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Abstract.

J. A. George has discovered a method, called nested dissection,

for solving a system of linear equations defined on an n = kxk square

Co 2 :grid in O(n log n) space and 0(2/ ) time. We generalize this

method without degrading the time and space bounds so that it applies

to any system-of equations defined on a planar or almost-planar graph.

Such systems arise 1n the solution of two-dimensional finite element

. problems. Our method uses the fact that planar graphs have good separators.

. More generally, we show that sparse Gaussian elimination 1s efficient

for any class of graphs which have good separators, and conversely that

graphs without good separators (including almost all sparse graphs) are

not amenable to sparse Gaussian elimination.

Keywords: finite element method, Gaussian elimination, nested dissection,

planar graph, sparse matrix.

*/ |
©’ Computer Science Dept., Yale University, New Haven, Connecticut 06520.

Research partially supported by the U.S. Army Research Office, grant
no. DAAG 29-76-G-0338.

*¥/ Computer Science Dept., Vanderbilt University, Nashville, Tennessee

37235. Research partially swpported by Office of Naval Research
contract NOOO14-67-0298-003k,

*%% / |
Computer Science Dept., Stanford University, Stanford, California 94305.
Research partially supported by National Science Foundation grant
MCS-75-22870 and Office of Naval Research contract NOOO1lk-76-C-0688.

Reproduction in whole or in part 1s permitted for any purpose of the
United States Government.

1



eeeeTeTETETEE————————

1. Introduction.

Suppose we wish to solve by Gaussian elimination the system of

linear equations

(1) Ax = Db )

where A 1s an nxn symmetric positive definite matrix, xX 1s an

nxl vector of variables, and b is an nxl vector of constants.

The solution process consists of two steps. First, we factor A by

means of row operations into

(2) A = IDL!

where L 1s lower triangular and D 1s diagonal. Next, we solve the

simplified systems Lz =b , Dy = z , and Llx =V .

If A 1s dense (1.e., A contains mostly non-zero elements) then

the time required for factoring A1s (rr) and the time required for

solving the simplified systems 1s 0(n°) . IfA is sparse (i.e.,

A contains mostly zero elements), we may be able to save time and

storage space by avoiding explicit manipulation of zeros. One difficulty

with obtaining such a savings 1s that the factoring process may create

Non-zeros in L (and rt ) in positions where A contains zeros.
These new non-zeros are called fill-in.

One way to reduce the fill-in 1s to permute the rows and columns

of A, i.e., to transform A into

(3) A = PAP

where P 1s a permutation matrix, and to solve the reordered system.

Since A 1s positive definite, the reordered system is numerically

stable with respect to the IDI] factorization [9].
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In order to characterize the fill-in associated with a given permutation

matrix P , we represent the class of matrices pap’ by an undirected
*

graph G = (VE) . The graph G contains one vertex ieV for

each row (and column) in A , and one- edge {i,j}e E for each pair
L]

of non-zero, off-diagonal elements 3 = 34 £0 in A . Each
permutation matrix ©P corresponds to a numbering of the vertices of G ;

1.e., to a one-to-one mapping mn: V = {1,2,...,n} . Corresponding to
T T * *

the factorization PAP" = LDL" is a graph G_ = (V,E_) such that

{1,3} ¢ EY iff i> Jj and the element of L in row (i) and column

(Jj) is non-zero. See [17, 16,19, 23 1 for a discussion of the properties of

this graph-theoretic model of sparse Gaussian elimination. The following

lemma, characterizes the fill-in E, assoclated with an ordering gx .
LJ

Lemma 1 [19]. Assuming no cancellation of non-zeros in the

* factoring of PAP’ {vy Ww} € BE iff v # w and there 1s a path

V= Vy5Vs..e3Vp,q =W such that n(v, ) < min{n(v),n(w)} for 2 < i < k .

The running time and storage space required by sparse Gaussian

elimination are functions of m , the number of non-zeros in L , and

of d(i) , the number of edges {i,j} in G with n(i) < n(3) .
Note that d(i) is the number of non-zeros in column i of IL (and

r n-1
row i of L° ), and that m = 23 4(i) . For purposes of analysis

i=1

and implementation, we can divide sparse elimination into the following

four steps.

* 1 1 1 1 1 1 1 1i The appendix contains the graph-theoretic definitions used 1n this
paper. It also defines the "0" and " Q " notations.
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Step . Find a good ordering =m .

The time and space required by this step depend upon the method

used.

Step 2. (Symbolic factorization.) Compute the non-zero positions

in L, assuming no lucky cancellation of non-zeros.

Time: O(m) using the algorithm of [19].

Space : Om)

Step 3. (Numeric factorization.) Compute L .

n-1

Time: of 22 da(i)(a(i)+3) using an algorithm such as
i=1

described in [6,12,20,23]. The number of multiplications

1 ol
performed during this step is 3 2 d(i)(a(i)+3) [18].

i=1

Space: O(m) ,

Step 4, (Backsolving.) Solve Lz =b , Dy = z and 11x =v .

Time: O(m) [18].

Space : Om) .

The reason for separating the factorization into two steps (symbolic

and numeric) is that all known methods which compute the numeric factorization

without first finding the fill-in positions have a time bound for overhead

which 1s more than a constant factor greater than the number of multiplications.

If the system of equations 1s to be solved for only one right-hand side b ,

it is possible to combine at least part of Step 4(solvingLz=Db and

Dy = z ) with Step 3.

The efficiency of sparse Gaussian elimination depends upon Step 1;

that is, upon finding an ordering n which reduces the size of the

1 nD
fill-in m and the multiplication count 3 2 d(i)(a(i)+3) . Finding

i=1
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) such a good ordering for an arbitrary graph seems to be a very hard,

. perhaps even NP-complete problem. However, for some special cases

good ordering schemes are known. One such scheme is the nested dissection

method of J. A. George [11], which allows the solution of systems whose

graph 1s an n = kyk square grid graph in o(n>/?) time
and O(n log n) space. George's scheme uses the fact that removal of

O(k) vertices from a kyxk square grid leaves four square grids, each

roughtly k/2 xk/2 .

In this paper we generalize George's 1dea. Let S be a class

of graphs closed under the subgraph relation (1.e., 1f G, e S and G,

1s a subgraph of G, then Gy € S ). The class S satisfies an

f (n) —separator theorem if there are constants aa <1, B > 0 for

which any n-vertex graph G in S has the following property: the

. vertices of G can be partitioned into three sets A, B, C such that

no vertex in A is adjacent to any vertex in B , | Al, |B] < an,

and IC] < Bf(n) . Cur main result is that all systems of equations

whose graphs satisfy an —-separator theorem can be solved in o(n>/?)

time and O(n log n) space using a "divide and conquer" [1] method to

generate the ordering. From separator theorems proved in [15], we obtain

a method for solving any system of equations whose graph 1s planar or

.almost-planar in om?) time and O(n log n) space. Such systems

arise in the solution of two-dimensional finite element problems [24],

Section 2 presents these results.

‘ More generally, divide and conquer gives a good ordering scheme for

any class of graphs satisfying an f(n) -separator theorem; the fill-in

and multiplication count produced by the ordering depend upon f(n) |,
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At the end of Section 2 we list fill-in and multiplication bounds for

various values of f(n) other than f(n) = Jn .

Section 3 presents some relationships between Gaussian elimination,

good separators, sparsity, and random graphs. We give a lower bound on

the cost of Gaussian elimination 1n terms of the size of separators in

the problem graph. We prove that graphs with good separators are sparse.

Finally, we show that almost all sparse graphs have no good ordering for

Gaussian elimination. Section 4 discusses the significance of the results

in Sections 2 and 3.
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2. Generalized Nested Dissection.

Let S be a class of graphs closed under subgraph on which

a ™ —-separator theorem holds, let a, B be the constants associated

with the separator theorem, and let G = (V,E) be an n-vertex graph

in S . The following recursive algorithm numbers the vertices of G

so that sparse Gaussian elimination 1s efficient. The algorithm assumes

that [ of the vertices of G are already assigned numbers, each of

which 1s greater than b , and that the remaining vertices of G are

to be numbered consecutively from a to b .

Numbering Algorithm.

If G contains no more than ny = (8/ (1-2)%) vertices, number
the unnumbered vertices arbitrarily from a to b . Otherwise, find

sets A, B, C satisfying the Nn -separator theorem. Let A contain

i unnumbered vertices, B contain J unnumbered vertices, and C

contain k ummumbered vertices.

Number the unnumbered vertices in C arbitrarily from b-k+1

to b . Delete all edges with both endpoints in C . Apply the

algorithm recursively to the subgraph induced by BUC to number the

unnumbered vertices in B from b=k-j+1 to b-k . Apply the algorithm

recursively to the subgraph induced by AUC to number the unnumbered

vertices in A from a = b-k—-j-i+l1l to at+i-1 = b-k-7 .

If G initially has no numbered vertices, then applying this

algorithm to G with a = 1, b =n , and £2 = 0 will number the

vertices of G from 1 to n . We are interested 1n three properties

of this algorithm: its running time, the size of the fill-in produced

by the ordering it generates, and the multiplication count of the generated

ordering.
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Theorem 1. Suppose that a vertex partition satisfying the Nn —-separator

theorem can be found in O(m+tn) time on an n-vertex, m-edge graph.

Then the numbering algorithm requires O((mtn) log n) time.

Proof. Let t(myn) be the maximum time required by the numbering

algorithm on any graph in S with n vertices and m edges. Then

5%

(4) tn) < ¢; J if ncn

t (m,n) <c, (mn) in max {t (m,n, ) in t(m,,n,)} otherwise,

2

where ny = (B/(1-)) and the maximum 1s taken over values of my , ny p

my 5 Ny satisfying

(5) m+ m, <m

n < n, +n, < n+gn , and

(1-8)n < nm, < m+pan

A proof by induction similar to the one below for the fill-in

bound shows that t(m,n) is O( (m+n) log n) . O

Theorem 2. Let G be any n-vertex graph numbered by the algorithm.

The total size of the fill-in associated with the numbering 1s at most

cz 1 Log, n + O(n) , where

(6) cy = 8251/2 + 2/1)/ Log, (1/0)

* 1 1 1 1
Throughout this paper, wc, Cy Cyr... denote suitable positive constants.
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Proof. Suppose the recursive numbering algorithm is applied to an n-vertex

graph G with { vertices previously numbered. Assume n > n, and let

A, B, C be the vertex partition generated by the algorithm. If C

contains k unnumbered vertices, then the maximum number of fill-in

edges whose lower numbered endpoint 1s in C is

(7) k(k-1)/2 + kf < 8° n/2 + B 240

By Lemma l, two vertices vv and w are joined by a fill-in edge

if and only if there 1s a path from v to w through vertices numbered

less than both v and w . Thus no fill-in edge joins a vertex in A

with a vertex in B . Let f(4,n) be the maximum number of fill-in

edges whose lower numbered endpoint 1s numbered by the algorithm (and

not previously numbered). Then

£(4,n) < g° n/2 + B tn + max{f(L.,n.)+ f(s ,nHS = 1°71 > 1s)}

otherwise, where the maximum 1s taken over values satisfying

(9) +1, < 1+2pin

n < nytn, < n+pdn, and

(1-a)n < n,,n, < an + aan .

We claim that for all n > 1 ,

. (10) £(i,n) < cn log2 n + cy, 4n + Cg 4 log, n + cgn- cn log, n ,

\ where

9
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(11) Cs = B2[1/2 + ona / (1-Aa )] / Log, (1/a) ,

Cs = cB / [2a log, (1/a)] , and

Cg and Co are suitably large positive constants, to be
chosen later.

We have attempted to minimize Cx , Cy, , and C5 in this bound, but

have chosen Cs and ¢ to make the proof easy, The theorem's bound on
fill-in size follows from the claim.

Proof of claim. Let

(12) g(l,n) = C51) log, n + cy tn + Cg L log, n and

h(n) = en = can log, n .

We prove the claim by induction on n . Assume h(n) > ng/2 , Where
n, > n, is a value to be chosen later. Then n < . implies

£(4,n) < n(n-1)/2 <_ng/2 < h(n) < g(4n)+h(n) .
Let n > n, and suppose the claim 1s true for values smaller than n .

2

Then f(4n) <B n/2 +p tan + £4,504) + £(2,,10,) for suitable values

Let € = (1-0-8/Anyt1) . Since Vn +l > Vn, > B/(1-a) , we have

o+B/Anytl < 1, and € > 0 . Thus nhy,n, < On+ Bn < (o+g/ An )n <

(l~e)n < n , and the claim holds for ny and In, by the induction

hypothesis.
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2

. (13) £f(4,n) < Bp n/2+8 in + g(41,n,) + &(4,5n,) + h(n, ) + h(n,)

< B= n/2 + B in

+ [ox (n+ pan) +c (2+284n)] log, (m+ pn)

+ c, (2+284n) Jom+ py

+ h(n) +h(n,) .

Now

(14) logy(an+ Bn) = log2 n + log, @ + log,(1+p/ (avn)

< log2 n+ log2 « +(B Log, e)/ (cnn )
4

since log, (1+x) < x for x < 0 .

\¥ Also

(15) Von+ pin < Nam+p/(2a)

Substituting into the bound on f(f,n) , we find that

(16) (sn) < 8° n/2 + pan

+ (ez +c, 1)[1og, n+ log, 0+ (B logye)/ (awn )] +(e, + 2¢5 )Bn log2 n
+ oy(+288)[Wom 4 g/ (24a)

< Ch log, n
&

+ 8° n/2 + Cy log2 a + 2c, Va
\

+ 8 24/n + XE gan

11



+ Cp 2 log, n

+c 4 log, a +B ¢/ (Na)

+ (csp Log, e)Vn/a + (csp log, e) ¢/ (ann )

+ (cg +2¢5)B Vn log, n + 2¢) 82\n/ (24a )

+ h(n;) +h(n,)

< C5 log, n+ cy ton + Ce 4 Log, n+cgn log, n+h(n,) + h(n,)

by the choice of ¢; ,¢, , andes , where

AT) cg = (eves)p (logy ela (og +2e)prae, pf)
All that remains 1s to show

(18) h(n) > ns /2 for 1 <n , and

h(n) >cgin log, n + h(n, ) " h(n,) for n > n,

and. anyny, nj, satisfying

(19) n <g.o+n, < n+pyn and

) (1-@)n < ny, n, < On + Ban.

Choose fy such that

(20 ). ng > ny and

28 log, e < (y-1) log, ny - 7 log,(1/(1)) ,

where y = No + N1-0. . Let Cg =v 1-(y log, (1/1-) )/1og, ng .
Choose Cg such that

(21) ce > max {ng /2 , ca/ (cof (2 Log, e) ~ 8/1log, ng I

12
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. Finally, choose

4 —

(22) c; = (cg . cgB/log, ng )/cqy

Then h(l) = Ce > n/2 . Furthermore -

d hin _ 4a =

(23) = HE = (cv - c; log, n)
- c/ (24m) ~ (cr log, e)/log, n .

By the choice of c¢, and Co cg/2 > Cy Log, e , which implies

ar hn) > 0 for n>1 . Hence hin) > ng /2 for n > 1 .Vn

We also have

’ (24) cgn log, n + h(n,) +h(n,)

. < cgn log, n+cgn+pan)-c (vn, +n) log ((1-a)n)

For fixed ny +1, , the function Vn, + Vn, 1s minimized when one
of ny » Nn, 1s as large as possible and the other 1s as small as possible.

Thus

(25) Vny + Nn, > Aon + A (1-a)n > yan .

Hence

(26) cgVn log, n + h(ny) + h(n)

< coin log, n + cn + ¢84n -c.p yn (log n - log, (1/ (la))= “8 8 6 6 7 2 2

> cgn = coy Vn log, n+cgan log, n+c pn + c yn log, (1/(1-a)).
$

By selection of C, )
\

13



(27) cr _ (cg + cgp/logy ng) / (r —1-v logy(1/(1-0))/1log, ny)

>(cg + cgB/ Log, n) / (y - 1-v log, (1/(1-a))/1log, n)

ifn> ng. Thus |

(28) Cr (y ~1 -7 Log, (1/(1-c) )/1og, n) >cg + cB/ log, n and

-C Jn log. n >c Nn log, n+ c san ~-C van log, n+ cy Jn log (1/(1-a) )7 2 — "8 2 6 7 2 7 2

This means

(29) cgVn log, nt h(n,) +h(n,) < cen - cn log, no.

This completes the proof of the claim. [O

Theorem 2. Let G be any n-vertex graph numbered by the algorithm.

The total multiplication count associated with the numbering 1s at most

eq! 2 0(n(log n)°) , where
2

(30) cp _ B(1/6 + pae+a/ (14d) + do/(1-)) / (1 -A)) / (28)

with & = @/2+ (1-0)3/2

Proof, Consider the number of multiplications associated with the

ordering. The number of multiplications associated with a given vertex

V is d(v)(d(v)+3)/2 , where d(v) is the number of fill-in edges

whose lower-nurribered vertex is v . Thus a bound on the number of

multiplications associated with a separator C generated by one call

of the recursive numbering algorithm is

14
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(31) 2 (ite) (i+e+3)/2

i=0

pan-1
< 2 (i+2)%/2+ 38° n/l + 3p 2Wn/2

1=0

< 9/2/6 + 81 nj + pin2 + 362 n/h + spanse

Let q(Z,n) be the maximum number of multiplications associated

with vertices not previously numbered when the recursive numbering algorithm

is applied to a graph in C having n vertices, of which [ are

previously numbered. Then

(32) a(4yn)

< n(n-1)(2n-1)/12 + 3n(n-1)/4% = n(n-1)(nt+h)/6 if n<n,, and
*

a(t,n) < 8°1/2/6 + m/z + pa/2 + 38%n/h + 3pinn2
\&

+ max{q(e),m;) + a(2ym,)]

otherwise, where the maximum 1s taken over values satisfying

(33) +1, < 2+2pn

j n < nin, < nt aan ’ and.

We claim that for all n >1, |

(34) q(£,n)

3/2 2 2 2 i6 < ih tcp int Cz 1 Vn + c,)n(log, n)- + Cys log, n cy 24m ,

“

15
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where

2

(35) cpp _ B {1/6 + pa [2+ / (144) + hoy (1-a)1/ (1-4) }/ (1-8) |,
2

c;, = BI1/2 + 2va/(1-a)]/(1-0) ,

Cx g/[2(1-a)] , and

Cqy C15 y Cig are suitably large positive constants.

The theorem's bound on multiplications follows from the claim.

Proof of claim. Let

(36) r(i,n) Cc 3/2 c.~fn + c An and
’ = "11 + "12 13

s(f,n) = ec. x(log n)® + C (© log, n + c in’ 14 2 15 2 167"

We prove the claim by induction on n . For n < ny where ny, > n,

is a value to be selected later, q(f,n) < n(n-1)(nt+h)/6< ny, (ny -1) (ny +4) /6

< sgn) if Cy), is sufficiently large.

Letn > ny and suppose the claim 1s true for values smaller than n .

Then

2

(57) a(n) < Bow/2/6+ gPm/2 + pin/2 + 36%0/k + 3paan/2

+ atm) + a(tyn,)
2

< P32 6+ 8%m/2 + 8°/2 + 38 n/k + 3820/2

3/2 3/2 2 2+ + N \Cpq (0g "Hm TY + ep (yng + £505) + eg (470) + 450m,)

for suitable wvalues of I , ny , ls , n, .

For fixed ng + n, the function 2/2 + 2/2 is maximized when one of
ngs I, is as small as possible and the other is as large as possible. Thus

16



(38) n3/2 + 2/2 < [(1-a)n)?/2 + ant pin 17/2

< 0/21(-0)?/2+ 2/214 8/ (afm ))>/?]

- < 2/21 (1)3/2 + B12 (1+ 8/ (an ))2]

< 22/21 (1-a)3/2 + B/2(1 438) (am ))]

< [2/2 + (1-0)3/21n3/2 + 384 n

since B/(avn) < B/(any) < B/((1-a)ng) = 1.
Also

(39)  4qny+ 40, < (£+284n)(m+ pan)

< am+ copn>/2 + pana + 2820

and h

2 2 2 J| (40) 474n,+ 4-4, < (£+284/n)° Wom + pan

< (2+284n)5(Wom + 8/ (24)

< a Pn+ baa m+ 4e2NE 2/2 4 (1+ 284m )2 B/ (24)

Letting 3 = 2/24 (1-0)>/2 and combining the above inequalities with
the bound on q(f,n) gives

) (41) a(n) < p2n3/2/6 + c, 30/2 + 2¢,,0 an/ 2 + he 58° D2
+ 8% m2 te oun + he, Bor In

+ pion2 + cyz Wot Nm

+ 38°n/l + 3c, Ba n+ 2c, Bn + 20,58°0/ NG
+ 3844n /2 + c,,824n + 20158" 10 /

+ e,5B°/ (2Va )

+ s(4),n,) +520)

17
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3/2 2
< CR " Cio in + Cyz 4 Jn

2

+ C170 +e gf4/n + C1 of + s(£yomq) + s(£,5n,,)
where

2 2

(k2) Cp = 38 by 3c, Ba + 2c.8" + 20,8” / a ,
2

cig = 38/2 + cif + 2ci.B /Na , and

C19 = cp58/ (Na) :

All that remains 1s to show that

— 2

(43) s(f,n) < qn + c;gfAn n C1 gt + s(4,,0,) + s(£,om,)

1f C1) ’ C15 y Cig and ny are chosen sufficiently large. This
derivation is similar to that for the fill-in bound and we shall not

-go through it here. The claim follows by induction on n . [J

Theorem 3. Let G be any planar graph. Then G has an elimination

ordering which produces a fill-in of size cplogn+0(n) and a
Ce 3/2 2

multiplication count of ci4R + 0(n(log n)°) , where C5 < 128.5

and C11 < Loo2 . Such an ordering can be found in O(n log n) time.

Proof. By Corollary 2 of [15], planar graphs satisfy a An —separator
amd

theorem with a = 2/3 and B = 24/2 . F'urthermore the appropriate

vertex partition can be found in O(n) time. Plugging into the bounds

of Theorems 1-3 gives the result. J

A finite element graph is any graph formed from a planar embedding

of a planar graph by adding all possible diagonals to each face. (The

finite element graph has a clique corresponding to each face of the

18



¢ embedded planar graph.) The embedded planar graph 1s called the

‘ skeleton of the finite element graph and each of its faces 1s an

element of the finite element graph.

Theorem 4. Let G be any n-vertex finite element graph with no element

having more than k boundary vertices. Then G has an elimination

ordering which produces a fill-in of size 0(k° n log n) and multiplication

1 3/2count O(k’n ) . Such an ordering can be found in O(n log n) time.

Proof. By Corollary 4% of [15], any n-vertex finite element graph with

no element having more than k boundary vertices satisfies a An -separator

theorem with © = 2/3 and B = Li k/2 | . Furthermore the appropriate

vertex partition can be found 1n O(n) time. Plugging into the

¢ bounds of Theorems 1-3 gives the result. O

h Although planar and almost-planar graphs seem to be the most

interesting case, analogues to Theorems 2- 4 hold for other classes of

graphs. For instance, the following theorems can be proved using the

same methods as in the proofs of Theorems 2 =k.

| Theorem 2. Let S be any class of graphs closed under subgraph on
o]

which an n= separator theorem holds for ¢ > 1/2 . Then for any n-vertex

Co 20
“graph G in S , there is an elimination ordering with O(n ) fill-in

: 50 oq
size and O(n” ) multiplication count.

The class of k-dimensional hypercubic grid graphs satisfies Theorem 6

for 0 = k-1/k .

19
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Theorem 6. Let S be any class of graphs closed under subgraph on

0

which an n separator theorem holds for o¢ < 1/3 < 1/2 . Then for

any n-vertex graph G in S there is an elimination ordering with

: 0

O(n) fill-in size and O(n” ) multiplication count.

Theorem 7. Let S be any class of graphs closed under subgraph on which

a Nn separator theorem holds. Then for any n-vertex graph G in S ,

there is an elimination ordering with O(n) fill-in size and O(n log, n)

multiplication count.

Theorem 8. Let S be any class of graphs closed under subgraph on which
g -

ann separator theorem holds for o¢ < 1/3. Then for any n-vertex

graph G in S , there is an elimination ordering with O(n) fill-in

. size and multiplication count.

20



’ 3. Gaussian Elimination, Separators, and Sparsity,

4 In this section we explore additional relationships between gparse

Gaussian elimination, good separators, and sparse graphs. We have shown

that the existence of good separators in a graph and its subgraphs allows

us to carry out sparse Gaussian elimination efficiently. It is natural

to ask whether the converse 1s true; that 1s, whether the existence of

good separators 1s necessary for efficient sparse elimination. To prove

a result of this kind, we need a strengthened version of a lemma in [5]

Let G = (V,E)be an undirected graph with an ordering = . Our

proof technique makes use of the following algorithm, which adds edges

to G andevéntually produces a graph which contains the fill-in

graph G* . Associated with the graph during execution of the algorithm

¢ 1s a subset of its cliques, called elements. Initially the set of

elements consists of the edges of the graph.

Element Merging Algorithm.

Repeat the following step for each vertex v from 1) to

(0)

General step. Choose two elements €; and e, containing v . Add to

the graph all edges not already present which join a vertex in e

and a vertex in 5 simultaneously delete elements 5 and e, and

add a new element consisting of their union. Repeat until v is

contained in only one element. Markv eliminated.

{ Let Gy be the graph existing after k executions of the general

{ step. We note the following properties of the algorithm, which are easy
to verify.
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(i) At all times during execution of the algorithm, every edge 1s

contained in at least one element.

(11) The number of elements containing a vertex never 1ncreases.

(111) At the end of the algorithm, each connected component of the

original graph comprises a single element.

(1v) After a vertex v 1s eliminated, vv 1s contained in only one

element.

(V) An edge {v,w} is a fill-in edge if and only if {v,w} is added

to the graph before either v or w 1s eliminated. (In general

G, properly contains G -)

Property (v) follows from the definition of vertex elimination on a

graph, which models Gaussian elimination on the corresponding matrix.

'See [5,17,18, 19,23 |.

Lemma 2. LetG = (V,E) be an n-vertex graph satisfying the following

property for some { < n/3 andg : every set of vertices A such that

I < |A] < n-2 1s adjacent to at least g vertices in V-A . Then if

T 1s any ordering of V , G contains a clique of at least g vertices.

Proof. G must have a connected component containing at least { vertices.

Otherwise there 1s a set A violating the hypothesis of the lemma, formed

as follows, Let A = . Add connected components to A one at a time

until A contains at least f vertices. Then A contains less than

21 < n~f vertices.

Apply the element merging algorithm to G with ordering =m . Let

e be the first element formed which contains at least ¢ vertices. Then

e contalns no more than 2f vertices, since it is composed of two
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previously formed elements. Let A be the set of vertices not in e .

L A contains at least n-21 > [ and at most n-f vertices. Let C be
the set of vertices in e adjacent to at least one vertex in A . By

the hypothesis of the lemma C contains at least g vertices. When e

1s formed, each vertex in C is in some element other than e by (i).

Thus by (iv) each vertex in C 1s uneliminated when e 1s formed.

By (v) the clique formed by C is contained in Gy . Od

A weaker form of Lemma 2 and its proof, in Which the degrees of all

vertices are assumed to be bounded, appears in [5].

Theorem 9. Let G = (V,E) be a graph satisfying the hypothesis of

Lemma2. Then any ordering of V produces a fill-in of size at least

4 g(g-1)/2 and a multiplication count of at least g(g-1)(g+h)/6 .

\ Proof. Immediate from Lemma 2. [J

Theorem 9 and the results 1n Section 2 imply that generalized

nested dissection 1s the best method of sparse elimination (to within

a constant factor 1n running time and storage space) on large classes

°c. of graphs. For instance n = kxk square grid graphs satisfy the

hypothesis of Lemma 2 for { = n/3 and g = n/3 [15]. Thus such

. graphs have an a>?) multiplication count for any ordering [13].

By using more sophisticated techniques, one can derive an Q(n log n)

lower bound on the fill-in for such graphs [13]. For d-dimensional

| hypercubic grid graphs, Lemma 2 gives an Q(n® (a-1)/4 lower bound on
* fill-in and an a(n (a-1)/a, lower bound on multiplications, agreeing
\ with the upper bounds in Theorem 5. See [5].
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We turn now to the relationship between good separators and sparsity.

Our first result shows that only sparse graphs have good separators.

Theorem 10. Let S be any class of graphs closed under subgraph and

satisfying an n/ (log, n)* -separator theorem for fixed a,p . If G is
a graph in S having n vertices and m edges, then m < CyqD :

Proof. Let t(n) be the maximum number of edges 1n any n-vertex graph

in S . Let G be an n-vertex graph in S with t(n) edges. Since S
|

satisfies an n/ (Log, n)" —-separator theorem, the vertices of G can be

partitioned into three sets A, B, C such that C separates A and B ,

A and B each contain no more than an vertices, and C contains no

more than pn/ (log, n)? vertices. Since S 1s closed under subgraph,
the subgraphs of G induced by the vertex sets AyYyC and BUC are

both in § . If |AUC| =n; and |BUC| =n, , it follows that

t (n) < t(n,) + t(n,) . Hence

(LL) t(n) < n(n-1)/2 if n<n,, and

t(n) < max {t(n,) + t(n,)]} otherwise,

‘where the maximum is taken over values Iq, n, satisfying

2]

(45) n < Nn, +n, < n+ pn/ (log, n) , and
2

+ |(1-a)n < n, , n, <om pn/ (Log, n)<

An inductive proof like those in Section 2 shows that

(46) t(n) Sch - ¢,on/ 10g, n ,

where c¢,; and C,, are suitably large positive constants. [I
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Not all sparsegraphshave good separators. In fact, for fixed a, B

such that B < la! < @ <1, there 1s a constant c¢ such that almost
3

a112/ n-vertex graphs with cn edges have no vertex partition A, B,C
satisfying |A|, |B] <am, |c| < Bn., and C separates A and B .

This result is implicit in Theorem 4 of [8]. It follows from Theorem 9

2
that almost all sparse graphs require Q(n) fill-in and and)

multiplication count. By using a more direct argument, we can obtain a

stronger result.

Theorem 11. For all € > 0 there is a constant c¢(e) such that almost

all n-vertex graphs with at least c¢(e)n edges have a fill-in clique of

at least (l-e)n vertices for any ordering.

Proof. We first prove that almost all n-vertex graphs with at least cn

edges have the following property:

(P) If A and B are sets of vertices such that |A|, |B] > en/k and

ANB = @ s then at least one edge joins A and B .

We prove (P) by an argument like that used to prove Theorem 4 of [8].

Consider a random graph G with n vertices and m edges, where m > cn . The

number of ways to choose two vertex sets A, B satisfying |A|,|B| > en/k,
n

ANB =@ is less than 3° . Between A and B there are at least

- 22 a
€ Nn /16 potential edges. The probability that none of these edges

2_2

actually occurs in G is less than (1-2¢/n)¢ n-/16 , This, if c 1s

*/
By "almost all" we mean that the fraction of n-vertex graphs satisfying

the property tends with increasing n to one. We assume that each

« n-vertex graph has vertex set {1y25404,n} and that two graphs are
distinct unless thelr edge sets are identical. See [7] for a thorough
discussion of random graphs.
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n ¢“n®/16
chosen so that 3 (1 -2¢c/n) —- 0 as n -» o , then almost all

2 2 2

graphs satisfy (P). Since (1=-2¢/n)€™ /36 ec 1/8 » choosing
2

c > (8 log, 3)/e” gives the result.

Now we use (P) to prove the theorem." Let G = (V,E) be any graph

satisfying (P). Consider any set A of at least 3en/k vertices in G ,

A contains a subset B of at least en/h vertices whose induced

subgraph in G 1s connected. Otherwise, we can derive a contradiction

as follows, Let PLY 0 jo. 0) be the vertex sets of the connected
components of the subgraph of G induced by A . Let Jj be

J J

the minimum index such that 25 |A, | >en/h . Then 2 |A;| < en/2 .
= i=1 i=1

J

By (P) there must be an edge joining some vertex 1n U Ay with some
i=1

k

vertex in U A. . This is impossible by the definition of the A 's,
i=j+t1 t

Consider any ordering of the vertices of G . Let A be the first

3en/b vertices in the ordering. Let B be a subset of A containing

at least en/k vertices whose induced subgraph in G is connected. By

property (P) at least (1~ e/2)n vertices in V-B , and hence at least

-(l-e)n vertices in V-A , must be adjacent to at least one vertex in B ,

By Lemma 1, any pair of such vertices are joined by a fill-in edge. Thus

the .set of vertices in V-B adjacent to at least one vertex in B is a

fili-in clique of at least (l-e)n vertices. O

Theorem 12. Almost all n-vertex graphs with c{e)n edges have a fill-in

2 2 qs 3 3 2
of (1-e)n“/2 - O(n) and a multiplication count of (1l-¢)"n’/6 - 0(n%) ,

for any ordering.

Proof. Immediate from Theorem 11, O
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4, Remarks.

We have demonstrated the existence of an 0(n3/2) -time, O(n log n)

-space method for carrying out sparse Gaussian elimination on systems whose

pattern of non-zeros corresponds to a planar or two-dimensional finite element

graph. Such systems arise often in real problems. The practicality

of the algorithm remains to be tested, and the constants in Theorem 3

are large. However, we believe that the algorithm 1s potentially useful

for solving large systems, since the worst-case bounds derived here are

probably much too pessimistic. Experiments by George and Liu [10] with

a similar algorithm suggest that our method is practical.

It 1s possible to reduce the running time of our algorithm to

log. 7 )
O(n 2 ) by using Strassen's algorithm for matrix multiplication and

factorization [3,21]. If the system of equations is to be solved for

: just one right-hand side b , it is possible to reduce the storage

required to O(n) by storing only part of L and recomputing the rest

as necessary. Reference [5] describes how to achieve these savings in

the case of ordinary nested dissection; the generalization to planar and |

almost-planar graphs 1s analogous to the results in Section 2.

Gaussian elimination can be used to solve systems of linear equations

defined over algebras other than the real numbers [2,4,22], and the

-algorithm in Section 2 applies to these other situations. For instance,

the single-source shortest paths problem with negative-weight edges can

be solved in o>?) time on planar graphs. The best general sparse

algorithm [1k] requires 0(n° log n) time.
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The results 1n Section 2 show that the existence

of good separators in a graph and its subgraphs 1s enough to guarantee

that sparse Gaussian elimination 1s efficient. Conversely, Theorem 9

in Section 3 shows that a graph for which Gaussian elimination is

efficient must have a good separator. The existence of good separators

in a graph and its subgraphs implies that the graph is sparse, but almost

all sparse graphs do not have good separators. These results suggest

that when studying Gaussian elimination, one should regard a graph as

"sparse" when 1t has good separators rather than when it has a small

edge/vertex ratio.

A number of questions remaln to be explored, Can generalized nested

dissection be implemented efficiently? Is it practical? How does one

find good separators in a graph? What 1s a useful definition of the

“goodness” of a separator? Informally, a separator 1s good 1f 1t 1s small

and divides the graph into small pieces. We need a quantitative definition

which embodies this idea. What are the trade-offs between the size of the

separator and the size of the pieces it produces? The property of

having good separators 1s crucial not only in Gaussian elimination but

in many other problems [16].
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Appendix: Definitions

A graph G = (V,E) consists of a set V of vertices and a set E

of edges. Each edge is an unordered pair {v,w} of distinct vertices.

If {v,w} is an edge, Vv and w are adjacent, v and w are incident

to {v,w} , and v and w are the endpoints of {v,w} . A path of

length k with endpoints Vv, w is a sequence of vertices

V = VgVysVs seeey Vy = W such that {vy 107s} is an edge for 1< i <k.

If Gy = (V5 Eq) and G, o> (V,E,) are graphs, Gy 1s a subgraph

of G, if V, © v5 and BC E, . If G = (Vos En) 1s a graph and

V, €V, , the graph G; = (Vi Ep) where Ey = E,N {{v,w]} | v,we v1 is

the subgraph of Gy induced by the vertex set V, - A clique 1s a graph
in which an edge joins every pair of distinct vertices. A graph is

connected 1f every pair of 1ts vertices are joined by a path, The

- connected components of a graph are 1ts maximal connected subgraphs,

Let A, B, C be a partition of the vertices of a graph G = (V,E) . We

say C separates A and B 1f no edge joins a vertex in A with a

vertex in B .

If f and g are functions of n , " f£(n) is O(g(n)) " means that

for some positive constant c , f(n) < cg(n) for all but finitely many

values of n ; " f£(n) is Q(g(n)) " means g(n) is O(f(n)) . |

A graph G = (V,E) is planar if there 1s a one-to-one map £, from

v into points 1n the plane and a map 8 from E into simple curves in

the plane such that, for each edge {v,w}e E , f,({v,w}) has endpoints

£,(v) and f,(w) , and no two curves f,({vyowy 1) , £,({Var¥,}) share a

point except possibly a common endpoint. Such a pair of maps £5 LS 1s

a planar embedding of G . The connected planar regions formed when the
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ranges of fy and £, are deleted from the plane are called the face;:

of the embedding. Each face 1s bounded by a curve corresponding to a

cycle of G , called the boundary of the face, We shall sometimes not

distinguish between a face and 1ts boundary. A diagonal of a face 1is

an edge (v,w) such that v and w are non-adjacent vertices on the

boundary of the face.
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