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Abstract.

This paper examines recent work on the complexity of

combinatorial algorithms, highlighting the aims of the work, the

mathematical tools used, and the important results. Included are

sections discussing ways to measure the complexity of an algorithm,

methods for proving that certain problems are very hard to solve,

tools useful in the design of good algorithms, and recent improvements

in algorithms for solving ten representative problems. The final section

suggests some directions for future research.
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1. Introduction.

) In recent years there has been an explosive growth in research

dealing with the development and complexity analysis of combinatorial

algorithms. While much of this research is theoretical in nature, many

of the newly discovered algorithms are very practical, These algorithms

and the data manipulation techniques they use are valuable in both

combinatorial and numeric computing. Some problems which at first

glance are entirely numeric in character require for their efficient

solution not only the proper numeric techniques but also the proper choice of

data structures and of data manipulation methods, An example of such a

problem 1s the solution of a system of linear equations when the coefficient

matrix contains mostly zeros (Tewarson [ 1973]).

In this paper I shall survey some of the recent results on

complexity of combinatorial algorithms, examine some of the ideas behind

them, and suggest possible directions for future research. Section 2 of

the paper discusses ways to measure the complexity

of algorithms. Though several different measures are useful in different

circumstances, I shall concentrate upon one measure, the worst-case

running time of the algorithm as a function of the input size. Section 3

discusses techniques for proving that certain combinatorial problems are

very hard to solve. The results in this area are a natural extension,

perhaps more relevant for real-world computing, of the incompleteness

and undecidability results of G8del, Turing and others. Section 4 presents

a small collection of general techniques which are useful

. in the construction of efficient combinatorial algorithms. Section 5

discusses efficient algorithms for solving ten representative problems.
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These problems illustrate the importance of the methods in Section lL, and

they include some, but certainly not all, of the combinatorial problems :

for which good algorithms are known. Section 6 suggests some unsolved |

problems and directions for future research. The appendix contains a

list of terminology for those unfamiliar with graph theory.
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2. Machine Models and Complexity Measures.

In the early years of computing (before computer science was

recognizable as an academic discipline), an individual confronted with a

computational problem was likely to proceed in the following way. He or

she would ponder the problem for a while, formulate an algorithm for

its solution, and write a computer program which would hopefully implement

his algorithm. To test the algorithm's correctness, he would run the

program on several sets of data, "debugging" the program until it

produced correct output for each set of sample input. To test the

algorithm's efficiency, he would measure the time and storage space

needed by his program to process the sample data, fit these measurements

to curves (by eye, by least-squares fit, or by some other method), and

claim that these curves measured the efficiency of the algorithm.

The drawbacks of this empirical approach are obvious. The development

of very large programs, such as compilers and operating systems, requires

a much more systematic method of checking correctness. This need has led

computer scientists to devise methods for proving the correctness (and

other properties) of programs (Floyd [1967], Manna [1969], Hoare [1969]).

These methods use mathematical induction to establish that certain invariant

relations hold whenever certain points in the program are reached. Computer

scientists have also developed methods (such as *'structured programming")

" for constructing easy-to-understand and easy-to-verify programs (Dahl,

Dijkstra, and Hoare [1972]), and have formulated new programming languages

to make these methods easy to apply (Wirth [1971]). The thrust of this

research 1s to demonstrate that devising an algorithm and devising a proof

of 1ts correctness are inseparable parts of the same process. Perhaps

Y/ Henceforth I shall use "he" to denote any individual, male or female.
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the foremost advocate of this pointof view is Dijkstra (Dahl, Dijkstra

and Hoare [1972]; Dijkstra [1976]).

Measuring efficiency by means of empirical tests has the same

deficiency as checking correctness empirically; there 1s no guarantee

that the result is reproducible on new sets of data. If an informed

choice 1s to be made between two algorithms for solving the same problem, some

more systematic information about the algorithms' complexity 1s needed.

To be most useful, this information should be machine-independent; good

algorithms tend to remain good even 1f they are expressed in different

programming languages or run on different machines. Furthermore the

measure should be both realistic and susceptible to theoretical study,

Complexity measures are of two kinds: those which are

static (independent of the size and characteristics of the input data)

and those which are dynamic (dependent upon the input data), Atypical

static measure is program length. Program length in some sense measures

the simplicity and elegance of an algorithm (an algorithm with a short

program and short correctness proof 1s simple; an algorithm with a short

program and long correctness proof is elegant), This measure 1s most

- appropriate 1f programming time 1s important or if the program 1s to be

run infrequently.

Dynamic complexity measures provide information about the resource

requirements of the algorithm as a function of the characteristics of

the input data. Typical dynamic measures are running time and storage

space. These measures are appropriate 1f the program 1s to be run often.

Running time 1s usually the most important factor restricting the size of )

problems which can be solved by computer; most of the problems to be

examined in Section 5 require only linear space for their solution.



However, for problems with linear-time algorithms, storage space may

] be the limiting factor. Storage space has been used as a measure in

proofs of the computational intractability of certain problems (see

Section 2), but most efficiency studies emphasize running time.

Dynamic measures require that we specify the input data. One

possibility 1s to assume that the data for a given problem size 1s the

worst possible. A worst-case measure of running time or storage space

| as a function of problem size provides a performance guarantee; the

program will always require no more time Or space than that specified

by the bound. A worst-case measure 1s in this sense not unlike a proof

of program correctness. .

For some algorithms a worst case bound may be overly pessimistic;

- for instance, the simplex method of linear programming (Dantzig [1963]),

which has an exponential worst-case time bound (Klee and Minty [1972]),

seems to run much faster than exponential on real-world problems (Dantzig

[1963]). In such cases an "average" case or "representative" case may

give a more realistic bound. For certain problem domains, such as sorting

and searching (Knuth [1973]), average case analysis is almost always more

realistic than worst-case analysis, and 1n these areas much average-case

analysis has been done. However, average-case analysis has its drawbacks.

It may be very hard to choose a good probability measure. For instance,

assuming that different parts of the input data are independently

distributed may make the analysis easier but may be an unrealistic

assumption; furthermore even a relatively simple algorithm may rapidly

. destroy the independence. With average-case analysis one additionally

runs the risk of being surprised by a very rare but very bad set of input

data.



Any concrete complexity measure must be based on a computer model, One

possible choice is the random access machine (Cook and Reckhow [1973]), which

is an abstraction of a general-purpose digital computer. The memory of such

a machine consists of an array of storage cells, each able to hold an

integer. The storage cells are numbered consecutively from one; the number

of a storage cell is its address. The machine also has a fixed finite set

of registers, each able to hold an integer. (For problems involving real

numbers, we allow storage cells and registers to hold real numbers.) In

one step, the machine can transfer the contents of a register to a storage

cell whose address is in a register, or transfer to a register the contents

of a storage cell whose address 1s 1n a register, or perform an arithmetic

operation on the contents of two registers, Or compare the contents of two

registers. A program of fixed finite length specifies the sequence of

operations to be carried out. The inital configurationof memory

represents the input data, and the final configuration of memory represents

the output. The details of this machine model are unimportant in that

reasonable variations do not affect running time or storage space by more

than a constant factor.

A random access machine 1s sequential; 1t carries out one step at

a time. Much work has been done on the computational complexity of

parallel algorithms, but I shall not discuss this work here.

-The random-access machine model provides a useful tool for

realistically measuring the efficiency of particular algorithms,

but it has serious drawbacks for lower bound studies, Since a

single storage cell can hold an arbitrarily large integer, 1t 1s

possible on a random access machine to carry out computations in

parallel by encoding several small numbers 1nto one large one. One
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can avoid this problem by assuming that the time required for an integer

operation 1s proportional to the length of 1ts binary representation

: (Aho, Hopcroft, and Ullman [1974]), or by requiring that all integers be

bounded in absolute value by some constant times the size of the input data.

Random-access machines are extremely powerful; in particular, they

can perform arithmetic on addresses. This ability is useful for representing

multidimensional arrays (Knuth [1968]), performing radix sorts (Knuth [1973]),

| storing hash tables (Knuth [1973]), and the like. However, determining the

theoretical limits of this capability seems to be a hard problem.

Kolmogorov [ 1953], Kolmogorov and Uspenskii [ 1963 J], Knuth [ 1968],

Sch8nhage [1973], and Tarjan [1977] have proposed machine models in which

access to memory is by explicit reference only, and no address arithmetic

1s possible. I shall call such a machine a linked memory machine. These

machines accurately model the capabilities of list-processing languages

- such as LISP and the list-processing features of general-purpose languages

such as Algol-W and PL/1, and they appear to be more amenable to analysis

than random-access machines.

Another very simple machine model, the Turing machine (Turing [1936-7]),

has been used in many theoretical studies. A Turing machine has a memory )

- consisting of a tape. The tape is divided into cells, each capable of

holding one of a finite number of symbols. The machine possesses

a finite internal memory and & read/write head which can scan one tape

cell at a time. In one step, the machine can read a tape cell, write a

new symbol in the cell (erasing what was there previously), move the

read/write head one cell forward or backward on the tape, and change

) the internal memory state, The decision as to what to do at each step

] depends only on the current internal memory state and the contents of

the tape cell being read; this decision is encoded for each internal

|



state and each tape symbol in a decision table which forms the program

of the machine.

Turing proposed his machine model in 1936, before electronic digital

computers existed; he was attempting to model computational processes in

the abstract, without reference to any real computer. Though Turing's

model 1s inadequate for a large part of concrete complexity research, 1ts

simplicity and the fact that any random access machine can be simulated

on a Turing machine with only a polynomial blow-up in running time makes

the Turing machine extremely useful for studying very difficult computational

tasks. It 1s also valuable for studying problems where tapes are the

storage device, as for instance in tape sorting (Knuth [1973]).

In lower bound studies the focus 1s often on some critical operation;

one counts 1n the running time occurrences only of that critical operation.

For instance, 1n sorting and selection problems 1t 1s useful to count only

comparisons (or general binary decisions), measuring the complexity of a

problem by the depth of a decision tree for it (sho, Hopcroft, and Ullman

[1974]). In arithmetic and algebraic problems, it is useful to count only

arithmetic operations and to assume that no decisions are made; 1.e., that

the computations performed are independent of the input data (for a particular

problem size). In this case one measures the complexity of a problem by the

length of a_straight-line program (Aho, Hopcroft, and Ullman [197k]). In

other situations memory accesses may be the critical operations,

In this paper I shall use worst-case running time on a random-access

machine as a measure of algorithmic complexity. This measure is useful

and realistic for a wide range of combinatorial problems. I shall

ignore constant factors in running time, since such constant factors depend

upon the exact model of computation, they are often hard to compute, and
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they tend, at least for large-sized problems, to be washed out by

asymptotic growth rates. To indicate functional relationships, I

shall use the following notation. If f and g are functions of n ,

" f(n) is 0(g(n)) " means f (n) < cg(n) for all n , where c is a

suitable positive constant, and " f(n) is Q(g(n)) " means f(n) > cg(n)

for all n , where c is a suitable positive constant.
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3, Complexity of Intractable Problems.

Inspired by Hilbert [1926] and other formalists, mathematicians of the

early twentieth century hoped to find a formal system which would be adequate

for expressing and veryifying all mathematical truths. These hopes were

dashed by GBdel [1931], who in his famous incompleteness theorem demonstrated

that no method of proof could be both subject to mechanical verification

and powerful enough to prove all theorems of elementary arithmetic. Their

| interest in the foundations of mathematics prompted logicians to cofront

the question, "What 1s mechanical verification?" or equivalently, "What 1s

an algorithm?". Church [ 1936], Kleene [ 1936], Post [1936], Turing [1936-T7]),

and others provided formal definitions of an algorithm. These definitions

are superficially different but provably equivalent, in the sense that if

a problem is solvable according to one definition of an algorithm, then

.it 1s solvable according to all the other definitions. This robustness

of the notion of an algorithm is usually stated as Church's thesis: ally

algorithm (in the informal sense) can be expressed as a Turing machine,

and any Turing machine expresses an algorithm.

Once a formal definition of an algorithm existed, 1t was possible

for mathematicians to study the power of computation. Turing proved that

no algorithm existed for determining whether a given Turing machine with a

given input will ever halt. Other researchers discovered a number of such .

undecidable problems (Jones [197h]), which correspond in computer science

to the incompleteness results of GBdel and others in logic. Perhaps the

capstone to this research on computability is Matijasevie's 1970 proof,

building on earlier work by Martin Davis and Julia Robinson, that Hilbert's

tenth problem is undecidable (Davis, Matijasevic, and Robinson [1976]).

Hilbert's tenth problem is to determine whether a given polynomial equation

has & solution 1n integers.
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Two proof techniques, diagonalization and simulation, pervade

computability theory. Diagonalization is based on ancient self-reference

paradoxes; Cantor [1874] used it to prove that there are more real numbers than

integers and G8del used it to prove his incompleteness result. One can

use 1t 1n the following way to devise an undecidable problem. Suppose

we are interested 1n yes—-no questions about the integers, such as "Is n

even?" or "Is n prime?" Suppose we have a listing Bs Bos Ass ees OF
all algorithms for answering such questions (for any of the standard

definitions of an algorithm it 1s easy to produce such a listing).

Consider the set S of integers such that n is an element of S if

and only if algorithm A, answers "no" (or does not answer at all) on

input n . Then the question "Is n an element of S ?" is undecidable,

since each algorithm in the list Byy hyy Bye : produces a wrong
answer on at least one input ( A is wrong on input n ) and by Church's

thesis this list contains all possible algorithms, Turing used the

same 1dea to show the undecidability of the halting problem for Turing

machines.

Simulation 1s a method for turning one problem or problem-solving

) method into another. Once we have one undecidable problem Py , We can

prove another problem Fs undecidable by showing that if Fy has an

algorithm then this algorithm can be used to solve Py . To accomplish

'this we provide an algorithm which converts an instance of problem Py

into one or more instances of problem Fy , Thus reducing Py to P,

(or transforming Py into P, ). Similarly, to show that two definitions

of an algorithm are equivalent, we show how to simulate an algorithm

according to one definition by an algorithm according to the other

definition,
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The development of general-purpose digital computers made possible

the implementation and execution of complicated algorithms, and the

theory of computability became a matter of more than mathematical

. interest. However, this theory ignores questions of resource use, which |

limits its power to identify what 1s possible in practice. Many problems

which obviously have algorithms seem to have no good algorithms. For

instance, consider the maximum stable set -problem: given a graph, find in it

a maximum number of vertices, no two adjacent. Since a graph with n

vertices has only 2" subsets of vertices, an exponential-time algorithm

for this problem exists. However no one has yet discovered a substantially

faster algorithm for this problem.

[Table 3.1]

Tables 3.1 and 3.2 1llustrate the importance of this phenomenon,

‘Table 3.1 estimates running times of algorithms with various time

bounds. The table shows that constant factors become less and less

important as problem size increases; on large problems the asymptotic

growth rate of the time bound dominates the constant factor. The table

also shows that running time grows explosively if the time bound is

_exponential. Table 3.2 estimates the maximum size of problems solvable

in a given amount of time. Increasing the amount of time (or the speed

of the machine) by a large factor does not substantially increase the

size of problems solvable unless the time bound grows more slowly than

exponential.

[Table 3.2]

Tables 3.1 and 3.2 suggest a natural division between good algorithms

(those with worst-case time bounds polynomial in the size of the input)

and bad algorithms. Edmonds [1965] was apparently the first to stress this
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distinction. I shall call a decidable problem tractable if it has a

polynomial-time algorithm and intractable otherwise. The distinction

between tractable and intractable problems 1s independent of the machine

model, since any of the commonly used machine models can be simulated by

any other with only a polynomial loss in running time. As Tables 1 and 2

show, 1t 1s not feasible to execute exponential-time algorithms on large

problems. Many combinatorial problems are easily solvable in exponential

| time by exhaustively checking cases, but solving such problems in polynomial

time seems to require much greater insight. Most known good algorithms

have time bounds which are polynomials of small degree ( 0(nd) or better).

It 1s a major task of complexity theory to identify which natural problems

are tractable and which are intractable.

Hartmanis, Lewis, and Stearns took the first steps toward exhibiting

natural intractable problems (Hartmanis, Lewis, and Stearns [1965];

Hartmanis and Stearns [1965]). By diagonalizing over all algorithms with

a given space bound 5, (n) » they were able to obtain a problem solvable

in space 8,(n) but not in space S,(n) , for any space bounds 5, (n) and

S,(n) satisfying lim inf 8, (n)/s,(n) = 0 and a few other technical
n —+o

; constraints. They proved a similar but somewhat weaker result for

time complexity. These results imply 1n particular that there are problems

solvable in exponential space but not in polynomial space, and problems

solvable in exponential time but not in polynomial time.

Unfortunately, the intractable problems produced by diagonalization

are not natural ones. Meyer and Stockmeyer [1972] proved the

intractability of a natural problem. They showed that the problem of

determining whether two regular expressions with squaring denote the

13
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same set requires exponential space (and hence exponential time)

for its solution. A regular expression 1s a formula constructed from

the symbols A , O , 1 , U, . » *, (,) according to the following

rules. Each such formula denotes a set of strings of zeros and ones.

3.1 0 is a regular expression denoting the set {0};

1 is a regular expression denoting the set {1} ;

A 1s a regular expression denoting the set whose single element

1s the empty string.

3.2 If A and B are regular expressions denoting sets L(A) and

L(B) , respectively, then

(AUB) is a regular expression denoting the set L(A) yUL(B) ;

(AB) is a regular expression denoting the set

{xy| xe L(A) and. veL(B)} .

A* is a regular expression denoting the set consisting

of the empty string and all strings formed by concatenating

one or more strings in L(A) .

Meyer and Stockmeyer added an additional rule:

PP
5.5 If A is a regular expression, then A~ is a regular expression

denoting the same set as (A.A),

To prove that the equivalence problem for two such expressions 1s

intractible, Meyer and Stockmeyer used simulation. They devised a

polynomial-time algorithm which, given a Turing machine, an input, and

an exponential space bound, would construct a regular expression

14



representing the computation of the Turing machine on the given input.

The expression 1s such that it denotes the same set as (oul)

- 1f and only if the Turing machine does not accept the input within the

given space bound. It follows that the equivalence problem for regular

expressions with squaring is as hard(to within a polynomial time blow-up)

as any yes—no question answerable in exponential space by a Turing machine.

Since the Hartmanis, Lewis, Stearns result implies that some problem

exists which can be solved in space on but not space 2% /n , The

equivalence problem for regular expressions must require exponential

space.

In the last five years, several more such results have been

discovered. Hunt [1973] showed that if set intersection is substituted for

squaring the equivalence problem for regular expressions still requires

exponential space. Stockmeyer and Meyer [1973] showed that if set

subtraction 1s substituted for squaring the equivalence problem for

regular expressions has a non-elementary space bound. Fischer and Rabin

[1974] proved that testing the validity of a formula in Presburger

arithmetic (the theory of natural numbers with + as the only operation)

requires 2 space, for same positive constant c¢ . Cardoza, Lipton,
and Meyer [1976] showed that the word problem for Abelian groups requires

exponential space. Jazayeri, Ogden, and Rounds [1975]

showed that testing the circularity of attribute grammars (a problem

arising 1n programming language semantics) requires exponential time.

The idea in all these proofs is the same; one shows how to efficiently

convert any computation with a particular space or time complexity into

an instance of the given problem, and one appeals to the Hartmanis, Lewis,

Stearns results to assert the existence of an intractible problem with

15
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the particular space or time complexity.

Significantly, a number of apparently intractable problems, such as

the maximum stable set problem, are not included in the list of known

intractable problems. These problems have the following property. If

such a problem is phrased as a yes—-no question, and the answer 1s "yes",

then there 1s a polynomial-length proof of the answer. For instance,

suppose we rephrase the maximum stable set problem as follows: "Does

a given graph G contain a stable set of k vertices?" If the answer

is yes, one can prove it by exhibiting the stable set and showing that

its vertices are pairwise non-adjacent.

To formalize this notion of polynomial-length proof, we introduce

non-deterministic machines. A non-deterministic machine may, at various

times during its computation, make a guess as to what to do next. The

machine accepts a given input 1f there exists some sequence of guesses

which causes the machine to eventually answer "yes". We define the time

(or space) required by the machine to accept an input as the minimum

amount of time (or space) used by an accepting computation. The following

non-deterministic algorithm solves the maximum stable set problem in

. polynomial time: First, guess a subset of k vertices. Next, check all

pairs of these vertices for adjacency. Accept 1f no two of the vertices

are adjacent. Let P denote the class of yes—no problems solvable

deterministically 1n polynomial time and let 7 denote the class of

yes—-no problems solvable non-deterministically in polynomial time. The

question we wish to answer 1s, "Are there natural problems which are in

Ne but not in gp 2?"

Cook [1971] showed that NP contains certain "hardest" problems,

called Np -complete problems. A problem P is 7 -complete 1f
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it satisfies two properties:

3.4 P is in 7p.

3.5 If Q is in MP then Q is reducible to P in polynomial time.

To say that Q is reducible to P in polynomial time means that

there 1s a (deterministic) polynomial-time algorithm which, given an

| instance of problem Q, will convert it 1nto an instance of problem P ,

such that the answer to the instance of Q is "yes" if and only if the

answer to the instance of P is "yes". If Q 1s reducible to P in

polynomial time and P has a polynomial-time algorithm, then so does 9@ .

Thus if any Nf -complete problem has a polynomial-time algorithm, f = 9p.

Cook's main result was to show that the satisfiability problem of

propositional calculus is NP-complete, The satisfiability problem 1s to

determine whether a given logical formula 1s true for at least one

assignment of the values "true" and "false" to the variables. It 1s easy

to show that this problem satisfies 3.4. Cook proved 3.5 by giving a

polynomial-time algorithm for constructing, from a given non-deterministic

Turing machine, a given input, and a given polynomial time bound, a logical

formula such that the formula 1s satisfiable 1f and only 1f the Turing

machine accepts the input within the time bound.

If one knows a single problem P to be 7g -complete, one can prove

another problem Q 7NP -complete by showing that Q is in 7 and that P

is reducible in polynomial time to Q ; property 3.5 then follows from the

transitivity of polynomial-time reducibility. Karp [1972] used this

idea to exhibit a number of natural Nf -complete problems. Others

continued this work, and the number of known 7g -complete problems is

17
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now in the hundreds (see for instance Even, Ital, and Shamir [1976];

Garey, Johnson, and Stockmeyer [1976]; Garey, Johnson, and Tarjan [1976];

Karp [1975]; Sahni [1974]; Sethi [1975]; and Ullman [1973]). In addition

to the satisfiability problem and the maximum stable set problem,the

following problems are NP-complete,

Subgraph isomorphism (Cook [1971]). Given two graphs Gy and G,, , 1s

Gy isomorphic to a subgraph of Gy 2

Graph coloring (Karp [1972]). Given a graph G , can its vertices be

colored with k colors so that no two adjacent vertices have the same

color? This problem is 7P -complete even if k = 3 and G is

planar (Garey, Johnson, and Stockmeyer [1976]), whereas it follows

from Appel and Haken's proof of the four color conjecture (Appel and

. Haken [1977]) that there is a polynomial-time algorithm to color any

planar graph with four colors.

Hamilton cycle (Karp [1972]). Given a graph G does it contain a cycle

which passes through every vertex exactly once? This problem is a

special case of the travelling salesman problem (see Section 4). It

is NP-complete even if G is planar (Garey, Johnson, and Tarjan [1976]).

Subset sum (Karp [1972]). Given a set of numbers NysNpyeeesly and a sum s ,

does some subset of the numbers sum to exactly s ?

Maximum planar subgraph (Liu and Geldmacher [1976]). Given a graph G , does

it contain a planar subgraph with at least k edges?

A major open problem of complexity theory 1s to determine whether f = Np.

A natural approach to this problem would be to try using diagonalization to

exhibit a problem in Nf but not in § . However, recent work by Baker,

Gill, and Solovay [1975] suggests that diagonalization is impotent for

18
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resolving the P = NP? question. Even without a proof that p = ne,

it 1s still fruitful to add new natural problems to the list of

- NP -complete ones; the large amount of time spent by bright people

fruitlessly searching for polynomial-time algorithms for Nf -complete

problems is strong evidence that the NP-complete problems are in fact

intractable.
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4, Techniques for Good Algorithms.

Although many important combinatorial problems seem to be intractable,

many others have good algorithms. A small number of data manipulation

techniques form the basis for these algorithms. This section examines

these techniques, which are outlined in Table 4.1.

[Table 4.1]

Data Structures.

Any algorithm (good or bad) requires one or more data structures TO

represent the elements of the problem to be solved and the information

computed during the solution process. A data structure 1s a composite

object composed of elements related in specified ways. Associated with

the data structure 1s a set of operations for manipulating its elements.

Once a good implementation of a given data structure and its operations

1s known, one can regard the operations as primitives when implementing

any algorithm which uses the data structure. The efficiency of the

algorithm will depend to a large extent upon the implementation of the

underlying data structure.

There are two data structures upon which all others are based:

arrays and linked structures. An array 1s a collection of storage

cells numbered consecutively. Two operations are assoclated with an

array: given the number of a storage cell, one can either store a value

in the storage cell (destroying the current value) or retrieve the current

value from the storage cell. The memory of a random access machine and

of most digital computers 1s an array. One can use arrays to represent

vectors, matrices, tensors, and multidimensional arrays (Knuth [1968]).
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A linked structure consists of a collection of records. Each record

1s divided into a number of items, each with an identifying name. The

structure of all records is identical. Items are of two kinds, data

items and reference items. Data items contain data. Reference items

contain pointers to records. Two operations are possible on a linked

structure; given a pointer to a record, one can either store a value

into an 1tem in the record or retrieve the current value from an item

in the record. Figure 4.1 illustrates a linked structure. Whereas

array addresses are integers capable of being manipulated by arithmetic

operations, no operations are allowed on linked structure pointers

except storage, retrieval, and testing for equality. The memory of a

linked memory machine is a linked structure, and most list-

processing languages can be regarded as operating on linked structures,

[Figure 4.1]

It 1s easy to implement arrays and linked structures so that

storage and retrieval require constant time. Linked structures can be

implemented as collections of arrays (see Figure 4.1); this makes list-

processing easy in languages such as FORTRAN which do not possess an

. explicit list-processing facility. It seems to be impossible to implement

an array as a linked structure in such a way that storage and retrieval

take constant time, though I know of no proof of this fact.

Using arrays and linked structures, one can implement many different

data structures. I shall consider here five classes of data structures:

lists, unordered sets, ordered sets, graphs, and trees.

A list is a sequence of elements. The first element of a list is

its head; the last element 1s its tail. Simple operations on a list

include scanning the list to retrieve its elements in order, adding an

21



a

element as the new head of the list (making the old head the second

element); adding an element as the new tail, deleting and retrieving

the head of a list, and deleting and retrieving the tail of a list.

Lists on which only a few of these operations are possible have special

names. A stack 1s a list with addition and deletion allowed only at the

head. A queue 1s a list with addition allowed only at the tail and

deletion allowed only at the head. A deque (double-ended queue) is a

| list on which addition or deletion 1s possible at either end. One can

implement a deque either as a circular array (addresses are computed

modulo the size of the array) or as a singly linked structure (1f deletion

from the tail 1s not necessary). See Figure 4.2. In either case, all

operations except scanning require constant time. The array representation

uses no space for storing pointers but requires that an amount of storage .

equal to the maximum size of the list be permanently allocated to the list.

[Figure 4.2] |

Other important list operations include concatenating two lists

(making the head of the second list the element following the tail of

the first), inserting an element before or after an element whose location

in the list 1s known, and deleting an element whose location in the list

is known. These operations require a linked structure for their efficient

implementation. A singly linked structure 1s sufficient for concatenation

and- for insertion after another element, Insertion before another element

and deletion require a doubly linked structure. See Figure 4.3. An

alternate way to handle deletion 1s to provide each element with a flag

which 1s set to "true" 1f the element 1s to be deleted. The element 1s

not explicitly deleted until the next scan through the list.

[Figure 4.3]
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The list operations hardest to implement are inserting an element

; at the k-th position in a list, retreiving the element at the k-th position

in a list, or deleting the element at the k-th position in a list. It is

possible to implement these operations to run in 0(log n) time, where n

is the size of the list, by using AVL trees (Knuth [1973]) or 2-3 trees

(Aho, Hopcroft, and Ullman [197L4]), which are rather complicated linked

| structures. Recently Guibas, McCreight, Plass, and Roberts [1977] have

found a way to carry out these operations in 0{log k) time.

An unordered set 1s a collection of distinct elements with no imposed

relationship. Basic set operations are adding an element to a set,

deleting an element from a set, and testing whether an element 1s in a

set. One way to represent a set 1s by a singly linked list. Addition

requires constant time but testing and deletion require O(n) time, where

: n 1s the size of the set. Alternatively, 1f the elements of the set are

values which can be compared and sorted, one can represent the set by an

AVL tree or a 2-3 tree in such a way that all three operations require

O(log n) time (Knuth [1973]; Aho, Hopcroft, and Ullman [197L]).

Another way to represent a set is by a bit vector (Aho, Hopcroft, and

- Ullman [1974]), which is an array with one storage cell for each possible

element. A storage cell has two possible values: true, 1ndicating that

. the set contains the element, and false, indicating that it does not. All

three operations require constant time using this representation. Bit vector

representation 1s only feasible 1f the number of possible elements 1s small.

If the number of possible elements 1s large, one can mimic the behavior

) of a bit vector by using a_hash table (Knuth [1973]). A hash table consists

] of a moderately sized array and a hashing function which maps each possible
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element into an array address. If an element 1s present, the element

(or a pointer to it) 1s stored at (or near) the address specified by the

hashing function. Since two or more elements may hash to the same address,

some mechanism must be provided for resolving such collisions. Hash tables

are used extensively in compilers, and many papers have been written about

them (see Knuth [1973], Morris [1968] ). With a hash table, addition,

deletion, and testing require O(n) time in the worst case but only

| constant time on the average.

Additional set operations are useful 1f two or more sets exist. These

include the ability to form a set which 1s the union, intersection, or

difference of two sets. For most representations union, intersection,

and difference require time proportional to the sum of the sizes of the

sets. However, 1f the universe of elements 1s small enough so that a bit

'vector can fit into a few computer words and the computer possesses bit

vector operations, then union, intersection, and difference require constant

time.

An ordered set 1s a collection of elements, each with an associated

numeric value. Two important operations on ordered sets are sorting the

_elements in increasing order and selecting the element with k-th largest

value. A variety of ways exist to sort n elements in O(n log n) time

(Knuth [1973]); if binary comparisons are the only operations used to

manipulate the values then Q(n log n) time is required in both the average

and the worst case to sort (Knuth [1973]). Selecting the k-th largest

element requires O(n) time (Blum, Floyd, Pratt, Rives-t, and Tarjan [1973];

SchBnhage, Paterson, and Pippenger [1975]).

A priority queue 1s an ordered set on which the following operations

are allowed: adding an element to the queue, retreiving the minimum-value
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element in the queue, and deleting an element whose location is known

from the queue. By using binomial trees (Vuillemin [1977], Brown [1977]),

leftist trees (Knuth [1973] ), or 2-3 trees (Aho, Hopcroft, and Ullman

[1974]) one can implement priority queue operations so that they require

O(log n) time, where n is the size of the queue. These implementations

also allow one to combine two queues into a larger queue (destroying the

smaller queues) in 0 (log n) time.

If the values of the elements in an ordered set are integers of

moderate size, then the ordered set operations can be speeded up. Using

a k-pass radix sort, one can sort n integers in the range 1 to mt

in O(km+n) time (Knuth [1973]). Peter van Emde Boas has devised a

method for implementing priority queues with integer values 1n the range

1 to n so that the queue operations require 0(log log n) time

(van Emde Boas, Kaas, and Zijkstra [1975]).

| A graph 1s a set of vertices and a set of edges, each edge a pair

of vertices. One way to represent a graph 1s by a two-dimensional array A,

called an adjacency matrix. The value of A(i,J) is one if (i,j) is an

edge of the graph; otherwise the value of A(i,j) is zero. An alternate

way to represent a graph 1s by an adjacency structure, which 1s an array

- of lists, one for each vertex. The list for vertex 1 contains vertex J]

if and only if (i,j) is an edge of the graph. See Figure 4.4.

[Figure 4.41

The adjacency matrix representation saves space 1f the graph 1s dense

(i.e., most possible edges are present); it also allows one to test the

presence of a given edge 1n constant time. However, Anderaa and Rosenburg

conjectured (Rosenberg [1973]) and Rivest and Vuillemin [1975] proved that

testing any non-trivial monotonids graph property requires (n°)

J A graph property 1s non-trivial 1f for any n the property 1s true for
some graph of n verticesand false for some other graph of n Vertices.
A graph property is monotone if adding edges to a graph does not change
the property from true to false.
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probes of the adjacency matrix in the worst case, where n 1s the number

of vertices in the graph. By using an adjacency structure, one can search

a graph in O(n+m) time, where m is the number of edges in the graph;

thus representation by an adjacency structure 1s preferable for sparse graphs.

A tree 1s a graph without cycles. Since a tree is a graph it can be

represented by an adjacency structure. A more compact way to represent

a tree 1s to choose a root for the tree, compute the parent of each vertex

with respect to this root, and store this information in an array

(Figure 4.5). This representation is usable as long as the tree is to

be explored from leaves to root, which is often the case in problems

involving trees.

[Figure 4.51

Recursion.

An important and very general algorithmic technique 1s recursion. .

Recursion is a method of solving a problem by reducing it to one or more

subproblems. The subproblems are reduced in the same way. Eventually

the subproblems become small enough that they can be solved directly. The

solutions to the smaller subproblems are then combined to give solutions

to the bigger subproblems, until the solution to the original problem is

computed. As a simple example of a recursive algorithm, consider the

following definition of the n-th Fibonacci number:

hol F(n) := if (n=1) or (n=2) then 1 else F(n-1)+ F(n-2)

Using recursion, one can often state algorithms much more simply

than would be possible without recursion. Many programming languages,

including Algol, PL/1, and LISp, allow recursive procedures (procedures
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which call themselves). In a language without this facility, such as

FORTRAN, one can implement a recursive algorithm by using a stack to

; store the generated subproblems (Aho, Hopcroft, and Ullman [197L4]).

Dynamic programming (Bellman [1957]) can be viewed as a special kind

of recursion 1n which one keeps track of the generated subproblems and

never solves the same problem twice. As an example of the work which can

be saved 1n this way, consider the computation of the n-th Fibonacci

| number. A recursive procedure based on 4.1 requires time proportional

to the size of F(n) to compute F(n) ; such a procedure performs

F(ntl-i) computations of F(i) for each i in the range from 1 to n .

A better way to compute F(n) 1s to compute each F(i) just once for

each value of, i . The most efficient way to implement a dynamic programming

algorithm 1s to set up a table of solutions to all subproblems, and to fill

in the table from smallest to largest subproblem. Sometimes one can

discard the solutions for small subproblems as the computation proceeds

and re-use the space for larger subproblems. One can evaluate F(n) in

O(n) time with two storage locations by using this idea. (of course,

using a closed-form expression for F(n) results in an even faster

canputation.)

Dynamic programming has been used with great success on a number of

combinatorial problems, including shortest path problems (Floyd [1962]),

. context-free language parsing (Younger [1967], Earley [1970]), error

correction in context-free languages (Aho and Peterson [1972]), and

construction of optimum binary search trees (Knuth [1971], Itai [ 1976]).

Graph Searching.

Most graph problems require for their solution a systematic method

of exploring a graph. A search 1s an examination of the edges of a graph

using the following procedure.
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fHepiltialization) : Mark all edges and vertices of the graph new

(unexplored).

Btdp 2 n(choose aenew startang werdex): e x 1 s t s , halt .

(The entire graph has been explored.) Otherwise, choose a new

vertex and mark it old (explored).

feppl ore an edge): If no new edges lead away from old vertices,

go to step 2. (All of the graph reachable from the current start

vertex has been explored.) Otherwise, choose a new edge leading

away from an old vertex. Mark the edge old. If the other endpoint

of the edge is new, mark it old. Repeat step 3.

Assume for simplicity that all vertices in the graph to be searched

are reachable from the first start vertex selected in step 2. Then the

search generates a spanning tree. The root of the spanning tree 1s the

start vertex. The edges of the spanningtree are the edges which lead to

new vertices when explored in step 3. The properties of the spanning tree

depend upon the criteria used to select the starting vertex in step 2 and

the edges to explore in step 3. For some simple graph problems, such as

finding connected components (Hopcroft and Tarjan [1973c]), any order of

“exploration is satisfactory. However, for harder graph problems the

exploration order 1s crucial.

"In a depth-first search, the edge selected in step 3 is an edge out

of the last explored vertex with candidate edges. If a depth-first search

is performed on an undirected graph, the generated spanning tree has the

property that all non-tree edges connect vertices related in the tree

(Tarjan [1972]1). See Figure 4.6. If such a search is performed on a

directed graph and the vertices are numbered from 1 to n as they are

marked old, then no non-tree edge leads from a vertex to a vertex which 1s
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both higher numbered and unrelated in the spanning tree (Tarjan [1972]).

i See Figure 4.7. A depth-first search can be implemented as a recursive

procedure or with an explicit stack to store the old vertices.

[Figure 4.6]

[Figure 4.71

In a breadth-first search, the edge selected in step 3 is an edge

out of the first explored vertex with candidate edges. Such a search

partitions the vertices into levels depending upon their distance from

the start vertex. In an undirected graph each edge connects vertices in

the same level or 1n two adjacent levels; in a directed graph, no edge

leads from a level-to a level higher than the next level. See Figure 4.8.

A breadth-first search can be implemented using a queue to store the old

| vertices.

i | [Figure 4.8]

Both depth-first and breadth-first search, if properly implemented

using an adjacency structure to store the graph, require O(n+tm) time to

explore an n-vertex, m-edge graph. Although these are the most important

search methods, several others, including topological search (Knuth [1968]),

; lexicographic search (Sethi [1975]; Rose, Tarjan, and Iueker [1976]1), and

shortest-first search (Dijkstra [ 1959], Johnson [ 1977]), are occasionally

useful.

Optimization Methods.

A large class of problems requires the maximization of a function

defined on a graph with weighted edges. It is usually possible to phrase

these problems as linear or integer programming problems (Dantzig [19631],

] Nemhauser and Garfinkel [1972]), but better algorithms than general-purpose
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linear or integer programming methods are available for their solution.

These algorithms use two techniques, greed and augmentation. The most

general. setting for these techniques is in matroid theory (Lawler [1976]),

but one can understand and apply the techniques to graph problems without

knowing about matroids.

Consider the problem of finding, in a set with weighted elements, a

maximum-weight subset satisfying certain additional constraints. The

following greedy method might be useful in solving this problem. sort

the elements by weight. Examine the elements in order, heaviest to

lightest, building up a subset element-by-element. When examining an

element, add 1t to the subset 1f some extension of the subset satisfies

the constraint. Otherwise throw the element away. The resultant subset

certainly satisfies the constraint. Under appropriate conditions, the :

subset will be of maximum possible weight. One problem to which this

method is applicable is the minimum spanning tree problem (Kruskal [1956], |

Prim [1957], Dijkstra [1959], Yao [1975], Cheriton and Tarjan [1976]).

Even 1f the greedy method does not produce optimal solutions, 1t may

produce solutions which are close to optimal (Garey and Johnson [1976]),

and 1t 1s usually easy to implement and fast.

In situations where the greedy method doesn't work, a method of

iterative improvement sometimes does, The idea is to start with any

solution to the constraints and look for a way to augment the weight of

the solution by making local changes. The new solution is then improved

in the same way, and the process is continued until no improvement is

possible. Under appropriate conditions such a locally maximal solution

1s also globally maximum. Even if the solution is not guaranteed to be

maximum, the augmentation method may be a good heuristic; for instance,
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Lin [1965] has applied it with good results to the travelling salesman

problem. The travelling salesman problem is to find a shortest cycle

throughall vertices of a graph with distances on the edges. The

Hamilton cycle problem, a special case of the travelling salesman problem,

is NP-complete,

Data Updating Methods.

Some problems require more sophisticated data manipulation than is

possible with the simple data structures discussed early 1n this section.

Three advanced techniques have been devised for dealing with three diverse

problems which require dynamic updating of data. These techniques are

path compression, partition refinement, and linear arrangement.

Path compression is a method of solving the following problem.

Consider a universe of elements, partitioned initially into singleton

sets. Assoclated with each element is a value. We wish to be able to

carry out the following operations on the sets.

Union: Combine two sets into a single set, destroying the old

sets.

Update: Modify the values of all elements in a given set in a

consistent way.

Evaluat e : Retrieve the value associated with a given element.

A situation of this kind occurs in the compilation of FORTRAN COMMON and

EQUIVALENCE statements (Galler and Fischer [1964]) and in several other

combinatorial problems (Tarjan [1975b]). The set union problem to be

” discussedin Section 5 is the simplest such problem, Galler and Fischer

] [1964] proposed an algorithm for this problem using trees as a data
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structure. McIlroy and Morris confronted the set union problem when trying

to compute minimum spanning trees and proposed an improved method using

path compression on trees (sho, Hopcroft, and Ullman [1974]). Their method,

which 1s very simple to program but very hard to analyze, generalizes to a

number of other problems (Tarjan [1975b]). I shall discuss this method

and its remarkable running time in Section 5.

Another problem involving disjoint sets 1s the following. Suppose

the vertices of a graph are initially partitioned into several subsets.

We wish to find the coarsest partition which 1s a refinement of the given

partition and which 1s preserved under adjacency, 1n the sense-that if two

vertices v and w are contained in the same subset of the partition,

then the sets Av) = {x | (v,x) is an edge] and A(w) = {x | (wx) is an edge]
intersect exactly the same number of times with each subset of the partition.

This adjacency-preserving partition is easily computable in O(mm) time.

Hoperoft [1971] devised a more sophisticated algorithm which runs in

O(m log n) time. Gries [1973] gives a nice description of this algorithm.

Partition refinement 1s useful in solving the state minimization problem

for finite automata (Harrison [1965]) and in testing graphs for isomorphism

(Corneil and Gottlieb [1970]).

A third problem requiring a good data updating method 1s the linear

arrangement problem: Given a set of n elements and a collection of

subsets of the elements, can the elements be arranged in a line so that

each subset occurs contiguously? This problem arises in biochemistry

(Benzer [1959]) and in archaeology (Kendall [1969]). Booth and Lueker

[1976] have devised a method of solving this problem in O(n+m) time,

where m 1s the total size of the subsets, using a data structure they

call a P-Q tree.
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Graph Mapping.

There are two methods of solving graph problems, decomposition and

shrinking, which are related to the algebraic concepts of subalgebra and

homomorphism. One way to solve certaln graph problems is to decompose the

graph into several subgraphs, solve the problem on the subgraphs, and

combine the solutions to give the solution for the entire graph. In most

instances where this technique is useful, the subgraphs are components

(maximal subgraphs) satisfying some connectivity relation. In order to

apply the technique, one must know an efficient way to determine the

components. Good algorithms exist for a variety of connectivity problems

(Tarjan [1972], Hopcroft and Tarjan [1973al, Hopcroft and Tarjan [1973c],

Pacault [1974], Tarjan [197kal, Tarjan [1975c]).

Mother way to solve some graph problems 1s to shrink part of the graph

to a single vertex, solve the problem on the shrunken graph by applying

the idea recursively, and from this solution compute the solution on the

original graph. The shrinking operation corresponds to taking a homomorphic

image of the graph. Generally the part of the graph to be shrunk 1s a

cycle or a union of cycles.
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5. Ten Tractable Problems.

There are hundreds of combinatorial problems for which good algorithms

are known. This section examines ten such problems. I have selected the

problems on the basis of their importance, the range of techniques they

require, and my familiarity with them. The list 1s not meant to be exhaustive

but to be representative of problems with good algorithms, Table5 .1

lists the problems and the techniques used in the best algorithms for them.

Figure 5.1 shows improvements in solution time achieved recently for

these problems.

[Table 5.1]

[Figure 5.1]

Discrete Fourier Transform.

Given an n-dimensional vector CEE cor 7) , the discrete Fourier

transform problem 1s to compute the vector (brs ees 1) given by
n-1

by. = Za » where wot, 0"? are the (complex) n-th roots of
one. This problem arises in signal processing. An algorithm for the

discrete Fourier transform 1s useful as a subroutine in various arithmetic

and algebraic problems, including polynomial evaluation and interpolation

and integer and polynomial multiplication (Knuth [1969],sho, Hopcroft,

and Ullman [1974], Borodin and Munro [1975]).

It is straightforward to compute the discrete Fourier transform in

0(n°) time. Cooley and Tukey [1965] popularized an O(n log n) -time

method, called the fast Fourier transform. They were not the first to use

the method, which originated at least as early as Runge and K¥nig [1924].

The fast Fourier transform uses recursion to cut down the amount of
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in or) time. Fredman [1976] showed that the all pairs problem can

be solved using 0m?) comparisons and only 0 (n° (log log n/log m3)

time total. Avis, Rives-t, and Yao [1977] proved that at least a(n” log n)

comparisons are required 1n the worst case to solve the all pairs problem.

This lower bound 1s one of the few known for a tractable combinatorial

problem.

Linear Eauations on a Planar Graph.

Suppose A 1s an nxn matrix, b 1s an nxl vector of constants,

X 1s an nxl vector of variables, and we wish to solve the system of

equations Ax = b . A standard method for doing this 1s Gaussian

elimination (Forsythe and Moler [1967], Tewarson [1973] ). First, the

matrix A 1s decomposed into a product of two matrices, A = LU, such

. that L is lower triangular (i.e., L has no non-zero entries above the

diagonal) and U is upper triangular (i.e., U has no non-zero entries

below the diagonal). Then Ax = b 1s solved in two steps, by solving

Ly = b , called frontsolving, and solving Ux = y , called backsolving,

Because L andU have special forms, frontsolving and backsolving are

very efficient; the slowest part of Gaussian elimination is the first

’ step, decomposing A into LU .

The decomposition of A proceeds by means of row operations. A row

operation consists of adding a multiple of one row of A to another row

of A. If the multiple 1s chosen correctly, the modified row will have

a zero 1n a previously non-zero position. By systematically applying

such row operations, one can transform the original matrix A into an

upper triangular matrix U ; the row operations performed define a lower

triangular matrix L such that LU = A .
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computation. Recently Winograd [1975, 1976] proposed a method for

computing the discrete Fourier transform using only O(n) multiplications.

This method may be superior to the fast Fourier transform in practice,

although Winograd has not analyzed the overall running time of his

algorithm.

Matrix Multiplication.

Given two nxn matrices, the matrix multiplication problem is to

determine their matrix product. The standard high school method of

matrix multiplication requires 0(r) time. Strassen [1969] devised a

way to multiply two 2x2 matrices with only seven multiplications, and

used this 1n a-recursive matrix multiplication algorithm requiring only

log, 7
O(n ) time. This surprising result has acted as a stimulus for

mcuh research in the complexity of algebraic problems. No one knows

whether Strassen's algorithm is improvable. Strassen's algorithm has

been used to compute transitive closures of graphs (Munro [1971], Fischer

and Meyer [1971]) and to do context-free language parsing (Valiant [1975a])

in 02%) tine.

A problem related to matrix multiplication is the shortest path

problem. Given a directed graph with positive edge distances, the single

source shortest path problem is to find the minimum distance from a given

vertex to every other vertex, The all pairs shortest path problem is to

find the minimum distance between all pairs of vertices. Dijkstra [1959]

devised an algorithm for the single source problem which requires either

] o(n°) time or O(m log n) time depending upon the implementation, where

n 1s the number of vertices andm the number of edges in the graph

(Johnson [1977]). Floyd [ 1962] gave a way of solving the all pairs problem
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As an example of the improvement possible by taking advantage of

sparsity, consider the graph in Figure 5.2, Such a kxk grid graph

arises in the numeric solution of differential equations. Ordinary

dense Gaussian elimination requires 0(n°) space and oO (rm) time on

such a matrix, 1f n = K° . The bandwidth scheme of sparse elimination

reduces the space to o(m>/?) and the time to 0(n°) (Cuthill and

McKee [ 19693, Tewarson [ 1973]). George [1973] discovered an even better

method, called nested dissection, which requires O(n log n) space and

om! 2) time. Hoffman, Martin, and Rose [ 1973 ] showed that, to within

a constant factor, nested dissection requires the least fill-in and

computing time of any ordering scheme for Gaussian elimination on kxk

grid graphs.

Nested dissection 1s a recursive method which uses the fact that a

(2k+1l) x (2k+1l) grid graph consists of four kxk grid graphs and the

bktl -vertex boundary between them (Figure 5.2). Many sparse matrices

which arise in practice do not have such a nice structure, and one might

ask whether nested dissection has any natural generalization. Recently

Lipton, Rose and Tarjan (Tarjan [1976b]) discovered a way to 'extend nested

dissection to arbitrary planar graphs so that the storage space 1s still

O(n log n) and the running time still o(n>/?) . Such graphs arise in

two-dimensional finite element problems (Martin and Carey [1973]).

Global Flow Analysis.

Systems of linear equations arise in contexts other than linear

algebra. For instance, the shortest path problem can be formulated as a

system of equations, with minimization replacing addition and addition

replacing multiplication (Backhouse and Carré [1975]). Another situation
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If A 1s originally a dense (mostly non-zero) matrix, then LU

decomposition requires 0(n°) space and Or) time, and frontsolving

and backsolving require 0(n°) time. In many large systems of equations,

however, the matrix A 1s sparse. For a sparse matrix, the time and

storage space required by Gaussian elimination depend in a complicated

way upon the zero-non-zero structure of the matrix. In particular, a

row operation may introduce new non-zeros (called fill-in) into positions

originally zero. It 1s desirable to rearrange the matrix A by means

of row and column permutations so that the fill-in and running time of

Gaussian elimination are reduced.

For this purpose it 1s useful to represent the zero-non-zero structure

of A bya graphG . The graph contains one vertex for each row and

column of A and one edge (i,j) for each non-zero entry (i,j) in A .

If A is symmetric, G 1s undirected; 1f A is unsymmetric, G 1s

directed. The graph G represents A and all matrices formed by

simultaneously permuting rows and columns of A . By studying the propertie:

of G, 1t may be possible to find a reordered version of A such that

Gaussian elimination 1s efficient. (It 1s necessary to know that the

permutations do not destroy the numeric stability of the elimination

process. I shall ignore this issue here; see Forsythe and Moler[ 1967],

Tewarson [1973].)

Parter [1961] was one of the first to suggest the usefulness of this

approach. The idea has been extensively developed. For general results

concerning the relationship between Gaussian elimination and graph theory,

see Rose [1970]; Harary [1971]; Rose [1973]; Rose, Tarjan, and Lueker

[1976]; Duff [1976]; and Rose and Tarjan [1977].

[Figure 5.2]
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Hoperoft and Ullman [1972] discovered an O(m log n) -time test for

reducibility, which Ullman [1973] combined with clever use of 2-3 trees

to give an O(m log n) -time method for global flow analysis. Kennedy

[1975] discovered a rather different method for global flow analysis,

which is O(m log n) -time by a result of Aho and Ullman [1975].Graham

and Wegman [1976] discovered how to use path compression to get yet

another O(m log n) -time algorithm. Tarjan [1974c] gave an O(m @(m,n))

-time algorithm for testing reducibility, and later improved

the Graham-Wegman algorithm to run in O(m a(m,n)) time (Tarjan [1975c]).

Here (myn) is a functional inverse of Ackermann's function to be defined

below. =

Pattern Matching on Strings.

Suppose x and y are two strings composed of. characters selected

from a finite alphabet, and we wish to determine where x occurs as a

contiguous substring of vy . If m is the length of x and n is the

length of y , then a straightforward algorithm solves this problem in

O(nm) time. Knuth, Morris, and Pratt [1977] devised an O(n+m) -time

algorithm for pattern matching. Their algorithm processes the pattern x ,

creating a data structure representing a program to recognize the pattern.

The algorithm then scans the string y character-by-character according

to-the steps of the program. Boyer and Moore [1975] proposed an even

better algorithm, which, although it has an O{n+m) running time in the

worst case (Knuth, Morris, and Pratt [1972]), requires only 0(n(log, m)/m)
time on the average, where g 1s the alphabet size.

A generalization of the pattern matching problem 1s to find the longest

common contiguous substring of two strings x and y. The pattern
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matching algorithms mentioned above do not seem to apply to this problem,

Karp, Miller, and Rosenburg [1972] described an O((m+n) log(mtn)) -tine

algorithm for longest common substrings. Weiner [1973] discovered an

algorithm using trees in a new way which solves the problem in O(n+m)

time. MecCreight [1976] has provided a simplification and clean description

of this algorithm.

Strong Components.

The strong components problem 1s to determine the strongly connected

components of a given directed graph with n vertices and m edges.

This problem occurs in finding the irreducible blocks of a non-symmetric

matrix (Forsythe and Moler [1967]), in finding ergodic subchains

and transient states of a Markov chain (Fox and Landy [1968]), and in

finding the transitivity sets of a set of permutations (McKay and Regener

[1974]). Sargent and Westerberg [1964] gave an 0(n°) —~time algorithm,

Munro [1971] described an improved algorithm with a running-time of

O(n log n+m) . Tarjan [1972] presented an O(ntm) -time algorithm

which uses depth-first search and a few simple data structures to solve

this problem.

Planarity Testing.

Let G be a graph. The planarity testing problem 1s to determine

- whether G can be drawn 1n a plane so that no two edges cross.

Kurakowski [1930] provided an elegant mathematical characterization of

planar graphs, showing that a graph G is planar if and only if it does

not contain one of the two graphs in Figure 5.3 as a generalized subgraph.

Unfortunately, Kuratowski's criterion seems to be useless as a practical

test for planarity. Auslander and Parter [1961] proposed an algorithm
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which tests planarity by trying to construct a planar representation

for the graph. They gave no time bound for the algorithm, and their

presentation contains an error: the proposed algorithm may run forever.

Goldstein [ 1963] correctly formulated this algorithm, and Shirey [1969]

gave an 0nd) -time implementation of it. Hopcroft and Tarjan [1972]

combined depth-first search and appropriate data structures

in an O(n log n) -time implementation, which was later simplified and

improved to O(n) (Hopcroft and Tarjan [197h]).

[Figure 5.31

Lempel, Even, and Cederbaum [1967] presented another good algorithm,

without giving an explicit time bound. Their algorithm can easily be

implemented to run in 0(n®) time. Booth and Lueker [1976] showed how

to use their P-Q tree data structure in an O(n) -time implementation of

the algorithm.

Maximum Network Flow.

Let G be a directed graph with two distinguished vertices, a

source § anda sink t . For each edge e in G, let c(e) be a

non-negative real-valued capacity. A _flow f on G is a non-negative

“value f(e) on each edge such that, for all vertices v except s and t ,

the total flow on edges entering v 1s equalto the total flow leavingv .

The value of the flow is the total flow leaving s (which is equal to

the total flow entering t ). The maximum network flow problem is to

determine a flow f(e) of maximum value satisfying f(e) < c(e) for

all edges e.

Classic work by Ford and Fulkerson [1962] produced an elegant algorithm

which augments flow along paths. Unfortunately, in the worst case their
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algorithm requires exponential time, though it works exceedingly well

in practice. Edmonds and Karp [1972], by using breadth-first search

to guide the selection of augmenting paths, produced an O(n”) ~time

variation of the Ford-Fulkerson algorithm. Independently, Dinic [1970]

used breadth-first search plus improved updating methods to achieve an

0(n°m) time bound. The best algorithm so far found for this problem is

due to Karzanov [1974], who improved Dinic's algorithm to obtain an

0() time bound.

Graph Matching.

If G 1s an undirected graph, the graph matching problem 1s to find

a maximum mmber of edges in G , no two hating a common endpoint. Such

a set of edges 1s a maximum matching. An important special case of this

problem 1s 1ts restriction to bipartite graphs, A graph 1s bipartite if

its vertices can be partitioned into two sets so that no edge connects

two vertices in the same set.

The bipartite graph matching problem can be transformed via a

linear-time algorithm into a network flow problem in which all edge

capacities are one (Ford and Fulkerson [1962]); for such a problem, the

) Ford-Fulkerson algorithm has an O(mm) time bound. Kuhn [ 1955] used

results of Egervary to obtain essentially the same algorithm, called the

-Hungarian method. Hoperoft and Karp [1973] used breadth-first search

and improved updating methods to achieve an o(nt/? m) time bound.

Their algorithm is essentially the same as Dinic's (Even and Tarjan

[19751).

Berge [ 1957 ] and Norman and Rabin [ 1959] proved that an augmenting

i path method can solve the maximum matching problem on non-bipartite graphs,
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though a good algorithm does not follow from their results. Edmonds [1965]

used cycle shrinking plus the augmenting paths idea to give a polynomial-

time algorithm. He claimed an on’) time bound, though it 1s not hard

to implement Edmonds' algorithm to run 1n o(n° m) time. Lawler [1976]

and Gabow [1976] independently gave O(mm) -time algorithms. Even and

Kariv [1975] ingeniously combined the ideas of Hoperoft and Karp and the

data structures of Gabow to obtain an ont? m log n) -time algorithm.

Set Union.

Let S17 555 ees Sy be n disjoint sets, each containing a single

element. The disjoint set union problem is to carry out a sequence of

operations of the following two types on the sets.

find (x): determine the name of the set containing element x .

ugion(A,B): add all elements of set B to set A (destroying

set B ).

The operations are to be carried out on-line; that is, each instruction

must be completed before the next one is known. Assume for convenience

that the sequence of operations contains exactly n-1 union operations

) (so that after the last union all elements are in one set) andm >n

intermixed find operations (1f m < n , some elements are never found).

Galler and Fischer [1964] proposed an algorithm for this problem in

which each set 1s represented by a tree. Each vertex of the tree represents

one element. The root of the tree contains the name of the set, and each

tree vertex has a pointer to its parent in the tree, See Figure 54.

A find on element x 1s performed by starting at the vertex representing

x and following parent pointers until reaching the root of the

tree; this root contains the set name. A union of sets A and B 1s
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performed by making the root of the A tree the parent of the root

of the B tree.

[Figure 5.41

This algorithm requires O(mm) 'time in the worst case, since an

unfortunate sequence of unions can build up a tree consisting of a single

long path. Galler and Fischer modified the union procedure in the

following way: if B contains more elements than A , then the root

of the B tree 1s made the parent of the root of the A tree, and the

name A 1s moved to the old root of B . See Figure 5.5. This weighted

union heuristic improves the algorithm considerably; Galler and Fischer

proved an O(m-log n) time bound.

[Figure 5.51

| McIlroy and Morris (Aho, Hopcroft, and Ullman [1974]) modified the

: find procedure by adding a heuristic called path compression: after a

find on element x , all vertices on the path from x to the root are

made children of the root. See Figure 5.6. This increases the time of

a find by a constant factor but may save time on later finds.

[Figure 5.6]

The set union algorithm with path compression is very easy to program

but very hard to analyze. Fischer [1972] proved an 0(un/?) upper bound

“and an Q(m log n) lower bound on the worst-case running time of the algorithm

with path compression but without weighted union. Paterson [1972] improved

the upper bound to O(m log n) and thus determined the running time to

within a constant factor for the case when m is O(n) . With both path

: compression and weighted union, the algorithm is even harder to analyze.

Fischer [1972] proved an 0(m log log n) upper bound on the running time.
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Hoperoft and Ullman [1973] improved the upper bound to O(m log* n) ,

1 times

an
where log n = mini | log log . . . log n <1}. Tarjan [1975a] improved

the upper bound to O(m a(m,n)) , where d(myn) is a

functional inverse of Ackermann's function (Ackermann [1928]) defined

as follows.

For i,j > 0 let the function A(i,j) be defined by

(5.1) A(i,0) = 0 ;

A(O,7) = od for 7 > 1;

A(i,1) = A(i-1,2) for i > 1 ;

A(i,j) = A(i-1,A(4,3-1)) for i>1, j > 2.

Let

(5.2) a(m, n) = min{i > 1 | A(i, [2m/n] ) > log, n} Y/

The bound 0{(m a(m,n)) is a rather complicated one for such a simple

algorithm. One may naturally ask whether it is improvable. Tarjan [1975a]

showed that there are worst-case instances of the set union problem

which require Q(m a(m,n)) time when solved by the path compression

algorithm. In fact any linked memory machine requires Q(m a(m,n))

time in the worst case to solve the set union problem (Tarjan [1977]).

Thus Ackermann's function 1s inherent in the problem.

5 For any real number x , | x] denotes the greatest integer not larger
than x.
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6. Future Directions.

The field of combinatorial algorithms 1s too vast to cover in a

single paper or even 1n a single book. I have tried to point out

some of the major results and underlying ideas 1n this field, but there

are certainly many important results I have had to omit. Though much

work on combinatorial algorithms has been done, much remains to be done.

In this concluding section I would like to suggest five areas for future

research, areas 1n which relatively little work has been done but in

which the rewards are potentially great.

Is P=7P7

Answering this question would be a major breakthrough in complexity

theory. Although many people have attempted to solve this problem, very

little progress has been made. It seems that some major new idea is

needed; the evidence of Baker, Gill, and Solovay [1975] suggests that

diagonalization, the standard technique for proving problems hard, may

not be powerful enough to show P # 7P. It is even conceivable that

the P = NP? problem cannot be solved within the framework of formal

set theory (Hartmanis and Hopcroft [1976]).

More generally, we now know almost nothing about the relative power

of deterministic and non-deterministic algorithms, and about the

-relationship between time and space as measures of complexity. Any

results in this area would be important. Recently, Hopcroft, Paul, and

Valiant [1975] were able to show that any computation requiring t (n)

time on a multitape Turing machine can be carried out in t(n)/log t (n)

space. Thus, at least for multitape Turing machines, space 1s a more

” valuable resource than time. This is the only such result known.
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One approach to the Pp = NP? question 1s to consider for a particular

NP-complete problem a restricted class of algorithms and to show that

every algorithm in this limited class requires more than polynomial time,

Results of this kind have been obtained for the satisfiability problem

(Galil [ 1975]), the maximum stable set problem (Chvatal [1976]), and the

graph coloring problem (McDiarmid [1976]).

: Another approach 1s to consider models of computation other

than Turing machines. One possibility is to study the size of Boolean

circuits for computing Boolean functions. For results in this area,

see savage [1976]. A related model is the pebble game used by Hopcroft,

Paul, and Valiant to- obtain their time-space tradeoff result. A study

of Boolean circuits and the pebble game leads rapidly to unanswered

combinatorial questions (Valiant [1975b, 1976]).

Average-Case Analysis.

Although most of the work on combinatorial algorithms outside the

areas of sorting and searching has been worst-case analysis, average-case

analysis 1s potentially important and useful. The results of Erd8s and

Renyi [1960] and others on random graphs form a starting place for

average-case analysis of graph algorithms. Spira [ 1973] has devised

an 0(n° (log n)°) average time algorithm for the all-pairs shortest

path problem, which Bloniarz, Fischer, and Meyer [1976] modified to

compute transitive closures in on" log n) average time. Schnorr [1977]

has devised an O(n log n+m) average time transitive closure algorithm.

Yao [1976], Doyle and Rivest [1976], and Knuth and Sch8nhage [1977] have

analyzed the behavior of set union algorithms for several probability

distributions. Much more work in this area 1s needed,
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Gill [1974] and Rabin [1976] have proposed another kind of average-

case model of complexity, 1n which the algorithm makes use of random

choices. For such an algorithm, one may be able to say that the algorithm

runs fast on the average independentof the input distribution, because

the average 1s taken not over the input but over the possible computations

of the algorithm on a given input. Algorithms exist for testing primality

(Strassen and Solovay [1977]; Rabin [1976]), finding closest points

(Rabin [1976]), and hashing (Carter and Wegman [ 1977]) which are good

in this sense.

Constant Factors and Algorithm Trade-Offs.

The choice of an algorithm in practice mgy depend upon more than

asymptotic running time. A simple algorithm may be better on intermediate-

sized problems than a more complicated algorithm with a faster asymptotic

running time but a larger constant factor. If two algorithms have the

same asymptotic running time, then the constant factors may govern the

choice between them. More careful analysis to determine constant factors

and trade-offs between algorithms would be a useful contribution to

practical computing. Such analysis for a number of problems appears

) in Knuth's books (Knuth [1968, 1969, 1973] ). A recent example of this

research is work by Brown [1977], which compares implementations of

- priority queues and suggests that the binomial tree representation is

best in most circumstances.

Low-Order Lower Bounds.

Just as little 1s known about the boundary between tractable and intractable

problems, little 1s known about whether or not the existing good

algorithms are improvable. Figure 5.1 suggests several tantalizing questions.
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Can two matrices be multiplied in less than 0(n2*oh time? Can the

discrete Fourier transform be computed in less than O(n log n) time?

Can maximum network flows be found in less than O(rr) time? Non-linear

lower bounds exist for only a few problems, such as sorting (Knuth [1973]),

finding shortest paths (Yao, Avis, and Rivest [1977]), disjoint set union

(Tarjan [1977]), and evaluation of symmetric functions (Strassen [1973]).

General Properties of Data Structures and Basic Methods.

The range of techniques and algorithms outlined in Sections L and 5

suggests a basic question: Confronted with a problem, how does one

construct a good algorithm for it? Is there a "calculus of data structures"

by which one can choose the appropriate data representation and techniques

for a given problem? What makes one data structure better than another

. for a certain application? The known results cry out for an underlying

theory to explain them. This is perhaps one of the most challenging

problems facing researchers in algorithmic complexity.
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Appendix: Terminology (See also Berge [1962], Busacker and Saaty [1965],

and Harary [1969]).

A o@aph = (V,E) is an ordered pair consisting of a set wv of

vertices and a set E of edges. Either the edges are ordered pairs (v,w)

of distinct vertices (the graph 1s directed), or the edges are unordered

pairs of distinct vertices, also respresented as (v,w) (the graph is

undirected). If (v,w) is an edge, v and w are its endpoints and

are adjacent. The edge (v,w) leads from v to w . (If undirected,

the edge also leads from w to v .) A graph G' = (V',E') is a subgraph

of G if V!' © V and E' © E . G' is spanning if V' =V . A graph

G' = (V',E') is a homomorphic image of G if there is a mapping from V

onto V' such that (x,y) eE' if and only if x = f(v) and y = f(w)

for some (v,w)eE . G and G' are isomorphic if the mapping is

one-to-one. A graph G' = (V',E') is a generalized subgraph of G if

G' 1s a subgraph of a homomorphic image of G .

A path from A to v. in G is a sequence of edges (vsvo)s oo (v.17) .

This path 1s said to contain edges (vs, ) 3 eeer (vy 107) and vertices

Vis. .oV, , and to avoid all other edges and vertices. The path is simple

if Viseeervy, are distinct except possibly Vv; and Vy the path 1s a

. cycle if v=, The transitive closure of G = (V,E) is the graph

a = (Vv, E) such that (v,w)e E+ if and only if v # w and there is a

path from v to w in G .

An undirected graph 1s connected 1f there 1s a path from any vertex to

any other vertex. A directed graph is strongly connected if there is a

path from any vertex to any other vertex. The maximum connected (strongly

. connected) subgraphs of a graph are called its connected components

(strongly connected components). A graph is planar if it can be drawn in

the plane (with vertices as points and edges as simple curves) so that no
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two edges intersect except at a common endpoint.

A tree T 1s a connected, undirected graph which contains no

cycles. In a tree there is a unique simple path between any pair of

distinct vertices. A rooted, undirected tree (T,r) 1s a tree with a

distinguished vertex r , called the root. A rooted, directed tree is a

directed graph T with.a unique vertex r such that

(i) there is a path from r to any other vertex;

(ii) each vertex except r has exactly one edge leading to it;

(111) r has no edges leading to it.

Any rooted, undirected tree (T,r) can be converted into a rooted,

directed tree by directing each edge (v,w) so that v is contained in

the path from r to w .

In a rooted, directed tree, a vertex w 1s a descendant of a vertex

v (v is an ancestor of w ) if there is a path from v to w. A vertex

v is a child of v (v is the parent of w ) if (v,w) is an edge in the

tree. These definitions extend to rooted, undirected tree by directing the

edges of the tree as above. If G is a graph, a spanning tree of G is a

rooted tree which is a spanning subgraph of G .

A partition o of a set S is a collection of subsets 5:58, ¢ sum 5

of s such that Us, = and 5; Ns; = 9 if 1#3. If 2, Jf
Jj=1

arepartitions of S , J is a refinement of J (and J" is a

coarsening of y ) if, for all S, €/, there is some J} et such that

= 6 .
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Table 3.ls Running Time Estimates.

(One step = one microsecond; logarithms are base two.)
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Table 3.2. Maximum Size of a Solvable Problem.

(A factor of ten increase 1n machine speed corresponds to

a factor of ten increase 1n time.)
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1. Data structures (built from arrays and linked structures).

a. Lists.

b. Unordered sets.

C. Ordered sets.

d. Graphs.

e. Trees.

2. Recursion.

a. Dynamic programming.

| 3. Graph searching.
a. Depth-first.

b. Breadth-first.

1. Shortest-first.

11. Lexicographic.

L. Optimization methods.

a. Greed.

b. Augmentation.

i 5. Data updating methods.

a. Path compression.

) b. Partition refinement.

C. Linear arrangement.

6. Graph mapping.

a. Decomposition (by subgraphs),

b. Shrinking (by graph homomorphism).

Table 4.1. Techniques for Good Algorithms.
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Figure 4.1. A linked structure and 1ts representation by arrays.

(a) Record format.

(b) Linked structure.

(c) Representation by three arrays.
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Figure 4.2. Representation of a deque containing 3, 2, 1, 5,6, 4

(a) Array representation.
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(b) Spanning tree generated by search.
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1. Discrete Fourier transform (DFT):

recursion.

2. Matrix multiplication (MM):

recursion.

De Linear equations on a planar graph (LEG):

recursion, decomposition by connectivity, breadth-first search.

i. (Global flow analysis (GFA):

decomposition by connectivity, path compression, depth-first search.

De Pattern matching on strings (PM):

data structures.

6. Strong components (SC):

depth-first search.

Te Planarity testing (PT):

depth-f&t search.

8. Maximum network flow (MNF):

augmentation, breadth-first search.

- 9, Graph matching (GM):

augmentation, breadth-first search, cycle shrinking.

10. Set union (SU):

path compression.

. Table 5.1. Ten Tractable Problems and Methods for Solving Them.
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Figure 5.1. Recent complexity improvements.

n = size (number of vertices 1n graph problems).

m = second parameter (number of edges 1n graph -problems).

81



=

RO EO | 2 ER
SEER
A
jaEES

SRN a a Ea Ra Pa Pa

EATERS
ENE| EN REE

il

| Figure 5.2. Nine x nine grid graph.

Vertices in cross separate grid into four Lxk4 grids.

82



u

(a) (b)

Figure 5.3. Kuratowski subgraphs.
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A(x) B(y)
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Figure 5.5. Implementation of union.

(a) Basic method.

(b) Weighting heuristic.
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