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ABSTRACT

Su/X and SU/P are knowledge-based programs which

employ pattern-invoked inference methods. Both
tasks are concerned with the interpretation of

large quantities of digitised signal data. The
task of cU/X is to understand “continuous signals”,

that ls, signals which persist over time. The task
of SU/p is to interpret protein X-ray

crystallographic data. Some features of the design
are: (1) {incremental interpretation of data

employing many different pattern-invoked sources of
knowledge, (2) production rule representation of
knowledge, including high level strategy knowledge,
(3) “opportunistic” hypothesis formation using doth
data-driven and model-driven techniques within a

general hypothesize-and-test paradigm; and (&)
su .tilevel representation of the solution
hypothesis.
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1 INTRODUCTION AND SUMMARY

This paper describes a design of knowviedge-based
programas which employ pattern-invoked inference methods.

Domain and strategy knowledge are represented as production
rules to be invoked when appropriate situations arise in

the problem-solving process. The same basic design
philosophy is utilized in two task domains, both of which

are concerned with the interpretation of large voiumes of
digitized physica) signais. The tasks are (1) the
understanding of continuous signals produced by objects and

(2) the interpretation of protein x-ray crystaliographic
data in terms of a three-dimensional modes of the moiecuie.

The programs assoclated with these tasks are cajlied SU/X
and SU/P, respectively.

Some of the design concepts In SU/X and SU/P are

rooted in the HEARSAY-II program (4, 6-7]. Concepts which
nave been borrowed are: (a) a giobal data base, caiied the
blackboard, for the Integration of knowledge sources and
(b) a muiltiievel representation of the soiution hypotheses.
These basic concepts are integrated into a system design
that emphasizes: (a) the representation of knowledge in
production rules, (b) the representation of the contro
structure as sources of *nowledge reiated to
probilem-soiving methods and strategies, (c) the capability
of the program to explain its reasoning ateps, and (4) a
level of generaiity of the basic design concepts leading to
application in different tasks or domains.

1.1 Major Themes

The “understanding” of physical signals often requires
using information not present in the signal data
themseives. Examples of such inforsation are: (a) in the
cont inuous-signal probies, the characteristics of the
signal -producing objects, (db) in the protein-modeiing
problem, the amino acld sequence and the stereochemical and

protein chemistry constraints. Bach such source of
knowledge may at any time provide an inference which serves
2s 2 basis for another knowviedge source to make yet another
inference, and so on, until all relevant information has

been used and appropriate inferences have deen drawn.

Essential to the operation of the program is its podel
of the developing hypothesis. The modes is a
symbol -structure that js DdDuilt and maintained by the

program, contains wvhat is known about the unfoiding
situation, and thus provides a context for the ongoing
anaiysis. The wuodel is used a: a reference for the
interpretation of nev information, assimiiation of new

events, and generation of expectations concerning future
events. It 1a the program's “cognitive fiywvheel™.
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SU/X and SU/P are "knowisedge-based™ programs (footnote
1). Their powers are largely derived from the knowle.ge
given to them by "expert" human anaiysts and/or "expert"
algorithms. Major problems in the design of such systems
show up vividly in these two programs:

a. Knowledge acquisition. This is a task of
systematically ferreting out the (informal and
semiformal knowledge held by the expert, The
breadth and sheer volume Of an expert’s knowledge
is what makes his analysis general and powerful;

yet, obtaining that knowiedge, which he often does
not realize he is using, is a painstaking and
inexact process.

be Knowledge representation. Having acquired the
knowledge in its "human® form, we aust represent
it in a form that is convenient and efficient for
sachine processing and at the same time reasonably
"naturai” (bear in wmind that the knowledge rarely

boils down merely tc a set of numbers) -- a
difficult and time-consuming task.

Cc. Integration of multiple, diverse sources of
knowledge. Program and information structures
must be created by which the various kinds of
knowledge can "work together®™ toc form a coherent
and accurate hypothesis. When the knowledge
exists at many different levels of abdstraction and
aggregation (say, from alpha-helix auvosrructure
all the way down to electron density values in an
elec*ron density map), one has 3 sajor <Jdesiga
problen.

1.2 Major Terms and Concepts

The task of "understanding® the data is accomplished
at various levels of analysis. These levels are exhibited
in Figure 1.1 for the continuous-signal interpretation
probiem and in Figure 1.2 for the protein-modeling problem.
The most integrated -- the highest -- levels for the two
problems involve the description of the signai-producing
objects, and the three-dimensional model of the protein.
The lowest ieveis, that is, the levels ciosest to the data,
consist of the line features derived from the signal datas,
and the atoms and their coordinates in three space.

At each level, the units of analysis are the
hypothesis eleaentas. These are symboli-structures tha’
summarise what the available evidence indicates in terss
that are seaningful at that particular level.
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Bridging between the levels of analysis are gourcesof
knowledge (4,73. A knowiedge source (KS) is capable of
putting forth the inference that some hypothesis elements
present at its "fnput® level imply some particular
hypothesis elements(s) at {ts "output" level. A source of
knowledge contains not only the knowledge necessary for
making its own specialized inferences, but also the
knowledge necessary for checking the inferences sade bY
other sources of knowledge. The inferences which draw
together hypothesis elements at one level into a hypothesis
element at a higher level (or which operate (in the other
direction) are reprenxented symbolically as links between
leveis (See figures 1.1 and 1.2). The resulting network,
rooted in the input data and integrated at the highest

level {into a description of the hypothesized problens

solution, is calied the current best hypothesis, or the
hypothesis for short. Each source of knowledge holds a
considerable body of specialized information that a human
expert would generally consider “"ordinary®. Sometimes this
is relatively "hard" knowledge or "textbook" knowledge.
Also represented are the heuristics, that is, "rules of

good guessing™ a human expert develops in his asrea of
expertise. These "judgmental® rules are generally
accompanied by estimates from human experts concerning the

weight that each rule should carry in the analysis.

Each KS is composed of "pleces® of knowledge. By a
plece of knowledge we mean a production rule, that is, an

IF-THEN type of implication formula. The "1p side, also
. called the situation side, specifies a set of conditions or

patterns for the applicability of the particular rule. The
®THEN® side, also called the action side, symbolizes the
implications to be drawn (more precisely, various
processing events to be caused) if the "IF" conditions are
met. (Refer to [2] fer an excellent overview of production
rules.)

The knowledge of how to perfecrm, that is, how to use
the avalladbie knowledge sources, is another kind of
knowledge that experts possess. This type of knowledge is
also represented in the systens in the fors of

control/strategy production rules, which promote
lexibility n specifying and sodifying strategies of

analysis.

Hypothesis formaticn 1s an Yopportuniatic®™ process.
Both data-driven and model-driven hypothesis formation

techniques are used within the general hypothesise-and-tegt
paradigs. One of the tasks of the control/strategy
knowiedge source is to determine the applicability of these
methods to diflerent situations. The unit of processing

activity is the event. Events symbolize such things as
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"what inferences to make", "what syabdol-structures to

modify", "what to look for in the data", and so on. The

basic control loop for these event-driven programs, is one
in which lists of events (events sometimes include new

data) and the set of controli/strategy rules are

periodically scanned to determine the "next thing to do"
(footnote 2).

In the foliowing sections ve discuss issues related to
the representation of the Lypothesis, the knowledge

sources, and the control structure. Before continuing,
however, we will briefly describe the two tasks that have
been implemented and 1ist some guldelines for choosing
applications in which this type of system organization may
be useful.

2 THE TASKS

2.1 Interpretation of Continuous-Signals (SU/X)

The signal-understanding prograa perforas analysis of
data derived from a digitized plot of continuous signals,
the interpretation of which is to a considerable degree a
function of time. Examples of data having this
characteristic are electromagnetic and acoustic signals,
and signals from hospital patients monitored in an
intensive care unit. The *front-end® signal-processing
hardware and software detect energy "packets®™ appearing at

various spectral frequencies, and follow these packets in
time. The current system ls designed to analyze a digitized
description of these data. At the end of each time period,
say, & fev wuminutes, *he user is given an integrated
analysis of the interpreted objects within {ts data
purview. [5]

2.2 Interpretation of Three-Dimensional Signal Data:
Protein Crystallography (SU/P)

The task of this program is to infer th-ee-dimensional
models of protein molecules. The model ls derived froma an
interpretation of the electron density map of the
crystaliised protein. The density map is, in turn, derived
from x-ray diffraction data. These data typically yield a
poorly resolved distribution of the electron density within
the protein solecule, and the location of individual atoms
are generajly not identifiadie. Traditionally, the protein
erystalliographer embodies his interpretation of the
electron density sap in a "ball and stick® molecular model
fashioned from metal parts. These parts are strung together
to duilé a model which conforms to the electron density map

and is also consistent with protein chemistry and
stereochemical constraints. The current systems tries to

sisulate husans who build models incresentally from the

most “obvious® regions of the electron density map. The
ineresental, opportunistic strategies used Oy our progran

of-



to form hypotheses closely resemble the problem-solving
methods used by human model builders. Refer to [3] for
more complete description of the problem.

3 SUITABLE APPLICATION AREAS

Building a signal {interpretation systes within the
program organization summarized above can best be described
as "opportunistic® ansjysis, Bita and pieces of
information must be used as opportunity arises to bulld
slowly a coherent picture of the worid -- much like putting
a Jigsaw puzzie together. Some thoughts on the
characteristics of problems suited to this approach are
listed bdeiow:

1. Large amounts of signal data need to be analysed.
Examples include the interpretation of speech and
other acoustic signals, X-ray and other spectral
data, radar signals, photographic dats, etc. (A
variation involves understanding a large volume of
syabolic data; for example, the aaintenance of a
global plotboard of air traffic based on messages
from various air traffic control centers.)

2. Formal or informal Interpretive theories exist.

By informal interpretive theory we mean lore or
heuristics which husan experts dring to bear in
order to "understand” the data. These inexact and
inforzal rules are {incorporated as KSs in

conjunction with more formal knowledge adout the
domain.

3. Task domain can be decomposed hierarchically in a
"natural way” LP in many cases the domain can
be decomposed into a series of data reduction
levels, where various interpretive theories (in
the sense described above) exist for transforming

data from one level to another.

8, vOpportunistic® strategies must be used. That is,
there is mo computationally Teaslibie "legal move
generator® that defines the space of solutions in
which pruning and steering take place. Rather, by
reasoning about bits and pisces of available
evidence, ome can incresentally generate partia’
hypotheses that will eventualy lead to a wore
global solution hypothesis.

3.1 Data-Driven vs MNodei-Driven Hypothesis Formation
: Methods

Me have combined data- and sodel-driven methods of

hypothesis formation in the design of SU/X and SU/P. By
"data-driven we mean "inferred from the input data®. By
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"godel-driven” we mean "based on expectation" where the

expectation ls inferred from knowledge adout the domain.
Por exampie, a hypothesis generated by a KS which infers an
amino acid sidechain from the electron density data ls a

data-driven hypothesis. On the other hand, a hypothesis
about the existence of an amino-acid sidechain that is

deduced from topological knowledge of the protein 1s a
model-based hypothesis. In the former case, the data ls
used as the basis for signal analysis; in the latter case,
the primary data is used solely to verify the expectation.

There are no hard-and-fast criteria for determining

which of the two hypothesis formation methods 1s more
appropriate for a particular signal-processing task. The
choice depends, toc a large extent, on the nature of the KSs
vhich are avallable and on the power of the analysis model
available. Our experience points strongly tovard the use
of a combination of these techniques; some KS's are
strongly data dependent while others are strongly model
dependent. In the continuous-signal interpretation
program, for example, the majority of the inferences are
data-driven, with occasional model-driven inferences. The
converse is true in the protein model-building wich places

more emphasis on model-driven hypothesis generation. The
following are guidelines we have used in determining which
of the two methods is more appropriate:

1. Signal to Noise Ratio. Problems which have

inherently low S/0 ratios are better suited to
solutions by model-driven programs; the converse
is true for problems with high S/N ratios.

2. Availability of a model. A model, sometimes
referred to as "the semantics of the task domain",

can be avaiiable in various forss: (1) input to
an abstract jevel of the hypothesis structure, (2)
general knowledge about the task domain, or (3)
specific knowledge about the particular task. In
the protein crystallography problema, for instance,
the amino acid sequence (the topology of the
protein) serves as a model for gulding the
interpretation of the prisary data. However, in
the c¢continuous-signal interpretation problem, the
aode]l is drawn froas general knowviedge abdout the
signal sources and from other relevant esxternal
sources of inforsation that serve to define the

context. 1f a reliable model is avaijabdble, the

data-interpretation KSs can be used as verifliers
rather than generators of inferences; this reduces
the computational bdDurden on the signal-processing
programs at the "front end".
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4 TRE NATURE OF THE HYPOTHESIS

In order to integrate a diversity of knowiedge about
the task domain, the domain is decomposed hierarchically
into levels of ansliysias. Ve will describe briefly some of
the basic ideas on the nature of the hypothesis (footnote
3).

A signal interpretation problem can be viewed as a
problems of “transforming® signals representing an object
into a symbolic description of the ojbect on a more
abstract level. Ve use the word "transforsation™ to mean a
shift fros one representation of an object (digitized
signals) to another (symdoiic description) using any formal
or inforeal rules,

The data structure hierarchy reflects =a plan for the
utilisation of the various data transformation KSs which
contribute to the total data interpretation process.

Generally these transformational steps invoive dats
reductions of the primary data in a stepwise fashion from
the detailed to the more abdstract description of the

object. However, we have found that some of the most useful
ESs generate inferences spanning several levels. For
example, in the protein-modeling problem, a husan can "see"
in the electron density data, helical substructures without
knowing or observing the details of each atoms placement.
This kind of knowledge is ususlly very specific to
situations; human experts know, and use, many of these
specialized, informal dodies of knowledge.

The data structure of the solution hypothesis is a
linked network of nodes, where each node (hypothesis
element) represents a mesningfuli aggregation of lower level
hypothesis esliements. d link between any two hypothesis
elements represents a result of sose action by a KS and
indirectly points to the KS itself. A link has associated
with {it directional properties. In general, the direction
{indicates one of the the following: (1) A link which goes
fro@s a sore abstract to a less abstract level of the
hypothesis 1s referred to as an "expectation-link®. The
node at the end Of an expectation-lirk is a sodel-dDased
hypothesis element, and the link represents "support fros
adbove® (i.e. the reason for proposing the hypothesis
element is to de found at the higher level). (2) A link
which goes in the opposite direction, froa lower levels of
abstraction to higher, is referred to as a
*poduction-iink®. The node at the end of a reduction-iink
is a data-based DNypothesis clement, and the link represent
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"gupport from beiow®™ (i.e. the reason for proposing the
hypothesis element is to be found at & lower level).
(These directions correspond loosely to "top-down" and
"hottom-up” path generation.) Examples of KSs and
hypothesis elements generated by the KSa are shown in
Figure 2.

The protein-modeiing problem posed some difficuities
in the design of its hypothesis structure. These can bde
attributed to several factors. Firat, the decomposition of
the solution space (the rhree-dimensional model) and the
abstractions of the primary data (electron density) do not
result in one consistent data hierarchy but result in two
hierarchies. Second, the two hierarchies overliap
semantically at some levels but are not representationally
compatible. Third, very 1littie is known about mapping the
object between the two spaces. As indicated In Figure 3,
however, the two hierarchies, with a network of links, can
be merged into a single representation of the problem
space. This representation indicates that hypothesis need
not be represented as a strict hierarchy; it can be
represented as a more general network of related elements.
(Refer to (3) for more detalied description.)

S THE NATURE OF THE "CONTROL"

A systea’s performance depends both on the competence
of each KS and on the utilization of these KSs within the
context of the goals of the task domain.

There are two seperate but equally imporiant issues
involved in a design of a knowledge-based performance
program: (1) the avaiiability and the qualiity of the
specialist [KSs that cooperate in the building of a
hypothesis. (These KSs define the hierarchy of
abstractions of the hypothesis.) (2) the optimal
utilissrion of these KSs. If we view the KSs as resources
that are availabie for solving a prodles, then the optimal
resource allocation strategy is deterained by the quality,
the size, and the cost of the KSs, and the state of the
current hypothesized solution. The control structure sust
be sensitive to, and de able to adjust to, the numerous
possible solution states which arise in the course of
solving a prodiem. ¥ithin this viewpoint, then, vhat is
comsonly called the “control structure® becomes another
totally dosain-dependent knowiedge source. The notion of a
"hierarchic control" is an attempt to come to grips with
the issues of resource allocation and "control® strategles.

«l10=



S.1 Hierarchically Organized Control Structures

In a "hierarchically organized control structure,”
problem-solving activities themselves form a hierarchy of
knowledge necessary for solving the problem. On the jowest
level 1s a set of knowledge sources the tasks of which are
to make the primary inferences in the hypothesis network

previous.,y deseribed. We r:fer to this level of knowledge
as the “"hypothesis~-formatlis.." level. At the next level are
"meta" KSs that have knowledge about the capabilities of
the KSs in the hypothesis-formation level. Ve refer to
this level as the "KS-activation” level; a KS on this level

represents a policy on knowledge utilization. At the
highest level is the Strategy-KS which analyzes the quality
of the current solution to deteruasine what region of the

data to anlyze next; it also determines what kind of
strategy to use.

Another way to describe this organization is as
follows: The KSs are organized hierarchically -- much like
the management structure in a corporate environment -- in
terms oF the scope of their knowledge and the specificity
of their functions.

Example: A KS capable of deciding whether to look for
helices or to continue looking for a large amino acld
sidechain would possess a higher level Of knowledge
than a KS whose function is to icfer the placement of
atoms of some amino acid sidechain., It {is a higher

level because its area of expertise (choosing the dest
problems solving strategy for a given situation), is
broader in scope and narrower in the knowledge of the
processing specifics. It does not have, and it need
not have, any knowledge of the details of the
execution of the prodles-solving strategy it chooses.

This control hierarchy should be clearly distinguished
from the hierarchy of hypothesis levels. The hypothesis

hierarchy represents an ggpriori plan for the solution
presented by a “natural®™ decomposition of the analysis
probles. The control hierarchy, on the other hand,
represents the organisation of the problem-solving
activities necessary for the formation of the hypothesis.
Figure 8 shows a general relationship bdetween the
organization of the hypothesis structure and the
organization of the control structure. Table 1 summarises
the scope of KSs on each level of control! hierarchy.
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5.2 Control Structure Implementation

All information needed by the different KSas ls
contained in a giobal data structure called the
"biackboard". The "blackboard®™ concept has its origin in
HEARSAY (4) and is extended in SU/X and SU/P. The contents
of the blackboard in SU/X and SU/P constiat of:

if. The current best hypothesis (CBH)

2. The Event-iist: A list of changes in the
hypothesis which have not yet been processed DY
any KS. An event also contains the name of the KS
and the identifier of the rule which caused the

change.

3. The Event: A global variable containing the
currently "active event", that ls, an event which
is currently being processed by some KS. The
Event aiso represents the current focus of
attention.

8, The Prodleas-list: A list of unresolved problieas
encountered by various K3s. Such problems range
from expected data not yet avaliable, to
detectable "errors® in the program (e.g.
insufficient knowledge).

SS. The Event history list: The Bvent, together with
its Predecessor and Successor events fora a causal
chain of reasoning. Ia the continuos-signal
understanding prodiem, the Event history list is
sometimes used by KS to analyze series of events
whieh occurred over a period of time. More
generally, lt serves as a data base fros which
reasoning traces are generated and "how" and "why"
questions answered. (See reference [1,8] for some
examples of this type of traces.)

§.2.1 Hypothesis; Formation Level

At the lowest levei Of coatrol -- the aost data
specific level -- are the inference-generating KSs, or the
specialist -KSs. Each specialist-KS has the task of
creating or modifying hypothesis elements, evaluating
inferences generated bY other specialist-KSs, and
cataloging of missing evidence which are essential for a KS
to generate meaningful inferences.

wide



Each speclialist-KS has access to the blackboard. Its
focus of attention {is that portion of the blackboard

containing the latest change(s) made to the current
hypothesis. Although a KS has access to the entire
hypothesis, it norsally "understands" only the descriptors
contained in two levels, its input level, and its output
level.

INFERENCE-GENERATION, Inference-generation is the
creation or modification of hypothesis elements; it is the

"hypothesize® part of the hypotheasize-and-test paradigms.
An inference-generator say use a data-driven or
model-driven hypothesis formation method. As mentioned
earlier, a KS is repreaented as a set of production rules
consisting of "situation-action® pairs . The “situation”
for the inference-generstor is a particular state of those
hypothesis elements containing data relevant to the KS. A
satch Detween a description in the hypothesis element and
the situation-side of a rule indicates that a K3S can make

some conjectures regarding that hypothesis element. When
the appropriate KS is invoked, the "action" part will
transforsa the current hypothesis to a new current
hypothesis either by adding nev links to the structure,
creating new hypothesis eiesents, or changing the attribdute
values of a hypothesis element (see Table 1. for a
summary).

INFERENCE-EVALUATION, Inference evaluation involves
the appralsal of inferences generated by other K3Ss; it is
the "test™ part of the hypothesise-and-test paradign. For
each inference level there are usually sore than one

specialist-KS capable of generating inferences on that
level. When a KS is invoked because of a particular event,

another KS say already have processed the salient event.
In such a circumstance, the currently active KS evaluates
the inference generated by the other KS. The evaluation can
result in the KS agreeing with, disagreeing vith, or deing
indifierent adout the particular inference being evaluated.
If there ls agreement, the confidence in that inference is
increased; if there is disagreement, either the confidence
value is decreased or an slternative hypothesis is

generated. There is no action taken for “I don’t know"
situations.

PRODLEN-cAlALOD LL, Prodles cataloging iavolvesattempting to identify a=sisaing evidence essential for a KS
to generate necaningful inferences. If a KS is unable to
make nev inferences when called upon to do so, it may be
due to lack of knowledge about the particular situation or
due to lack of necessary information, that is, the current
situation does not mest the conditions on the situation
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sldes of the ruijes. If the specialist-KS is "ignorant"®
then its knowledge-base need to be augsented in some way.
If the cause is due to lack of particular evidence, a KS
can request it by placing notice on the Problems-list,
This calls the system's attention to a particular tituation
in which a solution is possidle "...if 3» were true." Since
a speclalist-XS is not aware of the importance (or the
unimportance) of its own immediate needs within the general
frapevork of the solution, the de:ision to pursue or not to

pursue the needs of the specialist-KSz is made by a higher
level KS.

5.2.2 KS-Activation Level

At the level immediately above the

hypothesis-formation levei are the KS-activators whose
tasks are to invoke the specialist-KSs as appropriate. The
KSs on this level represent various policies and
problem-soiving strategies related to the utilization of
th: specialist-KSs. If, for example, events are processed
on an earliest-occurencea-first policy, we would have a

breadth-Tfirst strategy; if events are processed on 23
jatest-occurences-firat policy, we would have a depth-first
strategy.

If there is more than one specialist-KS available to

process an event, some policy is needed to guide the order
in which these KSs are to be utilized. Different
ES-activators can be made to reflect different policies,

ranging from fastest-first to most-accurate-first (footnote
8). There are currently two kinds of KS on the
KS-activation level, the Event -driver and the
Expectation-driver. Por each event the Event-driver
activates specialist -KSs based on the degree of
specialization (and assumed accuracy) of the KSs. The
Expectation-driver processes items on the Probleas-iist on
the basis of how critical the needed evidence is to the

eserging hypothesis. This evaivation of how-critical for
the continuous-signal problem is sharply defined as part of
the knowiedge of the domain. In the proteéein-modeling
probiem, however, the evaluation criteria are auch more
heuristic, and im fact are just another eciement of the
overall analysis strategy.

The Event-driver. An event type represents an a priori
grouping of sisilar changes to the hypothesis, that ls, it
represents the abstractions of possible changes to the
hypothesis. The changes, together with the identity of the
rules which produced the changes, are put on a globally
accessible list called the ®"RBveat-list®, The EBveat-driver
invokes the appropriate Specislist-Kk3Ss based on the
iaforsation contained im the event or group of events.
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Expectation-driver. The task of the
Expectation-driver is to monitor the items on the

Problemasn-liat to see if any events which aight satisfy the
conditions on the Problems-list have occurred. If the

conditions have occurred, it will activate the

specialist-KS which had arranged the request. (footnote §5)

5.2.3 Strategy Level

The set of rules at the Strategy-level captures a
human expert’'s knowledge of how to solve a problema. The
task of the Strategy-KS -- the highest control level -- {is
to choose the dest prodlem-solving strategy for the current
state of the solution. Its expertise lies, first, in

determining how close the current hypothesis is to the
actual sojution. In neither SU/X nor SU/P are there formal

gsechanisms to measure the differences between the 2urrent

best hypothesis and the "right answer". The progras
detects when the solution hypothesis is "on the right
track” by use of heuristic eriteria. For example, In the

protein modeling prodblem a large number of connected nodes
on the steredO-subdbstructure level ®may imply that the

hypothesis 1s approaching a solution.

A consistent inability to verify expectation-dased

hypothesis elements may signal an error in the hypothesis.
A more general indication of ineffective hypothesis
formatior appears as a consistent generation of conjectures
whose confidence values are delov a threshhoid value; and

which therefore indicates that the analysis is "bogged
down®.

A strategy-kS must al3o decide on a course of action
once a difference detvween the hypothesis and the “right
ansver® is found. Note that these twc functions of the

Strategy~-kS -- noticing weak parts of the hypothesized
solution and choosing the appropriate corrective actions --
correspond to the situation and the action parts of
production rules. Currently, the Stratezy-KkS can take one
of three possible actions:

1. invoke the Expectation-dariver ro see lf the local
needs/goals are satisfiadle dy recent event(s);

2. invoke the Rvent-driver tO process the latest

changes in the hypothesis;

3. decide vhat region of the data space to work on
next, i.e. determine the region of minimal
asdiguity in the data.
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6 GOAL-DIRECTED ACTIVITY: SOME SPECULATIONS

Our experience indicates that although the data-driven
and model-driven hypothesis formation methods in
combination are powerful, some situations are beat handied
with a goal-driven method, i.e, utilizing a goal structure
and goal-seeking search processes. In the programs
described, the occasional lack of certain evidence can halt
the whole probiem-soiving process. However, the need for
missing evidence may already be known and catalogued on the
Probliems-ilst., Under such a circumstance the obvious
sojution is to set a goai for "seeking®™ that evidence.
Within the context of the current implementation, a

goal-directed search through the solution space can be
accomplished by: (1) adding a Goal-driver on the
KS-activation control level, (2) implementing a
backward-chaining mechanisas for the rules as in the MYCIN
aystem [1], and (3) adding rules to the Strategy-KkS to
choose between data-driven, model-driven and goal-driven
methods of hypothesis formation as appropriate.

7 SUMMARY AND CONCLUDING REMARKS

SU/X and SU/P are two appiication programs that have
been written to reason toward an understanding of digitized

physical signals. The essential features of the programs’
design are: (1) Jdata- and model-driven, opportunistic modes
of hypothesis formation in which the "control" is organized
hierarchically, and (2) a globally accessible hypothesis
structure augmented by focus-of-attention and historical
information which serve to integrate diverse sources of

knowledge. The basic design is simiisr in many ways to the
HEARSAY-II Speech Understanding System design. It is
applicable to many different types of problems, especially
to those problems that do not have computationally feasible
"legai move generators™ and must therefore resort to
opportunistic generation of alternate hypotheses.

The use of production rules to represent

control/strategy knowledge offers the advantages of
uniformity of representation and accessibility of knowledge
for purposes of augmentation and =nsodification of the
knowledge base. Because the line-of-reasoning is often a
complex compounding of the elemental steps indicated by the
rules, a dynamic expianation capadllity ls needed. Ve did
not discuss this important feature of the programs. Nor
did we discuss the facliity which aliovs assignment of an
expert's degree of uncertainty for each rule entered. The
use of this facility is not well developed currently in the
programs discussed. (See References 8 and 9 for similiar
but better developed capabilities in the MYCIN program.)
We believe that facilities for explanation and for lnexact
inference must be integrated into the program design at the
initial stages.
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Footnotes

1. SU/X was implemented in the context of a military
signal -understanding application. It is a large
INTERLISP program that performed well on a variety of
complex signal-interpetation tasks within the domain.

SU/P, also written in INTERLISP, is under deveiopament.

2. The events are stored in three lists, each of whieh

requires its own special treatment: knowledge-based
events j.e. events specifically related to changes
in the hypothesis; time-based events , i.e., those
events specifically related to expectations of “what
will happen when”; and roblems , i.e. expectations
fr_x the programs’ “model of the situation” for which
the clinching confirmatory or disconfirmatory evidence
has not yet been found.

3. As mentioned earlier, the design of the hypothesis
structure in SU/X and SU/P 1s based on the concepts
found in HEARSAY-II. We refer you to {4,7] for a more
detalled description,

8. The issues of focus of attention and resource

allocation policies, as described by Hayes-Roth and
Lesser (6), are important ones. A subsequent paper
will describe the imspiementation of these policies
within the SU/X and SU/P framework.

5. The prodiems vhich are "need-for-evidence®™ can Ne

vieved as “subdgoals-to-be-achieved”. The systema are
currently biased toward an opportunistic mode of
hypothesis formation, and the implicit strategy for
such subdbgoals is "wait and see".
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Speclalist-KS (on Hypothesis-formation Level)

Has access to:

1. primary data,
2. hypothesis elements,
3. facts, and
L., events in the Event history list.

May act to:

1. change the values of attributes of hypothesis elements or
2. change the links (relationships) in the hypothesis structure, and
3. inform the system of its actions by:

a. putting on the Eventlist the type of changes that were made, or
b. putting unresolved prolblems on the Problems-list, or
c. ask to be recalled at a later time (generate time-based event).

Event- and Expectation-Drivers (on Know!ledge-Source-Activation Level)

Has access to:

1. events on the Eventlist,
2. {items on the Problems-list, and
3. time-based events.

May act to: Invoke appropriate Special ist-KSs in an appropriate sequence
to reflect its resource allocation policy.

Strategy-KS (on Strategy Level)

] Has access to:

1. Eventlist,
2. Problems-list,
3. time-based events,
§. Current-Best-Hypothesis (or a summary of CBH if available), and
§. Event- and Expectation-Drivers,

May act to:

1. choose the appropriate KSs on the KS-Activation level, and/or
2. change the focus of attention (i.e. choose and event, a problem,

a dormant region of the hypothesis, or a different region of the
data to process next).

Summary of KS Activities on Different Control Levels

Table 1.
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