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ABSTRACT
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ABSTRACT

Su/X and SU/P are knowledge-based programs which
emsploy pattern-invoked inference methods. Both
tasks are concerned with the interpretation of
large quantities of digitised signali data. The
task of SU/X 1s to understand “"continuous signais®™,
that l!s, signals vhich persiast over time. The task

of Su/p ls to interpret protein X-ray
crystallographic data. Some features of the design
are: (1) 1incremental interpretation of data

smploying many different pattern-invoked sources of
knowiedge, (2) production rule representation of
knowledge, including high level strategy knowledge,
(3) "opportunistic® hypothesis formation using both
data-driven and model-driven techniques within a
general hypothesiszse-and-test paradigm; and (&)
su'tilevel representation of the solution
hypothesis.

This wvork was supported by the Department of Defense,
Adv:nced Research Project Agency, ARPA Contract
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This paper was written for the Workshop on Pattern-Directed
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1 INTRODUCTION AND SUMMARY

This paper describes a design of knowviedge-based
programa which employ pattern-invoked inference wmethods.
Domain and strategy knowledge are represented as production
rules to dbe invoked when appropriate situations arise in
the problem-solving process. The same basic design
philosophy is utilized in two task domains, both of which
are concerned with the interpretation of large voiumes of
digitized physica) signais. The tasks are (1) the
understanding of continuous signals produced by objects and
(2) the interpretation of protein x-ray crystaliographic
data in terms of a three-dimensional modei of the moiecule.
The programs associated with these tasks are cajiied SU/X
and SU/P, respectively.

Some of the design concepts in SU/X and SU/P are
rooted in the HEARSAY-II program (4, 6-7]. Concepts which
nave been borroved are: (a) a giobal data base, caiied the
blackboard, for the Iintegration of knowledge sources and
(b) a muitilevel representation of the soiution hypotheses.
These bdasic concepts are integrated into a system design
that emphasizes: (a) the representation of knowledge in
production ruies, (b)) the representation of the contro.
structure as sources of Ynowledge related to
probiem-soiving methods and strategies, (c) the capabiiity
of the program to explain its reasoning atepa, and (d) a
level of genera ity of the basic design concepts leading to
application in different tasks or domains.

1.1 Major Themes

The "understanding® of physical signals often requires
using information not present in the signal data
themseives. Examples of such inforsation are: (a) in the
continuous-signal probdies, the characteristics of the
signal-producing objects, (b) in the protein-modeling
problem, the amino acid sequence and the stereochemical and
protein cheaistry constralints. Each such source of
knowledge may at any time provide an inference which serves
as 2 basis for another knoviedge asource to make yet another
inference, and s0 on, until all relevant information has
been used and appropriate inferences have deen drawn.

Cssential to the operation of the progranm is its podel
of the developing hypothesis. The sodes is a
symbol-structure that is Dduilt and wmaintained by the
program, contains wvhat is known about the unfoiding
sitwation, and thus provides a context for the ongoing
anaiysis. The wuodel is used a: a reference for the
interpretation of nev information, assimliation of new
events, and generation of expectations concerning future
events. It ia the program’s “cognitive fiywheel™.

-3-



SU/X and SU/P are "knowiedge-based™ programs (footnote
1). Thelir powers are largely derived from the knowlelge
given to thee by "expert®™ human anajysts and/or "expert"
algorithms. Major probiems in the design of such systems
show up vividiy in these two programs:

a. Knowledge acgquisition, This is a task of
systematically ferreting out the ({(nformal and
- semiformal knowledge held by the expert. The
breadth and sheer volume Oof an expert’s knowledge
is what makes his analysis general and powerfui;
yet, obtaining that knowiedge, which he often does
not realize he 13 using, is a palinstaking and
inexact process.

De Knowiedge representation. Having acquired the
knowledge 1in its "human® form, we must represent

it in a form that is convenient and efficient for
machine processing and at the same time reasonably
*"natural” (bear in wmind that the knowledge rarely
boils down merely tc a set of numbers) -- a
difficult and time-consuming task.

c. Integration of wmultipie, diverse sources of
knowliedge, Program and information structures
must be created Dby which the various kinds of
knowledge can "work together®™ toc form a coherent
and accurate nypothesis. W¥hen the knowledge
exists at many different levels of abdstraction and
aggregation (say, from alpha-hellx aubstructure
all the way down to electron density values 1n an
elec*ron density map), one has 3 wmajor <Jesiga
problen,

1.2 Major Terms and Concepts

The task of "understanding” the data is accomplished
at various levels of anaiysis. These levels are exhibited
in Figure 1.1 for the continuous-signal interpretation
probiem and in Figure 1.2 for the protein-modeling probiem.
The wmost integrated -- the highest -- levels for the two
problems invoive the description of the signali-producing
objectas, and the three-dimensional model of the protein.
The lowest ievels, that is, the levels ciosest to the data,
consist of the line features derived from the signal dats,
and the atoms and their coordinates in three space.

At each 1level, the  units of analysis are the
hypothesis elements. These are symboi-structures tha*
susmarlze what the available evidence indicates in terms
that are seaningful at that particular level.
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Bridging between the levels of analysis are gources of
knowledge (4,73, A knowiedge source (KS) is capable of
putting forth the inference that some hypothesis elements
present at its “input®™® Jlevel imply some particular
hypothesis elements(s) at 4its "output"™ Jlevel. A source of
knowledge contains not only the knowledge necessary for
making its own specialized inferences, bdut also the
knowledge necessary for checking the inferences made DY
other sources of knowvledge. The inferences wvhich draw
together hypothesis elements at one level into a hypothesis
element at a higher level (or which operate in the other
direction) are repredented symbolically as links between
leveis (See figures 1.1 and 1.2). The resulting network,
rooted in the input data and {integrated at the highest
level into a description of the hypothesized probles
solution, is calied the current best hypothesis, or the
hypothesis for short., Each source of knowiedge holds a
considerable body of specialized information that a human
expert would generally consider "ordinary®". Sosmetimes this
is relatively "hard® knowledge or “textdook™ knowledge.
Also represented are the heuristics, that is, "rules of
good guessing®™ a human expert develops in his area of
expertise. These "judgmental® rules are generally
accompanied by estimates from human experts concerning the
weight that each rule should carry in the analysis.

Each KS is composed of "pileces® of knowledge. By a
plece of knowledge we mean a production rule, that is, an
IF-THEN type of implication formula. The *1r* side, also
. called the situation side, specifies a set of conditions or
patterns for the applicabdility of the particular rule. The
®THEN® side, also called the action side, symbdolizes the
implications to be drawvn (more precisely, various
processing events to be caused) if the "IF" conditions are

met. (Refer to [2]) fer an excellent overview of production
rules.)

The knowledge of how to perfocrm, that is, how to use
the avalladbie knowledge sources, is another kind of
knowledge that experts posaess. This type of knowledge 1o
also represented in the systea in the fora of
control/strategy production rules, which promote

lexibility n specifying and sodifying strategies of
analysis.

Hypothesis formaticn {s an "opportuniatic®™ process.
Both data-driven and model-driven hypothesis formation
techniques are used within the general hypothesisze-and-tept
paradigs. One of the tasks of the control/strategy
knowvliedge source is to deteraine the applicadility of these

methods to difierent situations. The unit of processing
activity is the gvent. Events symbolizse such things as
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"what inferences to make", "what syabol-structures to
modify"”, "what to look for in the data®", and so on. The
basic control loop for these event-driven programs, is one
in which Jlists of events (events sometimes include new
data) and the set of controi/strategy rules are
periodically scanned to determine the "next thing to do"
(footnote 2).

In the foliowing sections we discuss issues related to
the representation of the rypothesis, the knowledge
sources, and the control structure. Before continuing,
hovwever, we will briefly describe the two tasks that have
been implemented and 1list some guldelines for choosing
applications in which this type of aystem organization may
be useful.

2 THE TASKS
2.1 Interpretation of Continuous-Signals (SVU/X)

The signal-understanding programs perforas analiysis of
data derived from a digitized plot of continuous signals,
the interpretation of which is to a consideradle degree a
function of time. Examples of data having this
characteristic are electromagnetic and acoustic signals,
and signals from hospital patients monitored in an
intensive care unit. The “front-end® signal-processing
hardvare and software detect energy “"packets®™ appearing at
various spectral frequencies, and follow these packets in
time. The current system is designed to analyze a digitiszed
description of these data. At the end of each time period,
say, & fev m@minutes, *he user 1is given an integrated
analysis of the interpreted objects within its data
purview, (5]

2.2 Interpretation of Three-Dimensional Signal Data:
Protein Crystalliography (S0/P)

The task of this program is to infer th-es-dimensional
models of protein moiescules. The model 1s derived froa an
interpretation of the electron density map of the
crystalliised protein. The density map is, in turn, derived
from x-ray diffraction data. These data typically yleld a
poorly resolved distribution of the electron density within
the protein moiecule, and the location of individual atoamss
are generailly not identifiabie. Traditionsliy, the protein
crystalliographer embodies his interpretation of the
electron density map in a "ball and stick® molecular model
fashioned from metal parts. These parts are strung together
to build a model which conforms to the electron density map
and is aleso consistent with protein chesistry and
stereochemical constraints. The current systes tries to
sisulate husans wvho build models incresentally from the
sest "obvious® regions of the electrom density map. The
ineremental, opportunistic strategies used DLy our prograns



to form hypotheses closely resemble the probiem-solving
methods used by human model builders. Refer to (3] for
more complete description of thea problem.

3 SUITABLE APPLICATION AREAS

Building a signal interpretation systea within the
program organization summarized above can best be described
as *opportunistic”® ansiysis, Bita and pieces of
information must be used as opportunity arises to bduild
slowly a coherent picture of the worid -- much like putting
a Jigsaw puzzie together. Some thoughts on the
characteristics of problems suited to this approach are
listed bdeliow:

1. Large amounts of signal data need to be ana
Examples include the interpretation of apeech and
other acoustic signals, X-ray and other spectral
data, radar signais, photographic dats, etc. (A
variation involves understanding a large voliuse of
syabolic data; for example, the wsaintenance of a
glodal plotboard of air traffic based on messages
fros various air traffic control centers.)

2. Formal or informal interpretive theories exist,
iy informai interpretive theory we mean lore or

heuristics which human experts dring to Bear in
order to "understand®™ the data. These inexact and
inforzmal rules are incorporate as KSs in
conjunction with more formal knowledge about the
dosalin.

3. Task domain ocan be decomposed hierarchically in a
"natuyrs} way® N n many cases the domain can
be decomposed into a series of data reduction
levels, where various interpretive theories (in
the sense described adbove) exist for transforasing
data froa one level to another.

8, vOpportunistic® strategies must be used. That 1is,
there s RO computa y legal move
generator® that defines the space of sdolutions in
which pruning and steering take place. Rather, by
reasoning about bits and pieces of available
evidence, one can incresentally generate partial
nypothesss that will eventualy lead to a wmore
glodal solution hypothesis.

3.1 Data-Driven vs MNodei-Driven Hypothesis Formatlion
Methods

Me have combined data- and model-driven methods of

hypothesis foramstion in the desiga of SU/X and SU/P. By
"data-driven” we mean "inferred from the imput data®. By
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"mpodel-driven” we mean "baased on expectation"™ where the
expectation ls inferred fros knowledge adout the domain.
Por example, a hypothesis generated by a kS which infers an
amino acid sidechain from the electron density data ls a
data-driven hypothesia. On the other hand, a hypothesis
about the existence of an amino-acid sidechain that |is
deduced from topological knowledge of the protein 1is a
model-based hypothesis. In the former case, the data is
used as the basis for signal anaiysis; in the latter case,
the primary data is used solely to verify the expectation.

There are no hard-and-fast criterlia for deter~mining
which of the two hypothesis formation methods is wmore
appropriate for a particular signal-processing task. The
choice depends, to a large extent, on the nature of the KSs
vhich are avallable and on the povwer of the analysis model
avajilable. Our experience points strongly towvard the use
of a combination of these techniques; some KS's are
strongly data dependent while others are strongly model
dependent. In the continuous-signal interpretation
progras, for example, the majority of the inferences are
data-driven, with occasional model-driven inferences. The
converse 1s true in the protein model-duilding wich piaces
more emphasis on model-driven hypothesis generation. The
following are guidelines we have used in deteraining which
of the two methoda is more appropriate:

1. Signal to Noise Ratio. Prodlems which have
inherentliy low S/W ratios are better suited to
solutions by model-driven programs; the converse
is true for problems with high 3S/¥ ratios.

2. Avallabilit A w®model, sometinmes
referred to as "the semantics of the task domain",
can be avaiisble in various forss: (1) iaput to
an abstract jevel of the hypothesis structure, (2)
general Kknowledge about the task domain, or (3)
specific knowledge about the particular task. In
the protein crystallography prodleam, for instance,
the amino acid sequence (the topology of the
protein) serves as a model for gulding the
interpretation of the primary data. However, in
the continuous-signal interpretation probles, the
mode]l is drawvn fros general knowviedge adout the
signal sources and from other relevant external
sources of inforsation that serve to define the
context. If a reliable model is avaijable, the
dats-interpretation KSs can be used as verifiers
rather than gensrators of inferences; this reduces
the coamputational bdurden on the signal-processing
programs at the "front end".




4 TRR NATURE OF THE HYPOTHESIS

In order to integrate s diveraity of knowiedge adbout
the task domain, the dosain is dscoaposed hierarchically
into levels of anslysls. We will describe briefly sose of
the basic ideas on the nature of the hypothesls (footnote
3).

A signal (interpretation problem can be viewed as 2a
prodles of “transforming® signals representing an object
into a syabolic description of the ojbect on a wmore
adbstract level. Ve use the word "transforsation™ to mean a
shift fros one representation of an object (digitized
signals) to another (symdoilic description) using any formal
or informal rules,

The dats structure hierarchy reflects =a plan for the
utiligzation of the various data transformation KSs which
contribute to the total data interpretation process.
Generally these transforsational steps invoive dats
reductions of the primary data in a stepwise fashion from
the detailed to the more abdbstract description of the
object. However, we have found that some of the most useful
¥Ss generate inferences spanning several levels. for
example, in the protein-modeling probdbles, a human can "sse"
in the electron density data, helical substructures without
knoving oOr observing the details of each atos placement.
This kind of knowledge is usually very specific to
situations; human experts know, and wuse, many of these
specinlized, informal bdodies of knowliedgs.

The data structure of the solution hypothesis is a
linked network of nodes, where e¢ach node (hypothesis
element) represents a meaningful aggregation of lower level
hypothesis esilements. » link Dbetween any two hypothesis
elements represents a result of sose action by a KS and
indirectly points to the KS itself. A link has associated
with it directional properties. In general, the direction
indicates one of the the following: (1) A link which goes
fros & aore abstract to a less abstract level of the
hypothesis 1is referred to as an Pexpectation-1ink®. The
node at the end of an expectationm-lirk is s model-dased
hgpothesis element, and the liank represents "support fros
adbove® (i.e. the reason for proposing the hypothesis
element 1is to be found at the higher level). (2) A 1ink
which goes in the opposite direction, froa lower levels of
abstraction to higher, is referred to as a
speduction-iink®. The node at the end of a reduction-iink
is a data-based Hypothesis clement, and the link represent



"gsupport from bejow" (i.e. the reason for proposing the
hypothesls element is to be found at & lower levedr),
(These directions correspond loosely to “top-down"™ and
*bottom-up" path generation.) Examples of KSs and
hypothesis elements generated by the KSs are shown ({n
Figure 2.

The protein-modeiing probiem posed some difficuities
in the deaign of its hypothesls structure. These can be
attributed to several factors. PFirat, the decomposition of
the solution space (the rhree-dimensional wmodel) and the
abstractions of the primary data (electron density) do not
result in one consistent data hierarchy but result in two
hierarchies. Second, the two hierarchies overliap
semantically at some levels but are not representationally
compatible. Third, very 1llittle is known about mapping the
object between the two spaces. As indicated In Pigure 3,
hovever, the two hierarchies, with a network of links, can
be merged into a single representation of the problenm
space. This representation indicates that hypotheasis need
not be represented as a strict hierarchy; it can be
represented as a more general network of related elements.
(Refer to [3) for more detalied description.)

S THE NATURE OF THE “"CONTROL"®

A systea’s performance depends both on the competence
of each KS and on the utilization of these KSs within the
context of the goails of the task domain.

There are two seperate but equally imporiant issues
involved in a design of a knowledge-based performance
program: (1) the avaliability and the quality of the
specialist KSs that cooperate in the bduilding of a
hypothesis. (These KSs define the hierarchy of
abstractions of the hypothesis.) (2) the optimal
utjlizartion of these KSs. If we view the KkSs as resources
that are avallabie for solving a prodles, then the optimal
resource allocation strategy is deterained by the quality,
the size, and the cost of the KSs, and the state of the
current hypothesized solution. The control structure must
be sensitive to, and de adie to adjust to, the numerous
possible solution states which arise 1in the course of
solving a prodienm. ¥Within this viewpoint, then, what is
comsonly called the “control structure* becomes another
totally domain-dependent knowiedge source. The notlon of a
“hierarchic control® is an attempt to come to grips with
the issues of resource allocation and "control® strategles.

«10-



5.1 Hierarchically Organized Control Structures

In a "hierarchically organiszed control structure,”
problem-solving activities themselves form a hierarchy of
knowledge necessary for solving the problem. On the jowest
level 1s a set of knowledge sources the tasks of which are
to make the primary ilnferences In the hypothesis network
previousiy described. We r:fer to this level of knowledge
as the “hypothesis-formatic.." level. At the next level are
"meta® KSs that have knowledge about the capabdilities of
the KSs in the hypothesis-formation level. ¥ea refer to
this level as the "KS-activation® level; a KS on this level
represents a policy on knowliedge utilization, At the
highest level is the Strategy-KS which analyzes the quality
of the current solution to deterasine what region of the
data to anlyze next; 1t also determines what kind of
strategy to use.

Another way to describe this organization is as
follows: The KSs are organized hierarchically -- much like
the management structure in a corporate environament -- in
teras of the scope of their knowledge and the apecificity
of their functions.

Example: A KS capadle of deciding whether to look for
helices or to continue 1looking for a large amino acld
sidechain would possess & higher level of knowledge
than a kS whose funection is to icfer the placement of
atoss of some amino acid sidechain. It 1is a higher
level because its area of expertise (choosing the bdest
problem solving strategy for a given situation), is
broader in scope and narrower in the knowledge of the
processing apecifics. It does not have, and it need
not have, any knowledge of the details of the
execution of the prodles-solving strategy it chooses.

This control hierarchy should be clearly distinguished
from the hierarchy of hypothesis levels. The hypothesis
hierarchy represents an g priori plan for the asolution
presented by & "natural®™ decomposition of the anaiysis
probles. The control hierarchy, on the other hand,
represents the organization of the probles-solving
activities necessary for the formation of the hypothesis.
Figure 8 shows a general relationship bdetween the
organization of the hypothesis structure and the
organization of the control structure. Table 1! summarizes
the scope of KSs on each level of control hierarchy.
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5.2 Control Structure Implementation

All Iinformation needed by the different KSs s
contained 1in a giobal data structure called the
"blackboard®. The "biackboard®™ concept has its originm in
MEARSAY [4) and is extended in SU/X and SU/P. The contents
of the blackboard in SU/X and SU/P constiat of:

1. The current best hypothesis (CBH)

2. The Event-iist: A list of changes in the
hypothesis which have not yet Dbeen procesaed by
any KS. An event also contains the name of the KS
and the identifier of the rule which caused the
change.

3. The Event: A glodbal variable containing the
currently "active event®, that ls, an event which
is currently being processed Dby some KS. The
Event aiso represents the current focus of
attention.

4, The Prodlems-liist: A list of unresolved probleas
encountered by various K3s. Such prodlemas range
from expected data not yet availadle, to
detectabdle "errors® in the program (e.g.
insufficient knowledge).

S. The Event history list: The Event, together with
its Predeceasor and Successor events foras a causal
chain of reasoning. In the continuos-signal
understanding prodbliem, the Event history list is
sosetimes used by KS to analyze series of events
which occurred over a period of time. More
generally, 1t serves as a data base from which
reasoning traces are gensrated and "how" and "why"
questions answered. (See reference [1,8] for some
exasples of this type of traces.)

'6.2.1 Hypothesis Pormation Level

At the lowest levei Of cOAtrol -- the sost data
specific level -- are the inference-generating KSs, or the
specialist-KSs. Each specialist-KS has the task of
creating or modifying hypothesis elements, evalusting
inferences generated by other specialist-KSs, and
cataloging of missing evidence which are essential for a KS
to generate meaningful inferences.
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Each speclaiist-KS has access to the blackdboard. 1Its
focus of attention 1is that portion of the blackboard
containing the latest change(s) wmade to the current
hypothesis. Although a KS has access to the entire
hypothesis, it noraally "understands® only the descriptors
contained in two levels, its input levei and its output
level.,

INFERENCE-GENERATION, Inference-generation is the

creatlon or modification of hypothesis eiements; it is the
"hypothesize® part of the hypothealize-and-test paradigs.
An inference-generator may use a data-driven or
model-driven hypothesis formation method. As mentloned
earlier, a KS is repreasented as a set of production rules
consisting of "situation-action® pairs . The "situatjion"”
for the inference-generstor is a particular state of those
hypothesis elements containing data relevant to the KS. A
satch Detween a description in the hypothesis element and
the situation-side of a rule indicates that a KS can make
some conjectures regarding that hypotheals elemert. VWhen
the appropriate K is 1invoked, the “action™ part willi
transfora the current hypothesis to a new current
hypothesis either by adding newv links to the structure,
creating new hypothesis elements, or changing the attribute
values of a hypothesis element (see Table 1. for a
sumsmary).

INFERENCE-EVALUATION, Inference evalvation involves
the appraisal of inferences generated by other KSs; it is
the "test®™ part of the hypothesize-snd-test paradign. For
each inference level there are usually asore than one
specialist-KS capable of generating inferences on that
level. VWhen a KS is invoked because of a particular event,
another KS say already have processed the salient event.
In such a circumstance, the currently active KS evaluates
the inference generated by the other KS. The evaluation can
result in the K3 agreeing with, disagreeing with, or deing
indifierent adout the particular inference being evaluated.
If there is agreement, the confidence in that inference is
increased; if there i3 disagreesent, either the confidence
value is decreased or an slternative hypothesis {is
generated. There is no action taken for "I don’t know"
situations.

PR -CATAL ] Prodles cataloging iavolves
attempting to identify misaing evidence essential for a KS
to generate seaningful inferences. If a KS 1is unadble to
make nev inferences when called upon to do so, it may bde
due to lack of knowledge about the particular situation or
due to lack of necessary information, that is, the curreat
situation does not mest the conditions on the situation

13-



sldes of the ruies, If the speclialist-KS is "ignorant"®
then its knowledge-base need to be augaented in some way.
If the cause is due to lack of particular evidence, a K3
can request it by placing notice on the Problems-list,
This calls the system’s attention to a particular tituation
in which a solution is possidble "...if » were true." Since
a speclalilist-XS 1is not aware of the importance (or the
unimportance) of its own imsediate needs within the general
framework of the solution, the de:ision to pursue or not to
pursue the needs of the specialist-KSz is made by a higher
level KS.

5.2.2 KS-Activation Level

At the level immediately above the
hypothesis-formation levei are the KS-activators whose
tasks are to invoke the specialist-KSs as appropriate. The
KSs on this level represent various policies and
problem-soiving strategies related to the utilization of
th: apecialist-KSs. If, for example, events are processed
on an earliest-occurences-first policy, we would have a
breadth-rirst strategy; if events are processed on 2
latest-occurences-first policy, we would have a depth-first
strategy.

If there is more than one specialist-KS available to
process an event, some policy is needed to guide the order
in ubieh these KSs are to be wutllised. Different
KS-activators c¢an be made to reflect different policies,
ranging from fastest-first to most-accurate-first (footnote
N). There are currently two kinds of KS on the
KS-activation level, the Event-driver and the
Expectation-driver. Por each event the Event-driver
activates specinlist-KSs based on the degree of
specialization (and assused accuracy) of the KSs. The
Expectation-driver processes items on the Prodlems-iist on
the basis of how critical the needed evidence is to the
eserging hypothesis. This evaivation of how-critical for
the continuous-signal prodliem is sharply defined as part of
the knowledge of the dosain. In the protéein-modeling
probiem, however, the evaiuastion coriteria are auch wnore
heuristic, and im fact are just another element of the
overall analysis strategy.

Yhe Bvent-driver. An event type represents an a priorl
grouping of sisilar changes to the hypothesis, that is, it
represents the adstractions of possible changes to the
hypothesis. The changes, together with the identity of the
reles whiech produced the changes, are put on a globally
sccessidle list calied the ®Bvent-1ist®, The Bveat-driver
invokes the asppropriate Specislist-KSs based on the
iaforsation coatained im the event or grouwp of eveants.
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Expectation-driver. The task of the
Expectation-driver is ¢to monitor the items on the
Probleman-liat to see if any events which might satisfy the
conditions on the Problems-iist have occurred. 1If the
conditions have occurred, it will activate the
specialist-KS which had arranged the request. (footnote §5)

5.2.3 Strategy Level

The set of rules at the Strategy-level captures a
human expert’s knowledge of how to solve a probleam. The
task of the Strategy-KS -- the highest control level -- s
to choose the dbest prodblem-solving strategy for the current
state of the solution. Its expertise lies, frirst, in
determining how close the current hypothesis ia to the
actual solution. In neither SU/X nor SU/P are there formal
sechanisms to measure the differences between the current
best hypothesis and the "right answer®. The progranm
detects when the solution hypothesis ia "on the right
track” by use of heuristic criteria. For exasple, in the
protein modeling prodblem a large numbdber of connected nodes
on the stereo-subdbstructure level may imply that the
hypothesis is approaching a solution,

A consistent inabdbility ¢to verify expectation-dbased
hypothesis elements may signal an error in the hypothesis.
A more general indication of ineffective hypothesis
formatior appears as a consiatent generation of conjectures
whose confidence values are delov a threshhoid value; and
vhich therefore indicates that the analysis 1is “bdogged
down®.

A strategy-kS must al3o decide or a course of action
once a difference detveen the hypothesis and the °“right
ansver® is found. Note that these twc functions of the
Strategy-KkS -- noticing weak parts of the hypothesized
solution and choosing the appropriate corrective actions --
correspond to the situation and the action parts of
production rules. Currently, the Stratezxy-KkS can take one
of three possibie actiona:

1. 1invoke the Bxpectation-driver to see !f the local
needs/goals are satisfiadle dy recent event(s);

2. invoke the Bvent-driver to process the latest
changes in the hypothesis;

3. decide vwhat region of the data space to work on

next, 1i.e. deteraine the region of wminimal
asbdiguity in the data.
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6 GOAL-DIRECTED ACTIVITY: SOME SPECULATIONS

Our experience indicates that although the data-driven
and model -driven hypothesis formation methods in
combination are powerful, some situations are best handied
with a goal-driven method, i.e. utilizing a goal structure
and goal-seeking search processes, In the programs
described, the occasional lack of certain evidence can halt
the vwvhole probiem-solving process. However, the need for
missing evidence may already be known and catalogued on the
Probiems-iist. Under such a circumstance the obvious
sojution is to set a goai for "seeking®™ that evidence.
Within ¢the context of the current implementation, a
goal-directed search through the solution space can be
accomplished by: (1) adding a Goal-driver on the
KS-activation control level, (2) implementing a
backward-chaining wmechanism for the rules as in the MYCIN
aystem (1], and (3) adding rules to the Strategy-kS to
choose between data-driven, model-driven and goal-driven
methods of hypothesis formation as appropriate.

7 SUMMARY AND CONCLUDING REMARKS

SU/X and SU/P ace two appiication programs that have
been written to reason toward an understanding of digitized
physical signals. The essential features of the programs’
design are: (1) data- and model-driven, opportunistic modes
of hypothesis formation in which the "control" is organized
hierarchically, and (2) a globally accessible hypothesis
structure augmented by focus-of-attention and historical
information which serve to integrate diverse sources of
knowledge. The basic design is simiisr in many wvays to the
HEARSAY-II Speech Undersitanding System design. It 1is
applicable to many different types of problems, especially
to those problems that do not have computationally feasible
"legai wove generators® and must therefore resort to
opportunistic generation of aiternate hypotheses.

The use of production rules to represent
control/strategy knowledge offers the advantages of
uniformity of representation and accessibility of knowledge
for purposes of augmentation and =nmodification of the
knowledge base. Because the line-of-reasoning Iis often a
complex compounding of the elemental steps indicated by the
rules, a dynamic expianation capadility ils needed. We did
not discuss this important feature of the programs. Nor
did we discuss the facliity which aliows assignment of an
expert ‘s degree of uncertainty for each rule entered. The
use of this faclility is not well developed currentiy in the
programs discussed. (See References 8 and 9 for simiiar
but better developed capabilities in the MYCIN program.)
¥e belleve that facilities for explanation and for inexac?
inference must bde integrated into the progras design at the
initial stages.



3.

5.

Footnotes

SU/X was 1implemented in the context of a military
signal-understanding application. It is a iarge
INTERLISP program that performed well on a variety of
complex signal-interpetation tasks within the domain.
SU/P, also written in INTERLISP, is under deveiopment.

The events are stored in three lists, each of which
requires its own special treatament; knowledle-basqg
events i.e. events specifically related to changes
in the hypothesais; ¢t -based , Lee., those
events specifically related to expectations of ™what
wiil happen when"; and roblems , i.e. expectations
fr_y the programs’ “modei of the situation” for which
the clinching confirmatory or disconfirsatory evidence
has not yet been found.

As mentioned earlier, the design of the hypothesis
structure in SU/X and SU/P 1s based on the concepts
found in HEARSAY-II. We refer you to {4,7] for a more
detalled description,

The 1issues of focus of attention and resource
allocation policies, as described by Hayes-Roth and
Lesser [6), are isportant ones. A subsequent paper
will describe the impiementation of these policies
within the SU/X and SU/P framework.

The prodbiems vhich are ®need-for-evidence® can be
vieved as "sudbgoals-to-de-achieved®™. The systema are
currently biased toward an opportunistic mode of
hypothesis formsation, and the implicit strategy for
such subgoals is “"wait and see".
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Speclialist-KS (on Hypothesis-formation Level)

Has access to!

1. primary data,

2. hypothesis elements,

3. facts, and

4, events in the Event hlstory list.

Hax act to:

1. change the values of attributes of hypothesis elements or
2. change the links (relationships) In the hypothesis structure, and
3. Inform the system of its actions by:

a. putting on the Eventlist the type of changes that were made, or
b. putting unresolved prolblems on the Problems-list, or
c. ask to be recalled at a later time (generate time-based event).

Event- and Expectation-Drivers (on Knowledge-Source-Activation Level)

Has access to:

1. events on the Eventl}st,
2. Items on the Problems-1ist, and
3. time-based events.

May act to: Invoke appropriate Specialist-KSs in an appropriate sequence
to reflect its resource allocation policy.

Strategy-KS (on Strategy Level)

Has access to:
1. Eventlist,
2. Problems-list,
3. time-based events,
4. Current-Best-Hypothesis (or a summary of CBH If available), and
5. Event- and Expectation-Drivers.

May act to:

1. choose the appropriate KSs on the KS-Activation level, and/or

2. change the focus of attention (i.e. choose and event, a problem,
a dormant region of the hypothesis, or a different region of the
data to process next).

Summary of KS Activities on Different Control Levels
Tadle 1.
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