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1. Introduction.

Suppose we wish to solve by Gaussian elimination the system of
linear equations
(1) AXx = D
where A is an nxh symmetric positive definite matrix, x 1is an
nxl vector of variables, and b is an nxl vector of constants.
The solution process consists of two steps. First, we factor A by
means of row operations into

(2) A = IDLT

where L is lower triangular and D is diagonal. Next, we solve the
simplified systems Lz =b , Dy = z , and LTx = vy .

If A is dense (i.e., A contains mostly non-zero elements) then
the time required for factoring A 1is O(na) and the time required for
solving the simplified systems is O(ne) . If A is sparse (i.e.,
A contains mostly zero elements), we may be able to save time and
storage space by avoiding explicit manipulation of zeros. One difficulty
with obtaining such a savings is that the factoring process may create
non-zeros in L (and LT) in positions where A contains zeros.
These new non-zeros are called fill-in.

One way to reduce the fill-in is to permute the rows and columns

of A, i.e., to transform A into
(3) A' = PAP

where P is a permutation matrix, and to solve the reordered system.
Since A is positive definite, the reordered system is numerically

stable with respect to the LDLT factorization [9].



In order to characterize the fill-in associated with a given permutation
matrix P , we represent the class of matrices papT by an undirected
mf/ G = (V,E) . The graph G contains one vertex ieV for
each row (and column) in A , and one- edge {i,j}e E for each pair

of non-zero, off-diagonal elements a.. = . #0 in A . Each

a.

1] Ji
permutation matrix P corresponds to a numbering of the vertices of G ;
i.e., to a one-to-one mapping n: V = {l,2,...,n} . Corresponding to

*

the factorization PAP' = LDLY is a graph G = (V,E:;) such that
{i,J} € E: iff 1> J and the element of L in row =n(i) and column
n(j) is non-zero. See [17, 18,19, 23 1 for a discussion of the properties of

this graph-theoretic model of sparse Gaussian elimination. The following

lemma characterizes the fill-in E; associated with an ordering g .

Lemma 1 [19]¢  Assuming no cancellation of non-zeros in the
factoring of PAPT o vy wle E:: iff v # w and there is a path

V = Vy;Vps. .03V =W such that n(vi) < min{n(v),n(w)} for 2 < i <k

The running time and storage space required by sparse Gaussian
elimination are fun;tions of m , the number of non-zeros in L , and
of d(i) , the number of edges {i,j} in G; with n(i) < n(j)

Note that d(i) is the number of non-zeros in column i of L (and
T n-1

row i of L ), and that m = 25 d(i) . For purposes of analysis
i=1

and implementation, we can divide sparse elimination into the following

four steps.

*
7 The appendix contains the graph-theoretic definitions used in this
paper. It also defines the " 0" and " Q" notations.




Step . Find a good ordering = .
The time and space required by this step depend upon the method
used.
Step 2. (Symbolic factorization.) Compute the non-zero positions
in L, assuming no lucky cancellation of non-zeros.
Time: O(m) using the algorithm of [19].
Space :  O(m) .

Step 3. (Numeric factorization.) Compute L

n-1
Time: O( 2 d(i)(d(i)+3)) using an algorithm such as
i=1

described in [6,12,20,23]. The number of multiplications

-.

performed during this step is

roj+

n-1
2 a(i)(a(i)+3) [18l.
i=1

Space: O(m) ,
Step 4. (Backsolving.) Solve Lz =b , Dy = z and LTX =V
Time: o(m) [18].

Space :  O(m) .

The reason for separating the factorization into two steps (symbolic
and numeric) is that all known methods which compute the numeric factorization
%ithout first finding the fill-in positions have a time bound for overhead
which is more than a constant factor greater than the number of multiplications.
If the system of equations is to be solved for only one right-hand side b ,
it is possible to combine at least part of Step 4(solvinglz=b and
Dy = z ) with Step 3.

The efficiency of sparse Gaussian elimination depends upon Step 1;

that is, upon finding an ordering n which reduces the size of the

n
fill-in m and the multiplication count % 2 4a(i)(a(i)+3) . Finding
i=1



such a good ordering for an arbitrary graph seems to be a very hard,
perhaps even NP-complete problem. However, for some special cases
good ordering schemes are known. One such scheme is the nested dissection
method of J. A. George [11], which allows the solution of systems whose
graph is an n = kxk square grid graph in 0(n3/2) time
and O(n log n) space. George's scheme uses the fact that removal of
O(k) vertices from a kxk square grid leaves four square grids, each
roughtly k/2 xk/2

In this paper we generalize George's idea. Let S be a class
of graphs closed under the subgraph relation (i.e., if G2 e S and @

1

is a subgraph of G, then Gye S ). The class S satisfies an

f(n) -separator theorem if there are constants ¢ <1, B > 0 for

which any n-vertex graph G in S has the following property: the
vertices of G can be partitioned into three sets A, B, C such that
no vertex in A is adjacent to any vertex in B, |A|, |B| < an,
and |C] < Bf(n) . Cur main result is that all systems of equations
whose graphs satisfy aJ;'—separator theorem can be solved in O(n5/2)
time and O(n log nx space using a "divide and conquer" [1] method to
generate the ordering. From separator theorems proved in [15], we obtain
a method for solving any system of equations whose graph is planar or
.almost-planar in 0(n3/2) time and O(n log n) space. Such systems
arise in the solution of two-dimensional finite element problems [24],
Section 2 presents these results.

More generally, divide and conquer gives a good ordering scheme for

any class of graphs satisfying an f(n) -separator theorem; the fill-in

and multiplication count produced by the ordering depend upon f(n) ,




At the end of Section 2 we list fill-in and multiplication bounds for
various values of f(n) other than f(n) = J; .

Section 3 presents some relationships between Gaussian elimination,
good separators, sparsity, and random graphs. We give a lower bound on
the cost of Gaussian elimination in terms of the size of separators in
the problem graph. We prove that graphs with good separators are sparse.
Finally, we show that almost all sparse graphs have no good ordering for
Gaussian elimination. Section 4 discusses the significance of the results

in Sections 2 and 3.



2. Generalized Nested Dissection.

Let S be a class of graphs closed under subgraph on which
a \/; -separator theorem holds, let Q, B be the constants associated
with the separator theorem, and let G = (V,E) be an n-vertex graph
in S . The following recursive algorithm numbers the vertices of G
so that sparse Gaussian elimination is efficient. The algorithm assumes
that £ of the vertices of G are already assigned numbers, each of
which is greater than b , and that the remaining vertices of G are

to be numbered consecutively from a to b

Numbering Algorithm.

If G contains no more than nj = (B/(l-a)e) vertices, number
the unnumbered vertices arbitrarily from a to b . Otherwise, find
sets A, B, C satisfying the '\/; -separator theorem. Let A contain
i unnumbered vertices, B contain j unnumbered vertices, and C
contain k unnumbered vertices.

Number the unnumbered vertices in C arbitrarily from b-k+1
to b . Delete all edges with both endpoints in C . Apply the
algorithm recursively to the subgraph induced by BUC to number the
unnumbered vertices in B from b-k-j+1 to b-k . Apply the algorithm
recursively to the subgraph induced by AUC to number the unnumbered

vertices in A from a = b-k—-j-i+l to a+i-1 = b-k-j

If G initially has no numbered vertices, then applying this
algorithm to G with a =1, b =n , and { = 0 will number the
vertices of G from 1 to n . We are interested in three properties
of this algorithm: its running time, the size of the fill-in produced
by the ordering it generates, and the multiplication count of the generated

ordering.



Theorem 1. Suppose that a vertex partition satisfying the '\/r-1 -separator
theorem can be found in O(mtn) time on an n-vertex, m-edge graph.

Then the numbering algorithm requires O((mtn) log n) time.

Proof. Let t(myn) be the maximum time required by the numbering

algorithm on any graph in S with n vertices and m edges. Then

) tmn) < . ¥ if n<n

1 o’

t(m,n) gcg(nrfn) + max{"c(ml,nl) + t(m2,n2)} otherwise,

2
where ny = (B/(l-OC)) and the maximum is taken over values of m o nl B

m, > N, satisfying

(5) m+m, < mo,
n < n1+n2 < n+B'\/.I.1_ , and
(1-)n < n,n, < m+pn .

A proof by induction similar to the one below for the fill-in

bound shows that t(m,n) is O((m+n) log n) . O

Theorem 2. Let G be any n-vertex graph numbered by the algorithm.
The total size of the fill-in associated with the numbering is at most

c5nl’og2 n + O(n) , where

(6) es = 82(1/2 + 24 /(1 V) / Log, (1/)

*
il Throughout this paper, c, CyrCyree. denote suitable positive constants.



Proof. Suppose the recursive numbering algorithm is applied to an n-vertex

graph G with { vertices previously numbered. Assume n > n, and let

A, B, C be the vertex partition generated by the algorithm. If C
contains k unnumbered vertices, then the maximum number of fill-in

edges whose lower numbered endpoint is in C is
(7) k(k-1)/2 + ki < 62 n/2 + B l’\/;

By Lemma l, two vertices v and w are joined by a fill-in edge
if and only if there is a path from v to w through vertices numbered
less than both v and w . Thus no fill-in edge joins a vertex in A
with a vertex in B . Let f(f,n) be the maximum number of fill-in

edges whose lower numbered endpoint is numbered by the algorithm (and

not previously numbered). Then
(8) £(4,n) < n(n-1)/2 if n<ng, end
f(4,n) < 32 n/2 + B tn 4 max{f(ll,nl)+f(£2,n2)}
otherwise, where the maximum is taken over values satisfying
(9) gty < avepdn
n < n1+r12 < n+BV;. » and
(1-a)n < n,n, < an 4 B'\[; .
We claim that for all n > 1,
(10) f(4,n) < e;n log2 n + cht'\/; + el log, n + c6n-c7x/;1- log, n ,

3

where

&



gP11/2 + 2va/(1-4a)] / Log,(1/a)

(ll) c3 =
e = 8/@-k)
e = cB/ [2Wa log,(1/a)] , and

g and c7 are suitably large positive constants, to be

chosen later.

We have attempted to minimize 03 s ch , and c5 in this bound, but

have chosen s and c7 to make the proof easy, The theorem's bound on

fill-in size follows from the claim.

-

Proof of claim. Let

(12) g(i,n) = c5n log, n + ch/E * cgl log, n and
h(n) = c6n-07«/‘-r; log2 n

We prove the claim by induction on n . Assume h(n) > n_?/Q , Where
n3 > n, is a value to be chosen later. Then n < 5 implies

£(2,n) < n(n-1)/2 <_n§/2 < h(n) < g(4m)+h(n) .

Let n > n and suppose the claim is true for values smaller than n .

3

2 .
Then  f(4n) < B n/2 + B 1'\/; + f(ll,nl) + f(ze,n for suitable values

o)
Of il 2 nl J 12 J ne .

Let € = (l—Oi-B/«/nO+l) . Since '\/no+l > ‘\[I-l.; > B/(1-a) , we have
O£+B/'\lno+1 < 1, and € > 0 . Thus ny,n, < On+ B«/E < (oc+5/&)n <
(l-e)n < n , and the claim holds for n; and n, by the induction

hypothesis.

10



Hence

(13) f(l!n) S ﬁen/2+B 1'\/;1- + g(ll,nl)+g(£2,‘n2)+h(nl)+h(n2)

< p®n/2+pavn

+ Loy (n+pan) + o (2+284m )] Logy(om+pwn)
+ ¢, (1+2p4n) Jom + 843

+ h(ny) +h(ny) .

Now
(14) logy(am+pVn) = log2 n 4 log, & + log,(1+p/(avn))
< log2 nt+ log2 o +(plog, e)/(@n )

since loge(l+x) < x for x < 0 .

Also
(15) om+pa < Jam+p/(24G)

Substituting into the bound on f(f,n) , we find that

(16) £(en) < 52 n/2 + 51«[5
+ (c3n+csl)[log2 n+log, o+ (B logge)/(a'\/.ﬁ)]+(%+2c5)6\/-r; log2 n
+ ¢y (1+2pan) [Wom 4 g/ (24a)]
+ h(nl)+_h(n2)
< c3n log2 n
+p° n/2 + 0 log2 &+ 2ch3~/5n

+ pan + o s

11



~+

c5£ log2 n

£ log, @ + ¢, B l/(2‘\/a)

~+

%

+

(58 log, e)Vn/a + (cgp Llog, e) £/ (Am )
+ (03""205)i3 \[)f-l log, n + 2¢) 52*\/;/(2'\/5)

-+

h(nl) +h(n2)

S ¢y log, nt c fNn + c5£ log, n+08\/;1- log, n+h(nl) + h(ng)
by the choice of e 2y andc5 , Wwhere
2
(17) cg = (e5+c5)p(log, e)/a+ (o +2c5)p+2e, p°/(240x)
All that remains is to show

(18) h(n) > n§/2 for 1<n , and

h(n) ZCB'\/; log, n + h(n;) + h(ny) for n > ng
and. anyn,, n, satisfying
(19) n < g.tn, < n+gyn  and

(l"'a)n S nl, n2 _<- an + B’\/; .

Choose 1’13 such that

(20 )- ng > 1 and

28 log, e < (y-1) log, ng -y logg(l/(l-a)) ,

where y =+ V1< . Let cg=v-1- (y loge(l/l-a) )/1o8, By

Choose s such that

(21) cg > max{ng/e , 08/(c9/ (2 log, e) - {B/Il.cg2 ng )}

12



Finally, choose
(22) c; = (eg . cgp/log, ng)/cg .
Then h(1) = cg > n§/2 Furthermore -

(23) 3% I-lj—ill %("6“/; - o log, n)

I

c6/(2\/;1') - (c7 log, e)/log2 n .

By the choice of ¢g and c7 . c6/2 > c7 log2 e , which implies

% hn) > 0 forn>1 . Hence h(n) _>_n§/2 for n > 1 .

’\/-; Z

We also have
(ek) c8'\/;1_ log, n + h(nl)+h(n2)
< CS\E log, n+ c6(n+6~/r_1)-c7(\/r-x-l +«/;1-;) log,((1-a)n) .

For fixed nl+n2 , the function *\/nl + '\/ne is minimized when one

n is as large as possible and the other is as small as possible.

of nl ’ D

Thus

(25)  Anp +am, > Nom @ > pn

Hence

(26) cgVn log, n + h(n;) + h(ny)
< cs'frT log, n + con + c65\/l;1' -c76 \/r’;—(logz n - log, (1/ (la))

> c6n—c77'\/;1- log, n+c8«/rT log, n+c65\/; + c77«/;1_ loge(l/(l-a)).

By selection of c7 s

13



(27) 7 _ (cg + cgp/logy n5) / (7 ~1-y logy(1/(1-®))/Log, n,)

>(eg* cgp/log, n) / (r - 1- 7 log,(1/(1-2))/log, n)
ifn> n3 . Thus

(28) ¢y (y ~1-9v loge(l/(l—oz) )/log2 n) >cg + cgB/log, n and

_c7«fr-1 log, n Zc8x/ﬁ log, n+ c65»\/'ﬂ -077»\/?1 log, n+ e v log, (/(1-@) ) .

This means
(29) 08'\/?1 log, n+ h(nl)+h(n2) < c6n-c7\fr-1. log, n

This completes the proof of the claim. O

Theorem 2. Let G be any n-vertex graph numbered by the algorithm.
The total multiplication count associated with the numbering is at most

clln5/2+ 0(n(log n)g) , where

(o) ey _ B21/6 + pYR@HE/ 1+aG) + oy (1)) / (1ol )) / (1)
with & = /24 (1-0)3/2 .

Proof, Consider the number of multiplications associated with the
ordering. The number of multiplications associated with a given vertex
V is d(v)(a(v)+3)/2 , where d(v) is the number of fill-in edges
whose lower-nurribered vertex is v . Thus a bound on the number of
multiplications associated with a separator C generated by one call

of the recursive numbering algorithm is

14



gan -1
(31) 2z (i+g)(ite+3)/2

i=0
p/n -1
< D (a+n)P/e+ 38°n/ut 3 8 14 /2
i=0

< ©19/2/6 « BR1n/2 + piPNn j2 + 362 n/b + 3p1an /2 .

Let q(4,n) be the maximum number of multiplications associated
with vertices not previously numbered when the recursive numbering algorithm
is applied to a graph in C having n vertices, of which [ are

previously numbered. Then

(32) a(£,n)
< n(n-1)(2n-1)/12 + 3n(n-1)/% = n(n-1)(n+k)/6 if n<n,, end

a(tyn) < B09/2/6 + gPmj2 + pPaa /e + 3eP0/h + 3p1vE J2

+ max{q(2y,n) + a(t,n,)}
otherwise, where the maximum is taken over values satisfying

t+2opdn

(33) Lty <
n < 0, < nt Bx/_r; B and
(1-a)n < ny, n, < on+pvn .

We claim that for all n >1,

(34) a(4,n)

3/2 2 2 2
< cun +c12£n+ cl3t n + clhn(log2 n)~+ c15£ log2 n+cl6£\/; »

15



where

(35) eyy _ B7(L/6 + pa[2+4a/ (1) + boy/ (1-0)]/ (-4 )}/ (1-8)
cp = BML/2 4+ 24a/(1-a)1/ (1) ,

8/[2(1-v@)] , and "

c

13 =

) 2 015 » Cig are suitably large positive constants.
The theorem's bound on multiplications follows from the claim.

Proof of claim. Let

(36) r(en) _ clln5/2 L Cpofn + 01522JE and

= 2 2
s(4,n) = clhn(logz n)~ + 0151 1og2 n + 0161«/}-1

We prove the claim by induction on n . For n < ny where n, > 1y

is a value to be selected later, q(£,n) < n(n-1)(n+h)/6 < nh(nh"l)(nh+h)/6

< s(4,n) if cq), 1is sufficiently large.

Let n > n and suppose the claim is true for values smaller than n .

Then

(37) a(trn) < 03/2/6+ g2m/2 + prPu /2 + 36%n/h + 3814 /2

+ q(em) + altym,)

55n3/2/6+ Bgtn/z + 512«/;/2 + Bszn/h + 361«/;/2
* cu(ni/zﬂlg/e) *egp(dyny + a5n,) + clB(I:QL ny "g
+ s(zl,nl)4-s(12,n2)

for suitable values of Zl r 0y 12 r By

For fixed nl+11 , the function ni/e +1;/2 is maximized when one of

2

Dy N, is as small as possible and the other is as large as possible. Thus

16
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(38) ni/2+ng/2 < [(l-oz)n]3/2+ [an+ BN[II]E/2
< 22?24 P21+ ) (a5 ))/?)
/20 (1-)3/2+ 3121+ /(v )]

A

23/21 ()2 + B/2(1 438/ (awm )]
(/24 (1-a)3/2]n3/2+ 384 n

IA

A

since B/(avVn) < B/(aWny) < B/((1-a)Wny) = 1.
Also

(39) gy + a0, < (2+284n)(an+ i)

< am+ 208>/ 2+ pynm + 287

< (1428432 o+ pom
(2£+284n )% (Wom + /(24 ))
< W P+ upVa m+ 220G /2 1 (1opim )2 B/ (2va)

7
+
s
AV
5
AN

AN

. 2 2 . . o
Letting B = (23/ + (1-0)3/ and combining the above inequalities with

the bound on q(4,n) gives

(41)  a(#n) < B2n3/2/6 + cll5n3/2 + 2¢,0Q Bn3/2 + hc1352 o! 115/2

1

+ Bgzn/e + ¢, ofm + thB«/E m

12
+ 8PN /2 + cypNa £

n 352n/h + 3cns'\/a-n+ 2c12t32n + 2c13(33n/'\/a-
+ 36!«/;/2 + leB/l'\/z + ECBBQME/«/EZ

+ cl5612/(2'\/_07 )

+ +
s(zl’nl) 3(12:1’12)

17



3/2 2
< clln 4 cleln + 0151 NG;

+ G +°18“/; + clgz2 + s(zl,nl)+ s(£2,n2)
where
(k2) Ciy = 562/h + 3CllBNE: + 2c1262 + 201355/NE; ,
cig = 3B/2 + c P+ 201362/«/5 , and

¢y58/ ()
All that remains is to show that

(43) s(tm) < g4 4 egfVn 4oy 4 s(em)) + s(g,my)

-

if Cq) 2 c15’ 6 s and n) are chosen sufficiently large. This
derivation is similar to that for the fill-in bound and we shall not

-go through it here. The claim follows by induction on n . [J

Theorem 3. Let G be any planar graph. Then G has an elimination
ordering which produces a fill-in of size c§1lCNgn+{)(n) and a
multiplication count of clln5/2+-0(n(log n)?) , where ¢s < 128.5
and 17 < 4002 . Such an ordering can be found in O(n log n) time.

Proof. By Corollary 2 of [15], planar graphs satisfy a NE; -separator
—~

theorem with a = 2/5 and B = 242 . F'urthermore the appropriate

vertex partition can be found in O(n) time. Plugging into the bounds

of Theorems 1-3 gives the result. [

A finite element graph is any graph formed from a planar embedding

of a planar graph by adding all possible diagonals to each face. (The

finite element graph has a clique corresponding to each face of the

18



embedded planar graph.) The embedded planar graph is called the

skeleton of the finite element graph and each of its faces is an

element of the finite element graph.

Theorem 4. Let G be any n-vertex finite element graph with no element
having more than %k boundary vertices. Then G has an elimination
ordering which produces a fill-in of size O(k2 n log n) and multiplication

count O(k5n3/2) . Such an ordering can be found in O(n log n) time.

Proof. By Corollary 4 of [15], any n-vertex finite element graph with

no element having more than k boundary vertices satisfies a\/;—separator
theorem with @ = 2/3 and B = 4| k/2] . Furthermore the appropriate
vertex partition can be found in O(n) time. Plugging into the

bounds of Theorems 1-3 gives the result. O

Although planar and almost-planar graphs seem to be the most
interesting case, analogues to Theorems 2- 4 hold for other classes of
graphs. For instance, the following theorems can be proved using the

same methods as in the proofs of Theorems 2 -k,

Theorem 2. Let S be any class of graphs closed under subgraph on
oj
which an n~  separator theorem holds for o >1/2 . Then for any n-vertex
o]
. graph G in S , there is an elimination ordering with O(n2 ) fill-in

o
size and O(n5) multiplication count.

The class of k-dimensional hypercubic grid graphs satisfies Theorem 6

for o= k-1/k .

19



Theorem 6. Let S be any class of graphs closed under subgraph on
o

which an n separator theorem holds for ¢ < 1/3 < 1/2 . Then for

any n-vertex graph G in S there is an elimination ordering with

. . . o
O(n) fill-in size and O(n3 ) multiplication count.

Theorem 7. Let S be any class of graphs closed under subgraph on which
a 5‘\/; separator theorem holds. Then for any n-vertex graph G in S ,
there is an elimination ordering with O(n) fill-in size and O(n log2 n)

multiplication count.

Theorem 8. Let S be any class of graphs closed under subgraph on which

o
ann separator theorem holds for o < 1/3. Then for any n-vertex
graph G in S , there is an elimination ordering with O(n) fill-in

size and multiplication count.

20



3. Gaussian Elimination, Separators, and Sparsity,

In this section we explore additional relationships between sparse
Gaussian elimination, good separators, and sparse graphs. We have shown
that the existence of good separators in a graph and its subgraphs allows
us to carry out sparse Gaussian elimination efficiently. It is natural
to ask whether the converse is true; that is, whether the existence of
good separators is necessary for efficient sparse elimination. Toprove
a result of this kind, we need a strengthened version of a lemma in [5]

Let G = (V,E) be an undirected graph with an ordering =x . Our
proof technique makes use of the following algorithm, which adds edges
to G and evéntually produces a graph which contains the fill-in
graph G* . Associated with the graph during execution of the algorithm
is a subset of its cliques, called elements. Initially the set of

elements consists of the edges of the graph.

Element Merging Algorithm.

Repeat the following step for each vertex v from ﬂ_l(h to

7 (n)

General step. Choose two elements el and e2 containing v . Add to

the graph all edges not already present which join a vertex in e
and a vertex in €, 3 simultaneously delete elements el and e, and
add a new element consisting of their union. Repeat until v is

contained in only one element. Mark v eliminated.

Let Gk be the graph existing after k executions of the general
step. We note the following properties of the algorithm, which are easy

to verify.
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(1) At all times during execution of the algorithm, every edge is
contained in at least one element.

(ii) The number of elements containing a vertex never increases.

(iii) At the end of the algorithm, each connected component of the
original graph comprises a single element.

(iv) After a vertex v is eliminated, v is contained in only one
element.

(V) An edge {v,w} is a fill-in edge if and only if {v,w} is added

to the graph before either v or w is eliminated. (In general
; *
G, properly contains Gn‘)

Property (v) follows from the definition of vertex elimination on a

graph, which models Gaussian elimination on the corresponding matrix.

'See [5)17118) 19,23 1.

Lemma 2. Let G = (V,E) be an n-vertex graph satisfying the following
property for some £ < n/5 and g : every set of vertices A such that
I< hﬂ < n-f 1is adjacent to at least g vertices in V-A . Then if

n is any ordering of V , Gi contains a clique of at least g vertices.

Proof. G must have a connected component containing at least ! vertices.
Otherwise there is a set A violating the hypothesis of the lemma, formed
as follows. Let A =@ . Add connected components to A one at a time
until A contains at least | vertices. Then A contains less than

21 < n~-{ vertices.

Apply the element merging algorithm to G with ordering n . Let
e be the first element formed which contains at least ¢ vertices. Then

e contains no more than 2/ vertices, since it is composed of two
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A

previously formed elements. Let A be the set of vertices not in e

A contains at least n-21 > and at most n-f vertices. Let C be
the set of vertices in e adjacent to at least one vertex in A . By
the hypothesis of the lemma C contains at least g vertices. When e
is formed, each vertex in C is in some element other than e by (i).
Thus by (iv) each vertex in C is uneliminated when e is formed.

By (v) the clique formed by C is contained in G; . O

A weaker form of Lemma 2 and its proof, in Which the degrees of all

vertices are assumed to be bounded, appears in [5].

Theorem 9. Let G = (V,E) Dbe a graph satisfying the hypothesis of
Lemma2. Then any ordering of V produces a fill-in of size at least

g(g-1)/2 and a multiplication count of at least g(g-1)(g+l)/6 .
Proof. Immediate from Lemma 2. [

Theorem 9 and the results in Section 2 imply that generalized
nested dissection is the best method of sparse elimination (to within
a constant factor in running time and storage space) on large classes
of graphs. For instance n = kxk square grid graphs satisfy the
hypothesis of Lemma 2 for { =n/3 and g =I7;73 [15]. Thus such
. graphs have an Q(n3/2) multiplication count for any ordering [13].
By using more sophisticated techniques, one can derive an Q(n log n)
lower bound on the fill-in for such graphs [13]. For d-dimensional

2 (d-l)/d)

hypercubic grid graphs, Lemma 2 gives an Q(n lower bound on

(d'l)/d)

fill-in and an Q(n‘5 lower bound on multiplications, agreeing

with the upper bounds in Theorem 5. See [5].
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We turn now to the relationship between good separators and sparsity.

Our first result shows that only sparse graphs have good separators.

Theorem 10. Let S be any class of graphs closed under subgraph and

satisfying an n/(log2 n)2 -separator theorem for fixed @, B . If G is

a graph in S having n vertices and m edges, then m < Gyl

Proof. Let t(n) be the maximum number of edges in any n-vertex graph
in S . Let G be an n-vertex graph in S with t(n) edges. Since S
satisfies an n/(log2 n)"ﬁ —-separator theorem, the vertices of G can be
partitioned into three sets A, B, C such that C separates A and B ,
A and B each contain no more than an vertices, and C contains no
more than Bn/(log2 n)2 vertices. Since S is closed under subgraph,
the subgraphs of G induced by the vertex sets AYC and BUC are
both in S . If |AUC|=1n; and |[BUC| =1, , it follows that

t(n) < t(nl)+t(n2) . Hence

(hh) t(n) < n(n-1)/2 if n<n,, and

t(n) < ma.x{t(nl) + t(n2)} otherwise,

‘where the maximum is taken over values 1hj, n, satisfying

(45) n < ny+n, < n+ pn/(log, n)g , and

(1-0)n < my , n, < an+ pn/(log, n)?

An inductive proof like those in Section 2 shows that
(46) t(n) <eyn - cyonflog, n o,

where Cry and Chp are suitably large positive constants. a
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Not all sparsegraphshave good separators. In fact, for fixed a, B
such that B < la! <@ <1, there is a constant c such that almost
alli/ n-vertex graphs with cn edges have no vertex partition A, B, C
satisfying |A], |B] <om, |c| < Bn., and C separates A and B
This result is implicit in Theorem 4 of [8]. It follows from Theorem 9
that almost all sparse graphs require Q(ne) fill-in and Q(n3)

multiplication count. By using a more direct argument, we can obtain a

stronger result.

Theorem 11. For all € > 0 there is a constant c(e) such that almost
all n-vertex graphs with at least c(e)n edges have a fill-in clique of

at least (l-e)n vertices for any ordering.

Proof. We first prove that almost all n-vertex graphs with at least cn
edges have the following property:
(P) If A and B are sets of vertices such that |A|,|B| > en/k and

ANB = ¢ » then at least one edge joins A and B

We prove (P) by an argument like that used to prove Theorem 4 of [8].

Consider a random graph G with n vertices and m edges, where m > cn

number of ways to choose two vertex sets A, B satisfying |A|,|B| > en/k ,

. n
ANB =@ is less than 3 . Between A and B there are at least

€ 1%2/16 potential edges. The probability that none of these edges

22
actually occurs in G is less than (l--Ec/n)€ n"/a . This, if c is

f/ By "almost all" we mean that the fraction of n-vertex graphs satisfying
the property tends with increasing n to one. We assume that each
n-vertex graph has vertex set {1,2,...,n} and that two graphs are
distinct unless their edge sets are identical. See [7] for a thorough

discussion of random graphs.
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2.2
€n"/16 - 0 as n - o, then almost all

e 2 2
€n”/16 _ _-ce'n/8 ,

n
chosen so that 3 (1-2c/n)

graphs satisfy (P). Since (1-2¢/n) choosing
c > (8 log, 3)/62 gives the result.

Now we use (P) to prove the theorem." Let G = (V,E) be any graph
satisfying (P). Consider any set A of at least 3en/lL vertices in G ,
A contains a subset B of at least en/4 vertices whose induced
subgraph in G is connected. Otherwise, we can derive a contradiction

as follows, Let A1,A2, [ ] Q@ be the vertex sets of the connected

components of the subgraph of G induced by A . Let j be

J J
the minimum index such that % \Ai | > en/b . Then Z |A;] < en/2
- i=1 i=1
J
By (P) there must be an edge joining some vertex in ) UlAi with some
1=
k
.vertex in U ]_Ai . This is impossible by the definition of the AI 'S,
i=jt

Consider any ordering of the vertices of G . Let A be the first
3en/h vertices in the ordering. Let B be a subset of A containing
at least en/4 vertices whose induced subgraph in G is connected. By
property (P) at least (1~ €/2)n vertices in V-B , and hence at least
-(1-e)n vertices in V-A , must be adjacent to at least one vertex in B ,
By Lemma 1, any pair of such vertices are joined by a fill-in edge. Thus
the .set of vertices in V-B adjacent to at least one vertex in B is a

fili-in clique of at least (l=€e)n vertices. O

Theorem 12. Almost all n-vertex graphs with c(e)n edges have a fill-in
of (l-e)2n2/2 - O(n) and a multiplication count of (l-e)5n5/6 - O(n2) ,

for any ordering.
Proof. Immediate from Theorem 11, O
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4, Remarks.

We have demonstrated the existence of an O(na/e) -time, O(n log n)
-space method for carrying out sparse Gaussian elimination on systems whose
pattern of non-zeros corresponds to a planar or two-dimensional finite element
graph. Such systems arise often in real problems. The practicality
of the algorithm remains to be tested, and the constants in Theorem 3
are large. However, we believe that the algorithm is potentially useful
for solving large systems, since the worst-case bounds derived here are
probably much too pessimistic. Experiments by George and Liu [10] with
a similar algorithm suggest that our method is practical.

It is possible to reduce the running time of our algorithm to

log, 7
o(n 2

) by using Strassen's algorithm for matrix multiplication and
factorization [3,21]. If the system of equations is to be solved for
just one right-hand side b , it is possible to reduce the storage
required to O(n) by storing only part of L and recomputing the rest
as necessary. Reference [5] describes how to achieve these savings in
the case of ordinary nested dissection; the generalization to planar and
almost-planar graphs is analogous to the results in Section 2.

Gaussian elimination can be used to solve systems of linear equations
defined over algebras other than the real numbers [2,4%,22], and the

-algorithm in Section 2 applies to these other situations. For instance,
the single-source shortest paths problem with negative-weight edges can

be solved in O(n3/2) time on planar graphs. The best general sparse

. . 2 .
algorithm [14] requires O(n~ log n) time.
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The results in Section 2 show that the existence
of good separators in a graph and its subgraphs is enough to guarantee
that sparse Gaussian elimination is efficient. Conversely, Theorem 9
in Section 3 shows that a graph for which_Geussian elimination is
efficient must have a good separator. The existence of good separators
in a graph and its subgraphs implies that the graph is sparse, but almost
all sparse graphs do not have good separators. These results suggest
that when studying Gaussian elimination, one should regard a graph as
"sparse"™ when it has good separators rather than when it has a small
edge/vertex ratio.

A number of questions remain to be explored, Can generalized nested
dissection be implemented efficiently? Is it practical? How does one
find good separators in a graph? What is a useful definition of the
“goodness” of a separator? Informally, a separator is good if it is small
and divides the graph into small pieces. We need a quantitative definition
which embodies this idea. What are the trade-offs between the size of the
separator and the size of the pieces it produces? The property of
having good separators is crucial not only in Gaussian elimination but

in many other problems [16].
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Appendix: Definitions

A graph G = (V,E) consists of a set V of vertices and a set E
of edges. Each edge is an unordered pair {v,w} of distinct vertices.
If {v,w} is an edge, v and w arekadjacent, v and w are incident
to {v;w} , and v and w are the endpoints of {v,w} . A path of
length k with endpoints Vv, w is a sequence of vertices
V = VgiVsVp seeey Vi = W such that {v;_;,v;} is an edge for 1< i <k.
If ¢ = (Vi’El) and G, = (VE’EQ) are graphs, G; is a subgraph
of G, if V¢V, and E, CE . IfG-= (Vo) Ey) is a graph and
vV, €V, » the graph G = (Vl,El) where El = Ee” {{vsw)} | viwe v 1 s
the subgraph o} G2 induced by the vertex set Vl . A clique is a graph
in which an edge joins every pair of distinct vertices. A graph is

connected if every pair of its vertices are joined by a path, The

connected components of a graph are its maximal connected subgraphs,

Let A, B, C be a partition of the vertices of a graph G = (V,E) . We
say C separates A and B if no edge joins a vertex in A with a
vertex in B

If f and g are functions of n , " f(n) is O(g(n)) " means that
for some positive constant ¢ , f(n) < cg(n) for all but finitely many
values of n ; " f£(n) is Q(g(n)) " means g(n) is O(f(n))

A graph G = (V,E) is planar if there is a one-to-one map £, from
v into points in the plane and a map f2 from E into simple curves in
the plane such that, for each edge {v,w}e E , fe({v,w}) has endpoints
fl(v) and fe(w) , and no two curves fé({vl’wi}) , fg({vé,wé}) share a
point except possibly a common endpoint. Such a pair of maps fl,fé is

a planar embedding of G . The connected planar regions formed when the
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ranges of fl and f2 are deleted from the plane are called the face;:
of the embedding. Each face is bounded by a curve corresponding to a
cycle of G , called the boundary of the face, We shall sometimes not
distinguish between a face and its boundary. A diagonal of a face is

an edge (v,w) such that v and w are non-adjacent vertices on the

boundary of the face.
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