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Abstract.
This paper describes a machine model intended to be useful. in
deriving realistic complexity bounds for tasks requiring list processing.

As an example of the use of the model, the paper shows that any such machine

requires non-linear time in the worst case to compute unions of disjoint
sets on-line. All set union algorithms known to me are instances
of the model and are thus subject to the derived bound. One of the known

algorithms achieves the bound to within a constant factor.
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Introduction.

Computer scientists have attempted for many years to derive lower
bounds on the complexity of computational problems. This effort has met
with some success, providing, for example, exponential lower bounds on the
complexity of equivalence for regular expressions [13], validity in
Presburger arithmetic [14], and circularity in attribute grammars [7].

In addition to these bounds for hard problems, several results for simpler
problems exist, including bounds on the number of comparisons required for
ordering problems [9], on the number of data accesses required for testing
properties of graphs [15], and on the number of arithmetic operations
required for evaluating various polynomials [2].

In spite of this progress, one domain, that of list processing problems,
is almost entirely devoid of lower bound results. The subject of data
structures is now part of the standard computer science curriculum, and
every computer science library contains many books on the subject. yet,
with the exception of a few results on the relative power of various data
structures, nothing is known about the inherent power of pointer manipulation.

One reason for this state of affairs is the lack of a thoroughly
understood machine model which is both realistic and theoretically accessible.
One candidate, the random access machine [1], which has been used by
several authors to provide realistic measures of the complexity of wvarious
algorithms, seems too powerful to analyze easily. It also has certain
defects, such as allowing unbounded parallelism if a "uniform cost" measure
[1] is used.

However, another possible model exists. In 1953 Kolmogorov [11,12]
proposed a machine which operates by manipulating pointers connecting nodes.

Fifteen years later Knuth[8] proposed a similar machine, which he called



a linking automaton. Later and independently Sch¥nhage[16] defined such

a machine, which he called a storage manipulation machine, and showed that

such machines can simulate Turing machines with multidimensional tapes in
real time. Although these machines provide a useful tool for describing
pointer manipulation algorithms, no bounds on their computations3 power
except Schbnhage's seem to exist.

This paper describes an extension of Knuth's machine, called a

reference machine. The paper examines the ability of such a machine to

solve a problem requiring manipulation of disjoint sets, and proves that
any reference machine which solves the disjoint set problem requires
non-linear time (in the worst case) to do so, under certain natural
restrictions. “The lower bound is tight to within a constant factor.
This result shows that it is possible (in at least one case) to derive

a non-linear lower bound on the complexity of a list-processing problem
using a realistic computer model. The result also provides a partial
solution to Kauth's exercise 2.6.1[8] which asks us to "Explore the

properties of linking automata...".



2. Reference Machines.

A reference machine consists of a memory and a finite number of

registers. The registers are of two types: data registers and reference
registers. The memory consists of a finite but expandable pool of records.
Each record consists of a finite number of items, each of which is either

a data item or a reference item. FEach item has an identifying name. All

records are identical in structure; that is, they contain the same items.

A reference machine manipulates data and references. A reference
either specifies a particular record or is null (@) . Each reference
register and reference item can store one reference. Data can be of any
kind whatsoever (integers, logical values, strings, real numbers, vectors,
etc.). FEach data register and data item can store one datum.

A program for a register machine consists of a sequence of instructions,

numbered consecutively from one. Each instruction is of one of the following
eight types. (Each r below denotes a reference register, each s denotes
a data register, each t denotes a register of any type, and each n

denotes an item name.)

re—§g Place a null reference in register r .

t, ~ t (t, and t, must be of the same type).

1 2

Place the contents of register t, in register t erasing

2 17

what was there previously.

t «n(r) (n and t must be of the same type).
Let N be the n item of the record specified by the contents
of r . Place the contents of N in register t , erasing what
was there previously. (If r contains ¢ , this instruction

does nothing.)



n(r) «t (n and t must be of the same type)
Let N be the n item of the record specified by the contents
of r . Place the contents of t in item N , erasing what
was there previously. (If r contains @ , this instruction

does nothing.)

Sy <5y 053 Combine the data in registers S5 and 83 by applying the
operation © . Store the result in S 4 erasing what was
there previously.

create r Create a new record (not specified by any existing reference)

Vo e o o -]
and place a reference to it in r .

halt Cease execution.

if condition then go to i1
~y

la o o AV R Y )

If the condition is true, then transfer control to instruction 1.

If the condition is false, do nothing.
Each condition in an if instruction is of one of the following types.
(o o)

true Always true.

t, =t, (t, and t, must be of the same type)

1 2 1 2
True 1f the contents of tl and t2 are the same,
P(Sl’se) True if the contents of 81 and S5 satisfy the predicate p ,

where p is any predicate on data.



A reference machine executes a program instruction-by-instruction
in consecutive order, beginning with instruction one. Execution of an

if instruction may cause control to be transferred to a non-consecutive

N

instruction, in which case consecutive execution resumes from this new

instruction. When the machine reaches a halt instruction, execution

AN

ceases. The last instruction of every program is a halt

e o ol

A reference machine step consists of the execution of a single

instruction. The running time of a reference machine program is the

number of steps the machine requires to execute the program, as a
function of the initial state of the registers and memory. The storage
space required by a reference machine program is the number of records

initially in memory plus the number created during execution.

When a new record is created all its items initially contain a

special value called undefined (A) . The initial value of any register
may also be A . If a reference machine attempts to use the contents of

a register or item containing p , it halts. However, the machine 1is
allowed to store another value into a register or item containing A .

I shall be uninterested in constant factors in running time and

storage space. With this assumption, the register-to-register assignment

is a redundant instruction type since it can be simulated by a create ,

: AP

a register-to-memory assignment, and a memory-to-register assignment.
Similarly uses of the null reference value can be deleted without affecting
running time by more than a constant factor, Extending the machine model
by allowing several types of records has the effect only of saving a constant

factor in storage space.



To completely specify a register machine, one must describe the data
and the types of operations allowed on the data. Knuth's linking automaton
is a register machine whose data consists of symbols selected from some set.
No operations on data are allowed except testing for equality. Henceforth
we shall use the term symbol in a technical sense to refer to data on
which no operations are permitted except testing for equality.

A pure reference machine is a register machine with no data. It is

not hard to show that any linking automaton with a finite set of symbols
can be simulated by a pure reference machine with a loss of only a constant
factor in running time. I shall consider examples of reference machines which
have integers as data and addition and comparison as allowed operations.
The lower bound-result holds for all reference machines, whatever their data.
In a reference machine, access to memory is by explicit reference only;
no computation on references is possible. The reference machine model is
thus apparently less powerful than the random access model with uniform cost
measure [1]; reference machines lack the ability to use address arithmetic
for such purposes as manipulating a hash table [9], performing a radix
sort [9], or accessing a dense matrix [8]. These machines are, however,
powerful enough to simulate such list-processing languages as LISP and to
model the list-processing features of Algol-W,Ii/l, and other general
purpose languages.
It would of course be possible to study the general properties of
reference machines, comparing their power with that of other classes of
automata, as Schbnhage[16] has done. Here, however, I analyze the ability

of reference machines to solve a specific problem in list processing.



3. The Disjoint Set Union Problem.

Let Sl,SE,.@.mSn be n disjoint sets, each containing a single

element. The disjoint set union problem is to carry out a sequence of

operations of the following two types on the sets.

find(x) : determine the name of the set containing element x .
union(A,B) : add all elements of set B to set A (destroying
set B ).

The operations are to be carried out on-line; that is, each instruction
must be completed before the next one is known. We shall assume that the
- sequence of operations contains exactly n-1 union operations (so that
after the last union all elements are in one set) and m > n intermixed
find operations (if m < n , some elements are never found).

The disjoint set union problem is an abstraction of the operations
necessary to implement FORTRAN EQUIVALENCE and COMMON statements [5 ].
Algorithms for this problem and for a generalization of it have
applications in graph theory [18], global code optimization [18,19], and
linear algebra [19]. A number of algorithms exist [1,4,5,6],

A reference machine solution to the set union problem consists of a

reference machine, a representation of the input sets as collections of
records, a program for carrying out a find , and a program for carrying
out a union . The reference machine solves the set union problem in the
following way. Initially the machine memory represents the input sets.
Each find is carried out by executing the find program, which halts
having identified the set containing the desired element. Each union

is carried out by executing the wunion program, which halts having
modified the contents of memory to reflect the union. I shall make the

following assumptions concerning the details of this process.



(3.1) Each set and each element has a distinct associated symbol.
(3.2) No record in the collection for an input set contains the symbol
of any other set or of any element outside the set.
(3.3) No record in the collection for an input set contains a reference
to any record outside the collection.
(3.4) Before the find program is executed to locate the set containing
an element x , a reference to some record containing the symbol
for x is placed in the designated input register ry and A is
placed in all other registers. The find program halts with the
symbol for the set containing x in the designated output register Sy -
(3.5) Before the union program is executed to add elements in set B to
set A, references to records containing the symbols for A and B
are placed in the designated input registers ry and Ty s respectively,
and A is placed in all other registers. The union program halts with
no output.

The sequence of steps associated with a set union

problem and a reference machine solution is the sequence of steps
executed by the machine when it carries out the finds and unions . The
length of this sequence measures the total running time of the machine.
The main result of this paper is a non-linear lower bound (as a function
of n and m ) on the length of any sequence of steps which solves a
worst-case instance of the set union problem.

The formulation described above is intended to be realistic and to
facilitate derivation of a lower bound. Assumption (3 .1) above, requiring
that sets and elements be represented by symbols, makes it impossible to

encode all elements of a set into a single datum and to move this datum at



a cost of one step per move; without this restriction there is a reference machine
which can solve any set union problem in linear time. Assumptions (3.2), (%.3),
and (3.4) imply that the machine, when performing a find on some element x ,
has access only to records representing the set containing x . Assumptions
(3.2), (3.3), and (3.5) imply that the machine, when performing a union on
sets A and B, has access only to records representing the sets A and B .
It follows by induction on the number of finds and unions that (3.2) and
(3.3) hold for the sets existing at any time during the computation, not Jjust
for the input sets. In other words, the contents of memory after any
particular find or union can be partitioned into collections of records
such that each collection corresponds to a currently existing set, all
symbols for the set amd its elements occur only in the corresponding
collection of records, and no record in one collection contains a reference
to a record in another collection. Without assumptions (3.2)-(3.5) any
particular instance of the set union problem can be solved in linear time
by initially moving symbols for all sets and elements into a single record
and solving all finds by accessing only this record, though I conjecture
that even without assumptions (3.2)-(3.5) no single reference machine can
solve all instances of the set union problem in linear time,

" If an algorithm for the set union problem is to be useful in practice,
the symbol of each set and of each element should be stored in exactly one
record,- so that the initialization for finds (3.4) and unions (3.5) is
uniquely defined. All the algorithms to be considered have this property,

but the lower bound proof does not require it.

10



4, Algorithms for the Set Union Problem.

All algorithms for the set union problem known to me can be implemented
on reference machines. This section describes six such algorithms. These
algorithms are of two general types, quick find , requiring constant time
for each find , and quick union , requiring constant time for each
union . All the algorithms represent each input set by a single record,
containing the symbol for the corresponding set and the symbol for the
corresponding element in data items set and element , respectively.

Each element is permanently associated with the record containing its
symbol, and no new records are ever created. During the computation,

a currently existing set is represented by the collection of records
corresponding to its elements and the symbol for the set is contained in
exactly one of these records.

In the quick find method, each record contains two reference items,
parent and next . One record in the collection representing a set
contains the symbol of the set. The -parents of all records in the
collection refer to this header record. The next items link all records
in the collection into a list whose first element is the header. Figure 4.1

illustrates this data structure.

[Figure k4.1]

With this representation, a find requires two reference machine
steps; one to access the parent of the input record (which refers to the
header) and one to access the set of the header. A union of A and B
requires seven steps per element in B ; each record in the collection for

B must have its parent modified to refer to the header of A and must

11



be linked into the list for A . Table 4.1 contains programs in Algol-like
notation for union and find . It is easy to translate these into
reference machine programs.
[Table L.1]
Adding a heuristic to the union program improves its performance

considerably. Each record needs an additional data item, size . The

size item is only meaningful for headers; it counts the number of elements
in the corresponding set. To perform a union of A and B , the size of
A is compared to the size of B . If B is smaller, the union proceeds
as before. If A is smaller, the symbols for A and B in the headers of
the sets are interchanged, the references in ry and re to the headers
are interchanged, and the union proceeds as before. The time required for

such a weighted union is proportional to the size of the smaller of A

and B. Table 4.2 contains a program for this heuristic.
[Table 4.2]
In the quick union method, each record contains only one reference
item, parent . The collection of records representing a set forms a rooted

*
treeJ with the parent of each record referring to its parent in the tree;

t/ A rooted tree T is a connected, acyclic, undirected graph with a
unique distinguished vertex r , called the root of T . If v and
w are vertices of T such that v is on the (unique) simple path
from r to w , then v is an ancestor of w and w is a descendant

of v . This relationship is denoted by v % w . The relationship

v i w and v 74 w is denoted by v -J:w . If v *_.w and (v,w) is
an edge of T , then v is the parent of w and w is a child of v
This relationship is denoted by v - w . A leaf is a verteX with no
children. The height of a vertex v is the length (number of edges)
of the longest simple path from v to a descendant of v . The
sub-tree of T rooted at vertex v is the subgraph of T induced by
the descendants of v , with v as root.

12



the parent of the root is f , The root contains the symbol of the set,
Figure %.2 illustrates this data structure.
[Figure k4.2]

With this representation, a union of A and B requires only one
machine step, to place a reference to the root of A in the parent of
the root of B . A find is performed by starting from the input record
and following parent references until reaching a record with a null
parent this record is the root of the tree representing the set and
contains the set symbol. The find requires time proportional to the
number of records on the path from the input record to the root. Table k4.3

contains programs for these versions of union and find .

[Table L.3]
The weighted union heuristic can be added to quick union ; it uses
extra time on unions but may save time on later finds . A heuristic

for finds called path compression is also useful. After a find , every

record on the path from the input record to the root has its parent
modified to refer directly to the root, Path compression increases the
running .. 0f a find by a constant factor but may save time on later
finds . Table 4.4 contains programs for union and find with these
heuristics.

[Table k4.}4]

The quick find algorithms are apparently part of the folklore of
compiler construction; a description of these algorithms appears in [1]. The
quick union algorithm with the weighted union heuristic was first presented
in [5]. The path compression heuristic is apparently due to MeIlroy and
Morris [1]. Worst-case analysis of these algorithms appears in [1,4,5,6,17];

Table 4,5 summarizes the results. The theoretically best algorithm in the

13



worst case is quick union with both heuristics; its running time is

o(m a(myn)), where a(myn) is a functional inverse of Ackermann's
function defined as follows.

For i,j > 0 let the function A(i,Jj) be defined by

1
(@]
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(4.1) A(i,0)

A (0, 3)
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Let

(L4.2) a(in) = min{j | A(i,j) > log, n}

and

(4.3) a(mn) = min{i > 1| A(i, | 2m/n}) > log, n} X/

[Table L.5]

Yao [21], Doyle and Rives-t [3], and Knuth and Sch8nhage [10] have
carried out average-time analyses of the algorithms for several reasonable
probability measures under the assumption that m and n are proportional,
Table 4.6 contains the results of Yao and Knuth and Sch8nhage for one
measure (see [21]).

[Table L.6]

The quick union algorithm is simpler and requires less storage than
the quick find algorithm and is thus more useful in practice. Whether
either of the two heuristics should be used with this algorithm depends upon
the size of the problem and the cost of time versus the cost of space, The
average running time of the quick union algorithm with path compression
but without weighted union is unknown for the probability measure used by

Yao and Knuth and SchBnhage.

*
Y For any real number x, Lx] denotes the greatest integer not larger
than x .

1L



When path compression is used, the running time of the quick union

algorithm tends rapidly to O(m) as m/n increases. For instance, if
weighted union is not used and m/n Z_cn]"+€ for some positive constants

c and €, the running time is O(m), If weighted union is used and

m/n > ca(k,n) for some positive constants c¢ and k, the running time is
Oo(m) . Note that a(0,n) is O(log log n) and a(l,n) is O(log*n), where

i times
—_

s N\
log* n = min{i| log log . . . log n <1} .

The weighted union rule requires that records contain integer data
items and that reference machines add and compare. It is natural to ask
whether the weighted union rule can be implemented on a pure reference
machine in such a way that the total time for all unions is 0O(n) .

The answer is--yes.

Each non-negative integer is represented by a list which encodes the
binary digits of the integer, A zero is encoded by a null pointer; a one
is encoded by a non-null pointer. The digit list is singly linked from
the low order digit to the high order digit. Figure 4.3 illustrates this

representation.
[Figure 4.3]

Two integers are added by scanning the digit lists and adding digit-
by-digit, propagating carries in the usual fashion. The scan stops after
the end of the shorter list is reached and the last carry stops propagating.
Two integers are compared by scanning both simultaneously and noting the
highest order digit on which they differ. The scan need only extend to the
end of the shorter digit list; the integer with the longer digit list must
be larger. I leave as an exercise the implementation of these algorithms
as register machine programs,

The n-1 union operations carried out by the quick union method

perform the following arithmetic. Initially there are n integers, each

15



equal to one. During a union , two of the integers are compared and
then added. After n-1 unions , a single integer equal to n remains.
Since comparing two integers requires no more time than adding them,

it will suffice to bound the time required by all the additions.

Lemma 4.1, Let a, b, ¢ be integers such that at+b = c and let (ai) ’

©

(bs) > (ci) , respectively, be their binary digit lists ( a = ZO) aiel ,
1=

@ . ®© .
b= 2 b.2t, c= 2 c2° ; a;sb e, €{0,1}). Let d; be the

carry from the i-th position when a and b are added. Then

k k

.Z (ai+bi) = d.k+-“2 (ci+di) for all k . 1In particular,
i=0 i=0

o] @

2z (ag+by) = T o(eg+dy) .
1= 1=

Proof. For i >0, ai+bi+di_l =c ¥ 201.1 (assuming d-l =0 ).

= .+ - 1 i = 5 =

Thus a; +b, =c,+d,+ (di d; 1) . Summingfrom i=0 to i=k

gives the lemma. Cl

16



The time needed to add two binary integers by reference machine
is proportional to the length of the shorter integer plus the
number of carries. By Lemma 4.1, the total number of ones in the
binary representations of both integers is equal to the number of ones in
the binary representation of the suﬁlplus the number of carries.
Consider the arithmetic performed during the union operations,
Initially, the total number of ones in the binary representations of all
the set sizes is n . Each carry performed during an addition causes the
total number of ones to decrease by one. Thus the total number of carries
cannot exceed n-1, and the time required for all carries is 0O(n) ,

It remains to bound the total length of the shorter of each pair of

integers added during union operations. Let f(n) be a worst-case bound

on this total length as a function of n . Then f£(1) = 0 , and

f(n) = max{Llog2 k) +1+ £(k)+ £(n-k) ‘l <k < n/2] for n > 1,
since the length of the binary representation of k 1is Llog2 k|+1
Lemma 4,2. f(n) <3n-2 1og2(n+1)-1

Proof. By induction on n
£f(1) = 0 < 3-2 log, 2-1 .
f(2) = 1 < 6-210g,3-1.
Let n > 3 and suppose the lemma is true for all values less than n .

Let k be such that 1 < k < n/2 and

f£(n) = |log, k| +1+ f(k)+f(n-k)

By the induction hypothesis

17



f(n) < log, k + 1+3k-2 loge(kﬂ_) -1+3(n-k) -2 logg(n-k+l) -1

3n -l-loga(k+l) -2 loge(n—k+l)

In

The function -logg(k+l) -2 logg(n-k+l) for 1 < k < n/2 is maximum

—

when k= 1 . Thus

f(n) < Bn-l-log2 2-2 log:2 n

< 3n-2 -2 log2 n

Also, n >3 implies '\/En > nt+l , which means

-2 loge(n+l) > -2 loggx/gn = -2 log2 n-1 ,
and

f(n) < 3n=2 logg(n+l)-l . 4

It follows that the total time to perform all arithmetic associated

with the union operations is 0(n) , and the following theorem holds.

Theorem 4,1. There exists a pure reference machine which solves any disjoint

set union problem in O(m a(m,n)) time.

18



5. A Non-Linear Lower Bound.

This section shows that for all m and n there is a set union
problem which requires at least cnux@yn) steps to solve by reference
machine, where ¢ 1is a positive constant independent of m and n.
Rather than consider reference machlnes, I consider sequences of reference
machine steps. Given a set union problem, a sequence of reference machine
steps is said to solve it if there is some reference machine, some set of
union programs, one for each union, and some set of find programs, one
for each find, such that when the sequence of programs corresponding to
the sequence of union and find operations is executed according to the
conventions of Section 3, the given sequence of reference machine steps
results and the find programs produce correct answers. Note that any
sequence of reference machine steps can be carried out by a non-branching
reference machine program. The first step in the lower bound proof is to
convert into a simple normal form any sequence of reference machine steps

which solves a set union problem,

Theorem 5.1. Let S1 be any sequence of reference machine steps which
solves a set union problem, Then there is a sequence of reference machine

steps 82 which also solves the set union problem and has the following

properties:
5ol |32| < 2(m+n+ |Sl|).
" (5.2) 5, manipulates no data except set and element symbols.

(5.3) 82 represents each input set by a single record and contains no
create instruction.
NN

(5.4) 8, fetches a symbol from memory only as the last instruction of
a find.

19



Proof. Let S, be a sequence of reference machine steps which solves some

1
set union problem. Delete from Sl all steps which manipulate data other
than set and element symbols. The sequence Sl now satisfies (5.2) and
still solves the set union problem.

The sequence 82 to be constructed manipulates records corresponding
to the sets, the elements, and the records manipulated by Sl . Initially

the memory of 82 consists of one record for each input set A = {a)

This record is the representative of the set A, of the element a , and

of each record in the initial collection of records by which 81

represents A . Each record created by S, also has a representative in
L

the memory of §, , defined as follows. The representative of a record

created during execution of find(a) is the representative of a . The

representative of a record created during execution oﬁ_ggigg@LB) is the
representative of A . For any object x (set, element, or record), let
x*  denote the representative of x

82 simulates S1 step-by-step. If Sl and 82 are executed in
parallel, the memory and registers of 82 correspond to the memory and

registers of S5, in the following way.

-~

(5.5) If Ry and R2 are records in the memory of Sl such that Rl
- *
contains a reference to R2 , then R1 contains a reference to
* (unl * *
R, (unless Ry = R, )e
(5.6)T If R is a record containing a set or element symbol x , then

* . * * \
R contains a record to x and X contains a reference to

R* (unless & x' )

(5.7) If some register of Sl contains a reference to a record R ,

then some register of 82 contains a reference to R*

20



(5.8) If some regiser of § contains a set or element symbol x ,

*
then some register of S2 contains a reference to x .

(5.9) During execution of find(a) , S‘2 maintains a reference to a*

in a register. During execution of _union(A,B) , 82 maintains

a reference to A* in a register.

Initially the memory of § consists of all the representatives, each

2
cantaining the symbol of the corresponding set, the symbol of the

corresponding element, and no pointers. Properties (5.5) - (5.9) hold
initially.

Let find(a) be a typical find. Sl begins find(a) with a reference

in ry to a record R containing the symbol for a . If (5.6) holds before
the find, either R = a* or a* contains a reference to R* . Sg begins
the find with a reference to a* in r; . S,'s first step is to fetch a

reference to R* into a register. This preserves (5.5) - (5.9).
Let union(A,B) be a typical union. S, begins amion(A,B) with
references in ry o, T, to records Rl , Rz containing the symbols for
*
A, B, respectively. If (5.6) holds before the find, either R* = A
* o , * *
or A* contains a reference to Ry ; similarly either R, =B or B*
contains a reference to RZ . S2 begins the union with references
to A* , B* in Ty, T, respectively. 32 's first two steps are to
* .
fetch references to RI and R2 into registers. This preserves
) (505) = (5'9)‘

Sp

Each time 8y fetches a reference to a record R, from a record Ry ,

simulates each step of Sl in the following way.

*
SE fetches a reference to R; from Rl (possible by (5.5)) . Each time

S, stores a reference to a record R, 1in a record R, , 5, stores a

% *
reference to R2 in Ry (possible by (5.7)). Each
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time Sl fetches a set or element symbol x from a record R ,

s, fetches a reference to X' from R* (possible by (5.6)). Each
time Sl stores a set or element symbol x into a record R , 52
stores a reference to x* in R* and a reference to R* in x* (possible
by (5.7) and (5.8)). Each time 8, creates a record, 8, does nothing.

At the end of each find, 32 fetches the appropriate set symbol. Each

of these steps preserves (5.5) - (5.9). The sequence S, constructed

2
in this way carries out the finds and satisfies (5.1) - (5.4%). O

One can represent the memory manipulated by a reference machine as
an undirected graph, with one vertex R* for each record R and one edge
for each reference. If a record R, contains a reference to a record R2,
then (RI,R;) is an gdge in the graph. This representation motivates the

following definition, which reformulates the set union problem as a graph

construction problem.

A link solution to a set union problem consists of a set of vertices

V , one for each initial set and element, and a sequence of instructions
of the form.iggg(v,w) where v,weV . The sequence of link instructions
constructs a graph edge-by-edge, starting from the graph with vertex set
V and no edges; link(x,y) constructs edge (X,y) . For any initial set
or element x , let x* denote the corresponding vertex. The sequence of

link instructions must satisfy the following properties.

(5.10) The sequence of links can be partitioned into contiguous subsequences,

each subsequence corresponding to a union or find operation.

(5.11) Let find(a) with answer A be a typical find. Each link(x,y)

in the subsequence for find(a) is such that x = A* and the

distance between x and y in the graph existing before the
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link is two. The instruction link(A*, ak) occurs either in the

subsequence for find(a) or earlier in the sequence.

(5.12) Let union(A,B) be a typical union. Each link(x,y) in the
subsequence for union(A,B) is such that x = A* and either
y = B* or the distance between x and y in the graph

existing before the link is two.

Theorem 5.2. Any set union problem solvable in k reference machine steps

has a link solution of length not exceeding 5m+ln+kk .

Proof. Let Sl be a sequence of k reference machine steps which solves
a set union problem. Let 82 be a sequence of reference machine steps
satisfying Theorem 5.1. Then |82| < 2(mnt+k) . From 82 we construct
a link solution 83 satisfying the theorem. The vertex set for §

3

*
consists of one vertex R for each record R manipulated by §, , If

S

5 and 55 are executed in parallel, the following properties hold.

(5.13) If a record Rl contains a reference to a record R2 , then

% *
the distance between Rl and Re is at most two.

(5.14) Let find(a) with answer A be a typical find. If during this
find some register of 82 contains a reference to R , then

* * *
either A* = R or (A ,R ) 1is a previously constructed edge.

(5.15) Let union(A,B) be a typical union. If during this union
some register of 82 contains a reference to R , then either

* * * % ) i
A =R or (A ,R ) 1is a previously constructed edge.

S5 simulates 82 instruction-by-instruction, Certainly (5.13) - (5.15)

hold initially, Let union(A,B) be a typical union. To begin the union,
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85 links A* and B' .This Preserves (5.13) - (5.15). Let find(a)

with answer A be a typical find. Suppose S fetches ¢ items from
memory while carrying out the find, 1If (5.13) holds before the find, there
must be a path of length 2/ or less between A* and a* in the graph
existing before the find, To begin the fir;d s3 links each vertex

on this path to A* . This preserves (5.13) - (5.15).

Consider a subsequence of 82 corresponding either to a find(a)

with answer A or a union(A,B) . Suppose Sy fetches a reference

(say to R.a) from a record (say Ry )e If (5.13) =(5.15) hold before

the fetch, then there is a path between A* and R; of length at most
three. 85 links each vertex on this path to A* , This preserves

(5.13) - (5.15). All-—‘other instructions in §, do not affect (5 13) -(315);
in order to store a reference (say R2 ) in a record (say Rl )s 82 must
first have references to R, and R, in registers, By (5.14) and (5.15)

*
this means that the distance between Rl and R; in the graph existing

before the store is at most two.

The total length of the sequence S3 constructed in this way is

at most 5m+LIn+ bk , and the sequence clearly solves the set union

problem. O

In the following discussion I shall not distinguish between an
initial set, its single element, and the vertex representing the set and

the element, Corresponding to the sequence of unions in any set union

problem is a rooted tree, called the union tree, vwhose vertices are the

initial sets and whose edges are the pairs (A,B) such that union(A,B)
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occurs in the sequence. The root of the tree is the set remaining after
all unions are carried out. With this definition, every link(v,w) in
a link solution to a set union problem has the property that v+—' w in
the union tree. In the worst-case set union problems to be constructed
below, the union tree is a complete binary tree.

The lower bound proof makes use of a rapidly growing function B(i, j)

defined for i,j > 1 as follows.

(5.16) B(L,J) = 1 for § > 1 ;
B(i,1) = B(i-1,2)+1 for i > 2 ;
B(i,§) = B(L,3-1)+ Ba-L,2B8 Iy e 5550,

Lemma 5.1. B(}, )L < A(i,25) for i,j>1.

Proof. It is easy to show by induction that A(i,Jj) < min{A(i+1,3J),A(3, j+1)}

for i >0, j > 1 . Also,

(5.17) AL, §)

A(i-1,A(1,3-1)) = A(i-2,A(i-1,A(5, j-1)))

A(i, j-1) .
> 2f > ph(EJ-1)+2 for 1,5 > 2

The lemma follows by double induction on i and j

(5.18) B(1,J)+1

2 < 25 = A(0,3) < A(1,23) for 3 >1 3

(5.19) B(i,1)+1

B(i-1L,2)+2 < A(i-1,4)+2 < A(i-1,6)

N

A(i-1,A(2,1)) < A(i-1,A(i,1)) = A(i,2) for i > 2

4

if B(i-1,2)+1 < A(i-2,4) ;
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(5.20)

B(i,j)+1 = B(i,3-1)+ B(i-l,eB(l’ 3-1) J+1

< A(i,2j-2) + A(i-l,2.2A(l’2'J_2))

A(i,25-2)

A

A(i-1,2.2 + A(i,25-2))

< A(i_l’gA(1,23—2)+2)

AN

A(i-1,A(4,23-1)) by (5.17)

A(i,23) for i, >2, if B(i,j-1)+1 < A(4,2j-2)

end B(i-1,28(1 "0y < p(io1,2.08( 3-1)y

a

Theorem 5.3, For any kys > 1 , 1let T be a complete binary tree of

height h > B(k,s) .~ Let {v; |1 <i<s2

B(k, S)} be a set of pairwise

unrelated vertices in T , each of height strictly less than h-B(k,s) ,

such that exactly s vertices in {vi} occur in each subtree of T

h

rooted at a vertex of height h-B(k,s) . Then for n = 2 +l—l and

m

(5.21)
(5.22)
(5.23)

(5.2%)

Proof.

= SQB(k, S)

there is a set union problem for which

the union tree is T ;

the set of finds is {E@E(vl) |1 <i<m};

the answer to each find is a vertex of height strictly greater
than h-B(k,s) ; and

any link solution has length at least km , even if every edge
(v, w) such that v % w and h(v) < h-B(k,s) in T is allowed
for free, and after each link(v,w) every edge (X,y) such

* o+ * .
that v = x -y - w 1is added for free.

The proof is by double induction on k and s and is similar to

the lower bound proof in [17]. Suppose k = 1 . Consider any set union
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problem consisting of n-1 unions which form T followed by a find on
each vertex in [vi} . The answer to each find is the root of T ;

(5.23) holds since h > B(k,s) . None of the originally free edges solves
a find. Since the vertices in {vi} are pairwise unrelated, any link(x,y)

can solve only one find, even including the appropriate free edges.

Thus (5.24) holds.

Suppose the theorem holds for k-1 , s = 2 . The following argument
proves the theorem for k with s = 1 . Suppose the hypotheses of the

theorem hold. Let {ui \l < i <m} Dbe the set of vertices of height

+
h-B(k,1) in T , numbered so that u; - v; . The vertices in {ui}

are pairwise unrelated and exactly two occur in each subtree of T rooted
at a vertex of height h-B(k,1)+1 = h-B(k-1,2) . By the induction
hypothesis there is a set union problem satisfying the theorem for

k' =k-1, s'"=2, T, {ui} . Let the sequence of finds and unions in
this set union problem be P, . Form P2 from Pl by replacing each
m(%) by Ej_-riq(vi) ) I claim the resulting sequence satisfies the

theorem for k , s =1, T, {v;}.

Certainly (5.21) = (5.23) hold. Consider any sequence 82

which carries out P, , allowing for free the edges described in (5.24).

of links

Form a sequence §; from S, by replacing each link(x,y) such that
* . . .
; v for some (uniquely determined) i by llnk(x,ui) . Delete from
©'5y el links which do not create new edges. I claim §) carries out
Pl (allowing appropriate edges for free) and that \Sl| < |82|-m .
The following property is true initially and is preserved if 5, and

SE are executed in parallel (on separate graphs).
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(5.25) For 1 <i<m, u, is adjacent in the graph manipulated by
Sl to all vertices adjacent to at least one descendant of A

in the graph manipulated by 82 .

It follows that Sl carries out Pl .
For any v; , consider the first link(x,y) in 8, such that

+ + * ) ) o
XU »v; 2y . There must be such a link since none of the initially

free edges solves ﬁﬂ(vi) by (5.27). There must be a path of length two,
say (x,2z)(z,y), between x and y in the S, graph existing before the link,
Furthermore =z must satisfy ui—v*z jvi . It follows that (x,ui) is
an edge of the existing Sl graph. Thus Sl need not contain an
instruction '};J:IIE(X, corresponding to link(x,y) . This is true for
any value of i . Hence |[§)| < |S;|-m |

Since (k-1)m < |Sl| by the induction hypothesis, lse| < km ,
and (5.24) holds.

Suppose the theorem holds for k , s-1 and also for k-1 , B(k, s-l) .
The following argument proves the theorem for k , s . Suppose the

B(k, s

hypotheses of the theorem hold. Let {wi |l <i<2 )} be a subset

of {v;} such that exactly one vertex w. occurs in each subtree of T
: . k
rooted at a vertex of height h-B(k,s) . Let {ui | 1 <l<2B( ’S)} be

+
the set of vertices of height h-B(k,s) , numbered so that u Wy

Consider the sub-trees Tj ’ 1<3< EB(k’S)-B(k’ s~1) , rooted at

B(k, s-1)

vertices of height h-B(k,s)+ B(k,s-1) = h-B(k-1,2 ) in T . Each

sub-tree Tj contains (s-l)QB(k’ s-1)

vertices in {vi}-{wi} » exactly
s-1 in each subtree rooted at a vertex of height h-B(k,s) . By the

induction hypothesis there is a set union problem satisfying the theorem
for k' = k, s'= s-1, T.J, (v | v is a vertex in Tj and Ve {Vi}-{wi}} .

Let P. Dbe the sequence of unions and finds in this set union problem,
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The vertices in the set {u;} are pairwise unrelated and exactly
2B(k,s-1) occur in each subtree T; of T . By the induction hypothesis
there is a set union problem satisfying the theorem for k' = k-1,

s' = ZB(k’s_l) r T, {113 . Let Q be the sequence of unions and finds
in this set union problem. The sequence (Q can be permuted, without
increasing the number of links required to carry out Q, so that all
unions forming the subtrees Tj occur before all other operations.

Let Q' be formed from the permuted version of Q by deleting all
unions forming the subtrees g‘ » let @' be formed from Q' by replacing
each ;}gg(ui) by §}§g(wi) , and let P" = Pj,B, «uuyP

"
5Bk, 5)-B(k,s-1)’ Y *
I claim P" defines a set union problem which satisfies the theorem for

k, s, T, {vi}'.

Certainly (5.21) - (5.23) hold. Consider any sequence §" of links
which carries out P" , allowing for free the edges described in (5.24).
Form a new sequence S from S" by replacing each liggﬁgy) t hat
LA i y for some (uniquely determined) i by }igk@gui) . Delete from
S all links which do not create new edges. The following property is

true initially and is preserved if S and 8" are executed in parallel

(on separate graphs).

. k
(5.26) For 1 <1< EB( »5) » u; 1is adjacent in the graph manipulated

by S to all vertices adjacent to at least one descendant of Wy

in the graph manipulated by 8" .

It follows by an argument like that in the previous case that S

carries out P' = P and that

l} P2 yeeey P2B(k; S)-B(k) S-l)’ Q'

B(k, s)
S| < |s"|-277 . S can be written as S = S;5S.yeee,S
l | — I l l’ 2) J eB(k;S)-B(k,S-l)’U )
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B(k, s)-B(k, s-1) ,

where S. carries out Pi for 1 <ic<e allowing

for free the edges described in (5.24%), and U carries out Q' ,

+
allowing for free the edges (v,w) such that v - w and

B(k, s—l))

h(v) < h-B(k-1,2 and after each link(v,w) allowing for free

* o+ *
the edges (%,¥) such that v - x - y » w . This means that U carries

out @ , allowang the appropriate edges for free, By (5.24),

)QB(k, s=1) B(k, s)-B(k, s-1) ' and

|s; | > k(s-1 for 1<i<e2
v} > (-1)2B098) | 1t follows that
e | > [s] + 2209 ) > k(s-1)2B® 8) + (1)2P( 8) 4 Bl 8) | yeipBl 8) gy

Thus (5.24) holds, By double induction, the theorem is true in general. 4

Corollary 5.1. Let k8 > 1 . Let T be a complete binary tree of

height B(k,s) . Then there is a set union problem whose union tree
is T, which contains m = s2B(k’ ) finds, and which requires at least

(k-1)m links for its solutionm,

Proof. Choose { > 1 such that El > s . Let T' Dbe a complete binary
tree formed by replacing each leaf of T by a complete binary tree of
height £ . Let {v; |1 <i<m} be any set of vertices satisfying the
hypotheses of Theorem 5,3 for k , s , T' . For 1 <i<m, let u
b‘e the vertex of height ¢ in T' such that ui :vi . Let P' be
a sequence of unions and finds defining a set union problem satisfying
the conclusions of Theorem 5.3 for k , s , T', {vi} . Without loss of
generality we can assume that the unions which form the sub-trees of T'
rooted at height [ occur at the front of P' .

Form P from P' by deleting the unions which form the sub-trees
of T' rooted at height { and replacing each _f_i_n__d(vi) by Eng_(ui)

We claim P defines a set union problem satisfying the conclusions of the
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corollary. Certainly P contains m finds and the union tree of P
is T . Suppose S is a sequence of links which carries out P
Form S' from S by following each ;Eggbgui) which solves a
m(ui) by lﬂ(x,vi) . Then S' carries out P' if all edges
(v,w) with h(v) < { are allowed for free, Thus §'| >km , and

|s"| > (x=1)m . O

Theorem 5.2, Lemma 5.1, and Corollary 5.1 combine to establish

the main result of this paper.

Theorem 5.4. There is a positive constant ¢ such that, for all
m>n>1, there is a set union problem consisting of m finds and
n-1 intermixed unions whose solution by reference machine requires at

least ecma(m,n) steps.

Proof. Let s = Lm/nJ . Choose k as large as possible such that
+
2B(k,s) l-l <'n ., Partition the n elements into as many sets as

+
2BG% S) l-l , plus leftover elements. At most n/2

2B(k,s)+l_l

possible of size
elements are left over. On each set of elements, define

a set union problem satisfying Corollary 5.1. Concatenate these problems,
add enough additional unions to combine all elements, including the
leftovers, into a single set, and add enough additional finds to bring

. the total tom .

The resulting set union problem contains m finds, n-1 intermixed
unions, and requires at least (k-l)sEB(k’S) n/EB(k"S)+2 = (k-1)sn/bk >
(k-1)m/8 links for its solution. By Theorem 5.2, this set union problem
requires at least (k-l)m/32 - 5m/k - n > (k-73)m/32 reference machine

steps for its solution.
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If a(mn) > 2 , %k > a(mn)-1 in this construction since

B(a(myn)-1,s)+1 < A(x(myn)-1,2s) by Lemma 5.1

< loge n by the definition of o .

Thus the selected set union problem requires at least

(a(m,n)-74)m/32 > a(m,n)m/6k reference machine steps, if

a(mn) > 148 . But if a(mn) < 148 , any set union problem requires

at least m > ma(myn)/148 reference machine steps. Choosing

c = 1/148 gives the theorem. O
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Conclusions.

This paper has described a machine model, called a reference machine,

suitable for analyzing list processing problems. The model is similar to
several previously -proposed [8,11,12,16]., Reference machines are quite
powerful; Schbnhage [16] has shown théf they can simulate Turing machines
with multidimensional tapes in real time, and one can show that they can
simulate random access machines with logarithmic cost in real time.

The paper has analyzed the ability of reference machines to compute
disjoint set unions. Under certain natural restrictions, all reference
machines require non-linear time to solve this problem. This lower bound
characterizes the efficiency with which one can represent dynamic information
of a certain kind in a list structure. The bound does not require that
the machine be deterministic, or that the program of the machine be fixed
while the problem size grows, or that the complexity of memory (number of
fields per record) be fixed while the problem size grows.

This generality is achieved by making the assumption that the
description of each set is stored separately and that moving the
description of a set requires constant time per element. Without these
assumptions the lower bound is not valid. T conjecture, however, that
the lower bound holds if the separate storage assumption is replaced by
an assumption about the complexity of memory; namely, that every record
contains only a fixed number of fields independent of the problem size.

The paper has presented a number of known set union algorithms and has
shown that they all fit into the reference machine model. (pe of the algorithm:
achieves the lower bound to within a constant factor. This algorithm

requires that arithmetic be performed, but the arithmetic can be simulated
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using list processing with only a constant factor loss in running time.
I believe that any algorithm, even one which uses address arithmetic,
requires non-linear time to solve the set union problem. Proving such
a statement seems to require a better understanding of random access
machines.

The set union problem can be generalized to a problem requiring
evaluation of functions defined on paths in trees. The techniques used
here and in [17] lead to a non-linear lower bound for some special
cases of this generalized problenl[EO]. Certain cases of the problem can
be solved in almost-linear time by using complicated extensions of the best
set union algorithm presented here [18]. Whether the most general version
of the function evaluation problem can be solved in almost-linear time

is unknown.
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procedure quick find

5o+ Egi(garent(rl));

Erocedure slow union;
while r, #0 do,
begin

save +~ next(re);

p_a.rent(re) - T3
next(re) - next(rl);
next(rl) - T,

15 < save

end; ——
Lo o

Table k4.1, Programs for find and union using the quick find

data structure.
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procedure slow weighted union;

(e o oV oV o W o

begin

if size(rl) < size(re) then

begi

ot
set(ry) « set(r,);
rl «arg;
end;
size(ry) « size(r))+ size(r,);

slow union

end:

L ar o]

Table 4.2. Program for weighted union heuristic with quick find data

structure.
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procedure quick union;
D e s

Barent(rg) - T3

procedure slow find;

Ioot « ryy

while parent(root) # f do root « w(g);
s, « set(root)

end;
Py

Table 4.3, Programs for union and find using the quick union

data structure.
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procedure quick weighted union;

if size(rl) < size(re) then

begin
Fa¥aa o land
set(r,) « set(r;);
Earent(rl) - T
size(re) - size(rl)+-size(r2);
end
else begin
parent(r,) « i3

size(rl) - size(rl)+ size(rg)

end;
O

procedure find with path compression;

begin
slow find;

current « rl;

while parent(current) £ ¢ do

begin

e e ad

save « parent(current);

parent (current) « root;

current « save

end end;

o I )

Table 4.4. Programs for weighted union and path compression heuristics

with aquick union data structure.
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Table L.5.

Time

Quick find O(mn) [1]
with weighted union . O(m log n) [1]
Quick union 0(m) [4]
with weighted union O(m log n) [4]
with path compression 0 (memax (1, log (ne/m) /log (2m/n) ) ) [17]
with both heuristics o(m a(m,n)) [17]

Worst-case running times of set union algorithms.
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Time

Quick find 0(n?) [21]
with weighted union 0(n) [10]
Quick union O(ng) [21]
with weighted union 0(n) [10]
with path compression ?
with both heuristics O(n) [10]

Table k4.6, Average running times of set union algorithms

if m and n are proportional.
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Figure k4.1, Data structure for quick find algorithm.

Sets are A = {a,b,c,d,e} , B = {f,g,h,1i} .
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Figure 4.2. Data structure for quick union algorithm.

Sets are A = {a,b,c,d,e} , B = {f,g,h,i} .
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Figure 4,3,

Representation of 26 = 101102 as a list.
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