Stanford Artificial Intelligence Laboratory October 1976
Memo AIM-290

Computer Science Department
Report No. STAN-B-760575

SAIL TUTORIAL

Length: 19 ft. w

) HEADBOARD =/}
Beam: 6 ft. 6 in. / \
praft: 4 ft. 1Y2in. |\

Weight: 700 IbS. minimum /
JUMPER STRUTS

BATTEN POCKET
OCKET — /.

BACKSTAY ~—— .

}//J AN

~JIB

4 ‘°° " SHEET

TILLER b 1 |
/ ==MAINSHEET — T \™T

MOORING CLEAT

S

RUDDER

SPLASHBOA RDS
/ -~ SHROUDS
CENTERBOARD TRUNK «J
7™~ CENTERBOARD

£

Research sponsored by

National Institutes of Health
and
Advanced Research Projects Agency
ARPA Order No. 2494

COMPUTER SCIENCE DEPARTMENT
Stanford University

St anford Artificial Intelligence Laboratory October 1976
Memo AIM-290

Computer Science Department
Report No. STAN-G-76-575

' SAIL TUTORIAL

by

Nancy W. Smith
SUMEX-AIM Computer Project
Department of Genetics
Stanford University Medical Center

ABSTRACT

This TUTORIAL is designed for a beginning user of Sail, an ALGOL-like language for the
PDP 10. The first part covers the basic statements and expressions of the language; remaining
topics include macros, records, conditional compilation, and input/output. Detailed examples of
Sail programming are included throughout, and only a minimum of programming background is
assumed.

This -manual was prepared as part of the SUMEX-AIM computing resource supported by
the Biotechnology Resources Program of the National Institutes of Health under grant RR-
00735. Printing and preparation for publication were supported by ARPA under Contract
M D A903-76-C-0206.

The views and conclusions contained in this document are those of the author(s) and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of Stanford
*University, NIH, ARPA, or the V. S. Government.

Reproduced in the U.S.A. Available from the National Technical Information Service, Springfield,
Virginia 2216 1.

SAIL TUTORIAL

TABLE OF CONTENTS

SECTION PAGE

1 Int roduction |

2 The ALGOL-Part of Sail 2
| Blocks 2
2 Declarations 2
3 Statements 5
4 Expressions 10
5 Scope of Blocks . 13
6 More Control Statements 15
7 Procedures 19
3 Macros 25
4 String Scanning 27
5 Input/Output 30
I, Simple Terminal I/O 30
2 Notes on Terminal I/O for TENEX Sail Only
30
3 Setting Up a Channel for I/O 30
4 Input from a File 37
5 Output to a File .39
6 Records 40
| Declaring and Creating Records 40
2 Accessing Fields of Records 41
3 Linking Records Together 41

7 Condition al Compilation 44

TABLE OF CONTENTS

1 The Load Module 45
2 Source Files 46
3 Macros and Conditional Compilation 47

APPENDIX A: Sail and ALGOL W Comparison
48

REFERENCES 49

INDEX 50

SAIL TUTORIAL

SECTION 1

Introduction

The ‘Sail manual [1] is a reference manual
containing complete information on Sail but may
be difficult for a new user of the language to

work with. The purpose of this TUTORIAL *is to
introduce new users to the language. It does not
deal in depth with advanced features like the
LEAP portion of Sail; and uses pointers to the
. relevant portions of the manual for some
descriptions. eFollowing the pointers and reading
specific ‘portions of the manual will help you to
develop some familiarity with the manual. After
you have gained some Sail programming
experience, it will be worthwhile to browse
through the complete reference manual to find a
variety of more advanced structures which are
not covered in the TUTORIAL but may be useful
in your particular programming tasks. The Sail
manual also covers use of the BAIL debugger for
Sail.

The TUTORIAL is not at an appropriate level for
a computer novice. The following assumptions
are made about the background of the reader:

1) Some experience with the PDP-
10 including knowledge of an editor,
understanding of the file system, and
familiarity with routine utility programs
and system commands. If you are a new
user or have previous experience only
on a non-timesharing system, you should
read the TENEX EXEC MANUAL [7] (for
TENEX systems) or the DEC USERS
HANDBOOK (6] (for standard TOPS-10
systems) or the MONITOR MANUAL [3]
and UUO MANUAL (2] (for Stanford Al
Lab users). In addition, you might want
to glance through and keep ready for
reference: the TENEX JSYS MANUAL [8]
and/or the DEC ASSEMBLY LANGUAGE
HANDBOOK [6) Also, each POP-10
system usually has its own introductory
materiel for new users describing the

operation of the system.

2) Some experience with a
programming language--probably
FORTRAN, ALGOL or an assembly

Introduction

language. If you have no programming
experience, you may need help getting
started even with this TUTORIAL. Sail is
based on ALGOL sothe general concepts
and most of the actual statements are the
same in what is often called the “ALGOL
part” of Sail. The major additions to Salil
are its input/output routines. Appendix
A contains a list of the differences
between the ALGOL W syntax and Sail.

Programs written in standard Sail (which will
henceforth be called TOPS-10 Sail) will usually
run on a TENEX system through the emulator
(PA1050) which simulates the TOPS-10 UUQO’s,
but such use is quite inefficient. Sail also has a
version for TENEX systems which we refer to as
TENEX Sail. (The new TOPS-20 system is very
similar to TENEX; either TENEX Sail or a new Sail
version should be running on TOPS-20 shortly.)
Note that the Sail compiler on your system will
be called simply Sail but will in fact be either the
TENEX Sail or TOPS-10 Sail version of the
compiler. Aside from implementation differences
which will not be discussed here, the language
differences are mainly in the input/output (1/O)
routines. And of course the system level
commands to compile, load, and run a finished
program differ slightly in the TENEX and TOPS-
10 systems.

* | would like to thank Robert Smith for editing
the final version; and Scott Daniels for his
contributions to the RECORD section. John
Reiser, Les Earnest, Russ Taylor, Marney Beard,
and Mike Hinckley all made valuable suggestions.

The ALGOL-Part of Sail

SECTION 2 .
The ALGOL-Part of Sail .

2.1 Blocks

Sail is a block-ttructurod language. Each block
has the form:

BEGIN

<declarations>

<s tatements>

END

Your entire program will be a block with the
above format. This program block is a somewhat
special block called the outer block BEGIN and
END are reserved words in Sail that mark the
beginning and end of blocks, with the outermost
BEGIN/END pair also marking the beginning and
end of your program. (Reserved words are
words that automatically mean something to Sail;
they are called “reserved” because you should
not try to give them your own meaning.)

Declarations are used to give the compiler
information about the data structures that you
will be using so that the compiler can set up
storage locations of the proper types and
associate the desired name with each location. °

Statements form the bulk of your program. They
are the actual commands available in Sail to use
for coding the task at hand.

. All declarations in each block must precede all
statements in that block Here is a very simple
one-block program that outputs the square root
of 5:

BEGIN
DECLARATIONS =a> INTEGER i}

REAL x;.
STATEMENTS =a> o 5

X « SQRT(1);

PRINT (*SQUARE ROOT OF *, i,

" I8 ", x);
END

SAIL TUTORIAL

which will print out on the terminal:

SQUARE ROOT OF § IS 2.236668 .

2.2 Declarations

A list of all the kinds of declarations is given in
the Sail manual (Sec. 2.1). In this section we will
cover typo declarations and array declarations.
Procedure declarations will be discussed in
Section 2.7. Consult the Sail manual for
details on all of the other varieties of
declarations listed.

2.2.1 Type Declarat ions

The purpose of type declarations is to tell the
compiler what it needs to know to set up the
storage locations for your data. There are four
data types available in the ALGOL portion of Sail:

1) INTEGERSs are counting numbers
like -1, 0, 1, 2, 3, etc. (Note that commas
cannot be used in numbers, e.g., 15724
not 15,724;)

2) REALs are decimal numbers like
-1.2, 3.14159, 100087.2, etc.

3) BOOLEANs ‘are ' assigned the
values TRUE or FALSE (which are
reserved words). These are predefined
for you in Sail (TRUE = -1 and FALSE =
0).

4) STRINGs are a data type not
found in all programming languages.
Very often what you will be working with
are not numbers at all but text. Your
program may need to output text to the
user's terminal while he/she is running
the program. It may ask the user
questions and input text which is the
answer to the question. It may in fact
process whole files of text. One simple
example of this is a program which works
with a file containing a list of words and
outputs to a new file the same list of
words in alphabetical order. It is
possible to do these things in languages
with only the integer and real data types
but very clumsy. Text has certain
properties different from those of
numbers. For example, it is very useful

SAIL TUTORIAL

to be able to point to certain of the
characters in the text and work with just
those temporarily or to take one letter
off of the text at a time and process it.
Sail has the data type STRING for holding
“strings” of text characters. And
associated with the STRING data type are
string operations that work in a way
analogous to how the numeric operators
(+,-,%, etc.) work with the numeric data
types. We write the actual strings
enclosed in quotation marks. Any of the
characters in the ASCII character set can
be used in strings (control characters,
letters, numerals, punctuation marks).
Some examples of strings are:

“OUTPUT FILE="

“HELP”

"Please type your name."
“aardvark’

“8123456789”

L] ! " '”x&l

"RaBbCcDdEeF ¢"

" (the empty string)
NULL (also the @ pty string)

Upper and lowercase letters are not

= equivalent in strings, i.e. "2"is a
different string than “A”. (Note that to
put a "in a string, you use ™, e.g., “quote
a ““word!!““.)

in your programs, you will have both variables
and constants. We have already given some
examples of constants in each of the data types.
REAL and INTEGER constants are just numbers as
you usually see them written (2, 618, -4.35, etc.);
the BOOLEAN constants are TRUE and FALSE; and
STRING constants are a sequence .of text
characters enclosed in double quotes (and NULL
for the empty string).

Variables are used rather than constants when
you know that a value will be needed in the
given computation but do not know in advance
what the exact value will be. For example, you
may want to add 4 numbers, but the numbers
will be specified by the user at runtime or taken
from a data file. Or the numbers may be the
results of previous computations. You might be
computing weekly totals and then when you have
the results for each week adding the four weeks
together for a monthly total. So instead of an

The ALGOL-Part of Sail

expression like 2 + 31 + 25 + 5 you need an
expression like X+Y+Z+W or
WEEK1 + WEEK2 + WEEK3 + WEEK4. This is done
by declaring (through a declaration) that you will
need a variable of a certain data type with a
specified name. The compiler will set up a
storage location of the proper type and enter
the name and location in its symbol table. Each
time that you have an intermediate result which
needs to be stored, you must set up the storage
location in advance. When we discuss the
various statements available, you will see how
values are input from the user or from a file or
saved from a computation and stored in the
appropriate location. The names for these
variables are often’ referred to as their
identifiers. identifiers can be as long (or short)
as you want. However, if you will be debugging
with DDT or using TOPS-10 programs such as
the CREF cross-referencing program, you should
make your identifiers unique to the first six
characters, i.e., DDT can distinguish LONGSYMBOL
from LONGNAME but not from LONGSYNONYM
because the first 6 characters are the same.
Identifiers must begin with a letter but following
that can be made up of any sequence of letters
and numbers. The characters ! and $§ are
considered to be letters. Certain reserved words
and predeclared identifiers are unavailable for
use as names of your own identifiers. A list of
these is given in the Sail manual in Appendices B
and C.

Typical declarations are:

INTEGER i, j,k}
REAL x,y,2;
STRING s, t;

where these are the letters conventionally used
as identifiers of the various types. There is no
reason why you couldn’t have INTEGer xj REAL i}
except that other people reading your program
might be confused. In some languages the letter
used for the variable automatically tells its type.
This is not true in Sail. The type of the variable
is established by the declaration. In general,
simple one-letter identifiers like these are used
for simple, straightforward and usually
temporary purposes such as to count an
iteration. (ALGOL W users note that iteration
variables must be declared in Sail.)

Most of the variables in your program will be
declared and used for a specific purpose and the

The ALGOL-Part of Sail

name you specify should reflect the use of the
variable.

INTEGER nextHord, pagolcount;

REAL to ta I, subTota | ;

STRING lastname, firstname;

BOOLEAN partial, abortSwiteh, outputsw;

Both upper and lowercase fetters are equivalent
in identifiers and so the case as well as the use
of ! and 8 can contribute to the readability of
your programs. Of course, the above examples
contain a mixture of styles; you will want to

choose some style that looks best to you and
use it consistently. The equivalence’ of upper
and lowercase also means that

TOTAL | total | Total | toTal | ete.

are all instances of the same identifier. So that
while it is desirable to be consistent, forgetting
occasionally doesn’t hurt anything.

Some programmers use uppercase for the
standard words ‘like BEGIN, INTEGER, END, etc.
and lowercase for their identifiers. Others
reverse this. Another approach is uppercase for
actual program code and lowercase for
comments. It is important to develop some style
which you feel makes your programs as easy to
read as possible.

Another important element of program clarity is
the format, The Sail compiler is free format
which means that blank lines, indentations, extra
spaces, etc. are ignored. Your whole program
could be on one line and the compiler wouldn’t
know the difference. (Lines should be less than
250 characters if a listing is being made using
the compiler listing options.) But programs
usually have each statement and declaration on a
separate line with all lines of each block
indented the same number of spaces. Some
programmers put BEGIN and END on lines by
themselves and others put them on the closest
line of-code. It is very important to format your
programs so that they .are easy to read.

SAIL TUTORIAL

2.2.2 Array Declarations

An array is a data structure designed to let you
deal with a group of variables together. For
example, if you were accumulating weekly totals
over a period of a year, it would be cumbersome
to declare:
REAL weekl, week2,weekd,... .. ,week52;

and then have to work with the 52 variables
each having a separate name. instead you can
declare:

REAL ARRAY weeks[1: 521}

The array declaration consists of one of the data
type words (REAL, INTEGER, BOOLEAN, STRING)
followed by the word ARRAY followed by the
identifier followed by the dimensions of the
array enclosed in [Ts. The dimensions give the
bounds of the array. The lower bound does not
need to be 1. Another common value for the
lower bound is 0, but you may make it anything
you like. (The LOADER will have difficulties if the
lower bound is a number of large positive or
negative magnitude.) You may declare more than
one array in the same declaration provided they
are the same type and have the same
dimensions. For example, one array might be
used for the total employee salary paid in the
week which will be a real number, but you might
also need to record the total employee hours
worked and the total profit made (one integer
and one real value) so you could declare:

INTEGER ARRAY hours [1:152);
REAL RRRAY salaries, profits [1:52];

These 3 arrays are examples of parallel arrays.

it is also possible to have multi-dimensioned
arrays. A common example is an array used to
represent a chessboard:

INTEGER ARRAY chessboard{1:8,1:8);

1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8
2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8

® ¢ °

® ® . ¢ ® . °

8,1 8,2 83 8,4 8,5 8,6 8,7 8.8

SAIL TUTORIAL

In fact even the terminology used is the same.
Arrays, like matrices and chessboards, have rows
(across) and columns (up-and-down). Arrays
which are statically allocated (all outer block and
OWN arrays) may have at most 5 dimensions.
Arrays which are allocated dynamically may have
any number of dimensions.

Each element of the array is a separate variable
and can be used anywhere that asimple variable
can be used. We refer to the elements by giving
the name of the array followed by the particular
coordinates (called the subseripts) of the given
element enclosed in [I’s,for example: weeksi34},
weeks [27), chessboard (2,8} | and ehesshoard (8,8].

2.3 Statements

All of the statements available in Sail are listed
in the Sail manual (Sec. 1.1 with the syntax for
the statements in Sec. 3.1). For now, we will
discuss the assignment statement, the PRINT
statement, and the IF..THEN statement which will
allow us to give some sample programs.

2.3.1 Assignment St at ement

Assignment statements are used to assign values
to variables:

var (&b [0 « express ion

The variable being assigned to and the
expression whose value. is being assigned to it
are separated by the character which is a
backwards arrow in 1965 ASCIl (and Stanford
ASCII) and is anunderbar (underlining character)
in 1968 ‘ASCIl. The assignment statement is
often read as:

variablebecomes @ xprossion
OR variable is assigned thevalue of ®
ORvariablegets @ xprossion

xprosrion

You may assign values to any of the four types
of variables (INTEGER, REAL, BOOLEAN, STRING)
or to the individual variables in arrays.

Essentially, an expression is something that has a
value. An expression is not a statement
(although we will see later that some of the
constructions of the language can be either
statements or . expressions depending on the
current use). It is most important to remember

The ALGOL-Part of Sail

that an expression can be evaluated. It is a
symbol or sequence of symbols that when
evaluated produces a value that can be assigned,
used in a computation, tested (e.g. for equality
with another value), etc. An expression may be

a) a constant
b) a variable

¢) a construction using constants,
variables, and the various operators on
them.

Examples of these 3 types of expressions in
assignment statements are:

DON'T FORGET TO DECLARE VARIABLES. FIRST!

INTEGER i , §3

RERL X,Y3

STRING s,1;

BOOLEAN isw, 08w, iosw;
INTEGER RRRRAY wry [1:10);

i e2 COMIIENT now i =2
X e 2.4; COMMENT nou x = 2.4;
s + "abe"; COMMENT now EQU (s, "abc") ;
iss « TRUE; COMMENT now isw= TRUE;
osW o FALSE COMMENT now osw= FALSE;

arryldl « 22; COtItIENT nowarrylé)s 22;

b)) e iy COMMENT now i = j = 2
Yy * X} COMMENT nom x = y = 2.4 ;
tes COMMENT now EPU (s, "abc")
AND EQU(t,"abe"); .
@ yi8ie j; COMMENT is jearry [8)a2;
) | e j4 iy COMMENT j= 2 AND | = 6;
X ¢2¢y- i COMMENT y=2.4 AND {=6

AND x = -1.2;
arryl3) « i/j; COMMENT i=6 A N D j=2
AND arry [31=3;
COtIIENT isu = TRUE
AND osw = FALSE

ANDiosw = TRUE;

iosH o ISk OR otu;

NOTE1: Most of the operators for strings
are different than those for the
" arithmetic variables. The difference
between s and EQU will be covered
later.

NOTE2: Logical operators such as AND
and OR are also available for
boolean expressions.

The ALGOL-Part of Sail

NOTE3: You may put “comments”
anywhere in your program by using
the word COMMENT followed by the
text of your comment and ended
with a semi-colon (no semi-colons
can appear within the comment).
Generally comments are placed
between declarations or statements

rather than inside of them.

NOTEA4: In all our examples, you will see
that the declarations and statements
are separated by semi-colons.

In a later section,” we will discuss: 1) type
conversion which occurs when the data types of
the variable and the expression are not the
same, 2) the order of evaluation in the
expression, and 3) many more complicated
expressions including string expressions (first we
need to know more of the string operators).

2.3.2 PRINT Statement

PRINT is a relatively new but very useful
statement in Sail. It is used for outputting to the
user’'s terminal. You can give it as many
arguments as you want and the arguments may
be of any type. PRINT first converts each
argument to a string if necessary and then
outputs it. Remember that only strings can be
printed anywhere. Numbers are stored
" internally as 36-bit words and when they are
output in 7-bit bytes for text the results are
very strange. Fortunately PRINT does the
conversion to strings for you automatically, e.g.,
the number 237 is printed as the string “237”.
The format of the PRINT statement is the word
PRINT followed by a list of arguments separated
by commas with the entire list enclosed in
parent hoses. Each argument may be any
constant, variable, or complex expression. For
example, if you wanted to output the weekly
salary totals from a previous example and the
number of the current week was stored in
INTEGER curNeek, you might use:

PRINT("NEEK ", curleek,
"t Salaries ", sale ries{curlesk));

which for _curdesx =28 and the array element
0t oo il 81 = 27543.82 would print out:

WEEK 28:Salaries 27543.82

SAIL TUTORIAL

NOTE: The printing format for reals
(number of leading zeroes printed
and places after the decimal point)
is discussed in the Sail manual under
type conversions.

2.3.3 Built-in Procedures

Using just the assignment statement, the PRINT
statement, and three built-in procedures, we can
write a sample program. Procedures are a very
important feature of Sail and you will be writing
many of your own. The details of procedure
writing and use will be covered in Section
2.7. Without giving any details now, we will
just say that some procedures to handle very
common tasks have been written for you and are
available as built-in procedures. The SQRT,
INCHWL and CVD procedures that we will be
using here are all procedures which return
values. Examples are:

s . INCHUL;
i« CVD(s);
x « 2 +SQRT(i);

Procedures may have any number of arguments
(or none). SQRT and CVS have a single argument
and INCHWL has no arguments (but does return a
value). The procedure call is made by writing
the procedure name followed by the argument(s)
in parentheses. In the expression in which it is
used, the procedure call is equivalent to the
value that it returns.

SQRT returns the square root of its
argument.

CVD returns the result of converting its
string’ argument to an integer. The
string is assumed to contain a
number in decimal representation--
CVO converts strings containing
octal numbers, e.g., after executing

i« CVD("14724");) « CVO("14724"™);

then the following
is 14724 AND J= 6612

would be true.

INCHWL returns the next line of typing

SAIL TUTORIAL

from the user at the controlling
terminal.

NOTE: In TENEX-Sail the INTTY procedure
is available and SHOULD be used in
preference to the INCHWL procedure
for inputting lines. This may not be
mentioned in every example, but is
very important for TENEX users to
remember.

So, for the statement s . INCHWL;, the value of
INCHWL will be the line typed at the terminal
(minus the terminator which is usually carriage
return). This value is a string and is assigned
here to the string variable s.

So far we have seen five uses of expressions: as
the right-hand-side of the assignment statement,
g8s an actual parameter or argument in a
procedure call, as an argument to the PRINT
statement, for giving the bounds in an array
declaration (except for arrays declared in the
outer block which must have constant bounds),
and for the array subscripts for the elements of
arrays. In fact the whole range of kinds of
expressions can be used in nearly all the places
that constants and variables (which sre
particular kinds of expressions) can be used.
Two exceptions to this that we have already
seen are 1) the left-hand-side of the assignment
statement (you can assign avalue to a variable
but not to a constant or a more complicated
expression) and 2) the array bounds for outer

block arrays which come at a point in the
program before any assignments have been
made to any of the variables so only constants
may be used=--the declarations in the outer block
are before any program statements at all.

In general, any construction that makes sense to
you is probably legal in’ Sail. By using some of
the more complicated expressions, , you can save
yourself steps in your program. For example,

BEGIN
RERL sqroot;
INTEGER numb;
STRING replys
PRINT ("Type number: ");
reply-INCHIL;
numbeCVD (rep ly)
sqroo t +SART (numb) ;

PRINT("ANS: ",sqroot);
END;

can be shortened by several steps. First, we
can combine INCHUL with ¢vD:

The ALGOL-Part of Sail

numb « CW (INCHHL);

and eliminate the declaration of the STRING repIy.
Next we can eliminate numb and take the sort
directly:

waoooe o SQRT (CVD (INCHML))

At first you might think that we could go a step
further to

PRINT ("ANS: *,SQRT(CVD(INCHWL)));

and we could as far as the Sail syntax is
concerned but it would produce a. bug in our
program. We would be printing out *aNs: " right
after "Type number: * before the user would have
time to even start typing. But we have
considerably simplified our program to:

BEGIN

RERL rqroo t §

PRINT (“Typo number:®);
sqroot « SQRT (CVD (INCHHL)) ;
PRINT ("ANS:",sqroot); '
END;

Remember that intermediate results do not need
to be stored unless you will need them again
later for something else. By not storing results
unnecessarily, you save the extra assignment
statement and the storage space by not needing
to declare a variable for temporary storage.

234 IF..THEN s..c ement

The previous example included no error
checking. There are several fundamental
programming tasks that cannot be handled with
just the assignment and PRINT statements such
as 1) conditional tasks like checking the value of
a number (is it negative?) and taking action
according to the result of the test and 2) looping
or iterative tasks so that we could go back to .
the beginning and ask the user for another
number to be processed. These sorts of
functions are performed by a group of
statements called control statements. [n this
section we will cover the IF..THEN statement for
conditionals. More advanced control statements
will be discussed in Section 2.6.

There are two kinds of IF...THEN statements:

IF boolean rxprrssion THEN statement

The ALGOL-Part of Sail

" IF boolean expression THE N statement
ELSE rtatrmnt

A boolean expression is an expression whose
value is either true or false. A wide variety of
expressions can effectively be used in this
position, Any arithmetic expression can be a
boolean; if its value = 0 then it is FALSE. For any
other value, it is true. For now we will just
consider the following three cases:

1) BOOLEAN variables (where
® rrorsu, base8, and miniVersion are
declared as BOOLEANSs):

IF @rrorsw THEN
PRINT("There’s been a n error.");

IF bas®8 THEN dig i ts ¢ “91234567”
ELSE digits . "0123456789" ;

IF miniVersion THEN counter « 18
ELSE counter, «188;

with relational

2) Expressions
= <, >, LEQ,

operators such as EQU,
NEQ, and GEQ:

. IF X < currentSmallest THEN
currentSmallest . xj .

rdivisor NEQ 0O e~
quotientedividend/divisor;

Fi GEQ O THenlei4) ELSE iei=13

3) Complex expressions formed
with the logical operators AND, OR, and
NOT:

FNOT ® rrorsw men
® nsudrrkountrrl & quot ient;
IF x$0 OR y<0 THEN
PRINT ("Negat ive numbers not ®
ELSE z « SQRT(x)+SQRT(y);

llotmd.")

In the IF..THEN statement, the boolean expression
is evaluated. If it is true then the statement
following the THEN is executed. If the boolean
expression is false and the particular statement
has no ELSE part then nothing is done. If the
boolean is false and there is an ELSE part then
the statement following the ELSE will ba
executed.

BEGIN BOOLERAN boo I3 INTEGER 1, 3
bool+TRUE; iel; Jeiy
IF boo! THEN iei+l} CONMENT i=2 AND jsi;
IF bool-THEN iei+l ELSE jej+l}

COMMENT =3 RND j=ij
boolefaise;

IF bool THEN iei+l; COMMENT i=3 RAND js=i;
IF bool THEN iei+l ELSE jej#l}

SAIL TUTORIAL

COMMENT (=3 AND j=2;
END;

It is VERY IMPORTANT to note that NO semi-colon
appears between the statement and the ELSE.
Semi-colons are used a) to separate declarations
from each other, b) to separate the final
declaration from the first statement in the block,
¢) to separate statements from each other, and
d) to mark the end of a comment, The key point
to note is that semi-colons are used to separate
and NOT to terminate. In some cases it doesn’t
hurt to put a semi-colon where it is not needed.
For example, no semi-colon is needed at the end
of the program but it doesn’'t hurt. However, the
format

IF ® xprossion THEN statement; ELSE statement;

makes it difficult for the compiler to understand
your code. The first semi-colon marks the end
of what could be a legitimate IF..THEN statement
and it will be taken as such. Then the compiler
is faced with

ELSE statement;

which is meaningless and will produce an error
message.

The following is a part of a sample program
which uses several IF..THEN statements:

BEGIN BOOLEAN verbosesw; STRING reply;

PRINT("Verbose mode? (Typo Y or N):*);
reply « INCHWL; COMMENT INTTY for TENEX;

IF repiy="Y" OR reply="y" THEN verbosesu « TRUE
ELSE
IF rapiy="N" OR replys"n" THEN verbosesw«FALSE;

IF verbosesw THEN PRINT("-long msg-")
ELSE PRINT ("-shor t msg-");

CONNENT now all our messages printrd out to
terminal will be conditional on verbosesw;
END;

There are two interesting points to note about
this sample program. First is the use of = rather
than EQU to check the user’s reply. EQU is used
to check the equality of variables of type STRING
and = is used to check the equality of variables
of type INTEGER or REAL. If we were asking the
user for a full word answer like “yes” or “no”
instead of the single character then we would
need the EQU to check what the input string was.

SAIL TUTORIAL |

However, in this case where we only have a
single character, we can use the fact that when a
string (either a string variable or a string
constant) is put someplace in a program where
an integer is expected then Sail automatically
converts to the integer which is the ASCII code
for the FIRST character in the string. For
example, in the environment

STRING str; str«"R";

all of the following are true:

‘A’ w str = 65 = '101

“A” NEQ "a’

str NEP “a”

str+1 = “A” ¢« 1 = ‘182 = “8”
rtr = “Aardvark”

NOT EQU (s tr, “Aardvark ")

(‘101 is an octal integer constant.)

When you are dealing with single character
strings (or are only interested in the first
character of a string) then you can treat them
like integers and use the arithmetic operators
like the = operator rather than EQU. In general
(over 90% of the time), EQU is slower.

A second point to note in the above IF..THEN
example is the use of a nested IF..THEN. The
statements following the THEN and the ELSE may
be any kind of statement including another
IF. THEN statement. For example,

IF upperOniy THEN letters e “ABC”
ELSE IF lowerOniy THEN letters o “abec"
ELSE Isttsrs « "RBCabe™;

This is a very common construction when you
have: a small list of possibilities to check for.
(Note: if there are a large number of cases to be
checked use the CASE statement instead.) The
nested IF.THEN.ELSE statements save alot of
processing if used properly. For example,
without the nesting this would be:

IF upperOniy THEN latters « "RBC";

IF towerOniy THEN let ters « "abe®;

IF NOT upperOniyAND NOT lowerOniy THEN
letters « "ABCabc";

Regardless of the values of upperonly and
1owerOnly, the -boolean expreselons in the three
IF.THEN statements need to be checked. In the
nested version, if upperdniy is TRUE then towerOnty
will never be checked. For greatest efficiency,

- the most likely case should be the first one

The ALGOL-Part of Sail

tested in a nested IF...THEN statement. If that
likely case is true, no further testing will be
done.

To avoid ambiguity in parsing the nested
IF..THEN..ELSE construction, the following rule is
used: Each ELSE matches up with the last
unmatched THEN So that

IF® xpl THEN IF exp2 THEN s1 ELSE 823

will group the ELSE with the second THEN which
is equivalent to

IF expl THEN
BEGIN .
IF exp2 THEN sl ELSE 2;
END;

and also equivalent to

FO® xpl AND® xp2 THEN sl;
IF @ xpl AND NOT exp2 THEN 82;

You can change the structure with BEGIN/END to:

IF® xpl THEN

BEGIN
IF® xp2 THEN ‘sl

END ELSE 82;
which is equivalent to

IF sxpl AND exp2 THEN s1;
IF NOT sxpl THEN 82;

There is another common use of BEGIN/END in
IF-THEN statements. All the examples so far
have shown a single simple statement ‘to be
executed. In fact, you often will have a variety
of tasks to perform based on the condition
tested for. For example, before you make an
entry into an array, you may want to check that
you are within the array bounds and if so then
both make the entry and increment the pointer
so that it will be ready for the next entry:

IF pointer LEQmax THEN
BEGIN
datalpointer] + nenEntry;

pointsrcpointrr 4 1;
END

EL SE PRINT("Array DATA is already full.“;;

Here we see the use of a compound statement.
Compound statements are exactly, like blocks
except that they have no declarations. It would
also be perfectly acceptable to use ablock with

The ALGOL-Part of Sail

declarations where the compound statement is
used here. In tact both blocks and compound
statements ARE statements and can be used ANY
place that a simple statement can be used. All of
the statements between BEGIN and END are
executed as a unit (unless one of the statements
itself . causes the flow of execution to be
changed).

2.4 Expressions

We have already seen many of the operators
used in expressions. Sections 4 and 8 of the Sail
manual cover the operators, the’ order of
evaluation of expressions, and type conversions.
Appendix. 1 of the manual gives the word
equivalents for the single character operators,
e.g., LEQ for the less-than-or-equal-to sign,
which are not available except at SU-Al. You
should read these sections especially for a

complete list of the arithmetic and boolean

operators available (the string operators will be
covered shortly in this TUTORIAL). A short
discussion of type conversion will be given later
in #his section but you should also read these
sections in the Sail manual for complete details
on type conversions.

There are three kinds of expressions that we

. have not used yet: assignment, conditional, and
case expressions. These are much like. the
statements of the same names.

.2.4.1 Assignment Expressions

Anywhere that you can have an expression, you
may at the same time make an assignment. The
value will be used as the value of the expression
and also assigned to the given variable. For
example:

IF (repiy+INCHNL) = "?" THEN

COMMENT inputs reply and makes first tort
onIt In single step;

IF (counter«counter+l) » maxEntry THEN
COMNENT updates counter and chocks i t for
overf low in one step;

countereptrenextiocel;
CONMMENT ini tialilzes several variables t 0 8
- in one statement;

arrylptreptr+ll « nenEntry ;
10

SAIL TUTORIAL

COMMENT updates ptr & fi tis nrxt array
slot in single stop;

Note that the assignment operator has low
precedence and so you will often need to use
parenthesizing to get the proper order of
evaluation. This is an area where many coding
errors commonly occur.

IFiejOR boole THEN. . ..
is parsed like

IFie(j OR boole) THEN
rather than

IF (i¢)) OR boole THEN ...,

See the sections in the Sail manual referenced
above for a more complete discussion of the
order of evaluation in expressions. In general it
is the normal order for the arithmetic operators;
then the logical operators AND and OR (so that
OR has the lowest precedence of any operator
except the assignment operator); and left to right
order is used for two operators at the same
level (but the manual gives examples of
exceptions). You can use parentheses anywhere
to specify the order that you want. As an
example of the effect of left-to-right evaluation,
note that

Indexer+2;
arry [ndexer) o (indexere indexer+1);

will put the value 3in ® 21, since the
destination is evaluated before indexer is
incremented.

A word of caution is needed about assignment
expressions. Make sure if you put an ordinary
assignment in an expression that that expression
is in a position where it will ALWAYS be
evaluated. Of course,

IF i<j THEN iei+l;

will not always increment i but this is the
intended result. However, the following is
unintended and incorrect:

IF verbosesu THEN

PRINT("The square root of ",numb,” is ",
sqrooteSART (numb) ,* . *)

ELSE PRINT (sqroot) 3}

SAIL TUTORIAL

If verbosesw = FALSE, the THEN portion is not
executed and the assignment to sqroot is not
made. Thus sqreot will not have the appropriate
value when it is PRINTed. Assigning the result of
a computation to a variable to save recomputing
it is an excellent practice but be careful where
you put the assignment.

Another very bad place for assignment
expressions is following either the AND or CR
logical operators. The compiler handles these by
performing as little evaluation as possible so in

[} xplﬂm L")

the compiler will first evaluate expt and if it is
TRUE then the compiler knows that the entire
boolean expression is true and doesn’t bother to
evaluate exp2. Any assignments in ® xp2 will not
be made since exp2 is not evaluated. (Of course,
if &y is FALSE then exp2 will be
evaluated.) Similarly for

0 M0 0

if oxpl. is FALSE then the compiler knows the
whole AND-expression is FALSE and doesn’t
bother evaluating exp2.

As with nested IF..THEN..ELSE statements, it is a
good coding practice to choose the order of the
expressions carefully to save processing. The
most likely expression should be first in an OR
expression and the least likely first in an AND
expression.

2.4.2 Conditional Expressions

Conditionals can also be used in expressions.
These have a more rigid structure than
conditional statements. It must be

IF boo lean expression THEN @ xpl HSE @ xp2

“where the ELSE is not optional.

N. B. The type of a conditional expression is the
type of expl. If exp2 is evaluated, it will be
converted to the type of expit. (At compile time
it is not known which will be used so an

arbitrary decision is made by always using the

type of @ w) Thus the statement,
xeIF f lag THEN 2 HSE y;, will always assign an
INTEGER to x. If x and y are REALsthen yis

The ALGOL-Part of Sail

converted to INTEGER and then converted to
REAL for the assignment to X.

XeIF flag THEN 2 ELSE 3.8; will assign either 2.8

or 3.8 to x (assuming xis REAL). Examples are:

REAL RRRRY results
[1: IF miniversion THEN 18 ELSE 1801;

PRINT (IF found THEN wordsl(i)
E.SE "Nord not found.“);
COMMENT words{i] must be a string;

profit « IF (net«income-cost)>8 THEN net
ELSE 83

These conditional expressions will often need to
be parent hesized.

2.4.3 CASE Expressions

CASE statements are described in Section
2.6.4 below. CASE expressions are also
allowed with the format:

CASE integer OF (exp8,expl,...,expN)

where the first case is always 0. This takes the
value you give which must be an integer
between 0 and N and uses the corresponding
expression from the list. A frequent use is for
error handling where each, error is assigned a
number and the number of the current error is
put in a variable. Then -a statement like the
following can be used to print the proper error
message:

PRINT(CASE e rrno OF
("2ero division attempted”,
“No negative numbers alloued”,
“Input not a number®));

Remember that rrmo here must range from 0 to
2; otherwise, a case overflow occurs.

2.4.4 String Operators
The STRING, operators are:

EQU Tort for string equality:
s+"RBC"; te"abc®; test+EQU(s,t);
RESULT: test « FALSE.

11

The ALGOL-Part of Sail

8 Concatonatr tuo strings togethers
se"abc"; te"def"; ueséty
RESULT: EQU(u, "abcdef™)= TRUE .

LENGTH Returns the length of a string:
s«"abc"; 1«LENGTH(s);
RESULT: i = 3.

LOP Removes thr first char in a string

and returnsit:

s«"abc"; t«LOP (s) ;

RESULT: (EQU(s,"bc™) AND
EQU(t,"a")) = TRUE .

Although LENGTH and LOP look like procedures
syntactially, they actually compile code “in-line”.
This means that they compile very fast code.
However,. one unfortunate side-effect is that LOP
cannot be used as a statement, i.e., you cannot
say LOP(s); if you just want to throw away the
first character of the string. You must always
either ‘use or assign the character returned by
LOP even if you don’t want it for anything, e.g.,
junk«LOP (s); . Another point to note about LOP is
that it actually removes the character from the
original string. If you will need the intact string
again, you should make a copy of it before you
start LOP’ing, e.g., tempCopyes; .

A little background on the implementation of
strings should help you to use them more
efficiently. Inefficient use of strings can be a
significant inefficiency in your programs. Sail
sets up an- area of memory called string space
where all the actual strings are stored. The
runtime system increases the size of this area

dynamically as it begins to become full. The
runtime system also performs garbage, collections
to retrieve space taken by strings that are no
longer needed so that the space can be reused.
The text of the strings is stored in string space.
Nothing is put in string space until you actually
specify what the string is to be, i.e.,, by an
assignment statement. At the time of the
declaration, nothing is put in string space.
Instead *the compiler sets up a 2-word string
descriptor for each string declared. The first
word contains in its left-half an indication of
whether the string is a constant or a variable
and in its right-half the length of the string. The
second word is a byte pointer to the location of
the start of the string in string space. At the
time of the declaration, the length will be zero
and the byte pointer word will be empty since
the string is not yet in string space.

12

SAIL TUTORIAL

From this we can see that LENGTH and LOP are
very efficient operations. LENGTH picks up the
length from the descriptor word; and LOP
decrements the length by 1, picks up the
character designated by the byte pointer, and
increments the byte pointer. LOP does not need
to do anything with string space. Concatenations
with & are however fairly inefficient since in
general new strings must be created. For s at,
there is usually no way to change the descriptor
words to come up with the pew string (unless s
and t are already adjacent in string space).
Instead both s and t must be copied into a new
string in string space. In general since the
pointer is kept to the beginning of the string, it
is less expensive to look at the beginning than
the end. On the other hand, when concatenating,
it is better to keep building onto the end of a
given string rather than the beginning. The
runtime routines know what is at the end of
string space and, if you happen to concatenate
to the end of the last string put in, the routines
can do that efficiently without needing to copy
the last string.

Assigning one string variable to another, e.g., for
making a temporary copy of the string, is also
fast since the string descriptor rather than the
text is copied.

These are general guidelines rather than strict
rules. Different programs will have different
specific needs and features.

2.4.5 Subst rings

Sail provides a way of dealing with selected
subportions of strings called substrings. There
are two different ways to designate the desired
substring:

sli TO j)
s{i FOR j)

where [iT0 j) means the substring starting at
the ith character in the string through the jth
character and lirorj) is the substring starting
at the ith character that is j characters long.
The - numbering starts with 1 at the first
character on the left. The special symbol INF can
be used to refer to the last character (the
rightmost) in the string. So, ® HNF ror1) is the
last character; and st7 TOINF) is all but the first
six characters. If you are using a substring of a

SAIL TUTORIAL

string array element then the format is
arrylindexi(i TO jl.

Suppose you have made the assignment
s«"abcdet” . Then,

s{1 TO 31 is “abe*
s (2 FOR 31 is "bcd"
s{1 TO INF) is "abcdet”
s [INF-1 T O INF) is "ef"
s(1 TO 31&"X"8s[4 TO INF) | s "abcXdef" .

Since substrings are parts of the text of their
source strings, it is a very cheap operation to
break a string down, but is fairly expensive to
build up a new string out of substrings.

2.4.6 Type Conversions

If you use an expression of one type where
another type was expected, then automatic type
conversion is performed. For example,

INTEGER [;
| « SQRT(S);

will cause 5 to be converted to real (because

SQRT expects a real argument) and the square
root of 5.0 to be automatically converted to an
integer before it is assigned to i which was
declared as an integer variable and can only
have integer values. As noted in Section 4.2 of
the Sail manual, this conversion is done by
truncating the real value.

Another example of automatic type conversion
that we have used here in many of the sample
programs is:

IF reply="Y" THEN

where the = operator always expects integer or
real arguments rather than strings. Both the
value of the string variable repiy and the string
constant *vy* will be converted to integer values
before the equality test. The manual shows that
this conversion, string-to-integer, is performed
by taking the first character of the string and
using its ASCII value. Similarly converting from
integer to string is done by interpreting the
integer (or just the rightmost seven bits if it is
less than 0 or-it is too large--that is any number
over 127 or ‘177) as an ASCII code and using the
character that the code represents as the string.
So, for example,

The ALGOL-Part of Sail

STRING s;
$. ‘181 a *182a ’1083;

will make the string “ABC”.

The other common conversions that we have
seen are integer/real to boolean and string to
boolean. Integers and reals are true if non-zero;
strings are true if they have a non-zero length
and the first character of the string is not the
NUL character (which is ASCII code 0).

You may also call one of the built-in type
conversion procedures explicitly. We have used
CVD extensively to convert strings containing
digits to the integer number which the digits
represent. CVD and a number of other useful
type conversion procedures are described in
Section 8.1 of the Sail manual. Also this section
discusses the SETFORMAT procedure which is
used for’ specifying the number of leading zeroes
and the maximum length of the decimal portion of
the real when printing. SETFORMAT is extremely
useful if you will be outputting numbers as
tables and need to have them automatically line
up vertically.

2.5 Scope of Blocks

So far we have seen basically only one use of
inner blocks. With the IF.THEN statement, we
saw that you sometimes need a block rather than
a simple statement following the THEN or ELSE
so that a group of statements can be executed
as a unit.

In fact, blocks can be used within the program
any place that you can use a single statement.
Syntactically, blocks are statements. A typical
program might look like this:

BEGIN “prog"
BEGIN “inltialization®

END "initialization"”
BEGIN “main part”
BEGIN "process data’

BEGIN “output resul ts”

13

The ALGOL-Part of Sail

END “output results

END “process data”

END “main part”

BEGIN “finish up”

END “finish up”
END "prog"

The declarations in each block establish variables
which can only be used in the given block. So
another reason for using inner blocks is to
manage variables needed for a specific short
range task.

Each block can (should) have a block name. The
name is given in quotes following the BEGIN and
END of the block. The case of the letters,
number of spaces, etc. are important (as in string
constants) so that the names “MAIN LOOP”,
“Main Loop”, “main loop”, and “Main loop” are all
different and will not match. There are several
advantages to using block names: your programs
are easier to read, the names will be used by the
debugger and thus will make debugging easier,
and- the compiler will check block names and
report any mismatches to help you pinpoint
missing END’s (a very common programming
error).

The above example shows us how blocks may
nest. Any block which is completely within the
scope of another block is said to be nested in
that block. In any, program, all of the inner
blocks are nested in the outer block. Here, in
addition to all the blocks being within the “prog”
block, we find “output results” nested in
“process data” and both “output results” and
“process data” nested in “main part”. The three
blocks called “initialization”, “main part” and
“finish up” are not nested with relation to each
other but are said to be at the same level. None
of the variables declared in any of these three
blocks is available to any of the others. In order
to have a variable shared by these blocks, we
need to declare it in a block ‘which is “outer” to
all of them, which is in this case the very
outermost block "prog”.

Variables are available in the block in which they
are declared and in all the blocks nested in that

14

SAIL TUTORIAL

block UNLESS the inner block also has a variable
of the same name declared (a very bad idea in
general). The portion of the program, i.e., the
blocks, in which the variable is available is called
the scope of the variable.

BEGIN "main®
INTEGER I, 3
ie§

j* 23
PRINT(“CRSE R: is=",i,"
BEGIN “Inner”
INTEGER i, k3
i+10;
Ke3;
PRINT("CASE B: is",i," j=",j,"
iebs
END "inner";
PRINT("CASE C: i=", i,"
END “main”

je" 1)

k=",k);

="y)y

Here we cannot access k except in block “inner”.
The variable j is the same throughout the entire
program. There are 2 variables both named i.
So the program will print out:

CASE A1 is§ ja2
CASE B: i=i8 j=2 ka3
CASE €1 15 jub

Variables are referred to as local variables in the
block in which they are declared. They are
called global variables in relation to any of the
blocks nested in the block of their declaration.
With both a local and a global variable of the
same name, the local variable takes precedence.
There are three relationships that a variable can
have to a block:

1) It is inaccessible to the block if
the variable is declared in a block at the
same level as the given block or it is
declared in a block nested within the
given block.

2) It is local to the block if it is
declared in the block.

3) It is global to the block if it is
declared in one of the blocks that the
given block is nested within.

Often the term “global variables” is used
specifically to mean the variables declared in the
outer block which are global to all the other
blocks.

SAIL TUTORIAL

In reading the Sail manual, you will see the
terms: allocation, deallocation, initialization, and
reinitislization. It is not important to completely
understand the implementation details, but it is
extremely important to understand the effects.
The key point is that allocating storage for data
can be handled in one of two ways. Storago
allocation refers to the actual setting up of data
locations in memory. This can be done 1) at
compile time or 2) at runtime. If it is done at
runtime then we say that the allocation is
dynamic. Basically, it is arrays which are
dynamically allocated (excluding outer block
arrays and other arrays which are declared as
OWN). LISTS, SETS, and RECORDS which we have
not discussed in this section are also. allocated
dynamically. The following are allocated at
compile time and are NOT dynamic: scalar
variables (INTEGER, BOOLEAN, REAL and STRING)
except where the scalar variable is in a
recursive procedure, outer block arrays, and
other OWN arrays. ALGOL users should note this
as an important ALGOL/Sail difference.

Dynamic storage (inner block arrays, etc.) will be
allocated at the point that the block is entered
and deallocated when the block is exited. This
makes for quite efficient use of large amounts of
storage space that serve a short term need.
Also, it allows you to set variable size bounds
for these arrays since the value does not need
to be known at compile time. .

At the time that storage is allocated, it is also
initialized. This means that the initial value is
" assigned---NULL for strings and 0 for integers,
reals, and booleans. Since arrays are, allocated
each time the block is entered, they are

reinitialied each time. We have not yet seen
any cases where the same block is executed
more than once but this is very frequent with
the iterative and looping control statements.

Scalar variables and outer block arrays are not
dynamically allocated. They are allocated by the
compiler and will receive the inital null or zero
value when the program is loaded but they will
never be reinitialized. While you are not in the
block, the variables are not accessible to you but
they are not deallocated so they will have the
same value when you enter the block the next
time as when-you exited it on the previous use.
Usually you will find that this is not what you
want. You should initialize all local scalar
variables yourself somewhere near the start of
the block--usually to NULL for strings and O for

The ALGOL-Part of Sail

arithmetic variables unless you need some other
specific initial value. You should also initialize all
global scalars (and outer block arrays) at. the
start of your program to be on the safe side.
They are initialized for you when the compiled
program is later run, but their values will not be
reinitialized if the program is restarted while
already in core and the results will be very
strange.

One exception is the blocks in RECURSIVE
PROCEDURESs which do have all non-OWN
variables properly handled and initialized as
recursive calls are made on the blocks.

If you should want to clear an array, the
command

ARRCLR (arry)

will clear arry (set string arrays to NULL and
arithmetic to 0). For arithmetic (NOT string)
arrays,

RRRCLR (arry, val)
will set the elements of ® rry to val.

See Sections 2.2-2.4 of the Sail manual for more
information on OWN, SAFE, and PRELOADED
arrays and Section 8.5 for the ARRBLT and
ARRTRAN routines for moving the contents of
arrays. ,

2.6 More Control Statements

2.6.1 FOR Statement

The FOR statement is used ‘for a definite number
of iterations. Many times you will want to
repeat certain code a specific number of times
(where usually the number in the sequence of
repetitions is also important in the code
performed). For example, .

FORi«1stert UNTIL 8 DO
PRINTC(i, * ", SQRT(i));

which will print out a table of the square roots
of the numbers 1 to 5.

The syntax of the (simple) FOR statement is

FOR variable+starting-value STEP increment
UNTIL rnd-value DO statement

15

The ALGOL-Part of Sail

The iteration variable is assigned the starting-
value and tested to check if it exceeds the end-
value; if it is within the range then the statement
after the DO is executed (otherwise the FOR
statement is finished). This completes the first
execution of the FOR-loop.

Next the increment is added to the variable and
it is tested to see if it now exceeds the end-
value. If it does then the statement is not
executed again and the FOR statement is finished.
If it is within the maximum ‘(or equal to it) then
the statement is executed again but all instances
of the iteration variable in the statement will
now have the new value. This incrementing and
checking and executing loop is repeated until the
iteration variable exceeds the end-value.

For those users familar with GOTO statements

and LABELs, the following two program
fragments for computingr n s. FACT(M) a r e
equivalent.

ans « 1;

FOR i « 2 STEP 1 UNTIL n DO e nscanse il
is equivalent to:

ant elj
¥ e 2]
loop: IF i»> n THEN GOTO bryond 3}
ant * ans i}
|« 1 ¢ 1
GOTO loop;
beyond 3

There is considerable dispute on whether or not
the use of GOTO statements should be
encouraged and if so under what conditions.
These statements are available in Sail but will
not be discussed in this Tutorial.

Very often FOR-loops are used for indexing
through arrays. For example,, if you are
computing averages, you will. need to add
together numbers which might be stored in an
array. The following program allows a teacher
to input the total number of tests taken and a
list of the scores; then the program returns the
average score.

BEGIN "averager"
REAL average; INTEGER numbTests, total j

® verrgm-numbTostsetotales;

COMMENT remember t o initialize variables;
PRINT("Total number of torts: ")y
numbTes ts«CVD (INCHML) ;

16

SAIL TUTORIAL

BEGIN "useRrray"
INTEGER ARRAY tes tScores [linumbTes ts];
COMMENT array has variable bounds so must
be i n inner block;
INTEGER i }
COMMENT f o r use a s the iteration variable;

FOR | # 1 STEP 1 UNTIL numbTests DO
BEGIN "fillarray"
PRINT("Test Score #",i," : ");
testScores{i) « CVD(INCHUL);
END “fillarray";

FOR i « 1 STEP 1 UNTIL numbTes ts DO
totaletotal+testScoreslil;
COMMENT notr that total wasinitialized to
8 above;

END "usefrray";

IF numbTests neq® THEN average«total/numbTests;
PRINT ("The average i s ",average,”.");
END “"averager”;

In the first FOR-loop, we see that i is used in the
PRINT statement to tell the user which test score
is wanted then it is used again as the array
‘subscript to put the score into the i'th element
of the array. Similarly it is used in the second
FOR-loop to add the ith element to the
cumulative total.

The iteration variable, start-value, increment, end
end-value can all be reals as well as integers.
They can also be negatives (in which case the
maximum is taken as a minimum). See the Salil
manual for details on other variations where
multiple values can be given for more complex
statements (these aren’t used often). One point
to note is that in Sail the end-value expression is
evaluated each time through the loop, while the
increment value is evaluated only at the
beginning if it is a complex expression, as
opposed to a constant or a simple variable. This
means that for efficiency, if your loop will be
performed very many times you should not have
very complicated expressions in the end-value
position. If you need to compute the end-value,
do it before the FOR-loop and assign the value
to a variable that can be used in the FOR-loop to
save having to recompute the value each time.
This doesn’t save much and probably isn't worth
it for 5 or 10 iterations but for 500 or 1000 it
can be quite a savings. For example use:

maxe(ptr-of fset) /2;
FOR leoffset STEP 1 UNTIL max DO 8

SAIL TUTORIAL

rather than

FOR icoffset STEP 1 UNTIL (ptr-of{set)/2 DO s

2.6.2 WHILE..DO Statement and DQ..UNTIL
St at ement

Often you will want to repeat code but not know
in advance how many times. Instead the iteration
will be finished when a certain condition is met.
This is called indefinite iteration and is done with
either a WHILE...DO or a DQ..UNTIL statement.

The syntax of WHILE statements is:

WHILE boolran-+xprossjon DO statement

The boolean is checked and if FALSE nothing is
done. If TRUE the statement is executed and
then the boolean is checked again, etc.

For example, suppose we want to check through
the elements of an integer array until we find an
element containing a given number n:

INTEGER ARRAY arry [1:max)}
ptr « 1
WHILE (arrylptr) NED n) AND (ptr <max) D D

ptreptrsl;

If the array element currently pointed to by ptr
is the number we are looking for OR if the ptr is
at the’upper bound of the array then the WHILE
statement is finished. Otherwise the ptr is
incremented and the boolean (now using the next
element) is checked again. When the WHILE...DO
statement is finished, either ptr will point to the
array element ‘with the number or ptr=max will
mean that nothing was found.

The WHILE..DO statement is equivalent to the
following format with LABELs and the GOTO
statement:

loop: IF NOT boolean expression THEN
GOTO beyond;
statement;
GOTO loop;
beyond:

The DO.UNTHIL statement is very similar except
that 1) the statement is always executed the
first time and then the check is made before
each subsequent loop through and 2) the loop

The AL&L-Part of Sail

continues UNTIL the boolean becomes true rather
than WHILE it is true.

DO statement UNTIL boolean-rxprossion

For example, suppose we want to get a series of
names from the user and store the names in a,

string array. We will finish inputting the names
when the user types a bare carriage-return
(which results in a string of length 0 from
INCHWL or INTTY).

ie0;
D O PRINT("Name #",iel48,” is: ")
UNTIL (LENGTH (nameslil« INCHUL) = 8)}

The equivalent of the DO..UNTIL statement using
LABELs and the GOTO statement is:

loop: statement;

IF NOT boolean @ xprossion THEN GOTO loop;

Note that the checks in the WHILE...00 and
DO..UNTIL statements are the reverse of each
other. WHILE...DO continues as long as the
expression is true but DO..UNTIL continues as
long as the expression is NOT true. So that

WHILE | < 100D0

is equivalent to

0o..... UNTIL | GEQ 168

except that the statement is guaranteed to be
executed at least once with the DO..UNTIL but
not with the WHILE...DO.

The WHILE and DO statements can be used, for
example, to check that a string which we have
input from the user is really an integer. CVD
stops converting if it hits a non-digit and returns
the results of the conversion to that point but
does not give an error indication so that a check
of this sort should probably be done on numbers
input from the user before CVD is called.

17

The ALGOL-Part of Sail

INTEGER numb, char;
STRING reply, tamp; BOOLEAN srror;
PRINT("Type the number: ")
DO
BEGIN
® rorFALSE
temperep ty-INCHHL;
UHILE LENGTH (temp) DO
IF NOT ("8" LEQ (char«LOP(temp)) LEO "8")
. THEN error«TRUE;
1F error THE N PRINT("Oops, try again:");
END
UNTIL NOT error;
numbeCVD (rep ly);

2.6.3 DONE and CONTINUE Statements

Even with definite and indefinite iterations
available, there will still be times when you need
a greater degree of control over the loop. This
is accomplished by the DONE and CONTINUE
statements which can be used in any loop which
begins with DO, e.g.,

FOR iel STEP 1 UNTIL jDO ...
DO ... UNTIL rxp
HHILE o xpDO. ..

(See the manual for a discussion of the NEXT
statement which is not often used.) DONE means
to abort execution of the entire FOR, DQ..UNTIL
or WHILE...DO statement immediately. CONTINUE
means to stop executing the current pass
through the loop and continue to the next
iteration.

Suppose a string array is being used as a
“dictionary” to hold a list of 100 words and we
want to look up one of the words which is now
stored in a string called target:

FOR i « 1 STEP 1 UNTIL 188 DO
IF EQU(wordsli), target) THEN DONE;
IF i>180 THEN PRINT(target,” not found.");

If the target is found, the FOR-loop will stop
regardless of the current value of i. Note that
the iteration variable can be checked after the
loop is terminated’ to determine whether the
DONE forced the termination (i LEQ 100) or the
target was never found and the loop terminated
naturally (i> 100).

If the loops are nested then the DONE or

18

S-AlL TUTORIAL

CONTINUE applies to the innermost loop unless
there are names on the blocks to be executed by
each loop and the name is given explicitly, e.g.,
OONE "some 100p”. With the DONE and CONTINUE
statements, we can now give the complete code
to be used for the sample program given earlier
where a number was accepted from the user and
the square root of the number was returned. A
variety of error checks are made and the user
can continue giving numbers until finished. In
this example, block names will be used with DONE
and CONTINUE only where they are necessary
for the correctness of the program; but use of
block names everywhere is a good practice for
clear programming.

BEGIN “prog” STRING temp,replys INTEGER numb;,

UHILE TRUE DO
COMMENT a very common construction which just
loops until DONEj
BEGIN "processnumb"
PRINT("Type & number, <CR> to end, or ?:");
UHILE TRUE DO
BEGIN “checker”
IF NOT LENGTH (temperep ly+INCHWL) THEN
DONE “"processnumb";
IF reply ="?* THEN
BEGIN
PRINT("..helptext & reprompt..");
CONTINUE j
COMMENT defauits t o “"checker";
END;
UHILE LENGTH (temp) DO
IF NOT ("8" LED LOP (temp)LEQ"9") THEN
BEGIN
PRINT("0Oops, t r v agains ");
CONTINUE "checker";
END;
IF (numbeCVD (rep | y)) <8 THEN
BEGIN
PRINT("Negat ivo, try again:™);
CONTINUE j
ENO;
DONE;
COMMENT i f al | the chocks have boon
passed thrn donej
END "checker";
PRINT("The Square Root of ",numb," is ",
SQRT (numb) ,".") |
COMMENT now we go back to top of loop
for next inputj
END "processnumb®
END “prog”

SAIL. TUTORIAL

2.6.4 CASE St at ement

The CASE statement is similar to the CASE
expression where S0O,S 1,.8n represent the
statements to be given at these positions.

CRSE integer O F
BEGIN
58;
; COMMENT t h e empty statement;
$2;

Sn
END;

where ;s are included for those cases where no
, action is to be taken. Another version of the
CASE statement is:

CRSE integer O F

BEGIN
18) S3;
[4) S4; COMMENT cases can beskipped;
[3) S 3 ; COMMENT need not be in order;
5] ss;

[61(7) S6; CONMENT n 2y be same statement;
181 S8

[n). Sn
ENO;

where explicit numbers in [J's are given for the
cases to be included.

It is very IMPORTANT not t0 use & semi-colon
after the final statement before the END. Also,
do NOT use CASE statements if you have a
sparse number of cases spread over a wide
range because the compiler will make a giant
table, e.g.,

CASE number OF
BEGIN
10 Se;

{18881 $1008;
(2688) S2e88

ENDj
would produce a 2001 word table!

Remember that the first case is 0 not 1. An
example is using & CASE statement to Process
lettered options:

INTEGER char;
PRINT("Type A,B,C,D, 0 r E:");
char«INCHNL ;

The ALGOL-Part of Sail

CASE char-"R" OF
COMMENT "R"-"R" is 8, and is thus case 8 ;

BEGIN
<code for A option>;
<code for B option>;

<code for E opt ien>
END;

2.7 Procedures

We have been using built-in procedures and in
fact would be lost without them if we had to do
all our own coding for the arithmetic functions,
the interactions with the system like
Input/Output, and the general utility routines that
simplify our programming. Similarly, good
programmers would be lost without the ability to
write their own procedures. It takes a little time
and practice getting into the habit of looking at
programming tasks with an eye to spotting
potential procedure components in the task, but
it is well worth the effort.

Often in programming, the same steps must be
repeated in different places in the program.
Another way of looking at it is to say that the
same task must be performed in more than one
context. The wry this is usually handled is to
write a procedure which is the sequence of
statements that will perform the task. This
procedure itself appears in the declaration
portion of one of the blocks in your program and
we will discuss later the details of how you
declare the procedure. Essentially at the time
that you are writing the statement portion of
your program, you can think of your procedures
as black boxes. You recognize that you have an
instance of the task that you have designed one
of your procedures to perform and you include
at that point in your sequence of statements a
procedure call statement. The procedure will be
invoked and will handle the task for you. In the
simplest case, the procedure call is accomplished
by just writing the procedure’s name.

For example, suppose you have a calculator-type
program that accepts an arithmetic expression
from the user and evaluates it. At suitable
places in the program you will have checks to
make sure that no divisions by zero are being
attempted. You might write a procedure called
zeroiv Which prints out a message to the user
saying that a zero division has occurred, repeats

19

The ALGOL-Part of Sail

the current arithmetic expression, and asks if the
user would like to see the prepared help text for
the program. Every time you check for zero
division anyplace in your program ‘and find it,
you will call, this procedure with the statement:

zeroDiv;
and it will do everything it is supposed to do.

Sometimes the general format of the task will be
the same but some details will be .different.
. These cases can be covered by writing a
parameterized procedure. Suppose that we
wanted something like our zereDiv procedure, but
more general, that would handle a number of
other kinds of errors. It still needs to print out a
description of the error, the current expression
being evaluated, and a suggestion that the user
consult the help -text; but the description of the
error will be different depending on what the
error was. We accomplish this by using a
variable when we write the procedure; in this
case an integer variable for the error number.
The procedure includes code to print out the
appropriate message for each error number; and
the integer variable ¢ ooso is added to the
parameter list of the procedure. Each of the
par-meters is a variable that will need to have a
value associated with it automatically at the time
the procedure is called. (Actually arrays and
other procedures can also be parameters; but
they will be discussed later) We won’t worry
about the handling of parameters in procedure
declarations now. We are concerned with the
way the parameters are specified in the
procedure call. Our procedure ® rrorHand ler Will
have one integer parameter so we call it with
the expression to be associated with the integer
variable e rmo given in parentheses following the
procedure name in the procedure call. For
example,

® rorHand ler(8)

® rorHand ler(1)

srrorHand | or (2)

would be the valid calls possible if we had three

- different possible errors.

If there is-more than one parameter, they are
put in the order given in the declaration and
separated -by -commas. (Arguments is another
term used for the actual parameters supplied in
a procedure call.) Any expression can be used
for the parameter, e.g., for the built-in procedure
SQRT:

20

SAIL TUTORIAL

SQRT(4)

SQRT (numb)

SQRT (CVD (INCHHL))
SQRT (numb/divisor)

When Sail compiles the code for these procedure
calls, it first includes code to associate the
appropriate values in the procedure call with the
variables given in the parameter list of the
procedure declaration and then includes the code
to execute the procedure. When @ rrorHand ier
PRIM% the error message, the variable ¢ oomo ‘will
have the appropriate value associated with it.
This is not an assignment such as those done by
the assignment statement and we will also be
discussing calls by REFERENCE as well as calls by
VALUE; but we don’t need to go into the details
of the actual implementation -- see the manual if
you are interested in how procedure calls are
implemented and arguments pushed on the stack.

Just ‘as we often perform the same task many
times in a given program so there are tas’ks
performed frequently in many programs by many
programmers. The authors of Sail have written
procedures for a number of such tasks which can
be used by everyone. These are the built-in
procedures (CVD, INCHWL, etc.) and are actually
declared in the Sail runtime package so all that is
needed for you to use them is placing the
procedure calls at the appropriate places. Thus
these procedures are indeed black boxes when
they are used.

However, for our own procedures, we do need to
write the code ourselves. An example of a
useful procedure is one which converts a string
argument to all uppercase characters. First, the
program with the procedure call to upper at the
appropriate place and the position marked where
the procedure declaration will go:

BEGIN
STRING reply,name;
sx¢procedure dociaration heresssx

PRINT("Type RERD, HRITE, or SEARCH: ")}

rep | y-UppOr (INCHHL);
IF EQU(reply, “READ") THEN

ELSE IF EQU(reply,"MRITE™) THEN
ELSE IF EQU(reply,"SEARCH™) THEN
ELSE veesy

END;

We put the code for the procedure right in the

SAIL- TUTORIAL

procedure declaration which goes in the
declaration portion of any block. Remember that
the procedure must be declared in a block which
will make it accessible to the blocks where you
are going to use it; in the same way that a
variable must be declared in the appropriate
place. Also, any variables that appear in the
code of the procedure must already be declared
(even in the declaration immediately preceding
the procedure declaration is fine).

Here is the procedure declaration for upper which
should be inserted at the marked position in the
above code:

STRING PROCEDURE upper (STRING raus tr ingl j
BEGIN "upper”
STRING twp; INTEGER char;
tmpeNULL;
WHILE LENGTH (raus tr ing) DO
BEGIN
char«LOP (raus tr ing) ;
tmpetmp& (IF “ 2" LEQ char LEQ"2"
THEN char-’48 ELSE char);
END;
RETURN (tmp);
END “upper”;

The syntax is:
identifier ;

typo-quaiifior PROCEDURE
statement

for procedures with no parameters OR

typo-quaiiflor PROCEDURE identifier
(parrmotor-list }; statement

where the parameter-list is enclosed in ()’s and a
semi-colon precedes the statement (which is
often called the procedure body). The <type-
qualifier>’s will be discussed shortly.

The parameter list includes the names and types
of the parameters and must NOT have asemi-
colon following the final item on the list.
Examples are: .

PROCEDURE of ferHalp; .
INTEGER PROCEDURE f indHord
(STRING target; STRING ARRRY wWords);
SINPLE PROCEDURE @ rrorH&ndlor
(INTEGER ® rrno) 3
RECURSIVE INTEGER PROCEOURE factorial
.CINTEGER number) ;

The ALGOL-Part of Sail

PROCEDURE sortEntries
(INTEGER ptr, f irst; REAL ARRRY unsorted) j
STRING PROCEDURE upprr (STRING rluS!rlﬂg);

Each of these now needs a procedure body.
PROCEDURE of ferHe ip ;

BEGIN "offerHeip"

COMMENT the procedure name is usually used
as block namej

PRINT("Hould you | ikehelp(Y or N):s");
I F upper (INCHHL) = "Y" THEN PRINT(", .help..")

eLse RETURN;
PRINT("Hould you | ikr more hrip (Y or N):");
IF upper (INCHUL) = "Y" THEN

PRINT(", .more help..");
END "of ferHeip";

This offers a brief help text and if it is rejected
then RETURNSs from the procedure without
printing anything. A RETURN statement may be
included in any procedure at any time.
Otherwise the brief help message is printed and
the extended help offered. After the extended
help message is printed (or not printed), the
procedure finishes and returns without needing a
specific RETURN statement because the code for
the procedure is over. Note that we can use
procedure calls to other procedures such as
upprr provided that we declare them in the
proper order with upper declared before
of ferHelp.

PROCEDURE declarations will usually have type-
qualifiers. There are two kinds: 1) the simple
types—-INTEGER, STRING, BOOLEAN, and REAL and
2) the special ones--FORWARD, RECURSIVE, and
SIMPLE.

FORWARD is typically used if two procedures call
each other. This creates a problem because a
procedure must be declared before it can be
called. For example, if of ferHelp called upper, and
upper also called of ferHetp then we would need:

FORURRD STRING PROCEDURE upper
(STRING raus tr ing);

PROCEDURE of ferHeip}
BEGIN “of ferHelp®

<code for offerHelp including cal | to upper>
END "offerHetp®;
STRING PROCEDURE upper (STRING rawstring);

21

The ALGOL-Fart of Sail

BEGIN “upper”
<code for upper including call to offerHelp>
END “upper” ;

The FORWARD declaration does not include the
body but does include the parameter list (if any).
This declaration gives the compiler enough
information about the upper procedure for it to
process the of ferHe Ip procedure. FORWARD is
also used when there is no order of declaration
of a series of procedures such that every
procedure is declared before it is used.
FORWARD declarations can sometimes be
eliminated by putting one of the procedures in
the body of the other, which can be done if you
don’t need to use both of them later.

RECURSIVE is used to qualify the declaration of
any procedure which calls itself. The compiler
will add special handling of variables so that the
values of the variables in the block are
preserved when the block is called again and
restored after the return from the recursive call.
For example,

RECURSIVE INTEGER PROCEOURE factorial
(INTEGER i)}
~RETURN(IF i =8 THEN 1 ELSE factorial(i-1)*i)}

The compiler adds some overhead to procedures
that can be omitted if you do not use any
complicated structures. Declaring procedures
SIMPLE inhibits the addition of this overhead.
However, there are severe restrictions on
SIMPLE procedures; and also, BAIL can be used
more effectively with non-SIMPLE procedures.
So the appropriate use of SIMPLE is during the
optimization stage (if any) after the program is
debugged. At this time the SIMPLE qualifier can
be added to the short, simple procedures which
will save some overhead. The restrictions on
SIMPLE procedures are:

1) Cannot allocate storage
dynamically, i.e., no non-OWN arrays can ,
be declared in SIMPLE procedures.

2) Cannot do GO TO’s outside of
themselves (the GO TO statement has not
been covered here).

3) Cannot, if declared inside other
procedures, make any use of the
parameters of the other procedures.

22

SAIL TUTORIAL

Procedures which are declared as one of the
simple types (REAL, INTEGER, BOOLEAN, or
STRING) are called typed procedures as opposed
to untyped procedures (note that the SIMPLE,
FORWARD, and RECURSIVE qualifiers have no
effect on this distinction). Typed procedures can
return values. Thus typed procedures are like
FORTRAN functions and untyped procedures are
like FORTRAN subroutines. The type of the value
returned corresponds to the type of the
procedure declaration. Only a single value may
be returned by any procedure. The format is
RETURN (expression) where the expression is
enclosed in ()’s. Procedure upper which was
given above is a typed procedure which returns
as its value the uppercase version of the string.
Another example is:

REAL PROCEDURE averager

(INTEGER ARRAY scores; INTEGER max);
BEGIN “averager" REAL totaljy INTEGER i;
total « 83
FOR I« 1 STEP 1 UNTIL max 00

total « total 4 scoreslil;
IF max NEP 8 THEN RETURN(total/max)

ELSE RETURN (8);
END "averager”;

We might have a variety of calls to this
procedure:

tes tRverage « avoragor (tes tScores,numberScores);
salaryfverage« averager (salaries,numberEmpioyees);
speedAverage « averager (speeds, numberTrials);

where testScores,salaries, and speeds are all
INTEGER ARRAYs.

Procedure calls can
statements, e.g.,

always be used as

1) IF divisor=8 THEN errorHandler (1)}
2) o f ferHelp;
3) upper(text);

but as in 3) it makes little sense to use a
procedure that returns a value as a statement
since the value is lost. Thus typed procedures
which return values can also be used as
expressions, e.g.,

rep ly-upper (INCHWL) ;
PRINT (upper (nams)) ;

It is not necessary to have a RETURN statement

SAIL TUTORIAL

in untyped procedures. If you do have a RETURN
statement in an untyped procedure it CANNOT
specify a value; and if you have a RETURN
statement in a typed procedure it MUST specify
a value to be returned. If there is no RETURN
statement in'a typed procedure then the value
returned will be garbage for integer and real
procedures or the null string for string
procedures; this is not good coding practice.

Procedures frequently will RETURN(true) or
RETURN(false) to indicate success or a problem.
For example, a procedure which is supposed to
get a filename from the user and open the file
will return true if successful and false if no file
was actually opened:

IF getFile THEN processinput
ELSE @ rrorHand | or (22) 3

This is quite typical code where you can see that
all the tasks have been procedurized. Many
programs will have 25 pages of procedure
declarations and then only 1 or 2 pages of actual
statements calling the appropriate procedures at
the appropriate times. In fact, programs can be
written with pages of procedures and then only
a single statement to call the main procedure.

Basically there are two ways of giving
information to a procedure and three ways of
returning information. To give information you
can 1) use parameters to pass the information
explicitly or 2) make sure that the appropriate
values are in global variables at the time of the
call and code the procedures so that they access
those varirbles. There are several
disadvantages to the latter approach although it
certainly does have its uses.

First, once a piece of information has been
assigned to a parameter, the coding proceeds
smoothly. When you write the procedure call,
you can .check the parameter list and see at a
glance what arguments you need. If you instead
use a global variable then you need to remember
to make sure it has the right value at the time of
each procedure call. In fact in a complicated
program you will have enough trouble
remembering the name of the variable. This is
one of the beauties of procedures. You can
think about the task and all the components of
the task end code them once and. then when you
are in the middle of another larger task, you only
need to give the procedure name and the values
for all the parameters (which are clearly

The ALGOL-Part of Sail

specified in the parameter list so you don’t have
to remember them) and the subtask is taken care
of. If you don’t modularize your programs in this
way, you are juggling too many open tasks at
the same time. Another approach is to tackle the
major tasks first and every time you see a
subtask put in a procedure call with reasonable
arguments and then later actually write the
procedures for the subtasks. Usually a mixture
of these approaches is appropriate; and you will
also find yourself carrying particularly good
utility procedures over from one program to
another, building a library of your own general
utility routines.

The second advantage of parameters over global
variables is that the global variables will actually
be changed by any code within the procedures
but variables used as parameters to procedures
will not. The changing of global variables is
sometimes called a side-+ffoct of the procedure.

Here are a pair of procedures that illustrate both
these points:

BOOLERN PROCEDURE Quesl (STRING s);
BEGIN "Quesi"

IF "?" = LOP(8) THEN RETURN (true)
ELSE RETURN (faise);

END "Quesl”;

STRING str;

BOOLEAN PROCEOURE Ques2;

BEGIN "Ques2"

IF "?*=LOP{str) THEN RETURN (true)
ELSE RETURN (false);

END "Ques2”;

The second procedure has these problems: 1) we
have to make sure our string is in the string
variable str before the procedure call and 2) str
is actually modified by the LOP so we have to
make sure we have another copy of it. With the
first procedure, the string to be checked can be
anywhere and no copy is needed. For example,
if we want to check a string called command, we
give Quesl(command) and the LOP done on the
string in Quest will not affect command.

Informrtion can be returned from procedures in
three ways:

1) With a RETURN(value) statement.
2) Through global variables. You

may sometimes actually want to change a

23

The ALGOL-Part of Sail

See the Sail manual (Sec. 2) for details on using
procedures as parameters to other procedures.

24

global variable. Also, procedures can
only return a single value so if you have
several values being generated in the
procedure, you may use global variables
for the others.

3) Through REFERENCE parameters.
Parameters can be either VALUE or
REFERENCE. By default all scalar
parameters are VALUE and array
parameters are REFERENCE. Array
parameters CANNOT be value; but scalars
can be declared as reference parameters.
Value parameters as we have seen are
simply used to pass a value to the
variable which appears in the procedure.
Reference parameters actually associate
the variable address given in the
procedure call with the variable in the
procedure so that any changes made will
be made to the calling variable.

PROCEDURE manyRe turns
(REFERENCE INTEGER i, J,k,!,m);
BEGIN
ieitd; jejely Kekel; lelel; memsl;
ENOG;

when called with
manyRe turns (varl, var2, var3,varé,vard);

will actually change the varl,.,var5
variables themselves. Arrays are always
called by reference. This is useful; for
example, you might have a

PROCEDURE sorter (STRING ARRAY arry);

which sorts a string array alphabetically.
It will actually do the sorting on the
array that you give it so that the array
will be sorted when the procedure
returns. Note that arrays cannot be
returned with the RETURN statement so
this eliminates the need for making all
your arrays global as a means of
returning them.

SAIL TUTORIAL

SAIL TUTORIAL

SECTION 3

Macros

Sail macros are basically string substitutions
made in your source code by. the scanner during
compilation. Think of your source file as being
read by a scanner that substitutes definitions
into the token stream going to a logical “inner
compiler”. Anything that one can do with
macros, one could have done without them by
editing the file differently. Macros are’ used for
several purposes.

They are used to define named constants, e.g.,

BEGIN
REQUIRE " {}{}" DELIHITERS;

DEFINE maxS ize = {188};
REAL RRRAY arry[l:maxSizel;

The {}’s are used as delimiters placed around the
right-hand-side of the macro definition.
Wherever the token mxsize appears, the scanner
wilt substitute 188 before the code is compiled.
These substitutions of the source text on the
right-hand-side of the DEFINE for the token on
the left-hand-side wherever it subsequently
‘appears in the source file is called expanding the
macro. The above array declaration after macro
expansion is:

BEGIN
REAL ARRAY arry (1:188);

which is more efficient than using:

BEGIN INTEGER maxSize;
maxSize~108;
BEGIN
» REAL RRRAY arry [1imaxSize);

Also, in this example, the use of the integer
variable for assignment of the max8ize means that
the array-bounds declaration is variable rather
than constant _se it must be in an inner’ block;
with the macro, maxSize is a constant so the array
. can be declared anywhere.

Other advantages to using macros to define

Macros

names for constants are 1) a name like maxsize
used in your code is easier to understand than
an arbitrary number when you or someone else
is reading through the program and 2) maxSize
will undoubtedly appear in many contexts in the
program but if it needs to be changed, e.g., to
200, only the single definition needs changing. If
you had used 100 instead of maxsize throughout
the program then you would have to change
each 100 to 200.

Before giving your DEFINEs you should require
some delimiters. {}{}, [}, or <><> are good
choices. If you don’t require any delimiters then
the defaults are ™™ which are probably a poor
choice since they make it hard to define string
constants. The first pair of delimiters given in
the REQUIRE statement are for the right-hand-
side of the DEFINE. See the Sail manual for
details on use of the second pair of delimiters.

DEFINEs may appear anywhere in your program.
They are neither statements nor declarations.
REQUIREscan be either declarations or
statements so they can also go anywhere in your
program.

Another use of macros is to define octal
characters. If you have tried to use any of the
sample programs here you will have discovered
a glaring bug. Each time we have output our
results with the PRIM: statement, no account has
been taken of the need for a CRLF (carriage
return and line feed) sequence. So all the lines
will run together. Here are 4 possible solutions
to the problem:

1) PRINT("Some text.®, (’158'12));

2) PRINT("Some text.
");

3) STRING erify
crlfe”
" PRINT ("Some text.”,crif);

4) REQUIRE "{}" DELIHITERS;
DEFINE erlf=t{”
"} PRINT("Some text.",crif);

The first solution is hard to type frequently with
the octals. (In general, concatenations should be
avoided if possible since new strings must
usually be created for them; but in this case with
only constants in the concatenation, it will be
done at compile time so that is not a
consideration.) The second solution with the

25

Macros

string extending to the next line to get the crifis
unwieldy to use in your code. The fourth
solution is both the easiest to type and the most
efficient.

You may also want to define a number of the
other commonly used control characters:

REQUIRE "<><>"DELINITERS;
DEFINE ff = <(*148NULL)>,
i fe<(”J28NULL)>,
cr = <(’158NULL) >,
tab =<(”118NULL) >,

ct ID =<"17>;

The characters which will be used as arguments
in the PRINT statement must be forced to be
strings. If ff =<'14> were used; then PRINT(ff)
would print the number 12 (which is ‘14) rather
than to print a formfeed because PRINT would
treat the ‘14 as an integer. For all the other
places that you can use these single character
definitions, they will work correctly whether
defined as strings or integers, e.g.,

IF char meti0 THEN

as well as

IF char = ff THEN

Note that string constants like '15&’12 and

*14&NULL do not ordinarily need parenthesizing

but ("15&’12) and ("14&NULL) were used above.

This is a little trick to compile more efficient

code: The compiler will not ordinarily recognize

these as string constants when they appear in
the middle of a concatenated string, e.g.,

" ... linel..."&"158&" 128", . . linr2.."

but with the proper parenthesizing

"o . linel. .. "8(*158°12)8"....line2..."

the compiler will treat the crlf as a string
constant at compile time and not need to do a
concatenation on ‘15 and ‘12 every time at
runtime.

Another very common use of macros is to
"personalize” the Sail language slightly. Usually
macros of this sort are used either to save
repetitive-typing of long sequences or to make
the code where they are used clearer. (Be
careful--this can be carried overboard.)

26

SAIL TUTORIAL

Here are some sample definitions followed by an
example of their use on the next line:

REQUIRE "<><>" DELINITERS;

DEFINE uptos <STEP 1 UNTIL>;
FOR i upto 18D0;

DEFINE ! = <COMHENT>;
feidds | increment i hero;

DEFINE forever = <NHILE TRUE>;
forever DO}

DEFINE o if= <ELSE IF>;
IF ... THEN....
EIF THEN ¢es
EIF.... THEN ®

Macros may also have parameters:

DEFINE append(x,y) = <x«x&8y>;
IF LENGTH (s) THEN append (t,LOP (s))

DEFINE inc(n) & <(nen+l) >,
dec(n) = <(nen-1)>;
IF inc(ptr) <maxSize THEN
CDHHENT wateh that you don’t forget
ded parenth here;

DEFINE ctri (n)= <("n"-?188)>;
IF char setri(0) THEN abortPrint;

As we saw in some of the sample macros, the
macro does not need to be a complete statement,
expression, etc. It can be just a fragment.
Whether or not you want to use macros like this
is a matter of personal taste. However, it is
quite clear that something like the following’ is
simply terrible code although syntactically
correct (and rumored to have actually occurred
in a program):

DEFINE printer = <PRINT(>;
pr Inter “Hi there.")}

which expands to
PRINT("Hi there.");

On the other hand, those who completely shun
macros are erring in the other direction. One of
the best coding practices in Sail is to DEFINE all
constant parameters such as array bounds.

SAIL TUTORIAL .

SECTION 4

St ring Scanning

We have not yet covered Input/Output which is
one of the most important topics. Before we do
that, however, we will cover the SCAN function
for reading strings. SCAN which reads existing
strings is very similar to INPUT which is used to
read in text from a file.

Both SCAN and INPUT use break tables. When
you are reading, you could of course read the
entire file in at once but this is not what you
~ usually want even if the file would all fit (and
with the case of SCAN for strings it would be
pointless). A break table is used to 1) set up a
list of characters which when read will terminate
the scan, 2) set up characters which are to be
omitted from the resulting string, and 3) give
instructions for what to do with the break
character that terminated the scan (append it to
the result string, throw it away, leave it at the
new beginning of the old string, etc.). During the
course of a program, you will want to scan
strings in different ways, for example: scan and
break on a non-digit to check that the string
contains only digits, scan and break on linefeed
(If)y so that you get one line of text at a. time,
scan and omit all spaces so that you have a
compact string, etc. For each of these purposes
(which will have different break characters, omit
characters, disposition of the break character,
and setting of certain other modes available),
you will need a different break table. You are
allowed to set up as many as 54 different break
tables in a program. These are set up with a
SETBREAK command.

A break table is referred to by its number (1 to
54). The GETBREAK procedure is used to get
the number of the next free table and the
number is stored in an integer variable.
GETBREAK is a relatively new feature.
Previously, programmers had to keep track of
the free numbers themselves. GETBREAK is
highly recommended especially if you will be
interfacing your program with another program
which is also -assigning table numbers and may
use the same number for a different table.
GETBREAK will know about all the table numbers
in use. You assign this number to a break table
by giving it as the first argument to the

String Scanning

SETBREAK function. You can also wus
RELBREAK(tables) to release a table number for
reassignment when you no longer need that
break table.

SETBRERK (table#, “break-charac ters",
“omit-charactors”, “modes”) i

where the first argument is an integer and the
"“s around the other arguments here are a
standard way of indicating, in a sample
procedure call, that the argument expected .is a
string. For example:

REQUIRE "<»<>" DELIHITERS;
DEFINE if x<’12>,er=a<’15>, ff= <’léd>;
INTEGER lineBr,nonDigi tBr, noSpaces;

SETBRERK (1ineBr«GETBRERK, if, ff&er, "ins"))

SETBRERK (noSpaces+GETBRERK, NUL L, "","ina");

SETBRERK (nonDigi tBr-GETBRERK, "8123456783",
NULL, "xns");

The characters in the “break-characters” string
will be used as the break characters to terminate
the SCAN or INPUT. SCAN and INPUT return that
portion of the initial string up to the first
occurrence of one of the break-characters.

The characters in the “omit-characters” string
will be omitted from the string returned.

The “modes” establish what is to be done with
the break character that terminated the SCAN or
INPUT. Any combination of the following modes
can be given by putting the mode letters
together in a string constant:

CHARACTERS USED FOR BREAK CHARACTERS:

"I* (inclusion) The characters in the break-
characters string are the set of characters
which will terminate the SCAN or INPUT.

“X” (eXclusion) Any character except those in
the break-characters string will terminate
the SCAN or INPUT, e.g., to break on any digit
use:

INTEGER tbi;
SETBRERK (tb 1 «GETBRERK, "8123456789" ,NULL,"i");

and to break on any non-digit use:

INTEGER 1b1}
SETBRERAK (tb | -GETBRERK, "8123456788","", "x");

27.

String Scanning

where NULL or ™ can be used to indicate no
characters are being given for that argument.

DISPOSITION OF BREAK CHARACTER:

“S” (skip) The character which actually
terminates the SCAN or INPUT will be
“skipped” and thus will not appear in the
result string returned nor will it be still in
the original string.

“A” (append) The terminating character will be
appended to the end of the result string.

"R" (retain) The terminating character will be
retained in its position in the original string
so that it will be the first character read by
the next SCAN or INPUT.

OTHER MISCELLANEOUS MODES:

“K” This mode will convert characters to be put
in the result string to uppercase.

“N” This mode will discard SOS line numbers if
any and should probably be used for break
tables which will be scanning text from a file.
This is a very good Sail coding practice even
if it seems highly unlikely that an SOS file
will ever be given to your’ program.

“result-string” « SCAN(e"source", table/, ebrchar);

"oy

In these sample formats, the "™ s mean the
argument is a string and the @ prefix means that
the argument is an argument by reference.

When you call the SCAN function, you give it as
arguments 1) the source string, 2) the break
table number and 3) the name of an INTEGER
variable where it will put a copy of the
character that terminated the scan. Both the
source string and the break character integer
are reference parameters to the SCAN
procedure and will have new values when the
procedure is finished. The following example
illustrates the use of the SCAN procedure and
also shows how the “S”, “A”, and “R” modes
affect the resulting strings with the disposition
of the break character.

INTEGER sk ipBr, @ ppendBr, retainBr,brchar;
STRING result, sk ipStr, appendStr, retainStr;

SETBREAK (sk i pBr~GETBRERK, "#”,NULL, "s") ;
SETBRERK (appendBr«GETBRERK, %" ,NULL, "a");

28

SAIL TUTORIAL

SETBREAK (re tainBr«GETBREAK, "s*,NULL, *r");

skipStreappendStreretainStre"firstssecond”;

result « SCAN(skipStr, sk ipBr, brchar);
COMMENT EQU(resul t,"f irst") AND

EQU(sk ipStr, "second");

resu | t « SCAN (appends tr, appendBr , brchar)
COMMENT EQU(resul t,"f irstx") AND
EQU (appendStr, "second”) ;

result « SCAN(retainStr, retainBr, brchar);

COMMENT EQU(result,"first™) AND
EQU(retainStr, "ssecond");

COMMENT in each case above brchrr = "s"
after the SCAN;

Now we can look again at the break tables given
above:

SETBREAK (1 ineBr, I f, f{&cr,"ins");

This break table will return a single line up to
the If. Any carriage returns or formfeeds
(usually used as page marks) will be omitted and
the break character is also omitted (skipped) so
that just the text of the line will be returned in
the result string. The more conventional way to
read line by line where the line terminators are
preserved is

SETBRERK (readLine, | f, NULL,"ina’)}

Note here that it is extremely important that If
rather than cr be used as the break character
since it follows the cr in the actual text.
Otherwise, you'll end up with strings like

text of | ine<er>
<lf>text o f |ine<er>
<lf>

instead of

trxt of |ineccr><i{>
text of | ine<er><|f>

After the SCAN, the brchar variable can be
either the break character that terminated the
scan (If in this case) or 0 if no break character
was encountered and the scan terminated by
reaching the end of the source string.

00 processl i no (SCAN (str,readL ine,brchar))
UNTIL NOT brchar;

SAIL TUTORIAL String Scanning

This code would be used if you had a long multi- numb « INTSCAN(reply,brchar);
lined text stored in a string and wanted to IF brchar THEN error;
process it one line at a time with PROCEDURE

processL i ne.

SETBRERK (nonDigi tBr, "0123456789",NULL, "xs")}

This break table could be used to check if a
number input from the user contains only digits.

WHILE true 0 0

BEGIN
PRINT("Type a number: ");
rep fy«INCHHL ; I INTTY for TENEX;

SCAN(reply,nonDigi tBr,brchar) ;

IF brchar THEN
PRINT (brchar&NULL," is not a digit.",erif)
ELSE OONE;

END;

Here the value of brchar (converted to a string
constant since the integer character code will
probably be meaningless to the user) was
printed out to show the user the offending
character. There are many other uses of the
brchar variable particularly if a number of

characters are specified in the break-characters
string of the break table and different actions
are to be taken depending on which one actually
was encountered.

SETBRERK (noSpaces ,NULL," ", "ina");

Here there are no break-characters but the
omit-character(s) will be taken care of by the
scan, eg.,

stre"a b c d";
resul t«SCAN (s tr,noSpaces, brchar)

will return "abed” as the result string.

If you need to scan a number which is stored in
a string, two special scanning functions, INTSCAN
and REALSCAN, have been set up which do not
require break tables but have the appropriate
code built in:

integerVar « INTSCAN("number-string”,ebrchar);
realVar . RERLSCAN ("number-string",ebrchar);

where the integer or real number read is
returned; and the string argument after the call
contains the remainder of the string with the
number removed. We could use INTSCAN to
check if astring input from a user is really a
proper number.

PRINT("Type t h ¢ number: *);
reply « INCHUL; L INTTY for, TENEX}

29

Input/Output

SECTION 5

Input /Out put

5.1 Simple Terminal 1/O

We have been doing input/output (I/O) from the
controlling terminal with INCHWL (or INTTY for
TENEX) and PRINT. A number of other Teletype
I/O routines are listed in the Sail manual in
Sections 7.5 and 12.4 but they are less often
used. Also any of the file I/O routines which will
be covered next can be used with the TTY:
specified in place of a file. Before we cover file
f/O, a few comments are needed on the usual
terminal input and output.

The INCHWL (INTTY) that we have used is like an
INPUT ‘with the source of input prespecified as
the terminal and the break characters given as
the line terminators. Should you ever want to
look at the break character which terminated an
INCHWL or INTTY, it will be in a special variable
called !SKIP! which the Sail runtimes use for a
wide variety of purposes. INTTY will input a
maximum of 200 characters. If the INTTY was
terminated for reaching the maximum limit then
!SKIP! will be set to -1. Since this variable is
declared in the runtime package rather than in
your program, if you are going to be looking at
it, you will* need to declare it also, but as an
EXTERNAL, to tell the compiler that you want the
runtime variable.

EXTERNAL INTEGER !SKIP!; ,
PRINT ("Number followed by <CR> or <ALT>1");
rep ly«INCHHL; I INTTY for TENEX;
IFISKIPleer THEN ¢uuuse

ELSE IF !SKIP!= alt THEN

Altmode (escape, enter, etc.) is one of the
characters which is different in the different
character sets. The standard for most of the
world including both TOPS-10 and TENEX is to
have altmode as ‘33. At some point in the past
TOPS-10 _used ‘176. This is now obsolete;
however, the SU-Al character set follows this
convention but does so incorrectly. It uses ‘175
as altmode. This will present a problem for
programs transported among sites. It also
partially explains why most systems when they
believe they are dealing with a MODEL-33
Teletype or other uppercase only terminal (or

30

SAIL TUTORIAL

are in @RAISE mode in TENEX) will convert the
characters *173 to ‘176 to altmodes.

5.2 Notes on Terminal 1/0 for TENEX Sail
Only

If you are programming in TENEX Sail, you should
use INTTY in preference to the various teletype
routines listed in the manual. TENEX does not
have a line editor built in. You can get the
effect of a line editor by using INTTY which
allows the user to edit his/her typing with the
usual TA, TR, TX, etc. up until the point where the
line terminator is typed. If you use INCHWL, the
editing characters are only DEL to rubout one
character and tUto start over. Efforts have
been made in TENEX Sail to provide line-editing
where needed in the various I/O routines when
accessing the controlling terminal. Complete
details are contained in Section 12 of the Sail
manual.

TENEX also has a non-standard use of the
character set which can occasionally cause
problems. The original design of TENEX called
for replacing crif sequences with the ‘37
character (eol). This has since been largely
abandoned and most TENEX programs will not
output text with eol’s but rather use the
standard crif. Eol’s are still used by the TENEX
system itself. The Sail input routines INPUT,
INTTY, etc. convert eol’s to crlf sequences. See
the Sail manual for details, if necessary; but in
general, the only time that you should ever have
a problem is if you input from the terminal with
some routine that inputs a single character at a
time, e.g., CHARIN. In these cases you will need
to remember that end-of-line will be signalled by
an eol rather than a cr. The user of course .
types a cr but TENEX converts to eol; and the
Sail single character input functions do not
reconvert. to cr as the other Sail input functions
do.

5.3 Setting Up a Channel for 1/0

Now-we need 1I/O for files. The input and output
operations to files are much like what we have
done for the terminal. CPRINT will write
arguments to a file as PRINT writes them to the
terminal. It is also possible with the SETPRINT

SAIL TUTORIAL

command to specify that you would rather send
your PRINT’s to a file (or to the terminal AND a
named file). See the manual for details.

There are a number of other functions available
for 1/0 in addition to INPUT and CPRINT, but they
all have one common feature that we have not
seen before. Each requires as first argument a
channel number. The CPU performs 1/O through
input/output channels. Any device (TTY: LPT:,
DTA:, DSK:, etc.) can be at the other end of the
channel. Note that by opening the controlling
terminal (TTY:) on a channel, you can use any of
the input/output routines available. In the case
of directory devices such as DSK: and DTA:, a
filename is also necessary to set up the I/O.
There are several steps in the process of
establishing the source/destination of 1/0O on a
numbered channel and getting it ready for the
actual transfer. This is the area in which TOPS-
10 and TENEX Sail have the most differences due
to the differences in the two operating systems.
Therefore separate sections will be included
here for TOPS-10 and TENEX Sail and you should
read only the one relevant for you.

5.3.1 TOPS- 10 Sail Channel and File
Handling

Routines for opening and closing files in TOPS-10
Sail correspond closely to the UUQ’s available in
the TOPS-10 system. The main routines are:

GETCHAN oPEN LOOKUP ENTER RELEASE
Additional routines (not discussed here) are:

USETIUSETOMTAPE CLOSE CLOSIN CLOSO

6.3.1.1 Device Opening
chane GETCHAN;

GETCHAN obtains the number of a free channel.
On a TOPS-10 system, channel numbers are 0
through “17. GETCHAN finds the number of a
channel not currently in use by Sail and returns
that number. The. user is advised to use
GETCHAN to obtain a channel number rather than
using absolute channel numbers.

OPEN(chan, “"device”, mode, inbuts,
outbufs, mount, Ubrchar, eeof);

The OPEN procedure corresponds to the TOPS-

Input /Out put

10 OPEN (or INIT) UUO. OPEN has eight
parameters. Some of these refer to parameters
that the OPEN UUO will need; other parameters
specify the number of buffers desired, with
other UUQ’s called by OPEN to set up this
buffering; still other parameters are internal Sail
bookkeeping parameters. .

The parameters to OPEN are:

1) CHANNEL: channel number,
typically the number returned by
GETCHAN.

2) “DEVICE”: a string argument that
is the name of the device that is desired,
such as “DSK” for the disk or “TTY” for
the controlling terminal.

3) MODE: a number indicating the
mode of data transfer. Reasonable
values are: 0 for characters and strings
and ‘14 for words and arrays of words.
Mode ‘17 for dump mode transfers of
arrays is sometimes used but is not
discussed here.

4) INBUFS: the number of input
buffers that are to be set up.

5) OUTBUFS: the number of output
buffers.

6) COUNT: a reference parameter
specifying the maximum number of
characters for the INPUT function.

7) BRCHAR: a reference parameter
in which the character on which INPUT
broke will be saved. ’

8) EOF: a reference parameter
which is set to TRUE when the file is at
the end. ,

The CHANNEL, “DEVICE”, and MODE parameters
are passed to the OPEN UUQ; INBUFS and
OUTBUEFS tell the Sail runtime system how many
buffers should be set up for data transfers; and
the COUNT, BRCHAR and EOF variables are cells
that are used by Sail bookkeeping. N.B.: many of
the above parameters have additional meanings
as given in the Sail manual. The examples in this
section are intended to demonstrate how to do
simple things.

31

Input/Output

RELEASE (chan);

The RELEASE function, which takes the channel
number as an argument, finishes all the input and
output and makes the channel available for other
use.

The following routine illustrates how to open a
device (in this case, the device is only the
teletype) and output to that device. The CPRINT
function, which is like PRINT except that its
output goes to an arbitrary channel destination,
is used.

BEG IN
INTEGER OUTCHAN;

OPEN(OUTCHAN « GETCHRN,"TTY",0,0,2,0,8,0);
COMMENT

(1) Obtain a channoi number, using
GETCHRN, and save it in variable OUTCHAN.

(2) Specify device TTY, in mode 8,
uith 8 input and 2 output buffrrs.

(3) Ignore the COUNT, BRCHAR, and EOF
variables, which are typically not needed if
the file is only for output. }

CPR INT (OUTCHAN, "Hessage for OUTCHRN
"y

COMMENT Actual data transfor.;

_REEEHSE (OUTCHAN) 3
COMMENT Close channoi;
END;

The following example illustrates how to read

text from a device, again using the teletype as
the device.

32

SAIL TUTORIAL

BEGIN
INTEGER INCHAN, INBRCHRR, INEOF;

OPEN (INCHAN « GETCHAN, “TTY”, 8, 2, 8, 288,
INBRCHAR, INEOF)3

COMMENT
Opens the TTY in mode 8 (characters), uith

2 input buffers, 8 output buffers. At most
200 charactors will be road in uith ® ach
INPUT statement, and the break character
uiii be put into variable INBRCHRR. The
end-of-file will be signalledby INEOF

bring setto TRUE aftersome cai | to an
input function has found that there is no
more data in tho fi le

WHILE NOT INECF 00

BEGIN .
code t 0 do input -- ses below. . . .
END; .
RELEASE (INCHAN);
END;

5.3.2 Reading and Writing Disk Files

Most input and output will probably be done to
the disk. The disk (and, typically, the DECtape)
are directory devices, which means that logically
separate files are associated with the device.
When using a directory device, it is necessary to
associate a file name with the channel that is
open to the device.

LOOKUP (CHAN, "FILENANE", €FLRG) ;
ENTER (CHAN, "FILENRME", eFLAG);

File names are associated with channels by three
functions: LOOKUP, ENTER, and RENAME. We will
discuss LOOKUP and ENTER here. Both LOOKUP
and ENTER take three arguments: a channel
number, such as returned by GETCHAN, which
has already been opened; a text string which is
the name of the file, using the file name
conventions of the operating system; and a
reference flag that will be set to FALSE if the
operation is successful, or TRUE otherwise. (The
TRUE value is a bit pattern indicating the exact
cause of failure, but we will not be concerned
with that here.) There are three permutations of
LOOKUP and ENTER that are useful:

1) LOOKUP alone: this is done when
you want to read an already existing file.

2) ENTER alone: this is done when

SAIL TUTORIAL

you want to write a file. If a file already
exists with the selected name, then a new
one is created, and upon closing of the
file, the old version is deleted altogether.
This is the standard way to write a file.

3) A LOOKUP followed by an ENTER
using the same name: this is the standard
way to read and write an already
existing file.

The following program will read an already
existing text file, (e.g., with the INPUT, REALIN,
and INTIN functions, which scan ASCII text.) Note
that the LOOKUP function is used to see if the
file is there, obtaining the name of the file from
the user. See below for details about the
functions that are used for the actual reading of
the data in the file.

BEGIN
INTEGER INCHRAN, INBRCHAR, INEOF , FLAG;
STRING F ILENAHNE;

OPEN C(INCHRN « GETCHRN, “DSK”,
INBRCHRR, INEOF);

8, 2, 8, 288,

UHILE TRUE DO
BEGIN
PRINT("Input fiie name x");
LOOKUP (INCHAN, FILENANME « INCHUL, FLRG);
IF FLRG THEN OONE ELSE
PRINT("Cannot find file ", FILENAHE,
“try again.
I);
END;

UHILE NOT JINEOF 00
-BEGIN “INPUT”

v... S8 balow f 0 r reading characters...
END “INPUT”;

RELEASE (INCHAN) ;
END;

The following program opens a file for writing
characters.

BEGIN
INTEGER OUTCHAN, FLAG;
STR ING F ILENANE |

OPEN (OUTCHAN « GETCHRN, “DSK”,

0,08,28,
8, 0); ‘

UHILE TRUE DO
BEG IN
PRINT("Output f i le name ")j

Input/Output

ENTER (OUTCHAN, FILENAHE « INCHUL, FLRG) |
IF NOT FLAG THEN DONE ELSE
PRINT("Cannot write f i i r *, FILENRME,
" try again.
')‘
END;

oo nOw Write the text to OUTCHAN . . .

RELERSE (OUTCHGN)j
END;

5.3.2.1 Reading and Writing Full Words

Reading 36-bit PDP10 words, using WORDIN and
ARRYIN, and writing words using WORDOUT and
ARRYOQOUT, is accomplished by opening the file
using a binary mode such as ‘14. We recommend
the use of binary mode, with 2 or more input
and/or output buffers selected in the call to the
OPEN function. There are other modes available,
such as mode ‘17 for dump mode transfers; see
the timesharing manual for the operating system.

5.3.2.2 Other Input /Output Facilities

Files can be renamed using the RENAME function.
Some random input and output is offered by the
USETI and USETO functions, but random input. and
output produces strange results in TOPS-10 Sail.
Best results are obtained by using USETI and
USETO and reading or writing 128-word arrays
to the disk with ARRYIN and ARRYOUT.

Magnetic tape operations are performed with the
MTAPE function.

See the Sail manual (Sec. 7) for more details
about these functions. In particular, we stress
that we have not covered all the capabilities of
the functions that we have discussed.

5.3.3 TENEX Sail Channel, and File Handling

TENEX Sail has included all of the TOPS-I 0 Sail
functions described in Section 7.2 of the Sail
manual for reasons of compatibility and has
implemented them suitably to work on TENEX.
Descriptions of how these functions actually
work in TENEX are given in Section 12.2 of the
manual. However, they are less efficient than
the new set of specifically TENEX routines which

33

Input/Output

have been added to TENEX Sail so you probably
should skip these sections of the manual. The
new TENEX routines are also greatly simplified
for the user so that a number of the steps to
establishing the 1/0O are done transparently.

Basically, you only need to know three
commands: 1) OPENFILE which establishes a file
on a channel, 2) SETINPUT which establishes
certain parameters for the subsequent inputs
from the file, and 3) CFILE which closes the file
and releases the channel when you are finished.

chan# . OPENFILE("filename", “modes”)

The OPENFILE function takes 2 arguments: a
string containing the device and/or filename and
a string constant containing a list of the desired
modes. OPENFILE returns an integer which is the
channel number to be used in all subsequent
inputs or outputs. If you give NULL as the
filename then OPENFILE goes to the user’s
terminal to get the name. (Be sure if you do this
that you first PRINT a prompt to the
terminal.) The modes are listed in the Sail
manual (Sec. 12.3) but not all of those listed are
commonly used. The following are the ones that
you will usually give:

- R or W or A for Read, Write, or Append
depending on what you intend to do
with the file.

* if you are allowing multi-file
specifications, e.g., data.*;* .

C if the wuser is giving the
filename from the terminal, C mode
will prompt for [confirm].

2 if the user is giving the
filename and an error occurs
(typically when the wrong filename
is typed), the E mode returns
control to your program. If, E is not
specified the user is automatically
asked to try again.

Modes 0 and N for Old or New File are also
allowed but probably shouldn’t be used. They
are misleading. The defaults, e.g. without either
0 or N specified, are the usual conditions (read
an old version and write a new version). The 0
and N options are peculiar. For -example, “NW”
means that you must specify a completely new
filename for the file to be written, e.g., a name

34

SAIL TUTORIAL

that has not been used before. N does not mean
a new version as one might have expected. In
general, the 1/0 routines use the relevant JSYS’s
directly and thus include all of the design errors
and bugs in the JSYS’s themselves.

INTEGER infile,outfile,defaul tsFile;
PRINT("Input f i les");

inFilo « OPENFILE(NULL,"rc");
PRINT("Output f i le: ");

ou tFilee« OPENF ILE (NULL, "wc");

defaultsfile «
OPENFILE (“user-defaul tt. tmp","w");

We now have files “open” on 3 channels--one for
reading and two for writing. We have the
channel numbers stored in inFile, outFile, and
defaultsFile so that we can refer to the
appropriate channel for each input or output.
Next we need to do a SETINPUT on the channel
open for input (reading).

SETINPUT (chan#, count , ebrchar, eeof)

There are four arguments:
1) The channel number.

2) An integer number which is the
maximum number of characters to be
read in any input operation (the default if
no SETINPUT is done is 200).

3) A reference integer variable
where the input function will put the
break character.

4) A reference integer variable
where the input function will. put true or
false for whether or not the end-of-file
was reached (or the error number if an
error was encountered while reading).

So here we need:

INTEGER infileBrChr,infileEof;
SETINPUT Cinfile, 280, inf i lebrchr, inf i leEof);

Now we do the relevant input/output operations
and when finished:

CFILECinfile);
CFILECouttile);
CFILE (defaultsFile);

A simple example of the use of these routines
for opening a file and outputting to it is:

SAIL -TUTORIAL

INTEGER outfile;
PRINT("Type f ilename for output: ")}
outf i te«OPENFILE (NULL,"nc");
, CPRINT(outf ile, "message...”);
CFILE (outtile);

where CPRINT is like PRINT except for the
additional first argument which is the channel
number.

The OPENFILE, SETINPUT, and CFILE commands
. will handle most situations. If you have unusual
requirements or like to get really fancy then
there are many variations of file handling
available. A few of the more commonly used will
be covered in the next section; but do not read
this section until you have tried the regular
routines and need to do more (if ever). On first
reading, you should now skip to Section 5.4.

5.3.4 Advanced ‘TENEX Sail Channel and
File Handling

If you want to use multiple file designators with
*’s, you should give "+" as one of the options to
OPENFILE. Then you will need to use INDEXFILE
to- sequence through the multiple files. The
syntax is

found!another!¢ | le « INDEXFILE (chan#)

where foundlanother!fite is @ boolean variable.
INDEXFILE accomplishes two things. First, if
there is another file in the sequence, it is
properly initialized on the channel; and second,
INDEXFILE returns TRUE to indicate that it has
gotten another file. Note . that the original
OPENFILE gets the first file in the sequence on
the channel so that you don’t use the INDEXFILE
until you have finished processing the first file
and are ready for the second. This is done
conveniently with a DO...UNTIL where the test is
not made until after the first time through the
loop; e.g.,

mult iFilet « OPENFILE("data.x", "rx");
DO

BEGIN
.ee<input and process current file>.e.

UNTIL NOT INDEXF ILE (mu) tiF i los)

Another available option to the OPENFILE routine
which you should consider using is the “E” option
for error handling. If you specify this option and

Input/Output

the user gives an incorrect filename then
OPENFILE will return -1 rather than a channel
number and the TENEX error number will be
returned in ISKIPL. Remember to declare
EXTERNAL INTEGER !SKIP! if you are going to be
looking at it. Handling the errors yourself is
often a good idea. TENEX is unmerciful. If the
user gives a bad filename, it will ask again and
keep on asking forever even when it is obvious
after a certain number of tries that there .is a
genuine problem that needs to be resolved.

Another use for the "E® mode is to offer the user
the option of typing a bare <CR> to get a default
file. If the "E" mode has been specified and the
user types a carriage-return for the filename
then we know that the error number returned in
ISKIP! will be the number (listed in the JSYS
manual) for “Null filename not allowed.” so we
can intercept this error and simply do another
OPENFILE with the default filename, e.g.,

EXTERNRL INTEGER !SKIPI}
outfilee-1;
WILE outfiles -1 DO
BEGIN
PRINT("Filename (<CR> for TTY:) 2");
outfile«OPENFILE (NULL, "we")}
| Flskipt= 680115 THEN

outf i 1e~OPENFILE ("TTY: ", "u");
END;

The GTJFNL and GTJFN routines are useful if you
need more options than are provided in' the
OPENFILE routine, but neither of these actually
opens the file so you will need an OPENF or
OPENFILE after the GTJFNL or GTJFN unless your
purpose in using the GTJFN is specifically that
you do not want to open the file. The GTJFNL
routine is actually the long form of the GTJFN
JSYS; and the GTJFN routine is the short form of
the GTJFN JSYS. See the TENEX JSYS manual for
details.

Another use of GTJFNL is to combine filename
specification from a string with filename
specification from the user. This is a simple way
to preprocess the filename from the user, i.e., to
check if it is really a "?" rather than a filename.
First, you need to declare !SKIP! and ask the user
for a filename:

EXTERNAL INTEGER ! SK IP
WHILE TRUE DO

BEGIN "get{itlename"”
PRINT("Type Input f | lename or 3 3");

35

Input/Output

Next do a regular INTTY to get the reply into a
string:

s « INTTY;

Then you process the string in any way that you
choose, e.g., check if it is a "™ or some other
special keyword:

IF s= "?" THEN BEGIN
givehelp;
CONTINUE “getfiiename"
END;

If you decide it is a proper filename and want to
use it then you give that string (with the break
character from INTTY which will be in !'SKIP!
appended back on to the end of the string) to
the GTJFNL.

chan# « GTJFNL (s&!SKIP!, 160080000088,
‘808106800181, NULL, NULL, NULL,
NULL, NULL, NULL);

If the string ended in altmode meaning that the
user wanted filename recognition then that will
be done; and if the string is not enough for
recognition and more typein is needed then the
GTJFNL will ring the bell and go back to the
uset’s terminal without the user knowing that
any processing has gone on in the meantime, i.e.,
to the user it looks exactly like the ordinary
OPENFILE. Thus the GTJFNL goes first to the
string ‘that you give it but can then go to the
terminal if more is needed.

After the GTJFNL don'’t forget that you still need
to OPENF the file. For reading a disk file,

OPENF (chan#, ‘448808280888) ;
is a reasonable default, and for writing:
OPENF (chan#, '4488001880081;

The arguments to GTJFNL are:

chan# « GTJFNL("{ i lename", flags, jfnjfn,
“dev”, “dir”, “name”, "ext",
“protection”, "acct");

where the-flag specification is made by looking
up the FLAGS for the GTJFN JSYS in the JSYS
manual and figuring out which bits you want
turned on and which off. The 36-bit resulting
word can be given here in its octal
representation. ‘160000000000 means bits 2
(old file only), 3 (give messages) and 4 (require

36

SAIL TUTORIAL

confirm) are turned on. Remember that the bits
start with Bit 0 on the left. The jfnjfn will
probably always be 000100000101. This
argument is for the input and output devices to
be used if the string needs to be supplemented.
Here the controlling terminal is used for both.
Devices on the system have an octal number
associated with them. The controlling terminal as
input device is 100 and as output is 101. For
most purposes you can refer to the terminal by
its “name” which is TTY: but here the number is
required. The input and output devices are
given in half word format which means that ‘100
is in the left and 101 in the right half of the
word with the appropriate O’s filled out for the
rest.

The " next six arguments to GTJFNL are for
defaults if you want to give them for: device,
directory, file name, file extension, file
protection, and file account. If no default is
given for a field then the standard default (if
any) is used, e.g., DSK: for device and Connected
Directory for directory. This is another reason
why you may choose GTJFNL over OPENFILE for
getting a filename. In this way, you can set up
defaults for the filename or extension. You can
also use GTJFNL to simulate a directory search
path. For example, the EXEC when accepting the
name of a program to be run follows a search
path to locate the file. First it looks on
<SUBSYS> for a file of that name with a .SAV
extension. Next it looks on the connected
directory and finally on the login directory. If
you have an analogous situation, you can use a
hierarchical series o f GTJFNL’s with the
appropriate defaults specified:

EXTERNAL INTEGER !SKIP!;
INTEGER logdir,condir, ttyno;
STRING logdirstr,condirstr;

GJINF (logdir,condir, ttyno);

COMMENT puts the directory numbers for login
and connected directory and the tty# in
its reference integer argumentsi

logdirstr«DIRST (logdir);

condirstr«DIRST (condir);

COMMENT returns a string for the name
corresponding to directory#;

WHILE true DO

BEGIN “ge thame"
PRINT("Type the name of the program: “I;
IF EQU (upper (NRME « INTTY),"EXEC") THEN
BEGIN
name«"<SYSTEN>EXEC.SAV";
DONE “getname”;
END;
IF name ="?" THEN

SAIL-TUTORIAL

BEGIN
givehelp;
CONTINUE "getname";
END:
name&tame8 | SK IP 1}
COMMENT put the breadk char back on;
DEFINE {1 ag = <*1080000000080>,
jfnjfn = <"106008181>;
| F (tempChan«GTJFNL (name, f1ag, jtnjfn,NULL,
"SUBSYS™,NULL, "SRV",NULL,NULL)) = -1
THEN
IF (tempChan«GTJFNL (name, f lag,
jinjfn,NULL,condirstr NULL,
"SAV",NULL,NULL))= -1 THEN
IF CtempChan«GTJFNL (name, f lag,

jtnjfn,NULL, logdirstr NULL,
"SAV",NULL,NULL)) = -1 THEN
BEGIN

PRINT(* 2?2",crit);
CONTINUE “ge tname™;

END;
COMMENT try each default and if not found
then try next unt i | none are found then

print ? and try again;
name « JFNS (tampChan, 8);
COMMENT gets name of file on than--8
means in normal format;
CFILE (tempChan);
COMMENT channe! not opened but does
need to ‘be released;
- DONE "ge tname’;
END;

In this case, we did not want to open a channel
at all since we will not be either reading or
writing the .SAV file. At the end of the above
code, the complete filename is stored in STRING
name. We might wish to run the program with the
RUNPRG routine. GTJFN and GTJFNL are often
used for the purpose of establishing filenames
even though they are not to be opened at the
moment. However, the Sail channel does need to
be released afterwards.

Some of the other JSYS’s which have been
implemented in the runtime package were used
in this program: GJINF, DIRST, and JFNS. JFNS in
particular is very useful. It returns a string
which is the name of the file open on the
channel. You might need this name to record or
to print on the terminal or because you will be
outputting to a new version of the input file
which you can’t do unless you know its name.

These and a number of other routines are
covered in Section 12 of the Sail manual. You
should probably glance through and see what is
there. Many of these commands correspond
directly to utility JSYS’s available in TENEX and

Input/Output

will be difficult to use if you are not familiar with
the JSYS’s and the JSYS manual.

5.4 input from a File

In this section, we will assume that you have a
file opened for reading on some channel and are
ready to input. Also that you have appropriately
established the end-of-file and break character
variables to be used by the input routines and
the break table if needed.

Another function which can be wused in
conjunction with the various input functions is
SETPL:

SETPL (chan#, @ | ine#, gpages, esosd)

This allows you to set up the three reference
integer variables iine#, page#, and sos# to be
associated with the channel so that any input
function on the channel will update their values.
The Iine# variable is incremented each time a ‘12
(If) is input’ and the page# variable is incremented
(and iine# reset to 0) each time a ‘14 (formfeed)
is input. The last SOS line number input (if any)
will be in the sos# variable. The SETPL should be
given before the inputting begins.

The major input function for text is INPUT.
"resu |t "« INPUT (chan#, tab|® #);

where you give as arguments the channel
number and the break table number; and the
resulting input string is returned. This is very
similar to SCAN.

To input one line at a time from a file (where
intile is the channel number and infiteEot is the
end-of-file variable):

SETBRERK (readL ine+GETBRERK, 1 f,NULL, " ina™);
Do
BEGIN
STRING | inej
line«INPUT(infile,readl ine);
. «e<process thr line>...
END
UNTIL infiteEof;

If the INPUT function sets the eof variable to
TRUE then’ either the end-of-file was
encountered or there was a read error of some
sort.

37

Input/Output

If the INPUT terminated because a break
character was read then the break character will
be in the brchar variable. If brchar-0 then you
have to look at the eof variable also to
determine what happened: If eof=TRUE then that
was what terminated the INPUT but if eof=FALSE
and brchar=0 then the INPUT was terminated by
reaching the maximum count per input that was
specified for the channel.

If you are inputting numbers from the channel
then

reaiVar « RERL IN (chan#)

integerVar « INTIN (chand)

which are like REALSCAN and INTSCAN can be
used. The brchar established for the channel
will be used rather than needing to give it as an
argument as in the REALSCAN and INTSCAN.

INPUT is designed for files of text. Several other
input functions are available for other sorts of
files.

Number & WOROIN (chand)

will read in a 36-bit word from a binary .format
file. For details see the manual.

ARRYIN (chan#, @loc, count)

is used for filling arrays with data from binary
. format files. count is the number of 36-bit words
to be read in from the file. They are placed in
consecutive locations starting with the location
specified by lee, €.g.,

INTEGER ARRAY numbs [1:max];
ARRYIN(dataF i le,numbs (1] ,max);

ARRYIN can only be used for INTEGER and REAL
arrays (not STRING arrays).

5.4.1 Additional TENEX Sail input Routines
Two extra input routines which are quite fast
have been added to TENEX Sail to utilize the
available input JSYS’s.

c h ar « CHARIN (chan?)
inputs a single character which can be assigned

to an integer variable. If the file is at the end
then CHARIN returns 0.

38

SAIL TUTORIAL

“result” «
SINI(chan#, maxiength, break-character)

does a very fast input of a string which is
terminated by either reading naxiength characters
or encountering the break-character. Note that
the break-character here is not a reference
integer where the break character is to be
returned; rather it actually is the break
character to be used like the “break-characters”
established in a break table except that only one
character can be specified. If the SINI terminated
for reaching maxiength then !SKIP!= -1 else !SKIP!
will contain the break character.

TENEX Sail also offers random 1/O which is not
available in TOPS-10 Sail. A file bytepointer is
maintained for each file and is initialized to point
at the beginning of the file which is byte 0. It
subsequently moves through the * file always
pointing to the character where the next read or
write will begin. In fact the same file may be
read and written at the same time (assuming it
has been opened in the appropriate way). If the
pointer could only move in this way then only
sequential /O would be available. However, you
can reset the pointer to any random position in
the file and begin the read/write at that point
which is called random 1/O.

charptr « RCHPTR (chand)

returns the current position of the character
pointer. This is given as an integer representing
the number of characters (bytes) from the start
of the file which is byte 0. You can reset the
pointer by

SCHPTR (chan#, newp tr)

If newptr is given’ as -1 then the pointer will be
set to the end-of-file.

There are many uses for random 1/O. For

example, you can store the help text for a
program in a separate file and keep track of the
bytepointer to the start of each individual
message. Then when you want to print out one
of the messages, you can set the file pointer to
the start of the appropriate message and print it
out.

RWDPTR AND SWDPTR are also available for
random |/O with words (36-bit bytes) as the
primary unit rather than characters (7-bit bytes).

SAIL -TUTORIAL

5.5 Qutput to a File

The CPRINT function is used for outputting to
text f iles.

CPRINT (chan?, @ (gl arg2,...., argN)

CPRINT is just like PRINT except that the channel
must be given as the first argument.

FOR i+l STEP 1 UNTIL maxHorkers DO
CPRINT (outt ile, namelil, " ",
salarylil,crit)y

Each subsequent argument is converted to a
string if necessary and printed out to the
channel.

HORDOUT (chan#, number)
writes a single 36-bit word to the channel.
ARRYOUT (chand, eloc, count)

writes out an array by outputting count number
of consecutive words starting at location fee.

REAL ARRAY resu | ts [lsmaxly

ARRYOUT (resul tFile, resul ts (1], max) |

TENEX Sail also has the routine:
CHAROUT (chan#, char)

which outputs a single character to the channel.

The OUT function is generally obsolete now that
CPRINT is available.

Input/Output

39

Records

SECTION 6

Records

Records are the newest data structure in Sail.
They take us beyond the basic part of the
language, but we describe them here in the hope
that they will be very useful to users of the
language. Sail records are similar to those in
ALGOL W (see Appendix A for the differences).
Some other languages that contain record-like
structures are SIMULA and PASCAL.

Records. can be extremely useful in ‘setting up
complicated data structures. They allow the Sail
programmer: 1) a means of program controlled
storage allocation, and 2) a simple method of
referring to bundles of information. (Location(x)
and memory tx), which are not discussed here and
should be thought of as liberation from Sail,
allow one to deal with addresses of things.) :

6.1 Declaring and Creating Records

A record is rather like an array that can have
objects of different syntactic types. Usually the
record represents different kinds of information
about one object. For example, we can have a
class of records called person that contains
. records with information about people for an
accounting program. Thus, we might want to
keep: the person’s name, address, account
number, monetary balance. We could declare a
record class thus:

RECORD!CLASS psrson (STRING name, address;
INTEGER account;
REAL bal® ncr)

This occurs at declaration level, and the
identifier person is available within the current
block -- just like any other identifier.

RECORD!CLASS declarations do not actually
reserve any storage space. instead they define
a pattern or template for the class, showing what
fields the-pattern has. in the above, name, addrsss,
account and batance are all fields of the
RECORD!CLASS person.

To create a record (e.g., when you get the data
on an actual person) you need to call the
NEW!RECORD procedure, which takes as its
argument the RECORD!CLASS. Thus,

40

SAIL TUTORIAL

rp « NEN!RECORD (person);

creates a person, with ail fields initially O (or
NULL for strings, etc). Records are created
dynamically by the program and are garbage
collected when there is no longer a way to
access them.

When a record is created, NEW!IRECORD returns a
pointer to the new record. This pointer is
typically stored ir a RECORD!POINTER.
RECORD!POINTERs are variables which must be
declared. The RECORD!POINTER rp was used
above. There is a very important distinction to
be made between a RECORD!POINTER and a
RECORD. A RECORD is a block of variables called
fields, and a RECORD!POINTER is an entity that
points to some RECORD (hence can be thought of
as the “name” or “address” of a RECORD)., A
RECORD has fields, but a RECORD!POINTER does
not, although its associated RECORD may have
fields. The following is a complete program that
declares a RECORDICLASS declares a
RECORD!POINTER, and creates ‘a record in the
RECORDI!CLASS with the pointer to the new

record stored in the RECORD!POINTER.

BEGIN

RECORD!CLASS person (STRING name,address;
INTEGER account;
REAL balance);

RECORDIPOINTER (person) rp;

COMMENT program starts hero.;
rp « NEH!RECORD (person)
END;

RECORD!POINTERs are usually associated with
particular record class(es). Notice that in the
above program the declaration of
RECORD!POINTER mentions the class psrson:

RECORD!POINTER (person) rp;
This means that the compiler will do type
checking and make sure that only pointers to
records of class person will be stored into mp. A
RECORD!POINTER can .be of several classes, as in:
RECORD!POINTER (person, university) rp;

assuming that we had a RECORD!CLASS

university.

RECORD!POINTERs can be of any class if we say:

SAIL- TUTORIAL

RECORD!POINTER (ANYICLASS) rp;

but declaring the class(es) of record pointers
gives compilation time checking of record class
agreement. This becomes an advantage when
you have several classes, since the compiler will
complain about many of the simple mistakes you
can make by mis-assigning record pointers.

6.2 Accessing Fields of Records

The fields of records can be read/written just
like the elements of arrays. Developing the
above program a bit more, suppose we have
created a new record of class person, and stored
the pointer to that record in rp. Then, we can
give the “person” a name, address, etc., with the
following statements.

person:namelrpl « “John Doe";
person: address [rp)e “181 East Lansing Street";

person: accountlrple 14;
person: ba lance [rple« 3888.871

and we could write these fields out with the
statement:

PRINT (“Name is ", person:name(rpl,crif,
“Address is", person:addressirpl, crif,
“Account is ", persontaccountlrpl, crif,
“Balance is ", person:balancelrpl, crif);

The syntax for fields has the following features:

1) The fields are available within
the lexical scope where the
RECORDI!CLASS was declared, and follow
ALGOL block structure.

2) The fields in different classes
may have the same name, e.g., parent :name
and ch i 1d: name.

3) The syntax is rather like that for
arrays -- using brackets to surround the
record pointer in the same way brackets
are used for the array index.

4) The fields can be read or written
into, also like array locations.

B) It is necessary .to write
class: f ield[pointer) -- i.e., you have to
include the name of the class (here
person) with a ™" before the name of the
field.

Records

6.3 Linking Records Together

Notice, in the above example, that as we create
the persons, we have to store the pointers to
the records somewhere or else they will become
“missing persons”. One way to do this would be
to use an array of record pointers, allocating as
many pointers as we expect to have people. If
the number of people is not known in advance
then the more customary approach is to link the
records together, which is done by using
additional fields in the records.

Suppose we upgrade the above example to the
following:

RECORDICLASS person WRING name, address;

INTEGER account;
REAL balance;
RECORD!POINTER (ANY!ICLASS) next);

Notice now that there is a RECORDIPOINTER field
in the template. This may be used to keep a
pointer to the next person. The header to the
entire- list of persons will be kept in asingle
RECORD!POINTER.

Thus, the following program would create
persons dynamically and put them into a “linked
list” with the newest at the head of the list. This
technique allows you to write programs that are
not restricted to some fixed maximum number of
persons, but instead allocate the memory space
necessary for a new person when you need it.

BEGIN

RECORO!CLRSS person (STRING name, address;
INTEGER account; RERL balance;

RECORD!POINTER (ANY!CLRSS) next);

RECORD!POINTER (ANY!ICLRSS) header;

RHILE TRUE 00
BEGIN
STRING 83
RECORD!POINTER (RNY!CLASS) tamp;

PRINT("Name of next person, CR if donor”);
IF NOT LENGTH (s « INCHWL) THEN DONE;

COMMENT put neu person at head of tists
temp . NEW!RECORD (person);
COMMENT muke aneu record;
person: nex t | temp) « header;
COMMENT the old head becomes the second;

41

Records

header « tamp;
COMMENT the n ¢ w record becomes the head;

COMMENT now fill informatlion fields;
person: name [temp) o s3
COMMENT nou we can fill address, account,
. balance if we want...}
END;

END;

A very powerful feature of record structures is
the ability to have different sets of pointers.
For example, there might be both forward and
backward links (in the above, we used a forward
link). Structures such as binary trees, sparse
matrices, -deques, priority queues, arid so on are
natural applications of records, but it will take a
little study of the structures in order to
understand how to build them, and what they are
good for.

Be warned about the difference. between
records, record pointers, record classes, and the
fields of records: they are all distinct things, and

you can get in trouble if you forget it. Perhaps
a simple example will show you what is meant:

BEGIN
~RECORD!CLASS pair (INTEGER 1,));
RECORD!POINTER (psir) a, b, c, d;

a « NEW!RECORD (pair);

pair: i (ale |

pair:)la)e2;

de ==

b « NEW!RECOQRD (pair);

pair:ilble1;

pair:jlbl « 2;

c « NEW!RECORD (pair);

pairsilele 1;

pair: j le) o 3;

IF a= b THEN

pair: jldle 3;

IF a = ¢ THEN PRINT{(" A=C");

IF ¢c = d THEN PRINT(" C=0 ")y

IF a = d THEN PRINT("R=0");

PRINTC" (R I : < | pair:i la),", J1",
pair:j (&), ")");

PRINT(" (B It",pair; ilbl,", J",
pair: jlb),"}");

PRINTC" (C I t", pair: i le], ", Js",
pair:jle},")");

PRINT(" (D I:", pairsi (d), ", 21",

" opairsj td), ")*);

PRINT("R =B ");

END;

will print:

42

SAIL TUTORIAL

A = 0 (RIsl, J:3)(B I:1, J12)
(€ Isl, Ji3) (D I:1, J:3)

Note that two RECORD!POINTERs are only equal if
they point to the same record (regardless of
whether the fields of the records that they point
to are equal). At the end of executing the
previous example, there are 3 distinct records,
one pointed to by RECORD!POINTER », one
pointed to by RECORD!POINTER ¢, and one
pointed to by RECORD!POINTERs a and 4. When
the line that reads: pair:jldl « 3; is executed,
the j-field of the record pointed at by
RECORDIPOINTER dis changed to 3, not the j-field
of ¢ (RECORD!IPOINTERs have no fields). Since
that is the same record as the one pointed to by
RECORDI!POINTER a, when we print pairrj(a), we
get the value 3, not 2.

Records can also help your programs to be more
readable, by using a record as a means of
returning a collection of values from a procedure
(no Sail procedure can return more than one
value). If you wish to return a RECORD!POINTER,
then the procedure declaration must indicate this
as an additional type-qualifier on the procedure
declaration, for example:

RECORD!POINTER (person) PROCEOURE maxBaiance;
BEGIN
RECOROIPOINTER (person) tempHeader,
currentfaxPerson;
RERL currentllax|
tempHeader « header;
currentflax « personrbalance [tempHeader];
currentMaxPerson « tempHeader;
WHILE tempHeader « personrnext [tempHeaderl 00
IF personr balance | tempHeader] > currentiax THEN
BEGIN
currentfax « person:balance [tempheader);
currentfaxPerson « tempHeader;
END;
RETURN (currentMaxPerson) ;
END;

This procedure goes through the linked list of
records and finds the person with the highest
balance. It then returns a record pointer to the
record of that person. Thus, through the single
RETURN statement allowed, you get both the
name of the person and the balance.

RECORD!POINTERs can also be used as arguments
to procedures; they are by default VALUE
parameters when used. Consider the following
quite complicated example:

RECORD!CLASS pnt (REAL x,y,2);
RECORO!POINTER (pnt) PROCEDURE midpoint
(RECORD!POINTER (pnt) a,b) ;

SAIL -TUTORIAL

BEGIN

RECORD!POINTER (pnt) retval;

retval « NEHIRECORD (pnt);

pnt:x Iretvall «(pntsx[a) + pnt:x b))/ 2 ;
pnt:y tretvall « (pnt:y [a) + pntiy [b]) / 2
pntsz Iretvall « (pnt:z (a) 4 pntiz [bl) / 2;
RETURN(retval);

END;

p «midpoint(q ,r);

While this procedure may appear a bit clumsy, it
makes it easy to talk about such things as pnts
later, using simply a record pointer to represent
each pnt. Another common method for
“returning” more than one thing from a
procedure is to use REFERENCE parameters, as in
the following example:

PROCEOURE midpoint (REFERENCE REALrx,ry,rz;
REAL ax,ay,az,bx,by,bz);

BEGIN

rXx e (ax + bx)/ 2

ry «(ay + by) / 2

rze (@ + bz2)/ 2

ENO;

MIDPOINT(px, py, Pz, ax, q y , 92, PX, ry, rz,)}

DY

Here the code for the procedure looks .quite
simple, but there are so many arguments to it
that you can easily get lost in the main code.
Much of the confusion comes about because
procedures simply cannot return more than one
value, and the record structure allows you to
return the name of a bundle of information.

Records

43

Conditional Compilation

SECTION 7

Conditional Compilation

Conditional compilation is available so that the
same source file can be used to compile slightly
different versions of the program for different
purposes. Conditional compilation is handled by
the scanner in a way similar to the handling of
macros. The text of the source file is
manipulated before it is compiled. The format is

IFCR boo loan THENC code ELSEC code ENOC

This construction is not a statement or an
expression. It is not followed by a semi-colon
but just appears at any point in your program.
The ELSEC is optional. The ENDC . must be
included to mark the end but no begin is used.
The code which follows the THENC (and ELSEC if
used) can be any valid Sail syntax or fragment of
syntax. As with macros, the scanner is simply
manipulating text and does not check that the
text is valid syntax.

The boolean must be one which has a value at
compile time. This means it cannot be any value
computed by your program. Usually, the boolean
will be DEFINE’d by a macro. For example:

DEFINE smaliVersion = <TRUE>;

IFCR sv;'ai IVorslon THENC max «18xtotal;
ELSEC max «188«total; ENOC

where every.difference in the program between
the small and large versions is handled with a
similar IFCR...THENC...ENDC construction. For this
construction, the scanner checks the value of the
boolean; and if it is TRUE, the text following
- THENC is inserted in the source being sent to the

inner compiler--otherwise the text is simply
thrown away and the code following the ELSEC
(if any) is used. Here the code used for the
above will be max «16xtotaly, and if you edit the
program and instead

DEFINE smallVersion = <FALSE>;
the result will_be max «168stotal;.

The code following the THENC and ELSEC will be
taken exactly as is so that statements which
need final semi-colons should have them. The
above format of statement j; eLsec iS correct.

44

SAIL TUTORIAL

If. this feature were not available then the
following would have to be used:

BOOLEAN smaliVersion;
smaliVersion o TRUE;

IF smilVonlonTHEN-nx o 18xtotal
ELSE ozm o 180stotal;

so that a conditional would actually appear, in
your program.

Some typical uses of conditional compilation are:

1) Insertion of debugging or testing
code for experimental versions of a
program and then removal for the final
version. Note that the code will still be
in your source file and can be turned
back on (recompilation is of course
required) at any time that you again need
to debug. When you do not turn on

debugging, the code completely
disappears from your program but not
from your source file.

2) Maintainence of a single source
file for a program which is to be
exported to several sites with minor
differences.

DEFINE sumex = <TRUE>,
is is <FALSE>;

-

IFCR sumex THENC docdir «"DOC"; ENOC
IFCR isi THENC docdir «"DOCUMENTRTION"; ENOC

where only one site is set to TRUE for
each compilation.

3) “Commenting out” large portions
of the program. Sometimes you need to
temporarily remove a large section of the
program. You can insert the word
COMMENT preceding every statement to
be removed but this is a lot of extra
work. A better way is to use:

IFCR FALSE THENC

<all the code to be "removed">

oo

ENOC

SAIL TUTORIAL

SECTION 8

Systems Building in Sail

Many new Sail users will find their first Sail
project involved with adding to an already-
existing system of large size that has been
worked on by many people over a period of
years. These systems include the speech
recognition programs at Carnegie-Mellon, the
hand-eye software at Stanford Al, large CAI
systems at Stanford IMSSS, and various medical
programs at SUMEX and NIH. This section does
not attempt to deal with these individual systems
in any detail, but instead tries to describe some
of the features of Sail that are frequently used
in systems building, and are common to all these
systems. The exact documentation of these
features is given elsewhere; this is intended to
be a guide to those features.

The Sail language itself is procedural, and this
means that programs can be broken down into
components that represent conceptual blocks
comprising the system. The block structuring of
ALGOL also allows for local variables, which
should be used wherever possible. The first rule
of systems building is: break the system down
into modules corresponding to conceptual units.
This is partly a question of the design of the
system--indeed, some systems by their very
design philosophy will defy modularity to a
certain extent. As a theory about the
represent at ion of knowledge in computer
programs, this may be necessary; but programs
should, most people would agree, be as modular
“as possible”.

Once modularized, most of the parts of the
system can be separate files, and we shall show
below how this is possible. Of course, the
modules will have to communicate together, and
may have to share common data (global arrays,
flags, etc.). Also, since the modules will be
sharing the same core image (or job), there are
certain Sail and timesharing system resources
that will have to be commonly shared. The rules
to follow-here are:

1) Make the various modules of a
system as independent and separate as
design philosophy allows.

Systems Building in Sail

2) Code them in a similar “style” for
readability among programmers.

3) Make the points of interface and
communication between the programs as
clear and explicit as possible.

4) Clear up questions about which
modules govern system resources (Sail
and the timesharing system), such as
files, terminals, etc. sothat they are not
competing with each other for these
resources.

8.1 The Load Module

The most effective separation of modules is
achieved through separate compilations. This is
done by having two or more separate source
files, which are compiled separately and then
loaded together. Consider the following design
for an Al system QWERT. QWERT will contain
three modules: a scanner module XSCAN, a
parser module PARSE, and a main program
QWERT. We give below the three files for
QWERT.

First, the QWERT program, contained in file
QWERT.SAI:

BEGIN“QWERT"

EXTERNAL STRING PROCEDURE XSCAN (STRINGS) ;
REQUIRE "XSCAN" LORD !MODULE;

EXTERNAL STRING PROCEDURE PARSE (STRING S) ;
REQUIRE "PARSE" LOAD !MODULE;

WHILE TRUE DO

BEGIN
PRINT ("x",PRRSE (XSCAN (INCHUL)));

END;
END"QHERT";
Notice two features about QWERT.SAI:

1) There are two EXTERNAL
declarations. An EXTERNAL declaration
says that some identifier (procedure or
variable) is to be used in the current
program, but it will be found somewhere
else. The EXTERNAL causes the compiler
to permit the use of the identifier, as
requested, and then to issue a request
for a global fixup to the LOADER
program.

45

Systems Building in Sail

2) Secondly, there are two REQUIRE

LOAD!MODULE statements in the
program. A load module is a file that is
loaded by the loader, presumably the
output of some compiler or assembler.
These REQUIRE statements cause the
compiler to request that the loader load
modules XSCAN.REL and PARSE.REL when
we load MAIN.REL. This will hopefully
satisfy the global requests: i.e., the
loader will find the two procedures in the
two mentioned files, and link the
programs all together into one “system”.

Second, the code for modules XSCAN and PARSE:

ENTRY XSCAN;
BEGIN

INTERNRL STRING PROCEDURE XSCAN(STRINGS);
BEGIN
..... code for XSCAN

RETURN (resulting string);
END;

END;

and now PARSE.SAI:

- ENTRY PARSE;
BEGIN

INTERNRL STRING PROCEDURE PARSE(STRINGS);
BEGIN

....code for PARSE....
RETURN(resulting string);
END;

END;

Both of these modules begin with an ENTRY
declaration. This has the effect of saying that
the prdgram to be compiled is not a “main”
program (there can be only one main program in
a core image), and also says that PARSE is to be
found as an INTERNAL within this file. The list of
tokens after the ENTRY construction is mainly
used for LIBRARYs rather than LOAD!MODULEs,
and we do not discuss the difference here, since
LIBRARYs _are not much used in system building
due to the difficulty in constructing them.

Afew important remarks about LOAD!MODULES:
1) The wuse o f LOAD'MODULES
depends on the loaders (LOADER and

46

SAIL TUTORIAL

LINK10) that are available on the system.
In particular, there is no way to associate
an external symbol with a particular
LOADIMODULE.

2) The names of identifiers are
limited to six characters, and the
character set permissible is slightly less
than might be expected. The" ':::ymbol "

is, for example, mapped into "." in global
symbol requests.

3) The “semantics” of asymbol
(e.g., whether the symbol names an
integer or a string procedure) is in no
way checked during loading.

Initialization routines in a LOAD!MODULE can be
performed automatically by including a REQUIRE

INITIALIZATION procedure. For example,
suppose that INIT is asimple parameterless,
valueless procedure that does the initialization
for a given module:

SIMPLE PROCEDURE INIT;
BEGIN
.«sinitialization code...

END;

REQUIRE INIT INITIALIZATION;

will run INIT prior to the outer block of the main
program. It is difficult to control the order in
which initializations are done, so it is advisable
to make initializations that do not conflict with
each other.

8.2 Source Files

In addition to the ability to compile programs
separately, Sail allows a single compilation to be
made by inserting entire files into the scan
stream during compilation. The construction:

REQUIRE "FILENM.SAI" SOURCE!FILE;

inserts the text of file FILENM.SAl into the stream
of characters being scanned--having the same
effect that would be obtained by copying all of
FILENM.SAI into the current file.

One pedestrian use of this is to divide afile into
smaller files for easier editing. While this can be
convenient, it can also unnecessarily fragment a
program into little pieces without purpose.

AL TUTORIAL

There are, however, some real purposes of the
SOURCEIFILE construction in systems building.
One use is to include code that is needed in
several places into one file, then “REQUIRE” that
file in the places that it is needed. Macros are a
common example. + For example, a file of global
definitions might be put into a file MACROS.SAI:

REWIRE “"<><>" DELIMITERS;

DEFINE RRRAYSIZE=<189>,
NUMBEROFSTUDENTS=<200>,
FILENAME=<"FIL.DAT">;

A common use of source files is to provide a
SOURCE'FILE that links to a load module: the
source file contains the EXTERNAL: declarations
for the procedures (and data) to be found in a
module, and also requires that file as a load
module. Such a file is sometimes called a
“header” file. Consider the file XSCAN.HDR for
the above XSCAN load module:

EXTERNAL STRING PROCEDURE XSCAN(STRING S);
REQUIRE "XSCAN" LORD !MODULE;

The use of header files ameliorates some of the
deficiencies of the loader: the header file can,
for example, be carefully designed to contain the
declarations of the EXTERNAL procedures and
data, reducing the likelihood of an error caused
by misdeclaration. Remember, if you declare:

INTERNAL STRING PROCEDURE XSCAN (STRING S);
BEGIN END;

in one file and
EXTERNAL INTEGER PROCEDURE XSCAN(STRINGS);

in another, the correct linkages will not be made,
and the program may crash quite strangely.

8.3 Macros and Conditional Compilation

Macros, especially those contained in global
macro files, can assist in system building.
Parameters, file names, and the like can be
"macroized".

Condition-al compilation also assists in systems
building by allowing the same source files to do
different things depending on . the setting of
switches. For example, suppose a file FILE is
being used for both a debugging and a
“product ion” version of. the same module. We
can include a definition of the form:

Systems Building in Sail

DEFINE DEBUGGING=<FALSE>;
COMMENT faise i f not debugging;

and then use it

IFCR DEBUGGING THENC
PRINT("Now at PROC PR ",I," ",J,CRLF); ENDC

(See Section 7 on conditional compilation for
more details.) In the above example, the code will
define the switch to be FALSE, and the PRINT
statement will not be compiled, since it is in the
FALSE consequent of an IFCR . ..THENC. In using
switches, it is common that there is a default
setting that one generally wants. The following
conditon al compilation checks to see if
DEBUGGING has already been defined (or
declared), and if not, defines it to be false. Thus
the default is established.

IFCR NOT DECLARATION (DEBUGG ING) THENC
DEFINE DEBUGGING=<FALSE>; ENDC

Then, another file, inserted prior to this one, sets
the compilation mode to get the DEBUGGING
version if needed.

Macros and conditional compilation also allow a
number of complex compile-time operations, such
as building tables. These are beyond our
discussion here, except to note that complex
macros are often used (overused?) in systems
building with Sail.

47

Sail and ALGOL W Comparison

APPENDIX A
Sail and ALGOL W Comparison

There are many variants of ALGOL. This
Appendix will cover only the main differences
between Sail and ALGOL W.

The following are differences in terminology:

ALGOL W Sail

|- Rssignment operator -

o Exponentiation operator t

-= Not equal = or NEQ
<e Less than or equal < or LEQ
>= Greater than or equal 2 or GEQ
REM Division remainder operator MOoD

END. Program end END
RESULT Procedure parameter type REFERENCE
str(i}j) Substrings strli+l for jl
STRING(i) s String declarations STRING 8
arry (1) Array subscript arry (1)
arry (1::18) Array declaration arry tl: 18}

The following are not available in Saik
ODD ROUND ENTIER

TRUNCATE Truncation is default conversion.

WRITE,HRITEON Use PRINT statement for both.

REROON Use INPUT, RERLIN, INTIN.
Block expressions

Procedure expressions

Use RETURN statement
in procedures.

Other differences are:

1) lIteration variables and Labels must be
declared in Sail, but the iteration variable is
more general since it can be tested after
the loop.

2) STEP UNTIL cannot be left out in the FOR-
statement -in Sail.

3) Sail strings do not have length declared and
are not filled out with blanks.

4) EQU not = is used for Sail strings.
48

SAIL TUTORIAL

5) The first case in the CASE statement in Sail is
0 rather than 1 as in ALGOL W. (Note that

Sail also has CASE expressions.)

6) <, = and > will not work for alphabetizing
Sail strings. They are arithmetic operators
only.

7) ALGOL W parameter passing conventions
vary slightly from Sail. The ALGOL W
RESULT parameter is close to the Sail
REFERENCE parameter, but there is a
difference, in that the Sail REFERENCE
parameter passes an address, whereas the
ALGOL W RESULT parameter creates a copy
of the value during the execution of the
procedure.

8) A FORWARD PROCEDURE declaration is
needed in Sail if another procedure calls an
as yet undeclared procedure. Sail is a one-
pass compiler.

9) Sail uses SIMPLE PROCEDURE, PROCEDURE,
and RECURSIVE PROCEDURE where ALGOL
has only PROCEDURE (equivalent to Sail’s
RECURSIVE PROCEDURE).

10) Scalar variables in Sail are not cleared on
block entry in non-RECURSIVE procedures.

11) Outer block arrays in Sail must have
constant bounds.

12) The RECORD syntax is
different. See below.

considerably

Sail features (or improvements) not in ALGOL W:
a) Better string facilities with more flexibility.
b) More complete RECORD structures.

c) Use of DONE and CONTINUE statements for
easier control of loops.

d) Assignment expressions for more compact
code.

e) Complete /O facilities.

f) Easy interface to machine instructions.

SAIL TUTORIAL

The following compares Sail and ALGOL W

records in several important aspects.

ALGOL H

Declaration
of class

Declaration of
record point

Empty record

Fields of record

RECORD!CLASS

RECORD !POINTER
or |
Pointers can be

RECORD

REFERENCE

pointers must

several classes or be to one

ANY !CLASS

Reserved uord
NULL!RECORD

Use brackets

llust use
CLRSS: brfore the
field name

class

Reserved uord
NULL

Use parens

Don’ t use
class name
before field

Sail and ALGOL'W Comparison

REFERENCES

—_

. Reiser, John (ed.), Sail, Memo AIM-289,
Stanford Artificial Intelligence Laboratory,
August 1976.

[\

. Frost, Martin, UUO Manual (Second Edition),
Stanford Artificial Intelligence Laboratory
Operating Note 55.4, July 1975.

. Harvey, Brian (M. Frost, ed.), Monitor Command
Manual, Stanford Artificial Intelligence
Laboratory Operating Note 54.5, January
1976.

w

4. Feldman, J.A., Low, J.A., Swinehart, D.C.,
Taylor, R.H., “Recent Developments in Sail”,
AFIPS FJCC 1972, p. 1193-1202.

. DECSYTEMIO Assembly Language Handbook
(3rd Edition), Digital Equipment Corporation,
Maynard, Massachusetts, 1973.

(6)]

»

. DECSYSTEM10 Users Handbook (2nd Edition),
Digital Equipment Corporation, Maynard,
Massachusetts, 1972.

7. Myer, Theodore and Barnaby, John, TENEX
EXECUTIVE Manual (revised by William
Plummer), Bolt, Beranek and Newman,
Cambridge, Massachusetts, 1973.

8. JSYS Manual (2nd Revision), Bolt, Beranek and
Newman, Cambridge, Massachusetts, 1973.

49

INDEX

INDEX

ISKiIP! 30
& 12

ALGOL 48

allocation 15

Altmode 30
ANY!CLASS 41
Arguments 20

array 4, 7

arrays 15, 16, 38
ARRCLR ‘15

ARRYIN 33, 38
ARRYOUT 33, 39
assignment expressions 10
assignment operator 10
Assignment statements 5

BEGIN 2

binary format files 38
bits 36

block 2

block name 14

blocks 9, 13

BOOLEAN 2

boolean expression 8
break character 27, 30, 38
break tables 27

built-in procedures 6, 19

CASE expressions 11
CFILE 34

channel 34, 37

channel number 31
CHARIN 38

CHAROUT 39
Commenting’ 44

compile time 15
compound statement 9
Conditional compilation 44
condition al expressions 11
conditionals 7

connected directory 36

, constants 3

CONTINUE - 18

control statements 7
controlling-terminal 30, 36
CPRINT 39

crif 30’

CVD 6

50

data 38
deallocation 15
debugging 44
Declarations 2
DEFINE 25
delimiters 25
directory devices 31, 32
DIRST 37
DO..UNTIL 17
DONE 18
dynamic 15 ,

ELSEC 44
emulator 1

END 2

end-of-file 37, 38
ENDC 44

ENTER 32
ENTRY 46

eol 30

EQU §, 11 ,
equality 8

error handling 35
expression 5, 6
expressions 10
EXTERNAL 30, 45

FALSE 2

fields 40

file bytepointer 38
file name 32

files 30

flag specification 36
FOR statement 15
format 4

FORWARD 2 1

free format 4

garbage collections 12
GETBREAK 2 7
GETCHAN 3 1

GJINF 37

global 14

GTJFN 35

GTJFNL 35

half word format 36

/O 30

identifiers 3

IF.THEN statement 7
IFCR 44

INCHWL 6, 30
indefinite iteration 17

SAIL TUTORIAL

SAIL_TUTORIAL

INDEXFILE 35
initialization 15
Initialization routines 46
I N P U T27,37
input/output 30, 31
INTEGER 2

INTIN 3 8

INTSCAN 2 9

INTTY 3 0

iteration variable 16

JFNS 37

LENGTH 12

line terminators 28
line-editing 30
LOAD!MQDULE 4 5
LOADER 45

local 14 °

login directory 36
LOOKUP 32

LOP 12

lowercase 4

macro expansion 25
macros 25

modularity 45

MTAPE 33
multi-dimensioned arrays 4
multiple file designators 35

nested 9, 14
NEW!RECORD 4.0
NUL character 13
NULL 3

octal representation 36
OPEN 31

OPENFILE 3 4

order of evaluation 10
outer block 2

CWN 1 5

PA1050 1

parallel arrays 4
parameter list 20
parameterized procedure 20
parent hesized 11
predeclared identifiers 3
PRINT 6

PRINT statement 25
procedure 19
procedure body 21
procedure call 19

random /O 38

RCHPTR 38

read error 37

REAL 2

REALIN 3 8
REALSCAN 2 9
RECORDICLASS 40
RECORD!POINTER 40
Records 40
RECURSIVE 15, 21
REFERENCE 24
reinitialization 15
RELEASE 32
RENAME 32
reserved words 2, 3
RETURN statement 21
runtime 1 5

scalar variables 15
SCAN 27

scanner 25

SCHPTR 38

scope of the variable 14
search path 36
semi-colon 8
sequential I/O 38
SETBREAK 2 7
SETFORMAT 13
SETINPUT 3 4

SETPL 37

SETPRINT 3 0
side-effect 23
SIMPLE 21

SINI 3 8

SOS line numbers 28
SOURCEIFILE 47
SQRT 6

Statements 2
statements 5
Storage allocation 15
STRING 2

string descriptor 12
STRING operators 11
string space 12
strings 27
subscripts 5
substrings 12

tables 13
Teletype 1/0 30
TENEX Sail 1
THENC 44
TOPS-10 Sail 1
TRUE 2

TTY: 36

type conversion 6

INDEX

51

INDEX

typed procedures 22

untyped procedures 22
uppercase 4, 20, 28, 30
USETI 3 3
USETO 3 3

VALUE 24
variables 3, 14

WHILE..DO 1 7

WORDIN 33, 38
WORDOUT 33, 39

52

SAIL TUTORIAL

