
SU326 P30-57

A GENERALIZED CONJUGATE GRADIENT ALGOR ITHM

FOR SOLVINGA CLASS OF QUADRATIC PROGRAMMING PROBLEMS

by

| Dianne Prost O'Leary

| STAN-CS-77-638
DECEMBER 1977

| COMPUTER SCIENCE DEPARTMENT
| School of Humanities and Sciences

STANFORD UNIVERSITY

VEE

RGA

Su326 P30-57

A GENERALIZED CONJUGATE GRADIENT ALGORITHM

FOR SOLVING A CLASS OF

QUADRATIC PROGRAMMING PROBLEMS

by

Dianne Prost O'Leary*

* Department of Mathematics, The University of Michigan, Ann Arbor,
Michigan 48109

This work was supported in part by the Fannie and John Hertz Foundation,

the National Science Foundation under Grant MCS-76-06595, the Energy and

’ Research and Development Administration Contract EY-76-S-03-0326 PA #30,
and the National Science Foundation Grant MCS75-13497.

Ps

[>

£3

J

Ll
]

v.

SN

¥

; EEE
FREE

i

2

:

]

A

Il.

Ir:

#

Ll

p

.

a

v

a

4

J;

i

ABSTRACT

In this paper we apply matrix splitting techniques and a

conjugate gradient algorithm to the problem of minimizing

a convex quadratic form subject to upper and lower bounds

on the variables. This method exploits sparsity structure

in the matrix of the quadratic form. Choices of the splitting

operator are discussed and convergence results are established.

We present the results of numerical experiments showing

the effectiveness of the algorithm on free boundary problems

for elliptic partial differential equations, and we give

comparisons with other algorithms.

| ‘Hnae

-

0. Introduction

The techniques developed in [4] will here be applied

to a constrained optimization problem:

min 1/2 x TAX - xThb
X

c <x<d

where A 1s a symmetric n X n positive definite matrix.

This quadratic programming problem often arises in a form

such that the matrix A is large and has a nonrandom

sparsity pattern. The applications considered here arise

from the finite difference discretization of free boundary

) problems for elliptic partial differential equations.

Problems of this form include models of water flow through

a porous dam [2], the journal bearing[7}, and torsion

applied to a bar [3].

We describe in Section 1 a conjugate gradient algorithm

due to Polyak [18] which is suitable for this problem and

develop a modification which can exploit sparsity structure

in the matrix A. In Section 2, we give alternatives

for the scaling operator for the conjugate gradient

iteration. First some matrix theory is developed for eigen-

. values of submatrices, and then these results are used to

establish bounds on the rates of convergence of the methods

proposed. In Section 3 numerical experiments are presented

-]

which explore the effectiveness of the conjugate gradient

method with matrix splittings and compare 1t with other

| algorithms. In Section 4 we summarize our results.

We will use the following notational conventions.

Capital letters will denote matrices, and small letters

denote vectors or scalars. Components of vectors will be

indexed by small letters as subscripts, while subvectors

| will have capital indices. Superscripts will denote

iteration numbers.

| 1. Conjugate Gradient Algorithms for Quadratic Programming

The quadratic programming problem

| (1) min 1/2 xTAx - xTh
X

1 c <x <d

| with A an n x n symmetric and positive definite matrix

and b, ¢, and d given n-vectors, often arises 1n the context

of discretization of elliptic partial differential equations.

| A" solution to this problem always exists, and it 1s

necessarily unique.

"An equivalent formulation of the quadratic programming

| problem can be established through the Kuhn-Tucker optimality

| conditions [See 13, Chapter 7]. For an arbitrary x ,

let y be defined by

(2) y = Ax - b,

Thenx solves (1) if and only if for J =1,2,...,n ,

| . > 0 1f x. = c.
| 3 2 NT

| <0 if x. =d.
| Yj = tho %Xy = ds

| 1 = 0 if ec. < x. < d.

| 3 El TE: Es I

| An important special case of the quadratic programming

problem 1s the linear complementarity problem, in which

| C=0 and d =» . The optimality conditions then

| reduce to

x1y = 0 (complementarity condition)

x>0, vy>0 (nonnegativity condition) .

| The algorithm upon which we will build 1s an iterative

method due to Polyak [18]. The Polyak algorithm maintains

feasibility of the vector 1terates x (K) (1 .e.,

Cc < xk) < d) while iterating toward the proper sign

conditions on y . Given an 1nitial feasible x (0) ’

| the Polyak algorithm performs a series of nested 1terations.

| "In the outer iteration we choose a subset I of the

indices {1,2,...,n} for which the variables x, are

at their upper or lower bounds and the optimality conditions

are satisfied; specifically,

-3-

: — Pe — : | 1 1 =(3) 1 = {i: x; = cl and y; >0 J {is xi d, and Yi < 0} .

The vectorof x varlables whose indices belong to this

| set will be denoted X1 and all other x variables will

be denoted by x; . Corresponding to this choice of the

index set I , we partition and rearrange the y and Db

vectors 1nto Yi and Ys 1 and by and b 5 respectively,

and the matrix A is rearranged symmetrically. With this

notation, (2) is equivalent to

| T |

[= 7) 7) . | 7)Brr Bgg XJ Pg Ys

“The values of variables x; will be kept fixed during

the inner iteration, which will try to force all variables

| yy to be zero by solving

(4) Brg¥y = Py ~ Bgr¥r-

| A ; 1s positive definite and symmetric because it is a

principal submatrix of A , so the conjugate gradient

| method [14] can be applied to this linear system. We could

solve this system exactly if we did not have upper and

lower bounds on the variables, but because we want to

keep these bounds satisfied, we modify the conjugate gradient

| iteration. If any step in the 1teration would cause some

-4-

variable Xq with ss € J to attain or to violate one

of its bounds, the step 1s shortened if necessary to the

point where Xo attainsthebound, s 1s added to the

set I (the index set of the unchanging variables),

and the 1nner iteration 1s restarted with a new partitioning

of the matrices and vectors. Once we complete the conjugate

gradient iteration, we know that yy = 0 and

Cy < xg < dy , since the inner iteration solved (4)

without violating any constraint on Xs We then begin

a new outer iteration, choosing,as in (3), an index set

I corresponding to the current values of the variables x .

If the new index set 1s the same as the one for the pre-

ceding cycle, then the optimality conditions are satisfied,

and the algorithm halts with the solution. Otherwise a

new 1lnner 1teration begins.

Now we will state the Polyak algorithm more

precisely.

Initialization

- Choose an x?) such that c < x0) <d , and
set k = 0 .

- Set IT = {1,2,...,n} . This definition ensures that

the first halting test 1n the outer iteration will work

properly.

-5-

-

Outer Iteration

Let k =k 1 1, x) = x (k=l) (Kk) = ax¥) _ b,

and I, _, =I.

Define I, = {i: x = Cy and y 4) > 0} U
(kK) _ (k)

{i: X, = 4d; and y;’ < 0} .

If I, = I, 4, halt. The optimal solution has been

found. Otherwise, set I = I, and begin the inner itera-

tion.

Inner Iteration

, (a) Partition and rearrange the matrix system as

} (k) (k) AT
(k) Xr by Arr far

X > , bh > ’ A -
 (K) p(k) A A
J J JI JJ

with Aggy s Xx s , symmetric, and positive definite. We

initialize the conjugate gradient iteration to solve

equation (4). The sequence (23) will be our approxima-

tions to the solution vector X ge The vectors p (D) will
be search directions, and vectors r (@) will be

residuals for equation (4). Set g = 0 and

) (0) _ (k)
Z X

p(® = £0 Jp ayp (0)

-f-

-

(b) Calculate the new iterate and residual. We

compute two step parameters: Sag is the conjugate

gradient step 1n the direction p (@ , and ax is the
largest step 1n that direction which does not violate any

bounds on the variables.

3 (r (Dp (3) _ (r (D2)
“97 (Q) (q) (q) (q)

(a) (q)C.-Z. a.=2z.
— mm : JJ ‘ J J

a = min | min ,min i Do—

max 3=1,2,...,s p¥ 5=1,2,...,8 pi?
(q) (q)P. 0 P >
J J

The step taken 1s the smaller of these two positive

numbers.

a = min(a, rag.)

g (+l) _ , (q@) | p(@)
gq

(g+1) _ _ (gq) _ (q)
r =r agp

The vector vy could also be updated at this stage to

correspond to the current values x {F) and z (+1)

(c) Test for termination of the inner iteration:

If (atl) = 0 , set x \F) = 2 (a+1) and restart
the outer iteration.

-7 -

1 : (g+1

| with (d).

Otherwise, set x 1) = Z (q+1) and I =

| iis x =cq or d;} . If I= {1,2,...,n}, then
restart the outer iteration. Otherwise restart the inner

| iteration.

(d) Calculate the new search direction p (a+1) ,

| Arg conjugate to the old ones.

| (@) (g+1)
] co Bg er) (par) (ar),

q) (q) (q) _(q)
: (p rAggP 4) (x 1 x3)

: pta+l) _ (atl) + b pd)
qd

Replace gq by g+l and go to (b) .

The initialization of 2 (0) (0) (0) and g 1n

step (a) of the inner iteration, plus steps (b) and (d) with

2, = deg and (c¢) replaced by

c') 1f r'9Y) = 0 then halt with x; = z (T+)
comprise the standard conjugate gradient algorithm for

| solving the linear system (4) . The first iteration is

equivalent to a steepest descent step for minimizing the

quadratic form, and successive steps use as the search

| direction the component of the gradient which is Assy
| conjugate to all previous search directions.

!

| ~

The conjugate gradient method for solving positive

definite linear systems terminates 1n a finite number

{ (2)of iterations. Moreover, E(x'"’)} is a monotonically

decreasing sequence, where

E(x) = 1/2 (x-x*,A(x~x*)) ,

x* 1s the solution to the system Ax* = b , and the

iterates x {) are obtained via the conjugate gradient

algorithm [8]. We now show that the quadratic programming

algorithm also has finite termination.

Theorem 1 Polyak's algorithm terminates in a finite

number of iterations.

Proof: Each 1nner iteration terminates because

elther the chosen system 1s solved by conjugate gradients,

or the size of the system 1s reduced (possibly several

times) and the reduced system 1s solved by conjugate

gradients. Let XJ denote the solution to (4) for a

particular choice of the set I and values Xy - We

want to show that E(x) , the conjugate gradient descent

function for solving Ax* = Db , 1s a descent function

within the inner iteration. Now

-0~

E(x) = 1/2 (xAx - 2x'b + x*I'b)

_ T T IP |
= 1/2 (XA XS + 2x JA 1 ¥y 2x 3b)

T LT kT
+ 1/2 (XJAr Xp 2x1 by + x “b)

— — ! JE |

= 1/2 (x; X3rAg(Xg x1) }

+ 1/2 (x2 xX. — 2%b. + x*'b - x'Ta x21)ITI I ITI J JJ J

The first term, (x3=x A 5 (x=x1))/2 , 1s the conjugate
gradient descent function for solving the linear system

(4) , and the rest of the expression for E (x) 1s constant

within the inner iteration, so E (x) has been shown to

be a descent function for any inner iteration between

| restarts. But any restart of the conjugate gradient

—algorithm will preserve the descent property, so E (x) 1s a

| descent function for the entire algorithm. Thus no linear

| system can repeat once 1t has been solved in an 1nner

iteration, and since there are finitely many linear systems

(corresponding to a choice of index set and the choice of

elther upper or lower bound for each variable in it),

| the algorithm must terminate. §

Diamond's algorithm [10] is a special case of Polyak's for

| problems with ¢=0,d = o and A an M—-matrix. In that

case, the chosen system for the 1nner iteration can always

be solved without violating the constraints on x; , and

-10-

1t can be shown that the subsets I are nested:

Terr CI |

Diamond chooses to solve the linear problems in the inner

iteration by an iterative method other than conjugate

gradients.

The performance of the Polyak or the Diamond

algorithm can be greatly enhanced by improving the con-

vergence rate of the 1nner iterations. This can be

accomplished by using the scaled conjugate gradient algorithm

with matrix splittings described in [4]. In this algorithm,

we base our search direction p on M lr rather than

on r , where Md 1s an approximation to the matrix

AZZ One precaution must be taken, however. A problem
may arise 1f, in beginning the inner iteration, some

Xd 1s at its bound for s € J . Suppose, for example,

that Xs = Cg and ry > 0 . (A negative value for r

would imply that ss € I.) Then for the normal conjugate

gradient 1teration, p (0) = r (0) / SO p!?) Z 0
and the step 1ncreases Xg since the step parameter ag

1s positive. Thus the bound on Xo remains satisfied.

If we apply the scaled algorithm, however, @t re 0)
may be negative and the algorithm would not be able to

take a step without violating the constraint that Xs2 Cg -

We avoid this problem by performing one initial steepest

descent step p(® == r (00) at the beginning of each

-]1]1-

-inner iteration and then proceeding with the scaled

| algorithm.

The resulting algorithm 1s as follows

| Initialization

~ Choose an x (0) such that c <x <q, and

set k = 0 .

| Outer Iteration

| “1, k
- Let k = k+1, =) = x (K 1), g {) = Ax) ,

- Define I, = {i: x | = Cc, and yk) > 0} VU
- (k) _ (k)

| {i: x, = d; and yy; < 0} .

| If I, =I, qv halt. The optimal solution has
| been found. Otherwise, Set I = Ik and begin the inner

| iteration.

| Inner Iteration

: (a) Partition and rearrange the matrix system as

| -12-

-

(k) (k) T

LR) [I Ne I Be Ss:’ r

x {X) b (K) A A
J J JI JJ

with Arg s x s , symmetric, and positive definite.

We 1nitialize the iteration to solve equation (4). Set

(0) _ _(k)
vA = Xg

(0) _ _ (k) _ (0)
r = by - Ryr¥g Azz?

(b) Calculate the new iterate and residual. We

calculate two step parameters: 2 og 1s the conjugate
gradient, or, equivalently for this step, the steepest

descent parameter, and a ax 1s the largest step which

does not violate any of the bounds.

ST (0), (0)
° (r ar 0)

c. - 20) a. -z0)
a = min| min Lr min 3 J
max j=1,2,...,8 ry j=1,2,...,8 r 0)

r{0) 0 r (0 0 ?
J J

The step taken 1s the smaller of these two positive numbers.

a, = min(a rap.)

(1) — , (0) + aor‘?
(1) _ _(0)- (0)

r r aA 5T

-13-

| If r (1) = 0 , set x |) = z (1) and restart
] the outer iteration.

| (1) _ _ |
If {jez = cy or dj} = ¢, proceed with

| (c).

Otherwlse, set x {K) = z (1) and
| I = {i: x |) =cC. or d,} . if I ={1,2,...,n} , then
| restart the outer iteration. Otherwise repartition

] X, b, and A as 1n (a), set

2) = xg
(1) _, (k) _ _ (1)

Yr = by Arr Xt Z ’

: and continue with (c).

| (c) Initialize the scaled conjugate gradient

| algorithm. Choose M to scale the matrix Aggy , set
qg = 1, and

oD gl.

| (d) Calculate the new iterate and residual:

| a _ (a (q) _ (xD), 71 (2)
C| g cry (‘Ya pV)

|

-14-

c. - z\9) i. - z 9)

@rax © min min La , min ~
i=1l,2,...,8 Pj j=1,2,...,8 Pp

(q) « (q) J. 0 > 0
Pj Pj

9g = min(a, rap, %)
+

atl) _ p@) ag?
(q+1) _ _(q) _ _ (q)

r =r a AggP

(e) Test for termination of the inner iteration:

If (atl) = 0 , set x {F) = 2 (a+l) and restart
the outer iteration.

If {3: z AH) = C5 or dy} = ¢ , proceed with
(£).

Otherwise, set Qe) = , (a+1) and
I = {1: x (K) = c, ord.} . If I = {1,2,...,n} then

i 1 1

restart the outer iteration. Otherwlse restart the inner

iteration.

(£) Calculate the new search direction, Ass

orthogonal to the old ones.

(9) =-1_(q) _-
.) (Ay;p MT)_ (0 (aD)g-1 (g+l)
I= @ (a) r(@ 51 (@

-]15=

—

| platl) _g-1,(a+l) | bp?

Replace gq by g+l and go to (4)-

| Initialization of z (1) , r (1) and gq , plus steps

(c), (d), and (f) with ay = eg and (e) replaced by

(e'!) If p (atl) = 0 then halt with Xy = 2 (atl)
comprise the scaled conjugate gradient algorithm for

solving the linear system (4). [See 4].

| Since E(x) 1s a descent function for both the

| original conjugate gradient algorithm and the scaled

version [4], the convergence proof given above for Polyak's

algorithm applies to the modified version, too.

| One further refinement 1s possible 1n the computation.

We do not need to solve the linear systems in the inner

| lteration to a high level of accuracy, since the sole purpose

of this step is to determine the next index set I we wish

| to consider. We need only guarantee that no system will

| repeat. Thus we can work with a large error tolerance

and test whether 12a) | < €, in step (e) , rather then
whether r (atl) = 0 . This tolerance 1s refined before

| termination in the solution of the final linear system.

This device reduced the number of operations in the com-

| putation by a factor close to two 1n numerical experiments.

-16-

Thus far we have developed a finite algorithm to

solve the quadratic programming problem with upper and

lower bounds. The algorithm never changes the matrix

A and 1n fact only needs to use A to form products

with arbitrary vectors. Thus the algorithm is suitable

for sparse matrices A .

2. The Choice of the Scaling Matrix M

A remaining 1ssue 1s the choice of the matrix

M We need a scaling matrix M such that the computation

of ly can be performed easily and so that the convergence

of the conjugate gradient algorithm 1s accelerated signifi-

cantly. The convergence rate for the conjugate gradient

method applied to the linear system 1s bounded as follows:

(5) (x) < ah E(x)

where «x 1s the ratio of the largest and smallest eigenvalues

of the matrix M +72 AM “1/2 0d E is the descent function
for equation (4). [8]

We consider in this section two classes of scaling

; matrices. The first class 1s determined by the knowledge

of good scaling matrices for the full operator A , and

the second class 1s formed by applying alternate iterative

methods to the quadratic programming problem.

-17-

a

2.1 Methods Based on a Scaling of the Matrix A

Suppose that M 1s a positive definite scaling matrix

for A and that P 1s the permutation matrix corresponding

to the current partitioning and rearrangement of the linear

system:

1
A A

\ 21 Bg

There are three simple methods which could be used to

obtain a matrix M whichscales Aj; .

Method 1:

Partition and rearrange the matrix M in a

manner corresponding to the current rearrangement of A

| T
M M

pomp? — IT JI |Mrz Mig

and use Mj; as the scaling matrix M .

Method 2:

Partition and rearrange the matrix W = Mt

in a manner corresponding to the current rearrangement

of A :

T

T Wir Wir
PWP =

sr Vig

and use Wis as the scaling matrix M .

-18-

Method 3:

If a Cholesky factorization of M 1s available,

CL T
partition and rearrange the factors LL as

T T
L L L L

prrTp? = (pre?) (pLTPT) = | II il tl |Lyr Yao Liz Big

d L_ Li as Hand use 33137 S :

In actual computation, the matrices and vectors

are never physically rearranged. A vector of logical

variables can indicate membership in I or J and

can be used to ignore the appropriate matrix or vector

elements.

In special cases a single factorization of M = LL! |

| where L 1s lower triangular, suffices for Method 1.

Consider a tridiagonal matrix of the form

Mp

M)

M = |

My n xn

“10-

-

| where

| my m, |

Ma m1 My

M, = : | - ’ Oytos*...+0, =n
| 2

| m m
2

1 as Xo.

| Then M has the form

"1

2 Ms : Bs X Bs
4

| H /sxs

| where. M, has the same form as the matrix M, , but

| different dimension. So the factors of each block M,
| are the leading principal submatrices of the factors

| I. and I' of the largest matrix M. in M .
| Although Method 2 seems to be the most complicated,

1t can easily be implemented without forming M1
_ _ -1..T ,-1 _

Since Wy = (M55 My Mi7M51) , we can form vz = Wst
by solving the system

| -20-

Bu

(). (0)Myr Mig Y2 r

Thus it suffices to have a subroutine to set up the right

hand side, solve a linear system with the original matrix

'M , and pick the appropriate elements from the solution

vector y . The disadvantage of this technique 1s that it

1s much slower than the others 1f the set I has many

elements, since we must work with a full size matrix

system each time.

; We now wish to show that whenever M is obtained from

a matrix M by one of the three methods above, then the

convergence bound for the conjugate gradient method applied

to a linear system involving the matrix Asg using the

scaling matrix M is at least as good as that for the conju-

gate gradient method applied to a linear system 1nvolving the

full matrix A with scalingM . To do this, we compare

the eigenvalues of 1 la; with those of M TA and thus
get a bound on x in expression (5). For any positive

definite scaling matrix M we have the following results:

Lemma 1 Let the scaling matrix M be obtained using

Method 1 or Method 2 above. Then 1t 1s positive definite.

Suppose the dimension of M is n-1 , and let

-2]1-

Ay 2 Ay 2 eee2 A > 0 Dberootsof det(A-aM) = 0 and

x,2 %X,>. . .>%X _1>0 be roots of det(A;;=AM)= 0 .

Then Aq > Ay >A, 2A 2 LL 2A 1 2 01 2A,

Proof: M is positive definite since it is a principal

submatrix of a positive definite matrix. For the proof of

the interlacing of the eigenvalues, see Wilkinson[20, p.340]}

Lemma 2 Let the scaling matrix M be obtained using

Method 3 above. Then the results of Lemma 1 hold for it.

Proof: The main diagonal elements of the factor Lsg

.are a subset of the main diagonalelementsof L , which

are all non-zero since Lt 1s positive definite. Thus

L..L I 1s positive definite, too. To prove that the
JJ JJ

elgenvalues interlace, note that

_ T, _ -1,.-T
det (A-XM) = det (A-ALL™) = det(L "AL "-)\I) .

By the Courant-Filischer characterization of eigenvalues,

T.-1,.-T

Atl = oo max{x L AL Xe T1XTI = 1, Px = 0}
oXn

_ ne T I _
= min max{y Ay: nqlyg =1, Py = 0},0 =0,1,...,n-1

foxn !

where P 1s any matrix of the indicated dimension.

-27—

-

Suppose that Ass 1s obtained from A by deleting the k-th

row and column. Then

— oT _-1 -T. — —

Nop = min max{x3lyghgslsa®s’ nx = 1, Pxyp = 0}
oxn-1 "J

= min max{yia Yo [B% vil = 1, Py. = 0}
D y J*JJ+ T° JJ=* J ! J
oxn-1 ~J

oo T _ T _ T _ _
= min max{y Ay: vk =0,(Ly)k = 0, ||L y]| =1,Py=0}

Poxn Y

= min max{y Ay: Illy || = 1, Py = 0, e,y=0,e, Ly = 03
Foxn !

where ek 1s the k-th unit vector. Therefore, Atl SAg41 .

} Similarly,

A = max min{x L IAL Tx: IX]] = 1, Px =0}
o+1 p X

n-a-1lxn

: T T _ _
= max min{y Ay: |[|[L°y|| = 1, Py = 0},0=0,1,...,n-1

P Y
n-a-1lxn

~ ._ .T_~1 -T_ _ _

Ag = max min{x;L gy hs 55%? lx;]l = 1,Px;=01}
n-a-lxn-1 J

. T T.T

= max min{y Ay: ||LYy|| = 1, Py = 0,e,y=0,e, Ly =0}
P Y
n-o-1lxn

Therefore, A; > A_,, and the result follows. 1

-23-

: Lemma 3 If M is obtained by either Method 1, Method 2,

or Method 3, then 1f Aq and A are respectively the

largest and smallest roots of det (A-AM) = 0, and Aq and

| Ag are respectively the largest and smallest roots of

| det (A, =AM) = 0 , where the matrices M and Aggy have

dimension s , then Aq > A and ApS Ag .

| Proof: This result follows from induction using the results

of Lemmas 1 and 2. |

: Lemma 3 gives us the following result:

| Theorem 2 The convergence bound for the conjugate gradient
algorithm applied to the subproblems 1s at least as good

as that of the conjugate gradient method applied to

: the original matrix.

Thus, 1f we have a matrix M for which linear systems

Md=r can be solved easily, and M scales A well in the

| sense that the roots of det(A-AM) do not have a wide

range, then we have a good scaling operator for the sub-

problems in the scaled conjugate gradient algorithm for

1 quadratic programming.

| " The simplest scaling matrix M 1s the diagonal

: portionof A (mo = pr Mpy = 0 2,3=1,2,...,n,8#73).
It has been shown by Forsythe and Straus[12] that if A

i 1s two-cyclic, then among all diagonal matrices, this choice

~24-

-

minimizes kK 1n (5) and thus maximizes the estimated

convergence rate. Even for a general matrix A , 1t 1s

often advantageous to scale the problem in this way.

From the form of the matrix M in Method 3 , we

can see that the matrices M for Methods 1 and 3 differ

by at most a rank n—-s matrix, where s 1s the dimension

of M , and the eigenvalues of the matrix obtained by

Method 1 are greater than or equal to the eigenvalues of

the matrix obtained by Method 3 .

2.2 Methods Based on Iterative Algorithms

It has been shown before [For example, 1] that

suitable iterative techniques for solving linear or

nonlinear systems can be accelerated by application of the

conjugate gradient algorithm. We can extend this 1dea

to our problem. Define q Lp (3) by 22) _ 2 where

Zz 1s the vector obtained by applying a double sweep of

modified symmetric successive over-relaxation (SSOR)

to the linear system (4) using , (1) as the initial

guess. The SSOR iteration 1s modified so that no variable

violates the constraints. More precisely, let

ft; = by = Byr¥g

Byg = (a5) x

-95-

‘We apply the SSOR iteration to the system

Agg? = 3

| Cy < z< dg

For J = 1,2,...,8, let

| 1-1 S
Cf (4) _¢ ~ (1)
Zo Z + w(£ Lay 72 L241 6))/0q42=1 =]

| c. 1f zi < C
; J J J

z. =d. 1f 2L > d.
J J J J

2: otherwise

and for j = s,s-1,...,1, let

DG rule m1 agi c 1 el)z: =z, +twlf. -) oa:,2. - 6. 2.0/0. .
| J J J 0=1 320 g=i+1 IE J J

| c. if z2 < C.

Zz. = . if . > dd.

23 otherwise

where ww 1s a parameter such that O0 < w < 2 . Then the

result of one iteration of modified SSOR is z . The

| nonsymmetric version of this iteration (using forward

sweeps only) has been discussed by Cottle and Goheen [5].

for problems with A an M—-matrix.

| -26-

i

For the modified SSOR iteration, the scaling

operator M1 has no simple form. The matrix 1s neither

symmetric nor positive definite, and 1t changes from

iteration to iteration in the conjugate gradient algorithm.

Thus, none of the conjugate gradient convergence theory

applies. No,netheless, 1t has performed well in experiments

on elliptic partial differential equations.

As mentioned in Sectionl, for the special case in which

C =0,d==°and A 1s an M—matrix, the linear systems

| can always be solved without violating the constraints

. on Xj In this case, we can simply set

. ~ f — b
zZ. =2Z., and zZ, = Z.
J J J J

without degrading the convergence of the iteration,

reducing the matrix M + to

M 1 = w (2-0) (T-wLY) "1 (I-wn) “ip

where Ass = D(I-L-LT), LL 1s strictly lower triangular,

| and D 1s diagonal. As long as Ass 1s normalized so that
|

its diagonal elements are equal, this matrix 1s symmetric

and positive definite, and the conjugate gradient con-
|

vergence theory applies.

-27-

nu

| 3. Alternate Algorithms and Numerical Results

| Standard algorithms for the general quadratic programm-

| ing problem involve complementary pivoting and inversion Or
| factorization of submatrices of A [9,11,13,15,17]. These

algorithms may not be practical for large, sparse, structured

! matrices. For example, free boundary problems 1n elliptic

partial differential equations often give rise to irreducible

| Minkowskl matrices (M—-matrices), and at may be totally
full even though A 1s highly sparse. Successful algorithms

for this special application of quadratic programming have

| often involved some modification of the SOR algorithm.

Cea and Glowinski [3] propose a block form of the

| modified SOR iteration discussed in Section 2.2.

| Cryer [7] obtained good results with the specialization
| of this algorithm to the linear complementarity problem.

| Cottle, Golub, and Sacher[6] propose a SOR algorithm

| for the complementarity problem which uses Sacher's

| algorithm [19] for subproblems involving linear com-

| plementarity problems with tridiagonal matrices.

Cottle and Goheen [5] extend this algorithm to

| the quadratic programming problem and survey several

: alternate methods.

We now present-a summary of the results of numerical

| experiments on three groups of problems. We compare the

—-28-

performance of the algorithm proposed in this paper

with that of Cottle andGoheen's SOR algorithm

discussed in Section 2.2, since 1n experiments reported

in [5], it ranked among the most effective algorithms.

Example 1 The first problem is the linear complementarity

problemwiththe matrix Acorresponding to the Laplacian

. 5-point finite difference operator:

T -1 4 -1

-I T -1 -1 4 -1

A = ; ’ . , T = y | |
) > -1I . * -1

a —_ -1 4
. | 1 TI m? xm? mXxm

The conjugate gradient algorithm was run with scaling

matrices equal to the tridiagonal portion of A , a

partial Ln! factorization, and the SSOR operator.

(These algorithms are denoted in the tables and figures

by CG + T, CG + Lit , and CG + SSOR respectively), The

LLY factorization was chosen to be one for which L has

the same sparsity patternas the lower triangular portion of

A. The algorithm 1s due to Meljerink and van der Vorst

and 1s defined in [16]. The scaling was performed using

Methods 2 and 3 for the tridiagonal and LL” matrices,

but there was no significant difference between the

-290~

-

| performance of the two methods. The SSOR scaling was

| also performed in each of the two ways discussed in Section 2.2,
| and, as expected, there was no difference 1n performance

for this example problem. Table 1 shows the results of

| numerical experiments with randomly generated vectors

b. We present the average number of inner iterations

over five examples for the various algorithms and for

| m = 16 and m = 23 (n= 256 and 529 variables respectively).

| For the algorithms with parameter w , results shown

| are the average over w = 1.1, 1.3, 1.5, 1.7, and 1.9 .

| In all cases, the initial guess x {0 was 0 , and

| £ = 10”3 for all but the last iterations, with a

| final criteria of e = 107°

| The conjugate gradient algorithms required 5-7
| outer iterations for n = 256 and 6-8 for n = 529,

| independent of scaling. The average number of active

variables per outer iteration was s = 196 for n = 256

| and s = 435 for n = 529.

| There is, of course, a varying amount of work per

iteration depending on which scaling is used. The

tridiagonal scaling from Method 3, for example, requires

| approximately 3s operations (multiplications and

additions) while SSOR requires the equivalent of two

| matrix-vector multiplications involving the matrix Aggy

| (sx 5) . The SOR algorithm requires a matrix-vector

| -30-

=

TABLE 1 Number of Iterations fdr Example 1

BN CG with CG with CG with SOR
Tridiagonal Partial SSOR :
Scaling LLT Scaling ; Scaling Algorithm

. Method 3 Method 3 (CG+SSOR)

(CG+T) (CG +LLT)

TABLE 2 Average Number of Variables Not at

‘ Their Bounds During the Conjugate

Gradient Iteration for Example 2

Ss s/n

n c = 5 c=9 ¢c=13 | CC =5 € =9 C =13

256 185 138 109 .72 .54 .43

529 399 277 234 .75 .52 .44

900 062 473 393 .74 .53 . 44

-3]-

il

| multiplication by the entire matrix A (nxn) at every

—1teration, regardless of how many variables are at their

bounds.

It can be shown that x for the matrix A and for the

matrix M TA with tridiagonal scaling is 0 (m?) . Using

the optimal value ofw , SOR is expected to converge

in 0m?) iterations when applied to a linear system

involving the matrix A . The number of

iterations for the quadratic programming algorithm 1s

predicted well by the linear theory.

Figure 1 shows the variation 1n average number of

iterations for different values of the parameter 1n

the SOR algorithm and for conjugate gradients with

_SSOR scaling. The conjugate gradient algorithm can be

seen to be much less sensitive to the choice of w .

Example 2 This 1s a model for studying the effects of

torsion applied to a rectangular bar. Cea and Glowinski [3]

present the model for a crossection of the bar as follows

min 1/2 [[|vu|2axdy -C ff u dx dy
u £2 £2

u=0 on T

|lu(x,y) | < D(x,y,T)

where C 1s a positive constant related to the magnitude

of the torsion, D(x,y,T')1s the distance between the

-32-

a

300 T

Iterations

| SOR n = 529

200 |

| .
\ I

: “. SOR n = 256
\

\

\
\

100 AN
A

\ /

\ /

i; » | / ,
\. /

. /
N

” ”

CG+SSOR n = 256 = ——— ="

0 see ——_————-
1.1 1.3 1.5 1.7 1.9

w

Figure 1. Algorithm Performance on Example |
with Varying w .

-33-

i

point (x,y) and I , the boundary of the region f ,

andu 1s the stress function. After discretization,

| this is a quadratic programming problem. The distances

form the upper and lower bounds, the matrix A 1s taken

to be the Laplacian 5-point operator, and Db has every

| component equal to C. Figures 2-4 show the results of

| experiments with m = 16, 23, and 30 (n = 256, 529, and

| 900 respectively) and C = 5, 9, and 13. The initial guess

and the convergence tolerance were as 1n Example 1.

| Increasing values of C correspond to more varlables

at their bounds in the final solution (approximately

| 30% for C = 5, 60% for C = 9, and 80% for C = 13).

| The constraints for this problem are much tighter than those

| for Example 1, and the second SSOR scaling for conjugate
| gradients 1s not effective here.

| Figures 5-7 show the variation 1n convergence for various
| values of Ww for the SOR algorithm and the conjugate

| gradient algorithm with SSOR scaling. Results are

| similar to those of Example 1, but in this problem, where
| so many variables are at their bounds 1n the optimal

solution, 1t 1s even more important to take advantage of

| the reduction in work achieved by partitioning the system

| instead of working with the entire set of variables at

each 1teration. The average number of active variables

is given in Table 2 , and the number of outer iterations varied

from 4 to 8 for n = 256, and from 5 to 11 for n = 900.

SOR

200

/

Iterations /

/

/

| /

/

| /
T

/ CG + LL
3 /

/

/
/

100 /
/

/

’

/
”

7
~~

- -~ ~ |

a
7 oo ma===-= CG + SSOR

/ -——-
/ =

/ _ -
/ -

/ hel
7 ~~

7 |

- 0 t t +
256 529 900

n

Figure 2. Algorithm Performance on Example 2, C = 5.

=35=

| CG+T
| Iterations

| y
,

| 200 +7 cee!
y

: /

|)

i / |

/

/4

| /

| , |

| /

} J!

/

| | p

| +00 % SOR

! y
; Fd

t : 7
.

j ”

/

/

! Vs

| yp Ce =
/ mmm CG+SSOR

| _- ~~
_ |

y

| 0 | |
] x x ,

256 529 900

] n

Figure 3, Algorithm Performance on Example 2, C = 9,

| -36-

T

Iterations CG+LL

| LZ CG+T
rd

/

. 7

Cy

200 ,
/

/
4

: /
/

| /
/

. /
, |

/
/

/ |

. , |
/

/

4

100 A |
7

| /

/

/ SOR
V4 .

: /

/
/

i /
/

/ -— wn Om © wn = ES
4 mmmT CG+SSOR

0 Jo
256 529 900

n

Figure 4, Algorithm Performance on Example 2, C = 13.

-37-

[300. "

] Iterations \
. \ | SOR n = 900

| \ |

\

\
\
\ |

- \

\ |

\
200 . \

\

| \

| SOR n = 529 AN
\

| \ |
\
\

| h \

| \ /

\

| \
. \

: \

. \ 7

1 CG+SSOR n = 900 MN / ,
| a. 7

| - —=<=T ~s
CG+SSOR n = 529 TN. em

1.1 1.3 1,5 1.7 1.9

w

| Figure 5. Algorithm Performance on Example 2
with Varying ow , C = 5,

-

300

Iterations

200

\ SOR n = 900

SOR n = 529

“ /
100 /

\ /

“a | /
AN /

N | /
~ 7

> 7

CG+SSOR n = 900 Na 7
hE P

Te
CG+SSOR n = 529

0 = ————————————————————————————]———
} 1.1 1.3 1.5 1.7 1.9

w

Figure 6. Algorithm Performance on Example 2
with Varying w , C = 9.

-39-

| Iterations

I

| 100 SOR n = 900 /
| /

/

| /
s/ SOR n = 529

\ /
| \ 7

S~< =
tN ~— _ _ - CG+SSOR n = 900

| CG+SSOR n = 529

- 1.1 1.3 1.5 1.7 1.9

- N

Figure 7. Algorithm Performance on Example 2
| with Varying w, C = 13.

| ~40-

i

The typical pattern for examples using conjugate

gradients with SSOR scaling is that many restarts take

place at the beginning until a reasonable set I 1s identified.

Throughout this period then, the algorithm is equivalent

to SSOR used alone with some variables kept fixed.

Once I has stablized, few restarts occur, so the fast

convergence of the conjugate gradient algorithm can be exploited

with great effectiveness.. One of the advantages of this algorithm is that

the transition from SSOR toconjugategradientswith SSOR scaling is

1s made autanatically.

Example 3

The matrix A of Examples 1 and 2 is a 2-cyclic matrix,

and theory tells us the optimal Ww for the SOR iteration

for a linear system. The matrix in this example is not

2-cyclic. It is the discrete Laplacian g-point operator

[on -
T, T, 20 4 \J

}

fo _ |
T, T, T, , —4 20 4

0 T 1 ! I -4
2 |

IE
T T \ -4 20 |
2 1 2,2 \ | | om

-4]-

u

400

Iterations |

200 SOR

| 200 | |

100 NC /
| CG+SSOR NS _-

| 0 -—_— ——— eo
1.1 1.3 1.5 1.7 1.9

w

Figure 8. “Algorithm Performance on Example 3
with Varying w , n = 529.

: ~l2-

-4 -1

-1 -4

T, =| Co CL,

| 1 A mxm

All other features of this example were the same as in

Example 1. Figure 8 shows the results of applying the

conjugate gradient algorithm with SSOR scaling and

the SOR algorithm to a matrix of dimension n = 529

with five random vectors b . Results are similar

to Example 1, with SOR showing sensitivity to w while

the number of iterations for conjugate gradients with SSOR

scaling is relatively constant. The number of variables

not at their bounds in the final solution varied from

513 to 463 for the five problems, and the number of outer

iterations was 7 for all of the conjugate gradient runs.

4, Discussion and Conclusions

We have presented a conjugate gradient algorithm

with matrix splittings which 1s suitable for certaln quadratic

- programming problems. The performance of the method on

special classes of problems might be enhanced by preprocessing

| or by modifications to the inner iteration.

| -43-

For applications with A an M—-matrix , the pre-

processing scheme of Cottle and Goheen [5] could be

used before beginning our algorithm in order to identify

some of the variables which will be at their bounds in

the optimal solution. These variables could then be

held fixed throughout the conjugate gradient iteration.

Other algorithms could be substituted for the

conjugate gradient iteration, as long as there 1s a

descent function for the inner iteration which guarantees

that no subproblem will repeat. The conjugate gradient

algorithm is quite versatile, however, and has rapid

convergence when used with a suitable scaling matrix.

Such scalings may be chosen to be portions of the matrix

A (for example, the diagonal or band part of the matrix)

or an operator arising from application of an iterative method

- forsolving linear systems. Operators for related physical

problems may also be used effectively. For example,

a fast direct method for solving Laplace's equation

over a regular region might be used as a scaling for a

problem with a matrix corresponding to Laplace's equation

over a region which does not permit separation of variables.

The conjugate gradient algorithm with matrix

splittings has been demonstrated to have finite termination

and to be effective for free boundary problems for elliptic

partial differential equations. The method, however, requires

only that the matrix A be positive definite and thus

44-

-

has broader applications. Test results suggest that

the algorithm 1s effective whether or not the constraints

are tight.

Acknowledgements

Part of this work was completed while I was a doctoral student

of Dr. Gene H. Golub at Stanford University. I am deeply grateful

to him for his inspiration, guidance, and continual encouragement.

This research was begun at his suggestion, and he has given valuable

advice improving the work and its presentation. Special thanks go

to Mr. Lee Zukowski who prepared the figures and to Mr. Franklin

Luk for his careful reading of the manuscript.

-45-

REFERENCES

[1] O. Axelsson, "On preconditioning and convergence acceleration

in sparse matrix problems", Report CERN 74-10, CERN European

Organization for Nuclear Research (Geneva, 1974).

[2] C. Baiocchi, V. Comincioli, E. Magenes, and G.A. Pozzi,

"Free boundary problems in the theory of fluid flow through

porous media", Ann. Mat. Pura. Appl. 97 (1973) 1-82.°

[3] J. Cea and R. Glowinski, "Sur des methodes d'optimisation par

relaxation", R.A.I.R.O R-3 (1953) 5-32.

[4] Paul Concus, Gene H. Golub, and Dianne P. O'Leary, "A generalized

conjugate gradient method for the numerical solution of elliptic

partial differential equations", in: James R. Bunch and Donald J.

Rose, ed., Sparse matrix computations (Academic Press, New York,

1976) pp. 309-332. °

[5] Richard W. Cottle and Mark S. Goheen, "A special class of 1arge

quadratic programs", Report SOL 76-7, Stanford University Systems

Optimization Laboratory (Stanford, California, 1976).

[6] RichardW. Cottle, Gene H. Golub, and Richard Sacher, "On the

. solution of large, structured linear complementarity problems III",

Report 74-7, Stanford University Operations Research Department

(Stanford, California, 1974).

[7] C.W. Cryer, "The method of Christopherson for solving free

boundary problems for infinite journal bearings by means of finite

differences”, Math. Comp. 25 (1971) 435-443.

[B] J.W. Daniel, "The conjugate gradient method for linear and

nonlinear operator equations", SIAMJ. Numer. Anal. 4 (1967) 10-26.

[9] G.B. Dantzig and R.W. Cottle, "Complementary pivot theory of

mathematical programming”, in: G.B. Dantzig and A.F. Veilnott,

Jr., ed., Mathematics of the decision sciences, part 1 (American

Mathematical Society, Providence, R.I., 1968) pp. 115-136.

[10] MartinA. Diamond, "The solution of a quadratic programming problem

using fast methods to solve systems of linear equations", Int. J.

Systems Sci. 5 (1974) 131-36.

- 46-

u

‘ [11] R. Fletcher and M.P. Jackson, "Minimization of a quadratic
: function of many variables subject only to lower and upper

. bounds", J. Inst. Maths. Applics. 14(1974) 159-174.

[12] G.E. Forsythe and E.G. Straus, "On best conditioned matrices",
Proc. Amer. Math. Soc. (1955) 340-345.

[13] G. Hadley, Nonlinear and dynamic programming (Addison-Wesley
Publishing Co., Reading.Mass., 1964).

[14] Magnus R. Hestenes and Eduard Stiefel, "Methods of conjugate gradients
for solving linear systems", J. Res. Nat. Bur. Standards 49(1952)
409-436.

[15] C.E. Lemke, "Bimatrix equilibrium points and mathematical

programming", Management Sci. 11 (1965) 681-689.

[16] J.A. Meijerink and H.A. van der Vorst, "An iterative solution

method for linear systems of which the coefficient matrix 1s a

symmetric M-matrix", Math. Comp. 31 (1977) 148-162.

[17] W. Murray, "An algorithm for finding a local minimum of an indefinite

kK quadratic program", Report NAC 1, National Physical Laboratory
(Teddington, England, 1971).

. _ [18] B.T. Polyak, "The conjugate gradient method 1n extremal problems",
U.S.S.R. Computational Mathematics and Mathematical Physics 9
(1969) 94-112.

[19] RichardS. Sacher, 'On the solution of large, structured linear

complementarity problems II", Report 73-5, Stanford University
Operations Research Department (Stanford, California, 1974).

[20] J.H. Wilkinson, The algebraic eigenvalue problem (Clarendon Press),
Oxford, 1965).

- 47 =

®

