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ABSTRACT

We have studied previously a generalized conjugate gradient method
for solving sparse positive-definite systems of linear equations arising
from the discretization of elliptic partial-differential boundary-value
problems. Here, extensions to the nonlinear case are considered. We
split the original discretized operator into the sum of two operators,
one of which corresponds to a more easily solvable system of equations,
and accelerate the associated iteration based on this splitting by
(nonlinear) ;bnjugate gradients. The behavior of the method is illus-
trated for the minimal surface equation with splittings corresponding
to nonlinear SSOR, to approximate factorization of the Jacobian matrix,
and to elliptic operators suitable for use with fast direct methods.

The results of numerical experiments are given as well for a mildly
nonlinear example, for which, in the corresponding linear case, the finite

termination property of the conjugate gradient algorithm is crucial.






0. Introduction

In earlier papers [8,9] we have discussed a generalized conjugate
gradient iterative method for solving symmetric and nonsymmetric positive-
definite systems of linear equations, with particular application to
discretized elliptic partial differential boundary-value problems. The
method consists of splitting the original coefficient matrix into the
sum of two matrices, one of which is a symmetric positive-definite one
that approximates the original and corresponds to a more easily solvable
system of equations; the associated iteration based on this splitting
is then accelerated using conjugate gradients. The conjugate gradient
(cg) acceleration algorithm has a number of attractive features for
linear problems, among which are: (a) not requiring an estimation of
parameters, (b) taking advantage of the distribution of the eigenvalues
of the iteration matrix, and (c) requiring fewer restrictions for optimal
behavior than other commonly-used iteration methods, such as successive
overrelaxation. Furthermore, cg 1s optimal among a large class of
iterative algorithms in that for linear problems it reduces a particular
error norm more than does any other of the algorithms for the same
number of iterations.

In this paper we study an extension of the generalized conjugate

. gradient method to obtain solutions of systems of equations arising
from elliptic partial-differential boundary value problems that are
nonlinear. For such systems--which correspond to the minimization of
convex nonquadratic functionals, as opposed to quadratic functionals for

the linear case--optimality and orthogonality properties of cg need no



longer hold. Some algorithms for the nonquadratic case have been
proposed [e.g., 10, 11, 14,16, 20, 22] that preserve one or more of
the quadratic case properties of finite termination, monotonic decrease
of the two-norm of the error, conjugacy of directions of search, and
orthogonality of the residuals. The method we discuss only approximates
these properties, but is found to be effective for solving the discrete
nonlinear elliptic partial differential equations of primary concern
in our study. The method is closely related to the one studied in
(3] for solving mildly nonlinear equations using a particular splitting.
We discuss in Sec. 1 several nonlinear conjugate gradient
algorithms and in Sec. 2 same convergence properties. In Sec. 3
possible splitting choices for the approximating operator are described.
‘A test problem for the minimal surface equation is discussed in Sec. b,
and experimental results for several splittings are summarized in Sec. 5.
In Sec. 6 are given experimental results for a test problem for a mildly
nonlinear equation, for which, in the corresponding linear case, the
finite termination property of cg is crucial.
Much of the work reported here comprises a portion of the last-
named author's doctoral dissertation at Stanford University [23].
We wish to thank the Mathematics Research Center, University of Wisconsin -
Madison for providing the first two authors the stimulating and hospitable
surroundings in which portions of the manuscript were prepared. We
thank H. Glaz for preparing the computer program and for carrying out
the numerical experiments for the second test problem, and R. Hockney

and D. Warner for suggesting the problems from which this test problem




was derived. We thank also R. Bank, B. Buzbee, P. Swarztrauber, and

R. Sweet, who made available to ustheir excellent computer programs for
solving separable elliptic equations with fast direct methods. The work
reported here was supported in part by the U.S. Energy Research and
Development Administration, by the Fannie and John Hertz Foundation,

and by the National Science Foundation.

1. Nonlinear Conjugate Gradient Algorithms

In the linear case, the generalized conjugate gradient method

[9] solves the N X N positive-definite system of equations
(1) Ax =D

or, equivalently, minimizes the quadratic form

T

(2) £(x) = = x'Ax - x'b .

=

Let M be a positive-definite symmetric N X N matrix, chosen

to approximate A. Then for symmetric A the algorithm, as described

in [9] in its alternative form, is:

Let (?2 be a given vector and define arbitrarily 6 iX
For k = 0, 1,

(1) calculate the residual r(k) =k>—Z&x(k)
and solve

(3) Mz =r .



(ii) Compute the parameter

T
S _ g

Z(k—l)Tr(k-%)

and the new direction p(k) = z(k) <l})p(k'l).

(iii> Compute the parameter

. and the new iterate x(k+l) = x(kl ak_(l)p(k) .

(
In place of the parameters akl) and bl({l), one may use instead

equivalent ones [18,26], such as

T
a(g) ) P(k) r(k)

k T
)T )
or
T
blgg) _ Z(k)Ag(k-l)
p(k-l) Ap(k-l) )

Instead of computing the residual r(k) explicitly for k > 1,

as in (i), it is often advantageous to compute it recursively as

(k) (k1) (k-1)
r =r ak_lAp .




The effectiveness of the algorithm (i, ii, iii) is discussed in
[9] for cases in which A is a sparse matrix arising from the dis-
cretization of an elliptic partial differential equation and M is
one of several sparse matrices a;ising naturally from A.

For the nonlinear case, we consider solving the system of equations
(%) g(x) =0

arising from minimizing f(x), where g(x) is the gradient of f(x).
(For the linear case (1,2), g(x) = Ax - b; in either case, g(x) is
the negative of the residual.) We assume that the Jacobian matrix J
of (4) is positive-definite and symmetric, and, as for the linear case,
we are interested in those situations for which (4) is a discrete form
of an elliptic partial differential equation and, correspondingly, J
is sparse.

The approximating matrix M for the linear case is chosen in
[9] to be one of several positive-definite symmetric matrices approximating
A naturally in some manner. For the nonlinear case, we consider related
choices for M to approximate J, although sometimes M may not be
linear, symmetric, or everywhere positive definite. We pattern after
(i, ii, iii) the following algorithm (see also [31).

Let x(o> be a given vector and define arbitrarily p(—;). For
k =0,1,...

(Ni) Calculate

and solve

) ) _ (k)



o) or 1)

(Nii) Compute bk = or
where T
(k)™ (k)
blgl) _z rT . , K> 1
Z(k'l) r(k-l)
(2) z (k-l)
b, = - ’
P(k -1) (k 1)
bO =0,
and )
Sl Gy bkp(k 1)
(Niii) Compute a, = al({) or al(f) ’
where T
(1) Z(k) (k)
k- &) (k)
Jp
(@) (k)T (x)
. 4 = T
(k) Jp(k)
and
(kv1) _ (k) akp(k)

The algorithm (i, ii, iii> for the linear case is generally
iterated without any restarts (setting of bk to zero
for some value of k > O) however the nonlinear algorithm (Ni, Nii, Niii)

is usually restarted periodically to enhance convergence (see Secs. 2 and 5).



For some of the splittings we consider and in the presence of roundoff

)

(2
error, the numerator of a/ may not be positive for some values of k.

If it is not, then we find it convenient for these values of k to

k) . .
replace p( by its negative.

2. Convergence.

In the form (Ni, Nii, Niii) the algorithm of Sec. 1 cannot be
guaranteed to converge. However, by introducing a line search to choose
a so that f(x) is minimized along the line (k) (k)

k ) X tap , by
ensuring that M is positive definite, and by restarting the iteration

periodically, convergence can be guaranteed. Convergence in this

case can be shown by application of Zangwill's spacer step theorem [30],

which states that if a closed algorithm with descent function f is
applied infinitely often in the course of another algorithm that maintains

the property
£ 41D, < £ )

for all k, and if

et () < £

)

is compact, then the composite algorithm converges.

We have the following:




Theorem 1. If the nonlinear conjugate gradient algorithm is modified

to calculate ak by

8, _ min{ﬁ:f(x(k) + Qp(k)) < f(x(k) + ap(k))V'a € (0,0)}
= aipt

and if the iteration is restarted every a steps, then the algorithm
is globally convergent (i.e., will converge from any initial point xo)

* *, L N
to x such that f(x ) is a minimum of f(x) over E .

(k)

Proof. The sequence {f(x } is monotone non-increasing, and every &
steps we take a scaled steepest descent step. Since scaled steepest
descent is a convergent algorithm, we can conclude by Zangwill's space
step theorem that our algorithm converges.

This algorithm can be quite slow due to time consumed in line
searches. In order to avoid a line search at every iteration, we impose
additional constraints on the stepsize so that we can guarantee that

f is monotone nonincreasing at each stage of the iteration. We have

the following theorem:

Theorem 2. If the conjugate gradient iteration is restarted every
& steps with the first step length in each cycle calculated by a line
search, and if no conjugate gradient step causes an increase in the
function £f(x), then the iteration will be globally convergent to X*

that minimizes f(x).




Proof. By direct application of the spacer step theorem.

If the function f(x(k)) is explicitly available, then we can
accept our original definition of ak if
f(x(kﬂ‘)) < f(X(k))

and do a line search if this test fails.

Lemma 1. Let a, be chosen by the rule

k
(
aél) (or' aéQ)) if f(x(k) + aél)p(k>) < f(x(k)>
opt .
\ &y otherwise.

Then f(x) 1is monotone nonincreasing at the kth step.

If we have available only values of g(x) and J(x) at our
iterates and not f(x), we must make use of conditions that imply that
f is decreasing.

Because f is convex,

T
o) () 4 apl™))

will be a monotone increasing function of 5 that is negative at

a=0 and is 0 at a = aipt, the Point at which f attains its

(k).

minimum on the line from x(k) in the direction p



If a is chosen such that
max

a = min{a > aOpt:f (k) + ap

max k (x

(8))- o)y

X(k+1) (k>)

then we can deduce that f( ) will be less than f(x if
0 <ac< C Without further information (e.g., that obtained through

a line search), we cannot calculate amax' We can, however, easily

verify whether a < aipt and this will give us a sufficient condition
for convergence:
Lemma 2. Let . be chosen by the following rule:
(1) (2) . (k) x) + _(1)(x)
ay (or 2y ) if p g (x g P ) <0
T
2) (
o - or 5% g+ @Yy )
: azpt otherwise.
Then f(x(k+l)) < f(x(k)L

If we have information on the curvature of the function f, we

can derive an alternate condition. Consider the Taylor series expansion

of . £ at x(k+l)

(6) pE L)) e ) L a g(x(k)) p(k) . % 2 oK) (k)

. . k +
where w 1is a point between x( ) and x K+l » and suppose we know that

10




0 < d< MNJx))

for all x in a convex set including all iterates. Then the right

hand side of (6) can be guaranteedlto be negative if

T
(k) (x)
a < 2 gx"") p

k T
2 o) ()

This gives an alternate condition for convergence:

Lemma 3. Let a be chosen by the rule

(o o 0@ s g < 2 g(xik))T‘p(k)
g plE) (&)
8 = < (or a(E) _ 2 g(x(k))Tp(k)
g
\ a;pt otherwise

Then f(x) is nonincreasing at that step.

In general, each of the conditions in Lemma 1 through Lemma 3
is quite restrictive, but verifying any one is sufficient for descent
at a given step. Thus an algorithm might incorporate facilities for
testing each of the conditions successively if the preceding ones did
not verify descent. This would keep the additional operational overhead

for the algorithm low.

11




Notice that we do not need constraints on the b, (other than
bk # 0), the parameters that determine the step direction, in order
to guarantee convergence. In our numerical experiments (Sec. SL
we have observed that for the test problem considered here the algorithm
is less sensitive to choices of the parameter bk than to choices of
a, - It was found, on the other hand, for the problem studied in [25]

with small N (~ 100), dense Jacobian, and exact line searches for a,

that the cg algorithm could be quite sensitive to the choice for b.

3. Choice of Splitting Operator

We consider several choices for the splitting operator M. All
the choices attempt to approximate the Jacobian J with an operator that
is computationally easier to invert.

First, we consider choices related to the nonlinear block
successive overrelaxation method, which has been found to be efficient
for solving nonlinear elliptic equations [6,7,24,27]. This method obtains

(k) (k) _ M-lr(k)

from the residual r an increment z that is added to

(k)

pie to obtain a new approximation

L) )+ (k)
Equation (7) is the underlying first-order iteration that is accelerated

by means of the conjugate gradient algorithm in  (Ni, Nii, Niii).

12



Let x, g(x), and J be subdivided into blocks, for example
those corresponding to rows of points on a rectangular mesh for the

finite difference approximation to a partial differential equation

! &) 11 T o I
5 & Jo1 Iy ot oy
: ) g(X) = . k) J = . . .

X coe
m €m I I Jom

For standard discretization of elliptic equations, J has small block
bandwidth, and its blocks are sparse. In two dimensions on a rectanglar
mesh, for the nine-point discretization we shall consider here for the
minimal surface equation, J is block tridiagonal with tridiagonal

blocks [6].

We consider first the one-step block successive overrelaxation-

Newton (BSOR-Newton) iteration [2k]. For it, the (k+l)th approximation
to X is obtained from the (k)th by
k+1) (k) -1

(8) xg =x. -0 g

J J jj 2 j =l,2,...,m 7

J

where g(x) and J are evaluated at the latest values for X, and
@ is an acceleration parameter. If we partition the residual

r = -g(x) in the same manner as g(x), then we can write (8) as

13



R e

1,0....
3 j 3373 eyl

.
Il

to correspond with our earlier notation. The banded, positive-definite

system of equations

can be solved efficiently in a numerically stable manner using Gaussian
elimination, without pivoting, or Cholesky factorization.
For linear problems, BSOR is not suitable for use with

conjugate gradient acceleration because its iteration matrix is not

similar to a symmetric one. A symmetrized variant is suitable, however.
This variant corresponds to ordering the equations alternately from
. blocks j=1 to J =m for one sweep and then from blocks j = m

to j = 1 for the next sweep; it is termed block symmetric SOR (BSSOR).
(k) (k)

For BSSOR the solution of Mz =1 reduces to the solution of
Lo+ on)dtd+ ov) 2 () _ (k) 0<w<?2
5G] =T, 0<e<e,

where D is the block diagonal of A, L (U) is a strictly block lower
(upper) triangular matrix, and A =L + D + U. Conjugate gradient
accéleration has been found to be particularly effective for BSSOR

because of the distribution of the eigenvalues of the iteration matrix

[1,12,17].

14




For the nonlinear case we consider the correspondingly symmetrized
variant of the one-step BSOR-Newton iteration, and we denote it by BSSOR-
Newton.

We consider also another extension of the BSSOR method. fpor the
case in which the calculation of the elements of Jjj in (8) is
costly, the symmetric form of the one-step Newton-BSOR method [24]

can be more efficient. This algorithm applies a back and forth sweep

of BSSOR to the Newton iteration step

J(x(k))z - _g(k) = (k)

to obtain the increment z(k) in (7). As we did above for A,

we write J(x(k))-;f +D + U, where D is the block diagonal of
J(x(k)) and L (U) is strictly block lower (upper) triangular. Then
for the choice of zero as initial approximation for z, and for =z
partitioned in the same manner as r, the back and forth BSSOR sweep is

forward sweep:

'\le(]k) = M;JJ-(rgk) - [fi’(k)]J) , ] _ 1,2"”,m

followed by

backward sweep:

AE) _o(k) 4 w70 () 4+ gp(e) + ﬁz(k)w J = mm-l,...,1 .

J J JFNF

Here J and r are evaluated at x(k). Note that the most
recently obtained values of z are used in the computation of [Jz]j

on the right hand sides.

15




Either BSSOR-Newton or Newton-BSSOR are reasonable choices
for the operator M for the conjugate gradient iteration. When x(k)
approaches the solution x* the Jacobian approaches J(X*) so that M,
which changes from iteration from iteratign, approaches a limit also.
As a possible alternative, one could fix M for a number of iterations
by keeping J fixed at a value from an earlier iteration, updating
only occasionally.

Another choice for M that we consider approximates the
Jacobian matrix directly. We choose M to be the approximate sparse
LDLT(Cholesky) factorization of the Jacobian, as developed by Meijerink
and van der Vorst for the solution of linear elliptic problems [21].
The matrix L is chosen with a sparsity pattern resembling that of the
. lower triangular part of J, and the elements are obtained systematically
from J by enforcing the sparsity structure as the approximate factor-
ization proceeds. For linear problems this splitting has been found to
yield an iteration matrix with eigenvalues favorably distributed for
conjugate gradient acceleration [21].

For "M" matrices, Meijerink and van der Vorst proved in [21]
that the approximate factorization can be carried out in a stable manner.
For the problems we consider, the Jacobian may not be such a matrix;
however, we did not encounter difficulty in carrying out the approximate
factorization for our test cases.

Finally, we consider approximating the Jacobian by a discretized
separable operator, for which fast direct methods can be used [2,5,13,19].
For our test problems we consider as a choice for M the discrete

Helmholtz operator, possibly scaled by the diagonal of the Jacobian.

16



4, First Test Problem

The first test problem, for which the above splittings are
compared, is that of solving numerically the minimal surface equation

on a rectangle. This problem was used previously for studying the
behavior of nonlinear relaxation methods [6,7] and is of interest
because of its strong nonlinearity. The minimal surface equation arises

in finding a single-valued twice continuously differentiable function
v(x,y) that attains given values on the boundary of a region R and

minimizes the area integral over R [15]. This equation is

(9) div(yyv) = 0 on R,

-1 , .
where Yy = (1 + |VV'2> /2, with the boundary condition
(10) v = s(x,y on oR .

We consider the domain

If s(x,y) is symmetric about x = 1,6 then the problem need only be

solved on the unit square with the symmetry condition

(11) g—!=0 on x = 1.
X

17




We discretize (9,10,11) in the same manner as is done in [6].

A square mesh of size h = 1/n is placed on the domain, and uij denotes

the approximation to v(x,y) at the mesh point x = ih, y = jh. Then

at the interior points we obtain, after multiplication by —2h2,

12 . u, . -u, L ..U L)Y 2u, . - U, . -
(12) gl:J Y{,E( 1,J i-1,J i,Jj-1 j-.+l,3( ul,J u1+l,,j
+y_ _ (ew. . -_ i Uoipq
I,3+1 >d 1 -1 &d
+r (eu ) =0 ,

i = 1,2,...,n-l; j = 1’25 P -)n'l,
where v_ = Y('VUI? _) approximates r(wvl?) at (G-1/2)n, (j-1/2)
i,J i,J
with
2 1 2 2
Fnl = = [(u, . - u. D+ (u. .- ouL L L)
. i,j Zhe 15 i=1,] (ulﬁJ 1,3-1
+ 2+ %]

Along the symmetry boundary we obtain

16
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R (Eun:-J— w .- u ..) =0, J = 1,0,...,n-1.
n,j+l ’

In (12,13) we do not group together explicitly the coefficients

of u.. . and of wu, . i i i
1,3 1jl;J+l’ as 1s customary for the linear case, in order

to emphasize that the problem is nonlinear and that the 7y are

i,J
themselves functions of the uib'

The Jacobian matrix J is given by

dg, .
J = { —=2d

auk,ﬁ

a positive-definite symmetric matrix that is block tridiagonal, with
each block being tridiagonal. For this test problem, the calculation

of y' =dy_ _/dlvul? _and of J can be carried out with only a modest

i: 3 i,J i,J
amount of computational effort in addition to that required for calculation

of the gi 3
J

5. Experimental Results for the First Test Problem

The test problem of Sec. 4 was solved numerically for the same

boundary data as was considered in [6,7],

V=0 on x =0 and y = 1,
X
vV = s1n o on y =20,
and the symmetry condition (11). The following algorithms discussed

in Sees. 2 and 3 were used:

19




I. One-step block SOR-Newton
II. One-step block SSOR-Newton
III. One-step block Newton-SSOR .
IV. Conjugate gradient algorithm (with M the identity matrix)
v. Conjugate gradient algorithm with M the BSSOR-Newton
operator.
VI. Conjugate gradient algorithm with M the Newton-BSSOR
operator.
VII. Conjugate gradient algorithm with M the Meijerink-
van der Vorst approximate sparse factorization of J,
renewed every restart. The sparsity pattern of the approximate
factor is chosen to be identical with that of the lower tri-
angular part of J (the ICCG(0) variant [21]).
VIII. Conjugate gradient algorithm with M = 4,—2h2 times
the discrete Laplace 5 point operator [y = 1 in (12,13)].
IX. Conjugate gradient algorithm with M = Dl/QQS t KI)Dl/E,
where & 1is the operator of VIII and D is the diagonal
of J, renewed every iteration. K is a constant chosen
so that the average of three sample values of the diagonal of
J equals the diagonal of M.
For the conjugate gradient algorithms each test used either
a<l' or akg) and either b(l) or b(?), with no line searches and

none of the convergence safeguards developed in Lemmas 1-3 of Section 2.

20




The algorithms are compared in terms of operation counts required
to decrease the residual to specified values. In Table 1 are given approxi-
mate operation counts for various phases of the iteration. In Tables 2
and 3 are given the results of experiments carried out in double precision
with FORTRAN programs on the IBM 360/168 computer for grids with spacing
h = 1/16 and h = 1/32, for initial approximation u(O) = 0. The
supplemental tables give the results as obtained originally in terms of
number of iterations, which were converted subsequently to multiplication
counts by means of the cost factors. The cost factors relate to our test
programs, which are not generally optimal but nevertheless should give
a reasonable basis for comparison. Note that an iteration of one of the
SOR algorithms requires half the number of operations of an iteration of
the corresponding symmetric form, which requires both one forward and one
backward sweep.

The columns, from left to right, in the tables correspond to
successively larger values of Hr(k)Hz. the two-norm of the residual.

(

The initial residual |r O)”2 is approximately 0.47 for the coarser mesh
and 0.34 for the finer one. (Recall that the residuals are for (12,13),
which are obtained from (9) after multiplication by a factor proportional
to hg.)

From the tables, one observes that for this test problem the
conjugate gradient algorithm with discrete Laplace operator splitting,
with or without shift or Jacobian diagonal scaling,, produces an algorithm
favorably competitive with nonlinear block SOR in terms of operation

counts. On the larger problem, the conjugate gradient algorithm with

one of the nonlinear BSSOR splittings is also faster than nonlinear BSOR.

21



(10)

(11)

TABLE 1

COST FACTORS PER STEP FOR MINIMAL SURFACE ALGORITHMS

n x (n-1) unknowns, n(n-1) = N

Costs consider only multiplications, divisions, and square roots
and include only the highest order terms in N.

Conjugate gradient overhead is 5N.
SOR Overhead is N.

The cost of calculating y__ is 3N.

1
The cost of forming g iL 4N (given y__).

1

The cost of calculating y._ is 2N (givei Y{j%

i
20N operations are neede&]to calculate J (given Yf*’tf'y
12N operations are needed to calculate only the tridi;gonai

portion of J. (8N for the diagonal only.)
To factor and solve a tridiagonal system takes ON operations.

To form Jp takes 9N operations given J.

22
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TABLE 2

COMPARISON OF ALGORITHMS BY NUMBER OF MULTIPLICATIONS
PER MESH POINT TO OBTAIN A RESIDUAL

Hr(k)H2 < EPS: h = 1/16  MINIMAL SURFACE EQUATION
Algorithm B _ _ -0 )
(Cost Factor) w EPS = 107 10 b 107 10 10
I BSOR-Newton 1.1 502k 4448 3072 1696 320
(32) 1.2 4704 3616 2496 1376 288
1.3 3776 2880 1536 1120 opl
1.4 2976 2272 1600 696 192
1.5 2240 1728 1216 704 192
1.6 1568 1248 896 544 160
1.7 1056 &30 640 448 192
1.8 1536 1216 960 544 plels
1.9 326k 2560 1920 1184 512
II BSSOR-Newton 1.1 58k 1 4L &Y 3127 1770 413
(59) 1.2 4897 3717 2596 1475 354
1.3 4130 3127 2183 1296 295
1.4 3451 2655 1888 1062 295
1.5 3009 2301 1652 944 236
1.6 2655 2065 1475 &e6 236
1.7 2596 2006 1416 826 236
1.8 3068 2419 1711 1003 295
IIT New-ton-BSSOR 1.1 5643 4384 3078 1767 456
(57) 1.2 4731 3648 2565 1482 399
1.3 3990 3078 2166 1254 399
1.4 3420 2622 1881 1063 342
1.5 2964 2280 1596 969 342
1.6 2622 2052 1425 855 342
1.7 2565 1995 1368 % 342
1.6 2964 2280 1596 96 344
1.9 5358 4104 2850 1653 570
%01 - .
IV CG a 11997 9331 6794 ko5 1677
(43) 22b° 11762 9331 6751 4214 1763
apt 10492 7669 5762 3612 1075
ab? 10444 1669 5762 3612 1548
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TABLE 2 Continued

ﬁi§§r§§2?or> w EPS=10"" 1074 1070 1072 10'1

VvV CG+
BSSOR-Newton 1.1 2346 o224k 2040 1632 918
afpt 1.2 2346 2142 1938 1550 918
Restart Y 1.3 22kl 2142 1836 1428 918
(1o2) 1.4 2okl 2040 1632 1428 918
1.5 2142 1938 1632 1326 1020
1.6 2040 1836 1632 122k 916
1.7 2040 1836 1530 1224 1020
1.8 2Lk 2040 1836 1326 1020

1.9 no convergence
Restart 13 1.65 1632 1326 1122 98 5 10
vV  CG+ .

BSSOR-Newton a?pt 2040 1636 1530 1224 1020
o = 1.7 a%? 1530 1326 1122 §16 510
(102) alpl 173k 1530 1326 1020 612
. 173k 1428 1224 1020 612

VI CG +
Newton-BSXOR 1.1 1704 1562 1491 1136 710
apt 1.2 1633 1441 1349 1065 434
(11) 1.3 1562 1441 1349 1065 639
1.4 1562 1420 1207 994 639
1.5 1441 1278 1136 Y9l 639
1.6 1633 1420 1278 1065 710
1.7 1546 1633 1420 1278 181
1.8 2059 1846 1633 W20 1207
1.9 2201 1968 1846 1491 1207

VT oce o+
Newton-BSSOR  a‘b’ 1562 1420 1207 994 710
w=1.4 a%p° 1349 1207 1065 781 5%
(r1) alvt 1b46 1633 1420 1278 761

a~b“ 1562 1278 1065 Pz 568

N
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TABLE 2 Continued

Algorithm s 4 -3 - -1
(Cost Factor) EPS=10 10 10 10 10
VII CG + a“pt 1318 1065 562

sparse IDLL  a“be 1504 1374 1068 112 462

(50 + 6 per &bt 137k 1218 1018 662 Lfe

restart) a'v° 100k 1068 968 762 hee

VIII CG + a“pt 1045 1045 880 605 220

Laplacian a2b2 880 880 715 385 220

(55) 2ot 825 825 715 385 220

alp? 825 825 715 440 220

IX CG + azbl 754 754 696 522 290

Laplacian+  a-b- 638 638 522 106 290

J diagonal alo? 696 696 580 406 232

+ shift alv® 754 754 638 52 290
(58)
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SUPPLEMENT TO TABLE 2
COMPARISON OF ALGORITHMS BY NUMB%R OF ITERATIONS TO
OBTAIN A RESIDUAL Hr(kll

o < EPS,
h = 1/16

Aloorithm ®  EPS=10"" 0? 107° 10?107t
I BSOR-Newton 1.1 182 139 96 53 10
1.2 147 113 78 43 9

1.3 118 90 48 35 1

1.4 93 71 50 28 6

1.5 70 54 38 22 6

1.6 49 39 28 17 5

1.7 33 26 20 14 6

1.8 48 38 30 f 9

1.9 102 80 60 1 16

II BSSOR-Newton 1.1 94 6 53 30 1
1.2 83 63 44 25 6

1.3 70 53 37 22 5

1.4 59 45 32 18 5

1.5 51 39 28 16 4

1.6 45 35 25 14 4

1.7 44 34 ol 14 4

1.8 52 41 29 17 5

III Newton-BSSOR 1.1 94 [ 54 31 8
1.2 83 64 45 26 I

1.3 70 54 38 22 T

1.4 60 46 33 19 6

1.5 52 40 28 17 6

1.6 46 36 25 15 6

1.7 45 35 oh 14 6

1.8 52 40 28 17 7

1.9 94 12 50 29 10
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SUPPLEMENT TO TABLE 2 Continued

Algorithm N EPS=10- 10_14_ 10_3 10-2 10”
IV CG aZpt 279 217 158 19 39
ab° 274 217 157 98 41
2ot 244 183 134 84 25
ahp? 243 185 13k 8y 36
vV CG+ 1.1 23 22 20 16 9
BSSOR-Newton 1.2 23 21 19 15 9
a2t 1.3 22 21 18 14 9
Restart 9 1.4 22 20 16 14 9
1.5 21 19 16 13 10
- 1.6 20 18 16 12 9
1.7 20 18 15 12 10
1.8 22 20 18 13 10

1.9 no convergence
Restart 13 1.65 16 13 11 9 5

v CG + o1

BSSOR-Newton a b 20 18 15 12 10
® = 1.7 a2p? 15 13 11 3 5
alpt 7 15 13 10 6
alv? 7 14 12 10 6
-VI CG + 1.1 2L 22 21 16 10
Newton = BSSOR 1.2 23 21 19 15 9
a,:Lb:L 1.3 22 21 19 15 9
1.4 22 20 17 14 9
1.5 21 18 16 14 9
1.6 23 20 18 15 10
1.7 26 23 20 18 11
1.8 29 26 23 20 17
1.9 31 28 26 21 17
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SUPPLEMENT TO TABLE 2 Continued

Algorithm B _ -
EPS=10" 10 102 10° 10
VI CG + a%pT 22 20 17 14 10
Newton-BSSOR  ab° - 19 17 15 11 8
©=1.4 Aot 26 23 20 18 11
alb® 22 18 15 13 8
VII CG + 2%t 26 21 11
sparse o1’ a°p° 30 27 21 16
alpt 27 ol 20 13
2 28 25 19 15
VIII CG + a“pt 19 19 16 11 4
Laplacian aZpe 16 16 13 1 4
alot 15 15 13 7 4
alv? 15 15 13 : 4
IX CG + a2t 13 13 12 9 5
Laplacian a%1° 11 11 9 7 5
+ J diagonal a]'bl 12 12 10 1 4
+ shift a2 p? 13 13 11 9 5
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TABLE 3

COMPARISON OF ALGORITHMS BY NUMBER OF MULTIPLICATIONS
PER MESH POINT TO OBTAIN A RESIDUAL

Hr(k)”2 < EPS: h = 1/32 MINIMAL SurrAcE EQUATION
(2ig§rlt;2ctor) w EES=10‘8 107 10'6 107 0% 107 10?107t
I BSOR-Newton 1.3 >11200 105 60 6944 3328 192
(32) 1.4 >11200 8384 5536 2656 160
1.5 >11200 10912 8704 6496 4288 2080 160
1.6 >11200 9696 8096 6464 4832 3232 1600 160
1.7 7732 6624 5536 4448 3360 2272 1184 160
1.8 4000 3328 2976 2464 1952 1440  &64 192
1.4 5408 4832 4096 3296 2752 2048 1152 640
II BSSOR-Newton 1.5 15812 13570 11328 9086 678.5 4543 2301 236
(59) 1.6 12626 10856 9086 72,57 5487 3658 1888 236
1.7 10148 8673 7257 5841  Lho5 2950 1534 236
1.75 9204 7670 6608 5310 Lol2 2714 1416 236
1.8 8673 7434 6254 5015 3776 2596 1416 236
1.85 8791 7552 6313 5074 3894 2655 1534 295
III Newton-BSSOR 1.4 19038 16302 13566 10887 8151 5472 2736 285
(57) 1.5 15276 13110 10944 8778 6555 4389 2223 285
1.6 12198 10431 8721 7011 52kl 3534 1824 285
1.7 9747 8379 7011 5643 42775 2850 1482 285
1.8 8322 1125 598 4788 3591 2394 1254 399
1.9 10146 8721 7239 5614 4389 2964 1653 570
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TABLE 3 Continued

Algorithm

(Cost Factor) o Eps=10"° 107 107 107 10'lL 107 107° 107t
v oo+ 1.5 3570 3366 3060 2958 2550 2040 1734 816
BSSOR-Newton 1.6 469% 4488 4182 3978 3468 3060 2754 2346
Restart 13 1.7 3570 3366 3162 2856 2346 1938 1632 1022k
a2p° 1.75 4182 3876 3468 3162 2958 2754 2346 1938
(102) 1.8 3774 3468 3162 2856 2652 2142 1438 1428
1.85 3978 3468 3162 2856 2550 2142 1836 1122

1.9 no convergence
VI CG + 1.4 3053 2840 2556 2272 2130 1704 1278 852
Newt on-BSSOR 1.5 2627 2414 2272 2130 1917 1491 1278 1065
222 1.6 2769 2556 2485 2130 1775 1633 1278 710
Restart 13 1.7 2911 2769 2343 2272 2130 1917 1633 1065
(71) 1.8 3053 2840 2627 2343 2130 1917 1704 1278

1.9 no convergence
IX CG +laplacian a-b’ 2623 2440 2318 2135 1952 1769 1403 915
[ g dtagonal gyl 2623 2501 2379 2196 2013 1830 1342 g5

Restart 16
(61) o1

Restart 9 ab 2074 1891 1647 1525 1281 1159 915 549
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SUPPLEMENT TO TABLE 3
COMPARISON OF ALGORITHMS BY NUMBER OF ITERATIONS TO

OBTAIN A RESIDUAL Hr“gﬂb < EPS,

52

h =1/32
Algorithm mpgo10~ 10_7 106 1072 10'“ 1072 107° 107t

I BSOR-Newton 1.3 >350 330 217 104 6
1.4 >350 262 173 83 5

1.5 >350 341 272 203 134 65 5

1.6 >350 303 253 202 151 101 50 5

1.7 241 207 173 139 105 11 37 5

1.8 125 104 93 71 61 45 27 6

1. ¢ 169 151 128 103 86 64 36 20

II BSSOR-Newton 1.5 268 230 1% 154 115 77 39 4
1.6 214 184 154 123 93 62 32 4

1.7 172 147 123 99 75 50 26 4

1.75 156 130 112 90 68 46 2L 4

1.8 147 126 106 85 64 44 2L 4

1.85 149 128 107 86 66 45 26 5

IITI Newton-BSSOR 1.4 334 286 238 191 143 96 48 5
1.5 268 230 192 154 115 17 39 5

1.6 214 183 153 123 % 62 32 5

1.7 171 147 123 99 75 50 26 5

1.8 146 1-5 104 &l 63 Lo 22 7

1.9 178 153 127 102 17 52 29 10



SUPPLEMENT TO TABLE 3 Continued

Algorithm

=5

o ESP=10-8 10-7 10-6 10O 10-4 10-5 10” 10°
VvV CG+ 1.5 35 . 33 30 29 25 20 17 8
BSSOR-Newton 1.6 46 44 41 39 34 30 217 23
Restart 13 1.7 35 33 31 28 23 19 16 12
a"b° 1.75 41 38 34 31 29 2T 25 19
1.8 37 34 31 28 26 21 19 1L
1.85 39 34 31 28 25 21 18 11
1.9 no convergence
VI CG + 1.4 43 40 36 32 30 2l 18 12
Newton-BSSOR 1.5 37 34 32 30 217 21 18 15
a“b° 1.6 39 36 35 30 25 23 18 10
Restart 13 1.7 41 39 33 32 30 27 23 15
1.8 43 40 37 33 30 27 24 18
1.9 no convergence
IX CG + Laplacian agbl 43 40 38 35 32 29 23 15
+J diagonal  a'bt 13 41 39 36 33 30 22 15
+ shift
Restart 16
Restart 9 ap? 34 31 27 25 21 19 15 g
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As has been observed also for linear cases [1,12,17], the symmetric
SOR algorithms accelerated by cg are less sensitive to the choice of
relaxation parameter ® than are the corresponding unaccelerated SOR
algorithms.

Of course, as with any higher order method, the storage require-
ments of cg are greater than those of the basic unaccelerated iteration.
It should be noted also, that for nonrectangular domains more operations
would be required to obtain the solution of (5) for cases VIII and IX.

The results for initial approximations other than u(O) =0
are not included in the tables: however, there were indications in our
experiments that poorer initial approximations could result in divergence
for some of the methods, without the safeguards of Section 2, as would

~be the case also for the unaccelerated nonlinear SOR methods [6,7].
In the experiments, the algorithms exhibited some sensitivity to the
length of the conjugate gradient cycle between restarts. Restarting
every Y iterations, which is the case reported in Table 2, seemed
effective for the coarser grid. For the finer grid 13 to 16 iterations
were better.

Limitations of time prevented us from investigating Case VII
for the finer grid and from investigating either a variant of the LDLT
approximate factorization allowing one more subdiagonal nonzero band
in L (analogous to ICCG(3) in [21]) or a variant utilizing block
techniques developed recently in [29]. Either of these variants might

yield results superior to those reported for Case VII, as they have been

found generally to be more efficient for linear problems.
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We conclude from these experiments that the generalized
conjugate gradient algorithm, with modifications to ensure convergence,
holds promise of being favorably competitive with relaxation techniques

for solving strongly nonlinear elliptic problems.

6. Second Test Problem

For the second test problem we consider a mildly nonlinear

equation arising from the theory of semiconductor devices,

_ _ -5%\ v _
(1k) Vo vYY + (1 -e”Te’ =1.

Equation (14) is to be solved on the unit square subject to the boundary

conditions
on x = 0: vV =0
on x = 1: v =1

on y = O: ov/dy = 0

(15)
ov/dy = 0 for 0O<x<a<l/2
on y = 1l: v = -1 for a<x < l-a
ov/dy = 0 for 1-a < x <1

Of particular interest is the mixed boundary condition on the edge
y = 1, as it would preclude the immediate use of one of the basic fast
direct algorithms for solving (5) if M were chosen to be a discrete

Helmholtz operator with boundary conditions (15).
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We place a uniform mesh of width h on the unit square and

denote the approximation to v(x,y) at the mesh point x = ih, y = jh

by u. 3 Then at an interior point we obtain, using the standard
J

five-point discretization,

-5x.
1 1
— - - - - + —
(16) 2 ( L hui,j Uiy g i+l) (1-e ) exp(u.:.L g)

At the Neumann boundary points the difference equations specialize in the

usual manner, as in Section 4.

We choose for M the equivalent discretization of the Helmholtz

operator H

Hr = - v - vyy + Kv ,

but with the boundary condition along y = 1 in (15) replaced by

(17) %=O on vy =1 for 0<x<1l.

This permits the use of standard fast direct methods for carrying out
the numerical solution of Mz = r. Also, we augment the system (16)
with-the equations

i -5x. N X,

: 1 1 .
(18) ;5 LI (1-e ) exp(ui;g = -2+ (l-e ) exp(-1)

for the Dirichlet points on y = 1, so that the Jacobian of the augmented

system and M have the same rank. The constant K is chosen to be 1,
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a value that is meant to approximate (1 - e’sx)ev on the square, so
that M approximates, in this manner, the Jacobian of the augmented
system (16,18).

This choice for M does not approximate the Jacobian well
in norm, because of the differing boundary conditions on y = 1. However,
because the number of mesh points at which the boundary conditions differ
is small, a corresponding linear problem--say with (1 - e—Sx)ev in (14)

replaced by v
(19) -v_-v__+tv=1,

with corresponding replacements in (16) and (18), and with k=1 in
M--will converge completely in only a moderate number of iterations. At most
2p + 3 iterations are required in this (linear) case to reach the solution
(in the absence of round-off errors), where p is the number of
Dirichlet boundary points on y = 1, because of the finite termination
property of cg [9]. For our test problem, our interest is in
obtaining an indication of the degree to which the introduction of a
mild nonlinearity alters the convergence rate from that for the
corresponding linear problem (see also [4]).

In Table 4 are given the observed number of iterations at which

(&) 1/ - (k)

the residual norm

, | .y was first reduced to

M
less than EPS, for the initial approximation u(O)

= 0. The value of
a was taken to be 5/16, and the problems were solved using a FORTRAN

program on a CDC 7600 computer for mesh spacings h = 1/16, 1/32, 1/6k.
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(1)

The parameters a 1 s b were used, and there was no restarting.

The solution of Mz = r was carried out at each iteration using either
the program GMA Wwith marching parameter K = 2 [2] or the program package
from ncar [28]. (These two programs give slightly different rounding
errors; we observed no important difference between them in their

(o)||

effect on the cg iterations.) The initial residual norms |

-1
5 M

were of the order of 10° for h = 1/16 and 10~ for h = 1/6k.
Problem I is the discretized linear problem (15, 19) augmented
with the equations

2 ui,J + 71,

u, . = --%5 -1
h h

for the Dirichlet boundary points on y = 1, with M as described

above with K = 1. Problem II is the discretized nonlinear equation (14)
with the same boundary condition (17) on y = 1 as that for M and
with the same M as for Problem I. Problem III combines the boundary
condition of Problem I with the nonlinearity of Problem II; it is the
discretized nonlinear problem (1k, 15,18L again with the same M.

The number p of special boundary points for Problems I and III
is given in Table Lt for each of the mesh spacings. The finite termina-
tion behavior of cg for the linear problem can be observed clearly
for the coarsest mesh; for the finer meshes some contamination resulting

from rounding errors occurs. For the finest mesh, a residual small

enough for practical purposes occurs well before @R *+ 3 iterations

have been carried out.
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The results for Problem II indicate that convergence is rapid
for this choice of M when the mild nonlinearity ispresentandthe
mixed boundary conditions on Yy = 1 are absent. As one would expect
for this case the number of iterations to reach a given residual is
essentially independent of mesh size. The results for Problem III
indicate that with the mixed boundary condition on ¥ = 1, the con-
vergence rate for the mildly nonlinear case is slowed moderately from
that for the linear case, Problem I. One could likely improve the results for
Problems I and III in terms of number of iterations by choosing k
to be, instead of a--constant, the sum of a function in x and one
in vy, which would still permit the use of fast direct methods. We
did not include such choices in our experiments, however. We repeated
some of our experiments for an initial approximation u(O) equal to

pseudo-random numbers in [0,1] and found no substantial difference from the

results of Table 4.
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