COMPLEX ITY OF COMBINATOR IAL ALGOR ITHMS

by

Robert E. Tarjan

STAN-CS-77-609
APRIL 1977

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UN IVERSITY

*
Complexity of Combinatorial Algorithms —/

*X
Robert Endre Tarjan-—/

Computer Science Department
Stanford University
Stanford, California 94305

Abstract.

This paper examines recent work on the complexity of
combinatorial algorithms, highlighting the aims of the work, the
mathematical tools used, and the important results. Included are
sections discussing ways to measure the complexity of an algorithm,
methods for proving that certain problems are very hard to solve,
tools useful in the design of good algorithms, and recent improvements
in algorithms for solving ten representative problems. The final section

suggests some directions for future research.

*

—/ Based on a talk presented at the Symposium in Honor of the 30th
Anniversary of the Office of Naval Research, SIAM 1976 Fall Meeting,
Atlanta, Georgia, October 18-20, 1976.

*%
Research partially supported by National Science Foundation grant
NmS75-228701and by the Office of Naval Research contract
NOOO1k-756-C-0668. Reproduction in whole or in part is permitted
for any purpose of the United States Government.

1, Introduction.

In recent years there has been an explosive growth in research
dealing with the development and complexity analysis of combinatorial
algorithms. While much of this research is theoretical in nature, many
of the newly discovered algorithms are very practical, These algorithms
and the data manipulation techniques they use are valuable in both
combinatorial and numeric computing. Some problems which at first
glance are entirely numeric in character require for their efficient
solution not only the proper numeric techniques but also the proper choice of
data structures and of data manipulation methods, An example of such a
problem is the solution of a system of linear equations when the coefficient
matrix contains mostly zeros (Tewarson [1973]).

In this paper I shall survey some of the recent results on
complexity of combinatorial algorithms, examine some of the ideas behind
them, and suggest possible directions for future research. Section 2 of
the paper discusses ways to measure the complexity
of algorithms. Though several different measures are useful in different
circumstances, I shall concentrate upon one measure, the worst-case
running time of the algorithm as a function of the input size. Section 3
discusses techniques for proving that certain combinatorial problems are
very hard to solve. The results in this area are a natural extension,
perhaps more relevant for real-world computing, of the incompleteness
and undecidability results of G8del, Turing and others. Section 4 presents
a small collection of general techniques which are useful
in the construction of efficient combinatorial algorithms. Section 5

discusses efficient algorithms for solving ten representative problems.

These problems illustrate the importance of the methods in Section L, and
they include some, but certainly not all, of the combinatorial problems
for which good algorithms are known. Section 6 suggests some unsolved
problems and directions for future research. The appendix contains a

list of terminology for those unfamiliar with graph theory.

2. Machine Models and Complexity Measures.

In the early years of computing (before computer science was
recognizable as an academic discipline), an individual confronted with a
computational problem was likely to proceed in the following way. He or
shei/ would ponder the problem for a while, formulate an algorithm for
its solution, and write a computer program which would hopefully implement
his algorithm. To test the algorithm's correctness, he would run the
program on several sets of data, "debugging" the program until it
produced correct output for each set of sample input. To test the
algorithm's efficiency, he would measure the time and storage space
needed by his program to process the sample data, fit these measurements
to curves (by eye, by least-squares fit, or by some other method), and
claim that these curves measured the efficiency of the algorithm.

The drawbacks of this empirical approach are obvious. The development
of very large programs, such as compilers and operating systems, requires
a much more systematic method of checking correctness. This need has led
computer scientists to devise methods for proving the correctness (and
other properties) of programs (Floyd [1967], Manna [1969], Hoare [1969]).
These methods use mathematical induction to establish that certain invariant
relations hold whenever certain points in the program are reached. Computer
scientists have also developed methods (such as *'structured programming™)

" for constructing easy-to-understand and easy-to-verify programs (Dahl,
Dijkstra, and Hoare [1972]), and have formulated new programming languages
to make these methods easy to apply (Wirth [1971]). The thrust of this
research is to demonstrate that devising an algorithm and devising a proof

of its correctness are inseparable parts of the same process. Perhaps

*
Y/ Henceforth I shall use "he" to denote any individual, male or female.

the foremost advocate of this point of view is Dijkstra (Dahl, Dijkstra
and Hoare [1972]; Dijkstra [1976]).

Measuring efficiency by means of empirical tests has the same
deficiency as checking correctness empirically; there is no guarantee
that the result is reproducible on new sets of data. If an informed
choice is to be made between two algorithms for solving the same problem, some
more systematic information about the algorithms' complexity is needed.
To be most useful, this information should be machine-independent; good
algorithms tend to remain good even if they are expressed in different
programming languages or run on different machines. Furthermore the
measure should be both realistic and susceptible to theoretical study,

Complexity measures are of two kinds: those which are
static (independent of the size and characteristics of the input data)
and those which are_dynamic (dependent upon the input data), Atypical

static measure is program length. Program length in some sense measures

the simplicity and elegance of an algorithm (an algorithm with a short
program and short correctness proof is simple; an algorithm with a short
program and long correctness proof is elegant), This measure is most
-appropriate if programming time is important or if the program is to be
run infrequently.
Dynamic complexity measures provide information about the resource
requirements of the algorithm as a function of the characteristics of

the input data. Typical dynamic measures are running time and storage

space. These measures are appropriate if the program is to be run often.
Running time is usually the most important factor restricting the size of
problems which can be solved by computer; most of the problems to be

examined in Section 5 require only linear space for their solution.

However, for problems with linear-time algorithms, storage space may
be the limiting factor. Storage space has been used as a measure in
proofs of the computational intractability of certain problems (see
Section 2), but most efficiency studies emphasize running time.

Dynamic measures require that we specify the input data. One
possibility is to assume that the data for a given problem size is the
worst possible. A worst-case measure of running time or storage space
as a function of problem size provides a performance guarantee; the
program will always require no more time Or space than that specified
by the bound. A worst-case measure is in this sense not unlike a proof
of program correctness..

For some algorithms a worst case bound may be overly pessimistic;
for instance, the simplex method of linear programming (Dantzig [1963]),
which has an exponential worst-case time bound (Klee and Minty [1972]),
seems to run much faster than exponential on real-world problems (Dantzig
[1963]). 1In such cases an "average" case or "representative" case may
give a more realistic bound. For certain problem domains, such as sorting
and searching (Knuth [1973]), average case analysis is almost always more
realistic than worst-case analysis, and in these areas much average-case
analysis has been done. However, average-case analysis has its drawbacks.
It may be very hard to choose a good probability measure. For instance,
assuming that different parts of the input data are independently
distributed may make the analysis easier but may be an unrealistic
assumption; furthermore even a relatively simple algorithm may rapidly
destroy the independence. With average-case analysis one additionally
runs the risk of being surprised by a very rare but very bad set of input

data.

Any concrete complexity measure must be based on a computer model, One

possible choice is the_random access machine (Cook and Reckhow [1973]), which

is an abstraction of a general-purpose digital computer. The memory of such
a machine consists of an array of storage cells, each able to hold an
integer. The storage cells are numbered consecutively from one; the number
of a storage cell is its address. The machine also has a fixed finite set
of registers, each able to hold an integer. (For problems involving real
numbers, we allow storage cells and registers to hold real numbers.) In
one step, the machine can transfer the contents of a register to a storage
cell whose address is in a register, or transfer to a register the contents
of a storage cell whose address is in a register, or perform an arithmetic
operation on the contents of two registers, Or compare the contents of two
registers. A program of fixed finite length specifies the sequence of
operations to be carried out. The inital configuration of memory
represents the input data, and the final configuration of memory represents
the output. The details of this machine model are unimportant in that
reasonable variations do not affect running time or storage space by more
than a constant factor.

A random access machine is sequential; it carries out one step at
a time. Much work has been done on the computational complexity of
parallel algorithms, but I shall not discuss this work here.

-The random-access machine model provides a useful tool for
realistically measuring the efficiency of particular algorithms,
but it has serious drawbacks for lower bound studies, Since a
single storage cell can hold an arbitrarily large integer, it is
possible on a random access machine to carry out computations in

parallel by encoding several small numbers into one large one. One

can avoid this problem by assuming that the time required for an integer

operation is proportional to the length of its binary representation

(Aho, Hopcroft, and Ullman [1974]), or by requiring that all integers be

bounded in absolute value by some constant times the size of the input data.
Random-access machines are extremely powerful; in particular, they

can perform arithmetic on addresses. This ability is useful for representing

multidimensional arrays (Knuth [1968]), performing radix sorts (Knuth [1973]),

storing hash tables (Knuth [1973]), and the like. However, determining the

theoretical limits of this capability seems to be a hard problem.

Kolmogorov [1953], Kolmogorov and Uspenskii [1963], Knuth [1968],

Sch8nhage [1973], and Tarjan [1977] have proposed machine models in which

access to memory is by explicit reference only, and no address arithmetic

is possible. I shall call such a machine a linked memory machine. Tpege

machines accurately model the capabilities of list-processing languages
such as LISP and the list-processing features of general-purpose languages
such as Algol-W and PL/1, and they appear to be more amenable to analysis
than random-access machines.

Another very simple machine model, the Turing machine (Turing’[1936-7]b

has been used in many theoretical studies. A Turing machine has a memory
consisting of a tape. The tape is divided into cells, each capable of
holding one of a finite number of symbols. The machine possesses

a finite internal memory and & read/write head which can scan one tape

cell at a time. In one step, the machine can read a tape cell, write a
new symbol in the cell (erasing what was there previously), move the
read/write head one cell forward or backward on the tape, and change

the internal memory state, The decision as to what to do at each step
depends only on the current internal memory state and the contents of

the tape cell being read; this decision is encoded for each internal

state and each tape symbol in a decision table which forms the program

of the machine.

Turing proposed his machine model in 1936, before electronic digital
computers existed; he was attempting to model computational processes in
the abstract, without reference to any real computer. Though Turing's
model is inadequate for a large part of concrete complexity research, its
simplicity and the fact that any random access machine can be simulated
on a Turing machine with only a polynomial blow-up in running time makes
the Turing machine extremely useful for studying very difficult computational
tasks. It is also valuable for studying problems where tapes are the
storage device, as for instance in tape sorting (Knuth [1973]).

In lower bound studies the focus is often on some critical operation;
one counts in the running time occurrences only of that critical operation.
For instance, 1in sorting and selection problems it is useful to count only
comparisons (or general binary decisions), measuring the complexity of a

problem by the depth of a decision tree for it (Aho, Hopcroft, and Ullman

[1974]). In arithmetic and algebraic problems, it is useful to count only
arithmetic operations and to assume that no decisions are made; i.e., that

the computations performed are independent of the input data (for a particular
problem size). In this case one measures the complexity of a problem by the

length of a straight-line program (Aho, Hopcroft, and Ullmen [197L4]). In

other situations memory accesses may be the critical operations,
In this paper I shall use worst-case running time on a random-access
machine as a measure of algorithmic complexity. This measure is useful
and realistic for a wide range of combinatorial problems. I shall
ignore constant factors in running time, since such constant factors depend

upon the exact model of computation, they are often hard to compute, and

they tend, at least for large-sized problems, to be washed out by
asymptotic growth rates. To indicate functional relationships, I

shall use the following notation. If f and g are functions of n ,

" £(n) is 0(g(n)) " means f(n) < cg(n) for all n , where c is a
suitable positive constant, and " f(n) is Q(g(n)) " means f£(n) > cg(n)

for all n , where ¢ is a suitable positive constant.

3. Complexity of Intractable Problems.

Inspired by Hilbert [1926] and other formalists, mathematicians of the
early twentieth century hoped to find a formal system which would be adequate
for expressing and veryifying all mathematical truths. These hopes were
dashed by G8del [1931], who in his famous.incompleteness theorem demonstrated
that no method of proof could be both subject to mechanical verification
and powerful enough to prove all theorems of elementary arithmetic. Their
interest in the foundations of mathematics prompted logicians to cofront
the question, "What is mechanical verification?" or equivalently, "What is
an algorithm?". Church [1936], Kleene [1936], Post [1936], Turing [1936-7]),
and others provided formal definitions of an algorithm. These definitions
are superficially different but provably equivalent, in the sense that if
a problem is solvable according to one definition of an algorithm, then
.it is solvable according to all the other definitions. This robustness

of the notion of an algorithm is usually stated as Church's thesis: any

algorithm (in the informal sense) can be expressed as a Turing machine,
and any Turing machine expresses an algorithm.

Once a formal definition of an algorithm existed, it was possible
for mathematicians to study the power of computation. Turing proved that
no algorithm existed for determining whether a given Turing machine with a
given input will ever halt. Other researchers discovered a number of such .

undecidable problems (Jones [1974]), which correspond in computer science

to the incompleteness results of GBdel and others in logic. Perhaps the
capstone to this research on computability is Matijasevie's 1970 proof,
building on earlier work by Martin Davis and Julia Robinson, that Hilbert's
tenth problem is undecidable (Davis, Matijasevic, and Robinson [1976]).
Hilbert's tenth problem is to determine whether a given polynomial equation
has & solution in integers.

10

Two proof techniques, diagonalization and simulation, pervade

computability theory. Diagonalization is based on ancient self-reference
paradoxes; Cantor [1874] used it to prove that there are more real numbers than
integers and GYdel used it to prove his incompleteness result. OQOne can
use it in the following way to devise an undecidable problem. Suppose
we are interested in yes-no questions about the integers, such as "Is n
even?" or "Is n prime?" Suppose we have a listing Al’AE’A3’ ees oOF
all algorithms for answering such questions (for any of the standard
definitions of an algorithm it is easy to produce such a listing).
Consider the set S of integers such that n is an element of S if
and only if a;gorithm Ah answers "no" (or does not answer at all) on
input n . Then the question "Is n an element of S ?" is undecidable,
since each algorithm in the list A, AE’ A3,. . produces a wrong
answer on at least one input (Ah is wrong on input n) and by Church's
thesis this list contains all possible algorithms, Turing used the
same idea to show the undecidability of the halting problem for Turing
machines.

Simulation is a method for turning one problem or problem-solving

method into another. Once we have one undecidable problem Pl ,

we can
prove another problem P2 undecidable by showing that if P2 has an

algorithm then this algorithm can be used to solve %: . To accomplish
'this we provide an algorithm which converts an instance of problem r&
into one or more instances of problem P, , thus reducing Pl to P2

(or transforming Pl into P2). Similarly, to show that two definitions

of an algorithm are equivalent, we show how to simulate an algorithm
according to one definition by an algorithm according to the other

definition,

The development of general-purpose digital computers made possible
the implementation and execution of complicated algorithms, and the
theory of computability became a matter of more than mathematical

-interest. However, this theory ignores questions of resource use, which
limits its power to identify what is possible in practice. Many problems
which obviously have algorithms seem to have no good algorithms. For

instance, consider the maximum stable set -problem: given a graph, find in it

a maximum number of vertices, no two adjacent. Since a graph with n
vertices has only 2" subsets of vertices, an exponential-time algorithm
for this problem exists. However no one has yet discovered a substantially
faster algorithm for this problem.
[Table 3.1]
Tables 3.1 and 3.2 illustrate the importance of this phenomenon,
‘Table 3.1 estimates running times of algorithms with various time
bounds. The table shows that constant factors become less and less
important as problem size increases; on large problems the asymptotic
growth rate of the time bound dominates the constant factor. The table
also shows that running time grows explosively if the time bound is
‘exponential. Table 3.2 estimates the maximum size of problems solvable
in a given amount of time. Increasing the amount of time (or the speed
of the machine) by a large factor does not substantially increase the
size of problems solvable unless the time bound grows more slowly than
exponential.
[Table 3.2]
Tables 3.1 and 3.2 suggest a natural division between good algorithms
(those with worst-case time bounds polynomial in the size of the input)

and bad algorithms. Edmonds [1965] was apparently the first to stress this

distinction. I shall call a decidable problem tractable if it has a
polynomial-time algorithm and intractable otherwise. The distinction
between tractable and intractable problems is independent of the machine
model, since any of the commonly used machine models can be simulated by
any other with only a polynomial loss in running time. As Tables 1 and 2
show, it 1is not feasible to execute exponential-time algorithms on large
problems. Many combinatorial problems are easily solvable in exponential
time by exhaustively checking cases, but solving such problems in polynomial
time seems to require much greater insight. Most known good algorithms
have time bounds which are polynomials of small degree (O(n3) or better).
It is a major task of complexity theory to identify which natural problems
are tractablé‘and which are intractable.

Hartmanis, Lewis, and Stearns took the first steps toward exhibiting
natural intractable problems (Hartmanis, Lewis, and Stearns [1965];
Hartmanis and Stearns [1965]). By diagonalizing over all algorithms with
a given space bound Sl(n) » they were able to obtain a problem solvable

in space Se(n) but not in space Sl(n) , for any space bounds Sl(n) and

S,(n) satisfying 1lim inf Sl(n)/Se(n) = 0 and a few other technical

n—w

constraints. They proved a similar but somewhat weaker result for
time complexity. These results imply in particular that there are problems
solvable in exponential space but not in polynomial space, and problems
solvable in exponential time but not in polynomial time.

Unfortunately, the intractable problems produced by diagonalization
are not natural ones. Meyer and Stockmeyer [1972] proved the
intractability of a natural problem. They showed that the problem of

determining whether two regular expressions with squaring denote the

13

same set requires exponential space (and hence exponential time)
for its solution. A regular expression is a formula constructed from

the symbols A , O , 1 , U, . » *, (,) according to the following

rules. Each such formula denotes a set of strings of zeros and ones.

3.1 0 is a regular expression denoting the set {0} ;
1 is a regular expression denoting the set {1} ;
A is a regular expression denoting the set whose single element

is the empty string.
3.2 If A and B are regular expressions denoting sets L(A) and
L(B) , respectively, then
(AUB) 1is a regular expression denoting the set L(A)UL(B) ;
(A*B) 1is a regular expression denoting the set
{xy | xeL(A) and. veL(B)} .

A* is a regular expression denoting the set consisting
of the empty string and all strings formed by concatenating

one or more strings in L(A) |,
Meyer and Stockmeyer added an additional rule:

(s}
3.5 If A is a regular expression, then A® is a regular expression

denoting the same set as (A¢A) ,

To prove that the equivalence problem for two such expressions 1is
intractible, Meyer and Stockmeyer used simulation. They devised a
polynomial-time algorithm which, given a Turing machine, an input, and

an exponential space bound, would construct a regular expression

14

representing the computation of the Turing machine on the given input.

The expression is such that it denotes the same set as (OLJl)*

if and only if the Turing machine does not accept the input within the
given space bound. It follows that the equivalence problem for regular
expressions with squaring is as hard- (to within a polynomial time blow-up)
as any yes-no question answerable in exponential space by a Turing machine.
Since the Hartmanis, Lewis, Stearns result implies that some problem
exists which can be solved in space Zn but not space 2n/n , the
equivalence problem for regular expressions must require exponential

space.

In the last five years, several more such results have been
discovered. Hunt [1973] showed that if set intersection is substituted for
squaring the equivalence problem for regular expressions still requires
exponential space. Stockmeyer and Meyer [1973] showed that if set
subtraction is substituted for squaring the equivalence problem for
regular expressions has a non-elementary space bound. Fischer and Rabin
[1974] proved that testing the validity of a formula in Presburger
arithmetic (the theory of natural numbers with + as the only operation)
requires 2 - space, for same positive constant ¢ . Cardoza, Lipton,
and Meyer [1976] showed that the word problem for Abelian groups requires
exponential space. Jazayeri, Ogden, and Rounds [1975]

showed that testing the circularity of attribute grammars (a problem
arising in programming language semantics) requires exponential time.

The idea in all these proofs is the same; one shows how to efficiently
convert any computation with a particular space or time complexity into
an instance of the given problem, and one appeals to the Hartmanis, Lewis,

Stearns results to assert the existence of an intractible problem with

15

the particular space or time complexity.

Significantly, a number of apparently intractable problems, such as
the maximum stable set problem, are not included in the list of known
intractable problems. These problems have the following property. If
such a problem is phrased as a yes-no question, and the answer is "yes",
then there is a polynomial-length proof of the answer. For instance,
suppose we rephrase the maximum stable set problem as follows: "Does
a given graph G contain a stable set of k vertices?" If the answer
is yes, one can prove it by exhibiting the stable set and showing that
its vertices are pairwise non-adjacent.

To formalize this notion of polynomial-length proof, we introduce

non-deterministic machines. A non-deterministic machine may, at various

times during its computation, make a guess as to what to do next. The
machine accepts a given input if there exists some sequence of guesses
which causes the machine to eventually answer "yes". We define the time
(or space) required by the machine to accept an input as the minimum
amount of time (or space) used by an accepting computation. The following
non-deterministic algorithm solves the maximum stable set problem in
polynomial time: First, guess a subset of k vertices. Next, check all
pairs of these vertices for adjacency. Accept if no two of the vertices
are adjacent. Let P denote the class of yes-no problems solvable
deterministically in polynomial time and let 7P denote the class of
yes—no problems solvable non-deterministically in polynomial time. The
question we wish to answer 1is, "Are there natural problems which are in
NP but not in p ?"

Cook [1971] showed that 7MP contains certain "hardest" problems,

called NP -complete problems. A problem P is 7p -complete if

16

it satisfies two properties:

3.4 P is in 7Np.

3.5 If Q is in NP then Q is reducible to P in polynomial time.

To say that Q is reducible to P in polynomial time means that
there is a (deterministic) polynomial-time algorithm which, given an
instance of problem Q, will convert it into an instance of problem P ,
such that the answer to the instance of Q is "yes" if and only if the
answer to the instance of P is "yes". If Q is reducible to P in
polynomial time and P has a polynomial-time algorithm, then so does ¢ .
Thus if any NP -complete problem has a polynomial-time algorithm, P = NpP.

Cook's main result was to show that the satisfiability problem of
propositional calculus is NP -complete, The satisfiability problem is to
determine whether a given logical formula is true for at least one
assignment of the values "true" and "false" to the variables. It is easy
to show that this problem satisfies 3.4. Cook proved 3.5 by giving a
polynomial-time algorithm for constructing, from a given non-deterministic
Turing machine, a given input, and a given polynomial time bound, a logical
formula such that the formula is satisfiable if and only if the Turing
machine accepts the input within the time bound.

If one knows a single problem P to be NP -complete, one can prove
another problem Q 7P -complete by showing that Q is in 7 and that P
is reducible in polynomial time to Q ; property 3.5 then follows from the
transitivity of polynomial-time reducibility. Karp [1972] used this
idea to exhibit a number of natural 7@ -complete problems. Others

continued this work, and the number of known 7@ -complete problems is

17

now in the hundreds (see for instance Even, Itai, and Shamir [1976];
Garey, Johnson, and Stockmeyer [1976]; Garey, Johnson, and Tarjan [1976];
Karp [1975]; sehni [1974]; Sethi [1975]; and Ullman [1973]). In addition
to the satisfiability problem and the maximum stable set problem,the

following problems are 7§ -complete.

Subgraph isomorphism (Cook [1971]). Given two graphs G, and Gy /s is

Gy isomorphic to a subgraph of Gy ?

Graph coloring (Karp [1972]). Given a graph G , can its vertices be

colored with k colors so that no two adjacent vertices have the same
color? This problem is 9@ -complete even if k = 3 and G is
planar (Garey, Johnson, and Stockmeyer [1976]), whereas it follows
from Appel and Haken's proof of the four color conjecture (Appel and

. Haken [1977]) that there is a polynomial-time algorithm to color any

planar graph with four colors.

Hamilton cycle (Karp [1972]). Given a graph G does it contain a cycle

which passes through every vertex exactly once? This problem is a

special case of the travelling salesman problem (see Section 4). It

is NP -complete even if G is planar (Garey, Johnson, and Tarjan [1976]).

Subset sum (Karp [1972]). Given a set of numbers Dy50n) e ey D and a sum s ,

does some subset of the numbers sum to exactly s ?

Maximum planar subgraph (Liu and Geldmacher [1976]). Given a graph G , does

it contain a planar subgraph with at least k edges?

A major open problem of complexity theory is to determine whether p = Np.
A natural approach to this problem would be to try using diagonalization to
exhibit a problem in 7 but not in f . However, recent work by Baker,

Gill, and Solovay [1975] suggests that diagonalization is impotent for
18

resolving the P = MP? question. Even without a proof that p = p,
it is still fruitful to add new natural problems to the list of

NP ~complete ones; the large amount of time spent by bright people
fruitlessly searching for polynomial-time algorithms for 7N -complete
problems is strong evidence that the 7@ -complete problems are in fact

intractable.

19

4, Techniques for Good Algorithms.

Although many important combinatorial problems seem to be intractable,
many others have good algorithms. A small number of data manipulation
techniques form the basis for these algorithms. This section examines
these techniques, which are outlined in Table 4.1.

[Table k4,1]

Data Structures.

Any algorithm (good or bad) requires one or more data structures to

represent the elements of the problem to be solved and the information
computed during the solution process. A data structure is a composite
object composed of elements related in specified ways. Associated with
the data structure is a set of operations for manipulating its elements.
" Once a good implementation of a given data structure and its operations
is known, one can regard the operations as primitives when implementing
any algorithm which uses the data structure. The efficiency of the
algorithm will depend to a large extent upon the implementation of the
underlying data structure.

There are two data structures upon which all others are based:

arrays and linked structures. An array is a collection of storage

cells numbered consecutively. Two operations are associated with an
array: given the number of a storage cell, one can either store a value
in the storage cell (destroying the current value) or retrieve the current
value from the storage cell. The memory of a random access machine and
of most digital computers is an array. One can use arrays to represent

vectors, matrices, tensors, and multidimensional arrays (Knuth [1968]).

20

A linked structure consists of & collection of records. Each record
is divided into a number of items, each with an identifying name. The
structure of all records is identical. Items are of two kinds, data

items and reference items. Data items contain data. Reference items

contain pointers to records. Two operations are possible on a linked
structure; given a pointer to a record, one can either store a value
into an item in the record or retrieve the current value from an item
in the record. Figure 4.1 illustrates a linked structure. Whereas
array addresses are integers capable of being manipulated by arithmetic
operations, no operations are allowed on linked structure pointers
except storage, retrieval, and testing for equality. The memory of a
linked memory machine is a linked structure, and most list-
processing languages can be regarded as operating on linked structures,
[Figure 4.1]

It is easy to implement arrays and linked structures so that
storage and retrieval require constant time. Linked structures can be
implemented as collections of arrays (see Figure 4.1); this makes list-
processing easy in languages such as FORTRAN which do not possess an
explicit list-processing facility. It seems to be impossible to implement
an array as a linked structure in such a way that storage and retrieval
take constant time, though I know of no proof of this fact.

Using arrays and linked structures, one can implement many different
data structures. I shall consider here five classes of data structures:
lists, unordered sets, ordered sets, graphs, and trees.

A list is a sequence of elements. The first element of a list is
its head; the last element is its tail. Simple operations on a list

include scanning the list to retrieve its elements in order, adding an

21

element as the new head of the list (making the old head the second
element); adding an element as the new tail, deleting and retrieving

the head of a list, and deleting and retrieving the tail of a list.

Lists on which only a few of these operations are possible have special
names. A stack is a list with addition and deletion allowed only at the
head. A gqueue is a list with addition allowed only at the tail and
deletion allowed only at the head. A deque (double-ended queue) is a

list on which addition or deletion is possible at either end. One can
implement a deque either as a circular array (addresses are computed
modulo the size of the array) or as a singly linked structure (if deletion
from the tail is not necessary). See Figure 4.2. In either case, all
operations except scanning require constant time. The array representation
uses no space for storing pointers but requires that an amount of storage

- equal to the maximum size of the list be permanently allocated to the list.
[Figure 4.2]

Other important list operations include concatenating two lists

(making the head of the second list the element following the tail of

the first), insertigg an element before or after an element whose location
in the list is known, and deleting an element whose location in the list
is known. These operations require a linked structure for their efficient
impleantation. A singly linked structure is sufficient for concatenation
and- for insertion after another element, Insertion before another element
and deletion require a doubly linked structure. See Figure 4.3. An
alternate way to handle deletion is to provide each element with a flag
which is set to "true" if the element is to be deleted. The element is
not explicitly deleted until the next scan through the list.

[Figure 4.3]

22

The list operations hardest to implement are inserting an element
at the k-th position in a list, retreiving the element at the k-th position
in a list, or deleting the element at the k-th position in a list. It is
possible to implement these operations to run in 0(log n) time, vwhere n
is the size of the list, by using AVL trees (Knuth [1973]) or 2-3 trees
(Aho, Hopcroft, and Ullman [1974]), which are rather complicated linked
structures. Recently Guibas, McCreight, Plass, and Roberts [1977] have
found a way to carry out these operations in 0(log k) time.

An unordered set is a collection of distinct elements with no imposed

relationship. Basic set operations are adding an element to a set,
deleting an element from a set, and testing whether an element is in a
set. One way to represent a set is by a singly linked list. Addition
requires constant time but testing and deletion require O(n) time, where
n 1is the size of the set. Alternatively, if the elements of the set are
values which can be compared and sorted, one can represent the set by an
AVL tree or a 2-=3 tree in such a way that all three operations require
0(log n) time (Knuth [1973]; Aho, Hopcroft, and Ullman [197L4]).

Mnother way to represent a set is by a bit vector (Aho, Hopcroft, and
Ullman [197L4]), which is an array with one storage cell for each possible
element. A storage cell has two possible values: true, indicating that

. the set contains the element, and false, indicating that it does not. All
three operations require constant time using this representation. Bit vector
representation is only feasible if the number of possible elements is small.

If the number of possible elements is large, one can mimic the behavior
of a bit vector by using a_hash table (Knuth [1973]). A hash table consists

of a moderately sized array and a hashing function which maps each possible

23

element into an array address. If an element is present, the element

(or a pointer to it) is stored at (or near) the address specified by the
hashing function. Since two or more elements may hash to the same address,
some mechanism must be provided for resolving such collisions. Hash tables
are used extensively in compilers, and many papers have been written about
them (see Knuth [1973], Morris [1968]). With a hash table, addition,
deletion, and testing require O(n) time in the worst case but only
constant time on the average.

Additional set operations are useful if two or more sets exist. These

include the ability to form a set which is the union, intersection, or

difference of two sets. For most representations union, intersection,

and difference require time proportional to the sum of the sizes of the
sets. However, if the universe of elements is small enough so that a bit
'vector can fit into a few computer words and the computer possesses bit
vector operations, then union, intersection, and difference require constant
time.

An ordered set is a collection of elements, each with an associated
numeric value. Two important operations on ordered sets are sorting the
_elements in increasing order and selecting the element with k-th largest
value. A variety of ways exist to sort n elements in O(n log n) time
(Kknuth [1973]); if binary comparisons are the only operations used to
manipulate the values then Q(n log n) time is required in both the average
and the worst case to sort (Knuth [1973]). Selecting the k-th largest
element requires O(n) time (Blum, Floyd, Pratt, Rives-t, and Tarjan [1973];
Schbnhage, Paterson, and Pippenger [19751).

A priority gueue is an ordered set on which the following operations

are allowed: adding an element to the queue, retreiving the minimum-value

24

element in the queue, and deleting an element whose location is known
from the queue. By using binomial trees (Vuillemin [1977], Brown [1977]),
leftist trees (Knuth [1973]), or 2-3 trees (Aho, Hopcroft, and Ullman
[1974]) one can implement priority queue operations so that they require
O(log n) time, where n 1is the size of.the queue. These implementations
also allow one to combine two queues into a larger queue (destroying the
smaller queues) in O (log n) time.

If the values of the elements in an ordered set are integers of
moderate size, then the ordered set operations can be speeded up. Using
a k-pass radix sort, one can sort n integers in the range 1 to mk
in O(km+n) time (Knuth [1973]). Peter van Emde Boas has devised a
method for implementing priority queues with integer values in the range
1 to n so that the queue operations require 0(log log n) time
(van Emde Boas, Kaas, and Zijkstra [1975]).

A graph is a set of vertices and a set of edges, each edge a pair

of vertices. One way to represent a graph is by a two-dimensional array A,

called an adjacency matrix. The value of A(i,j) is one if (i,J) is an

edge of the graph; otherwise the value of A(i,j) is zero. An alternate

way to represent a graph is by an adjacency structure, which is an array

of lists, one for each vertex. The list for vertex i contains vertex
if and only if (i,Jj) is an edge of the graph. See Figure 4.4.
[Figure 4.41
The adjacency matrix representation saves space if the graph is dense
(i.e., most possible edges are present); it also allows one to test the
presence of a given edge in constant time. However, Anderaa and Rosenburg
conjectured (Rosenberg [1973]) and Rivest and Vuillemin [1975] proved that

*
testing any non-trivial monotonic/* graph property requires O.(ne)

*

Y A graph property is non-trivial if for any n the property is true for
some graph of n vertices and false for some other graph of n Vertices.
A graph property is monotone if adding edges to a graph does not change
the property from true to false.

25

probes of the adjacency matrix in the worst case, where n is the number

of vertices in the graph. By using an adjacency structure, one can search

a graph in O(n+m) time, where m is the number of edges in the graph;

thus representation by an adjacency structure is preferable for sparse graphs.
A tree is a graph without cycles. Since a tree is a graph it can be

represented by an adjacency structure. A more compact way to represent

a tree is to choose a root for the tree, compute the parent of each vertex

with respect to this root, and store this information in an array

(Figure 4.5). This representation is usable as long as the tree is to

be explored from leaves to root, which is often the case in problems

involving trees.

[Figure 4,51

Recursion.

An important and very general algorithmic technique is xecnrsion.
Recursion is a method of solving a problem by reducing it to one or more
subproblems. The subproblems are reduced in the same way. Eventually
the subproblems become small enough that they can be solved directly. The
solutions to the smaller subproblems are then combined to give solutions
to the bigger subproblems, until the solution to the original problem is
computed. As a simple example of a recursive algorithm, consider the

following definition of the n-th Fibonacci number:

b1 F(n) := if (n=1) or (n=2) then 1 else F(n-1)+ F(n-2)

Using recursion, one can often state algorithms much more simply

than would be possible without recursion. Many programming languages,

including Algol,IE/l, and LISp, allow recursive procedures (procedures

26

which call themselves). In a language without this facility, such as
FORTRAN, one can implement a recursive algorithm by using a stack to
store the generated subproblems (Aho, Hopcroft, and Ullman [197L]).

Dynamic programming (Bellman [1957]) can be viewed as a special kind

of recursion in which one keeps track of the generated subproblems and
never solves the same problem twice. As an example of the work which can
be saved in this way, consider the computation of the n-th Fibonacci
number. A recursive procedure based on 4.1 requires time proportional
to the size of F(n) to compute F(n) ; such a procedure performs
F(ntl-i) computations of F(i) for each i in the range from 1 to n
A better way to compute F(n) is to compute each F(i) just once for
each value of, i . The most efficient way to implement a dynamic programming
algorithm is to set up a table of solutions to all subproblems, and to fill
in the table from smallest to largest subproblem. Sometimes one can
discard the solutions for small subproblems as the computation proceeds
and re-use the space for larger subproblems. One can evaluate F(n) in
O(n) time with two storage locations by using this idea. (Of course,
using a closed-form expression for F(n) results in an even faster
canputation.)

Dynamic programming has been used with great success on a number of
combinatorial problems, including shortest path problems (Floyd [1962]),
. context-free language parsing (Younger [1967], Earley [1970]), error
correction in context-free languages (Aho and Peterson [1972]), and

construction of optimum binary search trees (Knuth [1971], Itai | 1976]L

Graph Searching.

Most graph problems require for their solution a systematic method
of exploring a graph. A search is an examination of the edges of a graph

using the following procedure.
217

$epiltialization) : Mark all edges and vertices of the graph new
(unexplored) .

Btep 2 n(choosen senew stgrtdng teréex): e x 1 s t s , halt
(The entire graph has been exploredf) Otherwise, choose a new

vertex and mark it old (explored).

@gp_lore an edge): If no new edges lead away from old vertices,
go to step 2. (A1l of the graph reachable from the current start

vertex has been explored.) Otherwise, choose a new edge leading

away from an old vertex. Mark the edge old. If the other endpoint

of the edge is new, mark it old. Repeat step 3.

Assume for simplicity that all vertices in the graph to be searched
are reachable from the first start vertex selected in step 2. Then the

search generates a spanning tree. The root of the spanning tree is the

start vertex. The edges of the spanning tree are the edges which lead to
new vertices when explored in step 3. The properties of the spanning tree
depend upon the criteria used to select the starting vertex in step 2 and
the edges to explore in step 3. For some simple graph problems, such as
finding connected compo<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>