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ABSTRACT

We present a block Lanczos method to compute the largest singular
values and corresponding left and right singular vectors of a large
sparse matrix. Our algorithm does not transform the matrix A but
accesses it only through a user-supplied routine which computes AX
or AtX for a given matrix X.
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1. Introduction

In many applications, we wish to solve the following problem:
Compute accurate approximations to the g largest singular values
and corresponding left and right singular vectors of a large sparse
mXn real matrix A, where g is much less than both m and n.
Problems of this type frequently occur in factor analysis, regression,
and image processing (see Golub and Luk [5]).
The matrix A is too large to be stored in core as an m X n
array, but since it is sparse it can be stored in packed form, e.qg.
by storing only the row index, column index and value of each non-zero
element. When A is stored in this way it is not practical to apply
transformations to A but matrix products AX or AFX for a given
matrix X of much smaller dimension than A can be performed very
efficiently. Thus the usual algorithm for computing singular wvalues
by transforming A (Golub and Reinsch [6]) is not practical for large
sparse matrices. We propose a block Lanczos algorithm for solving such
problems. Our algorithm does not transform A. It accesses A only
through a user-supplied routine that computes AX or A#X for a

given matrix X.



2. Algorithm

We restate our problem: we have an m X n matrix A, where m > n,

and we wish to compute the g largest singular values and corresponding

vectors of A, assuming that the h (h<g) largest singular values and

corresponding vectors have already been computed to some known accuracy.
0O A

At

its non-zero eigenvalues the positive singular values of A, each

We discuss an idea of Lanczos [T]; the matrix ( ) has for
appearing with both a positive and a negative sign. If u and v; are

the left and right singular vectors corresponding to the positive singu-

u. u,
lar value o4 of A, then (~1) and ( Nl) will be the eigenvectors
V.4 -V.

AL

~L

0 A
corresponding to the eigenvalues 19 and -0, Iresp., of ( % )
A” O

Our problem can therefore be re(j;jqarded as computing the g largest
eigenvalues and eigenvectors of (Zt 0): when the h largest eigen-
values and eigenvectors are known to some good accuracy.

We shall use the Euclidean norm for vectors and the Frobenius norm

for matrices, viz.

n o 1/2 %
| bl - Il - (2 ) S L
non o, 1/2 o)
”A” = ”A“F = igl j)=:1 aij) for A = a.ij

2.1 Restricting A to a Subspace of Interest

Let 0 > 0, >.me > %Y be the h largest computed singular values

1 2

of A and let Xo and Yo be matrices whose columns are the computed

left and right singular vectors, resp., such that szo = I and



YEYO = I. We desire accurate approximations to the (g-h) largest
singular values and vectors of A, defined by & = (I_xoﬁg)tA(I_YO%S)
so that the left singular vectors of A are orthogonal to the columns
of Xo and the right singular vectors of K are orthogonal to the
columns of Yo’ This restriction is necessary because our algorithm,

if applied to A without taking the already computed singular vectors

into account, will recompute the same largest singular values of A.

0O A
We can exploit ILanczos's idea and examine ( t ) . We can show
A" O
0O A 0O A
that (-t ) is the restriction of ( " ) to a subspace that is
A” O A O

X X

orthogonal to the space spanned by the columns of ( ° 0) .
Y -Y
o o}

and Y, be the matrices consisting of the orthonormal

1 1

vectors that are orthogonal to the subspace spanned by the columns of

Let X

X0 and YO, resp. . Define

Note

Consider

where
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1,64 % 1 ot 1 (K
=(YA'X, + X/AY. ) = — ( Y)( )__
SN AX) + XA N L % & o) Vo \y

Since B is similar to A, they have equal eigenvalues. By the
perturbation theory for symmetric matrices [14, Chap. 2], the eigen-
values of C differ from those of B (and hence A) by amounts that

are bounded by ||A

Assume



where

and

Then

Now

llall =

I(YA X, + xlAY



If all the “éi” and.HBiH were small, then ||A|] would be

small also. For example, if

'Lg,i“ = ei 2
and
||11,1|| = Si ’
then
h h
2 2y _
IRl =V2' (T €+ £ &) =12
i=1 i=1
and

e

||A||571=r- Vae-e
'~

thus the eigenvalues of C will differ from those of B, and hence

4, by quantities that are less in modulus than €.

We see, therefore, that the (g-h) largest eigenvalues of

0 A 0 A
( £ ) approximate the (h+l),(h+2),...,g eigenvalues of ( " )
A 0 A° O

by errors less than €.

2.2 Block Bidiagonalization

Let us describe a block Lanczos algorithm that computes a block

£

, where s is

s)

bidiagonal matrix. We shall call this matrix
the number of blocks and each block is of order p. Then has
order ps (where we assume Dps < n). We shall show in section 2.3
(s)

that the p largest singular value of J are usually good approxi-

mations to those of A.
t
We start with an arbitrary n X p matrix Ql such that Qin =1,

and perform a QR factorization of the product EQl:



PlAl = AQl 7

. . t
where Ii is an m X p matrix such that P

11

and Al

P X p upper triangular matrix. Our algorithm continues with

% %
By g = AP ) - Q598
and
- %
PA; =My =R 4By

'where Q.B. 1 and P:‘LAi are the QR factorizations of

i1

right hand sides, 1i-e.

Q; is an n X p matrix such that @

Pi is an mX p matrix such that P

and both Bi—l and Ai are p X p upper triangular

Thus ,

Z\(Ql,QQ}“"QS) = (PlPQ)“’}Ps)

and
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matrices.

is a

the respective



provided that PEPj = 0 for if j. In order to show this we first
note that
+ t
Pl 0 Al Bl
4 . .
P2 0 (:) . .Bt
. s-1 "s-1
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s
So our algorithm to generate the block bidiagonalmatrix J ® from i

is equivalent to the Lanczos algorithm (Underwood [12]) to generate a

0 A
block tridiagonal matrix from the symmetric matrix (:-t :) From
A” 0o/ .

(12, pp. 47-51], it follows that

G () () (2 (- () o e

orthonormalmatrices.

orthonormal matrices.

Therefore fPi} and.{Qi} are two sequences of

The restricted matrix A is not readily available. We wish
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to work with the original matrix A. Consider
<C) A)
it o
X X X Yt 0O A X X X Y
{I— 1 (o o) l( o)}( ){I- 1[0 o) _l.__(
_ t t t ot
V2 Y -Y, V2 \x Y. A° 0 '\IB(YO v,/ Vo\x Y,

((:r-xox‘;> 0 X A)(u-xoxg) 0 )
0 (I-YoYt t oo 0 (I-Y YZ)

O [e]

0 Pl 0 P
and the fact that s ( ) gesey ( R Y an belong to the
Q Y Q 0

O A 0

Krylov space* generated by (-t ) and ( ). We conclude that we
Q
1

A” O
may replace A by A in our algorithm if we orthogonalize the Pi's,

¢ O ot

o

Il

1<i<s, with respect to X, and the Qj's, 2 < J< s, with respect

to Yo:

Algorithm

f
Start with an arbitrary n X p matrix Ql such that Qin = I.

Compute
Pl 1= AQl
and
P. := (I-X X°)P
1 o"o .

~

Factorize Pl such that

*
The Krylov space generated by A and X is the space spanned by

3

{X,AX, %X, A7X. .. ]



P,A, := P

t
1Ay s where PiPy = I and A = {\N} .

For i = 2,5,.--,5

(1) Compute
S t
Qp 2= APy 5 = Q558
and ‘«i := (I-Y Yt)é
i”’ oo0’i
Factorize é'i such that
A 't _
QB, q := Q'i , where QiQi =TI and B; 5 = {\} .
(2) Compute
P. := AQ, - P. .BU
i Y i-17i-1
d B, .= (I-x X°)B
an i oo/"di °

2.5 Error Bounds

(s)

We give a theorem to show that the singular values of Y are

usually accurate approximations to those of A

Theorem

Let crl > 9, > .em > UHZO be the singular values of the mX n

/
- s
restricted matrix A and let (Uys > Uég > eem 2 o'é,s) > 0 be the
singular values of the ps X ps matrix J ) generated by the block

t
Lanczos algorithm. Let T be the smallest singular value of QV,,

10



where Ql is an n X p starting matrix for the Lanczos algorithm
such that d-iQ‘l = I and V; is an n X p matrix consisting of the
right singular vectors corresponding to the p largest singular values
of A. We assume T > 0 and we see T < 1 since VfVl = I. Then

for k = 1,2,...,p, we obtain

k k k '’
where
2 tan e
ek = (O‘l+0'k) - l+7k )
(7—)
2s-11-y

7 ’
k Gk+ci

and T28 1 is the (2s-1)-th Chebyshev polynomial of the first kind.

Proof
Since the largest singular values of a matrix B are minus the
O B
smallest eigenvalues of ( % ), we obtain the desired result by
B~ O

o A
applying Underwood's theorem [12, pg. 37] to (-‘b >
A O/.

We consider an example that shows how a proper choice of the block
. s) .
size p reduces the error bounds, and how crgL » 1< 1< p, generally
approximates Oy 1<1i< p, well even for a small s.

Let ©

1= 1.0, 02 = 0.9, (75 = 0.5, and? = cos 0.1. Let

ps € 10. We shall see in section 5 how the available computer storage

places an upper bound on the value ps. If we choose p = 1, s = 10,

th
en 11



tan C———-—§—=99,

7l=§(m—=0.05,

Lty

1=y, = 1.105 ,

3 3
Tl9(1.105) = 2.8 x 107,

and “e. —2><9972'= 2.5 x 1077 ;
(2.8 x 107)
whereas if p = 2, s = 5, then
1.0 - 0.5
n=TOoFT0="%"
0.9 = 0.5 21
2=5g5—7-1% .

To(1.67) * 10*

To(1.53) = 3.7 x 100 |

and

S 2X 00 154 100
10 .

€

2
1 )

2 19X gy 10-5 .

2
E (3.7 x :L; )2

We see that for the block method, we can expect a more accurate

12



approximation to ¢ and we note that 95 is computed to the same

1

accuracy as o when p = 1.

1

2.4 Reorthogonalization

We have shown that the {Pi} and.{Qi} are two sequences of
orthogonal matrices. But the property holds only in exact arithmetic.
In practice, the two sequences lose orthogonality very rapidly due to

cancellation errors in the Lanczos steps:

" t
9 APy - Q3485

'{ 2<1<s
A t
Py += 8 =Py 0B85

A remedy is to reorthogonalize Pi(Qi) with respect to Pj(Qj)’ j < i,
as soon as Pi(Qi) is computed.

The loss of orthogonality does not have adverse effects on the
accuracy of the computed singular values (Paige [8]). Rut their multipli-
cities are questionable because once orthogonality is lost, the Lanczos
method essentially restarts and recomputes the singular values that it
has already computed. Reorthogonalization apparently stabilizes the
Lanczos process but its cost in machine time is high. The cost in
storage may even be prohibitive, for all the {Pj} and.[Qj} must
now be stored in core. The Lanczos method without reorthogonalization
allows us to keep only the most recently computed Pi and Qi in
memory and store the others on disk or magnetic tape.

Partial reorthogonalization, i.e. reorthogonalization of Pi(Qi)

with respect to only some of the previously computed Pj's (Qj's),

looks promising too. It appears that just reorthogonalizing Pi(Qi)

13



with respect to P, ) may reduce the effects of cancellation

1-1(Qi-l
errors present in the computation of Pi(Qi) and help preserve
orthogonality at a very low cost in machine time and storage.

We have tacitly assumed that we can carry out the Lanczos iterations
for s steps. Clearly this may not always be the case. We decide
to check the length of each column of Pi(Qi) as soon as it has been
generated in the QR factorization. If a column has a Euclidean
length less than some tolerance, chosen in the program as the square
root of the machine precision, it is set equal to the zero vector. We
thus eliminate the errors caused by normalizing vectors consisting of
numerical roundoffs to unit Euclidean length.

Before a Lanczos iteration begins, our program checks the starting
matrix Ql for columns of all zeros. It first replaces any such
columns with columns of random numbers and then orthonormalizes the re-
sultant matrix. In this way, our program can restart itself even after
linear independence has been lost. Since the work to check for columns
of all zeros is prohibitive, we check for zero singular values computed
in the previous iteration instead, assuming that they are caused only
by columns of all zeros. Since our problem is to compute the few
(usually < 10) largest singular values of a matrix of large order
(usually > 1000), it is extremely unlikely that a desired singular value
is zero.

(s)

2.5 Computation of Singular Values and Vectors of J

We now wish to compute the singular values and vectors of the

ps X ps block bidiagonal matrix J(S):

(8)5(8)y(8)® _ 1(8)

14



In the rest of this section we shall omit the superscript s. from
J(S) and denote its order by t = ps. Since the p X p blocks which
form the block diagonal of J are upper triangular and the p x p
blocks which form the block superdiagonal are lower triangular, we see
that the blocks all fit together to form an upper triangular band
matrix , dense within the band and with bandwidth (number of super-
diagonals) equal to p. The rest of this section treats the problem
of computing the singular values and vectors of an upper triangular
band matrix J. The case where the vectors are not required is also
considered since this section may be useful outside the block Lanczos context.

The method consists of two phases. The first phase reduces
J to bidiagonal form by a finite sequence of orthogonal transformations.
The problem of doing this efficiently is the main subject of this
section. The singular values of A are preserved under the trans-
formations. The second phase reduces the bidiagonal form to diagonal
form by a modified version of the QR algorithm. This process is described
in detail in Goiub and Reinsch [ 6] and will not be discussed any further
here. The singular values of J are the final diagonal elements, and
the matrices of left and right singular vectors are the products of
all the left and right transformations (resp.) used in the two phases
of the reduction.

We are left with the first phase, reducing J to bidiagonal form.
The methods of Givens and Householder for reducing a full symmetric
matrix to tridiagonal form preserving eigenvalues are well known and
described for example in Wilkinson [14]. In order to preserve eigen-
values, the same elementary transformations (either Givens or Householder)

are applied to both the left and right sides of J to reduce it to

15



tridiagonal form. A similar method for reducing a nonsymmetric matrix

to bidiagonal form preserving singular values (but not of course eigenvalues)
is described in Golub and Reinsch [5]. Singular values are preserved

when different elementary transformations are applied to the left and right
sides of A. Golub and Reinsch use Householder transformations, but Givens
transformations could easily be used instead. For the reduction of a full
matrix to bidiagonal or tridiagonal form the method of Householder is about
twice as fast as the method of Givens. However in 1972 Gentleman [3] showed
how "fast Givens" transformations can be implemented. These are also described
in Van Loan [13], and it appears that there is now little difference in the
speed or effectiveness of the two methods.

Reducing a symmetric band matrix to tridiagonal form in a straightforward
manner immediately fills in the zeros off the band. Rutishauser [9] shows how
this may be avoided and the reduction completed while preserving the band
structure, using either Givens or Householder transformations. Here we describe
how. to generalize this to the reduction of an upper triangular band matrix to
bidiagonal form (in general a similar process would apply to any nonsymmetric

band matrix).

Recall that a Givens transformation matrix P(l’J) is given by
i J -
1
1
1 o d
1
P(l’j' = . where c2 + d? = 1 and has the property
1
J -d c
1

that if it is applied to J on the left then the resulting matrix

J' = P(l’J)J has elements different from J only in rows i and j,

16



with zeros in both rows in those columns where there were zeros in
both before, and, if ¢ and d are chosen appropriately, with its
(i,J) element equal to zero. Let us write J = (7ij),J" = (7£j)

Then in particular we have

Tik T Yik T Wyg
(L<k<t)
7,jk = -dyik + Cy.Jk

50 751 =0 if ¢ = Yii/ 7?1 + 7§i, d = 7ji/ 7?1 + 7?1- The price
paid for the annihilation is that a new nonzero element appears in one
row wherever there was one already in the other. We say that row j

is rotated against row i by the transformation. Similarly if P(i’j)
is applied on the right only columns i and j of J are changed with

y = 0 if ¢ and d are chosen correctly.

'

i)
To describe the reduction process let us suppose that J is an

upper triangular band matrix with order t = 11 and p = 4 superdiagonals.

Then the first thing the algorithm does is to zero 715 by multiplying

J on the right by P(h’5) with ¢ and d chosen correctly, or in

other words by rotating column 5 against column 4. This introduces one

new non-zero element 7é4. This new element is annihilated by multiplying

(h,5)

J' on the left by P that is by rotating row 5 against row 4.

This in turn introduces a new non-zero element 7i9. Two more trans-
formations, one from the left and one from the right, are now required to
completely "chase the element off the.matrix". At this point the resulting
matrix has the same zero pattern as the original matrix J except that

715 has been annihilated. Now the process is repeated for 711 and
then for 7139 and then the first row has the desired bidiagonal form.

17



Finally, the entire process is repeated for every row until the
matrix becomes bidiagonal. The method is illustrated in Figure 1. Let
us call this method Band Givens I.

Reducing the matrix to bidiagonal form in this way requires approxi-
mately hptz multiplications using ordinary Givens transformations, or
2pt2 using "fast Givens", assuming 1 << p << t. This compares with
a count of approximately 4t3/3 multiplications required to do the
reduction by the standard Golub-Reinsch algorithm using Householder
transformations and ignoring the band structure, filling in the zeros off
the band. This is of course a big savings if p << t as assumed, and
furthermore only pt storage locations are required to store the band
matrix while t2 storage locations are required for the standard Golub-
Reinsch reduction. If left and right singular vectors are required
however, the rotations used in Band Givens I must be accumulated as the
computation proceeds. This requires hta multiplications using ordinary

3 using "fast Givens", as opposed to 8t3/3

Givens transformations or 2t
multiplications for the Golub-Reinsch reduction, so that if the vectors
are required, Band Givens I still requires less multiplications than
Golub-Reinsch if the fast Givens transformations are used. Both methods
require approximately 2t2 storage locations.

There are several other possible methods to reduce J to bidiagonal
form. The method we shall call Band Givens II applies a sequence of
rotations to J as before, but instead of reducing each row in turn to
two elements, it systematically reduces the bandwidth by zeroing each
superdiagonal in turn. In other words, in the example presented in Figure

1, after zeroing 715 and chasing it off the matrix, it next turns to

Y06 instead of 714° This method requires more rotations, since the

18



FIGURE 1.
Bidiagonalizing a Pentadiagonal Upper Triangular Matrix of Order 11

Using Givens Rotations by the Method Band Givens I

STEP 1:

(1) Zero 715 and chase it a a a off the matrix:

Rotate col. 5 against col. 4 to zero 7,5 and introduce 75
Rotate row 5 against row 4 to zero 7%4 and introduce 7L9.

Rotate col. 9 against col. 8 to zero 7ﬁ9 and introduce 7é8'
Rotate row 9 against row 8 to zero 7§8
- chased off

(ii) Zero 71y and chase it b b b off the matrix similarly.

(iii) Zero 713 and chase it c ¢ ¢ also.

STEP 2: Repeat for the second row - etc.

19



decreasing bandwidth causes more nonzero elements to be introduced before
a certain element is chased off the matrix, but for the same reason

each rotation is less work if the vectors are not required. The two
considerations cancel each other out so that Rand Givens I and II

require about the same number of multiplications if vectors are not
required, but the latter is slower by a factor of about {n p if

vectors are required.

Let us consider now a method we shall call Rand Householder. This
follows an idea suggested in Rutishauser [9 ] for the corresponding
eigenvalue tridiagonal reduction problem. Recall that a Householder
(i,j,P?

transformation matrix Q can be chosen to have the property that

when applied to A on the left the resulting matrix A' = Q(i’j’p)A

has zeros in positions i+l,...,j of column p but is different from

A only in rows i,...,J and has zeros in all rows in those columns

where there were zeros in all before. As before the role of rows and columns
is reversed when the transformation is applied on the right. Let us describe

the algorithm for the t = 11, p = 4 case again. The first step is to zero

all of a
Q(a,u,l)

107 al}’ " 14 simultaneously by applying a Householder transformation
to A on the right. 1Instead of introducing one new non-zero
element as in the first step of the algorithm using Givens transformation,
this introduces a whole lower triangle (of order 3) of non-zero elements.

This is annihilated by a sequence of 3 Householder transformations (the

last a degenerate one) which introduces another upper triangle on the other
side of the band. The triangle is chased off the matrix, as the single

element was before, after another two repetitions of this. However a

little thought will make it clear that the extra triangle of elements

20



at every step makes the method much less efficient than Band Givens I -
indeed, it introduces an extra factor of p in the number of multi-
plications required, whether or not vectors are needed.

There is yet another possible approach, which we call the
triangle Givens method -- it does not attempt to preserve the band
structure, but does preserve the upper triangle structure. It is con-
sidered in Chan [2 ] for finding the singular values of an upper tri-
angular matrix. In this method elements are eliminated row by row in the
upper triangle using column rotations, and after each column rotation one
row rotation is applied to move the nonzero element introduced in the
lower triangle back up to the upper triangle. Since the upper triangle
is filled in,this method requires more multiplications than Band Givens
I. If fast Givens transformations are used and no vectors are required
the number of multiplications required for Triangle Givens is less than
for Golub-Reinsch, but if vectors are required they are the same.

Finally we describe a rather complicated variant of Band Givens I
which we call Band Givens III, which requires less multiplications when
vectors are required. In the standard Golub-Reinsch algorithm
Householder transformations are used to eliminate elements, but instead
of accumulating the transformations directly the transformations are
stored in place of the elements just annihilated and after the reduction
is complete they are then accumulated in reverse order. The reason for
this is that when they are accumulated in forward order, the jth trans-
formation on either the left or the right, having been chosen to
annihilate t-j elements of the jth column or row of J, will affect
(t=-3)t elements of the t Xt matrix of transformations so far

accumulated, whereas when they are accumulated in reverse order the same

21



transformation need only be applied to the (t-Jj) x (t-j) matrix
of transformations so far accumulated. This eliminates one third of
the multiplications needed. This trick is also employed in computing
a tridiagonal reduction for eigenvalue problems or the complete @R
factorization of a matrix using Householder transformations. When
Givens transformations are used in the band eigenvalue problem however
they are always accumulated in the forward direction as the reduction
proceeds although the same savings potential exists if they are
accumulated in reverse. Storing a8ll the transformations used in Band
Givens I would be a complicated task, but it is by no means impossible.
The method requires approximately t2/2 transformations each on the
left and the right, and since each transformation can be stored in and
recovered from one storage location (see Stewart [11]L all the trans-
formations may be stored in the two tXt arrays in which they are
-to be accumulated. Farthermore they can be accumulated one by one
in reverse order without disturbing the transformations stored but not
yet accumulated, since the number of transformations required to reduce
the first j rows to bidiagonal form is approximately t2/2 -(t-j)2/2
on each side which may be stored with room to spare without being
disturbed by the two (t-j) X (t-j) submatrices needed to accumulate

the transformations operating on rows j+l through t:

stored as go along

accumulatedl
in
reverse
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However the storing and retrieving of these transformations would
indeed be an arduous task, and although Band Givens III requires
only 8t3/3 multiplications using ordinary Givens transformations and
ht5/3 using fast Givens, the big question is whether it would still
be worthwhile with all the extra bookkeeping.

Thus the best method seems to be either Band Givens I or III,
but we should make some disclaimers. These results are only valid
assuming 1 << p << t which may not be the case. Multiplications
are not the whole story, since indexing operations also take time and
on modern machines multiplications do not take much more time than
indexing. Of course the amount of overhead required by a method is
also important. Another thing to note is that the second phase
reducing the bidiagonal form to diagonal form to obtain the singular
values typically takes 8t3 multiplications using ordinary Givens
transformations or 4t3 using fast Givens so that this may dominate
any slight savings in the reduction phase. Of course no final con-
clusion about which method is best can be made without extensive
numerical tests.

The multiplication counts for the different methods are summarized

in Table I.

23



mpﬂl-g ur)e

mwm

S
My ® TN h

gHi

¢

¢¥3

SUSATH 218BJ
Butsn Te30L

-9Jd SUOTSNTOUO0D swes ay3z d TTBWS JI0J UsA2 3ng ‘9 >> d >> T 4%BY3 poaumsse sT 1T

PoITS8] SI0309)
usyM TBIOL

. B
£ : o) 1-9 o0
1=T
M 19(T-3) <
29
= g Hwﬁ
3d~q(d) z X (2) ==
M e 7 2
pﬁm-m agv:>‘m mm IH ~
¢\T T 3 ¢
2
Q) —
( Y o5 3
q =T
W~ 3(8) = (9)
¢ -2 =
m H“H
—=—~_(T-3)(2)3
¢Mo@ mwp

SI0Q09A\ 9U3
FutyeTnumooy

Chatl
T=T
¢
=~ _(T-3)%
mp: c -3
m Hw.x d T=T
3.4 2~ (d+) ()3 (3) 7=
g’z ¢ d 1 50,
T=T =M
¥
ﬁH ~ -
HIMT(EN6) T % B
P 2= T=T
28 (19 () () s 2%
¢ T=T
——~_ (T3} (32 ¥
¢t @ 2=,

SI0908) 3NOU3TM UOT3IONpay

III susAT) pusg

SUSATH
oT8uBTIL

ISPTOYSSNOY

pued

II SUSATYH pueg

I SUSATYH pueg

Yo SUTOY-qNTo9H

POUISH

*II puB I SUSATYH) puBg USSM
-390 90USISIITP ST33TT USU3 ST 2IoU3 3eu3 3de0Xs $3TNSSL SPOUISW 8UF JO AOUSTOTIFS SATIBTSX 2U3 SUTDIES

‘UUMTOO '1S®BT 2U3 uTl

pajou se 1dsoXe SUOTQBULIOISUBIY SUSATH AJBUTPJIO Julsn ‘UWIOF TruoSeTptq o3 d U3pTMpuBG PUB 3 JIPJIO
U3TM XTJ3BUW PUBQ B 90UPad 07 Suy3TL08T® JUsIsJiIp aui foJ SIUNOD uoTqeoTTdTaTnw sjeurxoidde yo Areuumg

I TIdVL

2L



2.6 Convergence Tests

Let us examine what we have done so far. We apply the Ianczos

(s)

method to generate a block bidiagonal matrix g from the matrix A:

Pt A Q = J(S)
where P = (Pl,Pé,..;,% ),
and Q = (Q'J.’QQ’...’QS)

(s)

Then we compute the singular value decomposition of g

J(s) _ X(S)Z(S)Y(S)t
o A o g8
By considering the matrices _t and ( (s)t , We can
A" O J 0]
verify that
p ol\/x's) px (5)
o q ¢(s) QY(s)
[o K\
are the eigenvectors of the matrix I‘u ) restricted to the subspace
[P 0 \ | &% o
spanned by the columns of k |
o af fo s
We have seen that the p smallest eigenvalues of \ ()t ) are
o & J 0
usually accurate approximations to those of N , in which case it
Iy
_4 o 5(8)
can be shown that the p corresponding eigenvectors of (s)t s
P O J 0
when premultiplied by » are also good approximations to those
0 Q
0O A
of _t 5 albeit not to as high an accuracy.
A" O
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Our convergence test uses Weinstein's inequality [, pp. 170-171],
which states that for a symmetric matrix A and a vector X of unit

length, if

lax - uxll =

for some scalar p, then there is an eigenvalue A of A such that

A - ul <6 .
. u PX(s)
€ v be the i-th column of ()] Then
QY
O Alfx ) B2 AL () %)
” t = ci ” = ” t -_Gi ”
AT ONY X 1 X

= lay - ot uff + bty - o1y

Assume € 1is the user-supplied error tolerance for the singular values.

If

g, - of g, B+ I, - 0¥y, IF|Y? < ol

(s)

then there is a singular value of A within relative error € of o
(s) . (s) .
and we may accept o as a singular value of A. (If o is
less than one we use € as an absolute error tolerance instead.)
We note that in our algorithm the computed singular values and
vectors are converging to the singular values and vectors of A and

not of A. Thus if we compute the residuals with respect to A and

not to A, there is a lower bound to their values. We take this error
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into account by adding to € the residuals corresponding to the
accepted singular values. To avoid an error tolerance that is close

to the machine precision, we add to € a third term combining the

machine *precision mcheps and the matrix dimensions m and n. Thus,
if

2 2 |t (s)_ |2 :

Tk = HAXK = U. ” ”A' k Yk” ;1 < k <_l_l ’
then

R i-l 1/2

T. = € + T + 10 X (m+n) X mcheps ,

i k

k=1

where mcheps = 2.20 x 10-16 for double precision arithmetic on the

s)

IBM Systems 360 and 370. We shall accept cf as a singular value of
A if

(s)

HAV 7(8)1’1\&”24- HAt}&i - c]-(_S)Xiug 1/2 i '?'fi

2.7 Updating p and s

We shall see in section 3 how the available computer memory places
an upper bound on the product ps. We wish to determine optimal values
for p and s subject to this constraint. We can see from the error
bounds in section 2.3 that such choices are dependent on the singular
value spectrum of A and thus are usually not *possible a priori with-
out further information.

We shall discuss initial choices of p and s in section 3.3. We
are concerned here with updating p and s after some singular values
and vectors have converged.

We assume that before the current Lanczos iteration the block size
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is po, the step size 1is so, and the bound on poso is qo.
Assume that g singular values are to be computed and goﬁ.s g, < g)
singular values have been computed and accepted in the current iteration.

Our problem is to choose the new block size 12 and step size sl.

Our strategy is that if P, 2 9/ then

Pl:=Po"g s

0
= | =2 94 Herela ' denotes the
and Sy ¢ (

- integer part of Q. )

The rationale is that if the user chooses a block size greater than
the number of singular values desired, he must have a good reason, e.g.
he may have chosen the block size to be the number of singular values in
the cluster of largest singular values. We wish to preserve the user's
choice of block size in this case.

If po < g, then we pick 12 to be the smaller of the current

block size and the number of singular values remaining to be computed.

Thus,
p, := min(p_,g-g ) >
s .= 978
1 Py
We test s; to see if S, 2 2. If it is not, then we set




We note that the step size must be at least 2 to carry out the

Lanczos method.

2.8 Complete Algorithm

We have described one iteration of the Lanczos method. We do not
expect to compute all the desired singular values in one iteration and
so we shall iterate the method with inproving starting matrices. We
saw in section 2.6 that the first p, columns of QY are usually better
approximations than Q,l to the P, right singular vectors corresponding
to the P, largest singular values of A. If go = 0, then those P,
columns of QY will serve as a good starting matrix for another Lanczos
iteration. If g > 0, then the (go+l),...,(g0+pl)-th columns will
be chosen as the starting matrix for the next iteration. We have seen
that the (g°+l),...,p0-th columns of QY are usually good approximations
to the (go+l),...,po-th right singular vectors of A. Our experimental
results show that the other columns are usually rich in the direction
of the (po+l),...,pl-th right singular vectors of A.

We see that the convergence test in section 2.6 involves multipli-
cations by A and Aﬁ; so we wish to avoid performing the test unless
we think some of our singular values have converged. A good test is to
look at the relative increase of the largest singular value from the
previous iteration. We perform the convergence test only if the relative
increase is less than the user supplied tolerance €. The criterion
is good in that we shall seldom overshoot the desired accuracy, because
if the convergence test is satisfied, the computed singular values,
as Rayleigh quotients, are likely to have errors proportional to €2

unless they are poorly separated.
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Our complete block Lanczos algorithm follows:

Algorithm

1. Start with an arbitrary n X p matrix Ql
2. Orthonormalize the columns of Ql'
3. Apply the Lanczos method to compute the block bidiagonal matrix

J s) using Q, as the starting matrix:

g = 5%

(s)

L.  Compute the singular value decomposition of J

(S)Z(S)Y(S)t (s)

X =dJd

5. If the relative increase in the largest singular value of

J(s)

is less than €, then perform the convergence test. Otherwise
go to step 8.
6. Stop if all desired singular values have converged.

7. If one or more singular values have converged, update the

values of p and s.

&. Take the first p columns of QY that have not been accepted
as singular vectors as the starting matrix Q1 for the next iteration.

Go to step 2.

It appears that step 2 is unnecessary after the first iteration
since both Q and Y are matrices consisting of orthonormal columns.
Numerical experiments have shown, however, that the columns of QY
are not necessarily orthonormal and we need to perform step 2 to

maintain numerical stability.
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3. Implementation

We have written a set of subroutines implementing our algorithm.
We use the Bell Laboratory PFORT language, a subset of the ANS FORTRAN
language.

Our routines use integer and double precision arithmetic. We have
a subroutine that computes the inner product of two vectors. We would
have obtained better numerical results had we accumulated inner products
in higher precision. We recommend the usage of extended precision
arithmetic to compute inner products if the work is done by the computer
hardware. The additional cost is small and the results are more
accurate. We have not incorporated the extended precision computations
into our routines to provide program portability. Experiments show that
the numerical results are still satisfactory without recourse to higher
precision arithmetic.

Our routines usually need a large core to store the matrices X
and Y. On an IBM System 360 or 370, the requirement is
(m+n) X g X 8 bytes, which forces g to be small for large m and n;
e.g. 1f m = n = 1000, then an available core of size 200K bytes would
force g to be less than or equal to 12.

MAXVAL is our main routine that calls all the other subroutines.

3.1 Formal Parameters

(a) Quantities to be given to MAXVAL:

m,n : the dimensions of the matrix A; 2 < n < m < 1000.
q : the number of vectors of length m contained in the
array X; also the number of vectors of length n

contained in array Y; q <26 and g < n.
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pinit :

eps &

iorthg

lout :

mcheps :

the initial block size; if pinit < 0, then -pinit
becomes the block size and columns h+lp..,h+@qﬁnit)

of Y are assumed to be initialized to a matrix to be used
to start the Lanczos method.

the number of singular values and left and right singular
vectors desired; 1< g < q.

the maximum number of matrix-vector products Ax and
At§ allowed.

the relative precision to which singular values and
vectors will be computed; eps becomes an absolute
tolerance if the singular value is less than one.
subroutine op (m,n,p,u,v,orig) computes U = AV when
orig 1is true, and V = AFU when orig 1s false; U

is an m X p matrix and V is an n X p matrix; the
input matrix must not be altered by the subroutine call.
the number of singular values and vectors already computed;
if h > 0, then columns 1 through h of X(Y) must
contain the left (right) singular vectors of A.

an array of length at least q.

an array of length at least m X q.

an array of length at least n X qg.

the number of immediately preceding blocks of wvectors
with respect to which reorthogonalization of the present
block of vectors is to be carried out.

output unit number.

machine precision, equals 2.2 x 10'16 for double

precision arithmetic.
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(v) Quantities

iecode :

produced by MAXVAL:

the total number of singular values and vectors computed
including any already computed when MAXVAL was entered.
elements 1 to h of D contain the computed singular
values.

the first m xh elements contain the left singular
vector approximations--the first vector in the first m
elements, the second in the next m elements, and so on.
the first n Xh elements contain the right singular
vector approximations--the first vector in the first n
elements, the second in the next n elements, and so on.
the error message;

=0 : successful termination.

=13: n< 2.
=2 :n>nm
=3 :m> 1000.
=k : g<1.
=5>:aq<e-
=6 : q>26.
=7 : q>n.

=8 : mmax is exceeded before g singular values and

vectors have been computed.

3.2. Program Organization

t MAXVAL is the main routine that calls all the other subroutines.

It also checks the input data for inconsistencies. The main body of

the subroutine begins by filling the appropriate columns of Y with

33



random vectors if a starting matrix is not provided. The random vectors
are orthonormalized in a call to the subroutine ORTHOG. MAXVAL then
calls BKLANC to carry out the block bidiagonalization of A and then
SVBUTM to solve the singular value problem of the resulting block
bidiagonal matrix (5). Two calls to the subroutine ROTATE compute
the matrices PX and QY. A test is then made of the relative increase

(s)

in the largest singular value of J to determine if it is necessary
to call the convergence test routine CNVIST. If some but not all the
desired singular values have converged, then the subroutine PCHOIC

is called to choose new values for p and s for the next iteration,
which begins with the first p columns of QY that have not been
accepted as singular vectors as the starting matrix.

ORTHOG always reorthogonalizes the input vectors with respect to
the vectors in the first h columns of the input matrix. Reortho-
gonalization is also carried out with respect to the previous IORTHG
blocks of wvectors. The resulting vectors are then orthormalized
using a modified Gram-Schmidt method [1].

ORTHOG calls INPROD to compute inner products in the reortho-
gonalization process.

BKLANC implements the block Lanczos reduction. The banded upper

(s)

triangular matrix J is stored in columns 2 through p + 2 of the
matrix C, the main diagonal being stored in the first ps elements
of column 2, the upper diagonal being stored in the first ps -1
elements of column 3, and so on.

SVBUTM is designed to solve the singular value problem of a banded

(s)

upper triangular matrix. The matrix J has been stored in the

correct form'in BKLANC for input into this routine. SVBUTM first calls
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BIBAND to bidiagonalize J(S) using the algorithm Band Givens I
described in section 2.5, and then SVDBI to apply the QR method
to compute the singular values of the bidiagonal matrix. The routines
ROTROW and ROTCOL implement Givens transformations to rotate rows

(s)

and columns of J to reduce it to a bidiagonal form--note however
that an improvement here would be to implement fast Givens trans-
formations instead. SVDBI calls DROTAT to compute the singular vectors
of J(SX

ROTATE computes PX and QY, the left and right singular
vectors of KA.

CNVIST tests the computed singular values and vectors for con-
vergence. It tests first the largest singular value, then the second
largest singular value, and so on until it finds either non-convergence
or all the desired singular values.

PCHOIC computes new values for p and s if some but not all

desired singular values have converged.

3.3 Numerical Properties

The user can easily modify the bounds on m and g by changing
the storage allocation for the arrays C, U, V, R and T at the
beginning of MAXVAL. The tests of the values of m and g must then
be appropriately modified.

Our program has proved to be very efficient for large and sparse

- singular value problems. The convergence is very fast if the largest

singular values are fairly well separated. Even in cases when the
largest singular values are clustered, our program appears to be able

to compute them accurately.
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We have seen that the optimal choice of the block size depends on
the singular value spectrum and is therefore not possible a priori. A
" safe" choice appears to be choosing the block size as the number of
desired singular values. The singular values thus computed are usually
fairly accurate. A drawback is that sometimes this choice produces a
very slow convergence rate.

We cannot overemphasize the importance of s. Storage limitations
place a bound on the product ps. The two matrices X and Y require
(m+n) X g storage locations, a significant amount for large m and n.
Since g bounds ps + h, we see that the value of p uniquely
determines the maximal value of s. Since s must be at least 2,
the block size p will be reduced to give s the value of 2 or 3.
Experiments have shown that s = 2 often produces intolerably slow
convergence. It appears that we should always give s a value of at
least 3. In fact, for a problem with a dense singular value spectrum,
the best choice appears to be p =1, s = q - h and no reortho-
gonalization.

Reorthogonalization appears to be unnecessary if the singular
value spectrum is dense. If the largest singular values are
well separated from the rest, then complete reorthogonalization
is required to keep multiple images of these singular values from
appearing. Partial reorthogonalization, e.g. with iorthg = 1, 1is
insufficient although it does produce better results than no reortho-
gonalization at all.

From the theorem in section 2.3, we can see that a good choice
of the block size is the number of the dominating singular values.

Experiments confirm the theory and we see also that it is better to
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overestimate the number of dominating singular values than to under-
estimate.

The use of extended precision arithmetic to accumulate inner
products produces much more accurate results at an average cost of about
20% more computing time. We have, however, found its use to be
unnecessary for a large value of eps; we have obtained satisfactory
results from 1000 x 999 matrices with eps = 1073 using only double

precision arithmetic.
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4, Test Examples

We have chosen rectangular diagonal matrices in all but one test
examples. We feel diagonal matrices are sufficiently general because
we do not transform the given matrix; we obtain information about the
given matrix only through the subroutine that computes the product of the
matrix (or its transpose) with an input matrix. Diagonal matrices
are convenient in that we know the singular value spectrum and so
can study the behavior of our algorithm as a function of the block and
step sizes.

We have run our program on an IBM 370/168 computer using the
EXTENDED FORTRAN H compiler. Our program takes 6.95 seconds to compile.

In the examples below the following rotation is used:

m(-n) - mx 107"

iter = total number of iterations

imm = total number of matrix-vector multiplications
iw = total number of vector inner products in the

orthogonalization process

exec time = execution time in seconds on the machine

Example 1

A is a 1000 X 999 matrix with diagonal elements
0.006,-0.007,0.008,-0.009,...,1.000, and 2,2,2 and -10. With
g =L4,q =12, eps = 1077 and iorthg = 0, we obtain the following

results.
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10+1(-15) 10-4(-15) 10-1(-10) 10-2(-7) 10-5(-12) 10-L4(-12)

°1

op 10 - 1(-15) 2 2+h(-12) 2 +2(-9) 2-3(-8) 2-2(-8)
o 2 -6(-15) 2 -8(-15) 2 -1(-9) 2-3(-11) 2-1(-T) 2-6(-8)
o) 2 -3(-9) 2 -1(-8) 2 -4k(-10) 2-9(-7) 2-6(-7)
iter 5 3 3 5 5

i mm 105 67 62 85 100
ivv 22k 114 108 200 300
exec time program fails 6.06 3.81 3.71 5.33 7.34

to terminate

We see the advantage of a block algorithm in this example. The
point algorithm gives a double image for the singular value 10 and
then fails to terminate because it converges to a value 2.738. We obtain
the fastest convergence using P = L4, as we expect. Note the high

accuracy in the solution values with eps = 10_5.

Example 2
A 1is a 1000 X YYY matrix with diagonal elements
-0.005,0.006,-0.007,0.008,...,1.000, and 2,-2 and 2. We choose

3

g=3, g=12, eps = 107 and iorthg = 0.
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1
Oo
o3
iter

imm

exec time

In this example,

block size.

p-1x107Y

115
124

6.52

P =2 p=3 p==4
2-2 x107  2ox10 pax107
2-1x1077 0-3%x 1071 s_gx 107!
p-ox 1078 0-3% 10 10 p-5x 10710

4 5

89 52 70

132 48 108
5.2k 3.18 4.70

we see again the advantage of a properly chosen

Note also the better results obtained by overestimating

rather than underestimating the number of dominating singular values.

-Example 3

A is a 1000 X 999 matrix with diagonal elements

0.006,-0-007,0.008,—0.009,.--,1.000, al’ld 2,

choose g = 3, g = 6, eps = 10~

exec time

p=1
10-2x 10”2

10-3x 10'15

2-5x107
4

4o

48

1.85

3

10, =10 and 10. We

and iorthg = 0.

p=2

10-3x 10710
9

7

10-2X10°
10-2x 10"
6
56
82
2.46

p=73
10-4x 10712

10-2x 1074

10-2x 1070
3

37

36

1.76



We see the failure of the point algorithm to obtain the third

singular value 10. This example also shows how fast our algorithm can

be even with very limited storage (q = 6) as long as the separation

of the singular values is good.

Example b

A is the same matrix as in Example 1. But we choose g = 3,

g =12, eps = 10_3 and p = 1. We run our program with no, partial,

and complete reorthogonalization.

iorthg = 0 iorthg =1 iorthg = 12
oy 1041x10 11 10 10
o 10-1x10 "1 10-2 x10™ 12 22x 107
o3 2-6x1071 2k x107H 2-lx 107
iter 1 1 3
imm 31 31 71
iw 0 22 392
exec time 1.69 1.77 5.27

We see only complete reorthogonalization gives the correct solution.
We also see that the block algorithm (Example 1) with p = 3 and 4
and no reorthogonalization computes four singular values correctly in
254 less machine time.

We also run the first case (iorthg = 0) using extended precision

arithmetic to accumulate inner products. The results are unfortunately

unchanged.
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Example 5

A is a 1000 X 999 matrix with diagonal elements
0.002,-0.003,0.004,-0.0055. ..,1.000. We choose g = 3, q=12,eps=107

and iorthg = 0.

p=1 p=2 p=3
oy 0.9999% C e e 0. 999966
9 0. 998960 0. 998951 - . 998999
o3 0.998036 0. 998005 .. 997980
iter 13 33 27
imm 305 11 609
iw 190 784 676
exec time 17.59 41.20 38.09

This is an example where a point algorithm is a good choice. The
denseness of the singular value spectrum takes away the virtues of a

block algorithm; the best choice is therefore to maximize s.

Example 6
A is a 314 X 80 matrix obtained from earthquake research and

is of the following special form:

A = (AlIAQ) ,
where A, is 31k X 24 and block diagonal,
and A, 1is 314 x 56 and randomly sparse.

A; consists of six diagonal blocks, whose dimensions are 53 X 4,

51 x 4, 46 x 4, 58 x 4, 55 X 4 and 51 X 4. There are about 4 non-zero
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elements per row in A2 and a total of 2509 non-zero elements in A.
We store only the non-zero elements of A. We use three one-
dimensional arrays IINDEX, JINDEX and A, each of length 2509, to
store i, j and a.l.J. This compact storage scheme also enables us to
compute the matrix-vector products Ax and Atx efficiently.
Assume A is m xn and has NDATA non-zero elements. Then

the following FORTRAN statements compute X = Ay:

DO 10 K = 1,M
D

X (K) = 0.D0
10 CONTINUE
DO 20 K = 1,NDATA
I = TINDEX(K)
J = JINDEX(K)
X(1) = X(T) + A(K) * Y(J)
20 CONTINUE

The following statements compute y = At}hc,:

DO 110 K = 1,N
Y(K) = 0.DO
110 CONTINUE
DO 120 K = 1,NDATA
I = IINDEX(K)
J = JINDEX(K)
v(J) = Y(J) + A(K) * X(1)
120 CONTINUE
A full singular value decomposition of A was computed using the
subroutine SVD in EISPACK [10]. The demand on storage is excessive,
for we need to supply at least 2 Xm X n X 8 bytes (¢ 393 K bytes)
if we want the singular vectors. The execution time was 23.18 seconds.
The main disadvantage of SVD is its inflexibility: we always have
to compute all the singular values whether or not we need all of them.

Our Lanczos program, on the other hand, requires only (mtn) x g X 8

bytes (221 K bytes for g = 10) if we give it g vectors of
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storage to compute the singular vectors. It can then compute up to
(q - 1) singular values and corresponding vectors. We need

2509 x (4 + 4 + 8) bytes (£ LO K bytes) to store A using our
compact scheme.

The following table summarizes our results when we apply our

program on A with p =1, g = 10, eps = 10_3 and iorthg = 0:
g 1 2 3 4 5 b T 8
iter 1 2 3 5 I 9 12 18
imm 23 44 63 93 119 141 166 206
iw 0 18 50 13h 230 330 474 126

O

23
229

686

exec time 1.66 2.21 2,73 3.6l 4.38 5.08 5.2 7.23 1.9%

All our computed results agree to at least 6 significant digits with the

values from SVD, agreeing with the expectation that the accuracy is
O(epse).
The 80 non-trivial singular values of A are (to 3 significant

digits) 12.6, 9.53, 8.87, 8.06, 7.77, 1.59 6.42, 5.54, 5.16,
4.49 ,...0.28% 1072, 445 x 10 =7 , LILX 10-T , 5.93 x 0™ and

2.48 x lo-lb. Although the largest singular values of A are quite
uniformly distributed, we observe a uniform improvement in program
speed when we choose the block size equal to 2, i.e. P =2, q = 10,

3

eps = 10 © and iorthg = 0:
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iter 1 2 3 5 7 8 10 18 ol
imm 22 43 59 88 109 121 136 190 21k
iw 10 28 66 158 248 304 394 798 990

exec time 1.62 2.13  2.49 3.34 3.83 4.16 4.62 6.28 7.15

The effect of storage space on program speed is examined using both
12 and 15 vectors of storage to determine 9 singular values. The results

with p =1, eps = 1073 and iorthg = 0 are:

a 10 12 15
iter 23 9 5
imm 229 129 123
iw 886 530 530
exec time 7.99 5.21 4,99

The trade-offs between space and time are obvious.
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SUBROUTINE MAXVAL(M,X,Q,PINIT,G,MHAX,BPS,0P,H,D,X,Y,IORTHG,
LOUT ,HCHEPS ,IECODE)

INTEGER X,N,Q,PINIT,G,NNAX,H,IORTHG,LOUT, IECODE

DOUBLE PREBCISION EPS,D(Q) ,X(N,0Q),Y(¥,Q) ,NMCHEPS

EXTERNAL OP
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CALCULATE TEE LARGEST SINGULAR VALUES OF A LARGE SPARSE MATRIX

WRITTEN BY : FRANKLIN LUK
COMPUTER SCIBBCE DEPARTMENT
STANFORD UNIVERSITY
SBPTBRBER 1976

LAST UPDATE : APRIL 1977
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TBIS SBT OPBROUTINES USES INTEGER AND DOUBLB PRECISION ARITHMETICS
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THIS SBT OP BOUTINES INCLUDES : NAXVAL, BKLANC, ORTHOG, INPROD,
ROTATB, CMVTST, PCEOIC, BAMNDON,
AND SVBUTHN( PLUS BIBAND, ROTROW,
ROTCOL, SVDBI, AND DROTAT ).
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TRIS SUBROUTINE IS THE MAIN SUBROUTINE IMPLENMENTING
THE ITERATIVE BLOCK LANCZOS METHOD POR COMPUTING THE LARGEST
SINGULAR VALUES AND CORBESPONDING LEFT AND RIGHT SINGULAR VECTORS
OF AT B-BY~N MATRIX.

DESCRIPTION OP PARAMETERS ¢

M,N : INTEGER VARIABLES. TEE MUMBER OF ROWS AND COLUMNS
OP TEBR MATRIX A WHOSE SINGULAR VALUES AND VECTORS
ARE BEING COMPUTED., IT IS ASSUMED TRAT 2 .LE. ¥ .ILB. HN.

Q : INTEGER VARIARLE. THE NUMBER OF VECTORSOPLENGTH B
CONTAINED II TEE ARRAY X, AND THE NUMBER OF VBCTORS
OF LENGTH N CONTAINED IN THE ARRAY Y. THE VALUB OP Q
SHOULD BE LESS THAR OR BQUAL TO 26, AT LBAST ONE GREATER
TEAM TEE VALUE OF 6 AND LBSS TEAR OR EQUAL TO N.

PINIT : INTEGER VARIABLE. THE IBITIAL BLOCK SIZE TO BE USED
INTHB BLOCK LANCZOS METHOD. I? PINIT IS NEGATIVE,
THEN -PINIT IS USED POR TEB BLOCK SIZE AND COLUNNS
H*1, 29 9+ H¢(-PINIT) OF THE ARRAYS Y ARE ASSUNED
TO BE INITIALIZED TO A MATRIX USED TO START TEB BLOCK
LANC20S HBTHOD. IF THE SUBROUTINE TERMINATES WITH
A VALUEB OF H LBSS THAI 6, THEN PINIT IS ASSIGNED
A VALUE =P, WHEREP IS THB FINAL BLOCK SIZE CEOSBR.
IN THIS CIRCUMSTANCE, COLUMNS B+1, . . . , H¢P OF Y
WILL CONTAIN THR HOST RECEET SET OF RIGET SINGULAR
VICTOR APPROXIBATIONS WHICH CAN BE USED TO RESTART



THE SUBROUTINE IF DESIRED.

G : INTEGER VARIABLE. TEB UUHBBR OR SIRGULAR VALUBS AND
SINGULAR VECTORS BEI¥G COHPUTBD. THAT IS, MAXVAL
ATTBEPTS TO COHPUTB ACCURATE APPROXINMATIONS TO TEE
6 LARGEST SIRGULAR VALUES AWD THEIR CORRBSPONDIUG
LBPT AID RIGHT SINGULAR VBCTORS OF TEE MATRIX A. TEE
THE VALUB OP G SEOULD BE POSITIVE AND LESS TEAR Q.

MMAX INTEGER VARIABLE. TEB HMAXINUE NUMBER OP MATRIX-VECTOR
PRODUCTS A*X AND TRANSPOSE(A) *X, WHERE X IS AN APPRO-
PRIATE VBCTOR, TEAT ARE ALLOUBD DURING ONE CALL OF
THIS SUBROUTINE TO COMPLETE ITS TASK OP CONPUTING
G SINGULAR VALUES AND VBCTORS. UNLESS THE PROBLEHE
INDICATES OTHEBRWISE, NMAX SEOULD BB GIVEN A VERY
LARGE VALUB.

EPS ¢ DOUBLE PRBCISIOU VARIABLE. BPS SHOULD COUTAIU
A VALUE INDICATING THE RELATIVE PRECISION TO WHICH
BAXVAL WILL ATTENPT TO COHPUTB TEB SIRGULAR VALUBS
AND VECTORS orPA. POR SINGULAR VALUES LESS IN MODULUS
THAN 1, BPS UILL BE AUABSOLUTE TOLBRAUCE.

ooaonmnaooNMaonNnOoacaococnnonanoaaaa

oP : SUBROUTIPB NAME. TEE ACTUAL ARGUMENT CORRESPONDING

TO OP SEOULD BB TER NAME OF A SUBROUTINE USED TO
DEFINE TEB MATRIX A. THIS SUBROUTINE SHOULD HAVE
SIX ARGUMENTS M, N, P, U, V, AND ORIG, SAY, WHERE
A IS AUM-BY-N ARRAY, U ISAU X-BY-P ARRAY,
VIS AU U-BY-P ARRAY, AND ORIG IS A LOGICAL VARIABLE.
THE STATBHENT

CALL OP (H,¥,P,0,V,.TRUE.)
SEOULD RESULT IN THE ARRAY A®Y BEING COHPUTBD AND
STORED IN U, THE STATEHNENT

CALL OP (H,¥,P,0,V,.FALSE,)
SEOULD RESULT IN THB ARRAY TRANSPOSE (A) *U BEING
COHPUTED AND STORBD INV.

B : INTEGER VARIABLE. HGIVES THB NUMBBR OF SIRGULAR
VALUES AND LEFT AND RIGHT SINGULAR VBCTORS ALRBADY
COMPUTED. THUS, INITIALLY, H SHOULD BB ZERO.

IF H IS GREATER THAR 7ZERO, THEN ELEMENTS OUB THROUGH
H OF THBR VICTOR D COUTAIU APPROXIMATIONSTO THE H
LARGEST SIGULAR VALUBS OF A, COLUMNS ORB THROUGH H

OF THB ARRAYS X AND Y CONTAIN APPROXIMATIONS TO TEE
CORRESPONDING LEFT AND RIGHT SIRGULAR VBCTORS,

AT BXIT, H CONTAINS A VALUB BQUAL TO THE TOTAL NUMBER
OF SINGULAR VALUBS AND LERPT AND RIGHT SIRGULAR VBCTORS
COMPUTED INCLUDINGANY ALREADY COHPUTBD WHEN MAXVAL
WAS BNTERED. THUS, AT EXIT, THE FIBRST HELEMNENTSOF D
ANDTHE FIRSTH COLUMNS OF X AND Y WILL CONTAIN
APPROXINATIONS TO THEH LARGEST SINGULAR VALUES OF A AND
THEIR CORRESPONDING IRPT ANWD RIGHT SINGULAR VECTORS.

D s DOUBLE PRBCISION ARRAY. D COBTAINS THB COHPUTBD SINGULAR
VALUES. D SHOULD BB AU ONE-DINENSIONAL ARRAY WITH AT
LEAST ¢ ELEHENTS.

X : DOUBLE PRBCISIOR ARRAY. X CONTAINS THB COEPUTBD LEFT
SIRGULAR VECTORS. X SEOULD BE AN ARRAY CONTAINING AT
LBAST M*Q ELEMERTS. X IS USED ROT ONLY TO STORB THE LEFY

OOOO(’)OO(—)O(—)O(—)(—)(—)OOOOOOOOOOOOOOO‘()OOOOO()(:
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SIUGULAR VECTORS COMPUTED BY MAXVAL, BUT ALSO AS
WORKING STORAGE FPOR TEE BLOCK LANCZOS HETHOD.ATEXIT,
THB PIRST M*H ELENENTS OF X CONTAIN THE LEPT SINGULAR
VECTOR APPROXINATIONS —— THE PIRST VECTOR IN TEB PIRST
8 EBELENENTS, THE secoup IN THE SECOND o ELENENTS, =1C.

Y : DOUBLE PRBCISIOU ARRAY. Y CONTAIWS THB CONPUTED RIGHT

SINGULAR VECTORS. Y SHOULD BE AN ARRAY CONTAINING AT
LBAST N#Q BLEMBNTS. Y IS USED HOTONLY TOSTORE THE
RIGHT SINGULAR VECTORS COMPUTED BY MAXVAL, BUT ALSO AS
WORKING STORAGE FOR TEB BLOCK LANC20S NETHOD. AT EXIT,
TEE PIRST W#H ELEMENTS OF Y CONTAIN TEB RIGHT SINGULAR
VECTOR APPROXINATIONS —— THB FIRST VECTOR IN THE PIRST
§ ELENENTS, THE SECOND IN THE SBCOUD N ELEMENTS, ETC.

IORTHG : INTEGER VARIARLE. ITS VALUB IS THB NUMBER OF INMNEDIATELY
PRECEDING BLOCKS O? VECTORS WITH RBSPBCT TO WHICH
BREORTHOGO¥ALIZATION OP THB PRBSBUT BLOCK 0O? VBCTORS
IS CARRIED OUT.

LOUT : INTEGER VARIARLE. OUTPUT UNIT NUMBER.

MCHEPS : DOUBLE PRECISION VARIABLB. THE MACHINE PRBCISIOU.

IBCODE : INTEGER VARIABLB. TEE VALUE OF IBCODE IUDICATBS

WHETHER MAXVAL TERMINATED SUCCESSPULLY, AND I? HOT,
TEB REASON WHY.

IRCODE=0 : SUCCESSPUL TERMINATION.

IECODE=1 : THE VALUB O? N IS LESS THAN TPO.

IECODB=2 : TEE VALUB O? W IS GRBATBR THAW TEB VALUE
or n.

IECODE=3 : THE VALUE OF B IS GRBATBR THAN 1000

IECODEB=&4 : THE VALUB 0? 6 IS LBSS THAN ORB.

IBCODE=S : THR VALUE 0O? Q IS LBSS THAN OR EQUAL TO G.

IECODE=6 : TEE VALUB OPQ IS GREATER THAN 26.

IEBCODE=7 : THE VALUE O? Q BXCBBDS N.

IBCODE=8 : THE VALUB OF MEAX WAS BXCBBDBD BBFORE

G SIUGULAR VALUES AND LEFT AND RIGHT
SINGULAR VECTORS UBRB COMPUTED.

UOTB TEAT THE SUBROUTINE HAS BEEW DESIGNWED TO ALLOW INITIAL
APPROXIMATIONS TO THB RIGHT SINGULAR VECTORS CORBRES-
PONDING TOTHB LARGEST SINGULAR VALUES TO BE UTILIZED
( IP THEY UBRB KNOSN ) BY STORING THBHIN Y AND ASSIGNING
PINIT MINUS THE VALUE O? THEIR NUNBER. FURTHERNORE, IT
BAS ALSO BREN DESIGNED TO ALLOW RESTARTING I? IT STOPS WITH
IBCODE=8. THUS, THE USEROP THIS PROGRAN CAN RESTART IT APTER
EXAMINING ANY PARTIAL RESULTS WITHOUT 1.0OSS OF PREVIOUS WORK.

INTEGER I,IBRR,INM,IPH,IPQ,ISEED,ITER,IVY, NCONY,P,PNI,PS,PP3
INTEGER QPPS,QP1,S

REAL FLOAT

DOUBLE PRBCISIOU ERRBED,ERRC

THE MININUM LENGTAS O” THE LOCAL ARRAYS ARE AS POLLOWS. THESE
COULD BE CHANGED BY THB USER I? NECESSARY BY CHANGING TEB NAXINOUN
VALUBS O? Q OR B WHICH AT PRBSBUT ARE 26 AND1000 ( TEB TESTS
BBLOU SHOULD ALSO BE MODIFPIED ).

LBT Q2 DBUOTB TEB INTEGER PART O? Q/2, THEN
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C(Q*(Q2+3)),U(Q*Q),V (Q*Q) ,R (Q2%Q2),T (N)

DOUBLE PRECISION C(416) ,U (676) ,V(676),R(169) ,T(1000)
DOUBLE PRECISION DBLE

ISBED IS SBBD POR RANDON NUMBER GENERATOR

[PNPN@]

DATA ISBED/99991/

CHECK THAT THE INITIAL VALUBS OF THB SUBROUTIUB PARA-
METEBRS ARE IN RANGE.

[P NP EPK®]

I? (U.LT.2) 60 TO 901
IP (H.LT.H) GO TO 902
IF (M.GT.1000) 60 TO 903
IF (6.LT.1) 60 TO 90&
IF (Q.LB.6) 60 TO 905
IP (Q.GT.26) GO TO 906

IF (Q.GT.¥) GO TO 907

INITIALIZE THE SINGULAR VALUESTOVERY LARGE NEGATIVE MUMNBERS.

Q00

DO 110 I = 1,6
D(I) =-1.010
110 COUTINUE

CEOOSB INITIAL VALUES FOR THBBLOCK SIZE P, THE WUMBER S
OF STBPS TEAT TUB BLOCK LAWCEOS METHOD IS CARRIED OUT, AMND
CEOOSB AH INITIAL II-BY-P ORTHONORNAL MATRIX 11 TO START
TEE BLOCR LANCZOS HETHOD.

nNoaaO

P = PINIT

I° (P.LT.O, P ==-p

S = (Q-H) /P

IP (S.6EB.2) GO TO 120
s - 2

P = (Q-H)/2

120 I? (PINIT.LT.0) GO TO 200

C INSERT RANDONM VECTORS INTO COLUNNS H+1 THROUGHH+P OF TEE ARRAY Y.
C

CALL BRANDON(N,Q,P,H,Y,ISEED)
C
C SET CONSTANTS FOR LATER CONVERGENCE TRSTS.
C

200 ERRBND = BPS ¢ 10.DO*DBLE (PLOAT (N+N) ) *NCHEPS
EBRRC =0.D0
ITBR = 0O
-INR = 0
Iw = 0

THE HAIN BODY OF THE SUBROUTIUB STARTS HERE. INN
COUNTS THE NUNBER OF HATRIX-VECTOR PRODUCTS COMPUTED.
IVY COUNTS THE WONBER OF VECTOR IWNNER PRODUCTS PERPORMED
IN THE ORTHOGONALIZATION ROUTINE. ERRC HEASURES THE
ACCUNULATED ERROR IN THE SINGULAR VALUES AND VBCTORS.

OO0



300 IF (H.GE.G) GO TO 900
IF (IMM.GT.HMHAX) GO TO 908
ITER = ITER+1
PS = P#§
PP3 = P+3
WRITE (LOUT,6010) ITER,P,S
6010 PORMAT(18H e ** ITERATION,I&/SX,4H P =,I3,5X,8H S =,I3)

USE RANDOR VECTORS TO RESTART THE LA®CZOS ALGORITHNM IF
LINEAR INDEPENDENCE HAS BEBP LOST.

QOO0

DO 310 I= 1,P
IPH = I+H
IF (D (IPH).GT.0.D0) GO TO 310
PMI = P-T
CALL RAKDOM (N,Q,PNI+1,IPH-1,Y,ISEED)
GO TO 320
310 CONTINUE

ORTHONORKMALIZE COLUNNS H+1 THROUGH H+P OF TEB ARRAY Y.

ana

320 CALL ORTHOG (N,Q,H®,8H,P,R,Y,IORTHG,IVV,LOUT,NCHEPS)

BKLANC CARRIES OUT TEE BLOCK LANCZ0S NETHOD AND
RETURNS TEE RESULTING BAUDBD UPPER TRIANGULAR HATRIX NS
IN C, THE N-BY-PS ORTHONORMAL MATRIX XS IN X AND THB
N-BY-PS ORTHONORMAL NATRIX YS IN Y. THB INITIAL
N-BY-P ORTHONORNAL NATRIXYI IS ASSUNED TO BE STORED
IN COLUNNS H+1 THROQUGH H+¢P OF Y.

QOO OO0

CALL BKLANC(M,¥,Q,PP3,H,P,S,0P,C,X,Y,R,IORTHG,IVY,LOUT, NCHEPS)
INN = IBN ¢ P*(2%S5-1)

SVBUTN SOLVES THE SINGULAR VALUE PROBLBH FOR THE PS-BY-PS
ARRAY MS, RETURNING THR SINGULAR VALUES IN THE SBCOBD COLUAN
OF C AND THB RIGHT SINGULAR VECTORS IR THB PIRST P*S COLUNES
OP U, AND TEB P LEPT SINGULAR VECTORS CORRESPONDING TO THB
P LARGEST SINGULAR VALUES IN TEE FIRST P COLUNNS OF V.

anonnoaoaa

CALL svsuUTH(Q,PS,P,PP3,C,PS,PS,U,V,RCHEPS,IERR)

IF (IBRR.EQ.0) 60 TO 330

WRITE(LOUT,6020) IERR
6020 PORMAT(5X,39H **%* ERROR IN SUBROUTINE SVBUTH. IEBRR =,I3,4H *¢¢)
330 QP1 =Q+1

QPPS = Q¢PS

YRITE(LOUT,6030) (C(I),I=QP1,QPPS)
6030 PORMAT (5X,20B SINGULAR VALUBS . ..,6 (/5X, 1P5D24.15))

ROTATE COHPUTBS THE LEFT AWD BIGHT SIKGULAR VECTORS
OF THB RESTRICTED MATRIX USING XS STORED IN X, AND YS
STORED IN Y.

[N NP EPES!

CALL ROTATE(M,Q,8B,PS,PS,U,X,T)
CALL ROTATE(¥,Q,H,PS,PS,V,Y,T)

TEST I? BELATIVE INCREASE OF COMPUTED SINGULAR VALUBS EXCEEDS
TEE USER-SET PRECISION BOUND.

QOO0

ucoxy = (
I? (ITER.EQ.1)GOTO 340
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IF ( (C(Q+1)-D(H+1))/C(Q+1) .GT. BPS ) GO TO 400

CNVTST DETERMINES HOW BABY OF THB SINGULAR VALUES
AND LEPT AND RIGHT SINGULAR VECTORS HAVE CONVERGED.
THE NUMBER THAT HAVE CONVERGED IS STORED INNCONV,
IF NCONV=0, THEN NONE HAS CONVERGED.

CALL CNVTYST(M,¥,Q,H,G,EBRBXD,ERRC,0P,C,X,Y,NCONV,LOUT,T)

INM = INN + (NCONV+1)s2

400CONTINUE

DO 410 I= 1,PS
IPH = I+H
IPQ = I+Q
D(IPH) = C(IPQ)

410 CONTINUE

420

6040

900
901
902
903
904
905
906

PCHOIC CHOOSES NEW VALUBS FOR P AND S, THE BLOCK
SIZE AID THE NUMBER OF STEPS FOR THE BLOCK LANCZOS

'SUBPROGRAN, RBSP..

IP ( NCONV.EQ.O .OR. NCONV.EQ.G-H ) GO TO 420
CALL PCHOIC(Q,H,G,NCONV,P,S)
WRITE (LOUT,6040) INM,IVV,NCONY
PORMAT (5X,6H INN =,I5,5X,6HIVY =,IS5,5X,8H XCONV =,13)
i = HReNCONY

GO TO 300

THIS IS TEE ENDOPTHEMAIN BODY OF THE SUBROUTINE.
NOW SET THE VALUE OP THB IBCODB ANDEXIT.

IECODE = 0
RBTURR
IECODE =1
RETURN
IECODE = 2
RETURN
IECODB = 3
RETURN
IECODE = 4
RETURN
IBCODB = 5
RETURN
IBCODB = 6
RETORN

907 IBCODB = 7

908

RETURN
IBCODB = 8
PINIT =-P
RETURN

END
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SUBROUTINE BKLANC (M,N,Q,PP3,H,P,S,0F,C,X,Y,R,IORTHG,IVY,
1 LOUT,NCHEPS)

INTEGER M,N,Q,PP3,H,P,S,IORTHG,IVV,ICUT

DCUBLE PRECISION C(Q,PP3),X(M,Q),Y(R,Q) ,R(P,P) ,MCHEPES

THIS SUBROUTINE INPLENENTS THE BLOCK LARCZOS
METHCOD WITH REORTHOGONALIZATION. BKIANC CCMEUTES
A PS-BY-PS ( PS=P*S ) BANDED UPPER TRIANGULAR
MATRIX MS WHICH IT STORES IN COLUMNS 2 THECUGH P+2
OF THE Q=BY=P+1 MATRIX C ( THE DIAGCNAL BRING STORED
IN TBE FIRST PS LOCATIONS OF COLUMN 2, TEE NEXT
SUPERDIAGONAL BEING STORED IN TBE FIRST PS=1 LOCATIONS
CPCCLUMN 3, AND SOON), AND A PS-BY-PS CRTHOGCHNAL
MATRIX XS WHICH IT STORES IN COLUMNSH+1 THEOUGH H+PS
OF THE E-BY-Q ARRAY X, AND A PS=-BY-FS ORTHOGCHAL
MATRIX YS WHICH IT STORES IN COLUMNS H+1 THROUGH H+PS
Op TBB N-BY-Q ARRAY Y.

MS CAN ALSOBE REGARDED ASABLOCK UEEER BIAGCHNAL
MATRIX WITH P-BY-F UPPER TRIANGULAR MEATRICES R(1l),

R(S) ON ITS DIAGONAL ARD P=BY-F IOWEE TRIANGULAR
MATRICES T(2)', . . . . T(S)' ALONG ITS UPPER CIAGONAL.

XS IS CORPOSED OF S PS—-BY-P ORTHONOREAL EATRICES
X(V) 4 ceeyp X(9).

YS IS COMPOSED OF S PS-BY-P ORTHONOEMAL NATRICES
Y(YW ., o = Y(S), WHERE Y (1) IS GIVEN AND SHOULD BE
STORED IN CCLUMNS H+1 THROUGH H+P OF Y,

OP IS THE NAME OP AN EXTERNAL SUBECUTINE USED 10
CEFINB TEE MATRIX A.

IKTBGER I,I11,12,3,J8P,J1,32,K,K1,L,11,LLNP,10
DOUBLE PRECISION 1

L =1

IL = A+
LU0 = RA+P

CCHPUTE X (1) = ASY(1)

CALL OP(M,N,P,X(1,LL),Y(1,LL),.TRUE.)

FACTORIZE X (1) := X (1) *R(1)

CALL ORTHOG (M,Q,H,H,P,R,X,IORTHG,IVY,LOUT,MCHEES)
STCRE R(1) IN C

DO 120d = 1,P

DO 110 I =1,d

J1 = J=1+2
C (I,31) =R (I,J)
CCNTINUE
CCNTINOE
L .GB. 2

IP (S.LT.2) GO TO 900
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210

220

230

310

320

DO 600 L = 2,58

LL = H+ (L=1) *P+1

L0 HeL*P
I1= (L-2) *P
I2 = I1+P

COHPUTB A'#*X(1L-1)

LIMP = LL-P
CALL OP(M,N,P,X(71,LLHP),Y(71,LL),.FALSE.)

DO 230 K = LL,LU

CONPUTE Y (L-1)*R (L-1)"*

DO 220 I = 1,N
T = 0.DO
DO 210 J = K,10
JNP = J-P
J1 = J=-1L+1
T =T + Y(I,JNP)*R(K1,J1)
CONTINUE

COHPUTB Y (L) = A'$X(L=1) - Y(L-1) @® B(L-1)'

Y(I,K) = Y (I,K)-T
CONTINUE

CONTINUE

PACTORIZE Y (L) := Y (L) *T (L)

CALL ORTHOG (N,Q,H,LL-1,P,R,Y,IORTHG,IVV,1QUT,BCHEPS)
STORB T(L)' IN C

DC 320 J = 1,P
J1 = J+I1

DO 310 I =1,4d
32 = P=J+1I+2
C(J1,J2) = R(I,J)
CONTINUE
CCNTINUE
CCHPUTE A¢Y (L)
CALL OP(M,%,P,X(1,LL),Y(1,L1),.TRUE,)
DO 430 A = 11,10
COMPUTE X (L-1)*T (L)
K1 = K=-LL+1



T = 0.DO

C
DO 410J = K,LU
JMP = J-P
31 = J=11+1
T=T + X(I,IJ4P)*BR(K1,J1)
410 CONTINUE
C
c COMPUTE X (L) = A*Y(L) - X (L-1)*T (L)'
C
X(I,K) = X(I,K)=T
420 CONTINUE
C
830 CCNTINUE
C
C FACTORIZE X (L) := X{(L)*R (L)
C
CALL ORTHOG (M,Q,H,LL-1,P,R,X,IORTHG,IVV,LQUT,NCHEES)
C
C STORE R(L) IN C
C
DO 520J = 1,P
C
DO 510 I = 1,4
11 = I+12
J1 = J-142
c(11,31) = R(I,J)
510 CONTINUE
C
520 CCNTINUE
C
600 CCATINUE
C
900 CCRTINUE

FERTUEN
END
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120

130

200

210

220

230

300

SUEROUTIUE ORTHOG {N,Q,H,L,P,R,X,I0ORTHG,IVV,10UT,NCHEES)
IETEGER N,Q,H,1,P,ICFTEG,IVV,LOUT
DCUBLB PRECISION & (P,P),X(N,Q) ,MCBEES

OBTEOG REOBTHOGOKALIZES TEE N-BY-P MATBIX Z STORED IN
CCLUNMNES L+1 TRROUGH 1+¢P OF TEE N-BY-Q AERAY X WITH
RESPECT TO THE VECTORS STORED IN COLUMNS 1 THECUGH B
AND COLUMNNS (L-IORTHG*P+1) THROUGH L OP TEE MATBRIX X
USING GRAM-SCHMIDT ORTHOGONALIZATIOK. TBE MCDIFIED
GRAM-SCHMIDT NETHOD IS USED TO PACTORIZER TBE RESULTING
BATRIX INTO TEE PRODUCT OF AN N-BY-F ORTHONCEMAL MATRIX
XORTH STOBED IN COLUHNS L+1 THROUGH I4P OP X, AND
AP-BY-P UPPER TRIANGULAR ARRAY R.

INTEGER I,IM1,IP1,J,K,KNL,L1,LP1,LPP
INTEGER MAXO

DOUBLE PRECISION SUM

DOUBLE PRECISICN DSQRT

IP (E.EQ.0) RETURN

IP1 = L#+1

LPP = L¢P

IP(B.BQ.0) GO TO 200

DC 130 I = LP1,LPP

DO 120 K = 1,B "'
CALL INPROD(N,X(1,I),X (1,K),SOUN)

DO 110d = 1,N
X(J,I) = X (J,I) - SUN*X (J,K)
CONTINUE
CCNTINDE
CCHETINUE
IVV = IVV + H*P
1P (IORTHG.BQ.0) GO TO 300
1F (L.BEQ.H) GO TO 300
11 = BAXO( L-P*IOBETHG+1, H¢1 )
DC 230 I = LP1,LPE

DO 220K = L1,L
CALL INPROD (N,X(1,I),X(1,K),SUN)

DO 210 J = 1,N
X(J,I) = X(J,I) - SUN*X(J,K)
CONTINUR
CCNTINUE
CCETINUE
IVY = IVV + (L-L1+1)*pP

CCHNTINUE



DC 400 I = 1P1,LPE
suM = 0.DO

DO 310 J = 1,N
sun = SUM + X (J,I) **2
310 CGNTINUE

IBL = I-1L
IF (SUM.GT.MCHEPS) GO TO 330

WRITE(LOUT,6010)
6010 FORMAT (5X,478 *** [{ARNING e LINEAR INDEEENDENCEMAY BE LOST,
1 24H. VECTOR SET TO ZERC #*%%)

R (IML,INL) = 0.DO

DO 320 J = 1,N
X@,I) = 0.00

320 CCNTINUE
GO TO 400

330 SUM = DSQRT (SUN)
R(INL,INML) = SUNM
sun = 1. D0/SOM
DO 340 J =1,N
X(J,I) = SUN*X (J,I)
340 CCNTINUE

350 IF1 = I+1
IP (IP1.GT.LPP) GO TO 400

DO 370 Kk = IP1,LPP
CALL INPROD(N,X(1,I),X (1,K),SOM)
KBl = K-L
R(INL,KML) = SUM

C
DO 360 J = 1,N
X(J,K) = X (J,K) = SUN*X(J,I)
360 CONTINUE
C
330 CONTINOE
C
400 CCHTINUE
C

IVY = IVV + (P-1)*P/2
FEETUEN
END
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SUBROUTINE INPBOD (N,U,V,SUN)
INTEGER N
DOUBLE PRECISION U(N),V(N),SUM

INPROD COMPUTES THE INNER PRODUCT OF 2 VECTORS U AND V¥,
EACH OF LENGTH N, AND STORES TEE RESULT IR S.

INTEGER T
SUN = 0.D0

DC 110 T =1,N
SUN = SUM + ©(I)*V(I)
110 CCNTINUE

RETURN
END
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SUBRCUTINE ROTATE(N,Q,H,PS,1,U0,X,T)
INTEGER N,Q,H,PS,1
DOUBLE PRECISION U(C,L) ,X(N,Q) ,T (Q)

RCTATE CONPUTES TEE PIRST L CCLUENS OF THE MATEIX
Xs#*Qs, WHERE XS IS AN N-BY-PS ORTHCNOFMAL MATRIX STORED
IN CCLUMNS H+1 THROUGH H+PS OP TEE N-BY-Q ARRAY X AND
Qs IS A PS-BY-PS CRTHONOEMAL MATRIX WHOSE FIRST L COLUMNS
ARE STORED IN COLUMNS 1 THROUGH L CP TEE ARFAY U. TRB
RESULT IS STORED IN CCLUKNS H+1 THFECUGH H+L OF X
CYERWRITING PART OF XS.

INTEGER 1,J,JPH,K,KPH
DOUBLE PRECISION SONM

DC 200 I = 1,N
CCHPUTE TEE I1—TH FOW OF XS#(CS

po 110 K= 1,1
suM = 0.D0

DO 105 J = 1,PS

JPH = J+H

sun = SUM + X(I,JPH)*U(J,K)
CONTINUE

T (K) = sun
CCNTINUE

DO 120K = 1,L
KPH = K+R
X (I,KPH) = T (K)
CONTINUE

CCNTINUB

EBTUFN
END
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SOUBROUTIME CNVISI(M,N¥,Q,H,G,ERRBND,EPRC,O0F,C,X,Y,NCCNV,
1 LOUT,T)

INTEGER #,N,Q,8B,G,NCCHNV,LOUT

DOUBLB PRECISION EREBND,ERRC

DOUBLE PRECISION C (Q,2) ,X(N,Q),Y(¥,Q),T(N)

CRVTST DETEBRMINES WHICH OF TEE P CCMPUIED SINGULAR
VALUES STORED IN THB SECOND COLUMN OF C HAVE CCNVERGED.
TBE RESIDUAL RESIDU OF THE (H+I)=-TH SINGULAR VALUE

IS CCMPUTED BY
RBSIDU = DSQRT{ 2NOEM( A*Y (H+I) - X (H+1)*C(I,2) ) *#2

+ 2NORM( A'$X(H+I) - Y(R+I)*C(I,2) ) *%2 ).

BRRC IS A MEASURE OF THE ACCUMULATED ERROR IN THE
B FREVIOUSLY COMPUTED SINGULAR VALUES AND LEFT AND RIGHT
SINGULAR VECTORS.

WE DECIDE TEE (H+I)=-TH SINGULAR VALUE HAS CCNVERGBD
IF

RBSIDU .LE. E*EBRBND + ERRC,

WEERE B EQUALS C(I,2) IF TRE LATTER IS GREATER THAN 1,

AND 1 OTBERWISE. BENCE WE DO ARELATIVE ERROR TEST IF THE
CCBPUTBD SINGULAR VALUE IS GREATER IHAN 1, AND AN ABSOLUTE
ERROR TEST CTHBRUISE.

TEE CONVERGENCE TEST IS PERFORMEL IN ORDER CN TEE (H+1)-TH,

(B+2)-TH, . . . COMPUTED SINGULAR VALUES. AS SOON AS A CCHMPUTED

VALUE FAILS THE TEST, RETURN IS RACE TO TEE CALLING ROUTINE.
NCONV IS THE NUMBER THAT HAS CCNVERGED. IF NCONV=0,

TEEN NONE HAS CONVBEGBD.

INTEGER I,IPH,K,1,PT
DCUBIB PRBCISION RESIDU,B,SUM
DOUBLB PRECISION DSQET

SUB = 0.DO
FT = G-H

DO 200 I = 1,PT
K =1
IF (C(I,2).2Q.0.D0) GO TO 300
IPH = I+H
CALL OP(M,N,1,7,Y(1,IPH),.TRUE.)

RBSIDU = 0.DO
DO 110 L =1,
B=T(L) = C(I,2)*X(L,IPH)
RBSIDU = RESIDU + B#*s2
CONTINUE

CALL OP (M,N,1,X(1,IPH) ,T,.FALSE.)
DO 120 L =1,N
B = T(L) - C (I,2)*Y (L,IPH)
RESIDU = RESILU + B**2
CONTINUE

TEST POR CORVERGENCE



BESIDU = DSQRT (RBSIDU)
B =C(I,2)
IF (RESIDU.LE.B*ERBBND+ERRC) GO 1IC 130

WRITE (LOUT,6010) X,RESIDU
6010 POBRMAT (5X,4H K =,14,5X,9H RBSIDU =,1BED15.5,
1 36H e ** COHPUTBD VALUE REJECTED *%%)

GO TO 300

130 WRITE (LOUT,6020) XK,RESIDU
6020 PORMAT (5X,8H K =,I4,5X,98 RBSIDU =,1PD15.5,
2 36H *%% CCMPUTED VALUE ACCEFTED ##*%)
SUN = SUM + RESIDU*%*2
IF (I.EQ.PT) K =K+1
200 CCNTINUE
C
300 NCONV = K-1
IF (K.EQ.1) RETURN

BRRC = DSQRT (ERRC**2+4SUHN)
RETOEN
END
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SCERCUTINE FCHCIC(Q,E,G,NCONV,P,S)
IMIEGES C,H,6,NCCNV,E,S

BASED ON TEE VALUES CF Q, H, G ANL NCCNV,

FECHOIC CHOCSESNEW VALUES FOR P ANLC S, THE ELCCK SIZE
ANC NUMBER OF STEES FOR TEE ELCCK 1ANCZCS HETHCD.

TEE STRATEGY IS : 1F TEE PREVIOUS BLCCEK SIZE IS
GFEEATER THAN TFE BUMEE¥ CF SINGULAR VALUES 1IC BE
CCMPUTED, THEN THE NEW BIOCK SIZE EQUALS 'IRE EFEVIQUS
FICCK SIZE MINUS '"IRE KUMBER OF SINGULAR VALUES THAT
HAVE CCNVEFGED INTHE CUFBENT ITERATICN, CIBERWISE
TFE NEW BLOCK SIZE IS CRCSBN TO0 EE TEE SEALIER CF THE
TWC VALUES ¢ 1) THE PEEVIOUS EICCK SIZE, ANC 2) THE
NCFREFR OF SINGULAR VALUES TO BE CCMEUTEL. S IS CHCSEN
2SS LARGE AS PCSSIELE SUBJECT 1IC STORAGE CCNSTRAINT,

FUT ITS VALUE IS ALWAYS AT LEAST 2.

H IS THE NOUMBEF CF SINGULAR VALUES AND LEPT ANE RIGHT
SINGULAR VECTOFS THAT HAVE ALREADY EEEN CCMEUTEL AND G
is TFE REQUIRED NUMBEE. NCCNV IS THEE NUMBER CF SINGULAR
VRIUES AND LE®FT AND RIGHT SINGULAR VECTCRS THAT HAVE
CCNVERGED IN TAB CUERFENT ITERATION.

INTECER HT,PT

H1 = B+ NCCNV
IF (E.LE.G-H) GO 10 110

t - NCONV
(C=HT) /F

F
S
FETUEN

=N

E

110ET - G- HT

IF (F«GT.PFT) P = ET
Q

< (C-HT) /P
IF (S.GE.2) RETUEN
E (C=HT) /2

<

s (Q-HT) /P

FETUFN
EXEC
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SUERQUTINE RANDCM (N,Q,F,H,X,ISEED)
INTEGER N,Q,P,H,ISEED
CCUBLE PRECISION X (N,Q)

RANDCM CCMPUTES AND STORES ASECUENCE CF E*N PSEUDO-
KEANDCM INTEGERS ( VALUE BETWEEN O AND 2147483647 ) IN
CCLUMNS H+1 THBOUGH H+#P OF THE N-EY-Q ARRAY X.

INTEGER I,L,LPH
DC 130L = 1,P
ILFH = L+H

DO 120

I eN .
ISBBD

1
ISEED*314159269 + 4538C6245

THE STATEHBNT NUHBBR 110 IS TG PREVENT UNWANTED,
OPTIMIZATICN BY TEE COMPILER.

IF (ISEED.LT.0) ISBBD = ISEEL + 2147483647 +1
X(I,LPH) = ISEED
CONTINUE

130 CCNTINUB

RETUFN
END
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SUBROUTINE SVBUTM (NDIN, N, X, NP3, C, NO, NV, U, V, NCHEPS, IERR)

ERERESRREAEEREERER RS REREERERE START OF SVBUTHM SEESEE AR RREERRXERE R KER

INTEGER XDIN, N, N, ®MP3, NU, NV, IERR
DOUBLB PRECISION C(NDIN,MP3), U(NDIN,NU), V(NDIN,NV), MCHEPS

B h Y AR N M S EL S M U WP T W AL TR W WD DGR D TSR G T D AR P TR AP GP D NS NP WP W D e S @R S LR T AP D D MDD WS WS R = e W

CALCULATE THE SINGULAR VALUE DECONPOSITION OF A BANDED UPPER
TRIANGULAR MATRIX

YRITTBN BY: M. L. OVERTON
COHNPUTER SCIENCE DEPARTHENT
STAMFORD UNIVERSITY
JANUARY 1976

LAST UPDATB: JANUARY 1976

B S U S N AN v " D P e R e S A GRS G D VD TR ED D D P D W YD D D e B LD P b D NS W W s V- D W AL e W NS WL TR W WD AR W W

THIS ROUTINE COMPUTES TEE SINGULAR VALUE DECOMPOSITIONOF A REAL
N*N MATRIX A, I. E. IT COMPUTES MATRICES U, S AND V SUCH TEAT

A=0%g35=* VT,

WHERE
U IS AN N*H MATRIX AND UT * U0 = I, (UT = TRAUSPOSB
OFr OY) ,
V IS AU N*N MATRIX AND VT *V= I, (VT = TRANSPOSE
orv,

AND S IS AN N*N DIAGOUAL MATRIX.
THE CALCULATION IS PERFORHMED IN TWO STEPS:

1. REDUCE THE BANDED UPPER TRIANGULAR NMATRIX TO AU UPPBR
BIDIAGONAL MATBIX USING GIVENS TRAMNSPORMATIONS. THIS IS
DONE BY SUBROUTINE BIBAND.

THE METHOD USBD IS SINILAR TO THE METHOD USED FOR
TRIDIAGONALIZING ASYNENETRIC BANDED NATRIX, DESCRIBED IN
H. ROTISHAUSER,ON JACOBI ROTATION PATTBRYS, PROC. OF SYNP.
I® APPLIED HMATH., VOL.XV, BXPERIMENTAL ARITH., HIGH SPBBD
COMPUTING, AND MATH. (1963). FOR POURTHER DBTAILS SEE
COMNENTS AT BEGINNING OF THB SUBROUTINE.

2. DIAGORALIZB THE BIDIAGONAL MATRIX TO OBTAIU THE SINGULAR
VALUBS. THIS IS DONE BY SUBROUTIRE SVDBI.

TEE MBTHOD USED IS A VARIANT OF THE QR ALGORITHHN,
DESCRIBED IN: GOLUB AUD RBINSCH,SINGULAR VALUE DECOMPOSITION
AND LBAST SQUARES SOLUTION, NUMER. BRATH. 14, ®803-420(1970),
SECTION 1 . 3.

P W D S N EE R e S D NS S D D R D D D D W D D Y WP TR D WD YD Uk W AREE T D e W DR A W R AR WS D WD R e W e

TEE ROUTINE IS IN DOUBLE PRECISION

- D W D S Wn D WS S M TS I ED P ED S W G ERED ER D P WS G W DD TS D D D D WGP WS WD ED D e D S S U WD D NS GRS AP WP G D WD AP YR e W

THE SPEED OPTHIS ROUTINE COULD BB IMPROVED BY INPLEMENTING
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PAST GIVENS TRANSPORMATIOUS
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ADDITIONAL SUBROUTINES REQUIRED: BIBAUD, WITH ROTROW AND ROTCOL

SVDBI, WITH DROTAT

B e e e W AR TR R S R S S D WD AR e D ED R R S D D W WD D WD WD WS W D G D VS D D D R P WD Wh U U S e M TS AR SR D MR B S GRS T = e

THE FORMAL PARAMETERS ABE:

NDIM =~ TEB QUANTITY USED TO DECLARE THE FIRST DIMENSION OF TEE
ARRAYS C,U,V (NDIN .GE.N)

N - TEE ORDER OF THE BAUDBD UPPER TRIANGULAR MATRIX A

| - THE UUMBBR OF SUPERDIAGONALS IN TEB MATRIX A:
A(I,Jd) =0 FOR J .G6T. I+N AIDJ .LT. X

MP3 - THE NKUMBER OF COLUMUS IN TRB ARRAY C. MUST BB SET TO H+3,

C -AUNDIN e NP3 ARRAY WHICH HOLDS THE NONZERO ELEMENTS OF
oF A.
THE DIAGONAL IS STORBD IN TEE FIRST W BLBMBNTS OF
COLUMU 2, TEE MEXT SUPBRDIAGOUAL IN THB PIRST U-1
ELENENTS OF COLUMU 3, AUD SO OF UP TO TEB LAST
NONZERD SUPERDIAGOUAL BEING STORED IN THB FIRST U-M
ELEMENTS OF COLUMU M+2. COLUMUS 1AUD M+3 ARE ARBITRARY.
THUS:
A(I,J)=C(I,J-I+2), I .LE.J .LB. I*N,
TEIR ROUTINE RETURNS TEE DIAGOMAL OF TEE MATRIX S,
I. B. THE SINGULAR VALUES OF A, IN DESCENDING
ORDER, IN COLUMN20P C - THUS THE
SINGULAR VALUES WILL BE:
c(1,2) .GE. C(2,2) .GE. ... .GE. C(¥,2)

NU, ¥V- INTEGER VARIABLES. TEE UUMBBR OF COLUMUS IN TEE
ARRAYS 0 AUD V. SET N0 TO N IP TEE MATRIX O IS DESIRED,
OR SET WO TO 1I? U IS UOT DESIRED.SETHY TO N
IF THE MATRIX VIS DBSIRBD, OR SBT NVTO1Y I? V
IS ROT DESIRED,

U - REAL NDIN * NU ARRAY. IFr X0 = ¥, TEB MATRIX U IS COMPUTED
AND STORED IN THE ARRAY U.

v - REAL NDI® *¥V ARRAY. IF BV = X, THE MATRIX VIS COMPUTED
AND STORED INTHE ARRAY V.

IERR - ERROR PLAG6. TEE ERROR CODES RETURNED HAVE THE FPOLLOWING

MEANINGS:
IBRR = ( NORBRNAL RETURN
IEBR = 2: ERROR - MP3 DOBS UOT BQUAL M+3,
IEBR = 3: ERROR = MU IS UOT SET TO ¥ OR 1.
IEBR = 4: ERROR = WV IS UOT SET TO N OR 1.
IEBR = 5 BERROR - ¥ IS GREATER THAN NDIAN.

- .= A E S IR D S EN AR A WS D D D W D UD Gh D e i A D A IS G ED O AP D R G D G D NP G TR WD M e WD WP D WD WD W WD N WD W S

LOGICAL WITHU, WITHY
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INTEGER I,NHM1,HMI

CHECK INPUT PARAMETERS

IEBR = 0

IF (MP3.NB.B#3) 60 TO 102

IF (§U.BE.1.AND. NU.NE.¥) GO TO 103
IF (UU.BQ.l) WITHU = .PALSE.

IF (NU.BQ.N) WITHOU = .TRUE.

IF (SV.NE.1 .AND. NV.NE.N) 60 TO 104
IF (NV.EQ.1) WITHVY = .FALSE.

IF (NV.BQ.N) UITEV = .TRUE.

IF (M.GT.WDIN)60 TO 105

TURN OFF UNDERFLOW

BIDIAGOUALIZB
CALL BIBANRD (¥DIN,N,N,NP3,C,WU,NV,WITHU,¥ITHV,U,V)

THE SUPERDIAGONAL COLUNN NUSTBESHIFTEDDOWN ORE ELEMENT IN C
BBPORE CALLING SUBROUTINE SVDBI
NH1=N-1
DO 20 I=1,HN1
NaI = ¥-I
20 C(NNI+1,3) = C(WAI,3)
C (1,3)=0.DO

DIAGOUALIZB
CALL SVDBI (WDIN,N,C (1,2),C(1,3),00,NV,WITHU,WITHV,U,V,NCHEPS)
RETURU

SET ERROR FLAGS

102 IBRR = 2
RETURU

103 IBRR = 3
RETURU

104 IERR = /
RETURN

105 IERR = 5
RETURN
BUD
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SUERCUTINE BIBANC(NDIM,N,M,MP3,C,NU,NV,NITHU,WITHV,U,V)

CHESAIRRREERRERRBRREXR XXX %X START OF RIRAND S48 2B 8RRt bbbkt ®

C
C
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INTEGER NDIM, N, M, MP3, NU, NV
LOGICAL WITHU, WITHV
CCUBLE PRBCISICN C (NCIM,MP3), U(NDIN,NU), V(NDIN,NV)

T A - G G S DGR PGP B W T A S Y e D W D D WS ED W D G W - - - - -

FECUCE ABANDED UPPER TRIANGULAR MATRIX TC A BICIAGCNAL MATRIX
BY GIVENS TRANSFORMATIONS, PRESERVING TBE SIRGULAF VALUES.

WRITTEN BY: M. L. OVEFTCN
COMPUTER SCIENCE DEFARTBERNT
STANFORD UNIVERSITY
JANUARY 1976

LAST UPDATE: JANUARY 1976
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TBE ROUTINE IS IN DOUBLE PRBCISICN

ADDITIOUAL SUBBOUTINRS REQUIRED: ECTRCW AND FOTCOL

THIS SUBROUTINE COMPUTIRS TEE MATRICES U,J AND V SUCH THAT

A=10%J * VT ,

WBERE
U IS AN N*N MATRIX AND UT * 0 = I, (OT = TRANSPOSE
OF 0U),
V IS AN N#*N MATRIX AND VT * V = I, (VT = TRANSPOSE
OF V),

ADD J IS AN N*N UPPER EIDIAGGNAL MATRIX.

1BE METHOD USED IS SIMILAR TO TRE METHCD USBD FOR
TRIDIAGONALIZING A SYMMETRIC EANDED MEATEIX, DESCRIBED IN
H. RUTISHAUSER, CN JACCBI ROTATION PATTERNS, PRCC. OF STEP.
IN AFPLIBD MATH., VOL.XV, EXPERIMENTAL AEITB., HIGH SPEED
CCEPUTING, AND MATH. (1963).

- - - - an - - - n TP D GV D A I S WD W W S WD B D e P W G W -

TBE PORMAL PARAMETIEES ARE:

BDIM - THE QUANTITY USED TO DECLARE TIERE FIRST DIMENSICN OF THE
ARRAY C (NDIM .GE. N)

N - THE ORDER OF THE RAIDED UPPER TRIANGULAR MATRIX A

.| - TEE NUNBER OF SUPERDIAGONALS IN TEE MATRIX A:
A(I,Jd) = 0 FORJ +GTI. I+M AND J .1T. I

MP3 - THE NUMBER OF COLUMNS IN TRE ARRAY C. BUST BE SET TO M+3.
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AN NDIM * HP3 ARRAY WHICH HCLLCS THE NCNZERO ELEMENTS OF
OF A.
TAB DIAGONAL IS STORED IN TRE FIRST NELEMENTS OF
COLUHN 2, THE NEXT SUPERDIAGCHNAL IN THE PIRST N-1
ELEMENTS CF COLUHN 3, AND SO ONUE TO THE LAST
NCNZERO SUPERDIAGONAL BBIN6 STORED NTHE FIRST N-H
BLBHBNTS OF COLUHN M+2., CCLUMNS 1 AND M43 ARE ARBITRARY.
THUS :

A(I,J)=C (I,J-I+2), I .LE. J .LE.I4M.
THE ROUTINE RETURNS TEE BIDIAGCKAL MATFIX J WITH THE
DIAGONAL IN THE FIRST N ELEMENTS OF CCLUMN 2 OF C AND
THE SUPERDIAGONAL IN TRB FIRST N-1 ELBWENTS CP
COLUMN 3 OF C.

NU,NV- INTEGER VARIABLES. THE BUMBER OF COLUMNS IN THE
ARRAYS U AND V. SBT NO TO N IF UITHU = .TRUE., OR SET
NO TO 1 CTHEEWISE. SIHILARLY SET NW TC N OR 1.
WITHU,WITHV - LOGICAL VARIABLES. I1F UITHU = .TRUE., THEN
THE HATRIX U IS COHPUTBD AMD STORED IN THE ARRAY U.
IP WITHV = ,TRUE., THEN THE MATRIXVIS COHPUTED AND
STORED IN THE ARRAY V.
o - REAL NDIH * NU ARRAY.
v - REAL NDIH * NV ARRAY.
INTEGER N%2,I,J,K,J0,J0FF,KK
INITIALIZE U,V
IV (.NOT. WITHU) GO TO 81
DC 80 I=1,N

DO 70 J=1,%

u(

U(1,d)=0.D0
1,1)=1.D0

CONTINUE
81 CONTINUE
IF (.NOT. WITHV) GO TO 101

DO 100 X

=1,N

DO 90 J=1,N

V(

v(1,3)=0.D0
I,I)=1.D0

CONTINUB

CCNTINUB

HANDLB DBGBNBBATB CASE
IV (M.LT.2.0R.N.L7.3) BRRTURN

ZEFQ WORKING SPACE ON LEFT AND RIGHT SIDES OF C

EN2=R-2
DC 1201
C(
C(

co
PASS LOWN

=1"
I,1)=0.D0
I,8P3)=0.D0
NTINUER

THE ROWS OF A
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400
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DC 400 I=1,NM2
LOOK AT TXE ELEHENTS OUTSIDE THE BILIAGCNAL PART
FOR K PROH M STEP -1 UNTIL 2...
DO 300 KK=2,M
K=M+2=-KK
THE POLLOUING LOOP PIRST ANNIHILATES THE CHOSEN ELEMENT
BY A COLUMN ROTATION UITH JOFF=K. THIS CREATES A NEW
BLBHBNT TO BE ZEROED BY A BOW BOTATICN WHICH CREATES A
NBU ORE TO BE ZEROED EY A CCLUMN ROTATION WITH JOFF=M+1
AND SO ON UNTIL THE BLEMENT IS CHASED OFF THE MATRIX,
JO=T+K
JOFF=K
IF (J0.GT.N) GO TO 201
DO 200 J=J0,N,M
ROTATE COLUMNS TO ANNIHILATE ELEMENT
CALL ROTCOL (NDIM,N,N,MP3,C,NU,NV,WITHU,WITHV,U,V
¢J,JCFF)
JOFF=M+1
ELEMENT CREATED BELCW DIAGONAL - ZERO IT AND
CREATE ANOTNER ABOVE EY FOTATIKRG RCHS
CALL ROTROW (NDIM,N,®,¥P3,C,NU,NV,WITHU,WITHV,U,V
eJ)
CONTINUE
CONTINUE
CONTINUE
CONTINUE
FETUFN
END
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SUERCUTINE ROTBOW (NDIM,N,M,MP3,C,NO,NV,WITHO,WITHV,0,V,I)
APEIY TO HATRIX A ON THE LBPT SIDE AGIVENS TRANSFORMATION
TO ROTATE ROWS I AND I-1 SUCH TEAT TEE SUBCIAGCKAL ELEMENT A (I,I-1)
IS ANNIHILATED

RECALL THAT A IS STORED IN C UITH
A(I,J)=C(1,J=-1+2) I .LE. J .LE. I+H¥

DCUBLE PRECISION C(NDIM,MP3),U(NDIN,NU),V(NDIN,NV)
LCGICAL WITHUO,WITHV

IRTEGER K,MP1

LCUBLE PRECISION X,Y,Z,COST,SINT,TEME,S,CABS,CSQORT

X=C(1-1,2)
Y=C(1,1)
IP Y IS ZERO THEN THERE IS NOTHING TC DO
IF(Y.EQ.0.D0) RETURN
FEEFORM Z=SQRT (X*X+Y#*Y) ; COSTT=X/Z; SINT=Y/Z WITH SCALING TO
PREVENT UNDERFLOW
S=DAEBS (X) +DABS (Y)
CCsST=X/S
SINT=Y/S
Z=DSQRT (COST*COST+SINT*SINT)
CCST=COST/Z
SINT=SIRT/2Z
C(I-1,2)=2%*S
c(1,1)=0.D0
FE1=B+1
DO 100 K=1,MP1
IP(I-1+K.GT1.N)GO TO 100
TENP=C (I-1,K+2)
C(I-1,K+2)=COST*TEMP + SINT *C(I,K+1)
C(I,K+1)==SINT*TEMNP + COST*C (I,K+ 1)
CCNTINUE

UPLATE U (ACCUMULATE TRANSFORMATIONS) - BUST UPCATE O ON THE
RIGHT BECAUSE U IS WANTED, NOT U TRANSFOSEC
IF (.M0T. UITHU) RETURN
DC 200 K=1,N .
TEMP=0 (K,I-1)
U (K,I-1) =COST#TEMP + SINT*U (K,I)
U (K,I) ==SINT*TENP + COST*U (K,I)
CONTINUE
RETUEN
END



SUERCUTINE RJOTCOL (NDIN,N,M,MP3,C,NU,NV,WITHO,WITHV,U,V,J,JOFF)
APFLY TO MATRIX A CNTHE RIGHT SIDE AGIVENS TRANSFORMATION TO
FCTATE COLUMNS J AND J-1 SUCH THAT THE ELEMENT A (J-JOFF,J) (IN THE
UPFER TRIANGLE) IS ANNIHILATED.

RECALL THAT A IS STORED IN C WITH
A(I,J)=C(I,J-I+2) I .LE. J .LE.I#HM

sNeNeNesEeNeXe!

INTEGER NDIM,N,M,¥P3,NU,NV,J,JOFF

DOUBLE PRECISION C (NDIM,MP3) ,U (NDIN,KU) ,V (NDIH,NV)
LCGICAL WITHU,WITHV

INTEGER 1,IFK,K,JMIE1,JMIP2,JK1,JK2

DCUBLB PRECISION X,Y,2,COST,SINT,TENMP,S,CABS,DSQRT

I=J=-JOFF
JRIP1=J=I+1
JNIP2=J~I+2
X=C(I1,JMIP1)
Y=C(I,JNIP2)
C IF Y IS ZERO THERE IS NOTHING TO CO
IF (Y.EQ.0.D0) RETURN
FERFORN Z=SQRT (X#X+Y#*Y); COSTT=X/Z; SINT=YyZ UITH SCALING TO
C PREVENT UNDERPLOW
S=LCAES (X) +DABS (Y)
CCST=X/S
SINT=Y/S
Z=DSQRT (COST*COST+SINT*SINT)
CCST=COST/Z
SINT=SINT/Z
C(I,JMIP1)=2%*S
C(I,JNIP2)=0.D0
DO 100 K=1,JOFF
JK1=JNIP1-K
JK2=JMIP2-K
IPK = I+K
TEMP=C (IPK,JK1)
C(IPK,JK1) =COST*TEMP + SINT*C (IFK,JK2)
C (IPK,JK2) ==SINT*TEMP + COST*C (IPK,JK2)

«

100 CONTINUE
C
C UFCATE V (ACCUMULATE TRANSPORMATICNS)
C MUST UPDATE V ON THE RIGHT SINCE V IS DESIRED, NOT V TRANSPOSED

IP (.NOT. WITHV) RETURN
DO 200 K=1,N
TBHP=V (K, J-1)
V(K,J=1)=COST#*TEMP + SINT*V (RK,J)
V(K,J) ==SINT*TEMP + COST*V (K,J)
200 CCHNTINGE
FETUFN
C
CHA2288 82880 RERRENRA8 88828k %x END OF BIBAND *#% 2554248000 k00K ERRRKKK

END
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SUERCUTINE SVDEI (NDIM, N, S, T, NO, NV, WITHU, UITHV, U, V, ETA )

CHEXBRAASESRARAREERASX SR 44888 START OF SVLRT #9525 24 S5 SRR KKK

[

C
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INTEGER NDIM, R, NU, NV
DCUBLE PRECISICN S(N), T{N), U(NLCIM,NU), V{(NDIM,NV), EIA
ICGICAL WITHU, WITHV

THIS IS ESSENTIALLY THE SECOND HALF CF SUERCUTINE DSVD,
A SINGULAR VALUE LCECCMPOSITION ROUTINE IN TEE CSD LIERBRY.

TEE EQOUTINE IS IN DCUBLE PRECISION.

CSVD ORIGINAL FRCGRAHHER: R. C. SINGLETCN

DSVD 360 VERSION BY: 3. G. LEWIS
LSVD LAST REVISICN: JANUARY 1974
SVCBI EXTRACTED EY: H. L. OVEFICN
SVCBI EXTRACTED IN: AUGUST 1975
SVCBI LAST REVISICN: SEPTEMBER 1975

ACDITIONAL SUBROUTINE NEEDED: DECIAT

B L T T R R R R TR - - e - - W h G D G D S TR TS G G G D R W e

THIS SUBROUTINE CCMEUTES TRE SINGULAR VALUE DECCMPOSITION
CF A REAL BIDIAGONAL N*N HATRIX 3, I.E. IT COHPUTES MATRICES
P, S AND Q SUCH THAT

J=F %3S * QT ,

WEERE
P IS AN N*N MATEIX AND FT # P = I, (PT = TRANSPOSE
OF P) ,
Q IS AN N*N HATRIX AND QT * Q = I, (QT = TRANSPOSE
OF Q) .

AND S IS AN N*N DIAGCNAL MATEIX.

THE METHOD USED IS A VARIANT CF ?HE QR ALGOFITHM.

REFERENCE: GOLUB AND REINSCH,SINGULAR VALUE DECOHPOSITION
AND LEAST SQUARES SOLUTION, NUMER. MATH. 14, 403-420 (1970),
SECTION 1.3.

DESCRIPTION OF PARAHBTBRS:

S REAL N*1 ARRAY. ON ENTRY S CONTAINS THE MAIN DIAGCNAL OF 3.
—-THE ROUTINE REPLACES THIS BY TEE DIAGCNAL GP THE MATRIX S,

I.E., TAE SINGULAR VALUES CP J IN DESCENDING ORDER.

T = REAL N*1 ARRAY. ON ENTRY T CONTAINS THE SUPBRDIAGCNAL OF J
IN ELEMENTS 2, N; THE FIRST ELEMENT IS ARBITRARY.
THE ARRAY IS DESTROYED BY THE FCUTINE.

N = INTEGER VARIAELE. THE NUMBEF OF ELEMENIS IN ARRAYS S AND T,
I.E. THE ORDER OF THE BIDIAGONAL MATERIX J.
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NU, NV = INTEGER VARIABLES. TBB NUMBER OF CCLUBNSIN THE
ARRAYS U AND V. SET NO TO N IF UITHU = .TRUE., 'l OTRBRUISB.
SIMILARLIY SET NV TC N OR 1.

UITHU, WITHV = LOGICAL VARIABLBS. IF WITHO = .TRUE., THEN
THE MATRIX U0 SUPPLIED IN TBE ARRAY U IS POSTMULTIPLIED
BY THE MATRIX P.
IF WITHV = ,TRUE., TRBN TBE MATBIXV SUEELIED IN TEE
ARRAY V IS POSTMULTIFLIED BY THE MATRIX Q.

0 BBAL NDIH #*# NU ARRAY.

v

REAL NDIH #®# NV ARRAY.

SUBBCUTINE DSVD IS A REAL VERSION OF A FORTRAN SUEROUTINE
BY BUSINGER AND GOLUB, ALGORITHM 358: SINGULAR VALUE
DECOMPOSITION OF A CCMPLEX MATRIX, COMM. ACM, V. 12,

NO. 10, PP. 564 = 365 (OCT. 1969).

WITH REVISIONS BY RC SINGLETON, HAY 1972.

DOUBLE PBECISION B,W,CS SN, F, X BPS, 6, Y
DCUBLE PRECISION H, Q

DOUBIE PRECISION DSQRT, DABS, DMAX1

INTEGER 1, J, K, L, L1

S(1) =0.D0

THIS CALCULATION OF EPS IS TAKEN FROH THE RIDDLE OF THE FIRST HALF
OF DSVD

BES = 0.DO
DO 50 K=1,N

50 EFS = DHAX1(EPS,CABS(S(K)) ¢+ CABS(T(K)))

100

230
280

TCLBEANCB FOR NEGLIGIBLE ELEMENTS
BPS = BPS #* ETA

THE REST OF THE PROGEAM IS TEE SECOND BALFOFDSVD

QR DIAGONALIZATICR
K =N

TEST FORSPLIT
L =K
I? (DABS(T(t)) <LE. EPS) GQTIC 290
L=1-1
IF (DABS(S(L)) .GT. BPS) GOTO 240

CANCELLATION

CS = 0.0DO

SB = 1.0D0

L1=1

L =1L+ 1

DO 280 I =1,K
P =SN#* T(])
T(I) = ¢ @ T (1)
IF (DABS(F) «LBe EPS) GOTO 290
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280

QO

290 W

Q0

«

350

QO

36C

370

S(X) =4

IF (WITHU) CALL DBOTAT (O(¢(1,LYV, B(1,1I), CS, SN, N)
CONTINUE

TEST FOR CCNVERGENCE

= S(K)
IF (L .EQ. K) GOTC 360

CEIGIN SHIFT

S(L)

S(K=1)

T (K~-1)

T (K)

((Y =@)* (Y + §) + (G - H)*(G ¢+ H)) / (2.0D0%H*Y)
DSQRT (F*F + 1.0D0)

F (? «1LT. OOODO) G = -G

X

Y
G
H
F
G
I

P = ( (X = %) * (X + W) + (Y » (F ¢+ G) - H) *H) /X
QF STEP
cs = 1.0D0
L1 =1L + 1
DC 350 I = 1L1,K
G = T(I)
Y = S(I)
H= SN * G
G =CS *G
W = DSQRT (H*H + F*F)
T (I-1) =W
cs = F /W
SN=H /¥
F = X*CS + G*SN
G = G¥CS - X*SN
R =Y * SN
Y=Y * CS
IP (WITHV) CALL DROTAT (V(1,I-1). v(,1), CS, SN, N)
¥ = DSQRT (HE*H + F*F)
s (I-1) =W
cs = *F /W
SW=®Hy,/W
P = CS®G + SN*Y
X = CS*Y = SN%*G
I? (WITHU) cALL DRCTAT (O(1,I-1), U(1,I), CS, SN, N)
CONTINUE
T (L) = 0.0DO
T(K) = F
- S (K) = X
GCTO 230
CCNVERGENCE

IF(W.GE. 0.0ODO)GOTO 380
S(K) = =%
IF (.ROT.WITHV) GOTO 380
DO 370 3 = 1,%

V(J,K) = -V (J,K)



USRS TR

380

390

400
410

420
430
450

K=K-=1

IF (K . NE.O)

GO TO 230

SORT SINGULAR VALUES
DO 450 K = 1,N

.1T. G) GOTO 390

IF (3 «EQ. K) GOTIO 450

6 = -1,0D0
DO 390 I = K,N
IF (S (I)

G = S (I)

J =1

CONTINUE
S(J) = S(K)
S(K) = G

IF (.NOT.WITHV) GOTO 410
DO 400 I = 1,N

0 = V(I,J)
v(I1,Jd) = V(I,K)
V{I,K) = Q

IF (.NOT.WITHU) GOTO 430
DC 420 I = 1,N

Q = U(I,J)
0(I,J) = U(I,K)
U(I,K) = Q
CORTINUE
CCNTINUE

RETUEN
END



SUBROUTINE DROTAT (X, Y, CS, SN, N)
INTEGER N
COUBLE PRECISICN CS, SN, X(N), YN)

(@]

DCUBLE PRECISICN XX

INTEGER J
C
C
DC 10 J = 1,N
XX = X(J)
X (J) = XX#CS + Y (J) #SN
10 Y(J) = Y(J)*CS = XX#*SN
RKETUEN

C
CHAXIRE AR RERIRS R SRR R AR AR K% END CF SVIBT $5580SR220 8RR RRRRKREEkER

C
CHIBIRRERRLRABBRAEIBAISR SR SRR E END OF SVRUTN *32305 88500k bR ReRRR R
C

E §D
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FFCPEF LENGTHS OF MATFICES :
D (C) ,X (M*Q) ,Y (N*()

CCOBLE PRECISICN D(20),X(8000),Y(20G0) ,EPS
INTEGER I,IECOLE,IORTHG,H,MMAX ,M,N,G,EINIT,C
EXTEENAL AX

CCMMCN A (3000) ,TINDEX (2000) ,JINDEX (2000) ,NCATA
LCUBLE PRECISIGN A

INTEGEE IINDEX,JINDEX,KDATA

INTECER K,KE1,KP5,KPJ,NCARD,RCATA

ICUT IS CUTPUT UNIT NUMBER
MCEEES IS MACHINE PRECISICN

INIEGER LOUT

DCUBLE PRECISICN ECHEPS
TATA LOUT/6/

CATA MCEEES/2.220~16/

NCARL IS NUMBEF OF LATA CARDS TO EE READ

FEEAD (5,5010) M ,N,NCARD
S01C FCEMAT (315)

K =0

CC1C I = 1,NCART
KE1 = K+1
KES = K+S

READ (5,5020) (IINDEX (L) ,JINDEX (I),A(1),L=KE1,KPS)
5020 FORMAT (5 (2I3,F10.6))
K = K+5
10 CCNTINUE

NLCATA IS NOUMBEF CF NCN=-ZEBC ELEMERTIS IN A
IINDEX = 0 SIGNIFIES END OP DATA INEUT
NLATA = K
K = K-5
DC 15 Jd =1,5

KEJ = K+J

IF (IINDEX(KPJ).G1.0) GO TO 15
NLATA = KFJ-1
GC TO 17

15 CCNTINUE

17 CCNTINUE

c =10
EINIT = 2
€ =9

MPAX = 2000
EES = 1.D=-3
=20
ICFTHG = 0



WFITE (LCUT,6010)M4,N,Q,FINIT,G,MNAX,EPS,E,IOFTHG

€010 FCEMAT (24H INITIAI EARAMETEES ... /%X,
1 4H # =,I4,5X,4H N =,I4,S5X,4H Q =,I4,5X,
2 84 PINIT =,I4,5Y,48 G =,I4/5X,7H MNAX =,15,5X,
3 6H EPS =, 1ED10.3,5X,4H B =,14,5X,98 I0RTHG =,I4)

CALL MAXVAL (M,N,C,PINIT,G,MNMAX,EPS,2X,H,L,X,Y,I0OBTHG,
1 LOUT,rCEREPS,IECCDE)

WFITE (LOUT,6020)
602C FCFHAT (35H **#** [USING ELOCK LANCZCS ###%3% )
WEITE (LOUT,6030) H,I1ECODE
6030 FCEMAT(8H ** B =,I4,12H #% TECODE =,Id)
IF (B.EC.0) STOP
WFITE (LOUT,6040) (L (I),I=1,H)
6040 FCEMAT (20H SINGULAR VALUES . «./5H #% ,€ (1PSD25.15/5X))
S1CP
ENT
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SUEECUTINE AX (M,
INTEGER M,N,P

N,P,U,V,CERIG)

CCUBLE PBECISICN U(FK,P),V(N,P)

LCCICAL OF1IG

AX COHFUTES X = A*Y IF CRIG IS TFUE, AND Y = A'%X

IF OFRIG IS FALSE

. X IS STORED IN U ANC Y IS STOFED

CCEHCN A (3000) ,TINDEX (3000) ,JINDEX (50C0),NCATA

[CUBLE PBECISICN

A

INXTEGER IINDEX,JINDEX,NCATA

INIEGER I,J,K,L

IF (.NCTI.0FIG) GO TO 100

CCMPUTE X = A#*Y

DC 2C K = 1,P

DC 10 L = 1,M
U(,kK) = 0.LO

10 CCNTINUE

2 0CCNTINDE

CC 40 L = 1,NCATA

I
Jd

IINDEX (1)
JINDEX (L)

DC 30 K = 1,P
= U(I,K) ¢+ A(L)*V (J,K)

U (I,K)
3C CCNTINUE

4 0CCNTINUE

FETUEN

CCFMPUTE Y = A'%*X

100 CCNTINUE

DC 120K = 1,P

DC 110L = 1,N
V(L,K) = 0.CO

110 CCNTINUB

120 CCNTINUE

CC 140L = 1,NILATA

IINDEX (1)
JINDEX (L)

I
J
DC 130 K = 1,
V (J,K) =
130 CCNTINUE

140 CCNTINUE

P
V(J,K) + A(L)*D(I,K)

IN V.



FETUEN
EML
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*
Gene H. Golub, Franklin T. Luk, and Michael L. Overton
Stanford University

Key Words and Phrases: Block Lanczos method, singular values, singular

vectors, large sparse matrix.

CR Categories: 5.14

Language: FORTRAN

Description: This algorithm is complement to [1l], where we describe the

theory and development of the block Lanczos algorithm.

References:
[1] Golub, G., Luk, F., and Over-ton, M., "A Block Lanczos Method to
Compute the Singular Values and Corresponding Singular Vectors

of a Matrix," submitted to ACM Trans. Math. Software.

Algorithm

*
Research supported in part under Army Research Grant DAHCO4-75-G-0195

and in part under National Science Foundation Grant MSCT75-13497-A0L.






