* NPTS =',15)
END

TREE ENERNB EE EENEN ERE EBERLE EES E ENE BEE RRR ER ER SEER EERE Ree Ee bebe

| C* T®2ST PRIMARY SUBRQUTINE eo *

: CEEEREERR SEE REE B EAR AREER RES RRL ERE REPRE RE EER BAER EER EERE ERE REE ER REX RE Kk kk
C

SUBRJUTINE TEST

C

C T3S0S THE COMPUTED RAP POR ACCUEACY.

: C

IMPLICIT REAL*8(A-B,D-H,0-V,X-Y), COMPLEX*16(C,¥,2)

| REAL*S CDABS
LOGICAL PINITE

COMMON /SC/WC,W (20) ,BETAM(20),C,Z(20),N,NH,NP
: COMMON /CONSIS/ PI,TWOPI,ZERO,ZINF,EES

DATA S ENAME /'TEST'/

CALL BNTER (SBNANME)

: C
; C T3ST LENGTH OP RADII:

: RADENX = 0.DO
; DO 10 X= 2.N

IP (PINITE(W(K))) RADE = CDABS (WC ~- WSC (ZBRO,Z(K),¥W({(K),K))

| IP (.NOT.FINITE(V(K))) RADRBR =

& CDABS (WSC{((. 1DO,. 1D0),2 (K-1), W (K-1) ,K-1)
4 & -WSC((. 1D0,.1D0),Z(K+1) ,H(K+1),K+1))

RADEMX = DNAX1(EADEMX,RADE)
10 CONTINUE

WRITE (6,20 1) RADENMX
o

TALL BYXIT

RETURN

of

201 PORMAT (/' RADEMYX:',D12,4)

J END
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C* 53CSOLV PRIMARY SUBROUTINE #=

CARRE EEREEARE EXER ARAL EERE ERARR AE RARER RS EA RR KA RXB XARA KEK RRKKBERE RD

SUBROUTINE SCSOLV (NNM,IPRINT)

C

C THIS SUBRIUTINE COMPUTES THE ACCESSORY PARAMETERS C AND Z(K).
C THE PROBLEM IS SOLVED BY PINDIEG THE

C SOLUTICN TO A SISTER OP N-1 YONLINEABR EQUATIONS IN THE NI

C ONKNOWNS Y (1) gee. Y(N-1), WHICH ABE RELATED TO TAE POINTS

C Zk BY THE FORMULA:
C

c Y(K) = LOG ((THE(K) -TH(K-1))/(TH(K+1)-TH(K))) (1)
C

C WHERE TH (K) DENOTES THE ARGUMENT OP Z (K).
C SUBROUTINE SCPUN DEPINES THIS SYSTEN OP EQUATIOBS.

C THE 2RIGINAL PROBLEM IS SUBJECT TO TEE CCNTRAINTS TH(K)< TH(K+1),
f 30T THESE VANISH IN THE TRANSPORMATICNFERONMZ TO TY.

C SEE MAIN PROGRAM POR FURTHER COMMENTS.

C

TMPLICIT REAL*8 (A-B,D-H,0-V,X~Y), COMPLEX*16(C,¥,2)
COMMON /CONSTS, PI,THOPI,ZERO,ZINP,EES

DIMENSION AJINV (20,20), SCR (900), PVAL(19), Y (19)
EXTERNAL SCFUN

DATA SENAME /'SCSOLV'/

CALL ENTER (SBRNAPFE)
C

C INITIAL GUESS (VERTICES EQUALLY SPACED AROUND CIRCLE):
DO 3K =1,NM

3 Y(K) = 0.DO
Cc

C NSC1A COYTROL PARAFETERS:

DSTEP = 1,D-8

DNAX = 1.D1

ACC = EPS

MAXFUN = NM o 15

[

C S)LVE NONLINEAR SISTER WITH NSO tA:

CALL NSO1A(NM,Y,FVAL,AJINV,DSTEP,DMAX,ACC,MAXFUN,IPRINT,SCR,SCFUN)
CALL YZTRAN(Y)

[a

C PRINT RESULTS:

CALL SCOUTP

CALL EXIT

RETURN

END

CRAKEAR AERRARRASAX RSA BRR IR ERE RSE ERA RAR UR BBR RRR AER KX REX KEKE ERR ARREN ENE

C* YZTRAN SURORLCTNATE (SCSOLV) SUBROUTINE e *

CARERS AREA AR ERASER RABE EERE AREAS AE BERS I ARERR RA RRR ER EKER ER RE RS FRIESE EE

SUBROUTINE YZTRANR(Y)

C TXANSPORNS Y(K) TO Z(K). SEE COMMENTS IN SUBROUTINE SCSOLV.
C

IMPLICIT REAL*8 (A-B,D-H,0-V,X~Y), COMPLEX*16(C,¥,Z)
COMPLEY*16 DCNPLX

COMMON /SC/ WC,W (20) ,BETAN (20) ,C,Z2(20) ,¥,NN NP
COMMON /CUBSTS/ PI,TWOPI,ZEBRO,ZINF,FES

DIMENSION Y (1)
C

DTH = 1.00

TASUM = DTH

DO 1 K = 1,8
DTA = DTH / DEXP(Y (K))

| THSUB = THSUB + DTH

Cc

DTA = TWOPI ,/ THSUNM

THSO® = DTH

Zz (1) = DCMPLX(DCOS(DTH) ,DSIN(DTH))
DO 2 K =2,NN

DTR = DTH / DEXP(Y (K-1))
THSUB = THSUM t DTH

2 7 (K) = DCMPLX(DCOS(THSUN) ,DSIN(THSUN))

RETURN

END
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C* 3CFUN SUBORDINATE (SCSOLYV) SUBROUTINE
CRERERERRRNEE RARE Sark Rd RRR Rk & dk k 0 [DIANA0 FRI RS BR BR BI

i SUBRIUTINE SCFUN (NDIN,Y,FVAL)
C

C THIS IS THE FUNCTION WHOSE ZERO MUST BE FOUND IN SCSOLYV.
C

| IMPLICIT REAL*8 (A-B,D-H,0-V,X-Y), COMPLEX*16(C,W,2)
REAL*8 CDABS

L)OGICAL FINITE

DIMENSION PVAL (NDIN) ,Y (BDIN)

COMMON /SC/ WC,W (20) ,BETAN (20) ,C,Z2(20),NNN, NP

<cOMBON /CCNSTS/ PI,TWOPI,ZERO,ZINF,EES

COMMON /GEOM/ KFIX (20) ,KEAT (20) ,NCONE
C

ZT TRANSPORM Y(K) TO Z (K):

CALL YZTRAN(Y)

C 32T UP: COMPUTE INTEGRAL PROM 0 TO Z(N):

WDENOM = ZQUAD(ZERO0,0,Z(NK). N)
C = (W(N)~-WC) / WDENON

Cc

C CASE 1: W(K) AND W(XK+¢ 1) PINITE:
CZ (CCMPUTE INTEGRAL ALONG CHORD Z (K)-Z (K+1)):

NFIKST = 2*NCOMP eo 1

IF (NPIRST.GT.NM) GOTO 11

D2 10 NEQ = NPIFST,NM

KL = KRAT (NEQ)
KR = KL+

ZINT? = ZQUAD(Z(KL) ,KL,Z (KR) ,KR)

FVAL (NEQ) = CDABS (W(KR)~-W(KL)}) - CDABS (C*ZIAT)
13 CONTINUE

Cc

C CASE 2: W(K+#1) INFINITE:
C (ZUMPUTE CCNTOUR INTEGRAL ALCNG RADIOS 0-Z(X)):

11 DJ 23 NVERT = 1,NCONMP

KR = KPIX (NVERT)

ZINT = ZQUAD(ZERO,0,Z(KR) ,KER)
ZPVALL, = W (KR)= WC = C*ZINT

FVYAL (2*NVERT-1) = DREAL (ZFVAL)

FVAL (2*NYERT) = DINMAG (ZFVAL)
20 CONTINOE

RETURN

C

END

Chk XB EERE EXER EEERE REFER EN EEERXE RE RE RE ES EE ERIE EXEL EAR E EER ER BEREK Kk EL %

C* 3C0UTP SUBORDINATE (SCSOLV) SUBROUTINE ==
Nil ERE RL 2 22223 2 F233 0 FR IR RRR REI FRIIS SEER REESE SREY,

C

SUBROUTINE SCOOTP

C

C PEINTS RESULTS (VARIABLES IN COMMCN BLOCK /S5C/)
C

IMPLICIT REAL*8 (A-B,D~H,0-V,X~-Y), COMPLEX*16(C,¥,2)
LOGICAL FINITE

COMMON /SC/ WC,W (200 ,BETAM (20) ,C,Z (20) ,N,NK, NP
COMMON /CONSTS/ PI,TWOPI,Z2ERQO,ZINF,EES

C

WRITE (6,102)
D321 K = 1,N

THDPI = DIMAG (CDLOG(Z(X)))» PI

IF (THADPI.LE.0.DO) THDPI = THDPI e 2.D0

IP (PINITE(W(K))) WRITE (6, 103) K,¥ (K),THDPI, BETAN(KX),Z (K

1 IF (.NJXT.PINITE(W(K))) WRITE (6,104) X,THDPI,BETAN (K),Z(K)
WRITB (6,105) WNC,C

RETURN

Cc

102 POREAT (//' RESULTS:'//

§ It, 10X,'N(K)',13X,'TH(K)/PI',11X,'BETAR(K),
& 18%X,'2(K)'/

E t meet, 9X, t=e==t 13), mmm! 11), emt,
& 18X,'===='//)

103 PORMAT (13, (*,P6.,3,',',P6,3,')',P20. 14,7 14,5,
& 3X,'(',F15.12,',',F15,12,")")

104 POEMAT (x3. INPINITY ',P20,14,F4,5
& 3X," (',F15.12,',',P15,12,%")

105 PORNMAT (//' WC = (',D22.15,',',D22.1%,")'/
[ '* ¢ = (',D22.15,1,1',D22,15,')'/)
BND
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C* ZQUAD SECONDAKY SUBROUTINE eo *
CEEER RARE AR EAE TRAX ERE E BREE REE ERE ABR E SERENE SEER REARS REE REE REX REESE RD

PUNCTICN ZQUAD(ZA,KA,ZB,KB)

~ ZJMPUTES THE COMFLEX LINE INTEGRAL OF ZPROD PROM ZATO ZB ALONG A

C STRAIGHT LINE SEGMENT WITHIN THE ONIT DISK. FUNCTION 2ZQUADY IS

C CALLFD TWICE, ONCE POR EACH HALP OF Tus INTEGRAL.
Cc

IMPLICIT REAL*8 (A-B,D-H,C-V,X-Y), CCHPLEX*16(C,¥,2)
C

ZMID = (ZA + ZB) / 2.D0

ZQUAD = ZQUAD1(ZA,ZMID,KA) - ZQUADI1(ZB,ZMID,KB)
RETURN

END

CH 50 X XR XR RRR RRR R ERA AR RRA EE REN EFS E NESS EEREENEBEE EEN ERE REE ER ES

c* ZQUAD1 SUBORDINATE (2QUAD) SUBROUTINE ==
CRRAZESSK AEE BES SEES RREERE EE XSAX RE SUX RA FSFE IBEX R RAKES RXA RES RXRBRXER ES

Cc

PONCTION ZQUADVY(ZA,ZB,KA)

Cc

C COMPUTES THE COMPLEX LINE INTEGRAL op ZPROD PRONZATO ZB ALO16A

C STEAIGHT LINE SEGMENT WITHIN THE UNIT DISK. COMPOUND ONE~-SIDED

C GAUSS-JACOBI QUADRATURE IS USED, USING PUNCTION DIST TO DETERMINE

C THE DISTANCE TO THE NEAREST SINGULARITY Z(K).

IMPLICIT REAL#*8 (A-B,D-H,0-V,X~-Y), COMPLEX*16(C,W,Z)

CCKNON /CONSTIS/ PI,TWOPI,ZERO,ZINF,RES
REAL*3 CDABS

DATA RESPRH /2.D0/

C

C CHECKFORZERO-LENGTH INTEGRAND:

IP (CDABS (ZA-ZB).GT.0.D0O) GOTO 1
ZQUADY = ZERO
RZTURN

C STEP 1: ONE-SIDED GAOUOSS-JACOBI CUADRATURE FOR LEFT ENDPOINT:

1 R = DMINV(1.D0,DIST(ZA,KAL) #*RESPRM/CLAES (ZA-2B))
ZAA = ZA + P*(ZB-ZA)

ZQUADY = ZQSUNM(ZA,ZAA,K]d)
C

C STEP 2: ADJOININTERVALSOF PURE GAUSSIAW QUADRATUREIF NECESSARY:

10 1p (R.EQ. 1.D0) RETURN
R = DNINV1(1.DO,DIST(ZAL,O) *RESPRNM/CLCABS (ZAA-238))

ZBB = ZAA eo R¥*(ZB-ZAA)

ZQUADY = ZQUADY + ZQSUM(ZAA,ZBB,0)
ZAA = ZBB

GOTC 10

END

Cre eX RX RX AXA E RE RERR BERR REE EERE RANE ZI IESE RE RE RENEE X REXEL EERE REAR REE RS

C* DIST SUBORDINATE (ZQUAD) SUBROUTINE ==
Cresta R SRE ARES RA BEREE RE RXR ER EEE BERERIZEREEA NER ERRE REX KEKE RE ER ES

PUNCTICN DIST (ZZ, KS)

C DETERMINES THE DISTANCE PROHZZ TO THE NEARPST SINGULARITY 2(K)

~ JTHERTHAN Z (KS).

IMPLICIT R=AL*8(A-B,D-H,0-V,X-Y), COMPLEX*16(C,W,2)

CorMOIN /SC/ WC,¥ (20) ,BETAN{20),C,2(20) ,N,NN,NP
REAL*8 CDABS

~

DIST = 99.D0

DO 1 K = I,N

IP (K.EQ.KS) GOTO 1
DIST = DMIN 1 (DIST,CDABS (ZZ-2(K)))

| CONTINDE

RETURN

END

CEASE EERE SEB EERE REE ESE SEER SE EPB RE RB EE SERRA SASL ABS ERS VAS ER RSHS EE SR

C* ZQSUM SUBORDINATE (XQUAD) SUBROUTINE *s
CERES RS ER PENERSA BABE EEE REESE ENP REXEL RS RE RB EXE SEN EES ESE SEESR ED

C

PUNCTION ZQSUM(ZA,ZBR,KA)
-

C COMPUTES THE INTEGRAL OF ZPROD PRON ZA TO ZB BY APPLYING A

C ONE-SIDED GUASS-JACOBI PORMOUOLA VITH POSSIBLE SINGULARITY AT ZA.

-

IMPLICIT REAL*8 (A-B,D-H,0-V,X~Y), CCHELEX*16(C,¥,2)

COMMCN /sc’ WC,W (20) ,BETANK(20),C,Z(20), N,NNK, NP
COMMON /CONSTS/ PI ,TWOPI,ZERO,ZINF,EES

COMMON /QUAD/ QNODES (672) ,QWTS (672) ,NPTSQ
REAL*8 CDABS

C

2S = ZERO

ZR = (ZB-ZA) , 2.D0
ZC = (ZA+ZB)Y ,/ 2.D0
K = KA

IP (K.2Q.0) K = NP
11 = 32% (K=1) + 1
I2 = 11 e NPTSQ -1

00 1 1 = I1,I2

1 25S = ZS + QWTS (I) *ZPROD(ZC+ZH*QNODES(I) ,KA)
ZQS0M = 7S5+7H

IF (CDABS (ZH) .NE,O,DO.AND.K.NE,NP)
&€ Z2QSOM = ZQSUM*CDABS(ZH) *=EBETAHN (K)
RETURN
9



AEA RRARARS EERE EEEEEEEEERER SEER REESE ERE RE EE EER SEER ERI EES FREE EE RNY
C* WSC PRIMARY SUBROUTINE eo =

IAAL EE AREER ER EEE SEER EERE EEE EEE ESSERE EEE ERE EE ER NER REESE REE RFR E SREY EE

FUNCTION WSC(Z2Z,20,w0,KZ0)
C

C INTEGRATES FROM ZO TO ZZ TO COMPUTE W VALUE CORRESPONDING TO ZZ

Lu

IMPLICIT hEAL®*8(A-B,D-H,0-V,X-Y), COMPLEX®*16(C,Ww,Z)
COMMON /SC/ WC,W(20),BETAM(20),C,Z2(20),N,NM,NP

|

WSC = WO + C eo Z2GUAD(Z0,KZ20,22,0)
C

RETURN

END

CEES EER NEE FES ARERR EB EEEEFIRESR ESET RL OFS ERE ERA EER PARR EEE EE ES EE ERED

C* ZsC PRIMARY SUBROUTINE ==
CEEEX SABA ELEE IRAE ENS ASR SEER EEE NE RR XR DARE AR ER EER EE REE RE ER ER EXER ER GE &
~

PUNCTION 2SC (WW,Z0,W0,K20)
Cc

C Z2MPUTES Z (WW). PIRST ODE IS CALLED TO GET AN INITIAL ESTIMATE;
C THEN ZNEWT IS CALLED TO GET THE PINAL ANSWER,

C

IMPLICIT REAL*8 (A-B,D-H,0-V,X-Y), COCMPLEX®*16(C,¥,2)
DIMENSION SCR (142), ISCR (5)
EXTERNAL ZFODE

cCKMIN /sc/ WC,W (20) ,BETAM (20) ,C,2Z (20) N, NN, NP
COMMON /CCNSTS/ PI,TWOPI,ZERO,ZINF,EES

COMMON /ZSCCOM/ CDNWDT
C

C G2T INITIAL GUESS Z1 VIA ODE:

Z1 = ZERO

T = 0.D0

IFLAG = =

RELERR = 0.D0

ABSERR = S.D-3

CDWDT =(WW~-WC)/C

CALL ODE (2ZFODE,2,21,T,1.D0,RELERR,ABSERR,IPLAG,SCR,ISCR)
IP (IPLAG.NE.2) WRITE (6,201) IPLAG

C

C REFINE ANSWER VIA ZNEBHT:

CALL ZNEWT (Z1,WW,EPS,K20)
zsc = 21%

C

23 1 PORMAT ('/ *%% NONSTANDARD RETUEN PROM ODE IN 7ZSC: IPLAG =%',I12/)
RETURN

END

CE¥RRXEEBEBERERRER EES IR SERN EA RRA BE SRNL ERASERS ER EE RARE REAR ERAN ER RR EKER KK

C* ZFODE SUBORCINATE (2SC) SUBROUTINE eo *
AEE RE SAL EE EE RE EE EE EE RE EEE EF YR FF FF IFRS IIIT IIIT

SUBROUTINE ZFODE(T,22,ZDZDT)

C ZIMPYTES THE PUNCTION ZDZDT NEEDED BY ODE IN zscC

IMPLICIT REAL*8 (A-B,D-H,0-V,X-Y), COMPLEBX* 16 (C,W, Z)
COMMON /ZSCCCH/ CDWDT

Cc

ZDZDT = CDWDT / 2ZPROD(ZZ,0)

RETORN

ZND

TEREX XEXAU NER AXE EEE ERE EER ER SER EB EA ENR RE EPS RN RE ER KERNEN E RE AE RRR kg

2% ZNEWT SUBCRDINATE (2ZSC) SUBROUTINE ==
CECE REFEREE XERXES RX EERE SIRS E BRIA E EO [((ITTNNNNSBR SERS AER AR EEE SR kd

C

SUBROUTINE Z¥EWT (ZROOT,WW,EPS,KZ20)
C

C IMPLEMENTS NEWTON'S METHOD TO SOLVE =u- EQUATION

C 4{ZROQT) = KW FOR ZFOOT.

INPLICIT REAL*8 (A-B,D-H,0-V,X-Y), COMFLEX*16 (C,R,2Z)
COMMON /SC/HC,W (20) ,BETANM(20},C,Z(20),N, NNM,NP

C

D2 1 ITER = 1,10
ZROOTO = ZEROOT

IP (KZ0.NE.O) ZPNWT = WW =- WSC (ZROOTO,Z (KZ0),W(KZ0) ,bKZ0)
ZROOT = ZROOTO + ZPNWT/(C*ZEROD (ZR0O0T0,0))
IP (CDABS (ZPNSET).LT.EPS) RETURN

1 CONTINUE

4RITE (6,201)
RETURN

A=

201 PORMAT (/' eo *=* FRROR IN ZNEWT: UC CCNVERGENCE II 10 ITEBRATIONS')
END
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II ER EERE RES ES RR LIS E22 RR SRR RRR 2 R RES RRR RRR R222 R222 2 Rt RS

C* ZPRJID SECONDARY SUBROUTINE ##

CRREREEBEE EX ERASER ERX KS RR XR ERIE XFCE RR ESR RENEE EER ERE RRA Rk Ree RE nk

C

PUNCTICN ZPROD(ZZ,KS)
C

2 COMPUTES TBE INTEGRAND

Cc

o N

C PROD (1-2Z/7(K)) **BETAN(K) ,
C K=1

Cc

C TAKING ARGUMENT ONLY (NOT MODULUS)FOR TERM K = KS.
C

THPLICIT REAL*8 (A-B,D-H,0-V,X-Y), COMPLEX*16(C,W,2)
REAL*8 CDABS

COMMON /SC/ WC,W (20) ,BETAN{20) ,C,Z2(20),N,NN, NP
C

Zs0% = (0,.00,0.D0)
po 1K = | N

ZTYP = (1.00,0.D0) - 22/2 (KX)
IF (K.EQ.KS) 2THP = ZTEP / CDABS (ZTHMP)

1 zsutl = ZSUM + BETAN({K)*CDLOG (ZTNMP)

ZPROD = CDEXP(ZSUMN)

EETURN

END

CEXAR ABER REX AXA REE REBEL EARS ESXE RE REX SEE AIBA EEK ES ER EASE EER ER SEX E RE SS

C* FINITE SECONDARY SUBROUTINE e *

CREBFRAKEXXK ERR EERSTE REEREXARK RE ARE RA SRA RB ABER RFE RRNEEE RRS RR EER K EEA
C

FUNC™I IN FINITE (Z)
C

C XZTTRNS TRUE IF AND ONLY IP Z IS NOT INFINITE

C

IMPLICIT REAL*8 (A-B,D-H,0-V,X-Y), CCMPLEX*16(C,¥,2)
I0GICAL FINITE

JOMMON /CONSTS/ PI,TWOPI,ZERO,ZINP,FES
~

PINITE = DREAL(Z).NE.DREAL(ZINF)
RETURN

END

CESARE REAP ARERR EAE AERE REAR SAREE EISR SISA IREXARE REXALL REESE ERATE RS
C* ZNTER SECONDARY SUBROUTINE e *

CEEAR SERB RAR RAE BAS AARRARIRKRSAA BERET IRBR AR RERNREEE EIR RAKES ER AX ER XR

SUBROUTINE ENTER (SBNAME)

C

~ STARTS TIMING TIRE SPENT IN SUBROUTINE YITH NAME SBNAMB.

C

IMPLICITREAL*8 (A-8B,D-H,0-V ,X-Y), COMELEX*16(C,¥,2)
CIMMON /TIME/ TENTER

Cc

CALL LEPT1A (TEWTER)

WRITE (6,20 1) SENANE
RETURN

C

201 PIORNMAT (//1X,80('X*),*' ENTERING ',A8)
END

CRESS AXRRTAE AER ARS EFAS SERRE RAR AA DEAE SA RE ER RARER SELVA XIE ER BR ETRR EX SS
C* 3ZYXIT SECONDARY SUBROUTINE *#*
CREEERAEAREE RRR ERXEERR ALLE AFABB EE BESSA SSR RREAEXBEXSE SRE KX ARAL RARE
Cc

SUBROUTINE EXIT

of

C PRINTS TIME SPEBT IN SUBROUTINE.
m™

IMPLICIT REAL*8 (A-B,D-H,0-V,X-Y), COMPLEX*16(C,¥,2)
ZOMEON /TIME/ TENTER

C

CALL LEPT1A{TRXIT)

TIME = TENTER = TEXIT

WRITE (6,20 1) TIME
BETURN

Cc

201 PORMAT (1X,80('X'),' TIME ELAPSED:',F7.3,' SECS.'/)
END
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