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ABSTRACT

We have studied previouslya generalized conjugate gradient method

for solving sparse positive-definite systems of linear equations arising

from the discretization of elliptic partial-differential boundary-value

| problems. Here, extensions to the nonlinear case are considered. We

split the original discretized operator into the sum of two operators,

one of which corresponds to a more easily solvable system of equations,

and accelerate the associated iteration based on this splitting by

(nonlinear) conjugate gradients. The behavior of the method is illus-

trated for the minimal surface equation with splittings corresponding

to nonlinear SSOR, to approximate factorization of the Jacobian matrix,

and to elliptic operators suitable for use with fast direct methods.

The results of numerical experiments are given as well for a mildly

nonlinear example, for which, 1n the corresponding linear case, the finite

termination property of the conjugate gradient algorithm 1s crucial.
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0. Introduction

In earlier papers [6,9]we have discussed a generalized conjugate

gradient iterative method for solving symmetric and nonsymmetric positive-

definite systems of linear equations, with particular application to

discretized elliptic partial differential boundary-value problems. The

method consists of splitting the original coefficient matrix into the

sum of two matrices, one of which 1s a symmetric positive-definite one

that approximates the original and corresponds to a more easily solvable

system of equations; the associated iteration based on this splitting

is then accelerated using conjugate gradients. The conjugate gradient

(cg) acceleration algorithm has a number of attractive features for

linear problems, among which are: (a) not requiring an estimation of

parameters, (b) taking advantage of the distribution of the eigenvalues

of the iteration matrix, and (c) requiring fewer restrictions for optimal

behavior than other commonly-used iteration methods, such as successive

overrelaxation. Furthermore, cg 1s optimal among a large class of

iterative algorithms in that for linear problems it reduces a particular

error norm more than does any other of the algorithms for the same

number of iterations.

In this paper we study an extension of the generalized conjugate

. gradient method to obtain solutions of systems of equations arising

from elliptic partial-differential boundary value problems that are

nonlinear. For such systems--which correspond to the minimization of

convex nonquadratic functionals, as opposed to quadratic functionals for

the linear case=-=-optimality and orthogonality properties of cg need no
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longer hold. Some algorithms for the nonquadratic case have been

proposed [e.g., 10, 11, 14,16, 20, 22] that preserve one or more of

the quadratic case properties of finite termination, monotonic decrease

of the two-norm of the error, conjugacy of directions of search, and

orthogonality of the residuals. The method we discuss only approximates

these properties, but 1s found to be effective for solving the discrete

nonlinear elliptic partial differential equations of primary concern

in our study. The method 1s closely related to the one studied in

[3] for solving mildly nonlinear equations using a particular splitting.

We discuss 1n Sec. 1 several nonlinear conjugate gradient

algorithms and in Sec. 2 same convergence properties. In Sec. 3

possible splitting choices for the approximating operator are described.

‘A test problem for the minimal surface equation is discussed in Sec. UL,

and experimental results for several splittings are summarized in Sec. 5.

In Sec. 6 are given experimental results for a test problem for a mildly

nonlinear equation, for which, in the corresponding linear case, the

finite termination property of cg 1s crucial.

] Much of the work reported here comprises a portion of the last-

named author's doctoral dissertation at Stanford University [23].

We wish to thank the Mathematics Research Center, University of Wisconsin-

Madison for providing the first two authors the stimulating and hospitable

surroundings 1n which portions of the manuscript were prepared. We

thank H. Glaz for preparing the computer program and for carrying out

the numerical experiments for the second test problem, and R. Hockney

and D. Warner for suggesting the problems from which this test problem
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was derived. We thank also R. Bank, B. Buzbee, P. Swarztrauber, and

R. Sweet, who made available to ustheir excellent computer programs for

solving separable elliptic equations with fast direct methods. The work

reported here was supported in part by the U.S. Energy Research and

Development Administration, by the Fannie and John Hertz Foundation,

and by the National Science Foundation.

1. Nonlinear Conjugate Gradient Algorithms

In the linear case, the generalized conjugate gradient method

[9] solves the N X N positive-definite system of equations

(1) Ax =Db

or, equivalently, minimizes the quadratic form

(2) f(x) = > x Ax - xb .

Let M be a positive-definite symmetric N X N matrix, chosen

to approximate A. Then for symmetric A the algorithm, as described

in [9] in its alternative form, is:

(0)
Let X be a given vector and define arbitrarily § 1)

For k = 0, 1, . . .

(1) calculate the residual  (K) _b- nx)

and solve

(3) vy CE) _ (K)



Ho

(ii) Compute the parameter

T

(1) ne p(k)
(k-1)"_ (k-1)

Z r N

(1)
[Sh = 0

and the new direction o (kK) = 5 (KE) + p (Hl)

(111> Compute the parameter

T

- (1) , (k)  (E)
k = ( T gk)™, (k)

Pp Ap

. and the new iterate o (EFL) = LE) fb) .
1 £ th (1) (1)

In place of the parameters a, and b,™’, one may use instead
equivalent ones [18,26], such as

T

(2) B pl) p(k)
LISSk k

Pp Ap

or

T

(2) } , (Kk) pp EL)
wD) (ka)k-1 - .

p Ap

Instead of computing the residual rk) explicitly for k > 1,
as in (1), 1t 1s often advantageous to compute 1t recursively as

(k) _ (x1) k-1)
Tr =r - a, _18P .
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The effectiveness of the algorithm (i, 11, 111) 1s discussed in

[9] for cases in which A is a sparse matrix arising from the dis-

cretization of an elliptic partial differential equation and M 1s

one of several sparse matrices arising naturally from A.

For the nonlinear case, we consider solving the system of equations

(4) g(x) =0

arising from minimizing f(x), where g(x) 1s the gradient of f(x).

(For the linear case (1,2), g(x) = Ax — b; in either case, g(x) is

the negative of the residual.) We assume that the Jacobian matrix J

of (4) 1s positive-definite and symmetric, and, as for the linear case,

we are 1nterested in those situations for which (4) 1s a discrete form

of an elliptic partial differential equation and, correspondingly, J

1S sparse.

The approximating matrix M for the linear case 1s chosen in

[9]to be one of several positive-definite symmetric matrices approximating

A naturally in some manner. For the nonlinear case, we consider related

choices forM to approximate J, although sometimes M may not be

) linear, symmetric, or everywhere positive definite. We pattern after

(i, ii, iii) the following algorithm (see also (31).

Let (0) be a given vector and define arbitrarily LL) For

k = 0,1,...

(Ni) Calculate

AK) _ a(x Ky

and solve

(5) TAGE

d



_ (1) (2)
(Nii) Compute by = bp or oy ’

where -
(k)~_(k)

b = ee , kK > 1
,(k-1)" (k-1)

AT

b, = 707
(k-1)"__ (k-1)

p JP

Py =0,

and ~

ok) _ ky , te-1)
k

es 0) (2)
(Niii) Compute a = a ’' or a 7,

where —

, (1) 7 (6)
kK = T

(k)™__ (k)
Pp JP

T

(2) pK) p(k)
Eos 0k k

p JP

and

Cer) (x), ap |

The algorithm (i, ii, 1ii> for the linear case is generally

iterated without any restarts (setting of ob, to zero

for some value of k > 0); however the nonlinear algorithm (Ni, Nii, Niii)

is usually restarted periodically to enhance convergence (see Secs.2 and 5).
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For some of the splittings we consider and 1n the presence of roundoff

(2
error, the numerator of a2 may not be positive for some values of k.
If 1t 1s not, then we find it convenient for these values of k to

(k)
replace p by 1ts negative.

2. Convergence.

In the form (Ni, Nii, Niii) the algorithm of Sec. 1 cannot be

guaranteed to converge. However, by introducing a line search to choose

Ss minim (k) (k)
a, SO that f(x) 1s minimized along the line In a, p , by
ensuring that M is positive definite, gpg by restarting the iteration

periodically, convergence can be guaranteed. Convergence in this

case can be shown by application of Zangwill's spacer step theorem [30],

which states that if a closed algorithm with descent function f 1s

applied infinitely often in the course of another algorithm that maintains

the property

k+

£ (x 1), < rx)

for all k, and if

er) < 2x0)

1s compact, then the composite algorithm converges.

We have the following:

!
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Theorem 1. If the nonlinear conjugate gradient algorithm 1s modified

to calculate a by

A k) | A (k k
A min (8: F(x + ap )) < P(x ) + pF) va € (0,0) )

_ opt
= ay

and 1f the iteration 1s restarted every a steps, then the algorithm

1s globally convergent (i.e., will converge from any initial point X,)
* *, oo N

to x such that f(x) is a minimum of f(x) over E .

- . | | |
Proof. The sequence {£(x! )) 1s monotone non-increasing, and every «
steps we take a scaled steepest descent step. Since scaled steepest

. descent is a convergent algorithm, we can conclude by Zangwill's space

step theorem that our algorithm converges.

This algorithm can be quite slow due to time consumed 1n line

searches. In order to avoid a line search at every iteration, we impose

additional constraints on the stepsize so that we can guarantee that

f is monotone nonincreasing at each stage of the iteration. We have

the following theorem:

Theorem 2. If the conjugate gradient iteration 1s restarted every

* steps with the first step length in each cycle calculated by a line

search, and 1f no conjugate gradient step causes an increase in the

*

function f(x), then the iteration will be globally convergent to x

that minimizes f(x).

&



Proof. By direct application of the spacer step theorem.

kIf the function px )) 1s explicitly available, then we can

accept our original definition of a, if

+

p(x 1) < p(B)

and do a line search if this test fails.

Lemma 1. Let Be be chosen by the rule

(1) (2) (x) (1) (x) k
ay or a, ) if f(x + ay p! ) <x ))

By _ (or ex" + a 2p), < p(x)

, OPt
k otherwise.

Then f(x) 1s monotone nonincreasing at the kth step.

If we have available only values of g(x) and J(x) at our

) iterates and not f(x), we must make use of conditions that imply that

f 1s decreasing.

: Because f 1s convex,

| (x), (k) , _ (k)
P g(x + ap’)

will be a monotone increasing function of , tpat is negative at

a=0 and is 0 at a= ap”, the Point at which f attains its
minimum on the line from x(k) in the direction ok)



If a 1s chosen such that
max

Zo opt .  (k) (k)y_ (kx)
ay = min{a > a f(x + ap )= f(x )}

+

then we can deduce that p(x (EFL) ) will be less than fx 57) if

0 < a< a ox” Without further information (e.g., that obtained through

a line search), we cannot calculate 3 ax” We can, however, easily

verify whether a < hi and this will give us a sufficient condition
for convergence:

Lemma 2. Let ay be chosen by the following rule:

Le), 0) ge)ay or a 1 P gx % p <0
T

2) (k

t

apy otherwise.

+

Then p(x 1)) < r(x KE).

If we have information on the curvature of the function f, we

can derive an alternate condition. Consider the Taylor series expansion

: +

of . £ at (kK 1),

(k+1) (k) 6), 12 (x) (k)
(6) f(x ) - f(x) = a gx) p tap J(w) DP

wherew 1s a point between 5 and x EFL), and suppose we know that

10
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0 < d< MJ(x))

for all x 1n a convex set including all iterates. Then the right

hand side of (6) can be guaranteed to be negative if

T
k

a < — 7 .
k ka HE) (5)

This gives an alternate condition for convergence:

Lemma 3. Let a be chosen by the rule

/ 6)" (s)
(1) (2) (1) < =2 gx) p
8 (or By ) if a T

(k)™ _(k)
d p Pp

| T

a, = (k)y" (x)kK -
(or a?) < 281glx Jp) )

k k1 BT (x)

opt

\ By otherwise .

Then f(x) 1s nonincreasing at that step.

In general, each of the conditions in Lemma 1 through Lemma 3

. 1s quite restrictive, but verifying any one is sufficient for descent

at a given step. Thus an algorithm might incorporate facilities for

testing each of the conditions successively 1f the preceding ones did

not verify descent. This would keep the additional operational overhead

for the algorithm low.
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Notice that we do not need constraints on the b, (other than

by £0), the parameters that determine the step direction, in order

to guarantee convergence. In our numerical experiments (Sec. 5),

we have observed that for the test problem considered here the algorithm

1s less sensitive to choices of the parameter [I than to choices of

2 It was found, on the other hand, for the problem studied in [25]

with small N (~ 100), dense Jacobian, and exact line searches for a,

that the cg algorithm could be quite sensitive to the choice for b.

3. Choice of Splitting Operator

We consider several choices for the splitting operator M. All

the choices attempt to approximate the Jacobian J with an operator that

1s computationally easier to invert.

First, we consider choices related to the nonlinear block

successive overrelaxation method, which has been found to be efficient

for solving nonlinear elliptic equations [6,7,24,27]. This method obtains

- from the residual eS an increment Ue) rt Ge) that 1s added to
 (E) to obtain a new approximation

Jel) ok) + (k)

Equation (7) is the underlying first-order iteration that is accelerated

by means of the conjugate gradient algorithmin (Ni, Nii, Niii).

12



Let x, g(x), and J be subdivided into blocks, for example

those corresponding to rows of points on a rectangular mesh for the

finite difference approximation toa partial differential equation

1 81 11 Jo Yim

2 So Tor Ip Jom

’ P) g(x) = . P) J = . \ . .

m Sr Im Imo mm

For standard discretization of elliptic equations, J has small block

bandwidth, and its blocks are sparse. In two dimensions on a rectanglar

mesh, for the nine-point discretization we shall consider here for the

minimal surface equation, J is block tridiagonal with tridiagonal

blocks [6].

We consider first the one-step block successive overrelaxation-

Newton (BSOR-Newton) iteration [24]. For it, the (k+l)th approximation

- to Xe is obtained from the (k)th by

| (k+1) (x) -1
(8) Xs = x5 - OT 585 J = 1,2,...,m ,

where g(x) and J are evaluated at the latest values for x, and

@ 1s an acceleration parameter. If we partition the residual

r = —-g(x) in the same manner as g(x), then we can write (8) as

13
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(k+1) (x) -1
X. =x. TT oJ, lr, = 1,2....
J 3 jits’ IG

to correspond with our earlier notation. The banded, positive-definite

system of equations

J..z2.= Or,
Jd J J

can be solved efficiently in a numerically stable manner using Gaussian

elimination, without pivoting, or Cholesky factorization.

For linear problems, BSOR is not suitable for use with

conjugate gradient acceleration because its iteration matrix 1s not

similar to a symmetric one. A symmetrized variant is suitable, however.

This variant corresponds to ordering the equations alternately from

. blocks j=1 to Jj =m for one sweep and then from blocks Jj = m

to J = 1 for the next sweep; it is termed block symmetric SOR (BSSOR).

(k) (x)
For BSSOR the solution of Mz =r reduces to the solution of

L (0 + on) DED + ay) zB) (x) 0 <w<?2
me) "TT, 0<ex<?,

where D is the block diagonal of A,I (U) is a strictly block lower

(upper) triangular matrix, and A = L + D + U. Conjugate gradient

acceleration has been found to be particularly effective for BSSOR

because of the distribution of the eigenvalues of the iteration matrix

[1,12,17].

14



For the nonlinear case we consider the correspondingly symmetrized

variant of the one-step BSOR-Newton iteration, and we denote it by BSSOR-

Newton.

We consider also another extension of the BSSOR method. gor the

case in which the calculation of the elements of gg _. in (8) is
Jd

costly, the symmetric form of the one-step Newton-BSOR method [24]

can be more efficient. This algorithm applies a back and forth sweep

of BSSOR to the Newton iteration step

7(x Ey, = gk) = pK)

(k) .
to obtain the increment in (7). As we did above for A,

k a. = =

we write 7(x I; +D + U, where D is the block diagonal of
k = =T(x )) and L (U) is strictly block lower (upper) triangular. Then

for the choice of zero as initial approximation for z, and for =z

partitioned in the same manner as r, the back and forth BSSOR sweep is

forward sweep:

~(k) -1, (k) _ =(k)
2. = uJ... - [Lz . ] = 240s

- followed by

backward sweep:

2 = Zs + 5 5(rs - A ) + = ) + 5.5) 8 J = mm=-1,...,1 .

Here J and r are evaluated at 5K) Note that the most

recently obtained values of z are used in the computation of [Tz],
on the right hand sides.

15



Either BSSOR-Newton or Newton-BSSOR are reasonable choices

for the operator M for the conjugate gradient iteration. When ny

approaches the solution x the Jacobian approaches J (x) so that M,

which changes from iteration from iteration, approaches a limit also.

As a possible alternative, one could fix M for a number of 1terations

by keeping J fixed at a value from an earlier iteration, updating

| only occasionally.

Another choice for M that we consider approximates the

Jacobian matrix directly. We choose M to be the approximate sparse

pL; (Cholesky) factorization of the Jacobian, as developed by Meiljerink

and van der Vorst for the solution of linear elliptic problems [21].

The matrix L 1s chosen with a sparsity pattern resembling that of the

. lower triangular part of J, and the elements are obtained systematically

from J by enforcing the sparsity structure as the approximate factor-

ization proceeds. For linear problems this splitting has been found to

yield an iteration matrix with eigenvalues favorably distributed for

conjugate gradient acceleration [21].

For "M" matrices, Meijerink and van der Vorst proved in [21]

that the approximate factorization can be carried out 1n a stable manner.

For the problems we consider, the Jacobian may not be such a matrix;

however, we did not encounter difficulty in carrying out the approximate

factorization for our test cases.

Finally, we consider approximating the Jacobian by a discretized

separable operator, for which fast direct methods can be used [2,5,13,19].

For our test problems we consider as a choice for M the discrete

Helmholtz operator, possibly scaled by the diagonal of the Jacobian.

16
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4, First Test Problem

The first test problem, for which the above splittings are

compared, 1s that of solving numerically the minimal surface equation

on a rectangle. This problem was used previously for studying the

behavior of nonlinear relaxation methods [6,7] and is of interest

because of 1ts strong nonlinearity. The minimal surface equation arises

in finding a single-valued twice continuously differentiable function

v(x,y) that attains given values on the boundary of a region R and

minimizes the area integral over R [15]. This equation is

(9) diviywv) = 0 on R ,

2y-1/2 CLwhere y = (1 + |ov]|9) / , with the boundary condition

(10) v = s(x,y on oR .

We consider the domain

0 <x <2, O<y<1.

If s(x,y) 1s symmetric about x = 1, then the problem need only be

solved on the unit square with the symmetry condition

(11) oy =0 on x = 1.X

1¢
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We discretize (9,10,11) in the same manner as is done in [6].

A square mesh of size h = 1/n is placed on the domain, and uy denotes
the approximation to v(x,y) at the mesh point x = ih, y = jh. Then

at the interior points we obtain, after multiplication by _on®,

12 CoL.=y (u, L-w, oo L-u LL) FY eu,, -u,,, .-u,. J
(12) 91; 1.3 iy] i-1,J i,J-1 I+1,] 1d 1+1,] 1,J-1

+ T_ _ (2u. 5 ] ] jo Wop)
1,5*1 77 ’

+r Pu, .-u.,.. .-u ...)=0
i+1,3+1 Yd HLA 1,971

i - 1,2,...,n-13% J = 1,2, a 0-1,

where v= y (Jvul® J) approximates r (lov |?) at ((i-1/2)n, (j-1/2)n),
153 153

with

2

fal© = = [uy © =u, = 4 (u; 5 = uy LF
) 1,3 oh > Jd 5 J ’d 3d

2 2
+ - + -

yg = oy, Wy eg,

1 = 1,2,...,n;% J = 1,2,...,n .

Along the symmetry boundary we obtain

18
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(13) : = (Pu. -u C-u LL)
sd

ty (Pu ~~ u -u ...)=0 ] = 1,2,...,n-1.
A501 md nL, Tn gel JT Sand

In (12,13)we do not group together explicitly the coefficients

of Uy gj and of Uit1, 541° as 1s customary for the linear case, 1n order
to emphasize that the problem 1s nonlinear and that the y are

themselves functions of the Gye
The Jacobian matrix J 1s given by

8. .

J = TR ,
Yk,#

a positive-definite symmetric matrix that 1s block tridiagonal, with

each block being tridiagonal. For this test problem, the calculation

of y' =dy_ Jalwl= _ and of J can be carried out with only a modest
i, 1,d 1,J

amount of computational effort in addition to that required for calculation

of the g. ..
94, 3

5. Experimental Results for the First Test Problem

The test problem of Sec. 4 was solved numerically for the same

© boundary data as was considered in [6,7],

V=0 on x =0 and y = 1,

, TX

Vv = s51n BR on y = 0 ,

and the symmetry condition (11). The following algorithms discussed

in Sees. 2 and 3 were used:

19
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I. One-step block SOR-Newton

II. One-step block SSOR-Newton

III. One-step block Newton-SSOR .

IV. Conjugate gradient algorithm (with M the identity matrix)

v. Conjugate gradient algorithm withM the BSSOR-Newton

operator.

VI. Conjugate gradient algorithm withM the Newton-BSSOR

operator.

VII. Conjugate gradient algorithm with M the Meijerink-

van der Vorst approximate sparse factorization of J,

renewed every restart. The sparsity pattern of the approximate

factor is chosen to be identical with that of the lower tri-

| angular part of J (the ICCG(0) variant [21]). |

VIII. Conjugate gradient algorithm with M = , -on° times

the discrete Laplace5 point operator[y = 1 in (12,13)].

IX. Conjugate gradient algorithm with M = pl? t k1)D/

where 5 1s the operator of VIII and D 1s the diagonal

of J, renewed every iteration. K 1s a constant chosen

so that the average of three sample values of the diagonal of

J equals the diagonal of M.

For the conjugate gradient algorithms each test used either

, (1 or 2 and either pL or bp) with no line searches and

none of the convergence safeguards developed 1n Lemmas 1-3 of Section 2.

20
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The algorithms are compared in terms of operation counts required

to decrease the residual to specified values. In Table 1 are given approxi-

mate operation counts for various phases of the iteration. In Tables 2

and > are given the results of experiments carried out in double precision

with FORTRAN programs on the IBM 360/168 computer for grids with spacing

h = 1/16 andh = 1/32, for initial approximation (0) = 0. The

| supplemental tables give the results as obtained originally in terms of

number of iterations, which were converted subsequently to multiplication

counts by means of the cost factors. The cost factors relate to our test

programs, which are not generally optimal but nevertheless should give

a reasonable basis for comparison. Note that an iteration of one of the

SOR algorithms requires half the number of operations of an iteration of

the corresponding symmetric form, which requires both one forward and one

backward sweep.

The columns, from left to right, in the tables correspond to

successively larger values of =), the two-norm of the residual.
The initial residual 1-9], is approximately 0.47 for the coarser mesh
and 0.34 for the finer one. (Recall that the residuals are for (12,13),

- which are obtained from (9) after multiplication by a factor proportional

to n=.)

From the tables, one observes that for this test problem the

conjugate gradient algorithm with discrete Laplace operator splitting,

with or without shift or Jacobian diagonal scaling,, produces an algorithm

favorably competitive with nonlinear block SOR in terms of operation

counts. On the larger problem, the conjugate gradient algorithm with

one of the nonlinear BSSOR splittings is also faster than nonlinear BSOR.

21



TABLE 1

COST FACTORS PER STEP FOR MINIMAL SURFACE ALGORITHMS

(1) n x (n-1) unknowns, n(n-1) = N

(2) Costs consider only multiplications, divisions, and square roots
and include only the highest order terms in N.

(3) Conjugate gradient overhead 1s SN.

(4) SOR Overhead is N.

(5) The cost of calculatingy__ is 3N.
1]

(6) The cost of forming g is L4N (given Y__).
1]

(7) The cost of calculating v._ is 2N (given v__).
iJ 1

(8) 20N operations are needed to calculate J (given v__, v!_).
1] 17 }

(9) 12N operations are needed to calculate only the tridiagonal

portion of J. (BN for the diagonal only.)

(10) To factor and solve a tridiagonal system takes 5N operations.

(11) To form Jp takes UN operations given J.

22
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TABLE 2

COMPARISON OF ALGORITHMS BY NUMBER OF MULTIPLICATIONS

PER MESH POINT TO OBTAIN A RESIDUAL

I) < EPS: h = 1/16 MINIMAL SURFACE EQUATION

Algorithm } _ _ 5 )
(Cost Factor) w EPS = 10 ) 10 4 10 2 10 10 1

I BSOR-Newton 1.1 52k 4448 3072 1696 320
(32) 1.2 4704 3616 2496 1376 ete

1.3 3776 2880 1536 1120 gleii

1.4 2976 2272 1600 E596 192
1.5 P2140 1728 1216 704 192
1.6 1568 1248 896 544 160

-- 1.7 1056 530 040 448 192
1.8 1536 1216 960 544 ples
1.9 206k 2560 1920 116k4 512

II BSSOR-Newton 1.1 5041 Lh sh 3127 1770 413

(59) 1.2 L897 3717 2596 1475 354
1.3 4130 3127 2183 1298 295
1.4 3451 2055 1888 1062 295

1.5 3009 2301 1652 944 236
1.6 2655 2065 1475 826 236
1.7 2596 20006 1416 8206 236
1.8 3066 2419 1711 1003 295

ITT New-ton-BSSOR 1.1 564% 4384 3078 1767 456
(57) 1.2 4731 3648 2565 1482 399

1.3 23990 3078 2166 1254 399
1.4 320 2622 1881 1083 349
1.5 2964 2280 1596 969 342
1.6 2022 2052 1425 855 3472
1.7 2565 1995 1366 7% 342
1.5 2964 2280 1596 969 344

1.9 5358 4104 2850 16573 570

5 i iIV CG a 11997 9331 6794 os 1677

43) 2212 11760 9331 6751 4214 1763
apt 10492 1869 5762 3612 1075
ab” 10444 16569 5762 3612 1548
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TABLE 2 Continued

Cort Factor) Ww EPS=10"" 107 107° 107° 107%
V  CG+

BSSOR-Newton 1.1 2346 Poll 2040 1632 918

2p 1.2 2346 2142 1938 1530 918
Restart Y 1.3 ooll 2142 1836 1428 918

(102) 1.4 poll 2040 1632 1408 918

1.5 2142 1938 1632 1326 1020

1.6 2040 1836 1632 1224 915

1.7 2040 1836 1530 1224 1020

1.8 poll 2040 1836 1326 1020

1.9 no convergence

Restart 13 1.65 1632 1326 1122 G18 5 10

V  CG+ .

BSSOR-Newton apt 2040 1836 1530 122% 1020
w= 1.7 aX? 1530 1326 1122 516 510
(102) a Tp! 1734 1530 1326 1020 612

ape 173 1428 1224 1020 612

VI CG +

Newt on-BSXOR 1.1 1704 1562 1491 1136 710

apt 1.2 1633 1441 1349 1065 634
(71) 1.3 1562 1441 1349 1065 639

1.4 1562 1420 1207 994 £39

1.5 1441 1276 1136 99k 629

1.6 1633 1420 1278 1065 710

1.7 RSIS 1633 1420 1278 181

1.8 2059 1846 1633 1420 1207

1.9 2201 1966 1846 1491 1207

VT cg +

Newton-BSSOR ~~ a“bl 1562 1420 1207 994 710
w= 1.4 a=p° 1349 1207 1065 81 5%
(1) ant 1046 1633 1420 1278 761

aT” 1562 1276 1065 3 568
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TABLE 2 Continued

Algorithm _ _ _ _ _
(Cost Factor) EPS=10"" 04 1070 10 17h

2 1 |
VII CG + a b 1318 1068 562

sparse IDL. abc 1504 1374 1068 1112 462
(50+ 6 per abr 137k 1218 1018 662 Lio
restart) ab° hol 1066 968 762 hie

oo o 1
VIII CG + ab 1045 1045 880 605 220

Laplacian 5"1° 880 880 715 385 220
(55) aot 825 825 715 385 220

ape 825 895 715 140 220

21
IX CG + ab 754 754 696 522 290

Laplacian+ ab" 638 638 529 106 290
J diagonal abt 696 696 560 406 232
+ shift ab” 754 754 638 520 290
(58)

20
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SUPPLEMENT TO TABLE 2

COMPARISON OF ALGORITHMS BY NUMBER OF ITERATIONS TO

OBTAIN A RESIDUAL =), < EPS,
h = 1/16

Argoriean © EPS=10"7 0 107” 10% 10h

I BSOR-Newton 1.1 182 139 9% 53 10

1.2 147 113 18 43 9

1.3 118 90 48 35 l

1.4 93 11 50 28 6

1.5 70 54 33 22 6

1.6 49 39 283 1 5

1.7 33 26 20 14 6

1.8 48 33 30 1 9

1.9 102 80 60 3 16

II BSSOR-Newton 1.1 94 16 53 30 7

1.2 83 63 44 25 0

1.3 70 53 37 22 5

1.4 59 45 32 18 d

1.5 51 39 28 16 4

1.6 45 35 25 14 4

1.7 44 34 2L 14 4

1.8 52 41 29 17 5

IIT Newton-BSSOR 1.1 94 [i 54 31 8

1.2 83 64 45 26 7

1.3% Ie; 54 38 22 (

1.4 60 46 33 19 6

1.5 52 40 28 17 6

1.6 46 36 25 15 6

1.7 45 35 2h 14 0

1.8 52 40 28 17 7

1.9 94 12 50 29 10

2'f
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SUPPLEMENT TO TABLE 2 Continued

Algorithn Ww EPS=10"" 107% 107 107° 107

IV CG apt 279 217 158 49 39
abe 274 217 157 99 41

aot 244 183 13h 84 25
ap? 243 185 13h 8 36

V  CG+ 1.1 23 22 20 16 9

BSSOR-Newton 1.2 23 21 19 15 9

apt 1.3 22 21 18 14 9
Restart 9 1.4 22 20 16 14 9

1.5 21 19 16 13 10

~ 1.6 20 18 16 12 9

1.7 20 18 15 12 10

1.8 22 20 18 13 10

1.9 no convergence

Restart 13 1.65 16 13 11 9 5
v CG + 5 1

BSSOR-Newton ab 20 18 15 12 10

© = 1.7 ab" 15 13 11 3 ;
apt 17 15 13 10 6
ape 17 14 12 10 6

, -VI CG + 1.1 2L 22 21 16 10

Newton = BSSOR 1.2 23 21 19 15 9

alo 1.3 22 21 19 15 9
1.4 22 20 17 14 9

1.5 21 18 16 14 9

1.6 23 20 18 15 10

1.7 26 23 20 18 11

1.8 29 20 23 20 17

1.9 31 28 26 21 17
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SUPPLEMENT TO TABLE 2 Continued

Algorithm _ _ ~1
EPS=10"" 1078 107° 10 2 10

2 1 _
VI CG + ab 22 20 17 14 10

Newton-BSSOR 22p2 “19 17 15 11 8
o= 1.4 aot 26 23 20 18 11

a tbe 2 18 15 13 :

VII CG + 2pT 26 21 11

sparse ror! abe 30 27 21 16 9
alpt 217 ol 20 13 9
2 28 25 19 15 9

VIII CG + apt 19 19 16 11 1

Laplacian 2°p° 16 16 13 ( 4
1 -2b 15 15 13 / 4

ap? 15 15 13 : 4

IX CG + opt 13 13 12 9 5
Laplacian aS" 11 11 9 ! 5
+ J diagonal 1p? 12 12 10 I 4
+ shift ab? 13 13 11 9 5
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TABLE 3

COMPARISON OF ALGORITHMS BY NUMBER OF MULTIPLICATIONS

PER MESH POINT TO OBTAIN A RESIDUAL

I=) < EPS: h = 1/32 MINIMAL SURFACE EQUATION

Algorithm _ _7 _c - - - -2 -1
(Cost Factor) ww  EPS=10 8 10 "10 6 10 > 10 h 107° 10 10

I BSOR-Newton 1.3 >11200 105 60 6944 3328 192

(32) 1.4 >11200 8384 5536 2656 160

1.5 >11200 10912 8704 04906 4288 2080 160

1.6 >11200 9696 8096 0464 4832 3232 1600 160

1.7 T7132 0024 5536 4448 3360 2272 1184 160

1.8 4000 3328 2976 2464 1952 1440 S6l 192

1.4 5408 4832 4096 3296 2752 2048 1152 640

II BSSOR-Newton 1.5 15812 13570 11328 9086 078.5 4543 2301 236

(59) 1.6 12626 10856 9086 72.57 5487 3658 1888 236

1.7 10148 8673 12577 5841 Lyo5 2950 1534 230

1.75 9204 1670 6608 5310 4012 2714 1Lh16 236

1.8 8673 7434 6254 5015 3776 2596 1416 236

1.85 8791 7552 6313 5074 3894 2655 1534 295

III Newton-BSSOR 1.4 19038 16302 13566 10887 8151 5472 2736 285

(57) 1.5 15276 13110 10944 8778 555 4389 2223 285

1.6 12198 10431 8721 7011 52Lkl 3534 1824 285

] 1.7 9747 8379 7011 5643 4275 2850 1482 285

1.8 8322 1125 5908 4788 3591 2394 1254 399

1.9 10146 8721 7239 561k 4389 2964 1653 570
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TABLE 3 Continued

Algorithm

(Cost Factor) Ww EPS=10 O 10’ 1076 107° 107 1070 107° 1071

BSSOR-Newt on 1.6 4692  TLLES 4182 3978 3468 3060 2754 2346

Restart 13 1.7 3570 3366 3162 2856 2346 1938 1632 122k

ERS 1.75 4182 3876 3468 3162 2958 2754 2346 1938
(102) 1.8 3774 3468 3162 2856 2652 2142 1438 1428

1.85 3978 3468 3162 2856 2550 2142 1836 1127

1.9 no convergence

VI CG + 1.4 3053 o8L0 2556 2272 2130 1704 1278 852

Newt on-BSSOR 1.5 2627 2414 2272 2130 1917 1h91 1278 1065

NORE 1.6 2769 2556 2485 2130 1775 1633 1278 710
Restart 13 1.7 2911 2769 2343 2272 2130 1917 1633 1065

(71) 1.8 3053 2840 2627 2343 2130 1917 1704 1278

1.9 no convergence

IX CG +laplacian abt 2623 2440 2318 2135 1952 1769 1403 915
Lg diagonal iy 2623 2501 2379 2196 2013 1830 13k gis
Restart 16

(61) 5 1
Restart 9 ab 2074 1891 1647 1525 1281 1159 915 549
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SUPPLEMENT TO TABLE 3

COMPARISON OF ALGORITHMS BY NUMBER OF ITERATIONS TO

OBTAIN A RESIDUAL [jr */]], < EPS,
h = 1/32

Algorithm _g 7 _6 -5 “ly -3 -2 ~-1EpS=10 ° 10! 10° 10° 10 10° 10° 10

I BSOR-Newton 1.3 >350 350 217 104 0

1.4 >350 262 173 83 5

1.5 >350  3W1 272 203 134 05 5

1.6 >350 303 253 202 151 101 50 5

1.7 241 207 173 139 105 71 37 d

1.8 125 104 93 1] 61 45 2 6

1. 9 169 151 128 103 86 64 36 20

II BSSOR-Newton 1.5 268 230 192 154 115 TT 39 4

1.6 214 184 154 123 03 62 32 4

1.7 172 147 123 99 75 50 26 4

1.75 156 130 112 90 68 46 2h 4

1.8 147 126 106 85 64 44 2 4

1.85 149 128 107 86 06 45 26 0

III Newton-BSSOR 1.4 334 280 238 191 143 96 48 5

1.5 268 230 192 154 115 1] 39 5

1.6 214 183 153 122%  ® 62 32 5

1.7 171 147 123 99 75 50 26 5

1.8 146 1-25 104 8h 63 Lo 22 1

1.9 178 153 127 102 77 520 29 10
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SUPPLEMENT TO TABLE 3 Continued

Algorithm CA _ _ ~5 _ } } _
W ESP=10-8 10-7 10-6 10 10-4 10 bb) 10 2 10 1

Vv CG+ 1.5 35 33 30 29 25 20 17 8

BSSOR-Newton 1.6 46 44 41 39 34 30 277 23

Restart 13 1.7 35 33 31 28 23 19 16 12

5 5p° 1.75 41 38 34 31 29 27 23 19
1.8 37 34 31 28 26 21 19 1h

1.85 39 34 31 28 25 21 18 11

1.9 no convergence

VI CG + 1.4 43 40 36 32 30 2 18 12

Newton-BSSOR 1.5 37 34 32 30 27 21 18 15

"hb" - 1.6 39 36 35 30 25 23 18 10
Restart 13 1.7 41 39 33 3p 30 27 23 15

1.8 43 LO 377 33 50 27 24 18

1.9 no convergence

2.1
IX CG + Laplacian ab 43 40 38 35 32 29 23 15

+ J diagonal abr 43 41 39 36 33 30 22 15
+ shift

Restart 16

Restart 9 2 pT 34 31 2°] 25 21 19 15 9
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As has been observed also for linear cases [1,12,17], the symmetric

SOR algorithms accelerated by cg are less sensitive to the choice of

relaxation parameter ® than are the corresponding unaccelerated SOR

algorithms.

Of course, as with any higher order method, the storage require-

ments of cg are greater than those of the basic unaccelerated iteration.

It should be noted also, that for nonrectangular domains more operations

would be required to obtain the solution of (5) for cases VIII and IX.

The results for initial approximations other than 20) =0
are not included in the tables: however, there were indications 1n our

experiments that poorer initial approximations could result in divergence

for some of the methods, without the safeguards of Section 2, as would

“be the case also for the unaccelerated nonlinear SOR methods [6,7].

In the experiments, the algorithms exhibited some sensitivity to the

length of the conjugate gradient cycle between restarts. Restarting

every Y iterations, which is the case reported in Table 2, seemed

effective for the coarser grid. For the finer grid 13 to 16 iterations

were better.

) Limitations of time prevented us from investigating Case VII

for the finer grid and from investigating either a variant of the 11}

approximate factorization allowing one more subdiagonal nonzero band

in L (analogous to ICCG(3)in [21]) or a variant utilizing block

techniques developed recently in [29]. Either of these variants might

yield results superior to those reported for Case VII, as they have been

found generally to be more efficient for linear problems.
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We conclude from these experiments that the generalized

conjugate gradient algorithm, with modifications to ensure convergence,

holds promise of being favorably competitive with relaxation techniques

for solving strongly nonlinear elliptic problems.

6. Second Test Problem

For the second test problem we consider a mildly nonlinear

equation arising from the theory of semiconductor devices,

(1h) -v._ -v__ + (1 - e 7%) eV = 1.
XX YY

Equation (14) is to be solved on the unit square subject to the boundary

conditions

on x = 0: V =0

on x = 1: v=1l

on y = O: ov/dy = 0

(15)

Iv/dy = 0 for O0<x<a<l/?

on y = 1: v = -1 for a < x < l-a

ov/dy = 0 for 1-a < x <1.

Of particular interest 1s the mixed boundary condition on the edge

y = 1, as 1t would preclude the immediate use of one of the basic fast

direct algorithms for solving (5) if M were chosen to be a discrete

Helmholtz operator with boundary conditions (15).
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We place a uniform mesh of width h on the unit square and

denote the approximation to v(x,y) at the mesh point x = ih, y = jh

by Ue 5° Then at an interior point we obtain, using the standardJ

five-point discretization,

1 “OX.
= (_ - - uw. C= uw. + — explu, ./ =1.

(16) 3 (wy sp mg tt Ba yt ge) Le ely =

At the Neumann boundary points the difference equations specialize in the

usual manner, as in Section 4.

We choose for M the equivalent discretization of the Helmholtz

operator H

Hr =-v_ =-v__ + Kv,
XX yy

but with the boundary condition along y = 1 in (15) replaced by

ov _ _
(17) 5 0 on y=1 for 0<x<1l.

This permits the use of standard fast direct methods for carrying out

the numerical solution of Mz = r. Also, we augment the system (16)

with-the equations

/ “9X N TX.
(18) — qu, , + (1-e ) exp(u..) = - = + (l-e ) exp(-1)

2 i, 1,] 2
h h

for the Dirichlet points on y = 1, so that the Jacobian of the augmented

system and M have the same rank. The constant K 1s chosen to be I,
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a value that 1s meant to approximate (1 - e™X)eV on the square, so

that M approximates, 1n this manner, the Jacobian of the augmented

system (16,18).

This choice for M does not approximate the Jacobian well

in norm, because of the differing boundary conditions on y = 1. However,

because the number of mesh points at which the boundary conditions differ

| 1s small, a corresponding linear problem--say with (1 - eT7X) eV in (14)

replaced by v

(19) 3 Vo ” Voy + v=1,
0

with corresponding replacements in (16) and (18), and with k-1 in

M--will converge completely in only a moderate number of iterations. At most

2p + 5 iterations are required in this (linear) case to reach the solution

(In the absence of round-off errors), where p is the number of

Dirichlet boundary points on y = 1, because of the finite termination

propertyof cg [9]. For our test problem, our interest is in

obtaining an indication of the degree to which the introduction of a

mild nonlinearity alters the convergence rate from that for the

corresponding linear problem (see also [4]).

In Table 4 are given the observed number of iterations at which

the residual norm (rl), (B)y1/2 = IT le) _y was first reduced to
less than EPS, for the initial I. 40) = 0. The value of
a was taken to be 5/16, and the problems were solved using a FORTRAN

program on a CDC 7600 computer for mesh spacings h = 1/16, 1/32, 1/6kL.
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The parameters Nel ney were used, and there was no restarting.
The solution of Mz = r was carried out at each iteration using either

the program GMA With marching parameterK = 2 [2] or the program package

from ncar [28]. (These two programs give slightly different rounding

errors; we observed no important difference between them in their

effect on the cg iterations.) The initial residual norms =
were of the order of 10° for h = 1/16 and 10° for h = 1/6k.

Problem I is the discretized linear problem (15, 19) augmented

with the equations

JE, u SE.EE
ne i,y + 7i,3 ne

. for the Dirichlet boundary points on y = 1, with M as described

above with kK = 1. Problem II 1s the discretized nonlinear equation (14)

with the same boundary condition (17) on y = 1 as that for M and

with the same M as for Problem I. Problem III combines the boundary

condition of Problem I with the nonlinearity of Problem II; 1t 1s the

discretized nonlinear problem (1%, 15, 18), again with the same M.

The number p of special boundary points for Problems I and III

is given in Table 4 for each of the mesh spacings. The finite termina-

tion behavior of cg for the linear problem can be observed clearly

for the coarsest mesh; for the finer meshes some contamination resulting

from rounding errors occurs. For the finest mesh, a residual small

enough for practical purposes occurs well before @R * 3 1terations

have been carried out.
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The results for Problem II indicate that convergence 1s rapid

for this choice of M when the mild nonlinearity ispresentandthe

mixed boundary conditions on y = 1 are absent. As one would expect

for this case the number of iterations to reach a given residual 1s

essentially independent of mesh size. The results for Problem III

indicate that with the mixed boundary condition on VY = 1, the con-

vergence rate for the mildly nonlinear case 1s slowed moderately from

that for the linear case, Problem I. One could likely improve the results for

Problems I and III in terms of number of iterations by choosing kK

to be, instead of a--constant, the sum of a function in x and one

in vy, which would still permit the use of fast direct methods. We

did not include such choices in our experiments, however. We repeated |

some of our experiments for an 1nitilial approximation 24 equal to |
pseudo-random numbers in [0,1] and found no substantial difference from the

results of Table 4.
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