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Abstract.

This paper surveys the state of general purpose software for the

solution of partial differential equations. A discussion or the

Ca No testing
purported capabilities of twenty-one programs 1s presented.
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1. Introduction

Mathematical software for partial differential equations (pdet's) is

a relatively new area. It 1s only within the last five years that programs

have been published which are capable of solving relatively large classes

of partial differential equations using effective numerical approximations.

The first attempts at general purpose software were oriented toward

providing programming languages that facilitated writing the equation and

its approximation (usually finite differences). Two examples of such

languages were PDEIAN [10] and PDEL [5]. These seem not to have been too

widely used and are currently not supported.

Current popular software now 1s produced in the form of subroutines

with user-provided subprograms defining the equation. There are, however,

several notable exceptions to this that will be discussed in detail below.

This paper resulted from a reasonable extensive literature search under-

taken to determine what software was available. The guiding principle in the

selection process was generality. Hence, no coverage has been provided in

the very large special application areas such as finite element codes for

structural engineering, nuclear reactor codes, hydrodynamics codes (produced

principally at government weapons laboratories), and petroleum reservoir

modelling codes. Information on some of the programs in these areas may be

obtained from the Argonne (National Laboratory) Code Center and the COSMIC

program library at the University of Georgla computation center. Also, no

attempt has been made to determine the existence of codes based on integral

equation techniques.

Before proceeding further this caveat must be tendered: no attempt has

been made to ascertain the availability, portability, utility, or accuracy
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of any of the software mentioned in the remainder of this paper.

2. Mathematical Preliminaries.

In this section are discussed some mathematical 1deas that are pertinent

to the description of pde software.

For time dependent pde's the most popular approximation is the method of

lines wherein the spatial derivatives are approximated 1n some manner 1n order

to yield a system of ordinary differential equations (ode's). The time

integration of this system of ode's 1s then accomplished by the use of existing

software for ode's.

For example, suppose we wish to approximate the single equation

u, = fx, tu ,u_) , 0<x<1l, t>0 (2.1)

with boundary conditions

u(0,t) = u(l,t) = 0 , t > O (2.2)

and initial condition

u(x,0) = gx) © <x<1 : (2.3)

We may choose a finite difference grid {x} given by

= 1h 1 = 0,1,2 N+1 h = +XxX, = 1 / 1 = Uslyceew, ’ n+l ’

and supposing v, (t) to be an approximation to ulx, ,t) , We replace u,

and vo in (2.1) by, say, second-order central finite difference approxima-

tions resulting in the ode system

dv. 5
— = fx.,t 4 V. - +Ic £ 3 » (Vy vs )/2n, (vy 1 2V, v,,,)/n )
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for 1 = 1,2,...,N . From (2.2) we have

vot) =v (8) = 0

and from (2.3) we obtain the initial conditions

v, (0) i g(x, ) i =1,2,...,N . (2.5)

Equations (2.4) and (2.5) form an initial value ode problem which can be

integrated by some ode package.

It 1s not necessary to use finite difference approximations to remove

the spatial variation. One might assume that the solution u of (2.1) may

be written

n

u(x,t) = 2. ce. (tp, (x)
i=1 +

where the known functions fb, (x) form a suitable basis. Depending on the

choice of method, e.g. collocation or Galerkin, for removing the spatial

variation one obtains an initial value problem for a system of ordinary dif-

ferential equations in the unknowns (c(t) :

Most developers of pde software who have chosen to use the method of lines

rely heavily on existing software for ode's and for the computation of the

basis functions. Specifically the ode software used almost exclusively 1s one

of the several codes based on Gear's method written by Hindmarsh [12,13,14].

The basis functions chosen are frequently B-splines and the package of de Boor

[2] is used.

The use of the method of lines for two-space dimension parabolic pde's

introduces a significant complication in that it 1s generally accepted that

the ode system to be solved may be stiff. Hence, this dictates the use of

implicit methods which give rise to very large, sparse Jacoblans which must be

inverted. The inversion of such matrices 1s not at all trivial and seems to be



| the principle obstacle in the development of multi-space dimension fpde

| software. This same problem exists for the development of robust software

| for elliptic pde's defined over general regions.
3. Software for Hyperbolic Systems

Hyperbolic equations are, py far, the most difficult class of partial

differential equations to approximate numerically. The principal difficulties

lie in determining the correct approximation at the boundaries of the domain

and accurately representing discontinuities in the solution.

To illustrate the former difficulty, suppose we want to approximate the

: solution of the simple system

ug = Au (5.1)

| *] . |where uw =| , A = o _1l > O<x<1l .
: 2

| It is easily seen that the general solution is uy (x,t) = £ltrx) and

u, (x,t) = g(t-x) , where f andg are arbitrary functions determined by

the boundary and initial conditions. Clearly, at the boundary x = 0 ,

(if t < 1), Uy must be specified and Uy, cannot be specified unless the

| solution is known. At X= 1, Uy, must be specified, and a, cannot be.
However, a straightforward finite difference approximation to equation

(3.1) requires that two conditions be given at each boundary. The problem

| here, of course, 1s that the approximation near the boundary must take into

| account the nature of the characteristics, i1.e., the lines x + t = constant

and xX - t = constant. At x = 0 , the characteristics indicate that U,

| should be computed from known interior values, e.g., by extrapolation along

| the outgoing characteristics x + t = constant. Analogous statements apply

at the boundary x= 1.

Although the preceding comments may seem rather obvious for the system
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(3.1), where A 1s a constant diagonal matrix, the construction of accurate

difference approximations becomes more difficult when A 1s a function of

x, t, and u . In this case the characteristics must be computed by an

eigenvalue/eigenvector routine at each time step and at each boundary.

5.1 DCG

This program, written by Engquist and Smedsaas [9] , was designed to

provide software for the numerical solution of hyperbolic systems in one

space dimension. The user specifies symbolically the equation

uo f CANTLY ’

where a <x <b , andu eR" | Initial conditions, boundary conditions, and

certain characteristics of the problem, e.g. uniform or non-uniform grid in

space, or that some particular terms should be considered stiff (and, therefore,

integrated implicitly in time) are also specified. These specifications are

accepted by the first part of DCG, the analyser. A syntactical analysis of the

equations and boundary conditions 1s performed to detect errors in the specifica-

tion and the problem 1s classified by linearity, time and space dependence of

coefficients, etc. The principal symbol, i.e., the matrix pfu, , 1S
examined to determine, as far as possible symbolically, whether the correct

number of boundary conditions have been specified. FORTRAN code 1s prepared

to compute the eigenvalue and eigenvectors during execution, if necessary.

(This part of the 'program 1s the analysis of the matrix analogous to the

matrix A 1n equation (3.1)). Difference methods and boundary strategies,

l1.e. which variables should be extrapolated at the boundaries, are selected

according to the preceding analysis and user specification, and a solution

algorithm is determined. This algorithm is then optimized.

The second part of DCG, the synthesizer, accepts the algorithm, and,

0
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using a library of FORTRAN codes, constructs a FORTRAN program to solve the

given problem. This program contains output statements that save all inter-

mediate execution output on a disk. After execution, a graphics program

operates interactively with the user to *provide graphs of any of the

variables as functions of space or time.

As alluded to above, the approximation Is done by finite differences

using different types of second and fourth order differencing, Leapfrog,

Crank-Nicolson, or semi-implicit integration, all of which are energy con-

serving. However, the user may specify dissipation 1f desired.

DCG seems to be a fairly thorough treatment of the one-space-dimension

problem, but its availability may be limited by the fact that the analyzer

is written in SIMULA , a language not generally available in numerical

computation centers.

3.2 RKFPDE

This subroutine, written by Gary [ll], was motivated by a desire to

provide software for a class of problems commonly called the "stream function-

vorticity equation". Problems in this class occur frequently at the National

Center for Atmospheric Research, where this software was developed.

The system of equations 1s assumed to have the form

u = f+ 2, + BR YEW WWW SW WW SW )

plus an optional elliptic equation

Ip = Flys touu su su su su )
n

where L 1s assumed to be separable, and where uee RW , w = (ay50y5 0 54s p),
f and g are functions of x,y,t, and w , The domaln 1s assumed to be a

rectangle in the plane. On the boundaries of the rectangle the user may

0
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specify one of the conditions:

1) periodicity

2) symmetry with respect to the boundary

2) skew symmetry with respect to the boundary

4) a mixed condition, or

5) extrapolation of the characteristic variables.

(This last boundary condition requires that the user determine those

quantities which should not be specified at a boundary).

The solution is accomplished by a finite difference approximation on a

user—-supplied uniform or non-uniform mesh. The method of lines is used. The

user may select second or fourth order central differences in space. The time

integration is carried out by a Runge-Kutta-Fehlberg 3-4 scheme modified

from a routine provided by Shampine. The elliptic equation is solved by the

subroutine SEPELI,a part of FISHPAK (cf. 5.1). The functions f,g,h, boundary

data, and the coefficients of the elliptic operator are given 1n user-supplied

subprograms.

This software was written for the Control Data T7600 and designed to use

extended core memory. However, portability should not be too affected as the

calls to this memory have been isolated in the code and may be replaced by

statements appropriate for the user's computer. A version of this code 1s

currently running on the CRAY-1.

L. Software for Parabolic Systems.

In contrast to the lack of general purpose codes for hyperbolic systems

there are a number of programs available for parabolic systems. The method

of lines 1s used exclusively 1n these codes. Hence, the discussion of the

approximation in each code will be separated into two parts: space and time.

Nine codes will be discussed. They will be presented in an order corresponding

|



to increasing capabilities of the programs. (One program, GENEPI, may

also be used for solving a parabolic equation, see 5.9).

4.1 DpSs/2

This package, produced by Schiesser [28], is a successor to an earlier

code LEANS [27]. DSs/2 1s primarily an educational tool. It was designed

as a malin program which the user supplies with three subroutines that define

the actual pde to be solved. It is assumed that the pde can be written in

the form

u _ Flotowusu J), a<x<b, t>0 (4.1.1)

where u « rR, (The expressions u and u,.. mean the vectors of first and
second partial derivatives, resp. ) The boundary conditions are not provided

in a separate subroutine, but rather, are incorporated by the user into the

subroutine that defines F . It appears, therefore, that only relatively

simple boundary conditions may be handled with ease.

In order to evaluate F , the user selects from a large collection

of subprograms within DSS/2 the one that automatically computes finite

difference approximations to uo or u_. . Centered and non-centered

differences of even order two through ten are available.

The time integration scheme may be chosen from one of fourteen different

Runge-Kutta one-step methods of orders one through five, or the user may

select the Hindmarsh GEARB [14] package.

4.2 PDEPACK

This software was developed by Sincovec and Madsen [22], and may be

purchased or leased from Scientific Computing Consulting Services. The

package consists of eleven subroutines with communication of the problem

through user-provided subroutines. The system of pde's is assumed to be

in the form

8



2) 28) (uuEn ttI :, Du] 0) 2a)
where

k= 1,2,...,n, a < x <b, t > to, D5 Dg, (t,x,u),

and ¢ may be 0,1, or 2 . Terms of the form

= | x" De, 5 ald) J.
allow the program to handle discontinuous coefficients, e.g., when a problem has

material interfaces. The inclusion of factors x" facilitates the treatment

of common expressions occurring in Cartesian, cylindrical, or gpherical coordinates.

The boundary conditions are assumed to be prescribed at each boundary

and to be in the form

Cle , + Br ol _ Yi 7 k =1,2,..., n .

If Bi 4 0, then oy and Yi may be functions of t and u , but 1f

By" 0, " and Yi may only be functions of t .

The space discretization 1s accomplished via central finite differences

on a grid of points specified by the user. The differences are second order

on a uniform grid, but only first order on a non-uniform grid. The

differencing has been designed to conserve such quantities as Du_ across

material interfaces. The finite-difference grid may not change with time.

The time integration 1s accomplished by use of a modification of

the Hindmarsh package GEARB.

4.3 PDECOL

This software was also produced by Sincovec and Madsen [20]. The user

specifies the problem via a set of subroutines and calls the subroutine

PDECOL for the solution.

The equation 1s assumed to be in the form

9



Uy of (tox,uu su) ,

where u ¢ R , a<x<b, and t > Ly - The boundary conditions are
assumed to be in the form

b(u,u ) = z(t) .
X

However, the user need not specify a boundary condition at all. This feature

may be useful if the user attempts to solve a hyperbolic system or a coupled

ode-pde system.

The spatial approximation 1s accomplished by the use of collocation

using B-splines as the basis. The breakpoints for the B.splines are provided

by the user, as are the degrees of the piecewise polynomials and the order

of continuity. The B-splines are computed using the package of de Boor [2].

The collocation points are chosen automatically by the software.

Since the resulting system of ordinary differential equations is implicit,

the authors use GEARIB, a modification of GEARB developed by Hindmarsh [14].

4.4 MOL1D

This subroutine package was developed by Hyman [17]. As in the previous

two codes, the user writes subroutines defining the problem and then calls

MOL1D. The equation must be 1n the form

u, = glx, tun su sf) (bh. 4.1)

where u ¢ RY , a<x<b, t>t , and f£ = f(x,t,u,u ,u ).
0 XXX

The inclusion of the argument Lr. on the right side of (4.4.1) allows

conservative differencing of advective terms which arise naturally in

fluid dynamics equations.

The acceptable boundary conditions are given by:
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a) periodicity in Xx,

b) au + bu = c , where a,b, and c may be functions of +t and u

if b 4 0, otherwise a and c¢ may only be functions of t ,

c) some differential equation, a free boundary, or no boundary

condition prescribed.

The spatial discretization is accomplished automatically using second ,

fourth, or sixth order centered differences, fast Fourier transform

approximation (in the case of periodicity only) with or without linear

filtering of higher modes, or unsymmetric second or third order

differences.

The time integration 1s carried out by the GEARB package.

Graphical output is available. The plotting procedures use standard

CALCOMP routines, and, as such, represent a departure from the portability

standard the author has set.

4.5 LSQPDE

This software by Eason and Mote [8] is designed to solve the equation

1) (2) (p)
uy _ Fx, t,u,0 , y «+ ee) 1 P )

n i)
where a <x <b , t >t, uel, and ne represents the vector of
partial derivatives of u of order J . At the boundaries, general

conditions of the form

(1) (p-1)
G, (x,%,u,u 3 . «Ul P ) = 0 X = a,b; i = 1,2,...,q

are assumed to hold.

The approximation technique 1s a combination of time integration and

least square approximation. The user selects a set of points x}, in
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the interior and on the boundary of [a,b] at which points the equation

will be integrated in time. A particular set of basis functions (provided by the

user) 1s used to represent an approximation viag,x) to the solution

lx, ts), where a. represents the vector of coefficients in the approximation

at time ts » The first step of the algorithm 1s to form a vector of

residuals, evaluated at the points 1x; } , for initial and boundary con-

ditions. The vector a, , corresponding to the initial time ty , 1s determined

by minimizing the residual 1n the least squares sense. The minimization 1s

accomplished by Powell's non-linear least square technique. Assuming A 4

1s known, the approximation via, ,x) 1s used in a modified Gear-Hindmarsh
predictor-corrector algorithm. Firstly, values of the solution are predicted

at time level tipy by a Taylor series expansion of via, x) in time.
These predicted values are used in conjunction with the corrector equation

to form a vector of residuals at the points 1x; . This vector 1s a

function of the unknown coefficient vector I) » which 1s determined by a

least squares minimization of the residual vector.

L.6 POST

This software, written by Schryer [29], is available through the PORT

library of Bell Laboratories. It is designed to solve coupled ordinary -partial

differential equation systems. The equation treated is

fx, tun su ,u = a x tusu 0)

where a xb, ue RY, with boundary conditions

b (tywu uu J) =0 at x= a,b.

It 1s also possible to impose non-local conditions on the solution such as

periodicity or that the integral of the solution over someinterval assumes

12



a given value.

The spatial variation 1s approximated using a Galerkin technique with a

B-spline basis (provided by the de Boor package). The time integration is a

" one-step method, explicit or implicit, coupled with an extrapolation algorithm

to provide automatic error control in the time integration.

The user provides a call to subroutine POSTS providing information about

the B-spline basis, time integration limits, and an error tolerance. HE also

provides two subroutines for the evaluation of the equation and boundary

conditions.

4.7 PDETWO

PDETWO was written by Melgaard and Sincovec [21].It is a collection

of subroutines that provides an interface between a two dimensional pde and

an ode integration package. The user specifies the problem by providing sub-

routines and calls PDETWO for a solution.

The equation 1s assumed to have the form

(k) (k) (1) (n)
= ss 0 @ uYe r (£2,705, (DH, | uy x? ADH, x ) ?

(1) (n)
ov. ul)ye... , (DV. ut’))
k,1 ¥y y’ ’ k,n y y

where aq <x < b , By <Y < 0, , T > t, , k =1,2,....n, and the

coefficients DH, 3 and DVy are pilecewise continuous functions of2 J

t,Xx,y and u .

Boundary conditions are assumed to have the form

(x) (k)
AY bu k 2C > b) ’

where Quy b. and Cx are piecewlse continuous functions and uj,

represents a derivative normal to the boundary.
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I The user provides a two dimensional finite difference grid and the

package automatically produces an approximation at each grid point corresponding

to a five-point star.

The time integration 1s accomplished by the use of GEARB. The use of

Newton's method to solve the system of non-linear equations resulting from

the use of implicit integration schemes necessitates the solution at each

| Newton iteration of a large sparse banded system of equations. The coefficient
matrix, the Jacobian of the non-linear system, must be evaluated at each

| iteration and represents a significant computational expense. The authors
have examined various techniques for this task and have in their view implemented

| the most efficient one.

| This software package 1s the collaborative effort of Leaf, Minkoff,
Byrne, Bleakney and Saltzman [19] of the Argonne National Laboratory. The

package 1s designed specifically for one and two spatially dimensioned

kinetics—-diffusion equations. It represents an effort to provide reasonably

| general purpose software designed for a particular application.
The equation 1s assumed to thave the form

[0C 1, (£57, 2,1) u + 8 7 (e,r,zuu Fe (1-607, (t,7,2,0)-7 Lk)
| n n

= ve (B(t,r,2,3,%u) vu), § Cot NE? o) Us 3 EVNER
i=1 i,j=1

+ £, (t,7,2,3,70) 5

| where k = 1,2;...,n . The equation is assumed to hold over a rectangle

with material interfaces in the (r,z)-plane. To increase the applicability

of the code, two forms of advection terms (6 = 0 or § = 1) are allowed.



The boundary conditions on the sides of the rectangle are assumed

to have the form

(k) (k) 0
+ \Y% . =ao nu B Bu n V he.

iY

where «, B, and y may depend on k and the side of the rectangle, n

0 - -»

1s the exterior unit normal, and Py may depend on u and Vu Id -

A Galerkin procedure 1s used as the spatial approximation using

B-splines as the basis functions. The mesh 1s provided by the user. The

B-splines are computed using de Boor's package.

The time integration uses the same method as that found in Hindmarsh's

GEARIB [13], although the authors do not use GEARIB itself.

Extensive graphics capabilities have been provided. The software has

been written in MORTRAN —-- a FORTRAN preprocessor. Ihilis should present no

problems since the authors are including in the external distribution a

portable copy of the MORTRAN translator.

4.9 FORSIM VI

As the name indicates, the FORSIM package of Carver et al [6] is in

the sixth edition, a testament to the longevity of this software effort.

This package contains a main program plus a large number of subprograms

that provide centered, non-centered, and upwind finite difference approximations

of various orders and cubic spline approximations. Time integration methods

provided are a variable step Runge-Kutta-Fehlberg, a fixed step fourth order

Runge-Kutta with Fehlberg corrections, a fixed step Euler, and the Hindmarsh-

Gear algorithm. For this last algorithm the user may select a number of

different approximations to the Jacobian, ranging from no Jacobian (functional

Iteration) to the full Jacobian, in which case the sparse matrix package of
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Curtis and Reid [7] is used.

To use this package, the user provides a subroutine UPDATE, that

contains storage declaration, initial conditions, equation and boundary condition

specifications, and output specifications. To define the pde the user selects

those subprograms corresponding to the spatial discretization, creates a

section of code which performs the evaluation of the right side of the

equation, e.g., the F in (4.1.1), and incorporates this into UPDATE. The

time integration 1s performed by a call within UPDATE to another subroutine.

This package may also be used to solve two- and three-space dimension

problems defined on rectangles or parallelepipeds, respectively. Graphical

output 1s also available.

5. Software for Elliptic Equations.

Due to the extensive theory that exists for elliptic partial differential

equations and the large amount of work that has been done on the numerical

approximation of the solutions of such equations, it is not surprising to see

a large selection of software in this area. However, 1t 1s true that for

complicated problems, e.g. non-linear or non-separable, the solution techniques

are not as reliable and software 1s not generally available.

The software packages will be describedin an order corresponding to

increasing complexity of the type of problems solved.

5.1 FISHPAK (Version 3)

This package of subroutines was written by Adams, Swarztrauber and

Sweet [1] at the National Center for Atmospheric Research, Boulder, Colorado.

It 1s a continuing effort brought about originally 1n response to the need

for a complete set of readily available well-tested, reliable, efficient, and

well-documented software to solve a subclass of elliptic equations which occur

frequently in the study of geophysical fluids.

16



The subclass consists of separable elliptic equations with particular

emphasis on the Poisson equation defined on a rectangle in Cartesian,

cylindrical or spherical coordinates, and with Dirichlet, Neumann or

periodic boundary conditions prescribed. Of particular importance was the

need to automatically treat coordinate singularities, e.g., the origin in

spherical coordinates, and equation singularities, e.g., fully periodic

solutions.

The package consists of eighteen subroutines and one subpackage.

These are:

(a) Twelve drivers that define second order, central finite difference

approximations on staggered and unstaggered uniform grids, incorporate

boundary data, and treat singularities for two-dimensional modified

Helmholtz equations 1n Cartesian, polar, cylindrical, surface spherical,

and spherical cross-section coordinate systems, for a three-dimensional

Helmholtz equation, and a general separable two-dimensional elliptic

equation without coordinate singularities,

(b) six solvers that are used to solve the linear systems of equations

arising above,and two solvers that can be used to solve finite difference

approximations to complex-valued separable elliptic equations, and

(¢) a subpackage of fast Fourier transform routines that provide periodic,

sine, cosine, sine quarter wave, and cosine quarter wave transforms as well

as the full complex transform.

The solution techniques are based on generalizations of the Buneman

variant of cyclic odd-even reduction [3] and some of the routines provide,

at the users option, fourth order approximations using the method of deferred

corrections.

Buzbee et al [4] tested version 1 of the package and made criticisms

17



and suggestions [30] to the authors. These suggestions were implemented by

the authors resulting in the second version of the package.

5.2 A Package for the Helmholtz Equation on an Arbitrary Region.

This package of four subroutines was written by Proskurowski[23] at

the Lawrence Berkeleylaboratories, Berkeley, California. It may be used

to solve the Helmholtz equation

vu + cu = f (5.1)

defined on a general bounded planar region 0 with either Dirichlet or

Neumann conditions prescribed on the boundary of the region.

The package solves the standard, second order, central finite difference

approximation to equation (5.1) by embedding the region in a rectangle R

and using the capacitance matrix technique coupled with fast Poisson solvers.

Briefly, the method consists of four steps:

1) generate the capacitance matrix C the order of which is equal to

the number of grid points within { and adjacent to the boundary,

2) solve (5.1) on R with f arbitrarily extended to R using a fast

Poisson solver, e.g., a routine from FISHPAK,

3) solve the capacitance matrix equation

Cz =b (5.2)

and use z to correct the values of f , and

4) solve (5.1) on R with the corrected f .

For a general region, step 3) can be very time consuming since the order

of C may be large. This also may make the direct internal storage of

C prohibitive.

18



To efficiently overcome these difficulties, the package provides

four subroutines:

1) HLMHLZ solves equation (5.2) implicitly via a conjugant gradient

iteration, thus obviating the storage of C ,

©) HEIMIT generates and stores C explicitly and solves (5.2)

directly,

3) HEIMSIX solves the Dirichlet problem only storing C explicitly

and has the option of obtaining fourth or sixth order approximations via

deferred corrections, and

4) HELSYM produces a symmetric approximation to the Dirichlet problem,

using an explicitly generated C . This routine may be used in conjunction with

an algorithm for the computation of eigenvalues and eigenvectors of large symmetric

matrices, e.g., the Lanczos method, in order to approximate the eigenvalues of the

Laplacian.

To describe the irregular boundary, the user must supply a subroutine,

DOMAIN, that specifies the coordinates of the irregular grid points, i.e.

those points on the finite difference grid for which some of its neighbors

are not within the domain. The user must specify the distance from the

grid point to the boundary and the associated boundary values. The right

side of equation (5.1) is furnished in the user-supplied subroutine CHARGE.

5.3 EIGEN

Ryder and Sanderson [26] have developed a package for approximating the

eigenvalues of Laplace's equation. Specifically, the program finds approximate

solutions to

vou + wou = 0 (5.3)

defined on a bounded, simply connected domain in the plane, subject to

Dirichlet or Neumann boundary conditions on various portions of the boundary

of the domain.

19



A major difficulty in the approximation 1s the treatment of |

singularities in the solution induced by re-entrant corners, 1.e. an

interior angle greater than i , on the boundary. They overcome this

difficulty by seeking solutions to equation (5.3) of the form

k N.

ul(r,s) -) 5 (e, J o (wr, )sin oy 6. + d. J (wr, Jeos @, 5; | (5.4)
i=1 j=0 + Te

where Kk 1s the number of corners on the boundary, @; 5 are determined

from the angle of the hs corner, and (x, 56, are the coordinates of the
point (r,8) in a polar coordinate system centered at the Ads corner.

Since each term of equation (5.4) is a solution of equation (5.3), the

coefficients Cys HANS are determined by attempting to satisfy the
given boundary condition in a least squares technique. It 1s known also

that such an expansion of the solution produces the correct asymptotic

singularityat each corner.

The procedure used 1s to minimize a certain error functional in @ by

selecting an & | solving for the Cy and d; , then trying to correct
Ww by minimizing the residual of the least squares solution. Such local minima

are "strong candidates" for eigenvalues even though convergence proofs for

this technique do not exist. The routine EIGEN uses the routine LOCALM

written by R. Brent for finding local minima, and the routine DSVD written

by P. Businger, for finding the singular value decomposition of the matrix.

5.4 ITPACK/REGION

This software [18] is a result of the continuing research at the

Center for Numerical Analysis of the University of Texas at Austin. It is

a package of routines which approximate the solution of the linear, self-

adjoint elliptic equation
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(aw) + (bu ) + cu = f (5.5)
X'X YY

defined on a somewhat general region in the plane, with Dirichlet

boundary conditions assumed on the boundary of the region. The coefficients

a,b, and ¢ may be functions of x and vy .

The solution 1s approximated using second order central finite

differences defined on a uniform grid with equal spacing in Xx and y .

The boundary of the region over which the equation is assumed to hold may

consist of horizontal or vertical grid lines or lines of slope +1

connecting grid points. The region may have holes so long as the boundaries

of the holes satisfy the above conditions. Such restrictions eliminate

the occurence of irregular grid points near boundaries.

To solve the sparse linear system arising from the approximation to

equation (5.5), the user may select one of six iterative algorithms:

1. Jacobi iteration with Chebyshev acceleration.

2. Compresssed Jacobi iteration with conjugate gradient acceleration.

3. Jacobi iteration on a reduced system with Chebyshev acceleration.

4. Jacobl iteration on a reduced system with conjugant gradient acceleration.

SO. Symmetric successive overrelaxation with Chebyshev acceleration.

6. Symmetric successive overrelaxation with conjugant gradient acceleration.

The selection of the acceleration parameter and the stopping criterion are

automatic.

The subroutine REGION defines the grid after the user has supplied a

polynomial parameterization of the boundary.

5.5 POTENT

This piece of software, writtenby Thomas [32], was produced to aid

engineers in the solution of problems 1n electrostatics and magnetostatics.
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The equation, written in divergence form, 1s

ve: (elx,y) wu) = (en) r lew) = 1 (6,7) (5.6)

that is assumed to hold en a general, bounded planar region. Dirichlet

or mixed boundary conditions are assumed to hold on the boundary.

The method of approximation 1s to use a finite difference approximation

to equation (5.6) and then solve the resulting system by ADI, point SOR, or

line SOR with the acceleration parameter either specified by the user or

set internally (by assuming Dirichlet boundary conditions for Laplace's equation

defined on a bounding rectangle).

The user must provide a subprogram which declares whether a point 1s

inside, on, or outside the boundary, and , in the latter case, 1ts distance

to the boundary. Once the boundary has been determined it 1s outputted

graphically for the user to check for errors.

5.6 ELLPACK 77

This software research project is coordinated by Rice [2k].It is a

cooperative effort among many people interested in the development and

evaluation of algorithms related to solving the large, sparse linear systems

of equations arising from approximations-to linear elliptic equations. The

goal of the project is to facilitate the testing of algorithms that only

deal with a portion of the total solution process. This 1s done by defining

a fixed number of subproblems (modules), and defining fixed interfaces

between these modules. 'There are currently four modules: equation formation,

equation indexing, equation solution, and output. Researchers may contribute

software designed for one of the modules. More importantly, they may select

existing software from the other modules for testing their own software,

thereby relieving themselves of the burden of unnecessary coding. The interested
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reader 1s referred to the above reference for a detailed discussion of

the ELLPACK project.

5.7 ELLCOL

The first piece of software from the ELLPACK project has

been designed by Houstis and Rice [16]. It is designed to solve the linear

equation

ou. * “BYU + YY, feu * EY gu = f£

defined on a general two-dimensional region with the boundary condition

au + pu +t cu = g

assumed on the boundary. The coefficients @;B,..--£s,a,b, and c may be

functions ofx and y .

The method of approximation is to embed the region in a rectangular

grid and then use collocation at four Gaussian points within each rectangle,

using bicubic piecewise Hermite polynomials for the basis. The approximation

1s also required to interpolate the boundary condition at "appropriate" points.

The system 1s solved using profile Gauss elimination.

To use this software, the user must provide information to the ELLPACK

input and output modules. For input the user provides:

1. subroutine BCOORD that provides a parametric representation of the

boundary of the region,

2. functions COEF and BCOEF that provide the equation and boundary

condition coefficients, and

3. function F that provides the functions f and g .

The user may select various levels of output of intermediate results,

approximations to Us us and wu, and the execution time.
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5.8 EPDEL

This main program was writ-ten by Hornsby [15] at CERN. It is designed

to approximate the solution of

au + bu - cu t du + eu = f
XX YY X Y

where a,b,...,f may be functions of X,¥, and u . The equation 1is

assumed to hold over a region bounded by a simple closed curves CisCnsee Cy ’

where CpreeesCy must lie within C, Along the curves C. the following

boundary conditions are assumed to hold:

1. Dirichlet, or

2. 1f C, is a line which coincides with the finite difference grid,

then a mixed condition

pu, + EA tru = S

may hold.

A uniform finite difference grid 1s defined, and at each grid point

a finite difference equation is developed using the four neighboring 'points.

The resulting system of equations is solved by point SOR. The acceleration

parameter ¢ is estimated using the method of Carre. The convergence criterion,

based on estimates of the spectral radius of the iteration matrix involves a

percentage accuracy specified by the user. If the equations are non-linear,

functional iteration 1s coupled with the SOR iteration.

The input for this program is complicated. Not only does the user

provide subroutines to evaluate the coefficients of the finite difference

equations, but the user must define each boundary by a sequence of grid points

supplied on cards.

5.9 GENEPL

This software, written by Roux et al [25], is designed to solve a general
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linear or non-linear elliptic or parabolic equation on a two-dimensional

rectangle with Dirichlet, Neumann, or mixed boundary conditions. This program

accepts the problem definition in symbolic form and generates a FORTRAN

program that solves the approximate equations.

The user may specify a uniform or non-uniform grid in space and time.

The program generates the finite difference approximation using the four

nearest neighbors and solves the equations using point or line relaxation

or ADI, but leaves the acceleration parameter selection to the user.

This program requires disk files, so portability may be a problem.

5.10 ELIPIT

This software, written by Taylor and Taylor [31],is designed to

solve a general non-linear elliptic equation defined on an arbitrary region

in the plane, and assuming Dirichlet boundary conditions. The solution is

obtained by approximating the steady-state solution of a related ftime-

dependent parabolic equation.

The approximation is by finite differences on a uniform rectangular

grid. The time integration 1s performed in such a way that the scheme 1s

equivalent to an AD1 scheme. Aitken-Shanks acceleration is used in time also.
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