
|

A BLOCK LANCZOS METHOD TO COMPUTE THE SINGULAR VALUES AND

CORRESPONDING SINGULAR VECTORS OFA MATRIX

by

Gene H. Golub, Franklin T. Luk, and Michael L. Overton

| STAN-CS-77-635
OCTOBER 1977

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNIVERSITY

f

[

|

|

|
!

|

|

i

|
b

|

|

a

A BLOCK LANCZOS METHOD TO COMPUTE THE SINGULAR VALUES AND

CORRESPONDING SINGULAR VECTORS OF A MATRIX

*

Gene H. Golub, Franklin T. Ink, and Michael L. Overton

Stanford University

ABSTRACT

We present a block Lanczos method to compute the largest singular

values and corresponding left and right singular vectors of a large

sparse matrix. Our algorithm does not transform the matrix A but

accesses 1t only through a user-supplied routine which computes AX

or atx for a given matrix X.

* This paper also includes a thorough discussion of the various ways

to compute the singular value decomposition of a banded upper triangular

matrix; this problem arises as a subproblem to be solved during the

block Lanczos procedure.

Key Words and Phrases: Block Lanczos method, singular values, singular

vectors, large sparse matrix, singular value decomposition, banded

upper triangular matrix.

CR Categories: 35.14

*]
Research supported in part under Army Research Grant DAHCOL-T75-G-0195
and in part under National Science Foundation Grant MCST75-13497-A01.

3

;
a

.

'

a

1. Introduction

| In many applications, we wish to solve the following problem:
Compute accurate approximations to the g largest singular values

| and corresponding left and right singular vectors of a large sparse

| mXn real matrix A, where gg is much less than both m and n.

| Problems of this type frequently occur in factor analysis, regression,

and image processing (see Golub and Luk [5]).

The matrix A 1s too large to be stored in core as an m X n

array, but since 1t 1s sparse 1t can be stored in packed form, e.g.

by storing only the row index, column index and value of each non-zero

element. When A 1s stored in this way it 1s not practical to apply

| transformations to A but matrix products AX or Ax for a given

matrix X of much smaller dimension than A can be performed very

efficiently. Thus the usual algorithm for computing singular values

by transforming A (Golub and Reinsch [6]) is not practical for large

sparse matrices. We propose a block Lanczos algorithm for solving such

problems. Our algorithm does not transform A. It accesses A only

through a user-supplied routine that computes AX or Ax for a

given matrix X.

;

a

2. Algorithm

We restate our problem: we have an mX n matrix A, where m > n,

and we wish to compute the g largest singular values and corresponding

vectors of A, assuming that the h (h<g) largest singular values and

corresponding vectors have already been computed to some known accuracy.

We discuss an idea of Lanczos [7]; the matrix (.) has for
its non-zero eigenvalues the positive singular values of A, each

appearing with both a positive and a negative sign. If u, and Vv, are

the left and right singular vectors corresponding to the positive singu-

lar value oy of A, then (>) and (*) will be the eigenvectors
vd -v./,

0 A

corresponding to the eigenvalues ©. and -0,, Tesp., of ()
Our problem can therefore be regarded as computing the g largest

eigenvalues and eigenvectors of (.): when the h largest eigen-
values and eigenvectors are known to some good accuracy.

We shall use the Euclidean norm for vectors and the Frobenius norm

for matrices, viz.

bel = lel, = (2 £)Y for x = (xppeeern)?’ *=1

Wi-tlp (5 5 of) corn -ay)Ff Nia 421 5) +

2.1 Restricting A to a Subspace of Interest

Let 0, 2 0, 2.me 2 Gp be the h largest computed singular values

of A and let Xs and YX, be matrices whose columns are the computed

left and right singular vectors, resp., such that XX = I and

2

Y= I. We desire accurate approximations to the (g-h) largest
= ~ tt

singular values and vectors of A, defined by A = 1 XX) A(T _y ¥)
so that the left singular vectors of A are orthogonal to the columns

of xX and the right singular vectors of A are orthogonal to the

columns of To This restriction 1s necessary because our algorithm,

if applied to A without taking the already computed singular vectors

into account, will recompute the same largest singular values of A.
O A

We can exploit Lanczos's idea and examine ()- We can showA” O

0 A 0 A

that (4) 1s the restriction of £) to a subspace that isA” O A- O

Xo Ln

orthogonal to the space spanned by the columns of)Y -Y
0) o

Let xy and Ty be the matrices consisting of the orthonormal

vectors that are orthogonal to the subspace spanned by the columns of

X and Y , resp. . Define
0 0

X X X
1 0 o) 1

2 YT -¥ Ty

Note

el
t 1

QQ a) 21) = 1.21

Consider

B = Q () QAY oo

= C +A

where

3

—

(0Cc = 1, t,t t) ¢0 F(yATx, + X AY,)

v6ax0 + xtavo vtatxo - xPay
1 0 "0

A — 5) 3t,t t t,t t
- + - -

YA X, X AY, YA X X AY,

and

/ 0 0 ed + X AY,
I t,t t

A= A 0 0 YAK + int.t t t,t t

TA Xx + X AY YA xX - X AY 0

Note

t t

A= —2 (= 2)) 1 (=)af 5 t t + ~ ?
2 xX -Y A 0 V 2 po -Y

and

0) A1,.t,t t 1 tt 1 (XK

Lybaby + afar)= =) () += (|SAX + GAY Va 5h Soo) Vo v,

Since B 1s similar to A, they have equal eigenvalues. By the

perturbation theory for symmetric matrices [14%, Chap. 2], the eigen-

values of C differ from those of B (and hence A) by amounts that

are bounded by ||a|l.

Assume

0 A X x Xx, Xx
£ = 2 +R ,

A 0/ \Y -Y Y -Y
0) 0) 0 0

4

)

where

[91

.
2 = “91 ’

Lo

and

ne(B aE.°° Ay “fq cc pix

Then

0 A X X
t t o} 0

1 LNA o/ \y ~Y
Oo oO

X X 3
ob t 0) 0)

oO "To

t

= (X YOR .

Now

1,,.t.t t tt tt

all = STA + X)AY Y ATX - X AY)

Bed d(C) 2)A o/\NY_ -Y_

1, .t t

1, t

<slx y IR]

= 7 IR]2

9

;

If all the Ig | and In; were small, then ||4|] would be
small also. For example, if

= €

and

[In = 5, ’

then

h h
2 2y —

IR = V2 (© e; + IT 8) =4/2'¢
i=1 i=l

and

jal= + V2e=e ;
Ve

thus the eigenvalues of C will differ from those of B, and hence

A, by quantities that are less in modulus than E€.

We see, therefore, that the (g-h) largest eigenvalues of

0 A 0 A

_t) approximate the (h+l),(h+2),...,g eigenvalues of :)A 0 A 0

by errors less than €.

2.2 Block Bidiagonalization

Let us describe a block Lanczos algorithm that computes a block

bidiagonal matrix. We shall call this matrix 5 5) , where s 1s
S

the number of blocks and each block 1s of order p. Then ot) has

order ps (where we assume Ds < n). We shall show in section 2.3

that the p largest singular value of As) are usually good approxi-

mations to those of A.

t

We start with an arbitrary n X p matrix Q such that QQ = I,

and perform a QR factorization of the product Aq:

6

where Py is an m X p matrix such that PIP = I, and Ay 1s a
Pp X p upper triangular matrix. Our algorithm continues with

_ st t
QB;1 = AP) m QB,

and 1 =2)0 5000, 8,

PA := AQ -P, BC.
ii TM i-17i-1 7

‘where QB, 1 and PA, are the QR factorizations of the respective

right hand sides, 1-e.

Q ls an n X p matrix such that aa, =1,

Py 1s an mX p matrix such that PP, =I,

and both B: 1 and As are p X p upper triangular matrices.

Thus ,

A B-
1 71

Ne
- Ay Bp

O As-1 Bs-1
A
S

and | t
P A. B
1 1 1

t A BY O)P_ ry 2 2 = (s
2 A(Q,Q,5-++,9,) — = J ,

3 : J J t

\ y) 0 As-1 5-1t

P As

| a

provided that P,P, = 0 for if j. In order to show this we first
note that

P} 0 AB
1 °. °.

Py ¥ O “apt
. s-1 “s-1

PC 0 |fO E\/P, P, . +P 00 ®e0 Ag
S 12 S I

LI \gt 0 0 «-0 a) | & ’
0 Q 0 QQ, d

t | t

0 Qf By A; O

0 | Bs_1 Ag

t

0 a’ 0 A
t

0 |

py 0 \ Ay By

0 ob BLO a
2 lo AE\/0 P, O P_ +++ 0 P Ay©

t 1 2 S — - Ly Lg
Pg 0 —t - . ® . °
Ce A 0 Q, 0) Qs O ee Q 0 ec eo .
A = B O A

s-1 S

\ 0 qf
S A 0

pt 0
S

) _So our algorithm to generate the block bidiagonalmatrix ()s from A

1s equivalent to the ILanczos algorithm (Underwood [12]) to generate a
0 A

block tridiagonal matrix from the symmetric matrix (..) FromA” 07.

[12, pp. 47-51],it follows that

0 P 0) P 0 P

()()() ()()(), , 5 yeeey , form a sequence of

Q 0 Y 0 Qq 0

orthonormalmatrices. Therefore {P.] and {Q;} are two sequences of
orthonormal matrices.

The restricted matrix A is not readily available. We wish

8

to work with the original matrix A. Consider

(; ')i ©

t tT t tT

-{1- 1 (°) 1 (2 HE I:- 1 (*%o °) 1 (: 2)}NY OE t Ao \ yb otVe Y,-Y /Va\x’ -v’ A° © Vay -x_ Ve X, -Y.
t t

- - 0

_ (" XX’) 0 I)" XX))tA t ’

0 (I-Y Y’ 0 0 (I-Y Y_)

0 Py 0 Py

and the fact that () seen ()() all belong to theQq 0 _ Q 0
O A 0)

Krylov space* generated by _t and J+ We conclude that we
A” O Q

_ 1
may replace A by A in our algorithm if we orthogonalize the P.'s,

1 <1i<s, with respect to Xx, and the 95's, 2 < J <s, with respect

to Yo:

Algorithm

t+

Start with an arbitrary n X p matrix Q such that QQ, = I.

Compute

Py : = AQ,

and

P. i= (I-X X°)P
1 ool °

Factorize P, such that

*

The Krylov space generated by A and X is the space spanned by

A t _ B \NPjA;:= Py, where PP;= I andA, = {\}

FOr i = 20500048

(1) Compute

«a _t t
Q AFP Rha

and qd. := (I-TY°)
i’ oo’7i

Factorize i such that

ii-1 i’ ii i-1

(2) Compute

P. := AQ, - P, |B
A | i-1"d-1

and P. .= (I-X X°)Pi oo’"1i °

Factorize b, such that

PA, := P where PUP, = I and A; = {\}.x ls i’ ii i

2.5 Error Bounds

| | (5)We give a theorem to show that the singular values of are

usually accurate approximations to those of A.

Theorem

Let 0y > 0, > . em > 0 20 be the singular values of the mX n
/

- S

restricted matrix A and let bys > o\® > oom 2 ols) > 0 be the
singular values of the psX ps matrix ss) generated by the block

t

Lanczos algorithm. Let T be the smallest singular value of V5

10

where Qq is an n X p starting matrix for the Lanczos algorithm
| t. : ; A

| such that QQ =I and vy is an n X p matrix consisting of the
right singular vectors corresponding to the p largest singular values

of A. We assume T > 0 and we see T < 1 since viv, = I. Then
for k = 1,2,...,p, we obtain

2 (s)
kT %S% =%

where

2 tant e
x = (oy+0y) EE ’

Tog (==)
| 2s=-1 1-7

0 = cost T

, "kpT= 4 J

k 03. T04

and Tog 1 is the (2s-1)-th Chebyshev polynomial of the first kind.

Proof

Since the largest singular values of a matrix B are minus the
O B

smallest eigenvalues of (+) we obtain the desired result byB® O oO A

applying Underwood's theorem [12, pg. 37] to (.)A” O/.

We consider an example that shows how a proper choice of the block

)
size p reduces the error bounds, and how 0°”, 1 < 1 < p, generally
approximates 045 1 <i<p, well even for a small s.

: Let 0 = 1.0, Oy = 0.9, 03 = 0.5, and? = cos 0.1. Let

ps € 10. We shall see in section 3 how the available computer storage

places an upper bound on the value ps. If we choose p = 1, s = 10,

th
en 11

| n

2 1-0.1°
tan ¢ = —5 = 00 ,

O.1

1 = FT.0) = 0

1+. .
1-7, = 1.105 ,

7, (1.105) £ 2.8 x 10°
19) ’

and 2: —= x90 = 2.5 X 1077 5
(2.8 x 107)

whereas 1f p = 2, s = 5, then

1.0 = 0.5

7W=T 0+ T.0=0%>

0.9 = 0.0 4 21
2=p5—75 1% .°

M7 1.85. 6
1-7; 0.75 Uh

We an 5
1-7, 0.79] ’

«hk

To(1.53) £ 3.7 x 10°,
and

2 2X 00 -6
€ = ——g =2 0 x 10 ,

10

es Ser: L 1.4x 10-5(3.7 x 107)

We see that for the block method, we can expect a more accurate

12

u

approximation to C4 and we note that 05 is computed to the same

accuracy as og, when p = 1.

2.4 Reorthogonalization

We have shown that the {P.} and {Q,} are two sequences of

orthogonal matrices. But the property holds only in exact arithmetic.

In practice, the two sequences lose orthogonality very rapidly due to

cancellation errors in the Lanczos steps:

4; i= £'By) - QA)
{ 2<1<s .
I I

A remedy is to reorthogonalize P,(Q;) with respectto P,(Q;), J <i,
| as soon as P,(Q;) is computed.

The loss of orthogonality does not have adverse effects on the

accuracy of the computed singular values (Paige [8]). Rut their multipli-

| cities are questionable because once orthogonality 1s lost, the Lanczos

method essentially restarts and recomputes the singular values that it

has already computed. Reorthogonalization apparently stabilizes the

Lanczos process but 1ts cost in machine time 1s high. The cost in

storage may even be prohibitive, for all the {P,] and {Q,] must
now be stored in core. The Lanczos method without reorthogonalization

allows us to keep only the most recently computed P, and @Q in

memory and store the others on disk or magnetic tape.

Partial reorthogonalization, 1.e. reorthogonalization of P,(Q;)

with respect to only some of the previously computed P,'s (Q's),

looks promising too. It appears that just reorthogonalizing P,(Qy)

13

with respect to P, 109 4) may reduce the effects of cancellation

| errors present in the computation of P.(Qy) and help preserve
| orthogonality at a very low cost 1n machine time and storage.

We have tacitly assumed that we can carry out the Lanczos iterations

fors steps. Clearly this may not always be the case. We decide

to check the length of each column of P;(Q;) as soon as 1t has been
generated in the QR factorization. If a column has a Euclidean

length less than some tolerance, chosen 1n the program as the square

| root of the machine precision, 1t 1s set equal to the zero vector. We
thus eliminate the errors caused by normalizing vectors consisting of

numerical roundoffs to unit Euclidean length.

Before a Lanczos iteration begins, our program checks the starting

matrix Q for columns of all zeros. It first replaces any such

columns with columns of random numbers and then orthonormalizes the re-

sultant matrix. In this way, our program can restart itself even after

linear independence has been lost. Since the work to check for columns

of all zeros 1s prohibitive, we check for zero singular values computed

in the previous iteration instead, assuming that they are caused only

by columns of all zeros. Since our problem is to compute the few

(usually < 10) largest singular values of a matrix of large order

(usually > 1000),it is extremely unlikely that a desired singular value

1S zero.

2.0 Computation of Singular Values and Vectors of Se)

We now wish to compute the singular values and vectors of the

ps X ps block bidiagonal matrix 58),

£88) (8)® _ (8)

14

|

In the rest of this section we shall omit the superscript s. from

5s) and denote its order by t = ps. Since the p X p blocks which
form the block diagonal of J are upper triangular and the p x p

blocks which form the block superdiagonal are lower triangular, we see

that the blocks all fit together to form an upper triangular band

| matrix , dense within the band and with bandwidth (number of super-

diagonals) equal to p. The rest of this section treats the problem

of computing the singular values and vectors of an upper triangular

band matrix J. The case where the vectors are not required is also

considered since this section may be useful outside the block Lanczos context.

| The method consists of two phases. The first phase reduces
J to bidiagonal form by a finite sequence of orthogonal transformations.

: The problem of doing this efficiently 1s the main subject of this

section. The singular values of A are preserved under the trans-

formations. The second phase reduces the bidiagonal form to diagonal

form by a modified version of the QR algorithm. This process is described

in detail in Goiub and Reinsch [6] and will not be discussed any further

here. The singular values of J are the final diagonal elements, and

the matrices of left and right singular vectors are the products of

all the left and right transformations (resp.) used in the two phases

of the reduction.

We are left with the first phase, reducing J to bidiagonal form.

The methods of Givens and Householder for reducing a full symmetric

matrix to tridiagonal form preserving eigenvalues are well known and

described for example in Wilkinson [1k]. In order to preserve eigen-

values, the same elementary transformations (either Givens or Householder)

are applied to both the left and right sides of J to reduce it to

15

tridiagonal form. A similar method for reducing a nonsymmetric matrix

to bidiagonal form preserving singular values (but not of course eigenvalues)

is described in Golub and Reinsch [5]. Singular values are preserved

when different elementary transformations are applied to the left and right

sides of A. Golub and Reinsch use Householder transformations, but Givens

transformations could easily be used instead. For the reduction of a full

matrix to bidiagonal or tridiagonal form the method of Householder is about

twice as fast as the method of Givens. Howeverin 1972 Gentleman[3] showed

how "fast Givens" transformations can be implemented. These are also described

in Van Loan [13], and it appears that there is now little difference in the

speed or effectiveness of the two methods.

Reducing a symmetric band matrix to tridiagonal form in a straightforward

manner immediately fills in the zeros off the band. Rutishauser [9] shows how

this may be avoided and the reduction completed while preserving the band

structure, using either Givens or Householder transformations. Here we describe

how. to generalize this to the reduction of an upper triangular band matrix to

bidiagonal form (in general a similar process would apply to any nonsymmetric

band matrix).

Recall that a Givens transformation matrix p 1,3) 1s given by

i J -
1

1
1 C d

1

p(i,3} = . where & + a = 1 and has the property

J -d LL
1

that 1f 1t 1s applied to J on the left then the resulting matrix

J! = pli,3); has elements different fromJ only in rows i and i,
16

a

with zeros in both rows 1n those columns where there were zeros in

both before, and, 1f ¢ and d are chosen appropriately, with its

| (i,j) element equal to zero. Let us write J = (755) J" = (744):
Then in particular we have

Vie = Vax T Wii
(L<k<t)

7 3k = dy + CY pp

SO 731 =0 if c = 7. 75s + on d = 754! V ves + nn The price
paid for the annihilation is that a new nonzero element appears in one

row wherever there was one already 1n the other. We say that row j

1s rotated against row 1 by the transformation. Similarly if p(1,J)

1s applied on the right only columns i and j of J are changed with

753 = 0 if c¢c and d are chosen correctly.
To describe the reduction process let us suppose that J 1s an

upper triangular band matrix with order t = 11 and p = 4 superdiagonals.

Then the first thing the algorithm does 1s to zero 715 by multiplying

J on the right by p(4:5) with ¢ and d chosen correctly, or in

other words by rotating column 5 against column 4. This introduces one

new non-zero element 75)" This new element 1s annihilated by multiplying

J' on the left by p(%5) that is by rotating row 5 against row 4.

This in turn introduces a new non-zero element 7lg* Two more trans-

formations, one from the left and one from the right, are now required to

completely "chase the element off theumatrix". At this point the resulting

matrix has the same zero pattern as the original matrix J except that

715 has been annihilated. Now the process is repeated for 71h and

then for 713 and then the first row has the desired bidiagonal form.

17

-

Finally, the entire process 1s repeated for every row until the

| matrix becomes bidiagonal. The method is illustrated in Figure 1. Let

us call this method Band Givens I.

Reducing the matrix to bidiagonal form in this way requires approxi-

mately — multiplications using ordinary Givens transformations, or

pte using "fast Givens", assuming 1 << p << t. This compares with

a count of approximately at? [3 multiplications required to do the

| reduction by the standard Golub-Reinsch algorithm using Householder

| transformations and ignoring the band structure, filling in the zeros off

the band. This 1s of course a big savings 1f p << t as assumed, and

furthermore only pt storage locations are required to store the band

matrix while £2 storage locations are required for the standard Golub-

Reinsch reduction. If left and right singular vectors are required

however, the rotations used in Band Givens I must be accumulated as the

computation proceeds. This requires ho multiplications using ordinary

Givens transformations or 043 using "fast Givens", as opposed to 8t 3/3

multiplications for the Golub-Reinsch reduction, so that 1f the vectors

| are required, Band Givens I still requires less multiplications than

Golub-Reinsch 1f the fast Givens transformations are used. Both methods

require approximately ot? storage locations.

There are several other possible methods to reduce J to bidiagonal

form. The method we shall call Band Givens II applies a sequence of

rotations to J as before, but 1nstead of reducing each row in turn to

two elements, 1t systematically reduces the bandwidth by zeroing each

superdiagonal 1n turn. In other words, 1n the example presented in Figure

1, after zeroing 715 and chasing it off the matrix, it next turns to

726 instead of 71)" This method requires more rotations, since the

18

FIGURE 1.

Bidiagonalizing a Pentadiagonal Upper Triangular Matrix of Order 11

| Using Givens Rotations by the Method Band Givens I

a

XX cba

| X XXX XC

CXXXXZXDb

| bxxxxxa

a xX XX XX

X XXX XC

CXXXXX

bx x xXx

| | a xX xX Xx
X X

X

STEP 1:

(1) Zero 715 and chase it a a a off the matrix:

Rotate col. 5 against col. 4 to zero 715 and introduce Ys)

Rotate row 5 against row 4 to zero 75 and introduce 7h9”
Rotate col. 9 against col. 8 to zero "ho and introduce 798°
Rotate row 9 against row 8 to zero 798

- chased off

- (ii) Zero 711 and chase 1t b b b off the matrix similarly.

(iii) Zero 713 and chase it c¢ c¢ c¢ also.

STEP 2: Repeat for the second row =- etc.

19

decreasing bandwidth causes more nonzero elements to be introduced before

a certain element 1s chased off the matrix, but for the same reason

each rotation is less work if the vectors are not required. The two

considerations cancel each other out so that Rand Givens I and II

require about the same number of multiplications if vectors are not

required, but the latter is slower by a factor of about In p if

vectors are required.

Let us consider now a method we shall call Rand Householder. This

follows an idea suggested in Rutishauser [9] for the corresponding

eigenvalue tridiagonal reduction problem. Recall that a Householder

transformation matrix oli:3,0) can be chosen to have the property that

when applied to A on the left the resulting matrix A' = (15352),

has zeros in positions itl,...,J of column p but 1s different from

A only in rows i,...,J and has zeros in all rows 1n those columns

where there were zeros in all before. As before the role of rows and columns

is reversed when the transformation is applied on the right. Let us describe

the algorithm for the t = 11, p = 4 case again. The first step is to zero

all of PY, 8% "14 simultaneously by applying a Householder transformation

o2st,1) to A on the right. Instead of introducing one new non-zero

element as 1n the first step of the algorithm using Givens transformation,

this introduces a whole lower triangle (of order 3) of non-zero elements.

This is annihilated by a sequence of 3 Householder transformations (the

last a degenerate one) which introduces another upper triangle on the other

side of the band. The triangle 1s chased off the matrix, as the single

element was before, after another two repetitions of this. However a

little thought will make it clear that the extra triangle of elements

20

at every step makes the method much less efficient than Band Givens I -

indeed, it introduces an extra factor of p in the number of multi-

plications required, whether or not vectors are needed.

There 1s yet another possible approach, which we call the

triangle Givens method -- it does not attempt to preserve the band

structure, but does preserve the upper triangle structure. It is con-

sidered in Chan [2| for finding the singular values of an upper tri-

angular matrix. In this method elements are eliminated row by row in the

upper triangle using column rotations, and after each column rotation one

row rotation 1s applied to move the nonzero element introduced in the

lower triangle back up to the upper triangle. Since the upper triangle

1s filled 1in,this method requires more multiplications than Band Givens

I. If fast Givens transformations are used and no vectors are required

the number of multiplications required for Triangle Givens is less than

for Golub-Reinsch, but 1f vectors are required they are the same.

Finally we describe a rather complicated variant of Band Givens I

which we call Band Givens III, which requires less multiplications when

vectors are required. In the standard Golub-Reinsch algorithm

Householder transformations are used to eliminate elements, but instead

of accumulating the transformations directly the transformations are

stored 1n place of the elements just annihilated and after the reduction

1s complete they are then accumulated in reverse order. The reason for

this 1s that when they are accumulated in forward order, the LB trans-

formation on either the left or the right, having been chosen to

annihilate t-j elements of the th column or row of J, will affect

(t-j)t elements of the t Xt matrix of transformations so far

accumulated, whereas when they are accumulated in reverse order the same

21

transformation need only be applied to the (t-3j) x (ft-3J) matrix

of transformations so far accumulated. This eliminates one third of

the multiplications needed. This trick 1s also employed in computing

a tridiagonal reduction for eigenvalue problems or the complete OR

factorization of a matrix using Householder transformations. When

Givens transformations are used in the band eigenvalue problem however

they are always accumulated in the forward direction as the reduction

proceeds although the same savings potential exists 1f they are

accumulated in reverse. Storing all the transformations used in Band

Givens I would be a complicated task, but it 1s by no means impossible.

The method requires approximately £°/2 transformations each on the

left and the right, and since each transformation can be stored in and

recovered from one storage location (see Stewart [11]), all the trans-

formations may be stored in the two tXt arrays in which they are

-to be accumulated. Farthermore they can be accumulated one by one

in reverse order without disturbing the transformations stored but not

yet accumulated, since the number of transformations required to reduce

the first J rows to bidiagonal form 1s approximately 2/2 - (t-3)7/2

on each side which may be stored with room to spare without being

disturbed by the two (t-j) X (t-3J) submatrices needed to accumulate

the transformations operating on rows j+l through t:

AN stored as go along

oy
in

reverse |

22

BH

However the storing and retrieving of these transformations would

indeed be an arduous task, and although Band Givens III requires

only 8t>/3 multiplications using ordinary Givens transformations and

ht 3 using fast Givens, the big question is whether it would still

be worthwhile with all the extra bookkeeping.

Thus the best method seems to be either Band Givens I or III,

but we should make some disclaimers. These results are only valid

assuming 1 << p << t which may not be the case. Multiplications

are not the whole story, since indexing operations also take time and

on modern machines multiplications do not take much more time than

indexing. Of course the amount of overhead required by a method 1is

i also important. Another thing to note is that the second phase

reducing the bidiagonal form to diagonal form to obtain the singular

values typically takes gt 3 multiplications using ordinary Givens

transformations or 4t 3 using fast Givens so that this may dominate

any slight savings in the reduction phase. Of course no final con-

clusion about which method 1s best can be made without extensive

numerical tests.

The multiplication counts for the different methods are summarized

in Table I.

25

3 .

;
a) W AY
aS oa +

er 1 NY | | NT NY

j : —~ QJ ! cO pes
] Sg y |g a,
| do og © 0 @ ~~

2 0 ” BH = Ql
w SowoQ
Ap SS
Sg 9 0 Jo]
+ os O
gp 352 = MN
0, BH ood i)

0 oH QQ Ww —
9g 0 a = ~ Qu MYSx ag © A NY NY 1 NY + NY NYS BG PN + oF) I. \O EY [VeQ o ~ W 0 ~+ 0, = 0

0 — © -
so LP Pp O =
SF ¥ OO Se”QO "ri HO +

55 °
oF2 0

oat "3 " ober
n © —1 Qu 2 2
i 4H i

or

Pan J bien = c} -! io 5D ~+ 2 = NY +
228e Pal 25 3 A I» Ea {

a LL or ~— — |
BY 59 o ” 5 ad ~N © 7TRI S = ~— oe | Sl) ~ 20 AS
po Eo go Ql QJ ~ or oi Q,Gy TV 3 0g ~ ~~ I I} NY 1 | of i Na— oH O © OP Ql Q +o INH + +2 +

“gC = §H oH = oq a oHJ ~ QJ00 © td i I Ay i 1 [Jd bP [JH tdi
. 0g" FES SY NL FEY FER NER

Don Vo

= 3 VoeO ~ ab
OE fy) 2 QJV © + Ql Ib
mw OV © Sd Ql
© HH Ke; 79) ¢ Qy 4
3 QO O — 2 Talla}
O gp BE +2 +)O + 3) 0, —
582 2 =~ a
co B+ = Ls +
+g ~ — ~~ ~~3.59 O 0 QJ 0 ~~0) 5 Ra ~~ ~~ RYol = oN NE) NY a— wo or £1 ~ —~ Ql NY
0 1? og = = + + INN Ql
RL : SE PF FSI 32 or =
— no Oo Ql + | ny 4 | 4 oF L's , =
Sed oH or — or ol
= Gu Kh) or ~—r ~— —oP 0 | l 1 Ql NL
gEH eg 2 £2 # ° =
3 0 J Q 0 Ql a or 5
§ 3 57 Mm Ql Queq Ii icq 1 *~ or ~ iL + or +
= SED Ql ~ =oss 8g Yea 7 WR ag a Nea SERN0" ov 0 + or + ol) Le + er + or
0, ONPp
vio ol
SP 0 —

G4 © wv CO — —
0 GQ LT < — — i
p= 8 ©

£> a) © Wn wn “ 72]QO gM 2 - = 0) -QS HS ed S 3) 3) 4®) (0)VREEE o Iw! le) -r S 3S —) >Jo) SQ le) he -— - Oo — ol~~ Og ado < w w < a) w ©)
A 0d thE © 3 o o od 0 S 8 ’C= 3 = = oS 3 - > a

oO © © dg O St oH a
Ww Mm Mm Mm = EA Mm

2

2.6 Convergence Tests

| Let us examine what we have done so far. We apply the Ilanczos

| method to generate a block bidiagonal matrix 5(s) fromthe matrix A:

PP Rg=gl®

where P = (PsP seis) ,

and Q = (Q,Q---,Q,) .

| Then we compute the singular value decomposition of (8)

58) _ 4 (8)5(s) (st

| o K 0 gt)
By considering the matrices _t and (s)t , We can

] AO J 0

verify that

p o)[x's px (8)
oq (8) ars)

[o EK)

are the eigenvectors of the matrix |. | restricted to the subspace=-T

[po \ |B O

| spanned by the columns of j0 Q [o PC
| We have seen that the p smallest eigenvalues of (s)t are

o i J 0

| usually accurate approximations to those of t , in which case itA” ©
0 7s)

can be shown that the p corresponding eigenvectors of (s)t ,
PO J 0

when premultiplied by » are also good approximations to those
oo _ 0 Q

O A

of _t sy albeit not to as high an accuracy.
A" 0

25

|

Our convergence test uses Weinstein's inequality [14, pp. 170-171],

which states that for a symmetric matrix A and a vector X of unit

length, 1if

lax - xl = 6

for some scalar pu, then there 1s an eigenvalue A of A such that

A - n <8 .

et | 2 ec®)
v | be the i-th column of . Then

QY

a EC TT Re IC a
a" oly) x Aw x

_ (8) 2 t (s) 42
= lay - off + Iaty= 008) RP

Assume € 1s the user-supplied error tolerance for the singular values.

If

(s) 2 t (s)_ 1211/2 (s)

then there 1s a singular value of A within relative error € of 0S)
(s) (s)

and we may accept 0; as a singular value of A. (If Os 1s

less than one we use € as an absolute error tolerance instead.)

We note that in our algorithm the computed singular values and

; vectors are converging to the singular values and vectors of A and

not of A. Thus if we compute the residuals with respect to A and

not to A, there 1s a lower bound to their values. We take this error

26

into account by adding to ¢€ the residuals corresponding to the

accepted singular values. To avoid an error tolerance that is close

to the machine precision, we add to € a third term combining the

machine *precision mcheps and the matrix dimensions m and n. Thus,

if

Zo ay, - ong Pe Wf - ovIR 1c k <1,
then

A i-1 1/2

T, =e | > Te | + 10 X (m+n) X mcheps ,k=1

where mcheps = 2.20 X 10°16 for double precision arithmetic on the

IBM Systems 360 and 370. We shall accept ne as a singular value of
A if

las = 02 uff Ia; - oy FYE < 200)

2.7 Updating p and s

We shall see in section 3 how the available computer memory places

an upper bound on the product ps. We wish to determine optimal values

for p and s subject to this constraint. We can see from the error

bounds 1n section 2.3 that such choices are dependent on the singular

value spectrum of A and thus are usually not *possible a priori with-

out further information.

We shall discuss initial choices of p and s in section 3.3. We

are concerned here with updating p and s after some singular values

and vectors have converged.

We assume that before the current Lanczos iteration the block size

27

:
:

» 1s P> the step size 1s 8. and the bound on PS, 15 q_-

Assume that g singular values are to be computed and g,(1<eg, < g)
singular values have been computed and accepted in the current iteration.

| Our problem is to choose the new block size p; and step size Sq

Our strategy 1s that if P, > g, then

Pl = Py = €o ’

qa. ~ 8

and Sy 7 ot . (Here | a | denotes the1, integer part of a.)

The rationale 1s that 1f the user chooses a block size greater than

the number of singular values desired, he must have a good reason, e.g.

he may have chosen the block size to be the number of singular values 1n

the cluster of largest singular values. We wish to preserve the user's

choice of block size in this case.

If Py < g, then we pick py to be the smaller of the current

block size and the number of singular values remaining to be computed.

Thus,

Py + min(p_,g-g_))

oo |2%
1 Py |.

We test s; to see if 8, 2 2. If 1t 1s not, then we set

15780

1 Py

28

We note that the step size must be at least 2 to carry out the

N Lanczos method.

| | 2.8 Complete Algorithm
We have described one iteration of the Lanczos method. We do not

expect to compute all the desired singular values in one iteration and

so we shall iterate the method with inproving starting matrices. We

saw in section 2.6 that the first P, columns of QY are usually better

approximations than Q to the P, right singular vectors corresponding

to the Ps largest singular values of A. If g, = 0, then those 1958

columns of QY will serve as a good starting matrix for another Lanczos

iteration. If g, > 0, then the (gt)... (g +p)-th columns will
be chosen as the starting matrix for the next iteration. We have seen

oC that the (g *1)5...,p -th columns of QY are usually good approximations

) to the (8 t1)5 000, -th right singular vectors of A. Our experimental
results show that the other columns are usually rich in the direction

of the (p*1),... ,p,-th right singular vectors of A.

We see that the convergence test in section 2.6 involves multipli-

cations by A and ING so we wish to avoid performing the test unless

we think some of our singular values have converged. A good test 1s to

look at the relative increase of the largest singular value from the

previous 1teration. We perform the convergence test only if the relative

increase 1s less than the user supplied tolerance ¢. The criterion

1s good 1n that we shall seldom overshoot the desired accuracy, because

1f the convergence test 1s satisfied, the computed singular values,

as Rayleigh quotients, are likely to have errors proportional to e

unless they are poorly separated.

29

|

Our complete block Lanczos algorithm follows:

Algorithm

1. Start with an arbitrary n X p matrix GQ

2. Orthonormalize the columns of Q

| 5. Apply the Lanczos method to compute the block bidiagonal matrix
sie) using Q, as the starting matrix:

|

pig = 508)

4. Compute the singular value decomposition of ;8)

(Bgl) (elt _ (es)

| 5. If the relative increase in the largest singular value of

| 7s) is less than €, then perform the convergence test. Otherwise

go to step 8.

6. Stop if all desired singular values have converged.

1. If one or more singular values have converged, update the

values of p and s.

8. Take the first p columns of QY that have not been accepted

as singular vectors as the starting matrix %Y for the next iteration.

Go to step 2.

It appears that step 2 1s unnecessary after the first iteration

since both Q and Y are matrices consisting of orthonormal columns.

Numerical experiments have shown, however, that the columns of QY

are not necessarily orthonormal and we need to perform step 2 to

maintain numerical stability.

50

|

| 3. Implementation
5 We have written a set of subroutines implementing our algorithm.
.

| We use the Bell Laboratory PFORT language, a subset of the ANS FORTRAN
|) language.

| Our routines use integer and double precision arithmetic. We have

a subroutine that computes the inner product of two vectors. We would

have obtained better numerical results had we accumulated inner products

in higher precision. We recommend the usage of extended precision

arithmetic to compute inner products 1f the work 1s done by the computer

| hardware. The additional cost 1s small and the results are more
|

| accurate. We have not incorporated the extended precision computations
into our routines to provide program portability. Experiments show that

| the numerical results are still satisfactory without recourse to higher
precision arithmetic.

Our routines usually need a large core to store the matrices X

and Y. On an IBM System 360 or 370, the requirement is

(m+n) x g X 8 bytes, which forces g to be small for large m and n;

e.g. 1f m =n = 1000, then an available core of size 200K bytes would

force g to be less than or equal to 12.

MAXVAL is our main routine that calls all the other subroutines.

3.1 Formal Parameters

(a) Quantities to be given to MAXVAL:

m,n : the dimensions of the matrix A; 2 <n <m< 1000.

| q : the number of vectors of length m contained in the

array X; also the number of vectors of length n

contained in array Y; gq < 26 and gq < n.

31

HN

pinit : the initial block size; if pinit < 0, then -pinit

becomes the block size and columns h+l,...,ht(-pinit)

| of Y are assumed to be initialized to a matrix to be used

to start the Lanczos method.

g the number of singular values and left and right singular

vectors desired; 1< g<q.

max the maximum number of matrix-vector products Ax and

At allowed.

eps : the relative precision to which singular values and

| vectors will be computed; eps becomes an absolute

tolerance 1f the singular value 1s less than one.

| op subroutine op (m,n,p,u,v,orig) computes U = AV when
| orig 1s true, and V = Aty when orig 1s false; U

1s an mX p matrix and V 1s an n X p matrix; the

input matrix must not be altered by the subroutine call.

h : the number of singular values and vectors already computed;

if h > 0, then columns 1 through h of X(Y) must

contain the left (right) singular vectors of A.

D : an array of length at least qg.

X an array of length at least m X q.

Y an array of length at least n X qg.

iorthg : the number of immediately preceding blocks of vectors

with respect to which reorthogonalization of the present

block of vectors 1s to be carried out.

lout : output unit number.

mcheps : machine precision, equals 2.2 X 1g 10 for double

precision arithmetic.

52

| (b) Quantities produced by MAXVAL:
| h the total number of singular values and vectors computed

including any already computed when MAXVAL was entered.

|] D: elements 1 to h of D contain the computed singular

values.

X the first m xh elements contain the left singular

vector approximations--the first vector in the first m

elements, the second in the next m elements, and so on.

Y the first n Xxh elements contain the right singular

| vector approximations-—-the first vector in the first n

elements, the second in the next n elements, and so on.

iecode : the error message;

| =0 : successful termination.

= 13: n <2.

= 2 :n>m

= 3 :m > 1000.

=: g <1.

=5:1aqa<8-

= 6 : q> 26.

= 717 : gq > n.

= 8 : mmax is exceeded before g singular values and

vectors have been computed.

5.2. Program Organization

| MAXVAL 1s the main routine that calls all the other subroutines.
It also checks the input data for inconsistencies. The main body of

the subroutine begins by filling the appropriate columns of Y with

33

random vectors 1f a starting matrix 1s not provided. The random vectors

are orthonormalized in a call to the subroutine ORTHOG. MAXVAL then

calls BKLANC to carry out the block bidiagonalization of A and then

SVBUTM to solve the singular value problem of the resulting block

bidiagonal matrix (5). Two calls to the subroutine ROTATE compute
the matrices PX and QY. A test is then made of the relative increase

in the largest singular value of 5s) to determine if it 1s necessary

to call the convergence test routine CNVTST. If some but not all the

desired singular values have converged, then the subroutine PCHOIC

1s called to choose new values for p and s for the next iteration,

which begins with the first p columns of QY that have not been

accepted as singular vectors as the starting matrix.

ORTHOG always reorthogonalizes the input vectors with respect to

the vectors in the first h columns of the input matrix. Reortho-

" gonalization 1s also carried out with respect to the previous IORTHG

blocks of vectors. The resulting vectors are then orthormalized

using a modified Gram-Schmidt method [1].

ORTHOG calls INPROD to compute inner products 1n the reortho-

gonalization process.

BKLANC implements the block Lanczos reduction. The banded upper

triangular matrix 5s) 1s stored in columns 2 through p + 2 of the

matrix C, the main diagonal being stored in the first ps elements

of column 2, the upper diagonal being stored in the first ps -1

elements of column 3, and so on.

SVBUTM 1s designed to solve the singular value problem of a banded

upper triangular matrix. The matrix J) has been stored in the

correct form'in BKLANC for input into this routine. SVBUTM first calls

34

BIBAND to bidiagonalize 58) using the algorithm Band Givens I

described in section 2.5, and then SVDBI to apply the QR method

to compute the singular values of the bidiagonal matrix. The routines

ROTROW and ROTCOL implement Givens transformations to rotate rows

and columns of 5s) to reduce it to a bidiagonal form—--note however

that an improvement here would be to implement fast Givens trans-

formations instead. SVDBI calls DROTAT to compute the singular vectors

of 7s),

ROTATE computes PX and QY, the left and right singular

vectors of A.

| CNVIST tests the computed singular values and vectors for con-

vergence. It tests first the largest singular value, then the second

| | largest singular value, and so on until it finds either non-convergence
or all the desired singular values.

| PCHOIC computes new values for p and s 1f some but not all
desired singular values have converged.

| 3.3 Numerical Properties

The user can easily modify the bounds on m and gq by changing

the storage allocation for the arrays C,U, V, R and T at the

beginning of MAXVAL. The tests of the values of m and g must then

be appropriately modified.

Our program has proved to be very efficient for large and sparse

| - singular value problems. The convergence is very fast if the largest

singular values are fairly well separated. Even in cases when the

. largest singular values are clustered, our program appears to be able

to compute them accurately.

35

We have seen that the optimal choice of the block size depends on

the singular value spectrum and 1s therefore not possible a priori. A

" safe" choice appears to be choosing the block size as the number of

desired singular values. The singular values thus computed are usually

fairly accurate. A drawback 1s that sometimes this choice produces a

very slow convergence rate.

We cannot overemphasize the importance of s. Storage limitations

place a bound on the product ps. The two matrices X and Y require

(m+n) X q storage locations, a significant amount for large m and n.

Since gq bounds ps + h, we see that the value of p uniquely

determines the maximal value of s. Since Ss must be at least 2,

the block size p will be reduced to give s the value of 2 or 3.

Experiments have shown that s = 2 often produces intolerably slow

convergence. It appears that we should always give s a value of at

least 3. In fact, for a problem with a dense singular value spectrum,

the best choice appears to be p = 1, s = q - h and no reortho-

gonalization.

Reorthogonalization appears to be unnecessary 1f the singular

value spectrum is dense. If the largest singular values are

well separated from the rest, then complete reorthogonalization

is required to keep multiple images of these singular values from

appearing. Partial reorthogonalization, e.g. with 1orthg = 1, 1s

insufficient although it does produce better results than no reortho-

gonalization at all.

From the theorem 1n section 2.3, we can see that a good choice

of the block size 1s the number of the dominating singular values.

Experiments confirm the theory and we see also that it 1s better to

36

overestimate the number of dominating singular values than tounder-
i

estimate.

oo The use of extended precision arithmetic to accumulate inner

products produces much more accurate results at an average cost of about

204 more computing time. We have, however, found its use to be

unnecessary for a large value of eps; we have obtained satisfactory

results from 1000 x 999 matrices with eps = 103 using only double

precision arithmetic.

|

37

a

4, Test Examples

We have chosen rectangular diagonal matrices in all but one test

examples. We feel diagonal matrices are sufficiently general because

we do not transform the given matrix; we obtain information about the

given matrix only through the subroutine that computes the product of the

matrix (or its transpose) with an input matrix. Diagonal matrices

are convenient 1n that we know the singular value spectrum and so

can study the behavior of our algorithm as a function of the block and

step sizes.

We have run our program on an IBM 370/168 computer using the

EXTENDED FORTRAN H compiler. Our program takes 6.95 seconds to compile.

In the examples below the following rotation 1s used:

| m(-n) =m x 107"

iter = total number of iterations

imm = total number of matrix-vector multiplications

1 Ww = total number of vector inner products in the

orthogonalization process

exec time = execution time in seconds on the machine

Example 1

A is a 1000 X 999 matrix with diagonal elements

0.006, -0.007,0.008,-0.009,...,1.000, and 2,2,2 and -10. With

g = 4, q = 12, eps = 1077 and 1orthg = 0, we obtain the following

results.

58

oq 10+1(-15) 10 -4(-15) 10-1(-10) 10-2(-7) 10-5(-12) 10-4(-12)

os 10 -1(-15) 2 2+4(-12) 2 +2(-9) 2-3(-8) 2-2(-8)

os 2 - 6(-15) 2 -8(-15) 2 -1(-9) 2-3(-11) 2-1(-7) 2-6(-8)

oy, 2 =3(~9) 2 -1(-8) 2 -4(-10) 2-9(-T) o- 6(-7)

iter 5 3 3 5 5

1 mm 105 67 62 83 100

ivv 22h 114 108 200 300

exec time program fails 6.06 3.81 3.71 5 33 7.34
to terminate

We see the advantage of a block algorithm in this example. The

point algorithm gives a double image for the singular value 10 and

then fails to terminate because it converges to a value 2.738. We obtain

the fastest convergence using Pp = 4, as we expect. Note the high

accuracy 1n the solution values with eps = 107°,

Example 2

A is a 1000 X YYY matrix with diagonal elements

-0.005,0.006,-0.007,0.008,...,1.000, and 2,-2 and 2. We choose

g= 3, gq = 12, eps = 107° and i1orthg = 0.

39

a

| | oq) 2-2 x10 poax107 ooyx107l

os 2 2-1x1077 23x 10° pgx 107]

03 2-1 x10" 1 2-2 X 1078 2-3% 1010 2-5x 10 1Y

iter 5 4 2 3

imm 115 89 52 70

iw 124 132 18 108

exec time 6.52 5.24 3.18 4.70

In this example, we see again the advantage of a properly chosen

block size. Note also the better results obtained by overestimating

| rather than underestimating the number of dominating singular values.

—Example 3

A is a 1000 X 999 matrix with diagonal elements

choose g = 3, g = 6, eps = 107 and i1orthg = 0.

p =1 p =2 p=23

-1 _ -

oy 10-2x 1071? 10-3x 10710 10-4x 1072
-1 - -

os 10-3x 107% 10-2 X10" 10-2x 1071
oll ~1 -8

0 2-5x 10 10-2X 10 10-2x 10

iter 4 0 3

imm ho 56 3f

iw 48 82 36

exec time 1.85 2.46 1.76

40

3

We see the failure of the point algorithm to obtain the third

singular value 10. This example also shows how fast our algorithm can

be even with very limited storage (q = 6) as long as the separation

of the singular values 1s good.

Example 4

A is the same matrix as in Example 1. But we choose g = 3,

q = 12, eps = 1073 and p = 1. We run our program with no, partial,

and complete reorthogonalization.

iorthg = 0 iorthg = 1 iorthg = 12

oq 10+1x10 10 10

os 10-1x10 1° 10-2 x 107° 22 x 10°F

| 03 2-6x10 1 2h x 1071 2x 107
iter 1 1 3

imm 31 31 71

iw 0 22 392

exec time 1.69 1.77 5.27

We see only complete reorthogonalization gives the correct solution.

We also see that the block algorithm (Example 1) with p = 3 andk

and no reorthogonalization computes four singular values correctly in

254 less machine time.

We also run the first case (iorthg = 0) using extended precision

arithmetic to accumulate inner products. The results are unfortunately

unchanged.

41

Example 5

A is a 1000 X 999 matrix with diagonal elements

and 1orthg = 0.

p=1 p=2 p=3

oq 0.999992 Ce een o. 999966

Os 0.998960 0. 998951 -. 996999

0% 0.998036 0. 998005 -. 997950
iter 13 33 27

imm 505 711 609

iw 190 184 676

exec time 17.59 41.20 38.09

This is an example where a point algorithm is a good choice. The

denseness of the singular value spectrum takes away the virtues of a

block algorithm; the best choice is therefore to maximize s.

Example 6

A is a 314 X 80 matrix obtained from earthquake research and

1s of the following special form:

A = (a, 1a) ,

where A, is 314 X 24 and block diagonal,

and A, is 314 x 56 and randomly sparse.

A, consists of six diagonal blocks, whose dimensions are 53 X 4,

51 Xx 4, 46 x 4, 58 x 4, 55 Xx 4 and 51 xX 4. There are about 4 non-zero

42

elements per row 1n Ag and a total of 2509 non-zero elements in A.

We store only the non-zero elements of A. We use three one-

dimensional arrays IINDEX, JINDEX and A, each of length 2509, to

store i, Jj and Aner This compact storage scheme also enables us to

compute the matrix-vector products Ax and Aly efficiently.

Assume A 1s m xn and has NDATA non-zero elements. Then

the following FORTRAN statements compute X = Ay:

DO 10 K = 1,M

X(K) = 0.D0
10 CONTINUE

| DO 20 K = 1,NDATA
I = IINDEX(K)
J = JINDEX (XK)
X(1) = X(I) + A(K) * Y(J)

20 CONTINUE

The following statements compute y = Ax:

DO 110 K = 1,N

Y(K) = 0.DO
110 CONTINUE

DO 120 K = 1,NDATA

I = IINDEX(X)
J = JINDEX(K)
vg) = YJ) + AK) * x(1)

120 CONTINUE

A full singular value decomposition of A was computed using the

subroutine SVD in EISPACK [10]. The demand on storage is excessive,

for we need to supply at least 2 Xm Xx n X 8 bytes (£ 393 K bytes)

if we want the singular vectors. The execution time was 23.18 seconds.

The main disadvantage of SVD is its inflexibility: we always have

to compute all the singular values whether or not we need all of them.

Our Lanczos program, on the other hand, requires only (mtn) x gq X 8

bytes (£21 K bytes for g = 10) if we give 1t gq vectors of

43

n

storage to compute the singular vectors. It can then compute up to

(q - 1) singular values and corresponding vectors. We need

| 2509 x (4 +4 + 8) bytes (* LO K bytes) to store A using our

| compact scheme.
The following table summarizes our results when we apply our

program on A with p = 1, g = 10, eps = 1072 and iorthg = 0:

|

: 12 ; ; 6 89

| iter 1 2 3 5 1 9 12 18 23

| imm 23 44 03 93 119 141 1606 200 229
iw 0 18 50 134 250 350 474 126 E86

| exec time 1.66 2.21 2.73 3.61 4.38 5.08 5.92 7.23 1.9%

All our computed results agree to at least 6 significant digits with the

values from SVD, agreeing with the expectation that the accuracy 1s

0(eps®).

The 80 non-trivial singular values of A are (to 3 significant

digits) 12.6, 9.53, 8.87, 8.06, 7.77, 7.59, 0.42, 5.54, 3.lo,

4.49 ,...,1.28x 102, 4.45 x 10 =7 , L.91x 10-7 , 5.93 x 10° and

2.48 Xx 107, Although the largest singular values of A are quite

uniformly distributed, we observe a uniform improvement in program

| speed when we choose the block size equal to 2, i.e. Pp = 2, gq = 10,

eps = 107° and 1orthg = 0:

44

. 8 1 2 3 4 5 b 7 8 9

iter 1 2 3 5 7 8 10 18 ol

1mm 22 43 59 88 109 121 136 190 21h

iw 10 28 66 156 248 304 39h 798 990

exec time 1.62 2.13 2.49 3.34 3.83 4.16 4.62 0.28 1.15

The effect of storage space on program speed 1s examined using both

12 and 15 vectors of storage to determine 9 singular values. The results

with p = 1, eps = 1073 and 1orthg = 0 are:

q 10 12 15

iter 23 9 5

imm 229 129 125

iw 886 530 220

exec time 1.99 5.21 4.99

The trade-offs between space and time are obvious.

45

References

[1] BjOrck, A., 'Solving Least Squares Problems by Gram-Schmidt
Orthogonalization," BIT 7(1967), 1-21.

[2] Chan, T. F. C., "On Computing the Singular Value Decomposition,"
Report STAN-CS-77-588, Stanford University (1977).

[3] Gentleman, W. M, "Least Squares Computations by Givens Trans-
formations Without Square Roots," JIMA 12 (1973),329-336.

[4] Golub, G., and Kahan, W., 'Calculating the Singular Values and

Pseudo-Inverse of a Matrix,' J. SIAM Numer. Anal. 2(1965),
205-224, —

[5] Golub, G., and Luk, F., "Singular Value Decomposition: Applications
and Computations," ARO Report T{-l, Transactions of the
22nd Conference of Army Mathematicians (1977).

[6] Golub, G., and Reinsch, C., (1970, HACLA/I/10), "Singular Value
Decomposition and Least Squares Solutions," Numer. Math. 1h
(1970), 403-420.

[7] Lanczos, C., Linear Differential Operators, Van Nostrand, London
(1961).

[8] Paige, C., 'The Computation of Eigenvalues and Eigenvectors of Very
Large Sparse Matrices," Ph.D. Thesis, University of London
(1971).

[9] Rutishauser, H., 'On Jacobi Rotation Patterns," Proc. Sym. Applied
Math. 15 (1963), 219-239. -

[10] Garbow, B. S., and Dongarra, J. J., Path Chart and Documentation for the
EISPACK Package of Matrix Eigensystem Routines, Technical
Memorandum No. 250, Argonne National Laboratory (August 1975).

[11] Stewart, G. W., "The Economical Storage of Plane Rotations," Numer.
Math. 25 (1976), 137-138. —

[12] Underwood, R., "An Iterative Block Lanczos Method for the Solution

of Large Sparse Symmetric Eigenproblems," Ph.D. Thesis,
Report STAN-CS-75-496, Stanford University (1975).

[13] Van Loan, C., "Generalized Singular Values with Algorithms and
Applications," Ph.D. Thesis, University of Michigan (1973).

[14] Wilkinson, J. H., The Algebraic Eigenvalue Problem, Clarendon Press,
Oxford (1965).

ho

SUBROUTINE MAXVAL(M,X,Q,PINIT,G,MHAX,RBPS,OP,H,D,X,Y,IORTHG,
1 LOUT, NCHEPS , IECODE)

INTEGER X,N,Q,PINIT,G,MMAX,H,IORTHG,LOUT,IECODE
| DOUBLE PRECISION EPS,D(Q) ,X(X,0Q),Y(¥,Q) ,MCHEPS

EXTERNAL OP

C

C

C Era am de a EH EE WP WD WS We eu ED Sm WD Ye ne WP wb SB AD mh HD WD AD SE hh 5 UD Ge WD OS EE GS AE ER WD WD ne WE AD Ge EL ED A al ab ED SD EES WW se

| C

| C CALCULATE TEE LARGEST SINGULAR VALUES OF A LARGE SPARSE MATRIX
C

| C WRITTEN BY : FRANKLIN LUK
| C COMPUTER SCIBBCE DEPARTMENT
| C STANFORD UNIVERSITY
| C SBPTBRBER 1976

| C LAST UPDATE : APRIL 1977
| C

| C

C TBIS SBT OPROUTINES USES INTEGER AND DOUBLB PRECISION ARITHMETICS

| C [Frpp—— -_ ap NA ED ENE ae SE EE we Aa ADEE we ah RED a ALA AR ED EE OR ED ED ED WE AS A ARE NE EL EE re ED ABAD SS Ih Ww WD Ah EDAD EW Sa ER
C

| C THIS SBT OP ROUTINES INCLUDES : MAXVAL, BKLANC, ORTHOG, INPROD,
| C ROTATB, CHVTST, PCEOIC, BANDON,

c AND SVBUTH(PLUS BIBAND, ROTROW,

| C ROTCOL, SVDBI, AND DROTAT).
| C

c THIS SUBROUTINE IS THE MAIN SUBROUTINE IMPLEMENTING

c THE ITERATIVE BLOCK LANCZOS METHOD POR COMPUTING THE LARGEST

C SINGULAR VALUES AND CORBESPONDING LEPT AND RIGHT SINGULAR VECTORS

C OF AI H-BY-N MATRIX.

C

G DESCRIPTIONOP PARAMETERS 2

C

C M,N : INTEGER VARIABLES. TEE NUMBER OF ROWS AND COLUMNS
C OP TEB MATRIX A WHOSE SINGULAR VALUES AND VECTORS

C ARE BEING COMPUTED. IT IS ASSUMED TRAT 2 .LE. § .LB. A.

C

C 0 : INTEGER VARIABLE. THE NUNBER OF VECTORSOP LENGTH H

C CONTAINED II TEE ARRAY X, AND THE NUMBER OF VBCTORS

C OF LENGTH N CONTAINED IN THE ARRAY Y. THE VALUB OP Q

C SHOULD BE LESS THAN OR BQUAL TO 26, AT LBAST OME GREATER
C TEAM TEE VALUE OF 6 AND LBSS TEAR OR EQUAL TO NW.
C

C PINIT : INTEGER VARIABLE. THE INITIAL BLOCK SIZE TO BE USED

C IN THB BLOCK LANCZOS METHOD. I? PINIT IS NEGATIVE,

c i THEN -PINIT IS USED POR TEB BLOCK SIZE AND COLUMNS

C H¢1, © «+ He (~PINIT) OF THE ARRAYS Y ARE ASSUMED
C TO BE INITIALIZED TO A MATRIX USED TO START TEB BLOCK

C LANCZ0S HBTHOD. IF THE SUBROUTINE TERMINATES WITH

C A VALUE OF H ILBSS THAI 6, THEN PINIT IS ASSIGNED
C A VALUE =P, WHEREPIS THB PINAL BLOCK SIZE CEOSBR.

C IN THIS CIRCUMSTANCE, COLUNNS H+1, . . . , H¢P OF Y
C WILL CONTAIN THB HOST RECENT SET OF RIGET SINGULAR

C VICTOR APPROXIBNATIONS WHICH CAN BE USED TO RESTART

]

C THE SUBROUTINE IP DESIRED.

C

C G : INTEGER VARIABLE. TEB UUHBBR OR SIRGULAR VALUBS AND

Cc SINGULAR VECTORS BEI¥NG COHPUTBD. THAT IS, MAXVAL
Cc ATTEMPTS TO COHPUTB ACCURATE APPROXIMATIONS TO TEE
C 6 LARGEST SIRGULAR VALUES AND THEIR CORRBSPONDIUG

Cc LBPT AID RIGHT SINGULAR VBCTORS OF TEE MATRIX A. TEE
C THE VALUB OPG SEOULD BE POSITIVE AND LESS TEAR OQ.
C

c MMAY : INTEGER VARIABLE. TER MAXINUR NUMBER OP NATRIX- VECTOR

C PRODUCTS A*X AND TRANSPOSE(A)¢X, WHERE X IS AN APPRO-

C PRIATE VBCTOR, TEAT ARE ALLOUBD DURING ONE CALL OF
C THIS SUBROUTINE TO COMPLETE ITS TASK OP COMPUTING

C G SINGULAR VALUES AND VBCTORS. UNLESS THE PROBLEN

C INDICATES OTHERWISE, MMAX SEOULD BB GIVEN A VERY

C LARGE VALUB.

C

C EPS DOUBLE PRBCISIOU VARIABLE. BPS SHOULD COUTAIU

c A VALUE INDICATING THE RELATIVE PRECISION TO WHICH

C NMAXVAL WILL ATTENPT TO COHPUTB TEB SIRGULAR VALUBS

c AND VECTORS oPA. POR SINGULAR VALUES LESS IN MODULUS

C THAN 1, BPS UILL BE AUABSOLUTE TOILBRAUCE.
C

3 OP : SUBROUTIPR MAME. TEE ACTUAL ARGUMENT CORRESPONDING

C TO OP SEOULD BB TER NAME OF A SUBROUTINE USED TO

C DEFINE TER MATRIX A. THIS SUBROUTINE SHOULD HAVE

C SIX ARGUMENTS M, N, P, U, V, AND ORIG, SAY, WHERE
C A IS AUN=-BY-N ARRAY, U ISAU X-BY-P ARRAY,
C VIS AU U-BY-P ARRAY, AND ORIG IS A LOGICAL VARIABLE.
C THE STATEMENT

c CALL OP (M,¥,P,U,V,.TRUE.)
Cc SEOULD RESULT IN THE ARRAY A®Y BEING COHPUTBD AND

C STORED IN UO. THE STATEMENT

C CALL OP (4,¥,P,0,V,.FPALSE.)

C SEOULD RESULT IN THB ARRAY TRANSPOSE(A) *U BEING
C COHPUTED AND STORBD INV.

C

C H : INTEGER VARIABLE. HGIVES THB NUMBER OF STIRGULAR

C VALUES AND LEPT AND RIGHT SINGULAR VBCTORS ALRBADY

C COMPUTED. THUS, INITIALLY, H SHOULD BB ZERO.

C IF BH IS GREATER THAR ZERO, THEN ELEMENTS OUB THROUGH
C H OF THR VICTOR D COUTAIU APPROXIMATIONSTO THE H

C LARGEST SIGULAR VALUBS OF A, COLUMNS ORB THROUGH H
C OF THB ARRAYS X AND Y CONTAIN APPROXIMATIONS TO TEE

C CORRESPONDING LEFT AND RIGHT SIRGULAR VBCTORS,
C AT BXIT, H CONTAINSA VALUB BQUAL TO THE TOTAL NUMBER
C OF SINGULAR VALUBS AND LEPT AND BIGHT SIRGULAR VBCTORS

C COMPUTED INCLUDINGANY ALREADY COHPUTBD WHEN MAXVAL

C WAS BNTERED. THUS, AT EXIT, THE FIRST HELEMENTSOF D
C ANDTHE PIRSTH COLUMNS OF X AND Y WILL CONTAIN

C APPROXIMATIONS TO THEH LARGEST SINGULAR VALUES OF A AND

C THEIR CORRESPONDING IBPT AND RIGHT SINGULAR VECTORS.

C

C D 2 DOUBLE PRECISION ARRAY. D CONTAINS THR COHPUTBD SINGULAR

C VALUES. D SHOULD BB AU ONE-DIAERMSIONAL ARRAY WITH AT

C LEAST 6 ELENENTS.

C

C X : DOUBLE PRBCISIOR ARRAY. X CONTAINS THB COEPUTBD LEFT

C SIRGULAR VECTORS. YX SEOULD BE AN ARRAY CONTAINING AT

C IBAST H*Q BELENENTS. X IS USED ROT ONLY TO STORB THE LEPY

C SIUGULAR VECTORS COMPUTED BY NAXVAL, BUT ALSO AS

C WORKING STORAGE POR TEE BLOCK LANCZOS BETHOD.ATEXIT,
C THB PIRST M*H ELEMENTS OF XY CONTAIN THE LEPT SINGULAR

C VECTOR APPROXINATIONS —— THE PIRST VECTOR IN TEB PIRST

C HM ELEMENTS, THE sscoup IN THE SBCOND a ELEMENTS, =TC.
C

C Y DOUBLE PRBCISIOU ARRAY. Y CONTAINS THB COMPUTED RIGHT

C SINGULAR VECTORS. Y SHOULD BE AN ARRAY CONTAINING AT

C LBAST N*Q BLENBETS. Y IS USED HOTONLY TO STORE THE

C RIGHT SINGULAR VECTORS COMPUTED BY MAXVAL, BUT ALSO AS

C WORKING STORAGE FOR TEB BLOCK LANCZ0S NETHOD.AT EXIT,
C TEE PIRST ¥N*H ELBNENTS OF Y CONTAIN TEB RIGHT SINGULAR

C VECTOR APPROXIMATIONS —— THB FIRST VECTOR IN THE PIRST

C § ELENENTS, THE SECOND IN THE SRCOUD ¥ ELEMENTS, ETC.
C

C IORTHG : INTEGER VARIABLE. ITS VALUB IS THR NUMBER OF INNEDIATRLY

C PRECEDING BLOCKS 07? VECTORS WITH RBSPBCT TO WHICH

C REORTHOGO¥ALIZATION OP THR PRBSBUT BLOCK 07? VBCTORS

C IS CARRIED OUT.

C

C LOUT : INTEGER VARIABLE. OUTPUT UNIT NUMBER.

C

C MCHEPS : DOUBLE PRECISION VARIABLB. THE MACHINE PRBCISIOU.

C

C IBCODE : INTEGER VARIABLB. TEE VALUE OF IBCODE IUDICATRBS

C WHETHER MAXVAL TERMINATED SUCCESSPULLY,AND I? HOT,
C TER REASON WHY,

C IBCODE=0 : SUCCRSSPUL TERMINATION.

C IECODEB=1 : THE VALUB O07? WN IS LESS THAN TPO.

C IBCODB=2 : TEE VALUB O? ¥ IS GRBATBR THAW TER VALUE

-C IECODE=3 : THE VALUE OF HB IS GRBATBR THAN 1000.

C IECODR=&4 : THE VALUB 0? 6 IS LBSS THAN ORB.

C IBCODE=S: THE VALUE 07? Q IS LBSS THAN OR EQUAL TO G.
C IECODE=6 : THE VALUB OPQ IS GREATER THAN 26.

C IBCODE=7 : THE VALUE 0? Q BXCBRBDS WN.
C IBCODE=8 : THE VALUB OF MEAXY WAS BXCBBDBD BEFORE

C G6 STIUGULAR VALUES AND LEFT AND RIGHT

C SINGULAR VECTORS UBRB COMPUTED.

C

C UOTB TEAT THE SUBROUTINE HAS BERN DESIGNED TO ALLOW INITIAL

C APPROXIMATIONS TO THR RIGHT SINGULAR VECTORS CORRES-

C PONDINGTO THR LARGEST SINGULAR VALUES TO BE UTILIZED

C (IP THEY UBRBR KEOSN) BY STORING THBH I¥ Y AND ASSIGNING
C PINIT MINUS THE VALUE O? THEIR WNUNBER, FURTHERNORER, IT
C BAS ALSO BEEN DESIGNED TO ALLOW RESTARTING I? IT STOPS WITH

C IECODE=8. THUS, THE USEBROPTHIS PROGRAN CAN RESTART IT APTER
C EXAMINING ANY PARTIAL RESULTS WITHOUT LOSS OF PREVIOUS WORK.

C

C

INTEGER I, IBRR,INM,IPH,IPQ,ISEED,ITER,IVY, NCONY,P,PNI,PS,PP3
INTEGER QPPS,QP1,S
REAL FLOAT

DOUBLE PRBCISIOU EBRRERBED,ERRC
C

C THE BMININUONM LENGTHS O? THB IOCAL ARRAYS ARE AS POLLOWS. THESE

C COULD BE CEBANGED BY THB USER I? NECESSARY BY CHANGING TER HNAXINON

C VALUBS O? Q ORNH WHICHAT PRBSRBUT ARE 26 AMD 1000 (TEB TESTS

C BBLOU SHOULD ALSO BE HMODIPIED).
C LBT Q2 DBRUOTR TER INTEGER PART O07? Q/2, THEN

C

C C(Q*(Q2+3)),0(Q*Q),V(Q*Q) ,R(Q2%Q2),T (XK)
C

DOUBLE PRECISION C(416),U (676) ,v(676) ,R(169) ,T (1000)
DOUBLE PRECISION DRLE

C

C ISEED IS SBEBD FOR RANDOM NUNBER GENERATOR

C

DATA ISERED/99991/
C

C CHECK THAT THE INITIAL YALURES OF THR SUBROUTIUB PARA-

C METERS ARE IN RANGE,

C

I? (U.LT.2) 60 TO 901
IF (A.LT.H) GO TO 902

IF (N.GT. 1000) 60 TO 903
IP (G.LT.1) 60 TO 904

I? (Q.LB.6) 60 TO 905
IP (0.GT.26) GO TO 906

IF (Q.GT.N) GO TO 907
~

C INITIALIZE THE SINGULAR VALUESTOVERY I.ARGE NEGATIVE NUNBERS.

C

DO 110 I = 1,6

D(I) =-1.010
110 COUT INUE

C

C CEOOSB INITIAL VALUES FOR THB BLOCK SIZE P, THE NUMBER S
C OF STBPS TEAT TUB BLOCK LANCZOS MBTHOD IS CARRIED OUT, AND
c CEOOSB AH IRITIAL TI-BY-P ORTHONORKAL BATBIX 11 TO START

C TEE BLOCR LANCZOS HBTHOD.
C

P = PINIT

I? (P.LT.0) P =~-P
S = (Q-H) /P

IP (S.GB.2) GO TO 120
s — 2

P = (Q-H)/2
C

120 I? (PINIT.LT.0) GO TO 200
C

C TESERT RANDOM VECTORS INTO COLUNES H+1 THROQUGHH+P OF TEE ARRAY Y.

C

CALL RANDON(B,Q,P,H,Y,ISERD)
C

C SET CONSTANTS FOR LATER CONVERGENCE TRSTS.

C

200 ERBRBED = RPS ¢ 10.DO*DBLE (PLOAT(N¢N)) *NCHEPS
ERRC =0.D0

ITBR = 0

. INN = (

IVY = (

C

C THE HAIR BODY OF THE SUBROUTIUB STARTS HERE. INN

C COUNTS THE BNUNBER OF HATRIX-VECTOR PRODUCTS CompUTED.

C IVY COUNTS THE NUMBER OF VECTOR IWENEBR PRODUCTS PERFORNED

C IN THE ORTHOGONALIZATION ROUTINE. ERRC HEASURES THE

C ACCUMULATED ERROR IN THE SINGULAR VALUES AND VBCTORS.

C

300 IF (H.GE.G)GO TO 900
IF (IMM.GT.MNMAX) GO TO 908
ITER = ITER+1

PS = P=%S

PP3 = P+3

WRITE (LOUT,6010) ITRR,P,S
6010 FPORMAT(INH eo ** ITERATION,I&/SX,4H P =,I13,5X,8H S =,I3)

C

C USE RANDOM VECTORS TO RESTART THE LANCZOS ALGORITHM IF

C LINEAR INDEPENDENCE HAS BERP LOST.

C

; DO 310 I= 1,P
IPH = I+H

IF (D (IPH) .GT.0.D0)GO TO 310
PMI = P-T

| CALI RANDOM (N,Q,PHI+1,IPH~-1,Y,ISERD)
GO TO 320

310 CONTINUE

C

C ORTHONORNMALIZE COLUNNES H+1 THROUGH HeP OF TER ARRAY Y.

C

320 CALI ORTHOG(N,Q,H,H,P,R,Y,IORTHG,IVV,LOUT,NCHEPS)
C

C BKLANC CARRIES OUT TEE BLOCK LANCZ0S NETHOD AND

C RETURNS TEE RESULTING BRAUDBD UPPER TRIANGULAR HNATRIX HS

C IN C, THE N-BY-PS ORTHONORHNAL MATRIX XS IN X AND THB
C N-BY-PS ORTHONORMNAL NATRIX YS IN Y. THB INITIAL

C N-BY-P ORTHONORBAL NATRIXYIIS ASSUMED TO BE STORED

C IN COLUMNS H+1 THROUGH H+P OF Y,

C

CALL BEKLANC(M,%,Q,PP3,H,P,S,0P,C,X,Y,R,IORTHG,IVY,LOU0T,NCHEPS)
INN = INN ¢ P%*(2%S-1)

C

C SYBUTN SOLVES THE SINGULAR VALUE PROBLBH FOR THE PS-BY-PS

C ARRAY HS, RETURNING THR SINGULAR VALUES IN THE SBCOBD COLUMN
C OF C AND THB RIGHT SINGULAR VECTORS IN THB PIRST P*3S COLUNES

C OP U, AND TEB P LEPT SINGULAR VECTORS CORRESPONDING TO THB
C P LARGEST SIBGULAR VALUES IN TEE FIRST P COLUMNS OF V,.

C

CALI SvYBUTH(Q,PS,P,PP3,C,PS,PS,U,V,RCHEPS,IERR)
IP (IBRR.EQ.0) 60 TO 330
WRITE (LOUT,6020) IERR

6020 PORMAT(5X,39H **%x ERROR IN SUBROUTINE SVBUTHM. IBRR =,I3,4H *%%)
330 QP1 =Q+1

OPPS = Q+PS
WRITE (LOUT,6030) (C(I),.I=QP1,QPPS)

6030 PORMAT (5X,20H SINGULAR VALUBS . ..,6 (/5X,1P5D24.195))
C

C ROTATE COHPUTBS THE LEFT AWD BRIGHT SIKGULAR VECTORS

C OF THB RESTRICTED MATRIX USING XS STORED IN X, AND YS
C STORED IN Y.

C

CALL ROTATE (M,Q,H,PS,PS,U,X,T)

CALL ROTATE(¥,Q,H,PS,PS,Y,Y,T)
C

C TEST I? BELATIVE INCREASE OF COMPUTED SINGULAR VALUBRS EXCEEDS

C TEE USER-SET PRECISION BOUND.

C

¥COoRY = (

I? (ITER.EQ.1)GOTO 340

| IF ((C(Q+1)=-D(H+1))/C(Q+1).6GT. BPS) GO TO 400
c

| C CNVTST DETRRMINES HOW BABY OF THB SINGULAR VALUESC AND LEPT AND RIGHT SINGULAR VECTORS HAVE CONVERGED.

C THE NUMBER THAT HAVE CONVERGED IS STORED INWNCONV,

| C IF NCONV=0, THEN NONE HAS CONVERGED.
| C

340 CALL CNVTST(®,¥,Q0,H,G,ERRBND,BRRC,O0P,C,X,Y,NCONV,LOUT,T)

| INM = INN + (NCONV+1)s2
| 400 CONTINUE

C

| DO 410I= 1,PS
IPH = I+H

IPQ = I+Q

| D (IPH) = C (IPQ)
i 410 CONTINUE

2

C PCHOIC CHOOSES NEW VALUBS FOR P AND S$, THE BLOCK

C SIZE AID THE NUMBER OF STEPS FOR THE BLOCK LANCZOS

| C SUBPROGRAN, RBSP..
C

IP (NCOWV.EQ.0 .OR. NCONV.EQ.G=H) GO TO 420

| CALL PCHOIC(Q,H,G,MCONV,P,S)
420 WRITE (LOUT,6040) INM,IVVY,NCONV
6040 FORMAT (5X,6H INN =,I5,5X,6HIVV =,I5,5X,8H NCONV =,I3)

ii = ReNCONV

; C

GO TO 300

C

| c THIS IS TEE ENDOPTHEMAIW BODY OF THE SUBROUTINE.
C NOW SET THE VALUE OP THB IBCODB ANDEBXIT.

| C

| 900 IECODE = 0
RBTURR

901 IECODE =1

| RETURN

902 IECODE = 2

RETURN

: 903 IECODB = 3
| RETURN

| 904 IECODE = 4
| RETURN

905 IBCODB = 5

RETURN

906 IBCODB = 6

RETORN

907 IBCODB = 7

RETURN

908 IBCODB = 8

PINIT =-P

RETURN

END

SUBROUTINE BKLANC (M,N,Q,PP3,H,P,S,0F,C,X,Y,R,IORTHG,IVY,
1 LOUT, NCHEPS)
INTEGER M,N,Q,PP3,H,P,S,IORTHG,IVV,1CUT

DCUBLE PRECISION C(Q,PP3),X(M,Q),Y(N,Q) ,R (P,P) ,MCHEES
C

C THIS SUBROUTINE IMPLEMENTS THE BLOCK LANCZOS
C METHOD WITH REORTHOGONALIZATION. BKIANC CCMEUTES

C A PS-BY-PS (PS=P%S) BANDED UPPER TRIANGULAR
C MATRIX MS WHICH IT STORES IN COLUMNS 2 THRCUGH P+2

C OF THE Q=-BY=-P+1 MATRIX C (THE DIAGCNAL BEING STORED

C IN TBE FIRST PS LOCATIONS OP COLUMN 2, TEE NEXT
C SUPERDIAGONAI BEING STORED IN TBE FIRST PS=1 LOCATIONS

C CP CCLUME 3, AND SOON), AND A PS-BY-PS CRTHOGCNAL
C MATRIX XS WHICR IT STORES IN COLUNMNSH+1 THBOUGH H+PS

C OF THE E-BY-Q ARRAY X, AND A PS=-BY-FS ORTHOGCHNAL
C MATRIX YS WHICH IT STORES IN COLUMNS H+¢1 THROUGH H+PS

C Op TBB N-BY-Q ARRAY Y.
C MS CAN ALSO BE REGARDED ASABLOCK UEEER BIAGCHNAL

C MATRIX WITH P-BY-F UPPER TRIANGULAR MATRICES R(1),
C R(S) ON ITS DIAGONALABD P=-BY-F IOWEE TRIANGULAR

C MATRICES T(2)', T(S)' ALONG ITS UPPER CIAGONAL.
C XS IS CORPOSED OF S PS—-BY-P ORTHONCREAL FATRICES

C YS IS COMPOSED OF S PS—-BY-P ORTHONORMAL MATRICES

C Y(Y, o.oo Y(S), WHEREY (1) IS GIVEN AND SHOULD BE
C STORED IN COLUMNS H+1 THROUGH H+P OF Y.

C OP IS THE NAME OP AN EXTERNAL SUBBCUTINE USED 10

C DEFINE TEE MATRIX A.

C

INTBGER I,I1,12,d,J4P,J1,32,K,K1,1,11,LLNP,10
DOUBLE PRECISION 1

C

C L = 1

C

IL = H+1

LU = H+P

C

C CCHPUTEX (1) = AY (1)
C

CALL OP(M,N,P,X(1,LL),Y(1,LL),.TRUE,)
C

C FACTORIZE X (1) := X (1)$B (1)
C

CALI ORTHOG (M,Q0,H,H,P,R,X,IORTHG,IVY,LOUT,NMCHEES)
C

C STCRE R(1) IN C
C

DO 120d = 1,P
C

DO 110 I =1,d
J1 = J=1+2

C (X,d1) = BR (I,J)
110 CCNTINUE

C

120 CCNTINUE

C

C L GB. 2

Cc

IP (S.LT.2) GO TO 900

;
DO 600 L = 2,8

LL = H+ (L=1) %P+]
LU = He+L#*P

I1 = (L-2) *P
I2 = I1+P

C

C COHPUTB A'#*X (1-1)
C

LLNP = LL-P

CALI OP(M,N,P,X(1,LLHP),Y(1,LL),.FALSE.)
C

DO 230 K = LL,LU

C

C COMPUTE Y(L-1)*R (L-1)"
C

K1 = K=LL+1

C

DO 220I = 1,N
T = 0.DO

C

DO 210 J = K,10
JNP = J-P

J1 = J=1LL¢1

T=T + Y(I,J8P)*R(K1,J1)
210 CONTINUE

C

C COHPUTB Y(L) = A'$X(L=1)- Y(L-1) @® BRB (L-1)'
C

Y(I,K)=Y (I,K)~-T
220 CONTINUE

C

230 CONTINUE

C

C PACTORIZE VY (1) := Y(L)*7T(L)
C

CALL ORTHOG (N,Q,H,LL-1,P,R,Y,IORTHRG,IVV,10UT,BCHEES)
C

C STORB T(L)' IN C
C

DC 320 J = 1,P
Jl = J+I1

C

DO 310 I = 1,4
32 = P=J+1+2

C(Jt,J2) = RB(I1,J)
310 CONTINUE

C

320 CCHETINUE

C

C CCHBPUTE A*Y(L)
C

) CALL OP(M,¥,P,X(1,LL),Y(1,LL),.TRUE.)
C

: DO 430 A = 1L,Ll0
C

C COMPUTE X (L-1)*T(L)"
C

K1 = K=LL+1

C

DO 420 I =1,M

| H

T = 0.DO

C

JHP = J-P

31 = Jd=11+1

T=T + X(I,J8P)*R(K1,J1)
410 CONTINUE

C

C COMPUTE X(L) = A®*Y(L)- X (L-1)*T(L)"*
C

X (I,K) = X(1,K)=-7T

420 CONTINUE

C

830 CCNTINUE

C

C FACTORIZE X (L) := X{L)*R (1)
C

CALL ORTHOG (M,Q,8,LL-1,P,R,X,JORTHG,IVV,L0UT,NCHEES)
C

C STORE R(L) IN C
C

C

DO 510 I = 1,4
11 = 112

Jl = J-142

c(11,Jd%) = R({I,J)
510 CONTINUE

C

520 CCNTINUE

C

600 CCRTINUE

Ie

900 CCRTINUE

FERETUOERN

END

SUEROUTIUE ORTHOG {N,Q,H,L,P,R,X,IORTHG,IVV,1CUT,NCHEES)

IBTEGER N,Q,H,1,P,ICEKTHG,IVV,LCUT

DCUBLB PRECISION Kk (P,P) ,X(N,Q) ,MCHEES
C

C OBTEOG RRORTHOGONALIZES TEE N-BY-P NATRIX 2 STORED IN

C CCLUNES L+1 TBROUGH 1+P OF TEE N-BY-Q AERAY X WITH
C RESPECT TO THE VECTORS STORED IN COLUMNS 1 THBCUGH BH

C AND COLUMNS (L-IORTHG*P+1) THROUGH I OP TEE MATRIX X
C USING GRAM~SCHMIDT ORTHOGONALIZATION. TBE MCDIFIED

C GREAM-SCHNIDT NETHBOD IS USED TO PACTOSRIZER TBE RESULTING

C MATRIX INTO TEE PRODUCT OF AN N—-RY-F CRTHONCENAL MATRIX

C XORTH STOBED IN COLUHNS L+1 THROUGH I4P OP X, AND
C AP-BY-P UPPER TRIANGULAR ARRAY R.

C

INTEGER I1,INM1,IP1,J,K,KNL,L1,LP1,LPP
INTEGER HNMAXO

DOUBLE PRECISION SUN

DOUBLE PRERCISICN DSQRT

I? (P.EQ.0) RETURN
LBE1 = L+1

LPP = L+P

C

IP {(H.BQ.0) GO TO 200
C

DC 130 I = LP1,LPP
C

DO 120 K = 1,8"

CALI INPROD(N,X(1,1).,X (1,K),SUN)
C

DO 110d = 1,N
X(J,I) = X (doI)= SUN*X (J,K)

110 CONTINUE

C

120 CCHTINURE

C

130 CCHETINUER

C

IVY = IVY + H*P

C

200 IT (IORTHG.RBQ.0) GO TO 300
IF (L.EQ.HB) GO TO 300

11 = BAXO(L-P*JOBTHG+1, H+1)
C

DC 230 I = LP1,LPE
C

DO 220K = L1,L

CALL INPROD(N,X(1,I),X{1,K),SUN)
C

DO 210 Jd = 1,N

X(J,I) = X(J,I) = SUN%*X (J,K)
210 CONTINUR

C

220 CCNTINUERE

C

230 CCHTINUE

C

IVY = IVV + (L=-L1+1)*P
C

300 CCHNTINUE

)

C

DC 400 I = 1LP1,LPE
SUN = 0.DO

C

DO 310 J = 1,N
sun = SUM + X{J,]) *%*2

310 CGNTINUE

C

INL = I-1

IF (SUM.GT.MCHEPS) GO TO 330
C

WRITE (LOUT,6010)
6010 FORMAT (5X,47H *%%* WARNING eo LINEAR INDEFENDENCENMAYBE LOST,

1 24H. VECTOR SET TO ZERC #3%x%)
R (IMNL,INL) = 0.DO
DO 320 J = 1,N

X(J,I) = 0.00
320 CCNTINUE

GO TO 400

C

330 SUM = DSQRT (SUM)
R{IBL,INL) = SOM
sun = 1. D0/SUN

DO 340 J =1,N
X(J,1I) = SUE*X (J,I)

340 CCNTINUE

C

350 IF1 = I+1

IP (IP1.GT.LPP) GO TO 400
C

DO 370 kK = IP1,LPP

CALL INPROD(N,X(1,I),X (1,K),SUNM)
KR]. = K-L

R(INL,KML) = SUM
C

DO 360 J = 1,N
X(J,K) = X(J,K) = SUN*X (J,])

360 CONTINOE

C

330 CORTINUE

C

400 CCHTINUE

C

IVY = IVV + (P-1)%p/2
EETUEN

END

| SUBROUTINE INPBOD(N,U,V,SUN)
INTEGER N

DOUBLE PRECISION U(N),V(N),SUN
C

C INPROD COMPUTES THE INNER PRODUCT OF 2 VECTORS U AND ¥,

C EACH OF LENGTH N, AND STORES TEE RESULT IN S.
C

INTEGER I

SUM = 0.DO

C

DC 110 I =1,N

SUN — SUN + 0 (I)*V(I)
110 CCNTINUE

C

RETURN

END

SUBRCUTINE ROTATE (N,Q,H,PS,1,U0,X,T)

INTEGER N,Q,H,PS,1
DOUBLE PRECISION U(C,L) ,X(N,Q) ,T(Q)

C

C RCTATE COMPUTES TEE PIRST LI CCLUNNS OF THE MATRIX

C XS*QS, WHERE XS IS AN N-BY-PS ORTHCNOEMAL MATRIY STORED

C IN CCLUMNSH+1 THROUGH H+PS OP TEE N-BY-Q ARRAY X AND

C 0S IS A PS-BY-PS CRTHONORMAL MATRIX WHOSE FIRST L COLUMNS
C ARE STORED IN COLUMNS 1 THROUGH I CP TEE ARFAYU. TRB

C RESULT IS STORED IN CCLUKNS H+1 THECUGHH+lL OF X

C CYERWRITING PART OF XS.

C

INTEGER 1,J,JPH,K,KPH
DOUBLE PRECISION SUM

C

DC 200 I = 1,N
C

C CCMPUTE TEE I1-TH FOW OF XS*QS
C

DO 110 K= 1,1
sgM = 0.D0

C

DO 105 J = 1,PS
JPH = J+¢H

sun = SOM + X(I,JPH)*U(J,K)
105 CONTINUE

C

T(K) = sun
110 CCNTINUE

C

KPH = K+H

X(I,KPH)= T(K)
120 CONTINUE

C

200 CCNTINUB

C

EBTUFN

ERD

SUBROUTINE CMVIST(M,N,Q,H,G,ERRBND,EFPRC,OF,C,X,Y,NCCNV,
1 LOUT,T)
INTEGER H,N,Q,H,G,NCCHV,L0OT
DOUBLB PRECISION ERRBND,ERRC

| DOUBLE PRECISICR C (Q,2) ,X(M¥,Q),Y(N,Q) ,T (MN)
| C

C CRVTST DETERMINES WHICH OF TEE P CCMPUTED SINGULAR

C VALUES STORED IN THB SECOND COLUMN OF C HAVE CCNVERGED.

C THE RESIDUAL RESIDUOF THE (H+4I)=-TH SINGULAR VALUE
C IS CCMPUTED RY

C RBSIDU = DSQRT(2NOEM(A*Y (H+I) ~- X(H+I)*C (I,2)) *%2
C

C + 2NORM(ASX (H+I) - Y(H+I)*C(I,2)) *%2),.
C

C BRRC IS A MEASURE OF THE ACCUMULATED ERROR IN THE

C BE FREVIOUSLY COMPUTED SINGULAR VALUES AND LEFT AND RIGHT

C SINGULAR VECTORS.

C WE DRCIDETEE (H+I)=-TH SINGULAR VALUE HAS CCNVERGBD
C IF

C RBSIDU LE. B#*ERRBND + ERRC,
C

C WEERE B EQUALS C(1,2)IF THE LATTER IS GREATER THAN 1,
C AND 1 OTBERWISE. HENCE WE DO ARELATIIVE ERROR TEST IF THE

C CCBPUTBD SINGULAR VALUE IS GREATER THAN 1, AND AN ABSOLUTE
C ERROR TEST CTHBRUISB.

C TEE CONVERGENCE TEST IS PERFORMEL IN ORDER CN TEE (H+1)-TH,

C (H+2)-TH, . . . COMPUTED SINGULAR VALUES. AS SOON AS A CCMPUTED
C VALUE FAILS THE TEST, RETURN IS RACE TO TEE CALLING ROUTINE.

C NCONVIS THE NUMBER THAT HAS CCNVEEGEL,IF NCONV=0,
C TEEN MONE HAS CONVBEGRD.

C

INTEGER I,IPH,K,Ll,PT
DCUBIR PRRCISION RESIDUO,B,SUHN

DOUBLB PRECISION DSCET

C

SUB = 0.DO

FT = G-H

C

DO 200 I = 1,p7
K=1

IF (C(I,2) .BQ.0.D0) GO TO 300
IPH = I+H

CALL OP(M,N,1,7,Y(1,IPH),.TRUE.)
C

RBSIDU = 0.DO

DO 110 L = 1,H

B=T(L) = C(I,2)*X(L,IPH)
RBSIDU = RESIDU + B#*s2

110 CONTINUE

C

CALL OP (B,N,%,X(1,1IPH) ,T,.FALSE.)
C

DO 120 L =1,R

RBSIDU = RESILCU + B#*%2

120 CONTINUE

C

C TEST POR CORVERGENCE

C

RESIDU = DSQRT (RBSIDU)
| B= C(I,2)

2 IF (RESIDU.LE.B*ERRBND+ERRC) GO IC 130
C

WRITE (LOUT,6010) K,RESIDU

6010 PCBMAT(SX,4H K =,18,5X,9H RBSIDU =,1BED15.5,
1 36H eo ** COHPUTBD VALUE REJECTED #%%)

GO TO 300

C

130 ~~ WRITE (LOUT,6020) K,RESIDU

6020 FORMAT (5X,8H K =,I4,5X,98 RBSIDU =,1PD15.5,
2 36H ##% CCMPUTED VALUE ACCEFTED #%#)

SUN = SOM + RESIDU##2

IF (I.EQ.PT) K =K+1
200 CONTINUE

C

300 NCONV = K-1

IF (K.EQ.1) RETURN
C

BRRC = DSQRT (ERRC*#2+SUN)
RETOEN

END

| SCEERCUTINE EFECHCIC(Q,E,G,NCONV,P,S)
INTEGER C,H,G,NCCNV,E,S

C

C BASED ON TEE VALUES CF Q, H, G ANL NCCNV,

C FCHOIC CHOCSESNEw VALUES FOR P ANCL S, THE ELCCK SIZE
C ANC NUMBER OF ETEFES FOR TEE ELCCK 1IANCZCS HETHCD.

C TEE STRATEGY IS :<: 1F TEE PREVIOUS BICCK SIZE IS

C GCFEATER THAN TEFE BUMEEF CF SINGULAR VALUES 1C BE

C CCNMPUTED, THEN THE NEW BIOCK SIZE EQUALS 'IRE EFEVIQUS
C FICCK SIZE MINUS 'IRE XUMBER OF SINGULAR VALUES THAT

C HAVE CCNVEFGED INTHE CUFBENT ITERATICN, CIHEEWISE

Cc TFE NEW BLOCK SIZE IS CRCSBN TO EE TEE SEALIER CF THE
C TWC VALUES : 1) THE PREVIOUS EICCK SIZE, ANC 2) THE
C KCFRFR OF SINGULAR VALUES TO BE CCMEG1IEL. S IS CHCSEN

C AS LARGE AS PCSSIELE SUBJECT TC STORAGE CCNSTEAINT,

C FUT ITS VALUE IS ALWAYS AT LEAST <.

C H IS THE NUMBFF CF SINGULAR VALUES AND LEPT ANE RIGHT

C SINGULAR VECTOFS THAT HAVE ALREADY EEEN CCMIUTEL AND G

C is TEE REQUIRED NUMBEE. NCCNV IS TEE NUMBER CF SINGULAR
C VREIUES AND 1¥PFT AND RIGHT SINGULAR VECTCRS THAT HAVE

C CCNVERGED IN TAB CUEFENT ITERATION.

C

INTEGER HT, PT

Cc

HT - B+ NCCNV

IF (E.LE.G-H) GO 10 110
Cc

F = tt = NCONV

S = (C-HT)/FE
FETUEN

Cc

1M0FT -G~- HT

IF (FeGT.PT) P = ET

S = (C~-HT) /P

IF (S5.GE.2) RETUEN

E = (C=-HT)/2
S = (Q-HT) /E

C

FETOUFN

EXT

SUEROUTINE RANDCM (N,Q,F,H,X,ISEED)

INTEGER N,Q,P,H,ISEED
CCUBLE PRECISION X (N,Q)

C

C RANDCM CCMPUTES AND STORES ASECUENCE CE E*N PSEUDO-

C KANDCN INTEGERS (VALUE BETWEEN 0 AND 2147483647) IN
C CCLUMNS H+1 THBOUGH H+P OF THE N-EY-Q ARRAY X.
C

INTEGER I,1L,LPH

pC 1#30L = 1,P
LFH = L+H

ISBBD = ISEED*2314159269 + 4538C6245

C

C THE STATEHBNT NUHBBR 110 IS TG PREVENT UNWANTED,
OPTIMIZATICN BY TEE COMPILER.

C

110 IF (ISEED.LT.0) ISBBD = ISEEL + 2147483647 +1
X(I,LPH) = ISEED

120 CONTINUE

C

130 CCNTINUB

RETUFN

END

SUBROUTINE SVBUTM (NDIN, N, M, MP3, C, NO, NV, U, V, MCHEPS, IERR)
C

CERES RX REK ELBE EERE REE EERE EEEE START OF SVYBUTHM $5555 REEEXREE LEER kek

C

C

INTEGER XDINM, N, N§, MP3, NOU, NV, IERR
DOUBLB PRECISION C(NDIN,MP3), U(NDIN, NU), V(NDIN,NV), MCHEPS

C

C Wh SEE ES ED ND OED Mr PND GRE WN WP NS AD WR SW WD A WS CE ID SS ED A GE wR ED AR AD SD GED A WD ED GS ME SS A Ah A ED UW A A ER ER GW a eR EN na

C

C CALCULATE THE SINGULAR VALUE DECOMPOSITION OF A BANDED UPPER

C TRIANGULAR MATRIX

C

C YRITTBN BY: 5. L. OVYERTON

C COMPUTER SCIENCE DEPARTHENT

C STAMFORD UNIVERSITY

C JANUARY 1976

C LAST UPDATB: JANUARY 1976

C

C THIS ROUTINE COMPUTES TEE SINGULAR VALUE DECOMPOSITIONOFA REAL

C N*N MATRIX A, I. E. IT COMPUTES MATRICES UO, S AND V SUCH TEAT
C

C A =0%gs ® VT,
C WHERE

C U IS AN N*N MATRIX AND UT * 0 = I, (UT = TRAUSPOSB

C V IS AU N*N MATRIX AND VT *V= T, (VI = TRANSPOSE
C or Vv),
C AND S IS AN N*N DIAGOUAL MATRIX.

C

C THE CALCULATION IS PERFORMED IN TWO STEPS:

C

C 1. REDUCE THE BANDED UPPER TRIANGULAR MATRIX TO AU UPPBR

C BIDIAGONAL HATBIX USING GIVENS TRAMSPORMATIONS., THIS IS

C DONE BY SUBROUTINE BIBAND.

C THE METHOD USBD IS SIBILAR TO THE METHOD USED FOR

C TRIDIAGONALIZING ASYHNETRIC BANDED NATRIX, DESCRIBED IN

C Hd. RUTISHAUSER,ON JACOBI ROTATION PATTBRYS, PROC. OF SYANP.
C I® APPLIED HMATH., VOL.XV, BXYPERIMENTAL ARITR., HIGH SPBBD

C COMPUTING, AND MATH. (1963). FOR PURTHER DBTAILS SEE
C COMMENTS AT BEGINNING OF THB SUBROUTINE.

C

C 2. DIAGORALIZB THE BIDIAGONAL NATRBIX TO OBTAIU THE SINGULAR

C VALUBS. THIS IS DONE BY SUBROUTIRE SVDBI.

C TEE MBTHOD USED IS A VARIANT OF THE QR ALGORITHN,

C DESCRIBED IN: GOLUB AUD RBINSCH,SINGULAR VALUE DECOMPOSITION
C AND LBAST SQUARES SOLUTION, NUMER. BATH. 14, ®803-420(1970),
C SECTION 1.3.

C

C fm Wt NE EN EEE ERE ® WP EWE TEP PE DE eh Uh AE A us DU ES UD UD UE YE we A AR A ee SR A We WD UR AP We UP WD GR SL WD OPW a

C

C TEE ROUTINE IS IN DOUBLE PRECISION

C

C - “ED UW ED ES ER ID ES NS MES EYED TES AS A SED EE SD ER YS Sh a SUD Sh AS TP ED AE WE GE US EDD AY EE ED ts SW SED NE SS ED UP AD US A a EW AD TS WE a

C

C THE SPEED OPTHIS ROUTINE COULD BB IMPROVED BY INPLEMENTING

C

o

< PAST GIVENS TRANSPORMATIOUS

C

C o + eR ED Ee ee ED ED we hs ES ER Gh Te we Mh Eh ES WE LS ES WS MER ES wp A ER WS AD US ND rE Wh AP AE TP UR AD ah SU ES WS EE GD A A mt Ub Wh Se ap ah GD TS WF YR A an

C ADDITIONAL SUBROUTINES REQUIRED: BIBAUD, WITH ROTROW AMD ROTCOL
C

C SVDBI, WITH DROTAT
C

C CE EEEE ed LL TET ET TT NM TN I TN NN TNT YN a rT TY Tras

C

< THE FORMAL PARAMETERS ABE:

Cc

C NDIM = TEB QUANTITY USED TO DECLARE THE FIRST DIMENSION OF TEE

C ARRAYS C,U0,¥Y (KDIN .GE,.N)
Cc

C N - TEE ORDER OF THE BAUDBD UPPER TRIANGULAR MATRIX A

C

“ M - THE UUMBBR OF SUPEBDIAGONALS IN TEB MATRIX A:

C (I,J) = 0 FOR J .GT. I+M AID J .LT. IX
Cc

C MP3 - THE KUMBER OF COLUMUS IN TRB ARRAY C. MUST BB SET TO H+3.
C

C C - AU NDIM oe HP3 ARRAY WHICH HOLDS THE NONZERO ELEMENTS OF

C oF A.

C THE DIAGONAL IS STORBD IN TEE FIRST ¥ BLBMBNTS OF

C COLUMU 2, TEE NEXT SUPBRDIAGOUAL IN THB FIRST U-1

C ELEABNTS OF COLUMU 3, AUD SO ON UP TO TEB LAST
C NONZERD SUPERDIAGOUAL BEING STORED IN THB FIRST U-M

C ELEMENTS OF COLUMU M+2. COLUMUS 1AUD M43 ARE ARBITRARY.

C THUS:

C A(I,J)=C(I,J-I+2), I .LE. J .LB. I¢A,
C TEIB ROUTINE RETURNS TEE DIAGONAL OF TEE MATRIX S,
C I. Bo. THE SINGULAR VALUES OF A, IN DESCENDING

C ORDER, IN COLUMR20F C - THUS THE
C SINGULAR VALUBS WILL BE:

Cc C (1,2) .GE., C (2,2) «GE, o XI .GE. C(¥,2)
C

C NU, ¥V- IKRTEGER VARIABLES. TEE UUMBBR OF COLUMUS IN TEE
C ARRAYS UO AUD V. SET RO TO N IP TEE MATRIX O IS DESIRED,
C OR SET WO TO 1I? U IS UOT DESIRED.SETHEY TO N

C IF THE MATRIX VIS DBSIRBD, OR SBT NYTO1 I? V
C IS ROT DESIRED,
C

C U - REAL NDIN * NU ARRAY. IF RU = ¥, TEB MATRIX U IS COMPUTED
C ABD STORED IN THE ARRAY U.

Cc

C \ - REAL NDIHN *¥V ARRAY. IF BV = NX, THE MATRIX VIS COMPUTED
C ABD STORED INTHE ARRAY V.

Cc

C IERR - ERROR PLAGb. TEE ERROR CODES RETURNED HAVE THE FOLLOWING

C HEAVINGS:

C IBRR = 0: NORMAL RETURN

C IERBR = 2: ERBOR ~ MP3 DOBS UOT BQUAL HN+3.
C IERR = 3: ERROR = MU IS UOT SET TO ¥ OR 1.

C IERR = 4: ERROR = BV IS UOT SET TO N OR 1.

C IERR = 5: BBROR - ¥ IS GREATER THAN NDIA.

C

C - ea Er a EL TL EF NY RE FREY TY FI FY FY FY FF FF TERR NTN WR RNY TRE AEA A Ep RR AE

C

C

LOGICAL WITBU, WITHY

INTEGER I, NM1,ENI
C

C CHECK INPUT PARAMETERS

IERR = (

IF (AP3.BB.M¢3) 60 TO 102
IF (MU.NE.1.AND. NU.NE.¥N) GO TO 103
IF (UU.BQ.1l) WITHU = .PALSE.
IF (NU.EQ.H) WITHU = TRUE,

IP (NV.NE.1 AND. NV.NE.NH) 60 TO 104
IF (MV.EQ.1) WITHY = PALSE.
IF (AV.EQ.N) UITEV = .TRUE.

ITF (W.GT.WDIN)60TO 105
C

C TURN OFF UBNDERFLOW

C

C BIDIAGOUALIZB

CALL BIBAND (NDIN,N,X,NP3,C,NU,NV, WITHU,WITHV,0,V)
C

C THE SUPERDIAGONAL COLUMN HUST BESHIFTEDDOWN ORE BLENENT IN C
C BBPORE CALLING SUBROUTINE SVDBI

NM1=N-1

DO 20 I=1,HN1
Nal = B-1I

20 C(NHI+1,3) = C (WAI,3)
C (1,3)=0.DO

C

C DIAGOUALIZB

CALL SVDBI (¥WDINM,N,C (1,2),C(1,3) ,BU, NV, WITHU,WITHV,U,V, NCHEPS)
RETURU

C ~
C SET ERROR FLAGS

102 IBRR = 2

RETURU

103 IBRR = 3

RETURU

104 IBRR = {

RETURN

105 IERR = 5

RETURN

BUD

[|

SUERCUTINE BIBANLC (NDIN,N,M,MP3,C,NU,NV,,WITHUO,NITHV,U,V)
C

CHEESERRR RRRB RAS 3k2%2%k% START OF BPIRAND $5842 2205240200 hahhaks
C

C

INTEGER NDIM, N, M, MP3, NU, NV
LOGICAL WITBHU, WITHV

CCUBLE PRBCISICN C(NCIN,MP3), U(NDIN,NU), V(NDIN,NV)
C

C EE SA A TS EG RAR SD GE A A SE A ED GR ER ND ES WN ED SD ED A Sh RA ES ED SA A WR as a EGE Gl EI ED wh WE ES Cw GD aE ee

C

C FILCUCE ABANDED UPPER TRIANGULAR MATRIX TCA BICIAGCNAL MATRIX

C BY GIVENS TRANSFORMATIONS, PRESERVING TBE SIRGULAEF VALUES.
C

C WRITTEN BY: M. L. OVEFTCN

C COMPUTER SCIENCE DEFARTHRERT

C STANFORD UNIVERSITY

C JANUARY 1976

C LAST UPDATE: JANUARY 1976

C

C ER Eh ah de A An Eh GD WE GD ED TG A a Wh WS A ES GD GI ES ED Gl WDA WS A BR A AE SD RE ER SE EE GR EG ST Ah WS A GID GID WN ED TD GED YE GN TED AE SN WD a We

C

C TBE FOUTINE IS IN DOUBLE PRBCISICN

C

C SR Se ED A SD YE SG AR GS ER Sh A A WDA ET AE SER A A A EWE A GSE SED GE GE GI smb A TE GRD GI WES GIP ED ED GS A GS AED ST ED MR WR a

C

C ADDITIOUAL SUBHOUTINRS REQUIRED: ECTRCW AND EFOTCOL
C

C AD dh GD ES A GW GE di dh Gm EA ED SED DE ES GE WD GN AB SED TR GS SED GE SE GI A GID ED ED ED GR GE MED ND ED SEE GEN A A GE AS AS A AAD TI GE A GW a Ee

C

C THIS SUBROUTINE COMPUTES TEE MATRICES U,J AND V SUCH THAT
- C

C A =0 %J *% VT ,
C WHERE

C U IS AN N*N MATRIX AND UT #*# U0 = I, (UT = TRANSPOSE

C OF 0),
C V IS AN N#*N MATRIX AND VT * V = I, (VT = TRANSPOSE

C OF V)
C ADD 4 IS AN N#*N UPPER EIDIAGGNAL MATRIX.

C

C TEE METHOD USED IS SIMILAR TO TRE METHCD USBD FOR

C TRIDIAGONALIZING A SYMMETRIC EANDED BATEIX, DESCRIBED IN

C He RUTISHAUSER, CN JACCBI ROTATION PATTERNS, PRCC. OF STEP.

C IN AFPLIBD MATH., VOL.IV, EXPERIMENTAL ABITB., HIGH SPEED

C CCBPUTING, AND MATH. (1963).
C

C adh eed ddd dd dl dE EE EL EE a Sp ——

C

C TRE PORMAL PARAMRIEES ARE:

C

C BDINM - THE QUANTITY USED TO DECLARE TEE FIRST DIMENSICN OF THE

C ARRAY C (NDIM .GE. N)
C

C N - THE ORDER OF THE RAIDED UPPER TRIANGULAR MATRIX A

; C

C . - TEE NUMBER OF SUPERDIAGONALS IN TEE MATRIX A:

C A(I,Jd) = 0 FOR J GTI. TI+M AND J IT. I
C

C MP3 <«- THE NUMBER OF COLUMNS IN TRE ARRAY C. BUST BE SET TO HM+3.

C

C C - AN NDIE * HP3 ARRAY WHICH HCLLS THE NCN2ERO ELEMENTS OF
C OF A.

C TAB DIAGONAL IS STORED IN TRE FIRST NELEMENTS OF

C COLUHN 2, TBE NEXT SUPERDIAGCNAL TIN THE PIRST N-1
C ELEMENTS CF COLUHN 3, AND SO CNOF TO THE LAST
C BCNZERO SUPERDIAGONAL BBIN6 STORED INTHE FIRST N-H

C BL.BHBNTS OF COLUHN M42. CCLOMNS 1 AND M43 ARE ARBITRARY.
C THUS:

C A{l,J)=C (1,J-1I+2), I .LE. J .LE.I+HM.
C THE ROUTINE RETURNS TEE BIDIAGCRAIL EATEIX J WITH THE

C DIAGONAL IN THE FIRST N ELEMEERIS OF CCLUMN 2 OF C AND

C THE SUPERDIAGONAL IN TRB FIRST N-1 ELBWENTS CF

C COLUMN 3 OF C.

C

C NU, NV= INTEGER VARIABLES. THE BRUMBER OF CCLUMNS IN THE
C ARRAYS © AND V. SBT RO TO N IP UITHU = .TRUE., OR SET

C NU TO 1 CTBEEWISE. SIHILARLY SET NW TC N OR 1.

C

C WITHO,WITHY - LOGICAL VARIABLES. JF UITHU = .TRUE., THEN
C THE HATRIX 0 IS COHPUTBD AMD STORED IN THE ARRAY U.

C IP WITHY = .TRUE., THEN TBE MATRIXVIS COHPUTED AND
C STORED IN THE ARRAY V.

C

C 0 — REAL NDIH * NU ARRAY.

C

C \ — REAL NDIH #® NV ARRAY.

C

C ~~ 2 A 7 71 A A 1 0.02 SH 2

C

INTEGER N®2,1,J,K,J0,JO0FF,KK
C

C

C INITIALIZE U,V

IV (.NOT. WITHU)GO TO 81
DC 80 I=1,N

DO 70 J=1,N

70 u(1,J)=0.D0
0(X,1)=1.D0

80 CONTINUE

81 CONTINUE

TF (WOT. WITHV)GO TO 101
DO 100 I=1,N

DO 90 J=1,N

90 v(1,J)=0.D0
V(I,I)=1.DO

100 CONTINUB

101 CCNTINUB

C

C HANDLB DBGBNBBATB CASE

IV (8.LT.2.0R.¥N.LT.3) RETURN
Np2=R=-2

C

C ZEEQC WORKING SPACE ON LEFT AND RIGHT SIDES OF C

DC 120 I=1,N

C(I,1)=0.D0
C(1,8p3)=0.D0

120 CONTINUE

C

C PASS CLOWN THR ROWS OF A

DC 400 I=1,NM2
C LOOK AT TXE ELEHENTS OUTSIDE THE BILCIAGCNAL PART

C FOR K PROH M STEP -1 UNTIL 2e¢..

DO 300 KK=2,M
K=M+2=-KK

Cc THE POLLOUING LOOP PIRST ANNIHILATES THE CHOSEN ELEMENT
C BY A COLUMN ROTATION UITH JOFF=K. THIS CREATES A NEW

C BLBHBNT TO BE ZEROED BY A BOW BOTATICN WHICH CREATES A

Cc NBU ORE TO BE ZEROED EY A COLUMN ROTATION WITH JOFF=M+1
C AND SO ON UNTIL THE ELEMENT IS CHASED OFF THE MATRIX.

JO=T+K

JOFPP=K

IF (J0.GT.N)GO TO 201

DO 200 J=JO0,N,M
C ROTATE COLUMNS TO ANNIHILATE ELEMENT

CALL ROTCOL (NDIM,N,M,MP3,C,NU,NV,WITHO,WITHV,U,V
) ,J,JOFF)

JOFF=NM+1

C ELEMENT CREATED BELCW DIAGONAL — ZERO IT AND

C CREATE ANOTNER ABOVE EY FEOTATING ECRS

CALL ROTROW (NDIM,N,®,NP3,C,NU,NV,WITHU,WITHV,U,V
y. , J)

200 CONTINUE

201 CONTINUE

300 CONTINUE

400 CONTINUE

FETUEFN

END

SUERCUTINE ROTBOW (NDIM,N,M,MP3,C,NO,NV,WITHO,WITHV,0,V,I)
C APEIY TO HATRIX A ON THE LBPT SIDE AGIVENS TRANSFORMATION

C TO ROTATE ROWS I AND I-1 SUCH TEAT TEE SUBLCIAGCNAL ELEMENT A (I,I-1)
C IS ANNIHILATED

C

C RECALL THAT A IS STORED IN C UITH

C A(I,Jd)=C(I,Jd=-I+2) TI .LE. J .LE. I+H
C

INTEGER NDIM,N,M,NP3,NU,NV,I

DCUBLE PRECISION C (NDIM,MP3),U(NDIN,NU),V(NDIN,NV)
LCGICAL WITHU,WITHYV

INTEGER K,MP1
LCUBLE PRECISION X,Y,Z,COST,SINT,TEME,S,CABS,CSQRT

C

X=C(I-1,2)
Y=C (1,1)

C IF Y IS ZERO THEN THERE IS NOTHING TC DO

IF(Y.EQ.0.D0) RETURN
C EEEFORN Z=SQRT (X*X+Y*Y) { COSTT=X/Z; SINTI=Y/2Z WITH SCALING TO
C PREVENT UNDERFLOW

S=DABS(X) +DABS (Y)

CCST=X/S
SINT=Y/S

Z=DSQRT (COST*COST+SINI*SINT)
CCST=COST/2

SIRT=SINT/Z

C(I-1,2)=2%S

C(I, 1)=0.D0
FEI=H+1

DO 100 K=1,MP1

IP (I-1+K.GI.N)GO TO 100
TEMP=C (I-1,K+2)
C(I-1,K+2)=COST*TEMP + STINT *C(I,K+1)
C(I,K+1)==SINT*TEMP + CCST*C (I,K+ 1)

1GC CCNTINUE

C

C UPLATE U (ACCUMULATE TRANSFORMATIONS) - BUST UPCATE OU ON THE
C RIGHT BECAUSE U IS WANTED, NOT U TRANSFOSEC

IF (HOT. UITHU) RETURN

DC 200 K=1,N |
TEMP=U (K,I-1)

UO(K,I=1) =CCST*TEMP ¢ SINT*U (K,I)
U (K,I) ==SINT*TEMP + COSTI*U(K,I)

200 CONTINUE

BETUEN

END

C

J

SUERCUTINE RJOTCOL (NDIM,N,M,MP3,C,NU,NV,WITHO,WITHV,U0,V,J,JOFF)
Cc APFLY TO MATRIX A CN THE RIGHT SIDE AGIVENS TRANSFORMATION TO
C KCTATE COLUMNS J AND J-1 SUCH THAT THE ELEMENT A (J-JOFF,J) (IN THE

Cc UPEER TRIANGLE) IS ANNIHILATED.
Cc

C RECALL THAT A IS STORED IN C WITH

C A(I,J)=C(1,J-I+2) I .LE. J .LE.I+N
C

INTEGER NDIM,N,M,¥P3,NU,NV,J,JOFF

DOUBLE PRECISION C (NDIM,XP3),U (NDIN,NU) ,V(NDIH,NV)

LCGICAL WITHO,WITHV

INTEGER 1,IFK,K,JMIE1,JMIP2,JK1,JK2

DCUBLB PRECISION X,Y,2,COST,SINT,TEMP,S,CABS,DSQRT
C

I=J=-JOFF

JNIP1=J=-I+1

JEIP2=J=-TI+2

X=C(1,JMIP1)

Y=C(I,JNIP2)
C IF Y IS ZERO THERE IS NOTHING TO CO

IF (Y.EQ.0.D0) RETURN
C FERFORM Z=SQRT (X#X+Y*Y): COSTT=X/Z: SINT=Y/Z UITH SCALING TO
C PREVENT UNDERPLOW

S=CAES(X) +DABS (Y)
CCST=X/S

SIRT=Y/S

Z=DSCQRT (COST*COST+SINT*SINT)
CCST=COST/Z

SINT=SINT/2

C(I,JMIP1)=2%*S

C(I,JNIP2)=0.D0

DO 100 K=1,JOFF
JK1=JMIP1=-K

JK2=JMIP2-K

IPK = I+K

TEMP=C (IPK,JK 1)

C (IPK,JK1) =COST*TEMP + SINT*C (IFK,JK2)
C (IPK,JK2) ==SINT#*TEMP + COST*C (IPK,JK2)

100 CONTINUE

C

C UELATE V (ACCUMULATE TRANSPORMATICNS)
C MUST UPDATE V ON THE RIGHT SINCE V IS DESIRED, NOT V TRANSPOSED

IP (.NOT. WITHV) RETURN

DO 200 K=1,N

TBHP=V(K, J-1)

V(K,J-1)=COST*TEMP + SINT*V (K,J)
V(K,J) ==SINT*TEMP + COST*V (K,J)

200 CCNTINUE

FETUFN

C

C2233 832808220225222%58 02220 %k%Xx END CF RIEAND *3%22%222% 35% 0% xb kkk

~ END

SUERCUTINE SVDEI (NDIM, N, S, T, NU, NV, WITHU, UITHV, UO, V, ETA)
C

CA42252222225%X%%%% START OF SVLRI + FP EF SPREE RSE REE RE REE EF

C

INTEGER NDIM, N, NU, NV

CCUBLE PRECISICN S(N), T(N), U(NCIM,NU), V(NDIM,NV), ETA
LCGICAL WITHO, WITHV

C

c ee ee ee =r0 ar 2 2 rm 0 0 0 0 0 0 0 0 0 om Om or 0 me 2m mm om

C

C THIS IS ESSENTIALLY THE SECOND HALF CF SUERCUTINE DSVD,
C A SINGULAR VALUE LECCMPOSITIOR ROUTINE IN TEE CSD LIERBRY.

C

C TEE EQUTINE IS IN DCUBLE PRECISION.

C

C CSVD ORIGINAL FRCGRAHHER: R. C. SINGLETCN

C DSVD 360 VERSION BY: 3. G. LEWIS

C LSVD LAST REVISICN: JANUARY 1974

C SVCBI EXTRACTED EY: H. L.. OVEFTCN

C SVCBI EXTRACTED IN: AUGUST 19175

C SVCBI LAST REVISICN: SEETEMBER 1975

C

C -r GN Een Wr wn ee OI ofl ND dar JED SED UEP GND Gh AND ens AN ED OW GAD GES END WED ATS GD GED GND GP al Eb WED Gb Al EE ES ED A SE SD ED AEF YD ENS ARSED GES SNS AED SND ARS EE Ahn aE JEP Suh SES WE dD Jib en TI sly TE a

C

C ACDITIONAL SUBROUTINE NEEDED: DECTAT

‘ |

C ah GER SE Me ED WE GS GED GS GID WE GUD TED aph iD ES SUP WE GED TED AD NR AD THR GE A ob A dp Ge AND abs wl) AD IS EN ED EN a ED A AE AE GN A A ans TD EE TE ED WD SE gis Gir AT AD EE AER SE ES Jue aE ae dh aE

C

C

C THIS SUBROUTINE CCMEUTES TRE SINGULAR VALUE DECCMPOSITION

C CF A REAL BIDIAGONAL N*N HATRIX 3, I.E. IT COHPUTES MATRICES
C P, S AND Q SUCH THAT
C

C J =F *% S *% QT ,

C REFKRE

C P IS AN N*K MATEIX AND FT # P = I, (PT = TRANSPOSE
C OF P)

C Q IS AN N*N HATRIX AND QT * Q = I, (CT= TRANSPOSE
C OF Q)«
C AND S IS AN N*N DIAGCNAIL MATFIX.

C

C THE METHOD USED IS A VARIANT CF ?HE QR ALGOEITHM.

C REFERENCE: GOLUB AND BEINSCH,SINGUL2R VALUE DECOHPOSITION

C AND LEAST SQUARES SOLUTION, NUMER. MATH. 14, 403-420 (1970),
C SECTION 1.3.

C

C DESCRIPTION OF PARAHBTBRS:

C

C § = REAL N*1 ARRAY. ON ENTRY S CONTAINS THE MAIN DIAGCNAL OF 3.

C —~THE ROUTINE REPLACES THIS BY TEE DIAGCNAL GP THE MATRIX S,

C I.E., TAE SINGULAR VALUES CP J IN DESCENDING ORDER.
C

C 1 = REAL N*1 ARRAY. ON ENTRY T CONTAINS THE SUPBRDIAGCNAIL OF J

C IN ELEMENTS 2,+se¢gN; THE FIRST ELEMENT IS ARBITRARY.
C THE ARRAY IS DESTROYED BY THE FCUTINE.

C

C N = INTEGER VARIAELE. THE NUMBER OF ELEMENTS IN ARRAYS S AND T,
C I.E. THE ORDER OF THE BIDIAGONAIL MATRIX J.

C

C NU, NV = INTEGER VARIABLES. TBB NUMBER OF CCLUMNS IN THE
C ARRAYS UO AND V. SET NO TO N IF UITHU = .THEUE., 'l OTRBRUISB.
C SIMILARLY SET NV TC N OR 1.

C

C UITHU, WITHV = LOGICAL VARIABLBS. IF WITHU = ,TRUE., THEN
C THE MATRIX U SUPPLIED IN TBE ARRAY UO IS POSTMULTIPLIED

C BY THE MATRIX D.

C IF WITHV= .TBUE., TRBN TBE MATRIXV SUEELIED IN TEE
C ARRAY V IS POSTMULTIFLIED BY THE MATRIX Q.
C

C U = BBAL NDIH #% NU ARRAY.

C

C V = REAL NDIH ®& NV ARRAY.

C

C SUBRCUTINE DSVD IS A REAL VERSION OF A FORTRAN SUEROUTINE

C BY BUSINGER AND GOLUB, ALGORITHM 358: SINGULAR VALUE
C DECOMPOSITION OF A CCMPLEX MATRIX, COMM, ACM, V. 12,
C NO. 10, PP. 564 = 365 (OCT. 1969).

C WITH REVISIONS BY RC SINGLETON, HAY 1972.
C La 2 LK 4 2 2 df LE AL ER 2 Lt RL fF FE 1 RF § Y ¥ ¥ 2 rT ¥ ¥ RF _Y EB FF FF ¥ F FT FY ZT 7 FF FF J I

C

DOUBLE PRECISION B,W,CS SN, F, X BPS, 6, VY
DCUBLE PRECISION H, Q
DOUBLER PRECISION DSQRT, DABS, DMAX1
INTEGER 1, J, K, L, L1

C

C

S(1) =0.D0
C

C

C THIS CALCULATION OF BPS IS TAKEN FROH THRE RIDDLE OF THE FIRST HALF

-C OF DSVD

C

EES = 0.DO

DO 50 K=1,N

| 50 EFS = DMAX1(EPS,CABS(S(K))+ CABS (T (K)))
C TCLBEANCB FOR NEGLIGIBLE ELEMENTS

| "100 BPS = BPS #* ETA

| C

C THE REST OF THE PROGEAM IS TEE SECOND BALFOFDSVD

| C

C QR DIAGONALIZATICH
K = ¥

C

C TEST FOR SPLIT

230 L = K

280 I? (DABS (T(t)) «LE. EPS) 6OTC 290
L=1-1

IF (DABS(S(L)) .GT. BPS) GOTO 240
C

C CANCELLATION

CS = 0.0DO

SB = 1.0D0

L1=1

L=1 + 1
DO 280 I =1,K

P=SN#* T(1)

T(I) = ¢4 © T(1)

IF (DABS (F) <LBe EPS) GOTO 290

:

| H = S(1)
W = DSQRT (F*F+ H=*H)

S(X) = W

= cs =H/ W
| SN = =F / W

IF (WITHO) CALL DBOTAT (0(1,LV, G(1,1), CS, SN, N)
280 CONTINUE

| C

C TEST FOR CCNVERGENCE

290 W = S(K)

IF (L EQ. K) GOTC 360
| C

| C CRIGIN SHIFT

x = S{L)

y = S(K=1)

G = T(K=-1)

H = T(K)

F = ((Y -W)* (Y + R)+ (6 = H)*(G + H)) /(2.0D0*H*Y)
G = DSQRT (F*F + 1.0DO)
IF (F .1LT. 0.000) G = =G

F — ((X-W®) *(X+W+ (Y /(F+6)- H *H)/X
C

C QF STEP

cs = 1.0D0

: SN = 1.000
LT = 1 + 1

DC 350 I = L1,K

; G = T(I)
| Y = S(I)

H=SN * G

| G =CS *G
W = DSQRT (H*H+ F#*P)

T (I-1) = W
| cs = ® / W

| SN =H ,/W
| F = X#CS + G*SN

G = G#CS = X*SN

BH=Y*% SN

: Y =Y * CS

IF (WITHV) CALL DROTAT (V(1,I-1). V(1,I), CS, SN, N)
| W = DSQRT (H*H + P*P)

| s (I-1) =W
cs = RR / W

| SW =H/ W
P = CS®G + SN*Y

| X = CS%Y = SN*G

I? (WITHO)CALL DRCTAT (U(1,I-1), U(1,I), CS, SN, N)

| 350 CONTINUE
C

T (L) = 0.0DO

T(K) = PF

| - 8 (K)= X
GCTO 230

C

C CCNVERGENCE

36C IP(W.GE. O.0ODO) GOTO 380
S(K) = =W

IF (.NOT.WITHV) GOTO 380
DO 370 3 = 1,N

370 V(J,K) = =-V (JK)

380 K =K -1

IF (K . NE.O) GO TO 230
C

C SORT SINGULAR VALUES

DO 450 K = 1,N
G = -1,0DO0
DO 390 I = K,N

IP (S (I) .11. G) GOTO 390
G = S (I)
J = 1

390 CONTINUE

IF (3 «EQ. K) GOTIC 450

S{(J) = S(K)

S(K) = G

IF («NOT.WITHVY) GOTO 410

DO 400 I = 1,N

0 = V({I,Jd)
v(1,Jd) = vV(I,K)

400 V(I,K) = Q

410 IF (NOT.WITHU) GOTO 430
DC 420 I = 1,N

Q = U(I,Jd)

0(I,Jd) = U(I,K)

420 U(I,K) = Q
430 CORTIRUE

450 CCNTINUE

C

RETURN

END

SUBROUTINE DROTAT (X, Y, CS, SN, N)
INTEGER N

COUBLE PRECISICN CS, SN, X(N), YN)
C

C

DCUBLE PRECISICN XX

INTEGER J

C

C

DC 10 J = 1,N
XX = X(J)

X (J) = XX*CS + Y (J) *SN
10 Y{(J) = Y(J)*CS = XX#*SN

KETUEN

C

CHALERXRERR EBkREkE%% END CF SVIBI 55538 %85 2858 %%kk kkk kkkkkkk

C

C2320XR RA EXER RSXEREEEE END OF SVRUTH 2325225005 %x5%kkbkhkkkkrkikx

C

E KD

:

C aLEER

C + SAMELER MAIN PECGRAM +

C La LE lL EE LL ET

C

C FFCPEP LENGTHS OF MATFICES :

C

C D (C) ,X (M*Q) ,Y (N*()
C

CCORLE PRECISICN D(20),X(8000),Y(20G0),EPS
INTEGER I,IFCOCE,IORTHG,H,MMAX,M,N,G,EIKIT,C
EXTEFNAL AX

C

CCMMCN A (3000) ,IINDEX (2000) ,JINDEX (2000) ,NCATA
LCUBLE PRECISIGN A

INTEGEE IINDEX,JINDEX,NDATA

INTEGER K,KE1,KP5,KPJ, NCARD,NLCATA
C

C ICUT IS CUTPUT UNIT NUMBER

C MCEEES IS MACHINE PRECISICN

C

INTEGER LOUT

DCUBLE PRECISICN ECHEPS

TATA LOUT/6/

LATA MCEEES/2.22LC~16/
C

C NCARL IS NUMBEF OF LATA CARDS TO EE READ

C

FEAD (5,5010) M,N,NCARD
S01C FCEMAT (315)

C

K = 0

CC1C I = 1,NCARTC
KE1 = K+1

KES = K+S

READ (5,5020) (IINCEX (L) ,JINDEX (I),A(1),L=KE1,KP5)
£020 FORMAT(5 (2I3,F10.6))

K = K+5

10 CCNTINUE

C

C NLATA IS NUMBEF CF NCN-ZEEC ELEMENTS IN A

C IINDEX = 0 SIGNIFIES END OP DATA INEUT

C

N[CATA = K

K = K-5

DC 15 J = 1,5
KEJ = K+J

IF (IINDEX (KPJ).G1.0) GO TO 15
NLATA = KFJ-1

GC TO 17

15 CCNTINUE

C

17 CCNTINUE

C = 10

EINIT = 2

¢ = 9

FPAX= 2000

EES = 1.,D=3

H = ¢

ICETEG = 0

C

WFITE(LCUT,6010)M,N,Q,FINIT,G,MMAX ,EPS,H,IOFTKG
€01C FCEMAT (24H INITIA1 EFARAMETEES ... /%X,

1 AH M =,I4,5X,4H N =,I4,5X,40B Q =,I4,5X,

2 8H PINIT =,I4,5X,48B G =,I4/S5X,7H MNKAX =,15,5X,
3 6H EPS =,1FD10.3,5X,4H B =,14,5X,98B 10RTHG =,14)

C

CALL MAXVAL (M,N,C,PINIT,G,MMAX,EPS,2X,H,L,X,Y,IOBTHG,

LOUT,PCBEPS,IECCDE)
C

WFITE (LOUT, 6020)

€02C FCFHAT (35H #*#*** [USING ELOCK LANC2ZCS $%%%%)
WEITE (LOUT,6030)E,1ECODE

6030 FCEMAT(8H ** BH =,IU4,12H ** TECODE =,IW)
IF (B.EC.0) STOP
WEITE (LOUT,6040)(LC (I),1=1,H)

6040 FCFMAT (20H SINGULAR VALUES . <+/5H *% ,€ (1PtD25.15/5X))
SI1CP

ENT

SUEFCUTINE AX (M,N,P,U,V,CRIG)
INTEGER M,N,P

LCUBLE PBECISICN U(¥,P),V(N,P)
LCCICAL ORIG

C

Cc AX COHFUTES X = A*Y IF CFIG IS 1FUE, AND Y = A'%X
C IF OKIG IS FALSE. X IS STORED IN U ANC Y IS STOEED IN V.
C

CCEHCN A (3000) ,TINDEX (3000) ,JINDEX (3000), NCATA
ICORLE PBECISICN A

INTEGER IINDEX,JINDEX,NCATA
C

INTEGER I,J,K,L
C

IF (.NCTI.OFIG)GO TO 100
C

C CCMPUTE X = A®Y

C

DC 2C K = 1,P
C

DC 10 L = 1,M

10 CCNTINUE

C

2 0 CCNTINDE

C

CC 40 L = 1,NLATA

I = IINDEX (I)

J = JINDEX(L)
C

DC 30 K = 1,P

U (I,K) = U(I,K) ¢ A(L)*V(J,K)
ac CCNTINUE

C

4 0CCNTINUE

C

FETUEN

C

C CCMPUTE Y = A'®YX

C

100 CCNTINUE

C

DC 120K = 1,P
C

DC 110L = 1,N
Vv (I,K) = 0.LO

110 CCNTINUB

C

120 CCNTINUE

C

CC 140L = 1,NLATA

I = IINDEX (I)

J = JINDEX(L)
C

DC 130 K = 1,P

V(J,K) = V(J,K)+ A(L)*0 (I,K)
130 CCNTINUE

C

140 CCNTINUE

FETOEN

EME

a

A BLOCK LANCzZOS METHOD TO COMPUTE THE SINGULAR VALUES AND

CORRESPONDING SINGULAR VECTORS OF A MATRIX

*

Gene H. Golub, Franklin T. Luk, and Michael L. OQverton

Stanford University

Key Words and Phrases: Block Lanczos method, singular values, singular

vectors, large sparse matrix.

CR Categories: 5.14

Language: FORTRAN

Description: This algorithm is complement to [1], where we describe the

theory and development of the block Lanczos algorithm.

References:

[1] Golub,G., Luk, F., and Over—ton, M., "A Block Lanczos Method to

Compute the Singular Values and Corresponding Singular Vectors

of a Matrix," submitted to ACM Trans. Math. Software.

Algorithm

x

Research supported in part under Army Research Grant DAHCOL-T75-G-0195
and in part under National Science Foundation Grant MSCT75-13497-AQL.

