STAN-G-78-665

SCALD: Structured Computer-Aided Logic Design

T.M. McWilliams and L.C. Widdoes, Jr.

Technical Report No. 152

March 1978

Digital Systems Laboratory
Departments of Electrical Engineering and Computer Science

Stanford University
Stanford, California 94305

SCALD: Structured Computer-Aided Logic Design

T. M. McWilliams and L. C. Widdoes,Jdr.

Technical Report No. 152

March 1978

Digital Systems Laboratory
Departments of Electrical Engineering and Computer Science
Stanford University
Stanford, California 94305

ABSTRACT

SCALD, a graphics-based hierarchical digital logic design system, is
described and an example of its use is given. SCALD provides a total
computer-aided design environment which inputs a high-level description
of a digital system, and produces output for computer-aided manufacture
of the system. SCALD has been used in the design of an operational, 15-
MIPS, 5500-chip ECL-10k processor.

INDEX TERMS: design automation, computer-aided design, Stanford-1
computer, structured Togic design, SCALD system

TABLE OF CONTENTS i

Section Page
I. Introduction . . . e . 1
2. System Overview . . o 5
3. Graphics Editor . . e . 7
4. Macro Language . . e . 9
4.1 Signal Expressions e . 9
4.2 Signal Types . . Coe e . 10
4.3 Versions . . . Ce e . 11
4.4 High-Low Drivers e . I
4.5 Macro Definition . e . 11
4.6 Macro Call. . L . 12
4.7 Terminal Component e . 12
4.8 Macro Expansion . . e . 13
4.9 Board Layout and Partitioning . Coe e . 13
4.10 Text Form of Macro Language . Ce e . 14
5. Output Listings Generated . . . Coe e 16
6. Conclusions Coe e 19
7. Acknowledgements. Ce e 19
8. References Ce e . 20
Appendix I: Standard Library Macros . e e . 21

Appendix 2: Syntax of Macro and Layout Languages. - - 33

1. Introduction

SCALD (Structured Computer-Aided Logic Design) is a graphics-based design system which
allows digital systems to be designed in a hierarchical manner. SCALD’s main goal is to reduce
the amount of time required to design large digital systems, by allowing the designer to express
his design on the same level that he thinks about it, freeing him from the task of actually
drawing out all of the logic and creating a wire list. Designs expressed in this high-level
notation become much more understandable, both for designers and for maintenance
engineers.

SCALD’s second important goal is to allow designs to be recompiled rapidly when new circuits
become available, allowing designs to repeatedly take maximal advantage of the exponential
rates of advance currently characterizing the semiconductor industry. This goal is achieved by
expressing a design in terms of high-level modules, which in the future may be implemented as
single 1Cs. In practice, considerable work may still be required to update a design to
incorporate recent technology advances, but the required effort is likely to be much less than if
the design were not expressed hierarchically.

SCALD has been used to design a very high-performance processor, the S-1, shown in Figure
1-1, .whichi s _a 15 MIPS, 5500-chip ECL-10K machine. This design experience
has been very favorable; the entire processor was designed and implemented with two man-years
of effort.

T o provide a vehicle for the presentation of SCALD, the design of a very simple processor
has been carried through the Design System. The top level of this design is represented in Figure
1-2 and Figure1.-3 The processor consists of a register file of 36-bits
by 16 words, a 4-input, 36-bit muitiplexer, a 36-bit arithmetic-logic function generator, and a 36-
bit accumulator. The microsequencer shown in Figure 1.-3 controls the simple
processor; it consists of an 8-bit counter and a control store of 23 bits by 256 words.

Introduction

Figure 1-1
S- 1 Processor

Introduction

OIORJ 10$$001q 9[dwrg
g~ 1 am3ig

w WSO D e I e
" 31N 93y

d
>
)

{

B O

0180
BS Y sss3o0ud

W <E@>30v 934

NOIS 1NdINO
2030
i
wona o 93y 35
aa >0 933 %00 W <i‘e>r3@ 135 9
4 \u\:_
- 1 8
WIS 1naino @>1ndino D3 Y v L
e yee) L oM“. 1 [72006 134 3 oet
et : 118 9€
W < 0°0
v
0 /
- £
TR T" TH ¢
W0 > om
as
/
I

Introduction

OIORI| [OTUOD) JOSSAI0I]
¢-T eIm3Lg

™ 7 3n s3 w07 1x3

W <22 2>ALSNL 0D

13834 1X3

W/ (CF@O>ULSNI QDI

9?1001
MDD r18 8

001D

W o <Li@>H0Y 38

He>BS Y
<3:@>TUd MW
T AT O
(LI ¥ 939

P ik B]

229>yl 0Jo

2. System Overview

SCALD takes as input a high-level description of a digital system, and produces output for the
computer-aided manufacture of the system on wire wrap boards. Figure 2-~1 shows
the three main modules in SCALD. Input to the system is through the Stanford University
Drawing System (SUDS) Graphics Editor [Helliwell 1972}, which allows drawings to be entered
directly on a graphics terminal.

Ail parts of SCALD except the SUDS Graphics Editor are written in PASCAL, and are
therefore highly transportable. The Macro Expander (M) reads the output of SUDS, along with
the hand-generated layout specification, expands the drawings into a connection list, and
generates a number of listings to aid the designer, The Wire Lister (W) inputs the connection list,
a chip definition file, and an old board state, and produces a wrap/unwrap list, a run list,
describing each run (electrically connected net) in detail, a new board state, and a number of
summaries and statistics. Changes can be made to a constructed system by editing the source
drawings and then running the entire SCALD System again; the Wire Lister then reads the old
board state, which specifies how the system was constructed before the change, and outputs a new
board state and a wrap/unwrap list, the execution of which updates the system to correspond to
the new drawings.

tlodule
Graphics Editor

Macro Expander

Wire Lister

System Overview

Input
Keyboard

Text description of drawings
Hand layout

Connection list
Chip definitions
Old board state

Figure 2.- 1

output
Text description of drawings

ttacro call structure
Macro definition listing
Signal cross reference
Connection list

Wrap/unwrap list

Run list

New board state
Summaries and statistics

Main Modules in SCALD

3. Graphics Editor

The hierarchical logic diagrams are entered into the SCALD system using the Stanford
University Drawing System (SUDS) Graphics Editor. Examples of logic diagrams drawn with
SUDS are shown in Figure 1.-2 and Figure 1.-3. The SUDS system is an interactive graphics
editor, written in assembly language, which -runs on a PDP-10 equipped with a refreshed
graphics terminal. The program is controlled with keyboard commands, and the cursor is
controlled either by a light pen, or by the keyboard.

The first step in using the SCALD Design System is to create a library of common body
definitions, such as those shown in Figure 3-1. The user has complete control over
the appearance of a body. Once a library of bodies is created, drawings can use those bodies. A
body is positioned in a drawing by giving commands at the keyboard which place it at the
location specified by the cursor. After bodies have been thus positioned, commands are given
which connect the bodies with lines, and place text on the lines. In general, the user has complete
control of the positioning and intercorinection of bodies in a drawing. SUDS allows bused-through
lines, that is, lines which connect to a body and then pass invisibly under the body (horizontally
or vertically) to exit on another side, and this capability was found to be extremely useful in
decreasing the clutter in drawings. SUDS includes many commands which allow bodies and lines
to be easily moved, and has a macro facility which allows repetitive structures to be drawn very
quickly. Hard copy of drawings is available from either a Xerox Graphic Printer or a plotter.

Dominant resource utilization by the SUDS Graphics Editor during the design of the S-I
amounted to 30 hours of KL-10 compute time, and 1000 hours of graphics-terminal time spread
over a period of one year.

The SUDS Graphics Editor outputs the drawings represented in a text Macro Language. This
text Macro Language serves as input to the Macro Expander. It would be possible to use a
different Graphics Editor to supply input to the SCALD Design System if another program were
written to translate the drawings into the text Macro Language.

Areiqry Apog
[='§ 93]

x \w

NI S

5 é_

x

Y 8 SANIH sNd
D2 s u

64101QIY OO AN _ x
94 294 20 19d o2a |l
sctom
L
35 309 e
SR)) 118 9¢
. x
. x
JOR] A
1 T i
e a0 o z
v
13
[
&S arry 02 °
- .
T x ’
1 {Q L3R o) [oXR e} LoIRe) o) SO OO foXe)
L) 3 a3 13 o3 t3 o3) 00 ¥ Do FEEE) \
300003 0T34 s
1SY4 118 @ L x t R x O x x N * * *
1 1 t L 1 I
OT¥JLSYL rees et 19101 2910t L e b oo Rl A
oot €1
2|
1oL

Graphics Editor

Xrwd 91
g

vioet oteel L AT
DAL 118 ¥ O1H10 118 ¥ A1D 118 v
bYY

1 tei@L I 1 9c19t 1
N393M oOR
a9t %

§
-
& ~ N M Y W 9 N

!
!

® - o ® + o 9N @O o

4. Macro Language

A design in SCALD consists of a set of macro definitions (macros), which are expanded, starting
from a distinguished top-level macro and continuing downward until no macro remains which
has a definition (ie., all remaining macros are available devices), to generate a wire list and all the
necessary associated documentation for the system being designed (the object machine). These
macro definitions are entered directly into the SCALD data base using the SUDS Graphics
Editor.

Macro calls within a macro definition are represented by appropriate bodies from the Body
Library, and may be passed various parameters, the values of which differ from call to call.
Connections between bodies are made with lines, which represent signal vectors and may be
named; identically named signals are implicitly connected. Signal vectors may be passed as
parameters to macros; the formal name of a signal-vector parameter passed to a macro is shown
on the macro body where the actual signal vector connects to the macro body.

A macro can be called one or more times from other macros, but cannot be called recursively,
since SCALD allows no conditional expansion. The ability to define once a function which is
used many times greatly reduces the overall design time for a large object machine; it reduces
redundancy and thereby facilitates verification and increases changeability.

The use of macros (rather than bodies representing available devices) in the definition of the data
path in an object machine results in a great reduction in the number of drawings required and in
the density of bodies on the drawings. The object machine’s non-repetitive (control) logic can be
then distributed throughout the data path, placing it near the logic it controls, thereby enhancing
the overall understandability of the logic.

On the macro level, SCALD does not distinguish between inputs and outputs of devices or
macros. It is not until after the macros are expanded that the SCALD System checks for runs
with an illegal number of inputs or outputs. In general, each run must have exactly one output,
unless permission is granted in the drawings (by the use of a Wire-Or Body) for multiple outputs.

‘4.1 Signal Expressions

SCALD allows signals to be grouped together to form a signal vector, represented by a single
(possibly named) line in the drawings. For example, the signal vector named "A<0:15>" represents

16 signals. The general notation for the name of a signal vector is "NAME«<I:J>", where NAME
is a string and I and J are integers; by convention, I is the high-order bit number, while J is
the low-order bit number. Signal vectors can be concatenated by writing a colon between their

“names. A signal vector can be replicated by suffixing its name with an asterisk and a number;

- for example, the expression "A<0:3>%3" is equivalent to the expression "A<0:3>:A <0:3>:A <0:3>".
Holes can be generated in a signal vector by use of the special signal "Z", a one-bit signal
which is never connected in the hardware; in the ECL-10K logic family used in the design of the
S-1 processor, an open input is a logic zero.

Figure 1.-2 contains an example of a complex signal expression: “EXT OUT<«9:35>: C OUT /M
%3 : Zx6" represents a 36-bit vector, where the high-order €7 bits are “EXT OUT<9:35>", the
next 3 bits are the local signal (see Section 4.2) "C OUT”, and the low-order 6 bits are
not connected.

SCALD also understands primitive merger bodies. Figure 1.-2 contains a two-merger and a three-

4.1 M acro Language 10

merger, which concatenate, respectively, two signal vectors and three signal vectors, forming larger
vectors. The two-merger is connected to the "1" input of the 4-input multiplexer, and the three-
merger is connected to the “M”, "$",and “CI” inputs of the “36 BIT ALU 10181". Mergers are
used where concatenation is needed, but preservation of the explicit connectivity of the drawing is
desired.

4.2 Signal Types

Signals in a macro definition can be of three types: parameters, locals, and globals. Subject to
limitations of scope, signals of the same name in any are implicitly connected throughout all macro
definitions.

A macro definition must always declare in a PARA METER declaration all of the signal
parameters that will be passed to it, as shown in Figure 1.-3. The parameter signals declared
must be the same as those shown in the body at the call site; they are checked for consistency.
Where a parameter signal is used, its name can optionally have the string "/P" following it at
each use, allowing the macro expander to check for consistency, and improving readability.
The scope of a parameter signal is the enclosing macro definition.

A signal name foll(;Wed by “/M" is a local signal; the scope of a local signal is the enclosing macro
definition.

Global signals are those which have no "/M" or "/P" suffix, and which are not contained in a
PA RA M ETER declaration. This syntax for specifying the type of global signals was found
through experimentation to be superior to the method of declaring all global signals, as all
variables are declared in ALGOL, first because signal names are commonly long, and also
because most signals are used infrequently, thus both the absolute and relative overhead involved
in maintaining the global declarations was found to be large. Undeclared global signals have
unlimited scope. The scope of global signals can be limited to a subtree in the dynamic call
structure by declaring them at the root of the desired subtree. In Figure 1.-2, the signal
“OUTPUT SIGN” is declared, and therefore its scope is limited to its containing macro and to all
macros below it in the dynamic call structure.

4.3 Macro Language 11

4.3 Versions

In SCALD, there is a difference between a logical and a physical signal. A physical signal is
simply a run in the object machine, but a logical signal is a set of physical signals (versions) that
essentially always have the same value. Signals in drawings are logical signals. For example,
the logical signal "REG CK BUF /M" in Figure 1.-2 is driven by a 10110 gate, which has
three identical outputs, thus three physical versions. Each output is a different physical signal;
loads will be distributed among the three outputs when the object machine is laid out.

4.4 High-Low Drivers

In the ECL logic families, many functions have both the true and complementary outputs
available. SCALD allows this functionality to be fully utilized. In the definition of a multiplexer
chip, for example, it is specified that the values of the select lines can be complemented without
affecting the function, if the inputs are permuted in a particular way. When a multiplexer chip is
laid out, it can be laid out in its reverse form, and SCALD will automatically search to see if there
is an unused complementary output on the gate driving the select line. If so, SCALD will
automatically utilize it, permuting the inputs to the multiplexer as specified. In Figure L-2, for
example, the “368.10174” macro can be laid out with 18 bits being driven by the true output of
the gate on its select line, and the other 18 bits being driven by the complementary output.

This manner of representing high-low drivers , and similarly, the manner of allocating physical
versions, helps to minimize the amount of information in the drawings which is not related to the
logical design, thus making the logical operation of the object machine more apparent, and places
the task of specifying which parts are driven high and which parts are driven low in the layout
phase of the design where it belongs, since this determination may depend heavily on positions of
chips.

4.5 Macro Definition

There are two basic types of macro definitions. The first consists of a complete definition, such as
the “SIMPLE PROCESSOR” macro. The second is called an “XB” (X-Bit) macro, which
consists of the definition of a single bit or bit-slice of a bit-wise symmetrical function, and
expands to a width given by a parameter in the macro call.

A macro definition may have formal signal parameters, through which are passed signal-vectors
from the call sites. All of the formal signal parameters of a macro must be explicitly declared in a
PARAMETER declaration, as shown in Figure 1.-3. These formal signal-vector parameter
. names must be the same as the signal names which are written on the macro body. The width of
. a signal-vector is shown in the PARAMETER declaration, and is checked on each call. All
signals with the same name within a given same scope, and all points connected together with a
line, are wired together. If more than one signal name is written on a line, then the signals are
synonyms, that is, all connections to each such signal will be wired together.

Macro definitions can consist of one or more pages, where a multiple-page macro has the same
macro title on each page.

4.6 Macro Language 12

4.6 Macro Call
A macro call consists of a body which has:

- An arbitrary shape.

Formal signal parameters for passing signal vectors to the macro definition.

A macro name.

- A label.

A size parameter.

A times parameter.

To enhance the understandability of the drawings, different calls of the same macro can have
different shapes. For example, it is common to have two shapes for a macro, corresponding to its
positive and negative logic forms.

The formal signal parameters of a macro are drawn around the edges of the macro body; each
consists of a text string and a point for lines to attach to it. If a parameter is an active low
sign al, then the body generally contains a diamond at the point at which the lines connect,
and the formal parameter in the definition consists of the formal parameter shown in the call,
with "L" appended to it, to indicate that it is an active low signal.

The macro name is a text string, which is normally placed in the middle of a macro shape; it
can be more than one line long, as shown in Figure 1.-2 (“36 BIT ALU 10181”). The macro
name connects the macro call with the appropriate macro definition.

The label is a text string, also normally placed in the middle of a macro shape. The label varies
from call to call for a given macro body; the label associated with each macro call must be unique
within the enclosing macro definition. The labels in Figure 1.-2 are "CTL", “RI”, "R2","R 3", “A”,
"M "G1", "G2" and "G 3”.

The size parameter is used only for calls on XB-type macro definitions; the value of this

parameter is of the form "nB", where "n" is an integer representing the number of bits in this
particular macro call. Special syntax in the XB-type macro definition allows SCALD to create
signal names which have bit numbers included in them.

. The times parameter has a value of the form "nx", where "n" represents an integer. If a macro
call has a times parameter of "nx", then the macro will be automatically called n times, using the
same values of all parameters during each call, making each label unique (by suffixing), and
making all version designations within the called macro unique (also by suffixing). This facility
is used for calling functions which must have large fanout without obscuring the logic at the call
site.

4.7 Terminal Component
A terminal component call consists of a body which has:

An arbitrary shape.

47 M acro Language 13

- Pin names for connecting signals.
- A component name.

- A label.
A terminal component corresponds to either all or part of a chip. It can have different shapes at
different call sites to enhance its understandability.

Signals connect to a terminal component only at pins, which have pin names which may be
different from the actual pin numbers on an IC.

The component name specifies the chip type.

The label is used to identify the component in the macro definition, and must be unique among
macro labels and terminal component labels within a macro definition.

4.8 Macro Expansion

The output of the macro expansion is a connection list., which shows all of the pins on terminal
components to which each signal connects. Each run on the list is given a unique name. A run
name is of the form “PATH-NAME :SIGNAL_NAME".

SIGNAL-NAME is the name used in the macro definition to refer to the signal, except that the
name generated for parameter signals is the name of the signal which was passed when the macro
was called. If two or more signals are synonyms, then the name of the one which is declared
higher in the call structure is used, and if multiple signals within the same level are synonyms,
then the one which comes first in the alphabet is used.

For a signal which is global throughout the entire system, PATH-NAME is “TOP”. For local
and global signals which are declared in a macro, PATH-NAME is created by concatenating, in
order, the label in each macro call (with periods between them) in the expansion from the top-
level macro down to the macro containing the signal of interest.

4.9 Board Layout and Partitioning

During the macro-expansion process, each terminal component generated is assigned a terminal
~ path name, which is generated by concatenating, in order, the labels of all the macro calls in the
. path down the expansion tree which generated the terminal component (separated by periods), as
~ well as the label on the terminal component. Since each label is unique within a macro definition,
all terminal path names are unique.

SCALD inputs a language which maps terminal path names to boards and to positions on boards.
A companion paper, The SCALD Physical Design Subsystem, describes in detail the language used
to construct the S-1 processor (which was manually laid-out). In general, the mapping function
can be specified either totally manually, fully automatically, or by some combination of manual
and automatic techniques.

4.10 Macro Language

4.10 Text Form of Macro Language

The output of the SUDS editor is a text form of the Macro Language, which is input to the

Macro Expander. The text form of the Simple Processor Macro is shown in Figure

4.10-1. The text Macro Language contains exactly the information in the drawings,

but omits information about position and ‘shape. For each macro definition, it consists of

declarations which give the file name and macro name, followed by PARAMETER, DECLARE,

and SYNONYM declarations. Each body in the macro definition then has an entry which gives
either the macro or terminal component name, the logical location label, and the actual signals

passed to each signal parameter. SCALD automatically creates signal names for unnamed signals;

each such name includes a percent sign to make it different from names input by the designer.

4.10 Macro Language 15

MNRME = SIMPLE PROCESSOR ;
FILE = .EXAM1 ;

DECLARE = OUTPUT SIGN;

SYNONYM = EXT OUTPUT<B8>=0UTPUT SIGN;

PROCESSOR CONTROL (LOC=CTL) (A SEL=R SEL<B:1> /M,REG RDR=REG ADR<8:3> /M
,BLU CTL=ALU CTL<B:5> /M,REG WRITE L=REG WRITE L /M);

SLASH (SIZE=35) (2=EXT OUTPUT<1:355, 1=EXT OUTPUT<B8:355);

2MERGE () (L=C OUT /M,H=EXT OUTPUT<1:35>, T=Z1%T);

10101 (S1ZE=2B,L0C=62) (4=A SEL<B:1> /M, 5zA SEL BUF<@:1>/M,12=,2=);

18118V (LOC=G3) (6=CLOCK,3=REG CK BUF /M,7=,5=);
REG18176(SI1ZE=1B,L0C=R1) (CK=REG CK BUF /M,T=C OUT /M, 1=RIXI);
REG 18176 (SIZE=36B,L0C=R2) (CK=REG CK BUF /M,T=EXT QUTPUT<8:35>,1=

1<8:35> /M);

10105R(LOC=G1) (5=REG WRITE L /M, 4=CLOCK,2=61%2,3=);

161 RAM 16145A(LOC=R3,512E=36B) (CS L=,NE L=G1%2, I=EXT OUTPUT<B:35>,A=
REG ADR<O:3> /M, T=B<B:35> /M);

18174 (512E=36B,L0C=M) (T=R<B:35> /M,EN L=,08=EXT OUTPUT<8:35>,1=%1%T,2=
EXT OUTPUT<9:35> : € OUT /M 23 : Z%6,3=EXT INPUT<B:35>,S=
R SEL BUF<B:1> /M);

3MERGE () (L=%2%L ,M=2%3%N,H=%4%H, T=ALU CTL<B:5> /M);

36 BIT ALU 18181 (LOC=A) (CI=%2%L,5=%3Z1,B=B<@:35> /M,R=R<B:35> /N,F=
1<8:35> /M,CO=R1%1,M=%47H);

END;

Figure 4. 10- 1
Text Representation of Simple Processor Macro

4.10 Macro Language 16

5. Output Listings Generated

A number of output listings are generated to help in both the design and debugging of the
hardware. The Macro Expander outputs a directory of the macros used in a design, a listing
which shows ail of the places from which a given macro is called, one which shows ail of the
macros which use a global signal, and a list of ail of the macros and terminal components called
by each macro definition, as shown in Figure 5-1 and Figure 5-2. In
order to aid in the partitioning and layout of a system, SCALD ‘provides an estimate of the
number and types of chips used by a given macro, generated using simple heuristics to account for .
the packing of multiple sections of a given type into a single chip.

MACRO:
FILES:

CALLED

PARAMETER

LocAL

USING

SYNONYM

Output Listings Generated 17

PROCESSOR CONTROL NUMBER 2.
.EXAM2
TIMES FROM: .EXRMI SIMPLE PROCESSOR X1

ALU CTL<B:5>(1), A SEL<B:1>(1), REG RDR<B:3>(1), REG WRITE L(1)

BRANCH RLW(2), BRANCH NEG(2), BR ADR<B:7>(2), MICRO INSTR<@:22>(8),
C7ZT<B:7>(2), G2%3(2), G62%5(2), G37%3<8:7>(2)

CLOCK (1), EXT LORD CS DATA<0:22>(1), EXT LORD €S WE L(1), EXT RESET(1),
OUTPUT SIGN (1)

BR ADR«<B:7> = HICRO INSTR<8:7>
BRANCH ALW = MICRO INSTR<8>
BRANCH NEG = MICRO INSTR<9>
REGRADR<B:3> = MICRO INSTR<«108:13>
REG HRITE L = HICRO INSTR<14>
ALU CTL<B:5> = HICRO INSTR<15:28>
A SEL<B:1> = MICRO INSTR<21:22>

MACROS CALLED

c

Gl

G2

G3

8 BIT CTR 16016 111 ¢ CK = CLOCK, 1<@:7> = BR RADR<B:7>, PE L =
62%3, R = EXT RESET, T<8:7> = CXT<8:7>)

#10104R #19 (2 = G275, 4 = BRANCH NEG, 5 = OUTPUT SIGN)
*«10185Q #28 (2 =, 3 =G2%3, 4 - BRANCH ALK, S = G2%S5)

XB 10118V #12(SIZE=8) (3<X> = G3%3<8:7>, 5<X> = , 6<X> =
CXT<B:7>, 7<X> =)

XB 256N RAM MB7842 #18(SIZE=23) (R<B:7> = G3%3<B:7>, CS L = ,
I<X> = EXT LORD CS DRATR<B:22>, T<X> = MICRO INSTR<8:22>, HE L =
EXT LOARD CS WE L)

CHIPS LOCAL SECS TYPE

HB7042
10816
18184R
18165A
10118

D — - ®

Figure 5.- 1
Summary Output Listing from Macro Expander

Output Listings Generated

DEF INE/USING CROSS REFERENCE LIST

CcLocK

EXT INPUT<8:35>
EXT LOAD CS DATAR<B:22>
EXT LORD CS WE L
EXT OUTPUT<8:35>

EXT RESET

OUTPUT SIGN

RUTODECL
USING

RUTODECL
USING

AUTODECL
USING

AUTODECL
USING

AUTODECL
USING

RUTODECL
USING

DECLARE
USING

Figure 5.-2

JEXANL
EXRM2
.EXRN1

.EXAML
JEXAML

EXRM2
.EXAM2

EXAM2
EXAM2

.EXAMY
.EXANL

.EXAM2
+EXAM2

EXAML
.EXAN2
LEXANL

SIMPLE PROCESSOR 71
PROCESSOR CONTROL #2(1)
SINPLE PROCESSOR #1(2)

SIMPL PROCESSOR #1
SIMPLE PROCESSOR #1(1)

PROCESSOR CONTROL #2
PROCESSOR CONTROL #2(1)

PROCESSOR CONTROL #2
PROCESSOR CONTROL #2(1)

SIMPLE PROCESSOR #1
SIMPLE PROCESSOR #1(8)

PROCESSOR CONTROL #2
PROCESSOR CONTROL #2(1)

SINPLE PROCESSOR #1(9)
PROCESSOR CONTROL #2(1)
SINPLE PROCESSOR #1(1)

Cross Reference Output Listing from Macro Expander

18

19

6. Conclusions

SCALD has been used to design a 5500-chip ECL processor (the S-1), and in addition to basic
facilities for hierarchical design, it contains many features which have been found to be essential
either for the understandability of the design-or for the efficiency of the machine. Among such
features are the following:

Language constructs for declaring and using local, parameter and global signal
vectors.

A mechanism for defining in a single drawing ail macros of identical structure
but different width.

Mechanisms for conveniently manipulating multiple physical versions of the same
logical signal.

- A mechanism which facilitates the use of both physical polarities of a given
logical signal.

Language constructs for representing bit-wise symmetrical logic.

Structured logic design consists of extending to logic design the essential power of the concepts
and the tools which have been developed for simplifying the programming task; the savings in
human labor expended in digital systems design realizable by this advance are potentially as great
as those which the application of compilers has caused in the specification of complex arithmetic
and logical computations. Our experience has shown that the SCALD Design System has greatly
increased the understandability of the S-1 Processor, thus reducing the design effort by a large
factor, enhancing design correctness, and facilitating the generation of final documentation. The
design itself serves as a major portion of the final documentation because it is so readily
understandable; thus, the need for expensive and relatively inaccurate ex post facto
documentation is greatly reduced. Furthermore, the SCALD Design System has increased the
changeability of the design; since macros are inherently isolated, changes in one macro definition
usually require minimal changes in other parts of the design. Finally, the imposition of structure
on‘the design will facilitate machine verification; that is, it will support simulation of. the S-i at a
various levels above the chip level.

7. Acknowledgements

We wish to acknowledge crucial support for this research which has been received from the
Office of Naval Research via. ONR Order Numbers N00014-76-F-0023 and N00014-77-F-0023
to the University of California Lawrence Livermore Laboratory (where the authors are members
of the professional staff), from the Computations Group of the Stanford Linear Accelerator
Center supported by the Energy Research and Development Administration under contract EY-
76-C-03-051 5, and from the Stanford Artificial Intelligence Laboratory. We also wish to
gratefully acknowledge the support of our graduate studies which has been extended by the
Fannie and John Hertz Foundation. We greatly appreciate the constant encouragement and
support we have received from Forest Baskett, Lowell Wood, and Bill vanCleemput throughout
this work, and the support Sassan Hazeghi provided in writing and responsively maintaining an
excellent PASCAL compiler at the Stanford Linear Accelerator Center.

20

8. References

vanCleemput, W. M. 1977. “A Hierarchical Language for the Structural Description of Digital
Systems,” Proceedings 14th Design Automation Conference, New Orleans, La, June 1977, pp. 378-
385.

Helliwell, D. 1972. “The Stanford University Drawing System”, Stanford Artifical Intelligence
Laboratory, Stanford University.

21

Al. Standard Library Macros

T he following macros were used in the definition of the Simple Processor shown in Figure 1.-2
and Figure 1.-3, and are part of a larger set of standard macros that were used in the design of
the S- 1 Processor.

22

‘Add

dHINNN

"Huwﬂom&

‘A4 dHAOYddV

40

3avd

A NMVEd

(M37°0LS1T81839¢

B8E:388 (LL-AYU-LZ

[8181 N1V LI9 9¢

LOd rodd
[-S

o9d

v

GL101 QUIS H00T LRRD

29d __2HO 9d

2
i

9d

2

6L19T GIHY MO0 LRRAD

280

19d 99d

/
1.«

od

a

64108 UIU MO0 Lers)

19d

1

T 88

6t:9158

<61:90>y

R<H=3¥]

<E:@>S

™M
[a]

“A3d 43dWAN

$133rodd

‘Ad 03A04UddY

40

39vd

‘A8 NMVHO

(MJ37°0LS1%£T18X

LB3:30 LL-AVU-LZ

L7871 8X

133ro4dd
1-S

o~ L
<tzers

O€
xXrZ
x>t
e

TOL

LOd 1rod9d

‘A4 ddAO0dddV

o
o ‘AT AAIGNAN H0 4DV d Ad NAVAIAd
(M37°0L1S14L38 104 r0dd
BT33€Z LL-AON-BZ 91081 ALD LId 8 [-S
R
| 3
ot N
I
<iwrl . PR ._r (74T 21
21> 118 v ~
oL
L7ar 2¥§
<o
)
AL BRI
L3 P4
ToL L oteer T 4

25

‘'AHY dHINNN

LDH [0dd

‘A4 ddAO0¥YddV

40

34DV d

Ad NAVId

(M371°0QLS11HL]Y

91:81 LL-YdV-ET|

91981 OLYLD LI ¥

LDH [0dd
[-S

I
<E:OrL

RES]

<L

ST

<HT

L

tl o 3

1109 rodd) ‘A9 dHAOdddV

O
° ‘ATI 7 A HINNN 40 qovd A9 NMVIA

[(MJ31°‘alsitigtiday 104 rodd

| 28:88 LL-HYW-S8 18F8T NIV 114 ¥ 1S

<€>S
7553
3353
>3
)
=3
\«umu 2s Hd i
. 1 £y 31
a.-n."covvu.% 13" 9 ‘& <a
‘.-o k3 214 x Ldr @8
v 3 Zea
Anu-Nva K £7) £l2a) A
i ﬂlvmw £ es et ™ T 4T
W 13RI e 2| es bt -
ST]
= 2 bl T &0

-LDOH [0dd

‘A4 ddAOdddV

~
~ AT ATINON 40 aovd A NMVIA
[M371°0LS16L18T 158 (0dd
15:¢28@ m\.||__.:.|mN_ 6L101 AVYIHY MO0T AYIVD [-8
<9>9d
<0>9d
=) v o) O T =}
&ctet
£9 £d 29 2d 2D 19 id [od
e €y | e 5 P o1 ¥ v
TH0 @ @5a
<Heod
<& 19
® 253
0> 29a
@ £od
<>E9d
<L @>9d
L asad
ZHO
<130>E9d
<5:8>29d
<1:@>19d
<1 @>09d
L]
“SNE J HONOKH L-033N8 L
W 8 OW ¥ SAILAHMNSI [4

WAIRRR

:133rodd tA8 03A0HddY
& o p3y 4I9UAN 40 39vd TA8 NMYHQ
[M317°0aLS1T8TEX L33r0Yd
%1:€Z LL-AON-B2 1e1@T 9X -5
~ o2 Ve

21t
X>v

<t

X

LDH [0dd

‘A9 dHAOYdddV

] 43y ATINAN 40 aovd A NMVIA
[MJ7°QLS1ABTTEX 159 f0¥d
'Sz:z@ LL-d3S-E2 ABTT@T X 1-S
A\I
e Fe——

n OOL

0L
<X>9
«X>9

-LDH fodd

A4 03A0HddY

3-

A INNN

‘NI

Ad NMVEd

40

4OV d

LDOHd rodd

[MJ37°01S1 9L1€X

_hﬁumﬁ LL-AYU-LZ

9,181 DAY GX

[-S

o~ otx

L+ 23 4

<L

<X>L

31

‘AdY

dHINNN

LDH [0dd

‘A9 dHAOYddV

40

4OV d

‘A9 NMVHEd

(MJ371°0LS139TXaX

15:38 LL-AVU-LC

¥YSy1@81 WVd M3IT dX

LDH f0dd
[-S

XL

T
T

€y

183

[F

R

280 O3 XY

<E)>

2ty

[N

2>

e+

vriet

<>

et ... @

@
-

<LOH [0dd ‘Ad ddAOdddV
N .
(M37°0LS13992X8X LDd ro¥d
98:88 LL-AVIN-LO CYOLAN WIVI M9ST dX [-S
TS
—r=
s38 b
2t e 3In
b n 3 <)
x =
1 o1 L m 3 .m.wwl
B~ o % a5y
— 2 e T

33

A2. Syntax of Macro and Layout Languages

The following syntax diagrams give a detailed definition of the syntax for the text form of the
SCALD macro language. The output of the SUDS Graphics Editor is converted to this language,
and the SCALD Macro Expander and Wire Lister can be used directly without a Graphics
Editor by using this alternate text form of the macro language as the primary input.

Hardware description

E O—TC=
No expand
o) —

—0-

. Macro definition

: ° Chip binding

End *@

Macro definition

o Lo

G DO
integer
|_> Unsigned |
integer

1<
Signal decleration
Lt
L Synonym decleration
Y
et

>| Macro call —

35

36

Signal decleration

———b(Parameter 3——‘—-> Signal vector : —r-bm———-»

N—— S N

Synonym decleration

' Signal expression —D@— ‘

Signal expression — -—>®—>

Macro call

Name

Property

37

Name

Signal expression

Signal expression

T> Signal vector

38

Signal vector

—

Version

Unsigned integer

Name

Unsigned

integer

'

Unsigned
integer

Property

Loc e Name

. integer ,

OO

Unsigned
integer

39

