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Abstract.

Let G be any n-vertex planar graph. We prove that the vertices

of G can be partitioned into three sets A, B, C such that no edge

joins a vertex in A with a vertex in B , neither A nor B contains

more than 2n/3 vertices, and C contains no more than onfonn vertices.

We exhibit an algorithm which finds such a partition A, B, C in O(n)

Lime.
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1. Introduction.

A useful method for solving many kinds of combinatorial problems 1s

"divide-and-conquer" [1]. In this method the problem of interest 1s

divided into two or more smaller problems. The subproblems are solved

by applying the method recursively, and the subproblem solutions are

combined to give the solution to the original problem. Three things are

necessary for the success and efficiency of divide-and-conquer:

(1) the subproblems must be of the same type as the original and

independent of each other (in a suitable sense); (11) the cost of

solving the original problem given the solutions to the subproblems must

be small; and (i111) the subproblems must be significantly smaller than

the original. One way to guarantee that the subproblems are small is to

make them all roughly the same size [1].

We wish to study general conditions under which the divide-and-conquer

approach 1s useful. Consider problems which are defined on graphs. Let

S be a class of graphs closed under the subgraph relation (i.e., 1if

Gy € 8 and G, is a subgraph of G; , then G,€ 8 Jo An f(n) -separator

theorem for S 1s a theorem of the following form:

There exist constants a <1 , B >0 suchthatif G 1s any

n-vertex graph in S , the vertices of G can be partitioned

into three sets A, B, C such that no edge joins a vertex in A

with a vertexin B , neither A nor B contains more than on

vertices, and C contains no more than Qf (n) vertices.

If such a theorem holds for the class of graphs S , and 1f the appropriate

vertex partitions A, B, C can be found fast, then a n-umber of problems

defined on graphs in S can be solved efficiently using divide-and-conquer.

For a given graph G in S , the sets A and B define the subproblems.

The cost of combining the subproblem solutions 1s a function of the size )

of C (and thus of f(n) ).

*/ The appendix contains the graph-theoretic definitions used in this paper.
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Previously known separator theorems inciude the following:

(A) Any n-vertex binary tree can be separated into two subtrees, each with

no more than 2n/3 vertices, by removing a single edge. For an

application of this theorem, see [13].

(B) Anyn-vertextree can be divided into two parts, each with no more

than 2n/3 vertices, by removing a single vertex.

(C) Agrid graph is any subgraph of the infinite two-dimensional square grid

illustrated in Figure 1. A &-separator theorem holds for the class

of grid graphs. For an application, see [5].

(D) A one-tape Turing machine graph [16] is a graph representing the

computation of a one-tape Turing machine. A &—-separator theorem

holds for such graphs. For an application, see [15].

[Figure 1]

One might conjecture that the class of all suitably sparse graphs has

an f(n) —-separator theorem for some f(n) = o(n) . However, the following

result of Erdds, Graham, and Szemerédi [4] shows that this is not the case,

Theorem C. For every ¢ > 0 there is a positive constant c = c¢(e) such
X*

that almost 211% graphs G with n = (2+¢)k vertices and ck edges
have the property that after the omission of any k vertices, a connected

component of at least Kk vertices remains.

%*

/ By "almost all" we mean that the fraction of graphs possessing the
property tends with increasing n to one.
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Although sparsity by itself 1s not enough to give a useful separator

theorem, planarity is. In Section 2 of this paper we prove that a

Jn -separator theorem holds for all planar graphs. In Section 3 we provide

a linear-time algorithm for finding a vertex partition satisfying the

theorem. This algorithm and the divide-and-conquer approach combine to

give efficient algorithms for a wide range of problems on planar graphs.

Section 4 mentions some of these applications, which we shall discuss more

fully 1n a subsequent paper.
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2. Separator Theorems.

To prove our results we need to use three facts about planarity.

Theorem 1 (Jordan Curve Theorem [6]). Let C be any closed curve in

the plane. Removal of C divides the plane into exactly two connected

regions, the "inside" and the "outside" of C .

Theorem 2 [7]. Any n-vertex planar graph with n > 3 contalns no more

than 3n-6 edges.

Theorem 3 (Kuratowski'sTheorem [12]). A graph is planar if and only if

1t contains neither a complete graph on five vertices (Figure 2(a)) nor

a complete bipartite graph on two sets of three vertices (Figure 2(b))

as a generalized subgraph.

[Figure 2]

From Kuratowski's Theorem we can easily obtain the following lemma

and its corollary.

Lemma 1. Let G be any planar graph. Shrinking any edge of G to a

single vertex preserves planarity.

Proof. Let G* be the shrunken graph, let (x;,%,) be the edge shrunk,

and let x be the vertex corresponding to Xq and X, in G* . If G*

- 1s not planar then G* contains a Kuratowski graph as a generalized

subgraph. But this subgraph corresponds to a Kuratowski graph which is

a generalized subgraph of G . Figure 3 illustrates the possibilities.OJ

[Figure 3]
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Corollary 1. Let G be any planar graph. Shrinking any connected

subgraph of G to a single vertex preserves planarity.

Proof. Immediate from Lemma 1 by induction on the number of vertices

in the subgraph to be shrunk. [0

In some applications it 1s useful to have a result more general than

the kind of separator theorem described in the introduction, We shall

therefore consider planar graphs which have non-negative costs on the

vertices. We shall prove that any such graph can be separated into two

parts, each with cost no more than two-thirds of the total cost, by

removing o(x/n ) vertices. The desired separator theorem is the special

case of equal-cost vertices.

Lemma 2. Let G be any planar graph with non-negative vertex costs

summingto no more than one. Suppose G has a spanning tree of radius r .

Then the vertices of G can be partitioned into three sets A, B, C ,

such that no edge joins a vertex in A with a vertex in B , neither A

nor B has total cost exceeding 2/3 , and C contains no more than

2r+1 vertices, one the rootof the tree.

Proof, Assume no vertex has cost exceeding 1/3; otherwise the lemma is

true. Embed G in the plane. Make each face a triangle by adding a

suitable number of additional edges. Any non-tree edge (including each

of the added edges) forms a simple cycle with some of the tree edges. This

cycle is of length at most 2r+l if it contains the root of the tree, at

most 2r-1 otherwise. The cycle divides the plane (and the graph) into

two parts, the inside and the outside of the cycle. We claim that at

least one such cycle separates the graph so that neither the inside nor



B

the outside contains vertices whose total cost exceeds 2/3 , This

proves the lemma.

Proof of claim. Let (x,2z)be the non-tree edge whose cycle minimizes

the maximum cost either inside or outside the cycle. Break ties by

choosing the non-tree edge whose cycle has the smallest number of faces

on the same side as the maximum cost. If ties remain, choose arbitrarily.

Suppose without loss of generality that the graph is embedded so

that the cost inside the (x,2z) cycle is at least as great as the cost

outside the cycle. If the vertices inside the cycle have total cost not

exceeding 2/3 , the claim is true. Suppose the vertices inside the cycle

have total cost exceeding2/3 . We show by case analysis that this

contradicts the choice of (x,z) . Consider the face which has (x,z)

as a boundary edge and lies inside the cycle. This face is a triangle;

let y be its third vertex. The properties of (x,y) and (y,2z)

determine which of the following cases applies. Figure 4 illustrates the

cases.

[Figure 4]

(1) Both (x,y) land (y,2) lie on the cycle. Then the face (X,y,2)

1s the cycle, which 1s impossible since vertices lie inside the

cycle.

(2) One of (x,y) and (y,z) (say (x,y)) lies on the cycle. Then

(y,z) 1s a non-tree edge defining a cycle which contains within it

the same vertices as the original cycle but one less face. This

contradicts the choice of (x,z) .
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(3) Neither (x,y) nor (y,z) lies on the cycle.

(a) Both (x,y) and (y,2z) are tree edges. This is impossible

since the tree itself contains no cycles.

(b) One of (x,y) and (y,z) (say (x,y) ) is a tree edge. Then

(y, z) 1s a non-tree edge defining a cycle which contains one

less vertex (namely y ) within it than the original cycle.

The inside of the (y,2) cycle contains no more cost and one

less face than the inside of the (%,2z) cycle. Thus if the

cost inside the (y,z) cycle is greater than the cost outside

the cycle, (y,z) would have been chosen in place of (x,z) .

On the other hand, suppose the cost inside the (v, 2)

cycle 1s no greater than the cost outside. The cost outside

the (¥,2) cycle is equal to the cost outside the (x,z)

cycle plus the cost of y . Since both the cost outside the

(x,2) cycle and the cost of y are less than 1/3 , the cost

outside the (y,z) cycle is less than 2/3 , and (y,z) would

have been chosen in place of (x,z) .

(C) Neither (x,y) nor (y,z) is a tree edge. Then each of (x,¥)

and (y,z) defines a cycle, and every vertex inside the (x,2)

cycle 1s either inside the (x,y) cycle, inside the (y,z)

cycle, or on the boundary of both. Of the (x,y) and (y,z)

cycles, choose the one (say (X,y) ) which has inside it more

total cost. The (x,y) cycle has no more cost and strictly

fewer faces inside it than the (%,2z) cycle. Thus if the cost

inside the (X,¥) cycle is greater than the cost outside,

(x,y) would have been chosen in place of (x,z) .
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On the other hand, suppose the cost inside the (x, vy)

cycle is no greater than the cost outside. Since the ingcide

of the (x,z) cycle has cost exceeding 2/3 , the (x,y)

cycle and its inside together have cost exceeding 1/3 , and

the outside of the (x,y) cycle has cost less than 2/3 ,

Thus (x,y) would have been chosen in place of (x,z) .

Thus all cases are impossible, and the (X,z) cycle satisfies the claim.

Lemma 3. Let G be any n-vertex connected planar graph having non-negative

vertex costs summing to no more than one. Suppose that the vertices of

G are partitioned into levels according to their distance from come

vertex v , and that L(/) denotes the number of vertices on level jg ,

If r is the maximum distance of any vertex from v , let r+1 be an

additional level containing no vertices. Given any two levels 2 and Ls

such that levels O through f,-1 have total cost not exceeding 2/3 and

levels f,*1 through r+l have total cost not exceeding 2/3 , it is

possible to find a partition A, B, C of the vertices of G such that

no edge joins a vertex in A with a vertex in B , neither A nor B

has total cost exceeding 2/3 , and C contains no more than

L(2y) + L(4,) + max{0, 2(2,-27-1)] vertices,

~ Proof, If al > fs , let A be all vertices on levels OO through {1-1 ,

B all verticec on levels f1+1 through r , and C all vertices on

level ly Then the lemma is true. Thus suppose 4 < {sy . Delete the

: vertices in levels Iq and {Ls from G . This separates the remaining

vertices of G into three parts (all of which may be empty): vertices

on levels O through 4-1 , vertices on levels f4+1 through Iy-1 )

9
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and vertices on levels ytd and above. The only part which can have

cost exceeding 2/3 is the middle part,

If the middle part does not have cost exceeding 2/3 , let A be the

most costly part of the three, let B be the remaining two parts, and let

C be the set of vertices on levels fH and 12 . Then the lemma is
true.

Suppose the middle part has cost exceeding 2/3 . Delete all vertices

on levels Ls and above and shrink all vertices on levels 4 and below

to a single vertex of cost zero. These operations preserve planarity by

Corollary 1. The new graph has a spanning tree of radius {1-1 whose

root corresponds to vertices on levels 4 and below 1n the original

graph. h

Apply Lemma 2 to the new graph. Let A*, B*, C¥ be the resulting

vertex partition. Let A be the set among A* and B¥ having greater

cost, let C consist of the vertices on levels 2 and L in the original

graph plus the vertices in C* minus the root of the tree, and let B

contain the remaining vertices in G . By Lemma 2, A has total cost

not exceeding 2/3 . But AUC¥* has total cost at least 1/3 , so B

also has total cost not exceeding 2/3 . Furthermore C contains no

more than L(27) + L(4o) + 2(2p-44-1) vertices. Thus the lemma is true. 0

Theorem 4. Let G be any n-vertex planar graph having non-negative

vertex costs summing to no more than one. Then the vertices of G can

be partitioned into three sets A, B, C such that no edge joins a vertex

in A with a vertex in B , neither A nor B has total cost exceeding

2/3 , and C contains no more than 2/240 vertices.

10
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Proof. Assume G 1s connected. Partition the vertices into levels

according to their distance from some vertex v . Let L(1l) be the

number of vertices on level [ . If r 1s the maximum distance of any

vertex from v , define additional levels -1 and r+l1 containing no

vertices. )

Let 14 be the level such that the sum of costs in levels 0 through

t1-1 is less than 1/2 , but the sum of costs in levels 0 through ty

is at least 1/2 . (If no such [; exists, the total cost of all vertices

is less than 1/2 , and B = C = § satisfies the theorem.) Let k be

the number of vertices on levels 0 through 2 . Find a level {y such

that f4 < #2; and |L(24) | +2(4y-14) < oak. Find a level 2, such
that £tl < 1, and |L(2,) | +2(8,-1,-1) < 24/n-k , If two such levels
exist, then by Lemma 3 the vertices of G can be partitioned into three

sets A, B, C such that no edge joins a vertex in A with a vertex in B

neither A nor C has cost exceeding 2/3 , and C contains no more than

> (Wk + nek) vertices. But o> (Wk + \n-k) < 2(vn/2 + Vn/2) = 2\/24/n .

Thus the theorem holds 1f suitable levels Is and I; exist.

Suppose a suitable level ly does not exist. Then, for i < Ly

L(i) > ok -2(24-1) . Since L(0) = 1, this means 1 > 2\k - 21, p

and 1, +1/2 > Vi Thus ly = 2, + 1/21 > Wk] , and
2 2

x= Tui) > IT _ avk-2(s-1) > Wk -2p/k)) (EHD)/2 >
i=0 i=1-1k]

Ji (VE +1) > k . This is a contradiction. A similar contradiction

arises 1f a suitable level ls does not exist. This completes the

proof for connected graphs.

11
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Now suppose G 1s not connected. Let Gyr Gos eees Ge be the connected

components of G, with vertex sets Vis Vo .ey Vie » respectively. If no

connected component has total vertex cost exceeding 1/3 ; let 1 be the

minimum index such that the total cost of-. V, UV, Ue... uv, exceeds 1/3 .

Let A= Vy UV,U... UV; 5 let B = V;, UV,,U...UV , and let C = PD.

Since 1 1s mnimm and the cost of Vs does not exceed 1/3 , the cost

of A does not exceed 2/3 . Thus the theorem is true.

If some connected component (say Gs ) has total vertex cost between

1/3 and 2/3 , let A = Vi , B = ViU... UV; UV; qU-.. UV, , and

C= @ . Then the theorem is true.

Finally, if some connected component (say Gy ) has total vertex

cost exceeding 2/3 » apply the above argument to Gs . Let A*, BX, CX

be the resulting partition. Let A be the set among A* and B¥ with

greater cost, let C = C* , and let B be the remaining vertices of G .

Then A and B have cost not exceeding 2/3 and the theorem is true,

This proves the theorem for all planar graphs. In all cases the

separator C 1s elther empty or contained 1n only one connected component

of G. [0

Corollary 2 (&Y-Separator Theorem). Let G be any n-vertex planar

graph. The vertices of G can be partitioned into three sets A, B, C

such that no edge joins a vertex in A with a vertex in B , neither

A nor B contains more than 2n/3 vertices, and C contains no more

than on24n vertices.

Proof. Assign to each vertex of G a cost of 1/n . The corollary

follows from Theorem 4. O

12



It is natural to ask whether the constant factor of 2/3 in

Theorem 1 can be reduced to 1/2 if the constant factor of 2) 1s

allowed to increase. The answer 1s yes.

Corollary 3. Let G be any n-vertex planar graph having non-negative

vertex costs summing to no more than one. Then the vertices of G can

be partitioned into three sets A, B, C such that no edge joins a vertex in

A with a vertex in B , neither A nor B has total cost exceeding 1/2 ,
Jo

and C contains no more than _2V2in_ vertices.
1-42/3

Proof. Let G = (V,E) be an n-vertex planar graph. We shall define

sequences of sets (45) , (B;) , (cy) , (D;) such that

(i) A. » B, , C, , D; partition V .

(ii) No edge joins A; with B, , A; with D;, , or B; with D;

(iii) The cost of A, 1s no greater than the cost of B, and the cost

of B. is no greater than the cost of A, UC, UD: .
/

(iv) |D, | < 21D; _4| /3

Let Ay = By = Cy = 0, Dy = V . Then (i)-(iv) hold. If Aq

Bi17 Cy_y » D;_; have been defined and D; , # p , let G* be the

. subgraph of G induced by the vertex set Di: 1 . Let A¥ , B¥ , C¥ be

a vertex partition satisfying Corollary 2 on G*¥ . Without loss of

generality, suppose A¥ has no more cost than B* . Let Ay be the set

among As 4 U A* , B: 1 with less cost, let B, be the set among
x 1 — —

A; {UA » B. 4 with greater cost, let Co. = C._qUCx , and let D. = B¥ .,

Then (i), (ii), (iii), and (iv) hold for A. » By , Ci, Ds

Let k be the largest index for which Ay ’ Bi ’ Cyc ’ D. are defined.

Then D,. = § . Let A =A >B=B ,C=C_. By (i), A, B,C

15
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partition V . By (11), no edge joins a vertex in A with a vertex 1n B ,

By (iii), neither A nor B has cost exceeding 1/2 . By (iv), the total

number of vertices in C is bounded by 5 on24n (2/3)1/2 = _24/24n. .
i=0 1-2/3

Another natural question 1s whether graphs which are "almost" planar

have a Jn —-separator theorem. The finite element method of numerical

analysis gives rise to one interesting class of almost-planar graphs.

We shall extend Theorem 4% to apply to such graphs.

A finite element graph 1s any graph formed from a planar embedding

of a planar graph by adding all possible diagonals to each face. (The

finite element graph has a clique corresponding to each face of the

embedded planar graph.) The embedded planar graph 1s called the skeleton

of the finite element graph and each of its faces 1s an element of the

finite element graph.

Theorem 5. Let G be an n-vertex finite element graph with non-negative

vertex costs summing to no more than one. Suppose no element of G has

more than k boundary vertices. Then the vertices of G can be

partitioned into three sets A, B, C such that no edge joins a vertex

‘in A with a vertex in B , neither A nor B has total cost exceeding

2/3 , and C contains no more than kh k/2 Wn vertices.

Proof. Let G* be the skeleton of G . Form G*¥ from G*¥ by inserting

one new vertex into each face of G*¥ containing four or more vertices

and connecting the new vertex to each vertex on the boundary of the face.

Then G** is planar. Apply Theorem4 to G** . Let A**, B¥¥, C** be |

the resulting vertex partition. This partition satisfies the theorem

except that certain edges in G but not in G** may join A** and B** .

1h
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These edges are diagonals of certain faces of G¥; call these bad faces.

Each bad face must contain one of the new vertices added to G* to form

G** , and this vertex must be 1n C**

Form G from C** by deleting all new vertices and adding to G*¥ ,

for each bad face, either the set of vertices in A** on the boundary of

the bad face, or the set of vertices in B** on the boundary of the bad

face, whichever is smaller. Let A be theremainingold vertices in A**

and let B** be the remaining old vertices in B** . Then no edge in G

joinsA and B , neither A nor B contains more than 2n/3 vertices,

and C contains no more than ono | k/2 jy/n+a vertices, where a 1s

the number of faces of G* containing four or more vertices. Using

Euler's theorem, 1t 1s not hard to show that the number of faces of G¥

containing four or more vertices is at most n-2 . Thus |C]| < Lk/2 | +/n ’

and the theorem is true. [([O

Corollary k. Let G be any n-vertex finite element graph. Suppose no

element of G has more than k boundary vertices. The vertices of G

can be partitioned into three sets A, B, C such that no edge joins a

vertex in A with a vertex in B , neither A nor B contains more

than 2n/3 vertices, and C contains no more than k| k/2 Wn vertices.

The last result of this section shows that Theorem 4 and its

. corollaries are tight to within a constant factor; that is, if

f(n) = o(\n) , no f(n) -separator theorem holds for planar graphs.

15



Theorem 6. For any k , let G = (V,E) be a kxk square grid graph

(a kxk square section of the infinite grid graph in Figure 1). Let

A be any subset of V such that an < |A! < n/2 , where n = K°

and @ is a positive constant less than 1/2 . Then the number of

vertices in V-A adjacent to some vertex in A 1s at least

kemin{i/2 , Way .

Proof. Without loss of generality, suppose that the number r of rows

of G which contain vertices in A is no less than the number c¢ of

columns of G which contain vertices in A . Then an < | Al < rc < r®

and r> Ja k .

If r*¥ is the number of rows of G which contain only vertices

in A, then kr* < | Al < n/2 , and r*¥ < k/2 . If I* = 0 , then

| A] > r > Jak If r* 4 0 , then r = k and |A| > r-r* = k-r*

>k/2. O

It 1s an open problem to determine the smallest constant factor

which can replace 24/2 in Theorem bh.

16
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3 An Algorithm for Finding a Good Partition.

The proof of Theorem 4 leads to an algorithm for finding a vertex

partition satisfying the theorem. To make this algorithm efficient, we

need a good representation of a planar embedding of a graph. For this

purpose we use a list structure whose elements correspond to the edges

of the graph. Stored with each edge are its endpoints and four pointers,

designating the edges immediately clockwise and counter-clockwise around

each of the endpoints of the edge. Stored with each vertex is some

incident edge. Figure > gives an example of such a data structure.

[Figure5|

Partitioning Algorithm.

Step 1: Find a planar embedding of G and construct a representation

for it of the kind described above.

| Time: O(n) , using the algorithm of [10].

Btep Find the connected components of G and determine the cost of

each one. If none has cost exceeding 2/3 , construct the

partition as described in the proof of Theorem 4. If some

component has cost exceeding 2/3 , go to Step 3.

Time: O(n) [9].

Step 3: Find a breadth-first spanning tree of the most costly component.

Compute the level of each vertex and the number of vertices

L(Z) in each level 1 .

17
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Step 4: Find the level £; such that the total cost of levels 0

through £,-1 does not exceed 1/2, but the total cost

of levels 0 through £; does exceed 1/2 . Let k be

the number of vertices 1n levels 0 through fy .

Time: O(n) .

Step 5: Find the highest level {, < {; such that L(2y) + 204-2) <

ek . Find the lowest level i, > I;+1 such that
L(g.) +2(8.-2,-1) <24n-k2 2 1 —

Time: O(n) |.

Step 6: Delete all vertices on level t, and above. Construct a new

vertex x to represent all vertices on levels 0 through Ly .

Construct a Boolean table with one entry per vertex. Initialize

to true the entry for each vertex on levels 0 through ly anda a as

initialize to false the entry for each vertex on levels Iytl

through f,-1 . The vertices on levels 0 through £

correspond to asubtree of the breadth-first spanning tree

generated in Step 3. scan the edges incident to this tree

clockwise around the tree. When scanningan edge (v,w) with

V in the tree, check the table entry for w . If it 1s true,
aaa

delete edge (v,w) . If it is false, change it to true,

construct an edge (x,w) , and delete edge (v,w) . The result

of this step 1s a planar representation of the shrunken graph

to which Lemma 2 is to be applied. See Figure 6.

Time: O(n)

[Figure 6]

18
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Step T: Construct a breadth-first spanning tree rooted at x in the

new graph. (This can be done by modifying the breadth-first

spanning tree constructed in Step 3.) Record, for each vertex

v , the parent of v in the tree, and the total cost of all

descendants of v including v itself. Make all faces of the

new graph into triangles by scanning the boundary of each face

and adding (non-tree) edges as necessary.

Time: O(n),

Step 8: Choose any non-tree edge (vy,wp) . Locate the corresponding

cycle by following parent pointers from vq and Woo Compute

the cost on each side of this cycle by scanning the tree edges

incident on either side of the cycle and summing their associated

costs. If (v,w) is a tree edge with v on the cycle and w

not on the cycle, the cost associated with (v,w) is the

descendant cost of w 1f v 1s the parent of w , and the

cost of all vertices minus the descendant cost of v 1f w 1s

the parent of v. Determine which side of the cycle has greater

cost and call 1t the "inside". See Figure 7.

Time: O(n) .

[Figure 7]

Btep Let (visw,) be the non--tree edge whose cycle 1s the current

candidate to complete the separator. If the cost inside the

cycle exceeds 2/3 , find a better cycle by the following method.

Locate the triangle (viv w,) which has (v5; ) as a

boundary edge and lies inside the (vs w.) cycle. If either

(v55¥) or (v5 ws) is a tree edge, let (Vii1o Wig) be the

non-tree edge among (vi5¥) and (vs ws) . Compute the cost

19
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inside the  (v;,45 Weg) cycle from the cost inside the (vs 595)

cycle and the cost of wv, , y , and Ww. . See Figure L,

If neither (v5 ¥) nor (y, Ww, ) is a tree edge, determine

the tree path from y to the (vir w;) cycle by following parent

pointers from y . Let z be the vertex on the (vis wy) cycle

reached during this search. Compute the total cost of all

vertices except z on this tree path. Scan the tree edges

inside the (vy Ww.) cycle, alternately scanning an edge in one

cycle and an edge in the other cycle. Stop scanning when all

edges inside one of the cycles have been scanned. Compute the

cost 1nside this cycle by summing the associated costs of all

scanned edges. Use this cost, the cost inside the (vss wy )

cycle, and the cost on the tree path from y to z to compute

the cost inside the other cycle. Let (Vi a Ws pn) be the edge

among (v. vy ) and (vw) whose cycle has more cost inside it.

Repeat Step 9 until finding a cycle whose inside has cost

not exceeding 2/3 .

Time: O(n) (see proof below).

Step 10: Use the cycle found in Step 9 and the levels found in Step 4

to construct a satisfactory vertex partition as described in

) the proof of Lemma 5. Extend this partition from the connected

component chosen in Step 2 to the entire graph as described in

the proof of Theorem 4.

Line: O(n).

This completes our presentation of the algorithm. All steps except

Step 9 obviously run in O(n) time. We urge readers to fill in the

details of this algorithm; we content ourselves here with proving that

Step 9 requires O(n) time.
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Proof of Step 9 Time Bound. Each iteration of Step 9 deletes at least

one face from the inside of the current cycle. Thus Step 9 terminates

after O(n) iterations. The total running time of one iteration of

Step 9 is O0(1l) plus time proportional to the length of the tree path

from y to z plus time proportional to the number of edges scanned

inside the (vi ¥) and (y,w,) cycles. Each vertex on the tree path
from y to z (except =z ) is inside the current cycle but on the

boundary or outside of all subsequent cycles. For every two edges

scanned during an iteration of Step9, at least one edge 1s 1nside the

current cycle but outside all subsequent cycles. It follows that the

total time spent traversing tree paths and scanning edges, during all

iterations of Step 9 is O(n) . Thus the total time spent in Step 9

is O(n) . [I

| By making minor modifications to this algorithm, one can construct

an O(n) -time algorithm to find a vertex partition satisfying Theorem 5,

and O(n) -time algorithms to find vertex partitions satisfying

Corollary 2 and Corollary Lk,
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4, Applications.

The separator theorem proved in Section 2 allows us to obtain many

new complexity results since 1t opens the way for efficient application

of divide-and-conquer on planar graphs. We mention a few such applications

here; we shall present the details in a subsequent paper.

Generalized nested dissection. Any system of linear equations whose

sparsity structure corresponds to a planar or finite element graph can

be solved in 02/2) time and O(n log n) space. This result

generalizes the nested dissection method of George [5].

Pebbling. Any n-vertex planar acyclic directed graph with maximum

in-degree k can be pebbled using o(vn +k log n) pebbles. See

[8,16] for a description of the pebble game.

. The Post Office Problem. Knuth's "post office" problem [11] can be

2
solved in 0O((log n) ) time and O(n) space. See [3,17] for previous

results.

Data Structure Embedding Problems. Any planar data structure can be

efficiently embedded into a balanced binary tree. See [2,14] for a

—description of the problem and some related results.

Lower Bounds on Boolean Circuits. Any planar circuit for computing

2

Boolean convolution contains at least cen gates for some positive

constant c .
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Appendix: Graph-Theoretic Definitions

A grarh G = (V,E) consists of a set V of vertices and a set E

of edges. Each edge is an unordered pair (v,w) of distinct vertices.

If (v,w) is an edge, V and w are adjacent and (v,w) is incident

to both v and w . Apath of g t h k with endpoints v, w is a

sequence of vertices v = v,;Vy,V,,...5V, =W such that (vi 1575) is

an edge for 1 <1 <k . If all the vertices Vopr Vyseees Vig are distinct,

the path 1s simple. If v = w , the path is a cycle. The distance from

v to w is the length of the shortest path from v to w . (The

distance is infinite if v and w are not joined by a path. )The

level of a vertex v 1n a graph G with respect to a fixed root r is

the distance from r to v .

If Gy = (Vy E,) and Gy = (V,; E,) are graphs, Gy 1s a subgraph

of Gy 1f Vy C Vs and Ey Cc E, _ Gy 1s a generalized subgraph of G,

if Vy C Vs and there 1s a mapping f from By into the set of paths of

G, such that, for each edge (v,w) SS f((v,w)) has endpoints v and

v , and no two paths £((vy,wy)) and £((vys ws) share a vertex except

possibly an endpoint of both paths. If G = (V1, Eq) 1s a graph and

: V; © V,, the graph Gy = (V3, Eq) where E; = E,N {(vyw) | v,weV,} is

the subgraph of G, induced by the vertex set V; If G = (Vy; E,) is

* a subgraph of G, = (Vo) E,) , then shrinking G, to_a single vertex in G,

means forming a new graph Gy from Gy, by deleting from Gy, all vertices

in Vy and all thelr incident edges, adding a new vertex x to G, , and

adding a new edge (x,w) to G, for each edge (Vv, w) ¢E, such that

veV; and wiv; .

25



i

A graph 1s connected 1f any two vertices 1n 1t are joined by a path.

The connected components of a graph are its maximal connected subgraphs.

A clique 1s a graph such that any two vertices are joined by an edge.

A tree 1s a connected graph containing nocycles. We shall generally

assume that a tree has a distinguished vertex, called a root. If T 1s

a trec with root r and v is on the (unique) simple path from r to w ,

V is an ancestor of w and w is a descendant of v . If in addition

(vow) isanedgeof T, then v is the parent of w and W is a child

of v . The radius of a tree is the maximum distance of any vertex from

the root. A spanning tree T of a graph G is a subgraph of G which

is a tree and waich contains all tae vertices of G . T 1s a breadth-first

spanning tree with respect to a root r if, for any vertex v , the

distance from r to v in T is equal to the distance from r to

v in G.

A graph G = (V,E) is planar if there is a one-to-one map £]

from v 1nto points in the plane and a map £, from E into simple

curves in the plane such that, for each edge (v,w) €E > £,((v, w))

has endpoints £,(v) and £,(w) , and no two curves £,((vywy)) ,

£, (vor Ws) share a point except possibly a common endpoint. Such a

palr of maps fy , £5 1s a planar embedding of G . The connected

planar regions formed when the ranges of fy and tf, are deleted from

tne plans are called the facesof the embedding. Each face 1s bounded

by a curve corresponding to a cycle of G , called the boundary of the

face. We shall sometimes not distinguish between a face and its

boundary. A diagonal of a face is an edge (v,w) such that v and w

are non-adjacent vertices on the boundary of the face.
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Figure 1. Infinite two-dimensional square grid.

(a) (b)

Figure 2. Kuratowski subgraphs.

a b
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Figure 3. Shrinking an edge to form a Kuratowski graph.

Original graph must contain a Kuratowski graph

as a generalized subgraph.
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Figure 4, Cases for proof of Lemma 2, Solid edges are tree

edges; dotted edges are non-tree edges.
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Figure 5. Representation of an embedded planar graph.

(c = clockwise, cc = counter-clockwise.)
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Figure 6, Shrinking a subtree of a planar graph.

(a) Original graph. Subtree denoted by Wovtarbows

(b) Edges scanned around subtree. Those forming loops

and multiple edges in shrunken graph are crossed out.

(c) Shrunken graph. Vertex 0 replaces sub-tree.
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Figure 7. Cycle constructed in Step 8. All vertices have cost n°

Numbers on vertices are descendant costs. mune total cost

inside the cycle 1s 48 , outside the cycle is ,3L4 , and
on the cycle is ,18 .
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