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Abstract

When the parameters of a simple stochastic model of the memory
referencing behavior of computer programs are carefully selected, the model
is able to mimic the paging behayior of a set of actual programs, The
mimicry is successful using several different page replacement algorithms
and a wide range of real memory sizes in a virtual memory environment, The
model is based on the independent reference model with a new procedure for
determining the page reference probabilities, the parameters of the model,
We call the result the AP inversion independent reference model, Since the
- fault rate (or miss ratio) is one aspect of program behavior that the model
is able to capture for many different memory sizes, the model should be
especially useful for evaluating multilevel memory organizations based on

newly emerging memory technologies,
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THE A@ INVERSION MODEL OF PROGRAM

PAGING BEHAVIOR

1. Introduction

Computing systems in which several types of storage are automatically
made to appear as one uniform type of storage are likely to be a major part
of our computing environment for some time to come. Memory transparency or
automatic folding or virtual memory has been accepted as a necessary tool for
the convenient solution of many computing problems in much the same way as
higher level languages were accepted as a necessary evil many years ago. In
fact, paging techniques Dﬂ are being used to automatically manage small,
very high speed buffers (caches) for high speed CPU's [2, i] and to manage
large, slow disk buffers for much larger and slower automated filing systems

(31 , as well as being used more conventionally to automatically manage main
memory in a wide variety of computers.

This wide use of paging techniques, together with the ever changing
performance parameters of the memory technologies on which these paging
techniques are implemented,point up the need for efficient and effective
methods for evaluating the performance of different memory hierarchy designs,
Central to such methods will be some model of how computer programs reference
memory. The choice of that model of memory referencing behavior will
determine the accuracy, efficiency, generality, and even the feasibility of
the evaluation method in which it is contained. In this paper,we describe a
new interpretation of a simple model of how programs reference memory and give
a procedure for determining the parameters of that model. We then illustrate

the success of the model in predicting the page fault rate and working set




characteristics of actual programs by comparing the model predictions with
results determined by simulations using actual program traces. We discuss some
of the limitations of our method, how the results from our method compare with
results from other models, and how the results may be useful. Finally, we

discuss some possible extensions and generalizations.

2. Choice of model

The most widely used models of the memory referencing behavior of
programs have been simulation models driven by traces of the addresses generated
by actual programs. While these methods have the most potential for accuracy
they are also the most cumbersome, expensive to process, and time consuming.
In addition, it is normally not feasible to evaluate more than a small subset
of the possible memory and system configurations of interest because of the
difficulty in handling this type of model, Thus, one of our primary aims in
developing an alternative model is to choose one which is analytically
tractable. We want to be able to derive general results simply by solving
equations involving the parameters of the system to be evaluated and the
parameters of the model. Even if such solutions must be numerical instead
of closed form expressions, we will have a model with more power than a
simulation based on program traces. This will be power to investigate
larger subsets of the memory design space more economically,

In addition to developing a model which is analytically tractable, we
want a model with predictive power, We don't want to simply engage in curve
fitting, We want the model to predict properties of how program references
memory, which were not built into the model, through the method of determining
the parameters., For example, the LRU stack depth model Euﬂ of a program

can predict the fault rate of the program under LRU page replacement precisely
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if the stack depth distribution of the model is determined from the stack
depth distribution of the program. Such a prediction is not surprising; it

is built into the model. If, however, the model also predicted the fault rate
with some accuracy under a different page replacement policy, we would say
that the model had some predictive power.

Finally, we want a model which is sufficiently simple to be used effi-
ciently in simulations since we expect to have to resort to simulations for
the evaluation of some complex designs, or to validate simplifying assumptions
in the analysis of some designs.

We concentrate on the paging behavior of the model of how programs ref-
erence memory since the principal performance characteristics of an automatic
memory hierarchy»ban be determined from the paging behavior if we take a gen-
eral view of paging. Thus when evaluating a cache memory design, the miss
- ratio is equivalent to the fault rate, the address mapping scheme corresponds
to some special page replacement policy, and the size of cache elements is the
page size. When evaluating an automated filing system, similar parallels can
be drawn.

3. Notatijon

In order to develop and validate our model, we will refer to several dif-
ferent page replacement algorithms, the algorithms which specify which page in
main memory is to be replaced when a program refers to a page in the backing
store. We now give a brief summary of those algorithms and our notation for
them.

hd]IN’[S] -- replace the page whose next reference is furthest in the
future. This algorithm is not practical because it requires knowledge of

the future, but it is an algorithm which minimizes the total number of page



faults for a single program in a fixed size memory and, thus, is useful as a
base for evaluating other page replacement algorithms. In addition, we make
use of it in our procedure for determining the parameters of our model.

LRU Di] --replace the page which is Least Recently Used, This is the
page whose last reference was furthest in the past. If the future references
of a program are like the past references, then this time reversed dual of
the MIN algorithm should be a good practical page replacement algorithm, In
fact, it is difficult to keep track of which page was least recently used in
real systems, but there are some simple and practical schemes which closely
approximate the LRU page replacement policy ﬂSJ, Hence our model should be
able to predict paging behavior under the LRU algorithm if it is to be useful
in such settings.

FIFO [17] --replace the page which was first brought into main memory
among those currently present in main memory (First-In-First Out). This
algorithm is actually used in some computing systems [1] although it is
known to have some strange properties and to generally be inferior to LRU
and related algorithms. We consider it briefly as an extreme test.

Ap [8] --replace the page which is least 1ikely to be referenced. This
algorithm is useful when pages are known to be referenced with independent,
fixed probabilities,as in the independent reference model, In such
circumstances, it is known to be optimal among algorithms without knowledge of
the future., We make extensive use of its analytic tractability in deriving
the parameters of our model,

WS (T) [9] --replace the page which hasn't been referenced in the last
T references. Those pages that have been referenced in the most recent T
references are called the current working set. T (or tau) is the working set

parameter. Of the page replacement policies we consider, this is the only one
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which requires a variable number of main memory page frames. Thus, the paging
behavior under the working set algorithm seems to represent a somewhat
different dimension of program paging behavior than the previous fixed memory
page replacement algorithms., Comparisons of our model results with actual

working set results illustrate both the power and the Timitations of our

model,

4. Previous Models

Although simulation models based on actual program traces have been the
most widely used models of memory referencing, numerous attempts have been
made to develop more tractable analytic models, The two most prominent such
models are the independent reference model and the LRU stack depth model.

In the independent reference model, there is a fixed probability, P>
associated with each page i of the program being modeled..  References to pages
are generated by independently sampling from this page reference probability
distribution. This model has received attention from a theoretical
perspective because it is analytically tractable. There have been a number
of papers giving interesting theoretical results based on this model [13,12].
The main problem with this model is the problem our intuition suggests, nanely,
that a program's references to memory are not independent but, in fact, are
correlated in a complex and highly structured way. Thus, if we simply count
the number of times a program references each of its pages, and use these
counts as estimates of the page reference probabilities in an independent
reference model of that program, we will find that the resulting model of the
program is a very poor predictor of the actual paging behavior of the program.

The fact that certain sets of pages tend to be referenced together (localities)



is not captured in this "page reference frequency" version of the jndependent
reference model, Thus, the model predicts a page fault rate much higher than
actually observed under almost all circumstances. This is illustrated in
Figure 1 where we have plotted the actual page fault rate as a function of
main memory size (in pages) for an IBM/360 WATFIV compiler run subject to the
LRU and MIN page replacement algorithms. These functions are represented by
the solid lines in Figure 1. On the same figure, we have plotted the fault
rates observed for the page reference frequency independent reference model
of this WATFIV compiler for the same memory sizes and page replacement
policies. When we notice that the fault rate is plotted on a Togarithmic
scale, the overestimate of the model is most startling, usually between two
and three orders of magnitude! Results like these, which are typical of the
page reference frequency model, are why the independent reference model has
often been harshly criticized by those interested in models that have some
practical value.

The LRU stack depth model works from a probabilistic model of the depth
of a reference in an LRU stack. The LRU stack is a stack in which the most
recently referenced page is on the top of the stack, the next mest recently
referenced page is just below the top, down to the least recently used page
on the bottom of the stack, Each time a page is referenced, the LRU stack is
updated by moving the entry for that page from {ts current position (depth)
in the stack to the top of the stack., This stack is for all of the pages
referenced, not just those in main memory, We can maintain an LRU stack
(in theory) even if we are not using an LRU page replacement policy, The LRU
stack depth model is constructed by counting the number of times a particular
position (depth) in the LRU stack is accessed in order to update the stack.

These caunts are then used as estimates of theprobability of any given

-6-



reference being at a particular LRU stack position (depth). The LRU stack
depth model can then be used to generate page references by generating a
stack depth according to the stack depth distribution, looking in an LRU
stack at that position, calling the page name found there the next page to be
referenced, updating the LRU stack, and then repeating this process. The
page reference string so generated does not have to be used in an LRU paging
environment although the page fault rate for such a model will exactly match
(except for sampling error) the LRU fault rate of the program from which it was
derived.

A great deal has been written about efficient methods for determining the
LRU stack depth distribution (and features of other stack processing type paging
algorithms) [14;6] » but very little has appeared indicating the suitability
(or lack of it) of the LRU stack depth model for systems other than LRU type
paging environments. We will return to this subject later. The LRU stack depth
model does not seem to be as analytically tractable as the independent
reference model (the LRU stack depth model is an independent reference model
in the strict sense of that term) although there are some available results,
For example, the position of any particular page in the LRU stack of an LRU
stack depth model is a uniformly distributed random variable independent of the
identity of the page and the particular stack depth distribution [e].
Since this violates our intuition about program behaviors perhaps this partly
explains why the LRU stack depth model has received 1ittle empirical treatment
in the Tliterature,

In addition to these two models, there have been fragmentary treatments
of other types of models. We say that the treatments are fragmentary because
they normally don't provide either enough theoretical development to demonstrate

analytic tractability or enough empirical development to demonstrate practical
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feasibility or value. They usually seem to be the starting points for more
extensive research. One such model is a first order Markov model [16] .
The independent reference model is sometimes called a zeroth order Markov
model since successive references are independent of all past and future
references. In a first order model, the next reference depends on the
identity of the previous reference. A first order model should be able to
do everything that a zeroth order model does plus more,provided the much
larger parameter space can be algorithmically and efficiently determined,

Models which explicity try to capture the idea of locality have been proposed

[10] , but not well developed.

5. AP Inversion --Model

If we return to Figure 1 and the comparison of the fault rates for an
actual program and the page reference frequency model of that program,we can
see support for an observation that Peter Franazcek made to us [1ﬂ. He
observed that while the page reference frequency model didn't predict actual
fault rates very well, it did predict the relative performance of different
paging algorithms with some accuracy. Thus, the spacing between the MIN and
LRU curves is about the same for the actual program curves and the model
program curves, indicating approximately the same percentage change in fault
rate in the model as in the actual program between these two paging algorithms.
This observation suggested to us that either the independent reference model
was capturing some aspect of program behavior or that some paging results
depended more on the system than on the program. At any rates it seemed worth-
while to take another look at the independent reference model.

Our view of the model is a more abstract one than the view represented

by the page reference frequency version of the model. We don't insist on any
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particular identification between model péges and actual pages; we just insist
on good results. Thus, we simply want to choose the page reference probabilities
of the model so that the model more acturately predicts the actual fault rates

in at least some cases. In this view an independent reference model of a
program that references n pages is a model with n-1 parameters or degrees of
freedom. With this many parameters, we should at least be able to do curve
fitting provided we can devise a feasible scheme for determining the values of
the parameters.

We observe that one way of binding the model to the characteristics
of a real program is to require that the lower bound on the page fault rate of
both the model and the actual program under optimal replacement algorithms be
close together. We can then be sure that enough structure is built into the
model so that, at least in the long run, the model is capable of predicting
the behavior of the actual program under the optimal paging algorithm.

For a given page reference sequence of an actual program, we know that
the MIN algorithm gives the least number of faults among all fixed memory size
algorithms. We can, in fact, measure the MIN fault rate of the program,
FMIN(m)’ for different memory sizes m (1 <m <n). For the independent reference
model, the AP Eﬂ algorithm gives the optimal fault rate if we disallow the look-
ahead of the MIN algorithm. At the time of a page fault, the AP algorithm re-
places a page which is least likely to be referenced in the future.

Let [p] sPysP3s. - ,pn] and P1<Pp<P3. <Py, be the set of reference
probabilities for an independent reference model. The AP fault rate produced

by this model, FAg(m), for a memory size m is equal to (6] :
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n
. 2
p.
F=F(m)=EP. } Zr‘n1 1<i<n
m AQ < (1)
1=m
n;.
Z"i
i=m

Therefore, if the reference probabilities are known, (1) can give the
optimal (non-lookahead) fault rate for different values of m, 1 <m < n. Con-
versely, if a set of n fault rate values are given, we may be able to find a
set of reference probabilities which satisfy the relations in (1).

We observe that if our independent reference model is to capture the
fault rate behavior of actual programs, then we expect that the fault rate
of the model under the AP algorithm should be close to the fault rate of the
actual program under the MIN algorithm and for all memory sizes. This gives
us a procedure to find pi's from the relations in (1). In other words, we now
substitute for Fm's in (1) the observed MIN fault rate values, and then we
invert (1) to get a set of recurrence expressions for finding pi's. The
independent reference model which is obtained by this procedure is referred
to henceforth as the AP inversion model.

n m
We carry out this procedure by letting Sm =:E:pi and Rm =:E:pi’ We

i=m i=]

then successively get:
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F = p.-1=—
M =m ! :E::
P.
i=m
n
20
i=m i
F S, -
m m Sm
Similarly:

n
2 2
Fos1oner = - fi: Ps
m+17n+1 m+1 jemtl

Subtracting the above two expressions we get:

- 2 2 2
Fmsm - Foe1Smer 5 Sm - Smel = P
Fp +FS . -F s =pZ4s 2+2ps
m'm m°m+1 m+1°m+1 ~ Pp m+1 m
or
pm=%ﬂ(%'Fmﬂ l<m<n
25m+1 - Fm

If p, is known, then (2) can be used successivley to find p__;, P

m+l ~

2 2

Sm+1 P

(2)

n-2 and

so on. However, we can arrange (2) so that first we can find P1» and having

Pps we can find Pos and so on. Since pi's are probabilities, we have

S =1 - Rm =1-R

m+1 m-1 " Pm -
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Replacing this in (2), we find:

- (I'Rm-l-pm) (Fm-Fm+1)

o= 2R ) - F 1 <m<n (3)

P

In (3), we assume that RO = 0. Eachpi,i=1,2,3,...,n-1 can be successively
computed from (3) by solving a quadratic equation. Later in this paper, we re-

turn to this derivation for more comments.

6. Test Results - Fault Rate Prediction

We now examine the ability of the AP inversion model to predict the fault
rate behavior of real programs. We expect to get substantial improvement over
the previously mentioned page reference frequency method. Indeed, by inspecting
Figure 2, we can see the success of the model, In this figure, the solid lines
represent the fault rate curves of WATFIV program under MIN and LRU algorithms.
Using the AP inversion technique, we construct an independent reference model
based on the same program. The MIN and LRU fault rate which are produced by
the model are shown by dotted lines on the same figure. As we expected, the
MIN fault rate curve of the model closely follows the MIN fault rate curve of
the actual program for a wide range of memory sizes. It is interesting, how-
ever, that even the LRU fault rate curves of both the model and the acutal pro-
gram are fairly close together. The success of the model becomes more signi-
ficant if we compare Figure 1 with Figure 2 to see the amount of improvement
over the page reference frequency method. This demonstrates the fact that by
using an appropriate method, we can build substantial predictive power iinto a
simple independent reference model.

It is interesting to inspect the set of reference probabilities whiich are
obtained by the AP inversion model. We can get a better insight into the struc-

ture of this model by comparing these reference probabilities with the reference
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probabilities which are obtained from the simple frequency method. In Figure
3, the two sets of reference probability densities based on the WATFIV compiler
are shown. The horizontal axis is the page number and the vertical axis is the
probability weight.

In the frequency method, the reference probabilities are found by taking
the global averages on the entire string. In the averaging process, most of
the information about the regional characteristics of the string is lost.

Along the same lines, we have tried other approaches to get a better represent-
ative set of probabilities. One method we used was to divide the trace into
intervals and find the relative reference frequencies in each interval, and
order each set and combine over all intervals. The results, which are not re-
ported here, showed only a slight improvement over the usual frequency method.

In the AP inversion model, a completely different approach is taken and
the reference probabilities which are obtained in this case bear no direct re-
lation with the relative reference frequency of each page in the actual program.
In Figure 3, we note that the AP inversion model produces a reference probability
mass distribution which has a distinctive resemblance to the fault rate curve
of the program upon which the model is based. We can see that some important
information, such as the memory sizes where the actual fault rate changes curva-
- ture, is precisely carried over to the corresponding page numbers in the ref-
erence probability curve.

Generally, the A@ inversion model assigns large probability mass to a small
number of pages (i.e., pages with the lowest subscript) and the remaining pages
receive probability weights in sharply decreasing quantities. One can interpret
the top pages (e.g., the first 20 pages in Figure 3) as the current locality
pages of the program. References to these pages are mostly favored in the ref-
erence string generated by the model. The pages which receive the least pro-
bability weights can be imagined to produce the instances corresponding
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to locality transitions in the actual program. The remaining pages which re-
ceive probability weights between the above two extremes can be considered to
contribute to the small variation of the locality sizes in time.

We can support our claim about the predictive power of the AP inversion
model by presenting more evidences about the success of the model. For another
replacement algorithm, we test the behavior of the model under the FIFO paging
algorithm. In Figure 4, the solid line is the fault rate of the actual WATFIV
program versus memory sizes under the FIFO algorithm. In the same figure, the
dotted line represents the fault rate curve of the model under the same algo-
rithm. We can see that the model is capable of predicing the average fault be-
havior of the program on the lower range of memory capacities. For very large
memory sizes, the dotted line drifts slightly away from the solid line. The
behavior of the model in this region can be partially accounted for by any one
of the following reasons. Since we simulate the model, in this case the sam-
pling error becomes significant for large memory sizes. The other source of
the error is the inaccuracy in defining the tail (i.e., the pages with the
highest subscripts) page reference probabilities. We shall return to the pro-
blem of finding the tail probabilities later in this paper.

In a series of experiments, we present more data for validation of the
model. We have constructed AP inversion models based on the page reference
trace of several programs. These programs include a trace of a WATFIV
compiler, a FORTRAN program called WATEX, an APL program, and the trace of a
program to calculate the Fast Fourier Transform, called FFT, of a set of data
points.

In Figures 5, 6, and 7, the fault rate curve of each model under the MIN
and LRU algorithms are compared with those of the corresponding actual programs.
In each figure, the solid Tines belong to the actual program and the dotted

Tines represent the data points from the model. We note that in each case the
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model is able to predict the LRU fault rate of the actual program in a satis-
factory way. All these models are especially successful in the range of Tower
memory sizes. It is significant, for instance, to note that the AP inversion
model has been abTe to capture the special behavior of the FFT program as can
be seen in Figure 7. We observe that the fault rate curves of the model

breaks in exactly the right point (memory size), in this case. This is a
rather promising result which shows that the technique can be used successfully

to model program behaviors which are highly structured.

7. Average Working Set Size Prediction

The working set concept has been widely acclaimed as being a good measure
of program reference localities. The working set [9], WS(t,T), at time t, is
the set of page;haddressed in the past T references. The size of this set is
denoted by ws(t,T). The window size T is the working set parameter. The mea-
sured working set sizes can be averaged over the entire program trace and lumped
into one number, called the average working set size, ws(T).

The average working set size can also be defined for the references generated
by the model. Since the probabilistic structure of the model is known, the ex-
pected working set size can be readily obtained by a probalistic argument. Let
[bl,pz,p3,...,p6] be the parameters of the AP inversion independent reference
model. The expected working set size with parameter T is equal to the proba-
bility that a page is in the working set summed over all pages. A page is in
the working set if it has been referenced at least once in the last T units of

time; therefore,

n
ws(T) = ?:1 1 -(1-5,)7] (4)

We can now examine the capability of the model in predicting the average

working set sizes of actual programs. In a series of experiments, we have mea-
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sured the average working set sizes of a number of programs with different
window sizes. For each actual program, the average working set sizes of the
corresponding AP inversion model is calculated from (4). The results are illus-
trated in Figures 8 and 9 for the WATFIV, APL and FFT programs. In each figure,
the horizontal axis is the window size in terms of address reference units and
the vertical axis is the average working set size. The solid lines are obtained
from the measurements on the actual programs and the dotted lines are computed
from the parameters of each model.

We can see that the predicted average working set size values derived from
the model are strikingly close to those of the actual programs. This result
demonstrates the capability of the AP inversion model in capturing an important
feature of the address reference behavior of real programs.

Once the average working set size is known, the fault rate values under
working set (WS) algorithm can be obtained. For the independent reference
model, the WS fault rate is equal to the probability that a page hasn't been
addressed in the last T references and that it will be addressed in the next
reference summed over all pages, i.e.,

n

=Y (1007

In Figures 10 and 11, the WS fault rate of the WATFIV program with two
different page sizes, and the WS fault rate of APL and FFT programs are shown.
In each figure, the WS fault rate probability of the corresponding AP inversion
model is shown by dotted lines. The horizontal axis is the average working set
size and the vertical axis is the fault rate. The fit of the points obtained
from the model to the points measured on the actual programs, basically re-

flects the results illustrated in Figures 8 and 9.
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In Figure 9, we notice that the model somewhat overestimates the working
set size of the APL program. An explanation for this behavior will follow in

the next part.
8. Comparison with LRU Stack Model

We have defined the LRU stack model for the sequence of page references.
This model is strongly bound to the observed LRU stack depth distribution of
the programs. The Tong run fault rate of LRU stack model, under the LRU algo-
rithm, converges to the LRU fault rate of the program upon which the model is
based. This property is built into the LRU stack model by setting the stack
depth distribution {di}’ i=1,2,...,n of the model equal to the relative fre-
quency of the observed stack distances generated by an actual program. It is
interesting to investigate the behavior of LRU stack model under systems other
than LRU.

Similar to our earlier set of experiments, the traces of several programs
have been used to construct the empirical LRU stack distance distributions. In
each case, an LRU stack distribution is used to construct the corresponding LRU
stack model. In order to compare the optimal fault rate behavior of an actual
program with the respective LRU stack model, the MIN algorithm is used for both
of them. We note that since the observed LRU stack depth densities are not
monotone decreasing values, we don't expect that LRU would be optimal for the
model.

In Figure 12, the result of the experiments on the APL program using the
MIN and LRU algorithms are shown. The solid lines represent the actual programs
and the dotted lines represent data points from the corresponding LRU stack
models. The LRU algorithm, as well as the MIN algorithm, were applied by a simu-
lation run for the actual program and the model. Therefore, the discrepancy

between the LRU fault rate curve of the model and the corresponding program
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gives a significance measure of the sampling error in the simulation of the
model. The more interesting information in this figure is, of course, the be-
havior of LRU stack model under the MIN algorithm. We note that the model
gives a good prediction of the MIN fault rates of the actual program. Like the
AP inversion model, the good fits are espectally notable for lower range of
memory sizes.

In Figures 13 and 14, the average working set sizes and the WS fault rate
of the APL program are compared with their respective LRU stack model values.
If we inspect Figures 9 and 13, we notice that both the AP inversion model and
the LRU stack model give up to about a 10% overestimation of the actual average
working set sizes of the APL program for most window sizes. We can give an ex-
planation for this by taking a closer look at the distribution of working set
sizes of the APL program. In Figure 15, a histogram of the observed working
set sizes for window size T=4000 units for this program is plotted. In this
plot, we can distinguish three major peaks. Although this is not a typical
working set histogram, nevertheless programs sometimes do exhibit this behavior.
Each peak can be associated with a large period of time which the program pre-
dominately spends in a locality which is different in size from other major lo-
calities. The frequent locality changes may also contribute to the clusters
of fairly large working set sizes in the histogram.

Programs like APL which exhibit distinctive multiple locality regions give
the illusion of being programs with fairly scattered reference patterns for the
averaging mechanisms which build the models, e.g., A@ inversion and LRU stack
models. The overestimation of the average working set sizes can be attributed
to this averaging over the actual reference patterns.

Our other experiments show that the LRU stack model can predict reasonably

well the MIN and WS fault rate of actual programs.
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9. Extensions and Limitation of AP Inversion Model

A possible extension of the model is in the area of management of filing
systems. The files should be considered as variable size blocks of information.
Therefore, we would have to introduce new parameters in the model which describe
the file lengths.

The AP inversion model can be easily extended to study the page read/write
characteristics of the programs. The immediate application of such an extension
would be the performance evaluation of the memory hierarchy systems with differ-
ent page read/write transportation costs.

In finding the parameters of the AP inversion model, we may encounter two
kinds of problems. The first problem deals with solving the recurrence rela-
tions (3), and the second problem is related to the tail probabilities.

We recall that the MIN fault rates of an n page program are substituted
for F.'s in (3) and, subsequently, the equations are solved for p;'s. It is
theoretically quite probable that a set of F,'s, 1<1i < nandF, Z.Fj for
i < j, are defined for which there is no real valued solution for pi's. In
fact, it is much harder to come up with some empirical values for Fi's where
we can solve for pi's.

The case where we can't solve the equations signifies the situation where

- there is no independent reference model with AP fault rates exactly equal to
those values that we have substituted for Fi's.

Our experiments in using the actual program traces show that for traces
of reasonable length, we usually can find fairly accurate values for pi's.
However, when the measured MIN fault rate values are such that the equations
(3) cannot be solved for all values of pi's, we can find approximate values for
these parameters by using the relations:

p'i = F]' - F. (5)
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Once a P; is found in this way, we can try to use relations (3) to find the
successive parameters. For instance, in the FFT1 program, py was found using
(5) and the remaining probabilities were obtained by (3). The model seems to
function properly even with approximate reference probabilities obtained from
the above procedure.

The other problem is in finding the tail probabilities. Consider a pro-
gram with n pages. Denote by Fm the fault rate of the program with memory size
m under the MIN algorithm, When m becomes large, it is possible that for some
memory size n' the observed Fi’ i=n', n’+1,...,n will become zero. Here we
assume that initial faults, due to the initial loading of the memory, are ex-
cluded from the total fault counts. Since Fm is the minimum fault rate with
memory size m, then for any other fixed memory size paging algorithm the lower
bound on the maximum memory size, n", for which it produces non-zero fault rate,
is equal or greater than n'. For instance, for the WATFIV program,n‘'=120 and
n"=164 (under LRU) and for the WATEX program, n'=n"=57 under MIN and LRU.

The point is that the AP inversion method, which uses the MIN fault rate
of the programs, can give us only n'-1 non-zero reference probabilities. There-
fore, we get a model withn'-1 parameters and, clearly, when we use the model
as it is, the pages n' through n never get referenced. For the lower range of
memory sizes, the model withn'-1 parameter still gives satisfactory results.
This is because, in the practical cases, the reference probabilities close to
the tail of the model are very small. However, the behavior of the
model can be greatly degraded for large memory sizes if we don't extend the
tail probabilities to get a full size n parameter model.

Extending the tail probabilities to get n non-zero reference probabilities
is still an open question here. We have chosen an ad-hoc method to get around

the problem; we have simply extended the last non-zero reference probability so
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that Pptoy S Pt = =Py Then we need to normalize to get a consistent

set of probabilities. This solution has almost no effect on the performance

of the model for small memory sizes, but it has greatly improved its performance
in the region of large memory sizes.

10. Conclusion

Constructing program models can be a compact way of characterizing the
page reference behavior of actual computer programs. In this paper, we have pre-
sented the technique of building an AP inversion independent reference model,
based on the actual MIN fault rates of a page reference trace. We noted that
the independent reference model preserves the relative fault rate of actual
program traces under MIN and LRU algorithms. Thus, the AP inversion model
should be capable of predicting the true LRU and FIFO fault rates of real pro-
grams for different main memory sizes. We presented the results of experiments
- on several programs to validate the model.

The AP inversion model is also successful at predicting the average working
set size and the WS fault rate of programs for a wide range of window sizes.

We have also seen that when an LRU stack model is constructed, based on the
actual LRU distribution of a reference string, it can reasonably predict the
MIN fault rate of the same program.

The analytical tractability and the simple probability structure of the AP
inversion model make this model a convenient tool for the analysis and evaluation
of virtual memory systems and the performance of CPU's with high speed buffers.

When a program has several very distinctive locality regions, the AP in-
version model, as well as the LRU stack model, overestimates the average work-
ing set size by a small percentage. However, the prediction accuracy of the

average fault rate under fixed memory size algorithms are virtually unaffected.
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The problem of finding the tail probabilities has been dealt with here in
an ad-hoc manner. More elaborate treatment of this subject should justify the
desired accuracy of the model under very large memory sizes where the effect of
these probabilities are most noticeable.

The independent reference assumption on the successive references of a
program is against our intuition and the actual observations. However, we have
demonstrated that by putting enough structure into the model, we can obtain a
powerful model which produces realistic results, and can be used effectively
in the analysis, simulation, and evaluation of several problem areas in memory

management techniques.
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