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Abstract.

Let G be any n-vertex planar graph. We prove that the vertices
of G can be partitioned into three sets A, B, C such that no edge
joins a vertex in A with a vertex in B , neither A nor B contains
more than 2n[5 vertices, and C contains no more than EJEJ; vertices.
We exhibit an algorithm which finds such a partition A, B, C in O(n)

time.
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1. Introduction.

A useful method for solving many kinds of combinatorial problems is
"divide-and-conquer" [1]. In this method the problem of interest is
divided into two or more smaller problems. The subproblems are solved
by applying the method recursively, and the subproblem solutions are
combined to give the solution to the original problem. Three things are
necessary for the success and efficiency of divide-and-conquer:

(1) the subproblems must be of the same type as the original and
independent of each other (in a suitable sense); (ii) the cost of
solving the original problem given the solutions to the subproblems must
be small; and (iii) the subproblems must be significantly smaller than
the original. One way to guarantee that the subproblems are small is to
make them all roughly the same size [1].

We wish to study general conditions under which the divide-and-conquer
approach is useful. Consider problems which are defined on graphs. Let
S be a class of graphsf/ closed under the subgraph relation (i.e., if

Gy € 8 and G, is a subgraph of G; , then G,e8 ). An f(n) -separator

theorem for S is a theorem of the following form:
There exist constants a <1 , B >0 suchthatif G is any
n-vertex graph in S , the vertices of G can be partitioned
into three sets A, B, C such that no edge joins a vertex in A
with a vertex in B , neither A nor B contains more than an

vertices, and C contains no more than @f (n) vertices.

If such a theorem holds for the class of graphs S , and if the appropriate
vertex partitions A, B, C can be found fast, then a n-umber of problems
defined on graphs in S can be solved efficiently using divide-and-conquer.
For a given graph G in S , the sets A and B define the subproblems.

The cost of combining the subproblem solutions is a function of the size

of C (and thus of f(n) ).

*
‘/ The appendix contains the graph-theoretic definitions used in this paper.




Previously known separator theorems inciude the following:

(A) Any n-vertex binary tree can be separated into two subtrees, each with
no more than 2n/3 vertices, by removing a single edge. For an
application of this theorem, see [13].

(B) Anyn-vertextree can be divided into two parts, each with no more
than 2n/§ vertices, by removing a single vertex.

(C) Agrid graph is any subgraph of the infinite two-dimensional square grid
illustrated in Figure 1. A &-separator theorem holds for the class
of grid graphs. For an application, see [5].

(D) A one-tape Turing machine graph [16] is a graph representing the

computation of a one-tape Turing machine. A &-separator theorem

holds for such graphs. For an application, see [15].
[Figure 1]

One might conjecture that the class of all suitably sparse graphs has
an f(n) -separator theorem for some f(n) = o(n) . However, the following

result of Erdds, Graham, and Szemerédi [4] shows that this is not the case,

Theorem C. For every ¢ > 0 there is a positive constant c = c(e) such
*

that almost au;J/ graphs G with n = (2+e)k vertices and ck edges

have the property that after the omission of any k vertices, a connected

component of at least k vertices remains.

*
X By "almost all" we mean that the fraction of graphs possessing the
property tends with increasing n to one.



Although sparsity by itself is not enough to give a useful separator
theorem, planarity is. In Section 2 of this paper we prove that a
Wn -separator theorem holds for all planar graphs. In Section 3 we provide
a linear-time algorithm for finding a vertex partition satisfying the
theorem. This algorithm and the divide-and-conquer approach combine to
give efficient algorithms for a wide range of problems on planar graphs.
Section 4 mentions some of these applications, which we shall discuss more

fully in a subsequent paper.



2. Separator Theorems.

To prove our results we need to use three facts about planarity.

Theorem 1 (Jordan Curve Theorem [6]). Let C be any closed curve in
the plane. Removal of C divides the plane into exactly two connected

regions, the "inside" and the "outside" of C .

Theorem 2 [7]. Any n-vertex planar graph with n > 3 contains no more

than 3n-6 edges.

Theorem 3 (Kuratowski's Theorem [12]). A graph is planar if and only if
it contains neither a complete graph on five vertices (Figure 2(a)) nor
a complete bipartite graph on two sets of three vertices (Figure 2 (b))

as a generalized subgraph.

[Figure 2]

From Kuratowski's Theorem we can easily obtain the following lemma

and its corollary.

Lemma 1. Let G be any planar graph. Shrinking any edge of G to a

single vertex preserves planarity.

Proof. Let G* be the shrunken graph, let (xl,xg) be the edge shrunk,
and let x be the vertex corresponding to Xy and X, in G* . If G*
©1s not planar then G* contains a Kuratowski graph as a generalized
subgraph. But this subgraph corresponds to a Kuratowski graph which is

a generalized subgraph of G . Figure 3 illustrates the possibilities. O

[Figure 3]



Corollary 1. Let G be any planar graph. Shrinking any connected

subgraph of G to a single vertex preserves planarity.

Proof. Immediate from Lemma 1 by induction on the number of vertices

in the subgraph to be shrunk. O

In some applications it is useful to have a result more general than
the kind of separator theorem described in the introduction, We shall
therefore consider planar graphs which have non-negative costs on the
vertices. We shall prove that any such graph can be separated into two
parts, each with cost no more than two-thirds of the total cost, by
removing O(J; ) vertices. The desired separator theorem is the special

case of equal-cost vertices.

Lemma 2. Let G be any planar graph with non-negative vertex costs
summing to no more than one. Suppose G has a spanning tree of radius r .
Then the vertices of G can be partitioned into three sets A, B, C ,

such that no edge joins a vertex in A with a vertex in B , neither A
nor B has total cost exceeding 2/5 , and C contains no more than

2r+1 vertices, one the root of the tree.

Proof, Assume no vertex has cost exceeding 1/3; otherwise the lemma is
true. Embed G in the plane. Make each face a triangle by adding a
suitable number of additional edges. Any non-tree edge (including each

of the added edges) forms a simple cycle with some of the tree edges. This
cycle is of length at most 2r+l if it contains the root of the tree, at
most 2r-1 otherwise. The cycle divides the plane (and the graph) into
two parts, the inside and the outside of the cycle. We claim that at

least one such cycle separates the graph so that neither the inside nor



the outside contains vertices whose total cosc exceeds 2/3 ,  This

proves the lemma.

Proof of claim. Let (x,2z) be the non-tree edge whose cycle minimizes

the maximum cost either inside or outside the cycle. Break ties by
choosing the non-tree edge whose cycle has the smallest number of faces
on the same side as the maximum cost. If ties remain, choose arbitrarily.
Suppose without loss of generality that the graph is embedded so
that the cost inside the (x,z) cycle is at least as great as the cost
outside the cycle. If the vertices inside the cycle have total cost not
exceeding 2/3 , the claim is true. Suppose the vertices inside the cycle
have total cost exceeding 2/3 . We show by case analysis that this
contradicts the choice of (x,z) . Consider the face which has (x,z)
as a boundary edge and lies inside the cycle. This face is a triangle;
let y be its third vertex. The properties of (x,y) and (y,z)
determine which of the following cases applies. Figure 4 illustrates the
cases.

[Figure 4]

(1) Both (%,y) Jand (y,z) lie on the cycle. Then the face (x,¥,2)
is the cycle, which is impossible since vertices lie inside the
cycle.

(2) One of (x,y) and (y,z) (say (x,y) ) lies on the cycle. Then
(y, z) 1is a non-tree edge defining a cycle which contains within it
the same vertices as the original cycle but one less face. This

contradicts the choice of (x,z) .



(3) Neither (x,y) nor (y,z) lies on the cycle.

(a) Both (x,y) and (y,z) are tree edges. This is impossible
since the tree itself contains no cycles.

(b) One of (xy) and (y,z) (say (X,¥y) ) is a tree edge. Then
(v z) 1is a non-tree edge defining a cycle which contains one
less vertex (namely y ) within it than the original cycle.

The inside of the (y,z) cycle contains no more cost and one
less face than the inside of the (%,z) cycle. Thus if the
cost inside the (y, z) cycle is greater than the cost outside
the cycle, (y,z) would have been chosen in place of (x,z) .

On the other hand, suppose the cost inside the (v, z)
cycle is no greater than the cost outside. The cost outside
the (y,2) cycle is equal to the cost outside the (x,z)
cycle plus the cost of y . Since both the cost outside the
(X, z) cycle and the cost of y are less than 1/5 , the cost
outside the (y,z) cycle is less than 2/3 , and (y,z) would
have been chosen in place of (x,z) .

(C) Neither (%,¥) nor (y,z) is a tree edge. Then each of (x,y)
and (y,z) defines a cycle, and every vertex inside the (x,2z)
cycle is either inside the (%,¥) cycle, inside the (y,z)
cycle, or on the boundary of both. Of the (x,y) and (y,z)
cycles, choose the one (say (%X,y) ) which has inside it more
total cost. The (x,y) cycle has no more cost and strictly
fewer faces inside it than the (%,z) cycle. Thus if the cost
inside the (%,¥) cycle is greater than the cost outside,

(x,¥) would have been chosen in place of (x,z) .



On the other hand, suppose the cost inside the (x, vy
cycle is no greater than the cost outside. Since the ingcide
of the (x%,z) cycle has cost exceeding 2/3 , the (x,v)
cycle and its inside together have cost exceeding 1/5 , and
the outside of the (x,y) cycle has cost less than 2/3 .

Thuc (x,y) would have been chosen in place of (x,z) .

Thus all cascs are impossible, and the (x,z) cycle satisfies the claim. [

Lemma 3. Let G be any n-vertex connected planar graph having non-negative
vertex costs summing to no more than one. Suppose that the vertices of

G arec partitioned into levels according to their distance from some

vertex v , and that L(/) denotes the number of vertices on level j ,

If r is the maximum distance of any vertex from v , let r+l be an
additional level containing no vertices. Given any two levels Il and 122

such that levels O through (£.,-1 have total cost not exceeding 2/5 and

1
levels 1{2*“1 through r+1 have total cost not exceeding 2/3 , it is
possible to find a partition A, B, C of the vertices of G such that
no edge joins a vertex in A with a vertex in B , neither A nor B

has total cost exceeding 2/5 , and C contains no more than

L(£y)+ L(4,) +max{0, 2(4,-£7-1)]} vertices.

let A be all vertices on levels O through /.-1 ,

- Proof'. It 4, > 1 1

1 2’
B all verticec on levels ll+l through r , and C all vertices on
level /zl . Then the lemma is true, Thus suppose zl < 122 . Delete the

vertices in levels {, and 12 from G . This separates the remaining

vertices of G into three parts (all of which may be empty): vertices

on levels O through f,-1 , vertices on levels fl+l through ¢,-1 ,



and vertices on levels 12+l and above. The only part which can have
cost exceeding 2/3 is the middle part,

If the middle part does not have cost exceeding 2/3 , let A be the
most costly part of the three, let B be the remaining two parts, and let
C be the set of vertices on levels 4 and 12 . Then the lemma is
true.

Suppose the middle part has cost exceeding 2/3 . Delete all vertices
on levels L, and above and shrink all vertices on levels 4 and below
to a single vertex of cost zero. These operations preserve planarity by
Corollary 1. The new graph has a spanning tree of radius 22—11-1 whose

root corresponds to vertices on levels fh and below in the original

graph.

Apply Lemma 2 to the new graph. Let A*, B*, C¥ be the resulting
vertex partition. Let A be the set among A* and B¥ having greater
cost, let C consist of the vertices on levels zl and 12 in the original
graph plus the vertices in C* minus the root of the tree, and let B
contain the remaining vertices in G . By Lemma 2, A has total cost
not exceeding 2/3 . But AUC* has total cost at least 1/3 , so B
also has total cost not exceeding 2/3 . Furthermore C contains no

more than L(47)+L(f,)+2(4s=-2-1) vertices. Thus the lemma is true. 0O
1 2 2" %1

Theorem k. Let G be any n-vertex planar graph having non-negative
vertex costs summing to no more than one. Then the vertices of G can
be partitioned into three sets A, B, C such that no edge joins a vertex
in A with a vertex in B , neither A nor B has total cost exceeding

2/3 , and C contains no more than 2A2J; vertices.

10



Proof. Assume G is connected. Partition the vertices into levels
according to their distance from some vertex v . Let L(1l) be the
number of vertices on level f . If r is the maximum distance of any
vertex from v , define additional levels -1 and r+l containing no
vertices.

Let /zl be the level such that the sum of costs in levels 0 through
gl—l is less than 1/2 , but the sum of costs in levels 0 through ¢
is at least 1/2 . (If no such I/

1

1 exists, the total cost of all vertices

is less than 1/2 , and B = C = § satisfies the theorem.) Let k be

the number of vertices on levels 0 through Jll . Find a level Jlo such

that £, < ¢; and |L(£O)| 2(y-15) < 24K . Find a level ¢, such
that £4+1 < £, and |L(s,)| +2(4y-27-1) < 24ln-k , If two such levels

exist, then by Lemma 3 the vertices of G can be partitioned into three
sets A, B, C such that no edge joins a vertex in A with a vertex in B
neither A nor C has cost exceeding 2/5 , and C contains no more than
2(WE + Wn-k) vertices. But 2(vVk + vn-k) < 2(«/1-1-/—2+ ’\/-I-l/—E) = 2/2vn .
Thus the theorem holds if suitable levels L and Ly exist.

Suppose a suitable level Ly does not exist. Then, for i < Ly
L(i) > 2V -2(45-1) . since L(0) =1, this means 1 > 2k -24 ,
and g+1/2 > k. Thus g, = |2,+1/2]> VK] , ana

!ll JZl
k = 2 L) z

i 24k -2(2y-1) > (Wk -2k ) (L +1)/2 >
0 . ey B

«/Tc-(l_«/.lz_]+l)> k . This is a contradiction. A similar contradiction
arises 1f a suitable level Iy does not exist. This completes the

proof for connected graphs.

11



Now suppose G is not connected. Let G-,Gé,...,Qk be the connected
components of G, with vertex sets Vi,Vg,.@.,Vk s respectively. If no
connected component has total vertex cost exceeding 1/3 ; let i be the
minimum index such that the total cost of-. VUV, U... UV, exceeds 1/3 .
Let A= V;UVy,U... UV; » let B = V;,; UV, ,U... UV , and let C = p.
Since i is mnimm and the cost of V. does not exceed 1/3 , the cost
of A does not exceed 2/3 . Thus the theorem is true.

If some connected component (say Gi) has total vertex cost between
1/3 and 2/3 , let A = Vi , B=V;U... UV; jUV;,qU..c UV , and
C=0 . Then the theorem is true.

Finally, if some connected component (say Gi) has total vertex
cost exceeding 2/3 » apply the above argument to Gi . Let A*, B¥, C¥
be the resulting partition. Let A be the set among A* and B¥ with
greater cost, let C = C* , and let B be the remaining vertices of G
Then A and B have cost not exceeding 2/3 and the theorem is true,

This proves the theorem for all planar graphs. In all cases the
separator C is either empty or contained in only one connected component

of G. 0O

Corollary 2 (&Y-Separator Theorem). Let G be any n-vertex planar
graph. The vertices of G can be partitioned into three sets A, B, C
such that no edge joins a vertex in A with a vertex in B , neither
A nor B contains more than 2n/3 vertices, and C contains no more

than 2V§MG; vertices.

Proof. Assign to each vertex of G a cost of 1/n . The corollary

follows from Theorem 4. O



It is natural to ask whether the constant factor of 2/3 in
Theorem 1 can be reduced to 1/2 if the constant factor of 2-\,5 is

allowed to increase. The answer is yes.

Corollary 3. Let G be any n-vertex planar graph having non-negative
vertex costs suming to no more than one. Then the vertices of G can
be partitioned into three sets A, B, C such that no edge joins a vertex in

A with a vertex in B , neither A nor B has total cost exceeding 1/2 ,
2\/5\/;
1-+v2/3

and C contains no more than vertices.

Proof. Let G = (V,E) be an n-vertex planar graph. We shall define

sequences of sets (4;) , (B;) » (cy) (Di) such  that

(i) A, » B, , C; , D; partition V .
(ii) No edge Jjoins A; with B, , A; with D, , or B, with D, .

1i11) The cost of A. 1s no greater an e cost of B. an e cos
h t of 5 i t th th t of 5 d th t

of B:.L is no greater than the cost of AiUCiUDi .

IN

ElDi—l| /3.

By =Cy =0, Dy = V. Then (i)-(iv) hold. If A s

Let AO 0
B;_1» Cy_y » D;_y have been defined and D; | # f , let G* be the
subgraph of G induced by the vertex set Di-l . Let A*¥ , BX¥ , C*¥ be
a vertex partition satisfying Corollary 2 on G* . Without loss of
generality, suppose A* has no more cost than B¥ . Let Ai be the set
among Ai-l U A¥ E Bi 1 with less cost, let Bi be the set among

A;_{UA* , B

1-1 with greater cost, let C.l= Ci_lUC* , and let Di = B¥ ,

, D' .

Then (i), (ii), (iii), and (iv) hold for A; 5 B, Cy 5

1

Let k be the largest index for which Ak ’ Bk ’ Ck ) Dk are defined.

Then D, = § . Let A = A ,B=3B ,C=C. By (i), A, B, C

13



partition V . By (ii), no edge joins a vertex in A with a vertex in B ,

By (iii), neither A nor B has cost exceeding 1/2 . By (iv), the total

number of vertices in C is bounded by 5 2\[5'\[; (2/5)1/2 = M . O
i=0 1-v2/3
Another natural question is whether graphs which are "almost" planar
have a A/n -separator theorem. The finite element method of numerical
analysis gives rise to one interesting class of almost-planar graphs.
We shall extend Theorem 4 to apply to such graphs.

A finite element graph is any graph formed from a planar embedding

of a planar graph by adding all possible diagonals to each face. (The
finite element graph has a clique corresponding to each face of the
embedded planar graph.) The embedded planar graph is called the skeleton
of the finite element graph and each of its faces is an element of the

finite element graph.

Theorem 5. Let G be an n-vertex finite element graph with non-negative
vertex costs summing to no more than one. Suppose no element of G has
more than k boundary vertices. Then the vertices of G can be

partitioned into three sets A, B, C such that no edge joins a vertex
‘in A with a vertex in B , neither A nor B has total cost exceeding

2/3 , and C contains no more than th/EJMG: vertices.

Proof., Let G* be the skeleton of G . Form G*¥* from G*¥ by inserting
one new vertex into each face of G*¥ containing four or more vertices

and connecting the new vertex to each vertex on the boundary of the face.
Then G** is planar. Apply Theorem 4% to G** . Let A**, B¥¥, C** be

the resulting vertex partition. This partition satisfies the theorem

except that certain edges in G but not in G** may join A** and B**

1h



These edges are diagonals of certain faces of G* ; call these bad faces.
Each bad face must contain one of the new vertices added to G¥ to form
G** , and this vertex must be in C**

Form G from C** by deleting all new vertices and adding to G** ,
for each bad face, either the set of vertices in A** on the boundary of
the bad face, or the set of vertices in B** on the boundary of the bad
face, whichever is smaller. Let A be theremainingold vertices in A**
and let B** be the remaining old vertices in B*¥* . Then no edge in G
joins A and B , neither A nor B contains more than 2n/5 vertices,
and C contains no more than EJE Lk/EJd;:;vertice& where a is
the number of faces of G* containing four or more vertices. Using

Euler's theorem, it is not hard to show that the number of faces of G*

containing four or more vertices is at most n-2 . Thus |C| < [_k/QJ“ﬁ;
and the theorem is true. [

Corollary L. Let G be any n-vertex finite element graph. Suppose no
element of G has more than k boundary vertices. The vertices of G

can be partitioned into three sets A, B, C such that no edge joins a
vertex in A with a vertex in B , neither A nor B contains more

than 2n/3 vertices, and C contains no more than th/QJJHverﬁces.

The last result of this section shows that Theorem L and its
corollaries are tight to within a constant factor; that is, if

f(n) = o(JE) , no f(n) -separator theorem holds for planar graphs.

15



Theorem 6. For any k , let G = (VL,E) be a kxk square grid graph
(a kxk square section of the infinite grid graph in Figure 1). Let
A be any subset of V such that an < |Al < n/2 , where n = K
and @ is a positive constant less than 1/2 . Then the number of

vertices in V-A adjacent to some vertex in A 1s at least

kemin{i/2 , W} .

Proof. Without loss of generality, suppose that the number r of rows
of G which contain vertices in A is no less than the number c of
columns of G which contain vertices in A . Then om < |A] < rc < r°
and r>WNQ k.

If r* is the number of rows of G which contain only vertices
in A, then kr* < |A\ < n/2 , and r* < k/2 . If r* =0, then
|al > r >AJa k. If r* # 0 , then r = k and |A| > r-r* = k-r*

>k/2 . O

It is an open problem to determine the smallest constant factor

which can replace 242 in Theorem k.

16



3. An Algorithm for Finding a Good Partition.

The proof of Theorem 4 leads to an algorithm for finding a vertex
partition satisfying the theorem. To make this algorithm efficient, we
need a good representation of a planar embedding of a graph. For this
purpose we use a list structure whose elements correspond to the edges
of the graph. Stored with each edge are its endpoints and four pointers,
designating the edges immediately clockwise and counter-clockwise around
each of the endpoints of the edge. Stored with each vertex is some

incident edge. Figure 5 gives an example of such a data structure.

[Figure5 ]
Partitioning Algorithm.
Step 1: Find a planar embedding of G and construct a representation

for it of the kind described above.
Time: O(n) , using the algorithm of [10].

Btep Find the connected components of G and determine the cost of
each one. If none has cost exceeding 2/5 , construct the
partition as described in the proof of Theorem 4. If some
component has cost exceeding 2/3 , 9o to Step 3.

Time: O(n) [9].

Step 3: Find a breadth-first spanning tree of the most costly component.
Compute the level of each vertex and the number of vertices
L(2) in each level 1 .

Time: 0O(n) .

17



Step k4:

Step 5:

Step 6:

Find the level zl such that the total cost of levels 0
through.zl—l does not exceed 1/2 , but the total cost
of levels O through f; does exceed 1/2 . Let k be

the number of vertices in levels 0 through £y -

Time: O(n)
Find the highest level £, < {; such that L(IO)+2(IZ1—£O) <
2(k . Find the lowest level i, > f;+1 such that

L(g.)+2(4,-2.-1) <2yn-k .
2 2 "1 -

Time: O(n) .
Delete all vertices on level 22 and above. Construct a new
vertex x to represent all vertices on levels 0 through Iy -
Construct a Boolean table with one entry per vertex. Initialize

to true the entry for each vertex on levels 0 through {, and

0

initialize to Egiﬁg‘the entry for each vertex on levels £O+l

through £,-1 . The vertices on levels 0 through lo

.

correspond to a subtree of the breadth-first spanning tree

generated in Step 3. scan the edges incident to this tree

clockwise around the tree. When scanning an edge (v,w) with

V in the tree, check the table entry for w . If it is true,
Lo

delete edge (v,w) . If it is false, change it to true,

L s i o A e as g o
construct an edge (x,w) , and delete edge (v,w) . The result
of this step is a planar representation of the shrunken graph
to which Lemma 2 is to be applied. See Figure 6.

Time: O(n) .

[Figure 6]

18



Step T:

Step 8:

Btep

Construct a breadth-first spanning tree rooted at x in the
new graph. (This can be done by modifying the breadth-first
spanning tree constructed in Step 3.) Record, for each vertex
v , the parent of v in the tree, and the total cost of all
descendants of v including v itself. Make all faces of the
new graph into triangles by scanning the boundary of each face
and adding (non-tree) edges as necessary.

Time: O(n) ,
Choose any non-tree edge (vi’wl) . Locate the corresponding
cycle by following parent pointers from vy and Wq oy Compute
the cost on each side of this cycle by scanning the tree edges
incident on either side of the cycle and summing their associated
costs. If (v,w) is a tree edge with v on the cycle and w
not on the cycle, the cost associated with (v,w) is the

descendant cost of w if v is the parent of w , and the

cost of all vertices minus the descendant cost of v if w is

the parent of v . Determine which side of the cycle has greater
cost and call it the "inside". See Figure T.
Time: O(n) .
[Figure 7]

Let (vi,wi) be the non--tree edge whose cycle is the current
candidate to complete the separator. If the cost inside the
cycle exceeds 2/5 » find a better cycle by the following method.
Locate the triangle (vi,y,wi) which has (vi,wi) as a
boundary edge and lies inside the (vi,w&) cycle. If either
(Vi:Y) or (Y,Wi) is a tree edge, let (vi+l’wi+l) be the

non-tree edge among (vi,y) and (y,wi) . Compute the cost

19



inside the (V3119 wi+l) cycle from the cost inside the (v.,w.)

771
cycle and the cost of Vi Vs and LA See Figure k.

If neither (vi,y) nor (y, Wi) is a tree edge, determine
the tree path from y to the GG!WE) cycle by following parent
pointers from y . Let z be the vertex on the (VY Wi) cycle
reached during this search. Compute the total cost of all
vertices except z on this tree path. Scan the tree edges
inside the (y,wi) cycle, alternately scanning an edge in one
cycle and an edge in the other cycle. Stop scanning when all
edges inside one of the cycles have been scanned. Compute the
cost inside this cycle by summing the associated costs of all
scanned edges. Use this cost, the cost inside the (vi,wi)
cycle, and the cost on the tree path from y to z to compute
the cost inside the other cycle. Let (V?fﬂi“urﬂg be the edge
among (vf y ) and.(y,wi) whose cycle has more cost inside it.

Repeat Step 9 until finding a cycle whose inside has cost
not exceeding 2/3 .

Time: O(n) (see proof below).

Step 10: Use the cycle found in Step 9 and the levels found in Step 4
to construct a satisfactory vertex partition as described in
the proof of Lemma 3. Extend this partition from the connected
component chosen in Step 2 to the entire graph as described in

the proof of Theorem 4.

Time: O(n) .

This completes our presentation of the algorithm. All steps except
Step 9 obviously run in O(n) time. We urge readers to fill in the
details of this algorithm; we content ourselves here with proving that

Step 9 requires O(n) time.
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Proof of Step 9 Time Bound. Each iteration of Step 9 deletes at least

one face from the inside of the current cycle. Thus Step 9 terminates
after 0O(n) iterations. The total running time of one iteration of
Step 9 is 0(1l) plus time proportional to the length of the tree path
from y to z plus time proportional to the number of edges scanned
inside the (Vi,y) and.(y,wi) cycles. Each vertex on the tree path
from y to z (except =z ) is inside the current cycle but on the
boundary or outside of all subsequent cycles. For every two edges
scanned during an iteration of Step 9, at least one edge is inside the
current cycle but outside all subsequent cycles. It follows that the
total time spent traversing tree paths and scanning edges, during all
iterations of Etep 9 is 0(n) . Thus the total time spent in Step 9

is O(n) . [

By making minor modifications to this algorithm, one can construct
an O(n) -time algorithm to find a vertex partition satisfying Theorem 5,
and O(n) -time algorithms to find vertex partitions satisfying

Corollary 2 and Corollary L,
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4. Applications.
The separator theorem proved in Section 2 allows us to obtain many
new complexity results since it opens the way for efficient application
of divide-and-conquer on planar graphs. We mention a few such applications

here; we shall present the details in a subsequent paper.

Generalized nested dissection. Any system of linear equations whose

sparsity structure corresponds to a planar or finite element graph can
be solved in o(n3/2) time and O(n log n) space. This result

generalizes the nested dissection method of George [5].

Pebbling. Any n-vertex planar acyclic directed graph with maximum
in-degree k can he pebbled using O(JE +k log n) pebbles. See

[8,16] for a description of the pebble game.

.The Post Office Problem. Knuth's "post office" problem [11l] can be

solved in 0((log n)e) time and O(n) space. See [3,17] for previous

results.

Data Structure Embedding Problems. Any planar data structure can be

efficiently embedded into a balanced binary tree. See [2,14] for a

—-description of the problem and some related results.

Lower Bounds on Boolean Circuits. Any planar circuit for computing

2
Boolean convolution contains at least cn gates for some positive

constant c¢
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Appendix:  Graph-Theoretic Definitions

A grarh G = (V,E) consists of a set V of vertices and a set E
of edges. Each edge is an unordered pair (v,w) of distinct vertices.

If (v,w) is an edge, V and w are adjacent and (v,w) is incident

to both v.and w . A path of g t h k with endpoints v, w is a
sequence of vertices v = VorVs Vs oo sV = W such that (vi_l,vi) is
an edge for 1 < i < k . If all the vertices Vo VyreeesVy g are distinct,

the path is simple. If v = w, the path is a cycle. The distance from
v to w is the length of the shortest path from v to w . (The
distance is infinite if v and w are not joined by a path.)The
level of a vertex v in a graph G with respect to a fixed root r is
the distance from r to v

If G = (Vl’ EE‘) and G, = (VE’ E2) are graphs, Gy 1s a subgraph

of G

5 if Vl o V2 and El cCE . G is a generalized subgraph of G2

2 1
if Vlc_: V2 and there is a mapping f from E

1 into the set of paths of

G, such that, for each edge (v,w)eE f((v,w)) has endpoints v and

2
v , and no two paths f((vl,wl)) and f((vz,we)) share a vertex except

l 2

possibly an endpoint of both paths. If G = (V},E)) is a graph and
Vy € V,, the graph G; = (v ,El) where E; = E,N {(v,w) | V:W€Vl} is
the subgraph of G2 induced by the vertex set Vl If Gl = (v ,El) is

" a subgraph of G2 = (V2, EE) , then shrinking Gl to a single vertex in G2

means forming a new graph Gé from G2 by deleting from GE all vertices
in Vl and all their incident edges, adding a new vertex x to G, , and
adding a new edge (x,w) to G2 for each edge (v,w) €E2 such that

veVy and wévy .
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A graph is connected if any two vertices in it are joined by a path.

The connected components of a graph are its maximal connected subgraphs.

A clique is a graph such that any two vertices are joined by an edge.

A tree is a connected graph containing no cycles. We shall generally

assume that a tree has a distinguished vertex, called a root. If T is
a trec with root r and v is on the (unique) simple path from r to w ,
V is an ancestor of w and w is a descendant of v . If in addition
(v;w) isanedgeof T, then v is the parent of w and W is a child

of v . The radius of a tree is the maximum distance of any vertex from

the root. A spanning tree T of a graph G is a subgraph of G which

is a tree and which contains all tae vertices of G . T 1is a breadth-first

spanning tree with respect to a root r if, for any vertex v , the
distance from r to v in T is equal to the distance from r to
v in G.

A graph G = (V,E) 1is planar if there is a one-to-one map £y
from v into points in the plane and a map f2 from E into simple
curves in the plane such that, for each edge (v,w) €E ,fe((v,w))
has endpoints fl(v) and fE(W) , and no two curves fg((vl’wl>) '

fe((vp,wg)) share a point except possibly a common endpoint. Such a

pair of maps fl ’ f2 is a planar embedding of G . The connected

planar regions formed when the ranges of fl and f2 are deleted from
tne plans are called the faces of the embedding. Each face is bounded
by a curve corresponding to a cycle of G , called the boundary of the
face. We shall sometimes not distinguish between a face and its

boundary. A diagonal of a face is an edge (v,w) such that v and w

are non-adjacent vertices on the boundary of the face.
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Figure 1. Infinite two-dimensional square grid.
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Figure 2. Kuratowski subgraphs.
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Figure 3. Shrinking an edge to form a Kuratowski graph.
Original graph must contain a Kuratowski graph

as a generalized subgraph.
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Figure L, Cases for proof of Lemma 2, Solid edges are tree

edges; dotted edges are non-tree edges.
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Figure 5. Representation of an embedded planar graph.

(c = clockwise, cc = counter-clockwise.)
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Figure 6. Shrinking a subtree of a planar graph.
(a) Original graph. Subtree denoted by Wevttvbuws |
(b) Edges scanned around subtree. Those forming loops
and multiple edges in shrunken graph are crossed out.

(c) Shrunken graph. Vertex 0 replaces sub-tree.
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Figure 7.

root

Cycle constructed in Step 8. All vertices have cost
Numbers on vertices are descendant costs. The total cost
inside the cycle is .48 , outside the cycle is .34 , and

on the cycle is .18 .
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