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Abstract.

This paper describes a machine model intended to be useful. in

deriving realistic complexity bounds for tasks requiring list processing.

As an example of the use of the model, the paper shows that any such machine

requires non-linear time 1n the worst case to compute unions of disjoint

sets on-line. All set union algorithms known to me are instances

of the model and are thus subject to the derived bound. One of the known

algorithms achieves the bound to within a constant factor.
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Introduction.

Computer scientists have attempted for many years to derive lower

bounds on the complexity of computational problems. This effort has met

with some success, providing, for example, exponential lower bounds on the

complexity of equivalence for regular expressions [13], validity in

Presburger arithmetic [14], and circularity in attribute grammars [7].

In addition to these bounds for hard problems, several results for simpler

problems exist, including bounds on the number of comparisons required for

ordering problems [9], on the number of data accesses required for testing

properties of graphs [15], and on the number of arithmetic operations

required for evaluating various polynomials [2].

In spite of this progress, one domain, that of list processing problems,

1s almost entirely devoid of lower bound results. The subject of data

structures 1s now part of the standard computer science curriculum, and

every computer science library contains many books on the subject. Yet,

with the exception of a few results on the relative power of various data

structures, nothing 1s known about the inherent power of pointer manipulation.

One reason for this state of affairs 1s the lack of a thoroughly

understood machine model which is both realistic and theoretically accessible.

One candidate, the random access machine [1], which has been used by

several authors to provide realistic measures of the complexity of various

algorithms, seems too powerful to analyze easily. It also has certain

defects, such as allowing unbounded parallelism if a "uniform cost" measure

[1] is used.

However, another possible model exists. In 1953 Kolmogorov [11,12]

proposed a machine which operates by manipulating pointers connecting nodes.

Fifteen years later Knuth[8] proposed a similar machine, which he called



i

a linking automaton. Later and independently Schtnhage[1l6] defined such

a machine, which he called a storage manipulation machine, and showed that

such machines can simulate Turing machines with multidimensional tapes in

real time. Although these machines provide a useful tool for describing

pointer manipulation algorithms, no bounds on their computations3 power

except Schinhage's seem to exist.

This paper describes an extension of Knuth's machine, called a

| reference machine. The paper examines the ability of such a machine to

solve a problem requiring manipulation of disjoint sets, and proves that

any reference machine which solves the disjoint set problem requires

non-linear time (in the worst case) to do so, under certain natural

restrictions. "The lower bound is tight to within a constant factor.

This result shows that it 1s possible (in at least one case) to derive

a non-linear lower bound on the complexity of a list-processing problem

| using a realistic computer model. The result also provides a partial

) solution to Knuth's exercise 2.6.1[8] which asks us to "Explore the

properties of linking automata...".
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2. Reference Machines.

A reference machine consists of a memory and a finite number of

registers. The registers are of two types: data registers and reference

registers. The memory consists of a finite but expandable pool of records.

Each record consists of a finite number of items, each of which 1s either

a data item or a reference item. Each item has an identifying name. All

records are identical 1n structure; that 1s, they contain the same items.

A reference machine manipulatesdata and references. A reference

either specifies a particular record or is null (@) . Each reference

register and reference item can store one reference. Data can be of any

kind whatsoever (integers, logical values, strings, real numbers, vectors,

etc.). Each data register and data item can store one datum.

A program for a register machine consists of a sequence of instructions,

numbered consecutively from one. Each instruction 1s of one of the following

eight types. (Each r below denotes a reference register, each s denotes

a data register, each t denotes a register of any type, and each n

denotes an item name.)

r « ¢ Place a null reference in register r .

ty -t, (t andt, must be of the same type).

Place the contents of register t, in register ty , erasing

what was there previously.

t «n(r) (n and t must be of the same type).

Let N be the n item of the record specified by the contents

of r. Place the contents of N in register t , erasing what

was there previously. (If r contains §¢ , this instruction

does nothing.)



n(r) «t (n and t must be of the same type)

Let N be the n item of the record specified by the contents

of r . Place the contents of t in item N , erasing what

was there previously. (If r contains ¢ , this instruction

does nothing.)

Sq «So 6s, Combine the data in registers S and ib by applying the

operation © . Store the result in SH erasing what was

there previously.

create r Create a new record (not specified by any existing reference)
a a a a a av

and place a reference to 1t in r .

halt Cease execution.

1f condition then go to 1
NNNIIANN ND

If the condition 1s true, then transfer control to instruction 1i.

If the condition 1s false, do nothing.

Each condition in an 1f instruction is of one of the following types.
aa

true Always true.
aaa a

t, = t, (tq and t, must be of the same type)

True 1f the contents of 121 and ©, are the game.

p(sy,s,) True 1f the contents of 8, and s, satisfy the predicate p ,

where p 1s any predicate on data.

p
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A reference machine executes a program 1instruction-by-instruction

in consecutive order, beginning with instruction one. Execution of an

if instruction may cause control to be transferred to a non-consecutive

instruction, 1n which case consecutive execution resumes from this new

instruction. When the machine reaches a halt instruction, execution

ceases. The last instruction of every program is a halt .

A reference machine step consists of the execution of a single

instruction. The running time of a reference machine program 1s the

number of steps the machine requires to execute the program, as a

function of the initial state of the registers and memory. The storage

space required by a reference machine program 1s the number of records

initially in memory plus the number created during execution.

When a new record 1s created all its items initially contain a

special value called undefined (A) . The initial value of any register

may also be p . If a reference machine attempts to use the contents of

a register or item containing pA , 1t halts. However, the machine is

allowed to store another value into a register or item containing A .

I shall be uninterested in constant factors in running time and

storage space. With this assumption, the register-to-register assignment

1s a redundant instruction type since 1t can be simulated by a create ,
: AAAI

a register-to-memory assignment, and a memory-to-register assignment.

Similarly uses of the null reference value can be deleted without affecting

running time by more than a constant factor, Extending the machine model

by allowing several types of records has the effect only of saving a constant

factor in storage space.



To completely specify a register machine, one must describe the data

and the types of operations allowed on the data. Knuth's linking automaton

1s a register machine whose data consists of symbols selected from some set.

No operations on data are allowed except testing for equality. Henceforth

we shall use the term symbol 1n a technical sense to refer to data on

which no operations are permitted except testing for equality.

A pure reference machine 1s a register machine with no data. It is

| not hard to show that any linking automaton with a finite set of symbols

can be simulated by a pure reference machine with a loss of only a constant

factor in running time. I shall consider examples of reference machines which

have integers as data and addition and comparison as allowed operations.

The lower bound-result holds for all reference machines, whatever their data.

In a reference machine, access to memory 1s by explicit reference only;

no computation on references is possible. The reference machine model is

thus apparently less powerful than the random access model with uniform cost

measure [1]; reference machines lack the ability to use address arithmetic

for such purposes as manipulating a hash table [9], performing a radix

sort [9], or accessing a dense matrix [8]. These machines are, however,

powerful enough to simulate such list-processing languages as LISP and to

] model the list-processing features of Algol-W, PL/1, and other general

purpose languages.

It would of course be possible to study the general properties of

reference machines, comparing their power with that of other classes of

automata, as Schtnhage[16] has done. Here, however, I analyze the ability

of reference machines to solve a specific problem in list processing.
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3 The Disjoint Set Union Problem.

Let S15 Bp 005 be n disjoint sets, each containing a single

element. The disjoint set union problem is to carry out a sequence of

operations of the following two types on the sets.

find (x) : determine the name of the set containing element x .

union(A,B) : add all elements of set B to set A (destroying

setB ).

The operations are to be carried out on-line; that is, each instruction

must be completed before the next one 1s known. We shall assume that the

- sequence of operations contains exactly n-1 unlon operations (so that

after the last union all elements are in one set) and m > n intermixed

find operations (if m< n , some elements are never found).

The disjoint set union problem 1s an abstraction of the operations

necessary to implement FORTRAN EQUIVALENCE and COMMON statements [5].

Algorithms for this problem and for a generalization of it have

applications in graph theory [18], global code optimization [18,19], and

linear algebra [19]. A number of algorithms exist [1,L4,5,6],

A reference machine solution to the set union problem consists of a

reference machine, a representation of the input sets as collections of

records, a program for carrying out a find , and a program for carrying

out a union . The reference machine solves the set union problem in the

following way. Initially the machine memory represents the input sets.

Each find 1s carried out by executing the find program, which halts

having identified the set containing the desired element. Each union

1s carried out by executing the union program, which halts having

modified the contents of memory to reflect the union. I shall make the

following assumptions concerning the details of this process.

8
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(3.1) Each set and each element has a distinct associated symbol.

(3.2)No recordin the collection for an input set contains the symbol

of any other set or of any element outside the set.

(3.3)No record in the collection for an input set contains a reference

to any record outside the collection.

(3.4) Before the find program is executed to locate the set containing

an element x , a reference to some record containing the symbol

for x 1s placed in the designated input register ry and A 1s

placed in all other registers. The find program halts with the

symbol for the set containing x in the designated output register Sq

(3.5) Before the union program 1s executed to add elements in set B to

set A, references to records containing the symbols for A and B

are placed in the designated input registers ry and Ty respectively,

| and A 1s placed in all other registers. The union program halts with

no output.

The sequence of steps associated witha set union

problem and a reference machine solution 1s the sequence of steps

executed by the machine when it carries out the finds and unions . The

. length of this sequence measures the total running time of the machine.

The main result of this paper 1s a non-linear lower bound (as a function

of n and m ) on the length of any sequence of steps which solves a

worst-case instance of the set union problem.

The formulation described above 1s intended to be realistic and to

facilitate derivation of a lower bound. Assumption(3 .1) above, requiring

that sets and elements be represented by symbols, makes it impossible to

encode all elements of a set into a single datum and to move this datum at

9
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a cost of one step per move; without this restriction there is a reference machine

which can solve any set union problem in linear time. Assumptions (3.2), (3.3),

and (3.4) imply that the machine, when performing a find on some element x ,

has access only to records representing the set containing x . Assumptions

(3.2), (3.3), and (3.5) imply that the machine, when performing a union on

sets A and B , has access only to records representing the sets A and B .

It follows by induction on the number of finds and unions that (3.2) and

(3.3) hold for the sets existing at any time during the computation, not just

for the input sets. In other words, the contents of memory after any

particular find or union can be partitioned into collections of records

such that each collection corresponds to a currently existing set, all

symbols for the set and its elements occur only in the corresponding

collection of records, and no record in one collection contains a reference

to a record in another collection. Without assumptions (3.2)-(3.5) any

particular instance of the set union problem can be solved in linear time

by initially moving symbols for all sets and elements into a single record

and solving all finds by accessing only this record, though I conjecture

that even without assumptions (3.2)-(3.5) no single reference machine can

solve all instances of the set union problem in linear time,

"If an algorithm for the set union problem is to be useful in practice,

the symbol of each set and of each element should be stored in exactly one

record,- so that the initialization for finds (3.4) and unions (3.5) is

uniquely defined. All the algorithms to be considered have this property,

but the lower bound proof does not require it.

10



a

4, Algorithms for the Set Union Problem.

All algorithms for the set union problem known to me can be implemented

on reference machines. This section describes six such algorithms. These

algorithms are of two general types, quick find , requiring constant time

for each find , and quick union , requiring constant time for each

union . All the algorithms represent each input set by a single record,

containing the symbol for the corresponding set and the symbol for the

corresponding element in data items set and element , respectively.

Each element 1s permanently associated with the record containing its

symbol, and no new records are ever created. During the computation,

a currently existing set 1s represented by the collection of records

corresponding to its elements and the symbol for the set is contained in

exactly one of these records.

In the quick find method, each record contains two reference items,

parent and next. One record in the collection representing a set

contains the symbol of the set. The -parents of all records in the

collection refer to this header record. The next items link all records

in the collection into a list whose first element 1s the header. Figure 4.1

illustrates this data structure.

[Figure 4.1]

With this representation, a find requires two reference machine

steps; one to access the parent of the input record (which refers to the

header) and one to access the set of the header. A union of A and B

requires seven steps per element in B ; each record in the collection for

B must have its parent modified to refer to the header of A and must

11
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be linked into the list for A . Table 4.1 contains programs in Algol-like

notation for union and find . It is easy to translate these into

reference machine programs.

[Table L,1]

Adding a heuristic to the union program improves its performance

considerably. Each record needs an additional data item, size . The

size 1tem 1s only meaningful for headers; it counts the number of elements

in the corresponding set. To perform a union of A and B , the size of

A 1s compared to the size of B . If B is smaller, the union proceeds

as before. If A 1s smaller, the symbols for A and B 1n the headers of

the sets are interchanged, the references 1n ry and LN to the headers

are interchanged, and the union proceeds as before. The time required for

such a welghted union 1s proportional to the size of the smaller of A

and B. Table 4.2 contains a program for this heuristic.

[Table 4.2]

In the quick union method, each record contains only one reference

item, parent . The collection of records representing a set forms a rooted

Eo

creer with the parent of each record referring to its parent in the tree;

©

*/ A rooted tree T 1s a connected, acyclic, undirected graph with a
unique distinguished vertex r , called the root of T . If v and

w are vertices of T such that v is on the (unique) simple path
from r to w, then v is an ancestor of w and w is a descendant

ofv . This relationship is denoted by v % Ww . The relationship
- ¥ T 3

Vv = Ww and v # w 1s denoted by v -w . If vow and (v,w) is
an edge of T , then v is the parent of w and w is a child of v .
This relationship is denoted by v = w . A leaf 1s a vertex with no

children. The height of a vertexv is the length (number of edges)
of the longest simple path from v to a descendant of v . The

sub-tree of T rooted at vertex v 1s the subgraph of T induced by
the descendants of v , with v as root.

12



the parent of the root is 0 r The root contains the symbol of the set,

Figure 42 illustrates this data structure.

[Figure 4.2]

With this representation, a union of A and B requires only one

machine step, to place a reference to the root of A in the parent of

the root of B . A find is performed by starting from the input record

and following parent references until reaching a record with a null

parent this record 1s the root of the tree representing the set and

contains the set symbol. The find requires time proportional to the

number of records on the path from the input record to the root. Table 4.3

contains programs for these versions of union and find .

) [Table 4,3]

The weighted union heuristic can be added to quick union ; it uses

extra time on unions but may save time on later finds . A heuristic

for finds called path compression 1s also useful. After a find , every

record on the path from the input record to the root has its parent

modified to refer directly to the root, Path compression increases the

running w= Of a find by a constant factor but may save time on later

finds . Table 4.4 contains programs for union and find with these

heuristics.

[Table L.k]

The quick find algorithms are apparently part of the folklore of

compiler construction; a description of these algorithms appears in [1]. The

quick union algorithm with the weighted union heuristic was first presented

in [5]. The path compression heuristic is apparently due to MeIlroy and

Morris [1]. Worst-case analysis of these algorithms appears in [1,L4,5,6,17];

Table 4.5 summarizes the results. The theoretically best algorithm in the

15



worst case 1s quick union with both heuristics; its running time is

O(m a(myn)) , where a(myn) is a functional inverse of Ackermann's

function defined as follows.

For i,j > 0 let the function A(i,J) be defined by

(k.1) A(i,0) = 0 ;

A(O,7) = 27 for3 > 1;

Ali, 1) = A(i-1,2) for i > 1 ;

Ali, j) = A(i-1, A(i,3-1)) for i>1, 3j>2.

Let

(4.2) a(i,n) = min{j| A(i,3) > log, n]
and

(+3)  a(mn) = @in{i > 1| A(, L2n/n]) > log, 0}

[Table 4.5]

Yao [21], Doyle and Rives-t [3], and Knuth and Sch¥nhage [10] have

carried out average-time analyses of the algorithms for several reasonable

probability measures under the assumption that m and n are proportional,

Table 4.6 contains the results of Yao and Knuth and Sch¥nhage for one

measure (see [21]).

. [Table 4.6]

The quick union algorithm is simpler and requires less storage than

the quick find algorithm and is thus more useful in practice. Whether

either of the two heuristics should be used with this algorithm depends upon

the size of the problem and the cost of time versus the cost of space, The

average running time of the quick union algorithm with path compression

but without weighted union 1s unknown for the probability measure used by

Yao and Knuth and Schbnhage.,

5 For any real number x, LX| denotes the greatest integer not larger
than x .

1h



When path compression is used, the running time of the quick union

algorithm tends rapidly to O(m) as m/n increases. For instance, if

weighted union is not used and m/n a for some positive constants

c and €, the running time 1s O(m), If weighted union 1s used and

m/n > ca(k,n) for some positive constants c¢ and k, the running time 1s

O(m) , Note that a(O,n) is 0(log log n) and a(l,n) is o(log n), where
1 times

———
log* n = min{i| log log . . . logn <1}.

The weighted union rule requires that records contain integer data

items and that reference machines add and compare. It 1s natural to ask

whether the weighted union rule can be implemented on a pure reference

machine in such a way that the total time for all unions is O{(n) ,

The answer 1s--yes.

Each non-negative integer is represented by a list which encodes the

binary digits of the integer, A zero 1s encoded by a null pointer; a one

is encoded by a non-null pointer. The digit list 1s singly linked from

the low order digit to the high order digit. Figure 4.3 illustrates this

representation.

[Figure 4.3]

Two integers are added by scanning the digit lists and adding digit-

. by-digit, propagating carries in the usual fashion. The scan stops after

the end of the shorter list 1s reached and the last carry stops propagating.

Two integers are compared by scanning both simultaneously and noting the

highest order digit on which they differ. The scan need only extend to the

end of the shorter digit list; the integer with the longer digit list must

be larger. I leave as an exercise the implementation of these algorithms

as register machine programs,

The n-1 union operations carried out by the quick union method

perform the following arithmetic. Initially there are n integers, each

15
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equal to one. During a union , two of the integers are compared and

then added. After n-1 unions , a single integer equal to n remains.

Since comparing two integers requires no more time than adding them,

it will suffice to bound the time requiredby all the additions.

Lemma 4,1. Let a, b, c¢ be integers such that a+b = c and let (a3) ,
oo i

(bs) ’ (c;) , respectively, be their binary digit lists ( a = 2, 2,2" ,
i= 0

w . © .

b = 2 bo" , C= 25 c.2b a.,b,,c. e€{0,1}). Let d. be the. i . i I RA | 1
1=0 1=0

carry from the i-th position when a and b are added. Then

k k

p2 (a; +b,) = d +72 (c; +4;) for all k . In particular,
1=0 1=0

oo] oo]

l= ~ l=

Proof. For i > 0, a;+b,+d;;, =c,+2d, (assuming dj; = 0).

+ —_— . + . a "= 1 1 1 —Thus a; +b, = c +d,+ (d; d; 1) . Summingfrom i=0 to i=k

gives the lemma. Cl

16



The time needed to add two binary integers by reference machine

1s proportional to the length of the shorter integer plus the

number of carries. By Lemma 4.1, the total number of ones in the

binary representations of both integers 1s equal to the number of ones in

the binary representation of the sum plus the number of carries.

Consider the arithmetic performed during the union operations,

Initially, the total number of ones in the binary representations of all

the set sizes 1s n . Each carry performed during an addition causes the

total number of ones to decrease by one. Thus the total number of carries

cannot exceed n-1, and the time required for all carries is 0(n) ,

It remains to bound the total length of the shorter of each pair of

integers added during union operations. Let f(n) be a worst-case bound

on this total length as a function of n . Then f£(1) = 0 , and

f(n) = mex{| log, kj +1+ £(k)+ £(n-k) [1 <k <n/2] forn>1,

since the length of the binary representation of k is L Log, k|+1 .

Lemma 4,2, f(n) <3n-2 log, (nt1)-1 :

Proof. By induction on n .

£1) = 0 < 3-2 log, 2-1 .

(2) = 1 < 6-2 log, 3-1.

Let n > 3 and suppose the lemma is true for all values less than n .

Let k be such that 1 < k < n/2 and

f(n) = L Log, k|]+1+ £(k)+f(n-k) .

By the induction hypothesis

17
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f(n) < Log, k + 1+3k-2 log, (k+1) -1+3(n-k) -2 log, (n-kt1) -1

< 3n - 1 - log, (k+1) - 2 log, (n-k+1) |

The function - Log, (k+1) -2 log, (n-kt1) for 1 < k < n/2 is maximum
when k= 1 . Thus

f(n) < 5n - 1 - log, 2—2 log, n

< 3n-2 2 log, n

Also, n >3 implies Jan > ntl , which means

—2 log, (n+1) > = 2 log v2 n = —2 log, n-1 ,
and

f(n) < 3n=2 log, (ntl) -1 . 4

It follows that the total time to perform all arithmetic associated

with the union operations is O(n) , and the following theorem holds.

Theorem 4,1. There exists a pure reference machine which solves any disjoint

set union problem in O(m a(myn)) time.

18
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5. A Non-Linear Lower Bound.

This section shows that for all m and n there 1s a set union

problem which requires at least cma(m,n) steps to solve by reference

machine, where c¢ is a positive constant independent of m and n.

Rather than consider reference machlnes, I consider sequences of reference

machine steps. Given a set union problem, a sequence of reference machine

steps 1s said to solve it 1f there 1s some reference machine, some set of

union programs, one for each union, and some set of find programs, one

for each find, such that when the sequence of programs corresponding to

the sequence of union and find operations 1s executed according to the

conventions of Section 3, the given sequence of reference machine steps

results and the find programs produce correct answers. Note that any

sequence of reference machine steps can be carried out by a non-branching

reference machine program. The first step in the lower bound proof is to

convert into a simple normal form any sequence of reference machine steps

which solves a set union problem,

Theorem 5.1. Let S51 be any sequence of reference machine steps which

solves a set union problem, Then there is a sequence of reference machine

steps 55 which also solves the set union problem and has the following

properties:

boy spl < 2mm |s]).

(5.2) 5, manipulates no data except set and element symbols.

(5.3) S, represents each input set by a single record and contains no
create 1nstruction.
PUT

(5.4) Ss fetches a symbol from memory only as the last instruction of

a find.

19
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Proof. Let Sq be a sequence of reference machine steps which solves some

set union problem. Delete from 5 all steps which manipulate data other

than set and element symbols. The sequence 5¢ now satisfies (5.2) and

still solves the set union problem.

The sequence Sy to be constructed manipulates records corresponding

| to the sets, the elements, and the records manipulated by 51 . Initially

the memory of Sy consists of one record for each input set A = {a) .

This record 1s the representative of the set A, of the element a , and

of each record in the initial collection of records by which Sy

represents A. Each record created by Sr. also has a representative in

the memory of So, » defined as follows. The representative of a record

created during execution of find(a) 1s the representative of a . The

representative of a record created during execution of union(A,B) 1s the

representative ofA . For any object x (set, element, or record), let

x" denote the representative of x .

Sy simulates Sq step-by-step. If S¢ and Sp are executed in

parallel, the memory and registers of Sy correspond to the memory and

registers of Si in the following way.

(5.5) If Ry and R, are records in the memory of S; such that R

contains a reference to R, , then Ry contains a reference to
* * *

Ry, (unless R, = R, )e

(5.6) If R 1s a record containing a set or element symbol x , then

R* contains a record to x and x contains a reference to

R"° (unless & x )e

(5.7) If some register of S¢ contains a reference to a record R ,

then some register of Sy contains a reference to R* .

20
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(5.8) If some regiser of 8 contains a set or element symbol x ,

then some register of 5, contains a reference to x .

(5.9) During execution of find(a) , So malntains a reference to a*

in a register. During execution of _union (A,B) , 55 maintains

a reference to A* 1n a register.

Initially the memory of 5, consists of all the representatives, each

containing the symbol of the corresponding set, the symbol of the

corresponding element, and no pointers. Properties (5.5) - (5.9) hold

initially.

Let find(a) be a typical find. 8; begins find(a) with a reference

in ry to a record R containing the symbol for a . If (5.6) holds before
the find, either R = a* or a* contains a reference to R* . 5, begins

the find with a reference to a* in ry. 5, 's first step is to fetch a
reference to R* into a register. This preserves (5.5)- (5.9).

Let wnion(A,B) be a typical union. 8, begins amion(A,B) with

references in ry, TI, to records Ry , R, containing the symbols for

A, B, respectively. If (5.6) holds before the find, either R* = A

or A* contains a reference to R ; similarly either R, = B or B*
contains a reference to R, . Ss begins the union with references

to A* , B* in ry , 1, , respectively. Sy 'S first two steps are to

fetch references to Ry and R, into registers. This preserves
+ (5.5) - (5.9).

So simulates each step of Sq in the following way.

Each time Sq fetches a reference to a record Ry from a record Ry /

5, fetches a reference to R, from R, (possible by (5.5)). Each time
5, stores a reference to a record R, in a record Ry , 5, stores a

reference to R, in BR, (possible by (5.7)). Each
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time S51 fetches a set or element symbol x from a record R ,

S, fetches a reference to x from R* (possible by (5.6)). Each

time Sq stores a set or element symbol x into a record R , Sy

stores a reference to x in R" and a reference to R* in x (possible

by (5.7) and (5.8)). Each time 8, creates a record, 8, does nothing.

At the end of each find, 5, fetches the appropriate set symbol. Each

of these steps preserves (5.5) - (5.9). The sequence Sy constructed

in this way carries out the finds and satisfies (5.1)- (5.4), [J

One can represent the memory manipulated by a reference machine as

an undirected graph, with one vertex RY for each record R and one edge

for each reference. If a record R, contains a reference to a record Ro

then (R)>R5) 1s an edge in the graph. This representation motivates the

following definition, which reformulates the set union problem as a graph

construction problem.

A link solution to a set union problem consists of a set of vertices

V , one for each initial set and element, and a sequence of instructions

of the form Link(v,w) where v,weV . The sequence of link instructions

constructs a graph edge-by-edge, starting from the graph with vertex set

V and no edges; link(x,y) constructs edge (x,y) . For any initial set

or element x , let x denote the corresponding vertex. The sequence of

link instructions must satisfy the following properties.

(5.10) The sequence of links can be partitioned into contiguous subsequences,

each subsequence corresponding to a union or find operation.

(5.11) Let find(a) with answer A be a typical find. Each Link(x,y)

in the subsequence for find(a) is such that x = A* and the

distance between x and y in the graph existing before the |
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link is two. The instruction link(A , a") occurs either in the

subsequence for find(a) or earlier in the sequence.

(5.12) Let union(A,B) be a typical union. Each link(x,y) in the

subsequence for union(A,B) is such that x = A* and either

y = B* or the distance between x and y in the graph

existing before the link 1s two.

Theorem 5.2. Any set union problem solvable in k reference machine steps

has a link solution of length not exceeding Sm+ln+ Lk .

Proof. Let S51 be a sequence of k reference machine steps which solves

a set union problem. Let Sr be a sequence of reference machine steps

satisfying Theorem 5.1. Then |S, | < 2(mnt+k) . From S, we construct

a link solution S; satisfying the theorem. The vertex set for 53
*

consists of one vertex R for each record R manipulated by 5S, , If

Sp and 5; are executed in parallel, the following properties hold.

(5.13) If a record Ry contains a reference to a record R, , then
® *

the distance between Ry and R, 1s at most two.

(5.14) Let find(a) with answer A be a typical find. If during this

find some register of S, contains a reference to R , then
* ®_n | |

either A* =R or (A ,R) is a previously constructed edge.

(5.15) Let union(A,B) be a typical union. If during this union

some reglster of So contains a reference to R , then either
* * * _* | |

A =R or (A,R) is a previously constructed edge.

Ss simulates Sy instruction-by-instruction, Certainly (5.13) - (5.15)
hold initially, Let wnion(A,B) be a typical union. To begin the union,
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55 links A* and B . This Preserves (5.13)- (5.15). Let find(a)
with answer A be a typical find. Suppose S fetches [ items from

memory while carrying out the find, If (5.13) holds before the find, there

must be a path of length 2 or less between A* and a* in the graph

existing before the find, To begin the find Ss links each vertex
on this path to A* . This preserves (5.13) - (5.15).

Consider a subsequence of 5, corresponding either to a find (a)

with answer A or a union(A,B) . Suppose Sy, fetches a reference

(say to R,) from a record (say Ry ). If (5.13) (5.15) hold before

the fetch, then there 1s a path between A* and R, of length at most

three. 5; links each vertex on this path to A* , This preserves

(5.13) - (5.15). All other instructions in §, do not affect (5 13) -(315);,

in order to store a reference (say R, ) in a record (say Ry Ys 5, must

first have references to R, and R, in registers, By (5.14) and (5.15)

this means that the distance between R, and R, in the graph existing
before the store 1s at most two.

The total length of the sequence 53 constructed in this way 1s
at most 5m+kn+ kk , and the sequence clearly solves the set union

problem. O

In the following discussion I shall not distinguish between an

initial set, its single element, and the vertex representing the set and

the element, Corresponding to the sequence of unions in any set union

problem 1s a rooted tree, called the union tree, whose vertices are the

initial sets and whose edges are the pairs (A,B) such that union(A, B)
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occurs 1n the sequence. The root of the tree is the set remaining after

all unions are carried out. With this definition, every link(v,w) in
+

a link solution to a set union problem has the property that v =» w in

the union tree. In the worst-case set union problems to be constructed

below, the union tree 1s a complete binary tree.

The lower bound proof makes use of a rapidly growing function B(i,J)

defined for i,j > 1 as follows.

(5.16) B(1,J) = 1 for § > 1 ;

B{(i,1) = B(i-1,2)+1 for i > 2 ;

Lemma 5.1. B(i, j )+1 < A(i, 23) for i,j > 1.

Proof. It is easy to show by induction that A(i,J) < min{A(i+1,3),A(3,j+1)}

for 1 >0, 3 > 1 . Also,

Ad, 3-1) .27? ~1)+

> 2 5 pA(L,J-1)+2 for 1,5 > 2 .

The lemma follows by double induction on 1 and Jj :

(5.18) B(Lj)+l = 2 < 25 = A(0,J) £ A(L,23) for j>1 ;

(5.19) B(i,1)+1 = B(i-1,2)+2 < A(i-L,4)+2 < A(i-1,6)

< A(i-1,A(2,1)) < A(i-1,A(i,1)) = A(4,2) for i > 2 ,

if B(i-1,2)+1 < A(i-2,L) ;
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(5.20) B(i,j)+1 = B(i,J-1)+ B(i-1,28(% 5-1) +1

< A(i,2j-2)+ A(i-1,2.0A(1:23-2)y

< A(i-1,2.08(123-2) A(i,25-2))

< A(i-1,28(1,23-2)+2,

< A(1-1,A(3,23-1)) by (5.17)

= A(i,23) for i,j >2 , if B(i,Jj-1)+1 < A(i,2j-2)

and B(i-1,28(13" yiy < a(i-1,2.08(0 3-1)y

J

Theorem 5,3. For any kys > 1 , let T be a complete binary tree of

B(k, s) a
height h > B(k,s) .~ Let {v, |1 <i <s2 } be a set of pairwise

unrelated vertices in T , each of height strictly less than h-B(k,s) ,

such that exactly s vertices in {v;} occur in each subtree of T
+

rooted at a vertex of height h-B(k,s) . Then for n = of 11 and

m _ 5B 8) there 1s a set union problem for which

(5.21) the union tree is T ;

(5.22) the set of finds is {find (v,) |1<i<m};

(5.23) the answer to each find 1s a vertex of height strictly greater

than h-B(k,s) ; and

(5.24) any link solution has length at least km , even if every edge
+

(v, w) such that v » w and h(v) < h-B(k,s) in T is allowed

for free, and after each link(v,w) every edge (X,y) such

* + * |
that v =X =» y =» Ww 1s added for free.

Proof. The proof 1s by double induction on k and s and 1s similar to

the lower bound proof in [17]. Suppose k = 1 . Consider any set union
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problem consisting of n-1 unions which form T followed by a find on

each vertex in {v;} The answer to each find is the root of T ;

(5.23) holds since h > B(k,s) . None of the originally free edges solves

a find. Since the vertices in {vs} are pairwise unrelated, any -link(x,y)

can solve only one find, even including the appropriate free edges.

Thus (5.24) holds.

Suppose the theorem holds for k-1 , s = 2 . The following argument

proves the theorem for k with s = 1 . Suppose the hypotheses of the

theorem hold. Let {uy |1 <i <m} be the set of vertices of height

h-B(k,1) in T , numbered so that uy vio. The vertices in {u, }
are pairwise unrelated and exactly two occur in each subtree of T rooted

at a vertex of height h-B(k,1)+1 = h-B(k-1,2) . By the induction

hypothesis there 1s a set union problem satisfying the theorem for

kt = k-1, s'=2, T, {u, } Let the sequence of finds and unions in

this set union problem be Py . Form P, from Py by replacing each

find (u, ) by find (v; ) . I claim the resulting sequence satisfies the

theorem for k , s=1, T, {vs} .

Certainly (5.21) = (5.23) hold. Consider any sequence S, of links

which carries out P, , allowing for free the edges described in (5.24).

Form a sequence 51 from 5, by replacing each link(x,y) such that

vy 5 y for some (uniquely determined) 1 by link (x, u, ) . Delete from
: Sy all links which do not create new edges. I claim 5¢ carries out

Py (allowing appropriate edges for free) and that 15, | < |S, |-m .

The following property is true initially and is preserved if 5¢ and

So are executed 1n parallel (on separate graphs).
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(5.25) For 1 <i <m, u, 1s adjacent 1n the graph manipulated by

51 to all vertices adjacent to at least one descendant of Vv.

in the graph manipulated by 5, .

It follows that Sq carries out Py .

For any vs , consider the first link(x,y) in 5S, such that

X 1A uy — Sy . There must be such a link since none of the initially

free edges solves find(v, ) by (5.27). There must be a path of length two,

say (x,z)(z,y), between x and y in the S, graph existing before the link,

Furthermore =z must satisfy u ~ 2 ~v, . It follows that (xu, ) 1s
an edge of the existing Sq graph. Thus Sy need not contain an

instruction link(x, corresponding to link(x,y) . This 1s true for

any value of i . Hence 54 | < |S, |-m ]

Since (k-1)m < 5, | by the induction hypothesis, |S, | < km ,

and (5.24) holds.

Suppose the theorem holds for k , s-1 and also for k-1 , B(k,s-1) .

The following argument proves the theorem for k , s . Suppose the

hypotheses of the theorem hold. Let fw, | 1 < 1 < 2B 2 be a subset
of {v;} such that exactly one vertex w. occurs in each subtree of T

rooted at a vertex of height h-B(k,s) . Let {u, | 1 <1<oB(E8)y be
the set of vertices of height h-B(k,s) , numbered so that Us 5 LA

Consider the sub-trees I. , 1 <J< »B(k 5)-B(k, s-1) , rooted at
vertices of height h-B(k,s)+ B(k,s-1) = h-B(k-1,25 5-1), in T . Each

sub-tree r. contains (s-1)2B( 5-1) vertices in {v, }-{w, } y exactly
s—-1 in each subtree rooted at a vertex of height h-B(k,s) . By the

induction hypothesis there 1s a set union problem satisfying the theorem

for k' = k, s' = s-1, Te (v | Vv 1s a vertex in I and ve {v, 3-{w; }3 .

Let Bo be the sequence of unions and finds 1n this set union problem,
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The vertices in the set {u, } are pairwise unrelated and exactly
B(k, s-1

2 (x, ) occur in each subtree Is of T . By the induction hypothesis
there 1s a set union problem satisfying the theorem for k'= k-1,

B(k, s-1

s' = 2 (ky s-1) T, {1,3. Let Q be the sequence of unions and finds
in this set union problem. The sequence 0 can be permuted, without

increasing the number of links required to carry out Q, so that all

unions forming the subtrees I. occur before all other operations.
Let Q' be formed from the permuted version of Q by deleting all

unions forming the subtrees T- y let Q" be formed from Q' by replacing
each find(u,) by find(w. and let P" = P.sP.y eeerP "

find( 1) y find( i) ! 12? ’ B(k, s)-B(k, 5-1)’ © ’
I claim P" defines a set union problem which satisfies the theorem for

Certainly (5.21)- (5.23) hold. Consider any sequence S" of links

which carries out P" , allowing for free the edges described in (5.24).

Form a new sequence S from §" by replacing each link(x,y) t h a t
*

We 2 Y for some (uniquely determined) 1 by Link (x, u, ) . Delete from
S all links which do not create new edges. The following property 1s

true initially and is preserved if S and 8S" are executed in parallel

(on separate graphs).

Blk, s

(5.26) For 1 <1 <2 (ks) » u; is adjacent in the graph manipulated
by S to all vertices adjacent to at least one descendant of Ws

in the graph manipulated by S" .

It follows by an argument like that in the previous case that S

carries out P'=P_,P ,... '

B(k, s)|s| < |s"|-2"" 5. S can be written as S = 8,,S8.5¢0059| = Is] 17200? _B(k, 5)-B(k, 5-1)" ’
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where Sy carries out Pi for 1 <i < Bk, 8)-B(k, s-1) r allowing
for free the edges described in (5.24), and U carries out Q',

allowing for free the edges (v,w) such that wv YL w and

h(v) < h-(k-1, 25 (5 5-1) and after each link(v,w) allowing for free

the edges (%X,¥) such that v - 5; y Sow . This means that U carries
out @Q , allowing the appropriate edges for free, By (5.24),

5;| > ie(s-1)2 38 S=1) for 1 <i< oP 8)-B(k 5-1), pg
|u| > (k-1)2B( §) . It follows that

[sv | > |s] + Bk, 5) > k(s-1)2B (5 8) 4+ (1-1)2B (8s 5) + Bk, 8) _ 10. 8) _ yy
Thus (5.24) holds, By double induction, the theorem is true in general. J

Corollary 5.1. Let kKy8 > 1 . Let T be a complete binary tree of

height B(k,s) . Then there is a set union problem whose union tree

is T, which contains m = «2B s) finds, and which requires at least

(k-1)m links for its solution,

Proof. Choose £ >1 such that 2° > s . Let T' be a complete binary

tree formed by replacing each leaf of T by a complete binary tree of

height I . Let {v: | 1 <i<m} be any set of vertices satisfying the

hypotheses of Theorem 5.3 for k , s , T' . For 1 <1i<m, let us

be the vertex of height £2 in T' such that u, Sv, . Let ©P!' be
a sequence of unions and finds defining a set union problem satisfying

the conclusions of Theorem 5.3 for k , s , T', {v.} . Without loss of

generality we can assume that the unions which form the sub-trees of T'

rooted at height [f occur at the front of P' .

Form P from P' by deleting the unions which form the sub-trees

of T' rooted at height f and replacing each find(v, ) by find (u, ) .
We claim P defines a set union problem satisfying the conclusions of the
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corollary. CertainlyP contains m finds and the union tree of P

is T . Suppose S 1s a sequence of links which carries out P .

FormS' from S by following each link (x,u, ) which solves a

find (u, ) by Link (x,v, ) . Then 8' carries out P' if all edges

(vw) with h(v) <f are allowed for free, Thus $' | >km , and

|Is"]> (k-1)m . O

Theorem 5.2, Lemma 5.1, and Corollary 5.1 combine to establish

the main result of this paper.

Theorem 5.4. There 1s a positive constant c¢ such that, for all

m>n>1, there is a set union problem consisting of m finds and

n-1 intermixed unions whose solution by reference machine requires at

least ema(myn) steps.

Proof. Let s = |m/n] . Choose k as large as possible such that

oBl 8)+1 5 Sn , Partition the n elements into as many sets as

possible of size 2B s tl, , plus leftover elements. At most n/2

elements are left over. On each set of Bk s)+1 elements, define

a set union problem satisfying Corollary 5.1. Concatenate these problems,

add enough additional unions to combine all elements, including the

leftovers, into a single set, and add enough additional finds to bring

the total to m .

The resulting set union problem contains m finds, n-1 intermixed

unions, and requires at least (k-1) 22 (Er 8) n/pBks 8)+2 = (k-1)sn/b >

(k-1)m/8 links for its solution. ByTheorem 5.2, this set union problem

requires at least (k-1)m/32 — 5m/Lk - n > (k-73)m/32 reference machine

steps for 1ts solution.
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If a(mn) > 2 , k > a(mn)-1 in this construction since

B(a(myn)-1,s)+1 < A(x(mn)-1,2s) by Lemma 5.1

< log, n by the definition of «a .

Thus the selected set union problem requires at least

(a(m,n)-74)m/32 > a(m,n)m/6Lk reference machine steps, if

a(mn) > 148. But if a(mn) < 148 , any set union problem requires

at least m > mx(myn)/1k8 reference machine steps. Choosing

c = 1/148 gives the theorem. O
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Conclusions. |

This paper has described a machine model, called a reference machine,

suitable for analyzing list processing problems. The model is similar to

several previously -proposed [8,11,12,16], Reference machines are quite

powerful; Schbnhage [16] has shown that they can simulate Turing machines

with multidimensional tapes in real time, and one can show that they can

simulate random access machines with logarithmic cost in real time.

The paper has analyzed the ability of reference machines to compute

disjoint set unions. Under certain natural restrictions, all reference

machines require non-linear time to solve this problem. This lower bound

characterizes the efficiency with which one can represent dynamic information

of a certain kind in a list structure. The bound does not require that

the machine be deterministic, or that the program of the machine be fixed

while the problem size grows, or that the complexity of memory (number of

fields per record) be fixed while the problem size grows.

This generality 1s achieved by making the assumption that the

description of each set 1s stored separately and that moving the

description of a set requires constant time per element. Without these

assumptions the lower bound 1s not valid. I conjecture, however, that

the lower bound holds 1f the separate storage assumption 1s replaced by

an assumption about the complexity of memory; namely, that every record

contains only a fixed number of fields independent of the problem size.

The paper has presented a number of known set union algorithms and has

shown that they all fit into the reference machine model. (ope of the algorithm:

achieves the lower bound to within a constant factor. This algorithm

requires that arithmetic be performed, but the arithmetic can be simulated
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using list processing with only a constant factor loss in running time.

I believe that anyalgorithm, even one which uses address arithmetic,

requires non-linear time to solve the set union problem. Proving such

a statement seems to require a better understanding of random access

machines. |

The set union problem can be generalized to a problem requiring

evaluation of functions defined on paths in trees. The techniques used

here and in [17] lead to a non-linear lower bound for some special

cases of this generalized problem [20]. Certain cases of the problem can

be solved in almost-linear time by using complicated extensions of the best

set union algorithm presented here [18]. Whether the most general version

of the function evaluation problem can be solved in almost-linear time

1s unknown.
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procedure quick find

Sq + set (parent (r;));

procedure slow union;

while rp # f do

begin

save - next (r,);

parent (r,) “ry;

next (r,) - next (r, );

next (r;) - TS;

15 © save

end; —-—

Table 4.1. Programs for find and union using the quick find

data structure.
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procedure slow weighted union;

begin

if size(r,) « size(r,) then

begin
aa a a or

set (ry) id set(r,);

ry ES

end;

size(ry) R size(r,) + size(r,);

slow union

end:

Table 4.2. Program for weighted union heuristic with quick find data

structure.
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procedure quick union;

parent (r,) - Ts

procedure slow find;

begin

root « Tor

while parent(root) # § do root « parent(root);

5, < set (root)

end;
a a

Table 4.3, Programs for union and find using the quick union

data structure.
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procedure quick weighted union;

if size(r;) < size(r,) then

begin
A

set(r,) « set(r,);

parent (ry) « ros

size(r,) = size(r;)+ size(r,);

end

parent (r,) “Ty;

size(r)) ~ size(r)) + size(r,)

end;

procedure find with path compression;

slow find;

current « rs

while parent (current) # 9 do

save + parent (current);

parent (current) « root;

current « save

Table 4.4. Programs for weighted union and path compression heuristics

with auick union data structure.
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Time

Quick find O(mn) [1]

with weighted union - O(m log n) [1]

Quick union 0(m) [4]

with weighted union O(m log n) [4]

with path compression 0 (memax (1, log (n° /m) /log (2m/n ) )) [17]

with both heuristics Om a(m,n)) [17]

Table 4.5. Worst-case running times of set union algorithms.
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Time

: 2
Quick find O(n) [21]

with weighted union O(n) [10]

2
Quick union O(n") [21]

with weighted union O(n) [10]

with path compression ?

with both heuristics O(n) [10]

) Table 4.6, Average running times of set union algorithms

if m and n are proportional.
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Figure L4.1, Data structure for quick find algorithm.

Sets are A = {a,b,c,d,e} , B = {f,g,h,i} .
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Figure 4.2. Data structure for quick union algorithm.

Sets are A = {a,b,c,d,e} , B = {f,g,h,1]} .
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Figure 4.3. Representation of 26 = 10110, as a list.
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