
Stanford Artificial Intelligence Laboratory November 1978
Memo AIM-320

Computer Science Department
Report No. STAN-CS-78-690

A DEDUCTIVE APPROACH T O PROGRAM SYNTHESIS

by

Zohar Manna Richard Waldingcr
Artificial Intelligence Lab Artificial Intelligence Center
Stanford University SRI International

Research sponsored by

National Science Foundation

Office of Naval Research

Advanced Research Projects Agency

COMPUTER SCIENCE DEPARTMENT

Stanford University

5 JUNGJUNIOR,

ESnlRSP :

ree

Stanford Artificial Intelligence Laboratory November 1978
Memo AIM-320

Computer Science Department
Report No. STAN-CS-78-690

A DEDUCTIVE APPROACHTO PROGRAM SYNTHESIS

by

Zohar Manna Richard Waldinger
Artificial Intelligence Lab Artificial Intelligence Center
Stanford University SRI International

Program synthesis is the systematic derivation of a program from a given specification. A
deductive approach to program synthesis is presented for the construction of recursive programs.

This approach regards program synthesis as a theorem-proving task and relies on a theorem-

proving method that combines the features of transformation rules, unification, and mathematical

induction within a single framework.

Thi s research was supported in part by the National Science Foundation under Grants MCS 76-
83655and MCS 78-02591, by the Office of Naval Research under Contracts N00014-76-C-0687
and N00014-75-C-0816,by the Advanced Research Projects Agency of the Department of Defense
under Contract MDA903-76-C-0206, and by the United States-Israel Binational Science
Foundation.

The views and conclusions contained in this document are those of the authors and should not be

interpreted as necessarily representing the official policies, either expressed or implied, of Stanford
University, or any agency of the U.S. Government.

ha

|

2

MOTIVATION

The early work in program synthesis relied strongly on mechanical theorem-proving

techniques. The work of Green [1868] and Waldinger and Lee [1969], for example,

depended on resolution-based theorem-proving;‘however, the difficulty of representing the

principle of mathematical induction in a resolution framework hampered these systems in

the formation of programs with iterative or recursive loops. More recently, program

synthesis and theorem proving have tended to go their separate ways. Newer theorem

proving systems are able to perform proofs by mathematical induction @g., Boyer and

Moore [1976]), but are useless for program synthesis because they have sacrificed the

ability to prove theorems’ involving existential quantifiers. Recent work in program

synthesis (e.g. , Burstall and Darlington [1977] and Manna and Waldinger [1977]), on the

other hand, has abandoned the theorem-proving approach, and has relied instead on the

direct application of transformation or rewriting rules to the program’s specifications; in

choosing this path, these systems have renounced the use of such theorem-proving

techniques as unification or induction.

In this paper, we describe a framework for program synthesis that again relies on a

theorem-proving approach. This approach combines techniques of unification, mathematical

induction, and transformation rules within a single deductive system. We will outline the

logical structure of this system without considering the strategic aspects of how

deductions are directed. Although no implementation exists, the approach is machine-

oriented and ultimately intended for implementation in automatic synthesis systems.

In the next section, we will give examples of specifications accepted by the system.

In the succeeding sections, we explain the relation between theorem proving and our

approach to program synthesis.

|

3

SPECIFICATION

The specification of a program allows us to express the purpose of the desired program,

without indicating an algorithm by which that purpose is to be achieved. Specifications

may contain high-level constructs that are not computable, but are close to our way of

thinking. Typically, specifications involve such constructs as the quantifiers for all . . . and

forsome.,, the set constructor {x: ..}, and the descriptor find z such that, . . .

For example, to specify a program to compute the integer square-root of a nonnegative

integer n, we would write

sqri{n)<= find z such that

integer(z) and 22<n < (zt 1)?
where integer(n) and 0 £n,

Here, the input condition

integer(n) and 0 £n

expresses the class of legal inputs to which the program is expected to apply. The output

condition

integer(z) and 22s <(z+1)2

describes the relation the output z is intended to satisfy.

To describe a program to sort a list 1, we might write

sort(l) <= find z such that

] ordered(r) and perm(l,z)
where islist(l).

Here, or&red(r) expresses that the elements of the output list 2 should be in

nondecreasing order; perm(l,z) expresses that z should be a permutation of the input /;

and islist(l) expresses that { can be assumed to be a list.

Finally, to describe aprogram to find the last element of a nonempty list I, we might

write

last(l) <= find 2 such that

for some y,! = y<>[z]
where islist(l) and 1 =[].

 —

4

Here, u<>v denotes the result of appending the two lists u and v;[u] denotes the list

whose sole element is u; and [] denotes the empty list. (Thus, [A B C]<>[D] yields

[A B C DJ; therefore, by the above specification, {est([A B C D]) =D.)

In general, we are considering the synthesis of programs whose specifications have the
form

fa)<= find 2 such that Ra,z)
where P(a).

Thus, in this paper we limit our discussion to the synthesis of applicative programs, which

yield an output but produce no side effects. To derive a program from such a

specification, we attempt to prove a theorem of the form

for all a,

if P(a)

then for soméz, Ra, r).

The proof of this theorem must be constructive, in the sense that it must tell us how to

find an output z satisfying the desired output condition. From such a proof, a program to

compute z can be extracted,

6

BASIC STRUCTURE

The basic structure employed in our approach isthe sequent, which consists of two lists

of sentences, the assertions A,, A, ..., A, and the goals G;, G,,..., G, With each

assertion or goal there may be associated an entry called the output expression. This output

entry has no bearing on the proof itself, but records the program segment that has been

constructed at each stage of the derivation (cf. the “answer literal” in Green [1969]).

We will denote a sequent by a table with three columns: assertions, goals, and output.

Each row in the sequent has the form

assertions goals output

Ala, x) ta, x)

or

I EZ RE

The meaning of a sequent is that if all instances of each of the assertions are true,

then some instance of at least one of the goals is true; more precisely, the sequent has

the same meaning asits associated sentence

1 f forall x,Aa,x) and
for all x,AxXa, x) and

for all x, Aya, x)

then for some x,G (a, x) or

for some %,Gya, x) or

for some x,G\(a,x)

where a denotes all the constants of the sequent and x denotes all the free variables. (In

general, we will denote constants or tuples of constants by a, b, ¢c,..., n and variables

or tuples of variables by u, v, w,..., 2.) If some instance of a goal is true [or some

F

6

instance of an assertion is false], the corresponding instance of its output expression

satisfies the given specification. In other words, if some instance Ga,e) is true [or some
instance Aja, e) is false], then the corresponding instance ta, e) [or t{a,e)] satisfies the

specification. -

Note that: (1) an assertion or goal is not required to have an output entry; (2) an

assertion and a goal never occupy the same row of the sequent; (3) the variables in each

row are "“dummys," that we can systematically rename without changing the meaning of the

sequent.

The distinction between assertions and goals is artificial, and does not increase the

logical power of the deductive system. In fact, if we delete a goal from a sequent, and

add its negation as a new assertion, we obtain an equivalent sequent; similarly, we can

delete an assertion from a sequent, and add its negation as a new goal, without changing

the meaning of the sequent. This property is known as duality. Nevertheless, the

distinction between-assertions and goals makes our deductions easier to understand.

If initially we are given the specification

fla) <= find z such that R(a,z)
where P (a) ,

we construct the initial sequent

P(a)

Ria, 2) 4

In other words, we assume that the inputcondition P(a) is true, and we want to prove that

for some z, the goal R(a,2) is true;if so, z represents the desired output. Quantifiers have

been removed by the usual skolemization procedure (see, e.g., Nilsson[1971]). The

output z is a variable, for which we can make substitutions; the input a is a constant.

The input condition P(a) is not the only assertion in the sequent; typically, simple, basic

axioms, such as u = u, are represented as assertions that are tacitly present in all

sequents. Many properties of the subject domain, however, are represented by other

means, as we shall see.

EE

7

The deductive system we describe operates by causing new assertions and goals, and

corresponding new output expressions, to be added to the sequent without changing its

meaning, The process terminates if the goal frue (or the assertion false) is produced,

whose corresponding output expression consists entirely of primitives from the target

programming language; this expression is the desired program. in other words, if we

develop a row of form

or

EZ

where t is a primitive expression, the desired program is of form

Aa) <= f.

Note that this deductive procedure never requires us to establish new sequents or

(except for strategic purposes) to delete an existing assertion or goal, In this sense, the

approach more resembles resolution than “natural deduction.”

In the remainder of this paper we outline the deductive rules of our system, and we

present two complete examples illustrating the application of the system to program

synthesis.

 —

8

SPLITTING RULES

The splitting rules allow us to decompose an assertion or goal into its logical

components. For example, if our sequent contains an assertion of form F and G, we can

introduce the two assertions F and G into the sequent without changing its meaning. We

will call this the andsplit rule and express it in the following notation:

the andsplit rule

assertions goals output

F and G !

F t

G t

Similarly, we have the orsplit rule

assertions goals output

ForG t

F t

G {

and the ifsplit rule

assertions goals output

if FthenG t

F t

G t

Note that the output entries for the consequents of the splitting rules are exactly the

same as the entries for their antecedents.

9

Although initially only the goal has an output entry, the ifsplit rule can introduce an

assertion with an output entry. Such assertions are rare in practice, but can arise by the

action of such rules,

10

TRANSFORMATION RULES

Transformation rules allow one assertion or goal to be derived from another. Typically,

transformations are expressed as conditional rewriting rules

r=s ifr

meaning that in any assertion, goal, or output expression, a subexpression of form vcan be

replaced by the corresponding expression of form s, provided that the condition P holds.

We never write sucha rule unlessvands are equal terms or equivalent sentences,

whenever condition P holds, For example, the transformation rule

ue€v = u =headv)oructaillv) if islist(v) and v =[]

expresses that an element belongs to a nonempty list if It equals the head of the list or

belongs to its tail. (Here, head(v) denotes the first element of the list v, and tail(v) denotes

the list of all but the first element.) The rule

ul0= true if integer(u) and u=0

expresses that every nonzero integer divides zero.

If a ruie has the vacuous condition true, we write it with no condition; for example, the

logical rule

Q and true 3 Q

may be applied to any subexpression that matches lis left-hand side.

; A transformation rule

r= 3s if P

Is- not permitted to replace an expression of form s by the corresponding expression of

formr when the condition P holds, even though these two expressions have the same
values. For that purpose, we would require a second rule

s=r if P.

For example, we might include the rule

I wa

11

x +0 =x if number(x)

but not the rule

x =x +0 if number(x).

Assertions and goals are affected differently by transformation rules. Suppose

r=s5 if P

is a transformation rule and F(r’) is an assertion such that its subexpression r’ is not

within the scope of any quantifier. Suppose also that there exists a unifier for r and r’,

i.e., a substitution 8 such that r@ and r’0 are identical. Here, r@ denotes the result of

applying the substitution @ to the expression r. We can assume that & is a "most general”

unifier (in the sense of Robinson [1965]) ofr and r’. (We rename the variables of F(r’), if

necessary, to insure that it has no variables in common with the transformation rule.) By

the rule, we can conclude that if Pf holds, then 76 and 38 are equal terms or equivalent

sentences. Therefore, we can add the assertion

if PO then F(s)8

to our sequent.

For example, suppose we have the assertion

aclanda=0 |

and we apply the transformation rule

: U€v = u =head(v)oru€tail(v) if islist(y) and v =[],

taking vr’ to be a € I and 6 to be the substitution [u « a; v «!]; then we obtain the new
assertion

if islist{l) and 1 =[]
then (a = head(l)or a €tail(l)) and a = 0.

Note that a and { are constants, while © and v are variables, and indeed, the substitution

was made for the variables of the rule but not for the constants of the assertion.

In general, if the given assertion F(r’) has an associated output entry ¢, the new output

Fee

12

entry is formed by applying the substitution @ to t. For, suppose some instance of the new

assertion “if PO then F(s)@" is false; then the corresponding instance of P@ is true, and the

corresponding instance of F(s)6 is false. Recall that F(r)@ and F(r')0 are identical. Then,
by the transformation rule, the corresponding instance of F(r)@, i.e. of F(r")8, is false. We

know that if any instance of F(r') is false, the corresponding instance of ¢ satisfies the

given specification. Hence, because some instance of F(r’)d is false, the corresponding

instance of t0 is the desired output,

In our deduction rule notation, we write

assertions goals output

Fr’) t

if PO then F(5)0 | 0

The corresponding dual deduction rule for goals is

assertions goals output

Fr’) 4

PO and F(s)0 to

(Transformation rules can also be applied to output entries in an analogous manner.)

For example, suppose we have the goal

and we apply the transformation rule

ul0= true if integer(u) and u= 0,

taking r’ to be ajz and @ to be the substitution [7 « 0; u« a]. Then we obtain the goal

a—

13

(integer(a) and a = 0) and or |
(true and b}0)

which can be further transformed to

Note that applying the transformation rule caused a substitution to be made for the

occurrences of the variable z in the goal and the output entry.

Transformation rules need not be simple rewriting rules; they may represent arbitrary

procedures. For example, r could be an equation f{x)= a, s could be its solution ¥= e, and
P could be the condition under which that solution applies. In general, efficient procedures

for particular subtheories may be represented as transformation rules (see, e.g., Bledsoe

[1977] or Nelson and Oppen [1978 1.)

Transformation rules play the role of the “antecedent theorems” and “consequent

theorems” of PLANNER (Hewitt [1871]). For example, a consequent theorem that we might
write as

to prove flu)= fv)
prove =v

can be represented by the transformation rule

flu)= flv) 3 true ifu=vy.

This rule will have the desired effect of reducing the goal fla)= fib) to the simpler subgoal

a = p, and (like the consequent theorem) will not have the pernicious side effect of

deriving from the simple assertion a = b the more complex assertion fla)= fb). The
axiomatic representation of the same fact would have both results. (Incidentally, the

transformation rule has the beneficial effect, not shared by the consequent theorem, of

deriving from the complex assertion not{f{a)= f(b)) the simpler assertion not(a = b).)

Ee

14

RESOLUTION

The original resolution principle (Robinson [1868]) applied only to a sentence in

conjunctive normal form. However, the ability.to deal with sentences not in this form is

essential if resolution and mathematical induction are to coexist happily within the same

framework. The version of resolution we employ does not require the sentences to be in

conjunctive normal form.

Assume our sequent contains two assertions of form F(P;) and G(P;), where P; and P,

are subsentences of these assertions not within the scope of any quantifier. For the time

being, let us ignore the output expressions corresponding to these assertions. Suppose

there exists a unifier for Py and P,, i.e., a substitution 8 such that P,8 and P,0 are

identical. We can take 6 to be the most general unifier. The AA-resolution rule allows us
to deduce the new assertion

F(true)d or G(false)d,

and add it to the sequent. (Here, F(true) denotes the result of replacing P; by true in

F(P,). Of course, we may need to do the usual renaming to ensure that F(P,) and G(P5)

have no variables in common.) We willcall@ the unifying substitution and P 0 (=P50) the

eliminated subexpression; the deduced assertion is called the resolvent. Note that the rule is

symmetric, so the roles of F(P,) and G(P,) may be reversed.

For example, suppose our sequent contains the assertions

if (P(x) and Q(b)) then R(x)

and

Pa) and Q(y).

The two subsentences "P(x) and QU)" and "P(a) and Q(y)" can be unified by the
substitution

O=z=[xea;yebl

Therefore, the AA-resolution rule allows us to eliminate the subexpression "“P(a) and Q(b)"
and derive the conclusion

(if true then R(a)) or false,

which reduces to

|

16

Ra)

by application of the appropriate transformation rules.

The conventional resolution rule may be regarded as a special case of the above AA-
resolution rule. The conventional rule allows us to derive from the two assertions

(not P) or Q

and

PoorR

the new assertion

QO or RO,

where 0 is a most general unifier of P; and P,. From the same two assertions we can use
our AA-resolution rule to derive

((not true) or QO or (false or R)O,

which reduces to the same conclusion

Q0 or RO

as the original resolution rule.

The justification for the AA-resolution rule is straightforward: Because F(P)) holds, if

_P,0 is true, then F(true)d holds; on the other hand, because G(P,) holds, if P,0(=P30) is

false, G(false)d holds. In either case, the disjunction

F(true)f or G(false)0

holds,

A "non-clausal" resolution rule similar to ours has been developed by Murray [1978].

Other such rules have been proposed by Wilkins [1973] and Nilsson [1977].

 —

16

THE RESOLUTION RULES

We have defined the AA-resolution rule to derive conclusions from assertions:

the AA -resolution rule)

assertions goals

F(Py)
G(P5)

| F(true)d o r G(false)d |

where P,0=P,0, and 0 is most general.

By duality, we can regard goals as negated assertions; consequently, the following
three rules are corollaries of the AA-resolution rule:

the CC-resolution rule

assertions goals |
F(P,)
G(P))

F(true)d and G(false)d |

-the GA -resolution rule

assertions goals

F(P,)
G(P5)

| | F(true)d and (not G(false)0)

17

the A C-resolution rule

assertions goals

F(P)
G(P,)

(not F(true)8) and G(false)0

where P,P, and 8 satisfy the same condition as for the AA-resolution rule.

Up to now, we have ignored the output expressions of the assertions and goals.

However, if at least one of the sentences to which a resolution rule is applied has a

corresponding output expression, the resolvent will also have an output expression. If

only one of the sentences has an output expression, say ¢, then the resolvent will have

the output expression t@. On the other hand, if the two sentences F(P,) and G(P5,) have

output expressions ¢; and ¢,, respectively, the resolvent will have the output expression

ifPO then t,0 else t,0.

The justification for constructing this conditional as an output expression is as follows;

we consider only the GG case: Suppose the goal

F(true)d and G(false)0

has been obtained by GG-iesolution from two goals F(P;) and G(P,). We would like to

show that if this goal is true, the conditional output expression satisfies the desired

specification. We assume that the resolvent is true; therefore both F(true)d and G(false)0

are true. In the case that P,8 is true, we have that F(P,)8 is identical to F(true)d, and

therefore is true. Consequently, the corresponding instance t;0 of the output expression ¢,

satisfies the specification of the desired program. In the other case, in which P,0 is false,

P,0 is false, and the same reasoning allows us to conclude that ¢,0 satisfies the

specification of the desired program. In either case, we can conclude that the conditional

if P 8 then t 0 else t,0

satisfies the desired specification. By duality, the same output expression can be derived

for AA-resolution, GA-resolution, and AG-resolution,

| "E—

18

For example, let u.-v denote the operation of inserting u before the first element of the

list v, andsuppose we have the goal

and we have the assertion

| head(u+v) = u

with no output expression; then by GA-resolution, applying the substitution

O=[uea;zvaw]

and eliminating the subsentence

head(a+v)= a,

we obtain the new goal

(true and tail(asv)=b) and av

(not false)

which can be reduced to

by application of the appropriate transformation rules. Note that we have applied the

substitution [u~a; z«a+w] to the original output expression z, obtaining the new output

expression a*v. Therefore, if we can find v such that taillav) = b, the corresponding

instance of a+«w will satisfy the desired specification.

Another example: suppose we have derived the two goals

19

max(tail(l)) 2 head(l) max(tail(l))

and tail(l) = []

not{ max(tail(l)) I’ head(l))| head(l)
and tail(l) =[]

Then by GG-resolution, eliminating the subsentence max(tail(l))2 head(l), we can derive the

new goal

(true ant-1 tail(l) =[)) and if max(tail{l)) > head(l)

(not(false) and tail(l)= []) then max(tail{l))
else head(!)

which can be reduced to

tail(l) =[] if max(tail(l))2 head(l)
then max(tail(l))

else head(l)

—

20

THE POLARITY STRATEGY

Not all applications of the resolution rules will produce valuable conclusions. For

example, suppose we are given the goal

goals

Plc, x) and Xx, a)

and the assertion

assertions

if P(y, d) then Q(b, y)

Then if we apply GA-resolution, eliminating (b, a), we can obtain the resolvent

(P(c,b) and true) and not(if P(a,d) then false),

which reduces to the goal

| P(c, b) and P(a, d) | |

However, we can also apply GA-resolution and eliminate P(c,d), yielding the resolvent

) (true and (Xd, a)) and not(if false then Q(b,c)),

which reduces to the trivial goal

I ER

Finally, we can also apply AG-resolution to the same assertion and goal in two different

ways, eliminating P(c,d) and eliminating Q(b, a); both of these applications lead to the same

trivial goal false.

21

A polarity strategy adapted from Murray [1978] restricts the resolution rules to prevent

many such fruitless applications.

We first assign a polarity (either positive (+) or negative (-) or both) to every

subsentence of a given sequent, as follows:

@® each goal is positive

© cach assertion is negative

© if a subsentence S has form "not a", then its componenta has polarity opposite to S

© if a subsentence S has form "aand 8," "a or 8", "for all x, a", or "for some x, 3," then its

components a and 8 have the same polarity asS

© if a subsentence S has form "ifa then £5", then 8 has the same polarity as S, but a has

the opposite polarity.

For example, the above goal and assertion are annotated with the polarity of each

subsentence, as follows:

| assertions goals | output |

(if P(y,d)* then Q(b,y)7)”
(Plc, x)t and Q(x,a)*)*

The four resolution rules we have presented replace certain subsentences by rue, and

others by false. The polarity strategy, then, permits a subsentence to be replaced by true

only if it has at least one positive occurrence, and by false only if has at least one

negative occurrence. For example, we are permitted to apply GA-resolution to the above

goal and assertion, eliminating Q{b,1), because Q(x, a), which is replaced by true, occurs

positively in the goal, and Q(b,9), which is replaced by false, occurs negatively in the

assertion. On the other hand, we are not permitted to appiy GA-resolution to eliminate

P(c,d), because P(y,d), which is replaced by false, only occurs positively in the assertion.
Similarly, we are not permitted to apply AG-resolution between this assertion and goal,

whether we eliminate P{c,d) or 9g(b, a). Indeed, the only application of resolution permitted

by the polarity strategy is the one that led to a nontrivial conclusion. :

No

22

The deductive system we have presented so far, including the splitting rules, the

resolution rules, and an appropriate set of logical transformation rules, constitutes a

complete system for first-order logic, in the sense that a derivation exists for every valid

sentence. (Actually, only the resolution rules and some of the logical transformation rules

are strictly necessary.) The above polarity strategy does not interfere with the

completeness of the system.

23

MATHEMATICAL INDUCTION AND THE FORMATION OF RECURSIVE CALLS

Mathematical induction is of special importance for deductive systems intended for

program synthesis, because it is only by the application of some form of the induction

principle that recursive calls or iterative loops are introduced into the program being

constructed. The induction rule we employ is a version of the principle of mathematical

induction over a well-founded set, known in the computer science literature as "structural

induction.”

We may describe this principle as follows: In attempting to prove that a sentence of

form F(n) holds for every element a of some well-founded set, we may assume inductively

that the sentence holds for all u that are strictly less than a in the well-founded ordering

<. Thus, in trying to prove F(a), the well-founded induction principle allows us to assume

the induction hypothesis

Jor allu,if u<athen F(u).

In the case that the well-founded set is the nonnegative integers under the usual <

ordering, well-founded induction reduces to the familiar complete induction principle: to

prove that F(n) holds for every nonnegative integer n, we may assume inductively that

the sentence F(u) holds for all nonnegative integers u such that u <n.

In our inference system, the principle of well-founded induction is represented as a

deduction rule (rather than, say, an axiom schema). We present only a special case of
this rule here.

Suppose we are constructing a program whose specification Is of form

fla) <= find 2 such that

- for somey, Ria, y, 2)
where P(a),

Then our initial sequent is

Pa)

Ra, y, 2)

24

Then we can always add to our sequent a new assertion, the induction hypothesis

ifu<a
then if Pu)

then R(u, gu), fu)

Here, f denotes the program we are trying to construct, and gis a new Skoiem function

corresponding to the variable 3. The well-founded set and the particular well-founded

ordering < to be employed in the proof have not yet been determined.

Let us paraphrase: We are attempting to construct a program f such that, for an

arbitrary input a satisfying the input condition P(a), the output fla) will satisfy the output

condition R(a,y, fla), for some y; or, equivalently, R(a, g(a), fla)). By the well-founded

induction principle, we can assume inductively that for every u less than a in some well-

founded ordering such that the input condition P(x) holds, the output flu) will satisfy the
same output condition R(u, g(u), flu)).

in general, we could introduce an induction hypothesis corresponding to any subset of

the assertions or goals in our sequent, not just the initial assertion and goal; most of these

induction hypotheses would not be relevant to the final proof, and the proliferation of new

assertions would obstruct our efforts to find a proof. Therefore, we employ the following

recurrence strategy for determining when to introduce an induction hypothesis.

Let us restrict our attention to the case where the induction hypothesis is derived from

the initial assertion and goal. Suppose that (Xa,y, z) is some subsentence of the initial
goal; then that goal may be written

- R(Xa, 9, 2).

Suppose further that at some point in the derivation an assertion or goal of form

SNe, yy 2")

is developed, where ¢ is an arbitrary term and 4’ and 2” are distinct variables. In other

words, the newly developed assertion or goal has a subsentence ¢t,y",z’) that is a

precise instance of a subsentence Qe, y,z) of the initial goal. This recurrence motivates
us to add the induction hypothesis

ree

26

ifu<a
then if P(u)

then R(Qu, glu), fu).

The rationale for introducing the induction hypothesis at this point is that now we can

perform resolution between the inductionhypothesis and the newly developed assertion or

goal S(QNz, 9’, r’)), eliminating the subexpression (Xt, g(t), f{t)).in fact, we do not need

to introduce the induction hypothesis unless the original subexpression (Xa, y,2) and the

recurrrent subexpression Q(t,9", 2’) have the same polarity, either both positive or both

negative. For the subexpression (Xu, g{u), f{lu)) in the inductive assertion always has

polarity opposite to the subexpression (a, ¥,2) of the initial goal; and the induction
hypothesis cannot be resolved against the newiy developed assertion or goal unless the

eliminated subexpressions Qu, g(u), fiu)) and Q(t,y’, 2’) have opposite polarity, by the
polarity strategy for resolution.

Let us look at an example. Suppose we are constructing a program rem(i,j) to compute

the remainder of dividing a nonnegative integer i by a positive integer j; the specification

may be expressed as

rem(i,j) <= find z such that
for some y,

i=yj+2zand0<zand z <j
where 0<i and 0< §.

(Note that, for simplicity, we have omitted type requirements such as integer(i).) Our initial

sequent is then

0<iandO <j
i=yj+zand0<zand z <§ 2

Here, the inputs 1 and j are constants, for which we can make no substitution; , and the

output z are variables.

Assume that during the course of the derivation we develop the goal

—

26

This goal is a precise instance of the initial goal

i=yj+zand0c zand z <j

obtained by replacing { by i-j. Therefore, taking (i, j, 9, 2) to be the initial goal itself, we
add as a new assertion the induction hypothesis

if (uy, up) <i, 4)
then if 0 <u, and 0 < u,

then uy = guy, up)up + rem(uy, up)
and 0 < rem(u,, uy) and rem(uy, us) < Usp

Here, g is a new Skolem function corresponding to the variable 9, and < is an arbitrary well-

founded ordering. Note that < is to be defined on pairs because the desired program f has

a pair of inputs. -~

We can now apply GA-resolution between the goal

and the induction hypothesis; the unifying substitution 8 is

[ue ij; upejfiy egli-j, j); zeremi-j, j) 1.

The new goal is

true and rem(i-j, f)
not (if (i-j, j)<{i,3)

then if 0<i-jand 0<j

then false)

which reduces to

(i-j,)<(i,j) and rem(i-f, jf)
O<i—jand 0 <

27

Note that the recursive call rem(i-j, j) has been introduced into the output entry.

The particular well-founded ordering < to be employed in the proof has not yet been

determined. To choose the ordering requires special transformation rules, which describe

khown well-founded orderings and ways of combining them. In this case, the ordering < Is

chosen to be the < ordering on the first component of the pairs, by application of the

transformation rule

(uy, Us) <N1 (vy, vs) => [rue if u; <u and 0 SU and 0 Uy.

A new goal

i-j <i and 0 < i-j and 0 £ i and rem(i—j, i)
true and 0 < i-j and 0 < §

is produced; this goal ultimately reduces to

In other words, in the case that j < I, the output rem(i-f, 7) satisfies the desired program's
specification.

In a later section we will give the full derivation of the related program that finds the

integer quotient of two integers.

. We will hot discuss here the more general case, where a newly developed assertion or

goal has a subsentence that is an instance of a subsentence not of the initial goal, but of

some intermediate goal or assertion; this situation accounts for the introduction of

"auxiliary procedures" to he called by the program under construction. We will also not

discuss the case where the new subsentence is not a precise instance of the earlier

subsentence, but where both are instances of a somewhat more general sentence.

Some early efforts toward incorporating mathematical induction in a resolution

framework were made by J. L. Darlington [1968]. His system treated the induction

principle as a second-order axiom schema rather than as a deduction rule; it had a limited

ability to perform second-order unifications.

VY

28

A COMPLETE EXAMPLE: Finding the Quotient of Two Integers

in this section, we present a complete example that exploits most of the features of

the cieductive synthesis approach. Our task is to construct a program div(i,§) for finding

the integer quotient of dividing a nonnegative integer i by a positive integer j. Our

specification is expressed as

divi,j) <= find y such that
for some z,
i=9j+zand0 <zandz <j

where 0 $i and 0 < §.

(For simplicity, we again omit type conditions, such as integer(i), from this discussion). Our

initial sequent is therefore

1.0siand 0 <j

2.1 =9yf+zand 0sz y
and z < §

(Note that we are enumerating the assertions and goals.)

in presenting the derivation we will sometimes apply simple logical and algebraic

transformation rules without mentioning them explicitly. We assume that our background

knowledge includes the two assertions

] 3.u=u

4d. u<vorv<u

* Applying the andsplit rule to assertion 1 yields the new assertions

5.0 £1

6.0 <j

Assume we have the following transformation rules that define integer multiplication:

29

Ow = 0
(u+l)v = uw to.

Applying the first of these rules to the subexpression y+ in goal 2 yields

7.i=0+zand0<szand z <j 0

The unifying substitution in deriving goal 7 is

e =[y«0;vejl;

applying this substitution to the output entry produced the new output O.

Applying the numerical transformation rule

O+v=>0v

yields

| | 8.i=zand 0 <szandz<] | 0

The GA-resolution rule can now be appiied between goal 8 and the equality assertion 3,

u=u. The unifying substitution is

6 = [uei; zi]

and the eliminated subexpression is i =i¢; we obtain

| | 9.0<iandi <j | 0 |

By applying GA-resolution again, against assertion 5, 0 <i, we obtain

IH EEER

 —

30

in other words, we have found that in the case that i <j, the output 0 will satisfy the

specification for the quotient program.

Let us return our attention to the initial goal 2,

i=9j+zand0s zand z <j.

Recall that we have a second transformation rule

(u+l)v = uw +v

for the multiplication function. Applying this rule to goal 2 yields

| | N.i=yfrj+zandO0szandz<j y+ |

where 9; is a new variable. Here, the unifying substitution is

O=[yeyi+l; wey vejl

applying this substitution to the output entry z produced the new output y;+1.

The transformation rule

U=v+w= UV = W

applied to goal 11 yields

Goal 12 is a precise instance of the initial goal 2,

i =9yj+2zand05 zandz <j,

obtained by replacing the input i by i-j. (Again, the replacement of the dummy variable ¥»

by ¥; is not significant.) Therefore, the following induction hypothesis is formed:

Fee

31

18. if (u K ip) < GQ, j)
then if 0 < uy and 0 < uy

then uy =div(u;, ulus t hu, , up) and
0 S Aug, us) and Aug, Up) < Up

Here, fis a Skolem function corresponding to the variable z, and < is an arbitrary weli-

founded ordering.

By applying GA-resolution between goal 12 and the induction hypothesis, we obtain the

goal

14. true and div(i-j, j)t 1

not (if (i), j) < (i, j)

then if0 <i—jand 0 < §
then false)

. Here, the unifying substitution is

€ =lueijugejye divi, j); ze hij, j)]

and the eliminated subexpression is

i-j =div(i-f,j)j + hij,J) and 0 s ki-j,J) and hii-jf,j) < j.

Note that the substitution to the variable y, has caused the output entry y;+1 to be

_ changed to div(i-f,j>+ 1. The use of the induction hypothesis has introciuced the recursive
call div(i—j,j) into the output.

Goal 14 reduces to

15. (i-j, j) < (i, j) and 0 £ i-j and 0 <j | div(i-j, j)+ 1

The particular ordering < has not yet been determined; however, it is chosen to be the <

ordering on the first component of the pairs, by application of the transformation rule

(uy, up) <Nj (vy, vp) = true if uy<v, and 0 Su; and 0 Sv,.

Fo

32

A new goal is produced:

16.i-j <i and 0 gs i~jand 0 si and div(i-f,P+ 1
O<i-jand 0 <j

Note that the conditions of the transformation rule caused new conjuncts to be added to

the goal.

By application of algebraic and logical transformation rules, and GA-resolution with the

assertion 5, 0 <i, and assertion 6, 0 <j, goal 16 is reduced to

In other words, we have learned that in the case thatj <i, the output div(i-j, j)+1 satisfies

the specification of the div program. On the other hand, in deriving goal 10 we learned

that in the case that i <f, 0 is a satisfactory output. Assuming we have the assertion 4

USvorv<u,

we can obtain the goal

18. not(i < j) div(i-j, + I

by GA-resolution.

The final goal

19. true ifi<j
then 0

else div(i—j,j)+ 1

can then be obtained by GG-resolution between goals 10 and 18. The conditional

expression has been formed because both goals have a corresponding output entry.

Because we have developed the goal true and a corresponding primitive output entry, the

derivation is complete. The final program

 E—

33

divi,j) se i f i<j
thenO

else div(i—j, j)+ 1

is obtained directly from the final output entry.

Note that the same proof could be used to derive a remainder program as well as a

quotient program. The specification of the remainder program

rem(i, j)<= find 2 such that
for some,

i=yfj+zand0<zandz<j
where 0 siandi <j

yields the same initial assertion and goal as the quotient program, except that the initial

output entry is z instead of y. The succeeding output entries are changed accordingly.

The final remainder program is then

rem(i, Je if i<j
then i

else rem(i-j,{).

We used steps from the derivation of this program to illustrate the formation of recursive

calls in the section on mathematical induction.

—

34

ANOTHER COMPLETE EXAMPLE: Finding the Last Element of a List

In this example, we apply the same techniques to derive a list-processing program. Our

discussion here will be a bit more brisk than in the preceding section.

Our task is to construct a program last(l) to find the last element of a nonempty list /.

Our specification is

last(l) <= find z such that

for some 9,! = y<>[2]
where [=].

Recall that u<>v is the result of appending two lists u and v, [w] is the list whose sole

element is w, and [] denotes the empty list. Again, we omit type conditions, such as

islist(!), from our discussion.

Our initial sequent-is

4.1 =[]

2. [= y<>(z] 2

Let us assume that our subject knowledge includes the assertion

| 3.Uu=u | | |

and the transformation rules

[Jou = u

(uww)<>w = u(vow)

w=uw = we=[]and head(w) = u and tail(w) =v

[u] = ue]

tail(u) <Q u 3 true ifu =[]

 —

35

The first two rules constitute the definition of the append function <>; the third expresses

the uniqueness of the decomposition of a list into a head and a tail; the fourth provides the

meaning of the abbreviation [©]; and the final rule defines a welt-founded ordering <_ over

the lists.

The first transformation rule

[J<>u = u

can be applied to the initial goat 2,

l= y<>[z];

the unifying substitution is

0 =[y«[li-u~[z]]

and the resulting goal is

Applying the two rules

[ul = wu]

and

; w=uv=>weul[] and head(w) = u and tail(w) =v

yields

5.1 #[] and head(l) =z 2
and tail(l) ={]

Applying GA-resolution between goat 5 and assertion 1,{=[], produces the goal

YL

36

Applying GA-resolution again, between goat 6 and assertion 3, u = u, produces the goat

| 7. tailll) = (] head(l) |

Here, the unifying substitution is

e=[2« head(l); u + head(l)]

| and the eliminated subexpression is head!) = head(l). Note that the substitution has
caused the output entry z to be replaced by head(l). We have learned that in the case

where tail(l) is empty the output Ae¢ad(l) satisfies the specification for last.

Returning to the initial goal 2,

[=y<>[z],--

we can apply the second transformation rule

(uv)<>w = u(voow)

to the subexpression y<>[z]. The unifying substitution is

0 = [ueyiveyyiwelzliy «y9)

and the resulting goat is

Applying the transformation rule

wsuw=w=[] and head(w) = u and taillw)= v

yields

| | 9.1 #[] and head(i) = 9, and tail(l) = yp<>[2] | 4

F

37

Next, applying GA-resolution between goal 9 and assertion 1,{=[], and then between the

resulting goal and assertion 3, u = u, we obtain

Note that goal 10 is a precise instance of our initial goat 2, | =9<>[2], obtained by

replacing {¢ by tail(l); therefore, the following induction hypothesis is formed:

11.if u<l
then ifu » [1

then u = glu)<>[last(u)]

Here, < is an arbitrary well-founded ordering and g is a Skolem function corresponding to

the variable y.

We can now apply GA-resolution between goal 10 and the induction hypothesis,

. assertion 1 1. The unifying substitution is

O=1 ue tail(t); y,« gltailll));z « last{tail(l))]

and the eliminated subexpression is

tail(l) = g(tail{l)) <> [last(tail(l))];

we obtain

12.true and last(tail(l))

not(if tail(l)<!
then if tail(l) =(]

then false)

which reduces to

FE

38

Note that the unifying substitution caused the introduction of the recursive call last(tail(l))

in the output entry.

The rule

taillu) {u=> true if u=]

suggests taking the well-founded ordering < to be <(; we derive

| | 14. l= Cl and tail(i) =[] | last(tail(l)) |

which reduces to

| | 15. tail(l) =|] | last(tail(l)) |

after GA-resoiuion with assertion 1, /=[].

We have deduced that in the case where tail(l) =[], the output last(tail(l)) satisfies the

specification; on the other hand, from goal 7 we know that in the case where tail(l)=[],

head(l) is a satisfactory output. Combining these two goals by GG-resolution, we obtain

16. true if tail(l) =}
then head(l)

else last(tail(l))

Because we have derived the goal true with a corresponding primitive output entry, our

derivation is complete. The final program, extracted from the final output entry, is

last(l) <= if tail(l) = []
then head(l)
else last(tail(l)).

Note that the same proof could be used to derive a program front(!)to remove the last

element from a nonempty list {. The specification for front is

front(l)<e find y such that
for some 2,1 = y<>[z]

Fe

39

where Im [].

This specification yields the same initial assertion and goal as the last program, except

that the initial output entry is ¥% instead of z. The succeeding output entries are changed

accordingly, and the final program derived is

front(i) <= if tail(l) =]
then []

else head(l)front(tail(l)).

Ee

40

APPLICATION TO PROGRAM TRANSFORMATION

Our program synthesis techniques can be applied as well to the transformation of

programs. in this application, we &re given a clear and concise program for a certain task,

which may be inefficient; we derive a more efficient equivalent program, which may be

neither clear nor concise (see Burstall and Darlington [1877]).

To transform a given program, we regard the program itself as the specification of a

new program. For example, suppose we are given the program

rev(l) <= if { =]
then []

else rev(tail(l)) <> [head(/)]
where islist(l)

for reversing the order of the elements of alist {. This program is inefficient, for it
requires many recursive calls to rev andto the append program <>. The specification for

the transformed program revnew(!) is then

revnew(l)<= find z such that z= rev(l)
where islist(l).

The initial sequent is thus

| assertions | goals | output |

1. islist(!)

2.2 =rev(l) 4

We admit the new transformation rules

reou) = [1 ifu=1[]

and

rev(u) 3 rev(tail(u)) <> [(head(u)] if u [1];

these rules are obtained directly from the given program.

in such a derivation, the given program rev is not regarded as a primitive construct of

FP

41

the target language. For efficiency purposes, we may also choose to regard the append

function <> as nonprimitive.

Applying our synthesis techniques, we can obtain the following new program for

reversing a list:

revnew(l) <= revnew2(!, [1),

where

revnew2(l, m) <= if | = []
thenm

else revnew2(tail(l), head(l)sm).

The derivation involves the formation of auxiliary procedures and the use of generalization,

which we do not discuss in this paper.

The new program is more efficient than the given program reul); it is essentially

iterative and does not employ the expensive <> operation. In general, however, unless we

introduce additional efficiency criteria, we cannot ensure that the program we obtain is

. more efficient than the given program.

FE

42

COMPARISON WITH THE PURE TRANSFORMATION-RULE APPROACH

Recent work (e.g., Manna and Waldinger [1877], as well as Burstall and Darlington

[1977]) does not regard program synthesis as a theorem-proving task, but instead adopts

the basic approach of applying transformation rules directly to the given specification.

What advantage do we obtain by shifting to a theorem-proving approach, when that

approach has already been attempted and abandoned?

The structure we outline here is considerably simpler than, say, our implemented

synthesis system DEDALUS. That system required special mechanisms for the formation of

conditional expressions and recursive calls, and for the satisfaction of "conjunctive goals”

(of form "find z such that R(z) and Rxz)"). It relied on a backtracking control structure,

that required it to explore one goal completely before attention could be passed to

another goal. In the present system these constructs are handled as a natural outgrowth

of the theorem-proving process. In addition, the foundation is laid for the application of

more sophisticated search strategies, in which attention is passed back and forth freely

between several competing assertions and goals.

Furthermore, the task of program synthesis always involves a theorem-proving

. component, which is needed, say, to prove the termination of the program being

constructed, or to establish the input condition for recursive calls. (The Burstail-Darlington

system is interactive and relies on the user to prove these theorems; DEDALUS

incorporates a separate theorem prover). If we retain the artificial distinction between

program synthesis and theorem proving, each component must duplicate the efforts of the

other. The mechanism for forming recursive calls will be separate from the induction

principle; the facility for handling specifications of the form

find 2 such that R (2) and Ry(2)

"will be distinct from the facility for proving theorems of form

for Some 2, Ri(2) and Rx2),

and so forth. By adopting a theorem-proving approach, we can unify these two

components.

The two complete examples in this paper have been chosen to illustrate the

advantages of the new approach; both were beyond the capabilities of the DEDALUS

system.

Ee

43

Theorem proving was abandoned as an approach to program synthesis when the

development of sufficiently powerful automatic theorem provers appeared to flounder.

However, theorem provers have been exhibiting a steady increase in their effectiveness,

and program synthesis is one of the most natural applications of these systems.

ACKNOWLEDGMENTS: We would like to thank John Darlington, Chris Goad, Jim King, Neil

Murray, Nils Nilsson, and Earl Sacerdoti for valuable discussions and comments. Thanks are

due also to Patte Wood for aid in the preparation of this manuscript.

REFERENCES:

Bledsoe,W. W,[1977], Non-resolution theorem proving, Artificial Intelligence Journal, Vol.

9, pp- 1-36.~

Boyer,R. S. and J S, Moore [Jan, 1875], Proving theorems about LISP functions, JACM, Vol.

22, pp. 129-144,

Burstall,R. M. and J. Darlington [Jan. 1877], A transformation system for developing

recursive programs, JACM, Vol. 24, No. 1, pp. 44-67.

Darlington, J. L, [1968], Automatic theorem proving with equality substitutions and mathematical
induction, Machine intelligence 3, Edinburgh, Scotland, pp.113-127.

Green, C. C, [May 19689], Application of theorem proving to problem solving, Proceedings of

the International Joint Conference on Artificial Intelligence, Washington DC, pp.

21 Q-239,

Hewitt, C. [Apr.1971], Description and theoretical analysis (using schemata) of PLANNER: A

language for proving theorems and manipulating models in a robot, Ph.D. thesis, MIT,

Cambridge, MA.

Manna, Z. and R. Waldinget [Nov. 1977], Synthesis: dreams = programs, Technical Report,

Computer Science Dept., Stanford University, Stanford, CA and Artificial

Intelligence Center, SRI International, Menlo Park, CA.

Murray, N. [1978], A proof procedure for non-clausal first-order logic, Technical Report,

Syracuse University, Syracuse, NY.

 —

44

Nelson, G. and D. C. Oppen [Jan, 1978], A simplifier based on efficient decision algorithms,

Proceedings of the Fifth ACM Symposium on Principles of Programming Languages,

Tuscon, AZ, pp- 141-1 50.

Nilsson,N.J.[1871], Problem-solving methods in artificial intelligence, McGraw-Hill Book Co.,

New York, NY [pp. 165-168].

Nilsson,N. J, [Aug. 1977],A production system for automatic deduction, Technical Report, SRI

International, Menlo Park, CA.

Robinson, J. A. [Jan, 1968],A machine-oriented logic based on the resolution principle, JACM,

Vol. 12, No. 1, pp. 23-41.

Waldinger, R.J. and R.C.T. Lee [May 1968], PROW: a step toward automatic program

writing, Proceedings of the International Joint Conference on Artificial

Intelligence, Washington, DC, pp. 241-262.

Wilkins, D. [1973], QUEST--a non-clausal theorem proving system, M.Sc. thesis, University

of Essex, England,

