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Abstract.

This paper surveys the state of general purpose software for the

solution of partial differential equations. A discussion of the

purported capabilities of twenty-one programs is presented. No testing

of the routines was performed.






1.  Introduction

Mathematical software for partial differential equations (pde‘s) is
a relatively new area. It is only within the last five years that programs
have been published which are capable of solving relatively large classes
of partial differential equations using effective numerical approximations.

The first attempts at general purpose software were oriented toward
providing programming languages that facilitated writing the equation and
its approximation (usually finite differences). Two examples of such
languages were PDEIAN [10] and PDEL [5]. These seem not to have been too
widely used and are currently not supported.

Current popular software now is produced in the form of subroutines
with user-provided subprograms defining the equation. There are, however,
several notable exceptions to this that will be discussed in detail below.

This paper resulted from a reasonable extensive literature search under-
taken to determine what software was available. The guiding principle in the
selection process was generality. Hence, no coverage has been provided in
the very large special application areas such as finite element codes for
structural engineering, nuclear reactor codes, hydrodynamics codes (produced
principally at government weapons laboratories), and petroleum reservoir
modelling codes. Information on some of the programs in these areas may be
obtained from the Argonne (National Laboratory) Code Center and the COSMIC
program library at the University of Georgia computation center. Also, no
attempt has been made to determine the existence of codes based on integral
equation techniques.

Before proceeding further this caveat must be tendered: no attempt has

been made to ascertain the availability, portability, utility, or accuracy



of any of the software mentioned in the remainder of this paper.

2. Mathematical Preliminaries.

In this section are discussed some mathematical ideas that are pertinent
to the description of pde software.

For time dependent pde's the most popular approximation is the method of
lines wherein the spatial derivatives are approximated in some manner in order
to yield a system of ordinary differential equations (ode's). The time
integration of this system of ode's is then accomplished by the use of existing

software for ode's.

For example, suppose we wish to approximate the single equation

u,G = f(x,t,ux,uxx) B O<x<l, t>0 (2.1)
with boundary conditions

w(0,t) = u(l,t) = 0, t >0 (2.2)

and initial condition

u(x,0) = gx) p<x<1 . (2.3)

We may choose a finite difference grid {Xi} given by

1

X =ih, i=O,l,2-..,N"l, h = m}

1

and supposing vi(t) to be an approximation to u(xi,t) , we replace u,

and uxx in (2.1) by, say, second-order central finite difference approxima-

tions resulting in the ode system

dv,
i
— f(xi,t, (vi+1—vi l)/21'1, (vi

) 2
l—2vivvi+l)/h )

= Fi(t,vi l,Vl,Vi+l) J (2-)4-)



for i = 1,2,...,N . From (2.2) we have

vo(t) =V (t) = 0

n+l

and from (2.3) we obtain the initial conditions

Vi(O) = g(xi) 1= 1,2,...,N . (2.5)

Equations (2.4) and (2.5) form an initial value ode problem which can be
integrated by some ode package.

It is not necessary to use finite difference approximations to remove
the spatial wvariation. One might assume that the solution u of (2.1) may

be written

n
u(x,t) = 2 c.(t)b.(x)
. 1 1
i=1
where the known functions f bi(x)} form a suitable basis. Depending on the

choice of method, e.g. collocation or Galerkin, for removing the spatial
variation one obtains an initial value problem for a system of ordinary dif-

ferential equations in the unknowns {Ci(t)]

Most developers of pde software who have chosen to use the method of lines
rely heavily on existing software for ode's and for the computation of the
basis functions. Specifically the ode software used almost exclusively is one
of the several codes based on Gear's method written by Hindmarsh [12,13%,14].
The basis functions chosen are frequently B-splines and the package of de Boor
[2] is used.

The use of the method of lines for two-space dimension parabolic pde's
introduces a significant complication in that it is generally accepted that
the ode system to be solved may be stiff. Hence, this dictates the use of
implicit methods which give rise to very large, sparse Jacobians which must be

inverted. The inversion of such matrices 1is not at all trivial and seems to be



the principle obstacle in the development of multi-space dimension pde
software. This same problem exists for the development of robust software
for elliptic pde's defined over general regions.

3. Software for Hyperbolic Systems

Hyperbolic equations are, py far, the most difficult class of partial
differential equations to approximate numerically. The principal difficulties
lie in determining the correct approximation at the boundaries of the domain
and accurately representing discontinuities in the solution.

To illustrate the former difficulty, suppose we want to approximate the
solution of the simple system

u, = Au (5.1)

where u = , A= , O0<x<1l .

u, o -1

It is easily seen that the general solution is u. (x,t) = f(t+x) and

1
ug(x,t) = g(t—x) , where f and g are arbitrary functions determined by
the boundary and initial conditions. Clearly, at the boundary x = 0 ,

(if t < 1), uy must be specified and u2 cannot be specified unless the

solution is known. At x= 1, Uy must be specified, and u1 cannot be.
However, a straightforward finite difference approximation to equation
(3.1) requires that two conditions be given at each boundary. The problem
here, of course, is that the approximation near the boundary must take into
account the nature of the characteristics, i.e., the lines x + t = constant
and x - t = constant. At x = 0 , the characteristics indicate that u2
should be computed from known interior values, e.g., by extrapolation along
the outgoing characteristics x + t = constant. Analogous statements apply

at the boundary x= 1.

Although the preceding comments may seem rather obvious for the system



(5.1), where A is a constant diagonal matrix, the construction of accurate
difference approximations becomes more difficult when A is a function of
%X, t, and u . In this case the characteristics must be computed by an

eigenvalue/eigenvector routine at each time step and at each boundary.

3.1 DCG
This program, written by Engquist and Smedsaas [9] , was designed to
provide software for the numerical solution of hyperbolic systems in one

space dimension. The user specifies symbolically the equation

u f (X’t;u;ux) J

t =
where a <x<b , and u eRn . Initial conditions, boundary conditions, and
certain characteristics of the problem, e.g. uniform or non-uniform grid in
space, or that some particular terms should be considered stiff (and, therefore,
integrated implicitly in time) are also specified. These specifications are
accepted by the first part of DCG, the analyser. A syntactical analysis of the
equations and boundary conditions is performed to detect errors in the specifica-
tion and the problem is classified by linearity, time and space dependence of
coefficients, etc. The principal symbol, i.e., the matrix bf%bux , 1is

examined to determine, as far as possible symbolically, whether the correct
number of boundary conditions have been specified. FORTRAN code is prepared

to compute the eigenvalue and eigenvectors during execution, if necessary.

(This part of the 'program is the analysis of the matrix analogous to the

matrix A in equation (3.1)). Difference methods and boundary strategies,

i.e. which variables should be extrapolated at the boundaries, are selected
according to the preceding analysis and user specification, and a solution
algorithm is determined. This algorithm is then optimized.

The second part of DCG, the synthesizer, accepts the algorithm, and,



using a library of FORTRAN codes, constructs a FORTRAN program to solve the
given problem. This program contains output statements that save all inter-
mediate execution output on a disk. After execution, a graphics program
operates interactively with the user to *provide graphs of any of the
variables as functions of space or time.

As alluded to above, the approximation Is done by finite differences
using different types of second and fourth order differencing, Leapfrog,
Crank-Nicolson, or semi-implicit integration, all of which are energy con-
serving. However, the user may specify dissipation if desired.

DCG seems to be a fairly thorough treatment of the one-space-dimension
problem, but its availability may be limited by the fact that the analyzer
is written in SIMULA , a language not generally available in numerical

computation centers.

3.2 RKFPDE

This subroutine, written by Gary [1l], was motivated by a desire to
provide software for a class of problems commonly called the "stream function-
vorticity equation". Problems in this class occur frequently at the National
Center for Atmospheric Research, where this software was developed.

The system of equations is assumed to have the form

)

u, = f + gY T h(x,y, L, W, w_,W ,W _,W_, )

W ,W YW
t x Xy xRy Yy XXX yyyy

plus an optional elliptic equation

Ip = F<X)YJt)u7uXJuxX:qu:u::xx)u::__

where L is assumed to be separable, and where u ¢ Rn ; W = hhfué"' mmn’ p),

f and g are functions of x,y,t, and w , The domain is assumed to be a

rectangle in the plane. On the boundaries of the rectangle the user may



specify one of the conditions:

1) periodicity

2) symmetry with respect to the boundary

3) skew symmetry with respect to the boundary
4) a mixed condition, or

5) extrapolation of the characteristic variables.

(This last boundary condition requires that the user determine those
quantities which should not be specified at a boundary).

The solution is accomplished by a finite difference approximation on a
user-supplied uniform or non-uniform mesh. The method of lines is used. The
user may select second or fourth order central differences in space. The time
integration is carried out by a Runge-Kutta-Fehlberg 3-4 scheme modified
from a routine provided by Shampine. The elliptic equation is solved by the
subroutine SEPELI, a part of FISHPAK (cf. 5.1). The functions f,g9,h, boundary
data, and the coefficients of the elliptic operator are given in user-supplied
subprograms.

This software was written for the Control Data T600 and designed to use

extended core memory. However, portability should not be too affected as the
calls to this memory have been isolated in the code and may be replaced by
statements appropriate for the user's computer. A version of this code is

currently running on the CRAY-1.

L. Ssoftware for Parabolic Systems.

In contrast to the lack of general purpose codes for hyperbolic systems
there are a number of programs available for parabolic systems. The method
of lines is used exclusively in these codes. Hence, the discussion of the
approximation in each code will be separated into two parts: space and time.

Nine codes will be discussed. They will be presented in an order corresponding



to increasing capabilities of the programs. (One program, GENEPI, may

also be used for solving a parabolic equation, see 5.9).

4.1 Dpss/2

This package, produced by Schiesser [28], is a successor to an earlier
code LEANS [27]. DSS/2 is primarily an educational tool. It was designed
as a main program which the user supplies with three subroutines that define
the actual pde to be solved. It is assumed that the pde can be written in
the form

u F(x,t,u,ux,uxx) , a<x<b,t>0 (k.1.1)

t =

where u ¢ Rn. (The expressions uX and Uy o mean the vectors of first and
second partial derivatives, resp.) The boundary conditions are not provided
in a separate subroutine, but rather, are incorporated by the user into the
subroutine that defines F . It appears, therefore, that only relatively

simple boundary conditions may be handled with ease.

In order to evaluate F , the user selects from a large collection
of subprograms within DSS/E the one that automatically computes finite
difference approximations to u, or u._ . Centered and non-centered
differences of even order two through ten are available.

The time integration scheme may be chosen from one of fourteen different
Runge-Kutta one-step methods of orders one through five, or the user may
select the Hindmarsh GEARB [14] package.

4.2 PDEPACK

This software was developed by Sincovec and Madsen [22], and may be
purchased or leased from Scientific Computing Consulting Services. The
package consists of eleven subroutines with communication of the problem
through user-provided subroutines. The system of pde's is assumed to be

in the form



(x)_ .(x) 1 ¢ (1) 1 ..c (n)
u= f (t,x,u,uX, ;c [x Dk,]_ u, ] IR ; [x Dk,nux ]X ) (k.2.1)
where
k= 1,2,...,n, a < x <b, t > to, Dk,j =D K, (t,x,u),

and ¢ may be 0,1, or 2 .Terms of the form

allow the program to handle discontinuous coefficients, e.g., when a problem has

. . , , c

material interfaces. The inclusion of factors X  facilitates the treatment

of common expressions occurring in Cartesian, cylindrical, or spherical coordinates.
The boundary conditions are assumed to be prescribed at each boundary

and to be in the form

(k) (x)

BkUX — 'Yk) k=l;2,---)n

If Bk # 0, then oy and Yy may be functions of t and u , but if

0, and Yy may only be functions of t

¥k

The space discretization is accomplished via central finite differences

Bk~

on a grid of points specified by the user. The differences are second order

on a uniform grid, but only first order on a non-uniform grid. The

differencing has been designed to conserve such quantities as Dux across

material interfaces. The finite-difference grid may not change with time.
The time integration is accomplished by use of a modification of

the Hindmarsh package GEARB.

4.3 PDECOL

This software was also produced by Sincovec and Madsen [20]. The user
specifies the problem via a set of subroutines and calls the subroutine
PDECOL for the solution.

The equation is assumed to be in the form



n
where u ¢ R , a<x<b, and t > t.O . The boundary conditions are

assumed to be in the form

However, the user need not specify a boundary condition at all. This feature
may be useful if the user attempts to solve a hyperbolic system or a coupled
ode-pde system.

The spatial approximation is accomplished by the use of collocation
using B-splines as the basis. The breakpoints for the B.splines are provided
by the user, as are the degrees of the piecewise polynomials and the order
of continuity. The B-splines are computed using the package of de Boor [2].
The collocation points are chosen automatically by the software.

Since the resulting system of ordinary differential equations is implicit,

the authors use GEARIB, a modification of GEARB developed by Hindmarsh [14].

4.4 MOL1D
This subroutine package was developed by Hyman [17]. As in the previous
two codes, the user writes subroutines defining the problem and then calls

MOL1D. The equation must be in the form

ut = g<x’t’u’ux’uxx’fx) (b.4.1)

n
where u ¢ R ,a<x<b,t>t , and f = f(x,t,u,u ,u ).
0 X XX
The inclusion of the argument fx on the right side of (4.L.1) allows
conser’/ative differencing of advective terms which arise naturally in
fluid dynamics equations.

The acceptable boundary conditions are given by:

10



a) periodicity in x,
b) au + buX = ¢ , where a,b, and c may be functions of t and u
if b # 0, otherwise a and ¢ may only be functions of t ,

c) some differential equation, a free boundary, or no boundary

condition prescribed.

The spatial discretization is accomplished automatically using second ,
fourth, or sixth order centered differences, fast Fourier transform
approximation (in the case of periodicity only) with or without linear
filtering of higher modes, or unsymmetric second or third order
differences.

The time integration is carried out by the GEARB package.

Graphical output is available. The plotting procedures use standard
CALCOMP routines, and, as such, represent a departure from the portability

standard the author has set.

4.5 LSQPDE

This software by Eason and Mote [8] is designed to solve the equation

1) _(2)

F(x,t,u,u( , U , .+ ..) 1

u ey

n .
where a<x<b , t > tO’ uelR’, and u J represents the vector of

partial derivatives of u of order j . At the boundaries, general

conditions of the form

(1) ‘,u('p-l))

qﬁx,t,u,u y . . =0 x = a,b; 1 =1,2,...,q

are assumed to hold.

The approximation technique is a combination of time integration and

least square approximation. The user selects a set of points {xi}?_l in

11



the interior and on the boundary of [a,b] at which points the equation

will be integrated in time. A particular set of basis functions (provided by the
user) is used to represent an approximation v(aj,x) to the solution

u(x,tj), where a.J represents the vector of coefficients in the approximation
at time tj . The first step of the algorithm is to form a vector of

residuals, evaluated at the points {xi} , for initial and boundary con-

ditions. The vector a corresponding to the initial time t_ , 1is determined

0

by minimizing the residual in the least squares sense. The minimization is

o’
accomplished by Powell's non-linear least square technique. Assuming aj
is known, the approximation v(aj,x) is used in a modified Gear-Hindmarsh
predictor-corrector algorithm. Firstly, values of the solution are predicted
at time level tj+l by a Taylor series expansion of v(aj,x) in time.

These predicted values are used in conjunction with the corrector equation

to form a vector of residuals at the points {Xij . This vector is a

function of the unknown coefficient vector > which is determined by a

aj+l
least squares minimization of the residual vector.
4.6 POST

This software, written by Schryer [29], is available through the PORT
library of Bell Laboratories. It is designed to solve coupled ordinary -partial

differential equation systems. The equation treated is

f(x,t,u,ux,u

) = 8l U0 0 )

t'x

n
where a £ xgb, ue R, with boundary conditions

b(t,u,uX,u

t’ux ) =0 at X = a,b.

t

It is also possible to impose non-local conditions on the solution such as

periodicity or that the integral of the solution over someinterval assumes



a given value.

The spatial variation is approximated using a Galerkin technique with a
B-spline basis (provided by the de Boor package). The time integration is a
one-step method, explicit or implicit, coupled with an extrapolation algorithm

to provide automatic error control in the time integration.

The user provides a call to subroutine POSTS providing information about
the B-spline basis, time integration limits, and an error tolerance. He also
provides two subroutines for the evaluation of the equation and boundary

conditions.

4.7 PDETWO

PDETWO was written by Melgaard and Sincovec [2l]. It is a collection
of subroutines that provides an interface between a two dimensional pde and
an ode integration package. The user specifies the problem by providing sub-
routines and calls PDETWO for a solution.

The equation is assumed to have the form

(1

(x)
U t,x,y,u,ux, (DHk,l uX

. = ¢l ))X,...,(DHk’n u}(cn))X )

( (1)

DV w’) ..., (DV u
k, 1y 'y’ ’ k,n 'y 'y
where &, <X < bl po8 <y < b2 , T > to , k =212,....n, and the
coefficients DHk 3§ and DVk 3 are piecewise continuous functions of
2 2

t,x,y and u .

Boundary conditions are assumed to have the form

aku + bkun = C s k = 1,2,...,0 ,

where and ¢ are piecewise continuous functions and uy

ak ’ bk’ X

represents a derivative normal to the boundary.

13



The user provides a two dimensional finite difference grid and the
package automatically produces an approximation at each grid point corresponding
to a five-point star.

The time integration is accomplished by the use of GEARB. The use of
Newton's method to solve the system of non-linear equations resulting from
the use of implicit integration schemes necessitates the solution at each
Newton iteration of a large sparse banded system of equations. The coefficient
matrix, the Jacobian of the non-linear system, must be evaluated at each
iteration and represents a significant computational expense. The authors

have examined various techniques for this task and havein their view implemented

the most efficient one.

4.8 DISPL

This software package is the collaborative effort of Leaf, Minkoff,
Byrne, Bleakney and Saltzman [19] of the Argonne National Laboratory. The
package is designed specifically for one and two spatially dimensioned
kinetics-diffusion equations. It represents an effort to provide reasonably
general purpose software designed for a particular application.

The equation is assumed to thave the form

[pC 1 (t,r,z,ﬁ) u(k + 6 V-(3k(t,r,z,u)u k

pk t
n n
.—' _. k 3 . .

= VC(DK(t,I',Z,u,eu) VU.( %J—Z Ckl u(l) 4-2 dli u(l)u<‘j)

i‘:l i,jzl
+ o
+ fk<t,r,Z,u,Vu> 1)
where k = 1,2,...,n . The equation is assumed to hold over a rectangle

with material interfaces in the (r,z)-plane. To increase the applicability

of the code, two forms of advection terms (e =0 or 6§ = 1) are allowed.

14




The boundary conditions on the sides of the rectangle are assumed

to have the form

o hu(k) t B 3kVu(k)' o = v hpi

-
where «, B, and y may depend on k and the side of the rectangle, n

. . , 0 - -+ -
is the exterior unit normal, and pk may depend on u and Vu-In -

A Galerkin procedure is used as the spatial approximation using
B-splines as the basis functions. The mesh is provided by the user. The

B-splines are computed using de Boor's package.

The time integration uses the same method as that found in Hindmarsh's

GEARIB [13], although the authors do not use GEARIB itself.

Extensive graphics capabilities have been provided. The software has
been written in MORTRAN -- a FORTRAN preprocessor. This should present no
problems since the authors are including in the external distribution a

portable copy of the MORTRAN translator.

4.9 FORSIM VI

As the name indicates, the FORSIM package of Carver et al [6] is in
the sixth edition, a testament to the longevity of this software effort.

This package contains a main program plus a large number of subprograms
that providecentered, non-centered, and upwind finite difference approximations
of various orders and cubic spline approximations. Time integration methods
provided are a variable step Runge-Kutta-Fehlberg, a fixed step fourth order
Runge-Kutta with Fehlberg corrections, a fixed step Euler, and the Hindmarsh-
Gear algorithm. For this last algorithm the user may select a number of
different approximations to the Jacobian, ranging from no Jacobian (functional

Iteration) to the full Jacobian, in which case the sparse matrix package of

15



Curtis and Reid [7] is used.

To use this package, the user provides a subroutine UPDATE, that
contains storage declaration, initial conditions, equation and boundary condition
specifications, and output specifications. To define the pde the user selects
those subprograms corresponding to the spatial discretization, creates a
section of code which performs the evaluation of the right side of the
equation, e.g., the F in (h.l-l), and incorporates this into UPDATE. The
time integration is performed by a call within UPDATE to another subroutine.

This package may also be used to solve two- and three-space dimension
problems defined on rectangles or parallelepipeds, respectively. Graphical

output is also available.

5. Software for Elliptic Equations.

Due to the extensive theory that exists for elliptic partial differential
equations and the large amount of work that has been done on the numerical
approximation of the solutions of such equations, it is not surprising to see
a large selection of software in this area. However, it is true that for
complicated problems, e.g. non-linear or non-separable, the solution techniques
are not as reliable and software is not generally available.

The software packages will be described in an order corresponding to
increasing complexity of the type of problems solved.

5.1 FISHPAK (Version 3)

This package of subroutines was written by Adams, Swarztrauber and
Sweet [1] at the National Center for Atmospheric Research, Boulder, Colorado.
It is a continuing effort brought about originally in response to the need
for a complete set of readily available well-tested, reliable, efficient, and
well-documented software to solve a subclass of elliptic equations which occur

frequently in the study of geophysical fluids.

16



The subclass consists of separable elliptic equations with particular
emphasis on the Poisson equation defined on a rectangle in Cartesian,
cylindrical or spherical coordinates, and with Dirichlet, Neumann or
periodic boundary conditions prescribed. Of particular importance was the
need to automatically treat coordinate singularities, e.g., the origin in
spherical coordinates, and equation singularities, e.g., fully periodic
solutions.

The package consists of eighteen subroutines and one subpackage.

These are:

(a) Twelve drivers that define second order, central finite difference
approximations on staggered and unstaggered uniform grids, incorporate
boundary data, and treat singularities for two-dimensional modified
Helmholtz equations in Cartesian, polar, cylindrical, surface spherical,
and spherical cross-section coordinate systems, for a three-dimensional
Helmholtz equation, and a general separable two-dimensional elliptic
equation without coordinate singularities,

(b) six solvers that are used to solve the linear systems of equations
arising above,and two solvers that can be used to solve finite difference
approximations to complex-valued separable elliptic equations, and

(c) a subpackage of fast Fourier transform routines that provide periodic,
sine, cosine, sine quarter wave, and cosine quarter wave transforms as well
as the full complex transform.

The solution techniques are based on generalizations of the Buneman
variant of cyclic odd-even reduction [3] and some of the routines provide,
at the users option, fourth order approximations using the method of deferred

corrections.

Buzbee et al [4] tested version 1 of the package and made criticisms

17



and suggestions [30] to the authors. These suggestions were implemented by

the authors resulting in the second version of the package.

5.2 A Package for the Helmholtz Equation on an Arbitrary Region.

This package of four subroutines was written by Proskurowski [23] at
the Lawrence Berkeleylaboratories, Berkeley, California. It may be used

to solve the Helmholtz equation

v2u f cu = f (5.1)

defined on a general bounded planar region 9 with either Dirichlet or
Neumann conditions prescribed on the boundary of the region.

The package solves the standard, second order, central finite difference
approximation to equation (5.1) by embedding the region in a rectangle R
and using the capacitance matrix technique coupled with fast Poisson solvers.
Briefly, the method consists of four steps:

1) generate the capacitance matrix C the order of which is equal to
the number of grid points within £ and adjacent to the boundary,

2) solve (5.1) on R with £ arbitrarily extended to R using a fast
Poisson solver, e.g., a routine from FISHPAK,

3) solve the capacitance matrix equation

Cz =b (5.2)
and use z to correct the values of f , and
4) solve (5.1) on R with the corrected £
For a general region, step 3) can be very time consuming since the order
of C may be large. This also may make the direct internal storage of

C prohibitive.

18



To efficiently overcome these difficulties, the package provides
four subroutines:
1) HIMHLZ solves equation (5.2) implicitly via a conjugant gradient
iteration, thus obviating the storage of C ,
o) HEIMIT generates and stores C explicitly and solves (5.2)
directly,
%) HEIMSIX solves the Dirichlet problem only storing C explicitly
and has the option of obtaining fourth or sixth order approximations via
deferred corrections, and
4) HELSYM produces a symmetric approximation to the Dirichlet problem,
using an explicitly generated C . This routine may be used in conjunction with
an algorithm for the computation of eigenvalues and eigenvectors of large symmetric
matrices, e.g., the Lanczos method, in order to approximate the eigenvalues of the
Laplacian.
To describe the irregular boundary, the user must supply a subroutine,
DOMAIN, that specifies the coordinates of the irreqgular grid points, i.e.
those points on the finite difference grid for which some of its neighbors
are not within the domain. The user must specify the distance from the
grid point to the boundary and the associated boundary values. The right

side of equation (5.1) is furnished in the user-supplied subroutine CHARGE.

5.3 EIGEN

Ryder and Sanderson [26] have developed a package for approximating the
eigenvalues of Laplace's equation. Specifically, the program finds approximate
solutions to

vou + wu = 0 (5.3)

defined on a bounded, simply connected domain in the plane, subject to
Dirichlet or Neumann boundary conditions on various portions of the boundary

of the domain.

19



A major difficulty in the approximation is the treatment of
singularities in the solution induced by re-entrant corners, i.e. an
interior angle greater than w , on the boundary. They overcome this

difficulty by seeking solutions to equation (5.3) of the form

k
ulr,g) =Z

i=1

59 %afwr )sin o 8y dys J'au}wr )cos @y ei) (5.4)

'lVL-Z

()
1l
O

where k i1s the number of corners on the boundary, aij are determined
from the angle of the iEE corner, and (ri’ei) are the coordinates of the
point (r,e) in a polar coordinate system centered at the iEE corner.
Since each term of equation (5-&) is a solution of equation (5.5), the
coefficients Cib and dﬁﬁ are determined by attempting to satisfy the
given boundary condition in a least squares technique. It is known also
that such an expansion of the solution produces the correct asymptotic
singularity at each corner.

The procedure used is to minimize a certain error functional in @ by
selecting an & ¢ solving for the c.l.J and (jij ;, then trying to correct
W by minimizing the residual of the least squares solution. Such local minima
are "strong candidates" for eigenvalues even though convergence proofs for
this technique do not exist. The routine EIGEN uses the routine LOCALM
written by R. Brent for finding local minima, and the routine DSVD written

by P. Businger, for finding the singular value decomposition of the matrix.

5.4 ITPACK/REGION

This software [18] is a result of the continuing research at the
Center for Numerical Analysis of the University of Texas at Austin. It is
a package of routines which approximate the solution of the linear, self-

adjoint elliptic equation
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defined on a somewhat general region in the plane, with Dirichlet
boundary conditions assumed on the boundary of the region. The coefficients
a,b, and ¢ may be functions of x and y .

The solution is approximated using second order central finite
differences defined on a uniform grid with equal spacing in x and y
The boundary of the region over which the equation is assumed to hold may
consist of horizontal or vertical grid lines or lines of slope + 1
connecting grid points. The region may have holes so long as the boundaries
of the holes satisfy the above conditions. Such restrictions eliminate
the occurence of irregular grid points near boundaries.

To solve the sparse linear system arising from the approximation to
equation (5.5), the user may select one of six iterative algorithms:

1. Jacobi iteration with Chebyshev acceleration.

2. Compresssed Jacobi iteration with conjugate gradient acceleration.

3. Jacobi iteration on a reduced system with Chebyshev acceleration.

4. Jacobi iteration on a reduced system with conjugant gradient acceleration.

5. Symmetric successive overrelaxation with Chebyshev acceleration.

6. Symmetric successive overrelaxation with conjugant gradient acceleration.
The selection of the acceleration parameter and the stopping criterion are
automatic.

The subroutine REGION defines the grid after the user has supplied a

polynomial parameterization of the boundary.

5.5 POTENT
This piece of software, written by Thomas [32], was produced to aid

engineers in the solution of problems in electrostatics and magnetostatics.
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The equation, written in divergence form, is

v (elx,y) wvu) = (fux)x t (euy)y = f (X’Y) (5.0)
that is assumed to hold e¢n a general, bounded planar region. Dirichlet

or mixed boundary conditions are assumed to hold on the boundary.
The method of approximation is to use a finite difference approximation
to equation (5.6) and then solve the resulting system by ADI, point SOR, or
line SOR with the acceleration parameter either specified by the user or
set internally (by assuming Dirichlet boundary conditions for Laplace's eguation
defined on a bounding rectangle).
The user must provide a subprogram which declares whether a point is
inside, on, or outside the boundary, and , in the latter case, its distance
to the boundary. Once the boundary has been determined it is outputed

graphically for the user to check for errors.

5.6 ELLPACK 77

This software research project is coordinated by Rice [2L]. It is a
cooperative effort among many people interested in the development and
evaluation of algorithms related to solving the large, sparse linear systems
of equations arising from approximations-to linear elliptic equations. The
goal of the project is to facilitate the testing of algorithms that only
deal with a portion of the total solution process. This is done by defining
a fixed number of subproblems (modules), and defining fixed interfaces
between these modules. 'There are currently four modules: equation formation,
equation indexing, equation solution, and output. Researchers may contribute
software designed for one of the modules. More importantly, they may select
existing software from the other modules for testing their own software,

thereby relieving themselves of the burden of unnecessary coding. The interested
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reader is referred to the above reference for a detailed discussion of

the ELLPACK project.

5.7 ELLCOL

The first piece of software from the ELLPACK project has
been designed by Houstis and Rice [16]. 1t is designed to solve the linear
equation

+ =
U EBuX_y Foya tosu f EL{{ + gu t

Y-

defined on a general two-dimensional region with the boundary condition

assumed on the boundary. The coefficients g,R,..-£,a,b, and c may be
functions of x and y

The method of approximation is to embed the region in a rectangular
grid and then use collocation at four Gaussian points within each rectangle,
using bicubic piecewise Hermite polynomials for the basis. The approximation
is also required to interpolate the boundary condition at "appropriate" points.
The system is solved using profile Gauss elimination.

To use this software, the user must provide information to the ELLPACK
input and output modules. For input the user provides:

1. subroutine BCOORD that provides a parametric representation of the
boundary of the region,

2. functions COEF and BCOEF that provide the equation and boundary
condition coefficients, and

3. function F that provides the functions f and g
The user may select various levels of output of intermediate results,

approximations to u uY, and qu, and the execution time.
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5.8 EPDE1
This main program was writ-ten by Hornsby [15] at CERN. It is designed

to approximate the solution of

au + bu " cu t du + eu = f£
XX YY X Y

where a,b,-..,f may be functions of X,y, and u . The equation is
assumed to hold over a region bounded by a simple closed curves Cl’CE""Ck )

where C .,Ck must lie within C Along the curves Cj the following

2]" l'

boundary conditions are assumed to hold:

1. Dirichlet, or

2. if C, 1is a line which coincides with the finite difference grid,
then a mixed condition

: +qu +ru = s
pu q v

may hold.

A uniform finite difference grid is defined, and at each grid point
a finite difference equation is developed using the four neighboring 'points.
The resulting system of equations is solved by point SOR. The acceleration
parameter w is estimated using the method of Carre. The convergence criterion,
based on estimates of the spectral radius of the iteration matrix involves a
percentage accuracy specified by the user. If the equations are non-linear,
functional iteration is coupled with the SOR iteration.

The input for this program is complicated. Not only does the user

provide subroutines to evaluate the coefficients of the finite difference

equations, but the user must define each boundary by a sequence of grid points

supplied on cards.

5.9 GENEPI

This software, written by Roux et al [25], is designed to solve a general
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linear or non-linear elliptic or parabolic equation on a two-dimensional
rectangle with Dirichlet, Neumann, or mixed boundary conditions. This program
accepts the problem definition in symbolic form and generates a FORTRAN
program that solves the approximate equations.

The user may specify a uniform or non-uniform grid in space and time.
The program generates the finite difference approximation using the four
nearest neighbors and solves the equations using point or line relaxation
or ADI, but leaves the acceleration parameter selection to the user.

This program requires disk files, so portability may be a problem.

5.10 ELIPTT

This software, written by Taylor and Taylor [31], is designed to
solve a general non-linear elliptic equation defined on an arbitrary region
in the plane, and assuming Dirichlet boundary conditions. The solution is
obtained by approximating the steady-state solution of a related time-
dependent parabolic equation.

The approximation is by finite differences on a uniform rectangular
grid. The time integration is performed in such a way that the scheme is

equivalent to an ADl scheme. Aitken-Shanks acceleration is used in time also.
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