
i

Stanford Artificial Intelligence Laboratory October 1976
Memo AIM-290

Computer Science Department
Report No. STAN-B-760575

Length: 19 ft. /

Beam: 6 ft. 6 in. HEADBOARD at \
| pratt: 4 tt. 112 in. / \

Weight: 700 Ibs. minimum / : |
+] JUMPER STRUTS

BATTEN POCKET —_/ FT

BACKSTAY ——. . | be JIB

| TILLER fmm Jy |] /| MOORING CLEAT

| ; DN: — ; »RTRtea!pes BME _

NO a N SPLASHBOARDS

CENTERBOARD TRUNK

jy ~~ CENTERBOARD

Research sponsored by

National Institutes of Health

and

Advanced Research Projects Agency
ARPA Order No. 2494

COMPUTER SCIENCE DEPARTMENT

Stanford University

#

1

Ir

St anford Artificial Intelligence Laboratory October 1976
Memo AIM-290

Computer Science Department

Report No. STAN-G-76-575

SAIL TUTORIAL

by

Nancy W. Smith
SUMEX-AIM Computer Project

Department of Genetics

Stanford University Medical Center

4

ABSTRACT

This TUTORIAL 1s designed for a beginning user of Sail, an ALGOL-like language for the
PDP 10. The first part covers the basic statements and expressions of the language; remaining
topics include macros, records, conditional compilation, and mmput/output. Detailed examples of
Sail programming are included throughout, and only a minimum of programming background is
assumed.

This -manual was prepared as part of the SUMEX-AIM computing resource supported by
the Biotechnology Resources Program of the National Institutes of Health under grant RR-

| 00735. Printing and preparation for publication were supported by ARPA under Contract
M DA903-76-C-0206.

The views and conclusions contained in this document are those of the author(s) and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of Stanford
University, NIH, ARPA, or the V. S. Government.

Reproduced in the U.S.A. Available from the National Technical Information Service, Springfield,
Virginia 2216 1.

L___

SAIL TUTORIAL TABLE OF CONTENTS

TABLE OF CONTENTS

1 The Load Module 45
2 Source Files 46

| 3 Macros and Conditional Compilation 47
SECTION PAGE

APPENDIX A: Sail and ALGOL W Comparison
48

1 Int roduction |

REFERENCES 49

2 The ALGOL-Part of Sail 2
INDEX 50

| Blocks 2

2 Declarations 2

3 Statements 5

4 Expressions 10
5 Scope of Blocks . 13
6 More Control Statements 15

7 Procedures 19

3 Macros 25

4 String Scanning 27

5 Input/Output 30

[, Simple Terminal I/O 30
2 Notes on Terminal I/O for TENEX Sail Only

30

3 Setting Up a Channel for I/O 30
4 Input from a File 37
5 Output to a File 39

6 Records 40

| Declaring and Creating Records 40
2 Accessing Fields of Records 41
3 Linking Records Together 41

7 Condition al Compilation 44

I—

|

SAIL TUTORIAL’ Introduction

SECTION 1 language. If you have no programming
experience, you may need help getting

Introduction started even with this TUTORIAL. Sail is
"based on ALGOL so the general concepts

and most of the actual statements are the

same in what is often called the “ALGOL

part” of Sail. The major additions to Sail
The ‘Sail manual [1] is a reference manual are its input/output routines. Appendix
containing complete information on Sail but may A contains a list of the differences
be difficult for a new user of the language to between the ALGOL W syntax and Sail.

work with. The purpose of this TUTORIAL * is to
introduce new users to the language. It does not Programs written in standard Sail (which will
deal in depth with advanced features like the henceforth be called TOPS-10 Sail) will usually
LEAP portion of Sail; and uses pointers to the run on a TENEX system through the emulator

. relevant portions of the manual for some (PA1050) which simulates the TOPS-10 UUOQ’s,
descriptions. eFollowing the pointers and reading but such use is quite inefficient. Sail also has a
specific ‘portions of the manual will help you to version for TENEX systems which we refer to as
develop some familiarity with the manual. After TENEX Sail. (The new TOPS-20 system is very
you have gained some Sail programming similar to TENEX; either TENEX Sail or a new Sail
experience, it will be worthwhile to browse version should be running on TOPS-20 shortly.)
through the complete reference manual to find a Note that the Sail compiler on your system will
variety of more advanced structures which are be called simply Sail but will in fact be either the
not covered in the TUTORIAL but may be useful TENEX Sail or TOPS-10 Sail version of the
in your particular programming tasks. The Sail compiler. Aside from implementation differences
manual also covers use of the BAIL debugger for which will not be discussed here, the language
Sail. differences are mainly in the input/output (I/O)

routines. And of course the system level
The TUTORIAL is not at an appropriate level for commands to compile, load, and run a finished
a computer novice. The following assumptions program differ slightly in the TENEX and TOPS-
are made about the background of the reader: 10 systems.

1) Some experience with the PDP-
10 including knowledge of an editor,
understanding of the file system, and
familiarity with routine utility programs
and system commands. If you are a new
user or have previous experience only
on a non-timesharing system, you should
read the TENEX EXEC MANUAL [7] (for
TENEX systems) or the DEC USERS
HANDBOOK [6] (for standard TOPS-10
systems) or the MONITOR MANUAL [3]
and UUO MANUAL [2] (for Stanford Al
Lab users). In addition, you might want
to glance through and keep ready for
reference: the TENEX JSYS MANUAL [8]
and/or the DEC ASSEMBLY LANGUAGE

HANDBOOK [5])} Also, each POP-10
system usually has its own introductory
materiel for new users describing the _

operation of the system. * | would like to thank Robert Smith for editing
the final version; and Scott Daniels for his

2) Some experience with a contributions to the RECORD section. John
programming language--probably Reiser, Les Earnest, Russ Taylor, Marney Beard,
FORTRAN, ALGOL or an assembly and Mike Hinckley all made valuable suggestions.

|

The ALGOL-Part of Sail SAIL TUTORIAL

SECTION 2 . which will print out on the terminal:

The ALGOL-Part of Sail . SQUARE ROOT OF § IS 2.236668 .

2.1 Blocks 2.2 Declarations

Sail is a block-ttructurod language. Each block A list of all the kinds of declarations is given in
has the form: the Sail manual (Sec. 2.1). In this section we will

cover typo declarations and array declarations.
BEGIN Procedure declarations will be discussed in

Section 2.7. Consult the Sail manual for

. <declarations> details on all of the other varieties of

| | . declarations listed.

| 2.2.1 Type Declarat ions
«<statements>

The purpose of type declarations is to tell the
: compiler what it needs to know to set up the

storage locations for your data. There are four
END data types available in the ALGOL portion of Sail:

Your entire program will be a block with the 1) INTEGERSare counting numbers
above format. This program block is a somewhat like -1, 0, 1, 2, 3, etc. (Note that commas
special block called the outer block BEGIN and cannot be used in numbers, e.g., 15724
END are reserved words in Sail that mark the not 15,724;)
beginning and end of blocks, with the outermost
BEGIN/END pair also marking the beginning and 2) REALs are decimal numbers like
end of your program. (Reserved words are -1.2, 3.14159, 100087.2, etc.
words that automatically mean something to Sail;
they are called “reserved” because you should 3) BOOLEANs ‘are ' assigned the
not try to give them your own meaning.) values TRUE or FALSE (which are

reserved words). These are predefined

Declarations are used to give the compiler for you in Sail (TRUE = -1 and FALSE =
information about the data structures that you 0).
will be using so that the compiler can set up
storage locations of the proper types and 4) STRINGs are a data type not
associate the desired name with each location. found in all programming languages.

Very often what you will be working with
Statements form the bulk of your program. They are not numbers at all but text. Your
are the actual commands available in Sail to use program may need to output text to the
for coding the task at hand. user's terminal while he/she is running

| the program. It may ask the user
| . All declarations in each block must precede all questions and input text which is the

statements in that block Here is a very simple answer to the question. It may in fact
one-block program that outputs the square root process whole files of text. One simple

+ of 5b: example of this is a program which works
| with a file containing a list of words and

BEGIN outputs to a new file the same list of
DECLARATIONS =a> INTEGER i; words in alphabetical order. It is

REAL x;. possible to do these things in languages
STATEMENTS ==> ie 5; with only the integer and real data types

Xx « SQRT (i); but very clumsy. Text has certain
PRINT ("SQUARE ROOT OF", i, properties different from those of

"IS *, x); numbers. For example, it is very useful
END

| 2

SAIL TUTORIAL The ALGOL-Part of Sail

to be able to point to certain of the expression like 2 + 31 + 25 + 5 you need an
characters in the text and work with just expression like X+Y+2Z+W or
those temporarily or to take one letter WEEK1 + WEEK2 + WEEKS + WEEK4. This is done
off of the text at a time and process it. by declaring (through a declaration) that you will
Sail has the data type STRING for holding need a variable of a certain data type with a
“strings” of text characters. And specified name. The compiler will set up a
associated with the STRING data type are storage location of the proper type and enter
string operations that work in a way the name and location in its symbol table. Each
analogous to how the numeric operators time that you have an intermediate result which
(+,-,%, etc.) work with the numeric data needs to be stored, you must set up the storage
types. We write the actual strings location in advance. When we discuss the
enclosed in quotation marks. Any of the various statements available, you will see how
characters in the ASCII character set can values are input from the user or from a file or
be used in strings (control characters, saved from a computation and stored in the
letters, numerals, punctuation marks). appropriate location. The names for these
Some examples of strings are: variables are often’ referred to as their

identifiers. identifiers can be as long (or short)
“OUTPUT FILE=" as you want. However, if you will be debugging
“HELP” with DDT or using TOPS-10 programs such as
"Please type your name." the CREF cross-referencing program, you should
“aardvark’ make your identifiers unique to the first six
“8123456789” characters, i.e., DDT can distinguish LONGSYMBOL
RLY 47% from LONGNAME but not from LONGSYNONYM
"RaBbCcDdEeF ¢" because the first 6 characters are the same.

Identifiers must begin with a letter but following
no (the empty string) that can be made up of any sequence of letters
NULL (also the @ pty string) and numbers. The characters ! and $§ are

considered to be letters. Certain reserved words

Upper and lowercase letters are not and predeclared identifiers are unavailable for
= equivalent in strings, i.e. "a" is a use as names of your own identifiers. A list of

different string than “A”. (Note that to these is given in the Sail manual in Appendices B
put a "in a string, you use *", e.g., “quote and C.
a “word”““.)

Typical declarations are:
in your programs, you will have both variables
and constants. We have already given some INTEGER i, j,k;
examples of constants in each of the data types. REAL x,y,2;
REAL and INTEGER constants are just numbers as STRING s, t;
you usually see them written (2, 618, -4.35, etc.);
the BOOLEAN constants are TRUE and FALSE; and where these are the letters conventionally used
STRING constants are a sequence .of text as identifiers of the various types. There is no
characters enclosed in double quotes (and NULL reason why you couldnt have INTEGER xj REAL i;
for the empty string). except that other people reading your program

might be confused. In some languages the letter
Variables are used rather than constants when used for the variable automatically tells its type.
you know that a value will be needed in the This is not true in Sail. The type of the variable
given computation but do not know in advance is established by the declaration. In general,
what the exact value will be. For example, you simple one-letter identifiers like these are used
may want to add 4 numbers, but the numbers for simple, straightforward and usually
will be specified by the user at runtime or taken temporary purposes such as to count an
from a data file. Or the numbers may be the iteration. (ALGOL W users note that iteration
results of previous computations. You might be variables must be declared in Sail.)
computing weekly totals and then when you have
the results for each week adding the four weeks Most of the variables in your program will be
together for a monthly total. So instead of an declared and used for a specific purpose and the

| 3

The ALGOL=Part of Sail SAIL TUTORIAL

name you specify should reflect the use of the
variable.

2.2.2 Array Declarations
INTEGER nextlord, pagolcount;

REAL to ta |, subTota |; An array is a data structure designed to let you
STRING lastname, firstname; deal with a group of variables together. For
BOOLEAN partial, abortSwiteh, outputsw; example, if you were accumulating weekly totals

over a period of a year, it would be cumbersome
Both upper and lowercase fetters are equivalent to declare: .
in identifiers and so the case as well as the use

of ! and 8 can contribute to the readability of REAL weekl, neek2,ueek3,.... . ,week52;
your programs. Of course, the above examples
contain a mixture of styles; you will want to and then have to work with the 52 variables

choose some style that looks best to you and each having a separate name. instead you can
use it consistently. The equivalence’ of upper declare:
and lowercase also means that

REAL ARRAY weeks (1: 521;
TOTAL| total | Tota | toTal] etc.

The array declaration consists of one of the data
are all instances of the same identifier. So that type words (REAL, INTEGER, BOOLEAN, STRING)
while it is desirable to be consistent, forgetting followed by the word ARRAY followed by the
occasionally doesn’t hurt anything. identifier followed by the dimensions of the

array enclosed in [Js. The dimensions give the
Some programmers use uppercase for the bounds of the array. The lower bound does not
standard words ‘like BEGIN, INTEGER, END, etc. need to be 1. Another common value for the
and lowercase for their identifiers. Others lower bound is 0, but you may make it anything
reverse this. Another approach is uppercase for you like. (The LOADER will have difficulties if the
actual program code and lowercase for lower bound is a number of large positive or
comments. It is important to develop some style negative magnitude.) You may declare more than
which you feel makes your programs as easy to one array in the same declaration provided they
read as possible. are the same type and have the same

dimensions. For example, one array might be
Another important element of program clarity is used for the total employee salary paid in the
the format, The Sail compiler is free format week which will be a real number, but you might
which means that blank lines, indentations, extra also need to record the total employee hours
spaces, etc. are ignored. Your whole program worked and the total profit made (one integer
could be on one line and the compiler wouldn’t and one real value) so you could declare:
know the difference. (Lines should be less than
250 characters if a listing is being made using INTEGER ARRAY hours [1:52];
the compiler listing options.) But programs REAL RRRAY salaries, profits [1152];
usually have each statement and declaration on a
separate line with all lines of each block These 3 arrays are examples of parallel arrays.
indented the same number of spaces. Some
programmers put BEGIN and END on lines by it is also possible to have multi-dimensioned
themselves and others put them on the closest arrays. A common example is an array used to
line of-code. It is very important to format your represent a chessboard:
programs so that they .are easy to read.

INTEGER ARRAY chessboard {1:8,1:8);

1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8
- 2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8

8,1 8,2 83 8,4 8,5 8,6 8,7 8,8

4

SAIL TUTORIAL The ALGOL-Part of Sail

In fact even the terminology used is the same. that an expression can be evaluated. It is a
Arrays, like matrices and chessboards, have rows symbol or sequence of symbols that when
(across) and columns (up-and-down). Arrays evaluated produces a value that can be assigned,
which are statically allocated (all outer block and used in a computation, tested (e.g. for equality
OWN arrays) may have at most 5 dimensions. with another value), etc. An expression may be
Arrays which are allocated dynamically may have
any number of dimensions. a) a constant

Each element of the array is a separate variable b) a variable
and can be used anywhere that asimple variable
can be used. We refer to the elements by giving ¢) a construction using constants,
the name of the array followed by the particular variables, and the various operators on
coordinates (called the subscripts) of the given them.
element enclosed in [J's,for example: wesksi34l,
weeks [27], chessboard (2,51 | and chessboard (8,8).

Examples of these 3 types of expressions in
assignment statements are:

2.3 Statements DON'T FORGET TO DECLARE VARIABLES. FIRST!

All of the statements available in Sail are listed INTEGERi, 3

in the Sail manual (Sec. 1.1 with the syntax for RERL x,y;
the statements in Sec. 3.1). For now, we will STRING s, 1;
discuss the assignment statement, the PRINT BOOLEANisn, 08K, {osK;
statement, and the IF..THEN statement which will INTEGER RRRAY wry (1:18);
allow us to give some sample programs.

A) | «2 COtItIENT now i =2;

2.3.1 Assignment St at ement X & 2.4; COMMENT nou x = 2.4;
s + "abc"; COMMENT now EQU (s, "abe")

Assignment statements are used to assign values is« TRUE; COMMENT now isu= TRUE;
to variables: osi o FALSE ; COMMENT now osu= FALSE;

arryldl « 22; COtItIENT now arrylé)= 22;
var (8b lo « express ion

b) J + ij COMMENT now i = j = 2;

The variable being assigned to and the Y *%; COMMENT nom x = y = 2. 4;
expression whose value. is being assigned to it tes COMMENT now EPU (s,"abc")
are separated by the character which is a AND EQU(t,"abc");
backwards arrow in 1965 ASCII (and Stanford ® mys. j; COMMENTis jearry [8]=2;
ASCII) and is anunderbar (underlining character)
in 1968 ‘ASCIl. The assignment statement is €) | « j+ by COMMENT j= 2 AND i = 6;
often read as: X «24 = |; COMMENT y=2.4 AND i=6

AND x = -1.2;

variablebecomes @® xprossion arryl(3} « i/j; COMMENT i=6 A N D j=2
OR variable is assigned thevalus of ® xprosrion AND arry [3] =3;
OR variabiegets @® xprossion iosw eo isu OR otu; COtItIENT isu = TRUE

AND osw = FALSE

You may assign values to any of the four types AND iosw = TRUE;
of variables (INTEGER, REAL, BOOLEAN, STRING)
or to the individual variables in arrays. NOTEL: Most of the operators for strings

are different than those for the

Essentially, an expression is something that has a "arithmetic variables. The difference
value. An expression is not a statement between = and EQU will be covered
(although we will see later that some of the later.
constructions of the language can be either
statements or . expressions depending on the NOTE2: Logical operators such as AND
current use). It is most important to remember and OR are also available for

boolean expressions.

5

SE

The ALGOL-Part of Sail SAIL TUTORIAL

NOTE3: You may put “comments” NOTE: The printing format for reals
anywhere in your program by using (number of leading zeroes printed
the word COMMENT followed by the and places after the decimal point)
text of your comment and ended is discussed in the Sail manual under
with a semi-colon (no semi-colons type conversions.
can appear within the comment).
Generally comments are placed
between declarations or statements

rather than inside of them. 2.3.3 Built-in Procedures

NOTEA4: In all our examples, you will see Using just the assignment statement, the PRINT
that the declarations and statements statement, and three built-in procedures, we can
are separated by semi-colons. write a sample program. Procedures are a very

important feature of Sail and you will be writing
In a later section,” we will discuss: 1) type many of your own. The details of procedure
conversion which occurs when the data types of writing and use will be covered in Section
the variable and the expression are not the 2.7. Without giving any details now, we will
same, 2) the order of evaluation in the just say that some procedures to handle very
expression, and 3) many more complicated common tasks have been written for you and are
expressions including string expressions (first we available as built-in procedures. The SQRT,
need to know more of the string operators). INCHWL and CVD procedures that we will be

using here are all procedures which return
values. Examples are:

2.3.2 PRINT Statement s . INCHULg
| « CVD(s);

PRINT is a relatively new but very useful x « 2 + SORT (i);
statement in Sail. It is used for outputting to the
user's terminal. You can give it as many Procedures may have any number of arguments
arguments as you want and the arguments may (or none). SQRT and CVS have a single argument
be of any type. PRINT first converts each and INCHWL has no arguments (but does return a
argument to a string if necessary and then value). The procedure call is made by writing
outputs it. Remember that only strings can be the procedure name followed by the argument(s)
printed anywhere. Numbers are stored in parentheses. In the expression in which it is

"internally as 36-bit words and when they are used, the procedure call is equivalent to the
output in 7-bit bytes for text the results are value that it returns.
very strange. Fortunately PRINT does the
conversion to strings for you automatically, e.g., SQRT returns the square root of its
the number 237 is printed as the string “237”. argument.
The format of the PRINT statement is the word

PRINT followed by a list of arguments separated CVD returns the result of converting its
by commas with the entire list enclosed in string’ argument to an integer. The
parent hoses. Each argument may be any string is assumed to contain a
constant, variable, or complex expression. For number in decimal representation--
example, if you wanted to output the weekly CVO converts strings containing
salary totals from a previous example and the octal numbers, e.g., after executing
number of the current week was stored in

INTEGER curNeek, YOU might use: | + CVD("14724");) « CVO("14724");

PRINT ("MEEK ", curlesk, then the following
"t Salaries “, sale ries{curleskl);

| | a 14724 AND }= 6612

which for _curHeek =28 and the array element
ooo rin281 «27543.82 would print out: would be true.

WEEK 28:Salaries 27543.82 INCHWL returns the next line of typing

6

SAIL TUTORIAL The ALGOL-Part of Sail

from the user at the controlling
terminal. numb « CW (INCHHL)

NOTE: In TENEX-Sail the INTTY procedure and eliminate the declaration of the STRING reply.
is available and SHOULD be used in Next we can eliminate numb and take the sort

preference to the INCHWL procedure directly:
for inputting lines. This may not be
mentioned in every example, but is nooooe « SART (CVD (INCHHL));
very important for TENEX users to
remember. At first you might think that we could go a step

further to

+ So, for the statement s . INCHUL;, the value of

INCHWL Will be the line typed at the terminal PRINT ("ANS: *,SQRT(CVD (INCHNL)));
(minus the terminator which is usually carriage
return). This value is a string and is assigned and we could as far as the Sail syntax is
here to the string variable s. concerned but it would produce a. bug in our

program. We would be printing out *aNS:" right
So far we have seen five uses of expressions: as after "Type number: * before the user would have
the right-hand-side of the assignment statement, time to even start typing. But we have
gs an actual parameter or argument in a considerably simplified our program to:
procedure call, as an argument to the PRINT
statement, for giving the bounds in an array BEGIN
declaration (except for arrays declared in the RERL rqroot
outer block which must have constant bounds), PRINT (“Typo number:®);
and for the array subscripts for the elements of sqroot « SART (CVD (INCHHL));
arrays. In fact the whole range of kinds of PRINT ("ANS:",sqroot) ; |
expressions can be used in nearly all the places END;
that constants and variables (which are
particular kinds of expressions) can be used. Remember that intermediate results do not need
Two exceptions to this that we have already to be stored unless you will need them again
seen are 1) the left-hand-side of the assignment later for something else. By not storing results
statement (you can assign avalue to a variable unnecessarily, you save the extra assignment
but not to a constant or a more complicated statement and the storage space by not needing
expression) and 2) the array bounds for outer to declare a variable for temporary storage.

block arrays which come at a point in the
program before any assignments have been
made to any of the variables so only constants

may be used--the declarations in the outer block 2.3.4 IF..THEN sc.c ement
are before any program statements at all.

The previous example included no error
In general, any construction that makes sense to checking. There are several fundamental
you is probably legal in’ Sail. By using some of programming tasks that cannot be handled with
the more complicated expressions, , you can save just the assignment and PRINT statements such
yourself steps in your program. For example, as 1) conditional tasks like checking the value of

\ a number (is it negative?) and taking action
BEGIN according to the result of the test and 2) looping
RERL sgroot; or iterative tasks so that we could go back to .
INTEGER numb; the beginning and ask the user for another

STRING reply; number to be processed. These sorts of
PRINT ("Type number: "); functions are performed by a group of
reply INCHUL statements called control statements. In this
numb«eCVD (reply); section we will cover the IF.. THEN statement for
sqroo t «SART (numb); conditionals. More advanced control statements

PRINT ("ANS » sqroot)} will be discussed in Section 2.6.}

There are two kinds of IF..THEN statements:

can be shortened by several steps. First, we
can combine INCHUL with CVD: IF boolean rxprrssion THEN statement

7

The ALGOL-Part of Sail SAIL TUTORIAL

' IF boolean expression THEN statement COMMENT i=3 RAND j=2;
ELSE rtatrmnt END;

A boolean expression is an expression whose It is VERY IMPORTANT to note that NO semi-colon
value is either true or false. A wide variety of appears between the statement and the ELSE.
expressions can effectively be used in this Semi-colons are used a) to separate declarations
position, Any arithmetic expression can be a from each other, b) to separate the final
boolean; if its value = 0 then it is FALSE. For any declaration from the first statement in the block,
other value, it is true. For now we will just ¢) to separate statements from each other, and
consider the following three cases: d) to mark the end of a comment, The key point

to note is that semi-colons are used to separate
1) BOOLEAN variables (where and NOT to terminate. In some cases it doesn’t

® rorsu, base8, and miniVersion are hurt to put a semi-colon where it is not needed.
declared as BOOLEANSs): For example, no semi-colon is needed at the end

of the program but it doesn’t hurt. However, the
IF @rrorsw THEN format

PRINT("There’s been a n errer.")

IF bas®8 THEN dig i ts « “91234567 IF ® xprossion THEN statement; ELSE statement;
ELSE digits . "0123456789" ;

IF miniVersion THEN counter « 18 makes it difficult for the compiler to understand
ELSE counter, +188; your code. The first semi-colon marks the end

of what could be a legitimate IF..THEN statement
2) Expressions with relational and it will be taken as such. Then the compiler

operators such as EQU, =<, >, LEQ, is faced with
NEQ, and GEQ:

ELSE statement;

. IF X < currentSmallest THEN
currentSmallest . xj . which is meaningless and will produce an error

rdivisor NEQ O ten message.
quotientedividend/divisor;

Fi GEQ O THEN leis) ELSE iei=4; The following is a part of a sample program
which uses several IF..THEN statements:

3) Complex expressions formed
with the logical operators AND, OR, and BEGIN BOOLEAN verbosesw; STRING reply;
NOT:

PRINT ("Verbose mode? (Typo Y or N):")g
FNOT ® rrorsw ten reply « INCHHL; COMMENT INTTY for TENEX;

® nsudrrkountrrl « quot ient;

IF XO OR y<0 THEN IF repliy="Y" OR reply="y" THEN verbosesu+ TRUE
PRINT ("Negative numbers not ® Ilotmd.“) ELSE
ELSE z « SORT (x)+SART(y); IF rapiy="N® OR reply="n" THEN verbosesw-FALSE;

In the IF..THEN statement, the boolean expression IF verbosesw THEN PRINT ("-long msg-")
is evaluated. If it is true then the statement ELSE PRINT ("-short msg-");

following the THEN is executed. If the boolean
expression is false and the particular statement COMMENT now all our messages printrd out to
has no ELSE part then nothing is done. If the terminal will be conditional on verbosesw;
boolean is false and there is an ELSE part then END;
the statement following the ELSE will ba
executed. There are two interesting points to note about

this sample program. First is the use of = rather
BEGIN BOOLEAN boo 3 INTEGER 1, }3 than EQU to check the user's reply. EQU is used
bool+TRUE; el; jel to check the equality of variables of type STRING
IF bool THEN ieiel; COMMENT i=2 AND jal; and = is used to check the equality of variables
IF bool-THEN iei+l ELSE je jel} of type INTEGER or REAL. If we were asking the

COMMENT i=3 AND j=l; user for a full word answer like “yes” or “no”
boolefaise; instead of the single character then we would
IF bool THEN iei+l; COMMENT is3 AND jal; need the EQU to check what the input string was.
IF bool THEN iei+l ELSE jej+l}

8

SAIL TUTORIAL The ALGOL-Part of Sail

However, in this case where we only have a tested in a nested IF...THEN statement. If that
single character, we can use the fact that when a likely case is true, no further testing will be
string (either a string variable or a string done.
constant) is put someplace in a program where
an integer is expected then Sail automatically To avoid ambiguity in parsing the nested
converts to the integer which is the ASCII code IF.THEN..ELSE construction, the following rule is
for the FIRST character in the string. For used: Each ELSE matches up with the last
example, in the environment unmatched THEN So that

STRING str; str « "RA"; F® xp THEN IF exp2 THEN sl ELSE $23

all of the following are true: will group the ELSE with the second THEN which
IS equivalent to

“A” = sir = 65 = *181

“A” NEQ “a” IF expd THEN
str NEP “a” BEGIN .

str +1 = “A” «1 = ‘182 = “8” IF exp2 THEN sl ELSE 82;
rtr = “Aardvark” END;
NOT EQU (str, “Aardvark *)

| and also equivalent to
(‘101 is an octal integer constant.)

| F® xpl AND@ xp2 THEN sl;
When you are dealing with single character IF®@ xpl AND NOT exp2 THEN 82;
strings (or are only interested in the first
character of a string) then you can treat them You can change the structure with BEGIN/ENDto:
like integers and use the arithmetic operators
like the = operator rather than EQU. In general F® xpl THEN
(over 90% of the time), EQU is slower. BEGIN

F® xp2 THEN 'sl

A second point to note in the above IF..THEN END ELSE 82;
example is the use of a nested F..THEN. The
statements following the THEN and the ELSE may which is equivalent to
be any kind of statement including another
IF. THEN statement. For example, IF sxpl AND exp2 THEN sl;

IF NOT sxpl THEN 823
IF upperOnly THEN letterses “ABC”

ELSE IF louerOniy THEN letters o "abc" There is another common use of BEGIN/END in
ELSE Isttsrs « "ABCabe™} IF-THEN statements. All the examples so far

have shown a single simple statement ‘to be
This is a very common construction when you executed. In fact, you often will have a variety
have: a small list of possibilities to check for. of tasks to perform based on the condition

. (Note: if there are a large number of cases to be tested for. For example, before you make an
checked use the CASE statement instead.) The entry into an array, you may want to check that
nested IF.THEN..ELSE statements save alot of you are within the array bounds and if so then
processing if used properly. For example, both make the entry and increment the pointer
without the nesting this would be: so that it will be ready for the next entry:

|F upperOniy THEN letters« "RBC"; IF pointerLEQ max THEN
|F tomerOniy THEN let ters« “abe; BEGIN
IF NOT upperOniyRND NOT lowerOniy THEN datalpointer) « newEntryj

letters « "RBCabe"; pointsrcpointrr 4 1;
END

Regardless of the values of upperOnly and ELSE PRINT("Array DATA is already full.“;;
lonerOnly, the -boolean expreselons in the three
IF..THEN statements need to be checked. In the Here we see the use of a compound statement.
nested version, if upperdniy is TRUE then towerOniy Compound statements are exactly, like blocks
will never be checked. For greatest efficiency, except that they have no declarations. It would

- the most likely case should be the first one also be perfectly acceptable to use ablock with |

9

The ALGOL-Part of Sail SAIL TUTORIAL

declarations where the compound statement is COMMENT updates ptr & fi IIs nrxt array
| used here. In fact both blocks and compound slot in single stop;

statements ARE statements and can be used ANY

place that a simple statement can be used. All of Note that the assignment operator has low
the statements between BEGIN and END are precedence and so you will often need to use

; executed asa unit (unless one of the statements parenthesizing to get the proper order of
itself . causes the flow of execution to be evaluation. This is an area where many coding
changed). errors commonly occur.

IF ie} OR boole THEN. . ..

2.4 Expressions is parsed like

We have already seen many of the operators IF ie(jOR boole) THEN.....
used in expressions. Sections 4 and 8 of the Sail
manual cover the operators, the’ order of rather than

evaluation of expressions, and type conversions.
Appendix. 1 of the manual gives the word IF Cie})OR boole THEN
equivalents for the single character operators,
e.g., LEQ for the less-than-or-equal-to sign, See the sections in the Sail manual referenced
which are not available except at SU-Al. You above for a more complete discussion of the
should read these sections especially for a order of evaluation in expressions. In general it
complete list of the arithmetic and boolean is the normal order for the arithmetic operators;
operators available (the string operators will be then the logical operators AND and OR (so that
covered shortly in this TUTORIAL). A short OR has the lowest precedence of any operator
discussion of type conversion will be given later except the assignment operator); and left to right
in #his section but you should also read these order is used for two operators at the same
sections in the Sail manual for complete details level (but the manual gives examples of

| on type conversions. exceptions). You can use parentheses anywhere
to specify the order that you want. As an

There are three kinds of expressions that we example of the effect of left-to-right evaluation,
. have not used yet: assignment, conditional, and note that
case expressions. These are much like. the
statements of the same names. Indexere«2;

arry [1 ndexer) « (indexereindexer+l); :

. 2.4.1 Assignment Expressions
will put the value 3 in ® ryt21, since the

Anywhere that you can have an expression, you destination is evaluated before indexer is
may at the same time make an assignment. The incremented.
value will be used as the value of the expression
and also assigned to the given variable. For A word of caution is needed about assignment
example: expressions. Make sure if you put an ordinary

assignment in an expression that that expression
IF (repiy+INCHHL)= "?* THEN is in a position where it will ALWAYS be
COMMENT inputs reply and makes first tort evaluated. Of course,

onlt In single step;
IF i<j THEN iei+l;

IF (counterecounter+l)» maxEntry THEN

COMMENT updates counter and chocks i t for will not always increment i but this is the
over'f low in one step; intended result. However, the following is

unintended and incorrect:

countereptrenextioce8;
COMMENT ini tializes several variables t 0 8 IF verbosesu THEN

- in one statement; PRINT("The square root of “,numb,” is ",
) sqrooteSART (numb) ,* . *)

arrylptreptrsil « nenkntry ELSE PRINT (sqroot)

10

SAIL TUTORIAL The ALGOL-Part of Sail

If verbosesw = FALSE, the THEN portion is not converted to INTEGER and then converted to
executed and the assignment to sqroot is not REAL for the assignment to X
made. Thus sqroot will not have the appropriate XeIF flag THEN 2 ELSE 3.6; will assign either 2.8
value when it is PRINTed. Assigning the result of or 3.8 to x (assuming xis REAL). Examples are:

: a computation to a variable to save recomputing
it is an excellent practice but be careful where REAL RRRRY results
you put the assignment. (1: IF miniversion THEN 18 ELSE 1801;

Arnot her very bad place for assignment PRINT (IF found THEN wordsli)
expressions is following either the AND or CR BH.SE "Nord not found.“);
logical operators. The compiler handles these by COMMENT words (i) must be a string;
performing as little evaluation as possible so in

profit « IF (net « income-cost)>® THEN net
0 yi 0 ELSE 8;

the compiler will first evaluate expl and if it is These conditional expressions will often need to
TRUE then the compiler knows that the entire be parent hesized.
boolean expression is true and doesn’t bother to
evaluate exp2. Any assignments in ® xp2 will not
be made since exp2 is not evaluated. (Of course,

if Ow is FALSE then exp2 will be 2.4.3 CASE Expressions
evaluated.) Similarly for

CASE statements are described in Section

0 if 0 yp 2.6.4 below. CASE expressions are also
| allowed with the format:

if expt is FALSE then the compiler knows the
whole AND-expression is FALSE and doesn’t CASE integer OF (exp8,expl,...,expN)
bother evaluating exp2.

where the first case is always 0. This takes the
As with nested IF..THEN...ELSE statements, it is a value you give which must be an integer
good coding practice to choose the order of the between 0 and N and uses the corresponding
expressions carefully to save processing. The expression from the list. A frequent use is for
most likely expression should be first in an OR error handling where each, error is assigned a
expression and the least likely first in an AND number and the number of the current error is
expression. put in a variable. Then -a statement like the

| following can be used to print the proper error
| | message:

2.4.2 Conditional Expressions PRINT(CASE o rmo OF
("Zero division attempted”,

Conditionals can also be used in expressions. “No negative numbers allowed”,
These have a more rigid structure than “Input not a number™));
conditional statements. It must be

Remember that ro here must range from 0 to
IF boo lean expression THEN @ xpl HSE @® xp2 2; otherwise, a case overflow occurs.

“where the ELSE is not optional.

N. B. The type of a conditional expression is the 24.4 String Operators
type of expl. If exp2 is evaluated, it will be
converted to the type of expi. (At compile time The STRING, operators are:
it is not known which will be used so an

arbitrary decision is made by always using the EQU Tort for string equality:
type of x) Thus the statement, s«"RBC"; te"abc®; testeEQU(s,t);
x+1Ff lag THEN 2 HSE y;, will always assign an RESULT: test « FALSE.
INTEGER to x. If x and y are REALs then y is

11

:

p The ALGOL-Part of Sail SAIL TUTORIAL

| 8 Concatonatr tuo strings togethers From this we can see that LENGTH and LOP are
| s-"abc"; te"def"; uesét; very efficient operations. LENGTH picks up the

RESULT: EQU(u,"abcdet™)s TRUE . length from the descriptor word; and LOP
j decrements the length by 1, picks up the

LENGTH Returns the length of a strings character designated by the byte pointer, and
i s-"abc"; |+LENGTH (8s); increments the byte pointer. LOP does not need
| RESULT: i = 3. to do anything with string space. Concatenations

with & are however fairly inefficient since in
1 LOP Removes thr first char in a string general new strings must be created. For s at,

and returns it: there is usually no way to change the descriptor
: s"abc"; t+LOP (8); words to come up with the pew string (unless s

RESULT: (EQU(s,"bc")AND and t are already adjacent in string space).
i EQU(t,"a"))= TRUE . Instead both s and t must be copied into a new
! string in string space. In general since the
| Although LENGTH and LOP look like procedures pointer is kept to the beginning of the string, it

syntactially, they actually compile code “in-line”. Is less expensive to look at the beginning than
This means that they compile very fast code. the end. On the other hand, when concatenating,
However,. one unfortunate side-effect is that LOP it is better to keep building onto the end of a
cannot be used as a statement, i.e., you cannot given string rather than the beginning. The

| say LOP(s); if you just want to throw away the runtime routines know what is at the end of
first character of the string. You must always string space and, if you happen to concatenate

| either ‘use or assign the character returned by to the end of the last string put in, the routines
LOP even if you don’t want it for anything, e.g., can do that efficiently without needing to copy
junkeLOP (s); . Another point to note about LOP is the last string.
that it actually removes the character from the

| original string. If you will need the intact string Assigning one string variable to another, e.g., for
again, you should make a copy of it before you making a temporary copy of the string, is also
start LOP’ing, e.0., tempCopyes;. fast since the string descriptor rather than the

text is copied.
A little background on the implementation of
strings should help you to use them more These are general guidelines rather than strict
efficiently. Inefficient use of strings can be a rules. Different programs will have different

| significant inefficiency in your programs. Sail specific needs and features.
sets up an area of memory called string space
where all the actual strings are stored. The
runtime system increases the size of this area

dynamically as it begins to become full. The 2.4.5 Subst rings
runtime system also performs garbage, collections
to retrieve space taken by strings that are no Sail provides a way of dealing with selected
longer needed so that the space can be reused. subportions of strings called substrings. There
The text of the strings is stored in string space. are two different ways to designate the desired
Nothing is put in string space until you actually substring:
specify what the string is to be, i.e., by an
assignment statement. At the time of the sli TO j)
declaration, nothing is put in string space. s(i FOR j)
Instead “the compiler sets up a 2-word string
descriptor for each string declared. The first where tiT0jl means the substring starting at
word contains in its left-half an indication of the ith character in the string through the jth
whether the string is a constant or a variable character and lirorj) is the substring starting
and in its right-half the length of the string. The at the ith character that is j characters long.
second word is a byte pointer to the location of The - numbering starts with 1 at the first
the start of the string in string space. At the character on the left. The special symbol INF can
time of the declaration, the length will be zero be used to refer to the last character (the
and the byte pointer word will be empty since rightmost) in the string. So, ® HNF ror1] is the
the string is not yet in string space. last character; and st? TO INF) is all but the first

six characters. If you are using a substring of a

12

SAIL TUTORIAL The ALGOL=-Part of Sail

string array element then the format is STRING s;
arrylindex)(i TO jl. $s. ‘181 a 1682 a ’1083;

Suppose you have made the assignment will make the string “ABC”.
s « "abcdet” . Then,

The other common conversions that we have

s(1 TO 31 iS “abc” seen are integer/real to boolean and string to
s [2 FOR 31 is "bcd" boolean. Integers and reals are true if non-zero;
s{1 TO INF) is "abcde!" strings are true if they have a non-zero length

| s [INF-1 T O INF) is "ef" and the first character of the string is not the
s(1 TO 318"X"8s[4 TO INF] | 5 "abcXdef" NUL character (which is ASCII code 0).

Since substrings are parts of the text of their You may also call one of the built-in type
source strings, it is a very cheap operation to conversion procedures explicitly. We have used

| break a string down, but is fairly expensive to CVD extensively to convert strings containing |
build up a new string out of substrings. digits to the integer number which the digits

represent. CVD and a number of other useful
type conversion procedures are described in
Section 8.1 of the Sail manual. Also this section

2.4.6 Type Conversions discusses the SETFORMAT procedure which is
used for’ specifying the number of leading zeroes

If you use an expression of one type where and the maximum length of the decimal portion of
another type was expected, then automatic type the real when printing. SETFORMAT is extremely
conversion is performed. For example, useful if you will be outputting numbers as

tables and need to have them automatically line
INTEGER |; up vertically.
| « SQRT(S);

will cause 5 to be converted to real (because

SQRT expects a real argument) and the square 2.5 Scope of Blocks
root of 5.0 to be automatically converted to an
integer before it is assigned to i which was So far we have seen basically only one use of
declared as an integer variable and can only inner blocks. With the IF. THEN statement, we
have integer values. As noted in Section 4.2 of saw that you sometimes need a block rather than
the Sail manual, this conversion is done by a simple statement following the THEN or ELSE
truncating the real value. so that a group of statements can be executed

as a unit.

Another example of automatic type conversion
that we have used here in many of the sample In fact, blocks can be used within the program
programs is: any place that you can use a single statement.

Syntactically, blocks are statements. A typical
IF reply="Y" THEN program might look like this:

where the = operator always expects integer or BEGIN "prog"
real arguments rather than strings. Both the
value of the string variable reply and the string
constant *y* will be converted to integer values BEGIN “initialization”
before the equality test. The manual shows that
this conversion, string-to-integer, is performed .
by taking the first character of the string and END "initialization"
using its ASCII value. Similarly converting from
integer to string is done by interpreting the BEGIN “main part”
integer (or just the rightmost seven bits if it is
less than 0 or-it is too large--that is any number BEGIN "process data’
over 127 or ‘177) as an ASCII code and using the
character that the code represents as the string.
So, for example, BEGIN “output resul ts’

13

—

The ALGOL-Part of Salil SAIL TUTORIAL

block UNLESS the inner block also has a variable

END “output results” of the same name declared (a very bad idea in
general). The portion of the program, i.e., the

END “process data” blocks, in which the variable is available is called
the scope of the variable.

END “main part” BEGIN "main®
INTEGER,j3

BEGIN “finish up” i+5;
i*2}

. PRINT(“CASE RA: i=", i," je", J);
ENO “finish up” BEGIN “Inner”

INTEGERi, k§

END "prog" +10;
Ked;

The declarations in each block establish variables PRINT("CASE B: i=",i," j=",j," k=",Kk);

which can only be used in the given block. So jobs
another reason for using inner blocks is to END "inner®;
manage variables needed for a specific short PRINT("CRSE C: I=", i," js", });
range task. END “main”

| Each block can (should) have a block name. The Here we cannot access k except in block “inner”.
| name is given in quotes following the BEGIN and The variable j is the same throughout the entire

END of the block. The case of the letters, program. There are 2 variables both named |i.
number of spaces, etc. are important (as in string So the program will print out:
constants) so that the names “MAIN LOOP”,
“Main Loop”, “main loop”, and “Main loop” are all CASE A: inS j=2
different and will not match. There are several CASE B:i=i8 ja2 ka3

advantages to using block names: your programs CASE C1 |a§ j=é
are easier to read, the names will be used by the
debugger and thus will make debugging easier, Variables are referred to as local variables in the
and- the compiler will check block names and block in which they are declared. They are
report any mismatches to help you pinpoint called global variables in relation to any of the

| missing END’s (a very common programming blocks nested in the block of their declaration.
error). With both a local and a global variable of the

same name, the local variable takes precedence.
The above example shows us how blocks may There are three relationships that a variable can
nest. Any block which is completely within the have to a block:
scope of another block is said to be nested in
that block. In any, program, all of the inner 1) It is inaccessible to the block if
blocks are nested in the outer block. Here, In the variable is declared in a block at the

addition to all the blocks being within the “prog” same level as the given block or it is
block, we find “output results” nested in declared in a block nested within the
“process data” and both “output results” and given block.
“process data” nested in “main part”. The three
blocks called “initialization”, “main part” and 2) It is local to the block if it is
“finish up” are not nested with relation to each declared in the block.
other but are said to be at the same level. None

of the variables declared in any of these three 3) It is global to the block if it is
blocks is available to any of the others. In order declared in one of the blocks that the
to have a variable shared by these blocks, we given block is nested within.
need to declare it in a block ‘which is “outer” to

all of them, which is in this case the very
outermost block “prog”. Often the term “global variables” is used

specifically to mean the variables declared in the
Variables are available in the block in which they outer block which are global to all the other
are declared and in all the blocks nested in that blocks.

14

SAIL TUTORIAL The ALGOL-Part of Sail

In reading the Sail manual, you will see the arithmetic variables unless you need some other
terms: allocation, deallocation, initialization, and specific initial value. You should also initialize all
reinitialization. It is not important to completely global scalars (and outer block arrays) at. the
understand the implementation details, but it is start of your program to be on the safe side.

, extremely important to understand the effects. They are initialized for you when the compiled
The key point is that allocating storage for data program is later run, but their values will not be
can be handled in one of two ways. Storago reinitialized if the program is restarted while
allocation refers to the actual setting up of data already in core and the results will be very
locations in memory. This can be done 1) at strange.
compile time or 2) at runtime. If it is done at
runtime then we say that the allocation is One exception is the blocks in RECURSIVE
dynamic. Basically, it is arrays which are PROCEDUREs which do have all non-OWN
dynamically allocated (excluding outer block variables properly handled and initialized as
arrays and other arrays which are declared as recursive calls are made on the blocks.
OWN). LISTS, SETS, and RECORDS which we have
not discussed in this section are also. allocated If you should want to clear an array, the
dynamically. The following are allocated at command
compile time and are NOT dynamic: scalar
variables (INTEGER, BOOLEAN, REAL and STRING) ARRCLR (arry)
except where the scalar variable is in a
recursive procedure, outer block arrays, and will clear arry (set string arrays to NULL and
other OWN arrays. ALGOL users should note this arithmetic to 0). For arithmetic (NOT string)
as an important ALGOL/Sail difference. arrays,

Dynamic storage (inner block arrays, etc.) will be RRRCLR (arry, val)
allocated at the point that the block is entered
and deallocated when the block is exited. This will set the elements of ® ry to val.

makes for quite efficient use of large amounts of
storage space that serve a short term need. See Sections 2.2-2.4 of the Sail manual for more

Also, it allows you to set variable size bounds information on OWN, SAFE, and PRELOADED
for these arrays since the value does not need arrays and Section 8.5 for the ARRBLT and
to be known at compile time. . ARRTRAN routines for moving the contents of

arrays. :
At the time that storage is allocated, it is also
initialized. This means that the initial value is

 assigned---NULL for strings and 0 for integers,

reals, and booleans. Since arrays are, allocated 2.6 More Control Statements
each time the block is entered, they are

reinitialied each time. We have not yet seen 2.6.1 FOR Statement
any cases where the same block is executed
more than once but this is very frequent with The FOR statement is used ‘for a definite number
the iterative and looping control statements. of iterations. Many times you will want to

repeat certain code a specific number of times
Scalar variables and outer block arrays are not (where usually the number in the sequence of
dynamically allocated. They are allocated by the repetitions is also important in the code
compiler and will receive the inital null or zero performed). For example, .
value when the program is loaded but they will
never be reinitialized. While you are not in the FOR i«1stert UNTIL8 DO
block, the variables are not accessible to you but PRINT(I, * *, SQRT(i));
they are not deallocated so they will have the
same value when you enter the block the next which will print out a table of the square roots
time as when-you exited it on the previous use. of the numbers 1 to 5.
Usually you will find that this is not what you
want. You should initialize all local scalar The syntax of the (simple) FOR statement is
variables yourself somewhere near the start of
the block--usually to NULL for strings and 0 for FOR variableestarting-value STEP increment

UNTIL rnd-value DC statement
15

The ALGOL-Part of Sail SAIL TUTORIAL

The iteration variable is assigned the starting- BEGIN "usefrray"
value and tested to check if it exceeds the end- INTEGER ARRAY tes tScores(l:inumbTests];

value; if it is within the range then the statement COMMENT array has variable bounds so must
after the DO is executed (otherwise the FOR bei n inner block;
statement is finished). This completes the first INTEGERi
execution of the FOR-loop. COMMENT f 0 r use a s the iteration variable;

Next the increment is added to the variable and FOR | « 1 STEP 1 UNTIL numbTests DO

it is tested to see if it now exceeds the end- BEGIN "fillarray®

value. If it does then the statement is not PRINT("Test Score #",i," : ");

executed again and the FOR statement is finished. | testScores{i) « CVD (INCHUL)
If it is within the maximum ‘(or equal to it) then END "fillarray™;
the statement is executed again but all instances
of the iteration variable in the statement will FOR i « 1 STEP 1 UNTIL numbTes ts DO

now have the new value. This incrementing and totaletotal+testScoreslil;
checking and executing loop is repeated until the COMMENT notr that total wasinitialized to
iteration variable exceeds the end-value. 8 above;

For those users familar with GOTO statements END "usefrray®;

and LABELs, the following two program
fragments for computing r n s. FACT) a r e IF numbTests neq8 THEN average«total/numbTests;
equivalent. PRINT ("The average i s ",average,”.");

END “"averager”;
ans « 1;

FOR i « 2 STEP 1 UNTIL n D0 e nscanse il In the first FOR-loop, we see that i is used in the
PRINT statement to tell the user which test score

is equivalent to: is wanted then it is used again as the array
‘subscript to put the score into the i'th element

ant «1; of the array. Similarly it is used in the second
x eo 23 FOR-loop to add the ith element to the

loop: IF i> n THEN GOTO bryond } cumulative total.
ant * ans &i}

| «| & 1; The iteration variable, start-value, increment, end
GOTO loop; end-value can all be reals as well as integers.

beyond 3 They can also be negatives (in which case the
maximum is taken as a minimum). See the Sail

There is considerable dispute on whether or not manual for details on other variations where
the use of GOTO statements should be multiple values can be given for more complex

encouraged and if so under what conditions. statements (these arent used often). One point
These statements are available in Sail but will to note is that in Sail the end-value expression is
not be discussed in this Tutorial. evaluated each time through the loop, while the

increment value is evaluated only at the

Very often FOR-loops are used for indexing beginning if it is a complex expression, as
through arrays. For example,, if you are opposed to a constant or a simple variable. This
computing averages, you will. need to add means that for efficiency, if your loop will be
together numbers which might be stored in an performed very many times you should not have
array. The following program allows a teacher very complicated expressions in the end-value
to input the total number of tests taken and a position. If you need to compute the end-value,
list of the scores; then the program returns the do it before the FOR-loop and assign the value
average score. to a variable that can be used in the FOR-loop to

save having to recompute the value each time.
BEGIN "averager"” This doesn’t save much and probably isn't worth
REAL average; INTEGER numbTests, total j it for 5 or 10 iterations but for 500 or 1000 it
® verrgm-numbTostsetotales; can be quite a savings. For example use:
COMMENT remember t o initialize variables;
PRINT("Total number of torts: ")j maxe(ptr-offset) /2;
numbTes ts«CVD (INCHUL); FOR leoffset STEP 1 UNTIL max DO 83}

16

|

SAIL TUTORIAL The AL&L-Part of Sail

rather than continues UNTIL the boolean becomes true rather
ae than WHILE it is true.

FOR icoffset STEP {1 UNTIL (ptr-offset)/2 DO sj |
J DO statement UNTIL boolean-rxprossion

E : For example, suppose we want to get a series of
names from the user and store the names in a

2.6.2 WHILE..DO Statement and DO...UNTIL string array. We will finish inputting the names
St at ement when the user types a bare carriage-return

| (which results in a string of length 0 from

Often you will want to repeat code but not know INCHWL or INTTY).
; in advance how many times. Instead the iteration

will be finished when a certain condition is met. iv8;

This is called indefinite iteration and is done with D O PRINT("Name #",iei4l,” is: ")

oo either a WHILE...DO or a DO..UNTIL statement. UNTIL ~~ (LENGTH (names lile INCHUL) = 8);

| The syntax of WHILE statements is:
| The equivalent of the DO...UNTIL statement using

WHILE boolran-sxprossjon DO statement LABELSs and the GOTO statement is:

The boolean is checked and if FALSE nothing is loop: statement;
{ done. If TRUE the statement is executed and IF NOT boolean ® xprossion THEN GOTO loop;

then the boolean is checked again, etc.
Note that the checks in the WHILE...00 and

For example, suppose we want to check through DO..UNTIL statements are the reverse of each
the elements of an integer array until we find an other. WHILE...DO continues as long as the
element containing a given number n: expression is true but DO..UNTIL continues as

long as the expression is NOT true. So that
INTEGER ARRAY arry [1: max);

: ptr e 4 WHILE | < 10000. . .
WHILE (arrylptr) NED n) AND (ptr< max) D D

ptreptrel; IS equivalent to

If the array element currently pointed to by ptr
| is the number we are looking for OR if the ptr is 00..... UNTIL | GEQ 188

at the’upper bound of the array then the WHILE
statement is finished. Otherwise the ptr is except that the statement is guaranteed to be

: incremented and the boolean (now using the next executed at least once with the DO..UNTIL but
element) is checked again. When the WHILE..DO not with the WHILE...DO.
statement is finished, either ptr will point to the
array element ‘with the number or ptr=max will The WHILE and DO statements can be used, for
mean that nothing was found. example, to check that a string which we have

input from the user is really an integer. CVD
The WHILE..DO statement is equivalent to the stops converting if it hits a non-digit and returns
following format with LABELs and the GOTO the results of the conversion to that point but

| statement: does not give an error indication so that a check
] of this sort should probably be done on numbers
Fo loop: IF NOT boolean expression THEN input from the user before CVD is called.
: GOTO beyond;
i statement;

GOTO loop;

! beyond:

The DO..UNTIL statement is very similar except
that 1) the statement is always executed the

2 first time and then the check is made before

j each subsequent loop through and 2) the loop

| 17

The ALGOL-Part of Sail S-AlL TUTORIAL

CONTINUE applies to the innermost loop unless
INTEGER numb, char: there are names on the blocks to be executed by
STRING reply,tamp; BOOLEAN error; each loop and the name is given explicitly, e.g.,
PRINT("Type the number: "); OONE "some loop”. With the DONE and CONTINUE
DO statements, we can now give the complete code

BEGIN to be used for the sample program given earlier
® ror:FALSE where a number was accepted from the user and
temperep ye INCHHL ; the square root of the number was returned. A
UHILE LENGTH (temp) DO variety of error checks are made and the user

IF NOT ("8" LEQ (char«LOP (temp)) LEO "9") can continue giving numbers until finished. In
THEN error«TRUE; this example, block names will be used with DONE

IF error THE N PRINT("Oops, try again: "); and CONTINUE only where they are necessary
END for the correctness of the program; but use of
UNTIL NOT error block names everywhere is a good practice for

numbeCVD (rep ty); clear programming.

BEGIN "prog" STRING temp,replys INTEGER numb;

2.6.3 DONE and CONTINUE Statements UHILE TRUE DO
COMMENTa very common construction which just

Even with definite and indefinite iterations loops until DONE;

available, there will still be times when you need BEGIN “"processnumb®
a greater degree of control over the loop. This PRINT ("Type a number, <CR> to end, or ?:%)3
is accomplished by the DONE and CONTINUE UHILE TRUE DO
statements which can be used in any loop which BEGIN “checker”
begins with DO, e.g., IF NOT LENGTH (temperep ly+INCHUL) THEN

DONE “"processnumb"”;

FOR iel STEP 1 UNTIL jDO... IF reply ="?% THEN
DO... UNTIL rxp BEGIN

HHILE o xp DO... PRINT("..heiptext & reprompt..");
CONTINUE|

(See the manual for a discussion of the NEXT COMMENT defaultst o “checker”;
statement which is not often used.) DONE means END;
to abort execution of the entire FOR, DO..UNTIL UHILE LENGTH (temp) DO
or WHILE...DO statement immediately. CONTINUE IF NOT ("8" LED LOP (temp) LEQ "9") THEN
means to stop executing the current pass BEGIN
through the loop and continue to the next PRINT("Oops,t r y again: ")y
iteration. CONTINUE "checker";

END;

Suppose a string array is being used as a IF (numbeCVD (rep| y)) <8 THEN
“dictionary” to hold a list of 100 words and we BEGIN
want to look up one of the words which is now PRINT("Negat ivo, try again: ™);

stored in a string called target: a IE |
FOR i « 1 STEP 1 UNTIL 188 DO DONE;

IF EQU(wordsli), target) THEN DONE; COMMENT i f a) | the chocks have boon
IF i»180 THEN PRINT (target,” not found."); passed thrn done;

END "checker";

If the target is found, the FOR-loop will stop PRINT ("The Square Root of ",numb," is ",
regardless of the current value of i. Note that SQRT (numb),".*)
the iteration variable can be checked after the COMMENT now we go back to top of loop

loop is terminated’ to determine whether the for next input]
DONE forced the termination (i LEQ 100) or the END "processnumb™;
target was never found and the loop terminated END “prog”
naturally (i> 100).

If the loops are nested then the DONE or

18

SAIL. TUTORIAL The ALGOL-Part of Sail

2.6.4 CASE St at ement CASE char-"R" OF
COMMENT "R"-"R" is 8, and is thus case 8;

The CASE statement is similar to the CASE BEGIN

expression where 50,5 1,..5n represent the <code for A option»;
statements to be given at these positions. <code for B option>;

CASE integer OF .
BEGIN <code for E opt ion»

S68; END;
3 COMMENT t h ec empty statement;
$2;

} 2.7 Procedures
Sn

END; We have been using built-in procedures and in
fact would be lost without them if we had to do

where i's are included for those cases where no all our own coding for the arithmetic functions,
, action is to be taken. Another version of the the interactions with the system like
CASE statement is: Input/Output, and the general utility routines that

simplify our programming. Similarly, good
programmers would be lost without the ability to

CRSE integer OF write their own procedures. It takes a little time
BEGIN and practice getting into the habit of looking at
(8) S8; programming tasks with an eye to spotting
(4) S4; COMMENT cases can be skipped; potential procedure components in the task, but
[3] S 3: COMMENT need not be in order; it is well worth the effort.
(5) ss;

(61 (7) S6; COMMENT 1 ay he same statement; Often in programming, the same steps must be
181 $8; repeated in different places in the program.

Another way of looking at it is to say that the
same task must be performed in more than one

(nl. Sn context. The wry this is usually handled is to
ENO: write a procedure which is the sequence of

statements that will perform the task. This
where explicit numbers in [J's are given for the procedure itself appears in the declaration
cases to be included. portion of one of the blocks in your program and

we will discuss later the details of how you

It is very IMPORTANT not to use & semi-colon declare the procedure. Essentially at the time
after the final statement before the END. Also, that you are writing the statement portion of
do NOT use CASE statements if you have a your program, you can think of your procedures
sparse number of cases spread over a wide as black boxes. You recognize that you have an
range because the compiler will make a giant instance of the task that you have designed one
table, e.g., of your procedures to perform and you include

at that point in your sequence of statements a
CASE number OF procedure call statement. The procedure will be

BEG IN invoked and will handle the task for you. In the
(8) SO; simplest case, the procedure call is accomplished
(18881 S1008; by just writing the procedure’s name.
(2680] $2668

END; For example, suppose you have a calculator-type
program that accepts an arithmetic expression

would produce8 2001 word table! from the user and evaluates it. At suitable
places in the program you will have checks to

Remember that the first case is 0 not 1. An make sure that no divisions by zero are being
example is using & CASE statement to Process attempted. You might write a procedure called
lettered options: zeroDiv Which prints out a message to the user

saying that a zero division has occurred, repeats
INTEGER char;

PRINT ("Type A,B,C,0, 0 r E:");
char«INCHIL ; 19

The ALGOL-Part of Sail SAIL TUTORIAL

the current arithmetic expression, and asks if the SQRT (4)
user would like to see the prepared help text for SART (numb)
the program. Every time you check for zero SQRT (CVD (INCHNL))
division anyplace in your program ‘and find it, SART (numb/d visor)
you will call, this procedure with the statement:

zeroDiv; When Sail compiles the code for these procedure
calls, it first includes code to associate the

and it will do everything it is supposed to do. appropriate values in the procedure call with the
variables given in the parameter list of the

Sometimes the general format of the task will be procedure declaration and then includes the code
the same but some details will be different. to execute the procedure. When @ rrorHand ier

. These cases can be covered by writing a PRIM% the error message, the variable ¢ como ‘will
parameterized procedure. Suppose that we have the appropriate value associated with it.
wanted something like our zereDiv procedure, but This is not an assignment such as those done by
more general, that would handle a number of the assignment statement and we will also be
other kinds of errors. It still needs to print out a discussing calls by REFERENCE as well as calls by
description of the error, the current expression VALUE; but we don’t need to go into the details
being evaluated, and a suggestion that the user of the actual implementation -- see the manual if
consult the help ‘text; but the description of the you are interested in how procedure calls are
error will be different depending on what the implemented and arguments pushed on the stack.
error was. We accomplish this by using a
variable when we write the procedure; in this Just ‘as we often perform the same task many
case an integer variable for the error number. times in a given program so there are tas’ks
The procedure includes code to print out the performed frequently in many programs by many
appropriate message for each error number; and programmers. The authors of Sail have written
the integer variable e oomo is added to the procedures for a number of such tasks which can
parameter list of the procedure. Each of the be used by everyone. These are the built-in
par-meters is a variable that will need to have a procedures (CVD, INCHWL, etc.) and are actually
value associated with it automatically at the time declared in the Sail runtime package so all that is
the procedure is called. (Actually arrays and needed for you to use them is placing the
other procedures can also be parameters; but procedure calls at the appropriate places. Thus
they will be discussed later.) We won't worry these procedures are indeed black boxes when
about the handling of parameters in procedure they are used.
declarations now. We are concerned with the

way the parameters are specified in the However, for our own procedures, we do need to
procedure call. Qur procedure ® rrorHand ler Will write the code ourselves. An example of a
have one integer parameter so we call it with useful procedure is one which converts a string
the expression to be associated with the integer argument to all uppercase characters. First, the
variable e ro given in parentheses following the program with the procedure call to upper at the
procedure name in the procedure call. For appropriate place and the position marked where
example, the procedure declaration will go:

® rrorHandler (8) BEGIN

® rrorHandter (1) STRING reply,name;
srrorHand | or (2) skprocedure dociaration heresk%

would be the valid calls possible if we had three PRINT ("Type RERD, WRITE, or SEARCH: *);
different possible errors. rep | y-UPPOr (INCHUL);

IF EQU{reply, “READ") THEN

If there is-more than one parameter, they are ELSE IF EQU(reply,"HRITE")THEN
put in the order given in the declaration and ELSE IF EQU (reply, "SERRCH™) THEN
separated -by -commas. (Arguments is another ELSE seee}
term used for the actual parameters supplied in END;
a procedure call.) Any expression can be used
for the parameter, e.g., for the built-in procedure We put the code for the procedure right in the
SQRT:

20

SAIL- TUTORIAL The ALGOL-Part of Sail

procedure declaration which goes in the PROCEDURE sortEntries
declaration portion of any block. Remember that (INTEGER ptr, f irst; REAL ARRRY unsorted) 3
the procedure must be declared in a block which STRING PROCEDURE upprr (STRING rauString);
will make it accessible to the blocks where you

are going to use it; in the same way that a Each of these now needsa procedure body.
variable must be declared in the appropriate
place. Also, any variables that appear in the PROCEDURE of ferHe ip;
code of the procedure must already be declared
(even in the declaration immediately preceding BEGIN "offerHeip"
the procedure declaration is fine). COMMENT the procedure name is usually used

as block namej

Here is the procedure declaration for upper which PRINT ("Hould you |ikehelp(Y or N):™);
should be inserted at the marked position in the |F upper (INCHHL) = *Y* THEN PRINT(", .heip..")
above code: eLse RETURN;

PRINT ("Hould you | ikr more hrip (Y or N):");
STRING PROCEDURE upper (STRING raws tr ing } IF upper (INCHWL) = "Y®" THEN

BEGIN "upper" PRINT(", .more help..")
STRING tmp; INTEGER charg END "of ferHe!p*;
tmpeNULL;

HHILE LENGTH (raws tr ing)DO This offers a brief help text and if it is rejected
BEGIN then RETURNs from the procedure without
char«LOP (raws tr ing); printing anything. A RETURN statement may be
tmpetmp&(IF “3” LEQ charLEQ "2" included in any procedure at any time.

| THEN char-’48 ELSE char); Otherwise the brief help message is printed and
END; the extended help offered. After the extended

RETURN (tmp); help message is printed (or not printed), the
END “upper”: procedure finishes and returns without needing a

specific RETURN statement because the code for

The syntax is: the procedure is over. Note that we can use
procedure calls to other procedures such as

typo-quaiifior PROCEDURE identifierj upprr provided that we declare them in the
statement proper order with upper declared before

of ferHe ip.

for procedures with no parameters OR
PROCEDURE declarations will usually have type-
qualifiers. There are two kinds: 1) the simple

| typo-quaiiflor PROCEDURE identifier types--INTEGER, STRING, BOOLEAN, and REAL and
(parrmotor-list }; statement 2) the special ones--FORWARD, RECURSIVE, and

SIMPLE.

where the parameter-list is enclosed in ()’s and a
semi-colon precedes the statement (which is FORWARD is typically used if two procedures call
often called the procedure body). The <type- each other. This creates a problem because a
qualifier>’s will be discussed shortly. procedure must be declared before it can be

called. For example, if of ferHelp called upper, and

The parameter list includes the names and types upper also called of ferHeip then we would need:
of the parameters and must NOT have asemi-
colon following the final item on the list. FORURRD STRING PROCEDURE upper
Examples are: . (STRING raws tr ing);

PROCEDURE of ferHe ip}
PROCEDURE of ferHalp; BEGIN “of ferHelp"®
INTEGER PROCEDURE f indHord CL

(STRING target; STRING ARRRY words); <code forofferHelp including cal | to upper>
SIMPLE PROCEDURE @® rrorH&ndlor ae

(INTEGER @® rrno)3 END “"offerHalp";
RECURSIVE INTEGER PROCEOURE factorial

(INTEGER number) STRING PROCEDURE upper (STRING rawstring);

21

The ALGOL-Fart of Sail SAIL TUTORIAL

BEGIN “upper” Procedures which are declared as one of the
CL simple types (REAL, INTEGER, BOOLEAN, or

<code for upper including call to offerHelp> STRING) are called typed procedures as opposed
CL to untyped procedures (note that the SIMPLE,

END “upper” ; FORWARD, and RECURSIVE qualifiers have no
effect on this distinction). Typed procedures can

The FORWARD declaration does not include the ~~ return values. Thus typed procedures are like

body but does include the parameter list (if any). FORTRAN functions and untyped procedures are
This declaration gives the compiler enough like FORTRAN subroutines. The type of the value
information about the upper procedure for it to returned corresponds to the type of the
process the of ferHeIp procedure. FORWARD is procedure declaration. Only a single value may
also used when there is no order of declaration be returned by any procedure. The format is
of a series of procedures such that every RETURN (expression) where the expression is
procedure is declared before it is used. enclosed in ()’'s. Procedure upper which was
FORWARD declarations can sometimes be given above is a typed procedure which returns
eliminated by putting one of the procedures in as its value the uppercase version of the string.
the body of the other, which can be done if you Another example is:
don’t need to use both of them later.

REAL PROCEDURE averager

RECURSIVE is used to qualify the declaration of (INTEGER ARRAY scores; INTEGER max);
any procedure which calls itself. The compiler BEGIN "averager® REAL total; INTEGER i;
will add special handling of variables so that the total « 03
values of the variables in the block are FOR le 1 STEP 1 UNTIL max 00

preserved when the block is called again and total « total 4 scoreslil;
restored after the return from the recursive call. IF max NEP 8 THEN RETURN (total/max)

For example, ELSE RETURN (8);
END "averager”;

RECURSIVE INTEGER PROCEOURE factorial

(INTEGER i) We might have a variety of calls to this
~RETURN(IF i =8 THEN 1 ELSE factorial (i-1)%i); procedure:

The compiler adds some overhead to procedures tes tAverage« avoragor (tes tScores,numberScores);
that can be omitted if you do not use any salaryRverage« averager(salaries,numberEmpioyses);
complicated structures. Declaring procedures speedAverage + averager (speeds,numberTrials);
SIMPLE inhibits the addition of this overhead.

However, there are severe restrictions on where testScores, salaries, and speeds are all
SIMPLE procedures; and also, BAIL can be used INTEGER ARRAYS.
more effectively with non-SIMPLE procedures.
So the appropriate use of SIMPLE is during the Procedure calls can always be used as
optimization stage (if any) after the program is statements, e.g.
debugged. At this time the SIMPLE qualifier can
be added to the short, simple procedures which 1) IF divisor=8 THEN errorHandler(1)}
will save some overhead. The restrictions on 2) 0 f ferHelp;

SIMPLE procedures are: 3) upper (text);

1) Cannot allocate storage but as in 3) it makes little sense to use a
dynamically, i.e., no non-OWN arrays can , procedure that returns a value as a statement
be declared in SIMPLE procedures. since the value is lost. Thus typed procedures

which return values can also be used as

2) Cannot do GO TO’s outside of expressions, e.g.,
themselves (the GO TO statement has not
been covered here). rep lycupper (INCHUL) ;

- - PRINT (upper (name)) ;

3) Cannot, if declared inside other
procedures, make any use of the It is not necessary to have a RETURN statement
parameters of the other procedures.

22

SAIL TUTORIAL The ALGOL-Part of Sail

in untyped procedures. If you do have a RETURN specified in the parameter list so you don’t have
statement in an untyped procedure it CANNOT to remember them) and the subtask is taken care
specify a value; and if you have a RETURN of. If you don’t modularize your programs in this
statement in a typed procedure it MUST specify way, you are juggling too many open tasks at
a value to be returned. If there is no RETURN the same time. Another approach is to tackle the
statement in'a typed procedure then the value ~~ major tasks first and every time you see a
returned will be garbage for integer and real subtask put in a procedure call with reasonable
procedures or the null string for string arguments and then later actually write the
procedures; this is not good coding practice. procedures for the subtasks. Usually a mixture

of these approaches is appropriate; and you will

Procedures frequently will RETURN(true) or also find yourself carrying particularly good
RETURN(false) to indicate success or a problem. utility procedures over from one program to
For example, a procedure which is supposed to another, building a library of your own general
get a filename from the user and open the file utility routines.
will return true if successful and false if no file

was actually opened: The second advantage of parameters over global
variables is that the global variables will actually

IF getFile THEN processInput be changed by any code within the procedures
ELSE ® rrorHand | or (22) but variables used as parameters to procedures

will not. The changing of global variables is

This is quite typical code where you can see that sometimes called a side-+ffoct of the procedure.
all the tasks have been procedurized. Many
programs will have 25 pages of procedure Here are a pair of procedures that illustrate both
declarations and then only 1 or 2 pages of actual these points:
statements calling the appropriate procedures at
the appropriate times. In fact, programs can be BOOLEAN PROCEDURE Ques! (STRING 8);
written with pages of procedures and then only BEGIN "Quesl”
a single statement to call the main procedure. IF "?"«LOP(s) THEN RETURN (true)

ELSE RETURN (faise);

Basically there are two ways of giving END "Quesl®™;
information to a procedure and three ways of
returning information. To give information you STRING str;
can 1) use parameters to pass the information BOOLEAN PROCEOURE Ques2;
explicitly or 2) make sure that the appropriate BEGIN "Ques2”
values are in global variables at the time of the IF "?*«LOP(str) THEN RETURN (true)
call and code the procedures so that they access ELSE RETURN (false);
those varirbles. There are several END "Ques2”;
disadvantages to the latter approach although it
certainly does have its uses. The second procedure has these problems: 1) we

have to make sure our string is in the string
First, once a piece of information has been variable str before the procedure call and 2) str
assigned to a parameter, the coding proceeds is actually modified by the LOP so we have to
smoothly. When you write the procedure call, make sure we have another copy of it. With the
you can .check the parameter list and see at a first procedure, the string to be checked can be
glance what arguments you need. If you instead anywhere and no copy is needed. For example,
use a global variable then you need to remember if we want to check a string called command, we
to make sure it has the right value at the time of give Quesi(command) and the LOP done on the
each procedure call. In fact in a complicated string in Ques1 will not affect command.
program you will have enough trouble
remembering the name of the variable. This is Informrtion can be returned from procedures in
one of the beauties of procedures. You can three ways:
think about the task and all the components of
the task end code them once and. then when you 1) With a RETURN(value) statement.
are in the middle of another larger task, you only
need to give the procedure name and the values 2) Through global variables. You
for all the parameters (which are clearly may sometimes actually want to changea

23

The ALGOL-Part of Sail SAIL TUTORIAL

| global variable. Also, procedures can
only return a single value so if you have
several values being generated in the
procedure, you may use global variables
for the others.

| 3) Through REFERENCE parameters.
Parameters can be either VALUE or

| REFERENCE. By default all scalar
parameters are VALUE and array
parameters are REFERENCE. Array
parameters CANNOT be value; but scalars
can be declared as reference parameters.
Value parameters as we have seen are
simply used to pass a value to the
variable which appears in the procedure.
Reference parameters actually associate
the variable address given in the
procedure call with the variable in the
procedure so that any changes made will
be made to the calling variable.

PROCEDURE manyRe turns
(REFERENCE INTEGER i, J,k,I,m};

BEGIN

ieisl; jejel; Kekel; lelel; meme];
ENO;

when called with

manyRe turns (var, var, var3,varé, vard);

will actually change the varl,.varb
variables themselves. Arrays are always
called by reference. This is useful; for
example, you might have a

PROCEDURE sorter (STRING ARRAY arry);

which sorts a string array alphabetically.
It will actually do the sorting on the
array that you give it so that the array
will be sorted when the procedure
returns. Note that arrays cannot be
returned with the RETURN statement so

this eliminates the need for making all
your arrays global as a means of
returning them.

See the Sail manual (Sec. 2) for details on using
| procedures as parameters to other procedures.

24

SAIL TUTORIAL Macros

SECTION 3 names for constants are 1) a name like maxSize
used in your code is easier to understand than

Macros an arbitrary number when you or someone else
is reading through the program and 2) maxSize
will undoubtedly appear in many contexts in the
program but if it needs to be changed, e.g., to
200, only the single definition needs changing. If

Sail macros are basically string substitutions you had used 100 instead of maxsize throughout
made in your source code by. the scanner during the program then you would have to change
compilation. Think of your source file as being each 100 to 200.
read by a scanner that substitutes definitions
into the token stream going to a logical “inner Before giving your DEFINEs you should require
compiler”. Anything that one can do with some delimiters. {}{}, (J[}, or <><> are good
macros, one could have done without them by choices. If you don’t require any delimiters then
editing the file differently. Macros are’ used for the defaults are *™" which are probably a poor
several purposes. choice since they make it hard to define string

constants. The first pair of delimiters given in

They are used to define named constants, e.g., the REQUIRE statement are for the right-hand-
side of the DEFINE. See the Sail manual for

BEGIN details on use of the second pair of delimiters.
REQUIRE "{}{}* DELIHITERS;

DEFINE maxSize = 11881; DEFINEs may appear anywhere in your program.
REAL RRRAY arry[i:maxSizel; They are neither statements nor declarations.

REQUIREscan be either declarations or

statements so they can also go anywhere in your
program.

The {}’s are used as delimiters placed around the
right-hand-side of the macro definition. Another use of macros is to define octal
Wherever the token wxsize appears, the scanner characters. If you have tried to use any of the
wilt substitute 188 before the code is compiled. sample programs here you will have discovered
These substitutions of the source text on the a glaring bug. Each time we have output our

right-hand-side of the DEFINE for the token on results with the PRIM: statement, no account has
the left-hand-side wherever it subsequently been taken of the need for a CRLF (carriage
‘appears in the source file is called expanding the return and line feed) sequence. So all the lines

macro. The above array declaration after macro will run together. Here are 4 possible solutions
expansion is: to the problem:

BEGIN 1) PRINT ("Some text.", (’15&'12));
REAL ARRAY arry [11100];

2) PRINT("Some text.

");

which is more efficient than using: | 3 STRING crifycrite

BEGIN INTEGER maxSize; "3 PRINT ("Some text.",crif);
maxSize«100;

BEGIN 4) REQUIRE "{}" DELIHITERS;

» REAL RRRAY arry [1imaxSize); DEFINE erlf=il”
"1; PRINT ("Some text.",crlf);

Also, in this example, the use of the integer
variable for assignment of the maxSize means that The first solution is hard to type frequently with

the array-bounds declaration is variable rather the octals. (In general, concatenations should be |
than constant _se it must be in an inner’ block; avoided if possible since new strings must
with the macro, maxSize is a constant so the array usually be created for them; but in this case with

. can be declared anywhere. only constants in the concatenation, it will be
done at compile time so that is not a

Other advantages to using macros to define consideration.) The second solution with the

25

Macros SAIL TUTORIAL

string extending to the next line to get the crif is Here are some sample definitions followed by an
unwieldy to use in your code. The fourth example of their use on the next line:
solution is both the easiest to type and the most
efficient. REQUIRE "<><>" DELIMITERS;

You may also want to define a number of the DEFINE uptos <STEP 1 UNTIL>j
other commonly used control characters: FOR i upto 1800. ...;

REQUIRE "<><>"DELIMITERS; DEFINE ! = <COMMENT>;
DEFINE ff = <(*148NULL)>, feiels | increment i hero;

i fe <{”128NULL)>,
cr = <(’15&8NULL)>, DEFINE forever= <HHILE TRUE>;
tab = <(*118NULL)>, forever DO}

ct ID =<"17>;
DEFINE o if <ELSE IF>;

The characters which will be used as arguments IF... THEN....
in the PRINT statement must be forced to be EIF.... THEN +...

strings. If ff = <’14> were used; then PRINT(ff) EIF.... THEN ®
would print the number 12 (which is ‘14) rather
than to print a formfeed because PRINT would Macros may also have parameters:
treat the ‘14 as an integer. For all the other
places that you can use these single character DEFINE append(x,y) = <x«x8y>;
definitions, they will work correctly whether IF LENGTH (s) THEN append (t,LOP (s))
defined as strings or integers, e.g.,

DEFINE inc(n)= <(nensl) >,
IF char meti0 THEN dec(n) = <(nen-1)>;

IF inc{ptr) <maxSize THEN

as well as CDHHENT watch that you don’t forget
needed parentheses here;

IF char = ff THEN

DEFINE ctri (n)= <("'n"-?188)>;
IF char =sectri{(0) THEN abortPrint;

Note that string constants like ’15&’12 and
*14&NULL do not ordinarily need parenthesizing As we saw in some of the sample macros, the
but (’15&°12) and ('14&NULL) were used above. macro does not need to be a complete statement, :
This is a little trick to compile more efficient expression, etc. It can be just a fragment.
code: The compiler will not ordinarily recognize Whether or not you want to use macros like this
these as string constants when they appear in Is a matter of personal taste. However, it is

the middle of a concatenated string, e.g., quite clear that something like the following’ is
simply terrible code although syntactically

". ...linel..."8°158’ 128”. ,. . linr2.." correct (and rumored to have actually occurred
in a program):

but with the proper parenthesizing
DEFINE printer= <PRINT (>;

" ...linel..."8("158’12)&"....line2..." pr Inter “Hi there.")}

the compiler will treat the crlf as a string which expands to
constant at compile time and not need to do a
concatenation on ‘15 and ‘12 every time at PRINT ("Hi there.");
runtime.

On the other hand, those who completely shun
Another very common use of macros is to macros are erring in the other direction. One of
“personalize” the Sail language slightly. Usually the best coding practices in Sail is to DEFINE all
macros of this sort are used either to save constant parameters such as array bounds.
repetitive-typing of long sequences or to make
the code where they are used clearer. (Be
careful--this can be carried overboard.)

26

—

SAIL TUTORIAL . String Scanning

SECTION 4 SETBREAK function. You can also use
| RELBREAK(table#) to release a table number for

| St ring Scanning reassignment when you no longer need that
break table.

SETBRERK (tabie#, “break-charac ters",
“omit-charactors”, “modes”) 3

We have not yet covered Input/Output which is
one of the most important topics. Before we do where the first argument is an integer and the
that, however, we will cover the SCAN function "%s around the other arguments here are a
for reading strings. SCAN which reads existing standard way of indicating, in a sample
strings is very similar to INPUT which is used to procedure call, that the argument expected .is a
read in text from a file. string. For example:

Both SCAN and INPUT use break tables. When REQUIRE "<><>" DELIHITERS;

you are reading, you could of course read the DEFINE if =<’12>,er=<’15>, f= <'ld>;
entire file in at once but this is not what you INTEGER |ineBr,nonDigitBr, noSpaces;

usually want even if the file would all fit (and
with the case of SCAN for strings it would be SETBRERK(1 ineBr«GETBRERK, if, ff&er, "ins"))

pointless). A break table is used to 1) set up a SETBRERK (noSpaces«+GETBRERK, NULL, "","ina")y
list of characters which when read will terminate SETBRERK (nonDigi tBr-GETBRERK, "8123456783",

the scan, 2) set up characters which are to be NULL, “"xns")j
omitted from the resulting string, and 3) give
instructions for what to do with the break The characters in the “break-characters” string
character that terminated the scan (append it to will be used as the break characters to terminate
the result string, throw it away, leave it at the the SCAN or INPUT. SCAN and INPUT return that
new beginning of the old string, etc.). During the portion of the initial string up to the first
course of a program, you will want to scan occurrence of one of the break-characters.
strings in different ways, for example: scan and
break on a non-digit to check that the string The characters in the “omit-characters” string
contains only digits, scan and break on linefeed will be omitted from the string returned.
(If) so that you get one line of text at a. time,
scan and omit all spaces so that you have a The “modes” establish what is to be done with
compact string, etc. For each of these purposes the break character that terminated the SCAN or
(which will have different break characters, omit INPUT. Any combination of the following modes
characters, disposition of the break character, can be given by putting the mode letters
and setting of certain other modes available), together in a string constant:
you will need a different break table. You are
allowed to set up as many as 54 different break CHARACTERS USED FOR BREAK CHARACTERS:
tables in a program. These are set up with a
SETBREAK command. "I" (inclusion) The characters in the break-

characters string are the set of characters
A break table is referred to by its number (1 to which will terminate the SCAN or INPUT.
54). The GETBREAK procedure is used to get
the number of the next free table and the “X” (eXclusion) Any character except those in
number is stored in an integer variable. the break-characters string will terminate
GETBREAK is a relatively new feature. the SCAN or INPUT, e.g., to break on any digit
Previously, programmers had to keep track of use:
the free numbers themselves. GETBREAK is

highly recommended especially if you will be INTEGER tbi;
interfacing your program with another program SETBREAK (tb | +GETBREAK, "8123456789"NULL," i");
which is also -assigning table numbers and may
use the same number for a different table. and to break on any non-digit use:
GETBREAK will know about all the table numbers

in use. You assign this number to a break table INTEGER tb;
by giving it as the first argument to the SETBRERK (th | -GETBRERK, "0123456788","", "x");

27.

String Scanning SAIL TUTORIAL

where NULL or ™ can be used to indicate no SETBREAK (re tainBr+GETBRERK,"x" NULL, "r");

characters are being given for that argument.
skipStreappendStreretainStre"firstssecond”;

DISPOSITION OF BREAK CHARACTER: result « SCAN(skipStr, sk ipBr, brchar);
COMMENT EQU(resul t,"f irst™) AND

“S” (skip) The character ~~ which actually EQU (sk ipStr, "second");
terminates the SCAN or INPUT will be

“skipped” and thus will not appear in the resu | t « SCAN (appends tr, appendBr , brchar)j
result string returned nor will it be still in COMMENT EQU(result,"f irstx") AND
the original string. EQU (appendStr, "second") ;

“A” (append) The terminating character will be result ~ SCAN(retainStr, retainBr, brchar);
appended to the end of the result string. COMMENT EQU (result, first") AND

EQU(retainStr, "ssecond");

"R" (retain) The terminating character will be
retained in its position in the original string COMMENT in cach case above brchrr = "x"
so that it will be the first character read by after the SCAN;

the next SCAN or INPUT.

Now we can look again at the break tables given
OTHER MISCELLANEOUS MODES: above:

“K” This mode will convert characters to be put SETBREAK (I ineBr, If, ff&cr, "ins");
in the result string to uppercase.

This break table will return a single line up to
“N” This mode will discard SOS line numbers if the If. Any carriage returns or formfeeds

any and should probably be used for break (usually used as page marks) will be omitted and
tables which will be scanning text from a file. the break character is also omitted (skipped) so
This is a very good Sail coding practice even that just the text of the line will be returned in
if it seems highly unlikely that an SOS file the result string. The more conventional way to

_ will ever be given to your’ program. read line by line where the line terminators are
preserved is

“result-string” « SCAN(e"source", table, ebrchar);
SETBRERK (readline, If NULL, "ina’);

In these sample formats, the ""s mean the
argument is a string and the @ prefix means that Note here that it is extremely important that If
the argument is an argument by reference. rather than cr be used as the break character

since it follows the cr in the actual text.

When you call the SCAN function, you give it as Otherwise, you'll end up with strings like
arguments 1) the source string, 2) the break
table number and 3) the name of an INTEGER text of | ine<er>
variable where it will put a copy of the <lf>text o f |ineccr>
character that terminated the scan. Both the <lf>

source string and the break character integer
are reference parameters to the SCAN instead of
procedure and will have new values when the
procedure is finished. The following example trxt of |inecer><lf>
illustrates the use of the SCAN procedure and text of | ineccr><!f>
also shows how the “S”, “A”, and “R” modes

affect the resulting strings with the disposition After the SCAN, the brchar variable can be
of the break character. either the break character that terminated the

scan (If in this case) or 0 if no break character
was encountered and the scan terminated by

INTEGER sk ipBr, @ ppendBr, retainBr,brchar; reaching the end of the source string.
STRING result, sk ipStr, appendStr, retainStr;

00 processl i no (SCAN (str, readlL ine,brchar))
SETBRERK (sk ipBr~GETBRERK, "s",NULL, "s"); UNTIL NOT brchar;
SETBRERK (appendBr«GE TBRERK, "+", NULL, "a");

28

SAIL TUTORIAL String Scanning

This code would be used if you had a long multi- numb « INTSCAN(reply,brchar);
lined text stored in a string and wanted to IF brchar THEN error;
process it one line at a time with PROCEDURE
processli ne.

SETBRERK (nonDigi tBr, "0123456789",NULL, "xs")}

This break table could be used to check if a

number input from the user contains only digits.

WHILE true 0 0

BEGIN

PRINT ("Type a number: *);
rep ly«INCHHL; | INTTY for TENEX;
SCAN (reply, nonDigi tBr,brchar);
IF brchar THEN

PRINT (brchar&NULL,"is not a digit.",erit)
ELSE OONE;

: END;

Here the value of brchar (converted to a string
constant since the integer character code will
probably be meaningless to the user) was
printed out to show the user the offending
character. There are many other uses of the
brchar variable particularly if a number of

characters are specified in the break-characters
string of the break table and different actions
are to be taken depending on which one actually
was encountered.

SETBRERK (noSpacesNULL," ", " ina");

Here there are no break-characters but the

omit-character(s) will be taken care of by the
scan, eg.

stre"ab c dj;

resul t«SCAN (str,noSpaces,brchar)

will return "abcd" as the result string.

If you need to scan a number which is stored in
a string, two special scanning functions, INTSCAN
and REALSCAN, have been set up which do not
require break tables but have the appropriate
code built in:

integerVar « INTSCAN("number-string”,ebrchar);
reaiVar . REALSCAN ("number-string",ebrchar);

where the integer or real number read is
returned; and the string argument after the call
contains the remainder of the string with the
number removed. We could use INTSCAN to

check if astring input from a user is reallya
proper number.

PRINT ("Type t h c numbers *);
reply « INCHHL; I INTTY for, TENEX;

: 29

Input/Output SAIL TUTORIAL

SECTION 5 are in @RAISE mode in TENEX) will convert the

| characters 173 to ‘176 to altmodes.
Input /Out put

| 5.2 Notes on Terminal I/O for TENEX Sail

Only
5.1 Simple Terminal I/O

If you are programming in TENEX Sail, you should
We have been doing input/output (I/O) from the use INTTY in preference to the various teletype
controlling terminal with INCHWL (or INTTY for routines listed in the manual. TENEX does not
TENEX) and PRINT. A number of other Teletype have a line editor built in. You can get the
I/O routines are listed in the Sail manual in effect of a line editor by using INTTY which
Sections 7.5 and 12.4 but they are less often allows the user to edit his/her typing with the
used. Also any of the file I/O routines which will usual TA, TR, TX, etc. up until the point where the
be covered next can be used with the TTY: line terminator is typed. If you use INCHWL, the
specified in place of a file. Before we cover file editing characters are only DEL to rubout one
f/O, a few comments are needed on the usual character and tUto start over. Efforts have
terminal input and output. been made in TENEX Sail to provide line-editing

where needed in the various I/O routines when

The INCHWL (INTTY) that we have used is like an accessing the controlling terminal. Complete
INPUT ‘with the source of input prespecified as details are contained in Section 12 of the Salil
the terminal and the break characters given as manual.
the line terminators. Should you ever want to
look at the break character which terminated an TENEX also has a non-standard use of the

INCHWL or INTTY, it will be in a special variable character set which can occasionally cause
called !'SKIP! which the Sail runtimes use for a problems. The original design of TENEX called
wide variety of purposes. INTTY will input a for replacing crif sequences with the ‘37
maximum of 200 characters. If the INTTY was character (eol). This has since been largely
terminated for reaching the maximum limit then abandoned and most TENEX programs will not
ISKIP! will be set to -1. Since this variable is output text with eol’s but rather use the
declared in the runtime package rather than in standard crif. Eol’s are still used by the TENEX
your program, if you are going to be looking at system itself. The Sail input routines INPUT,
it, you will* need to declare it also, but as an INTTY, etc. convert eol’s to crlf sequences. See
EXTERNAL, to tell the compiler that you want the the Sail manual for details, if necessary; but in
runtime variable. general, the only time that you should ever have

a problem is if you input from the terminal with
EXTERNAL INTEGER !SKIP!; some routine that inputs a single character at a
PRINT (“Number followed by <CR> or <ALT>1"); time, e.g., CHARIN. In these cases you will need
rep lye INCHHL; | INTTY for TENEX; to remember that end-of-line will be signalled by
|FISKIPleer THEN «uuu, an eol rather than a cr. The user of course .

ELSE IF 'SKIP!= alt THEN types a cr but TENEX converts to eol; and the
Sail single character input functions do not

Allmode (escape, enter, etc.) is one of the reconvert. to cr as the other Sail input functions
characters which is different in the different do.

character sets. The standard for most of the

world including both TOPS-10 and TENEX is to
have altmode as ‘33. At some point in the past

TOPS-10 _used ‘176. This is now obsolete; 5.3 Setting Up a Channel for I/O
however, the SU-Al character set follows this

convention but does so incorrectly. It uses ‘175 Now-we need I/O for files. The input and output
as altmode. This will present a problem for operations to files are much like what we have
programs transported among sites. It also done for the terminal. CPRINT will write
partially explains why most systems when they arguments to a file as PRINT writes them to the
believe they are dealing with a MODEL-33 terminal. It is also possible with the SETPRINT
Teletype or other uppercase only terminal (or

30

SAIL TUTORIAL Input /Out put

command to specify that you would rather send 10 OPEN (or INIT) UUO. OPEN has eight
aE your PRINT’s to a file (or to the terminal AND a parameters. Some of these refer to parameters
| named file). See the manual for details. that the OPEN UUO will need; other parameters

specify the number of buffers desired, with
There are a number of other functions available other UUQ’s called by OPEN to set up this
for 1/0 in addition to INPUT and CPRINT, but they buffering; still other parameters are internal Sail
all have one common feature that we have not bookkeeping parameters. .
seen before. Each requires as first argument a
channel number. The CPU performs I/O through The parameters to OPEN are:
input/output channels. Any device (TTY: LPT:
DTA:, DSK:, etc.) can be at the other end of the 1) CHANNEL: channel number,
channel. Note that by opening the controlling typically the number returned by
terminal (TTY:) on a channel, you can use any of GETCHAN.
the input/output routines available. In the case
of directory devices such as DSK: and DTA: a 2) “DEVICE”: a string argument that
filename is also necessary to set up the I/O. is the name of the device that is desired,
There are several steps in the process of such as “DSK” for the disk or “TTY” for
establishing the source/destination of I/O on a the controlling terminal.
numbered channel and getting it ready for the
actual transfer. This is the area in which TOPS- 3) MODE: a number indicating the
10 and TENEX Sail have the most differences due mode of data transfer. Reasonable

to the differences in the two operating systems. values are: 0 for characters and strings
Therefore separate sections will be included and ‘14 for words and arrays of words.
here for TOPS-10 and TENEX Sail and you should Mode ‘17 for dump mode transfers of

read only the one relevant for you. arrays is sometimes used but is not
discussed here.

53.1 TOPS- 10 Sail Channel and File

Handling 4) INBUFS: the number of input
buffers that are to be set up.

Routines for opening and closing files in TOPS-10
Sail correspond closely to the UUQ’s available in 5) OUTBUFS: the number of output
the TOPS-10 system. The main routines are: buffers.

GETCHRAN OPEN LOOKUP ENTER RELEASE 6) COUNT: a reference parameter
specifying the maximum number of

Additional routines (not discussed here) are: characters for the INPUT function.

USETIUSETOMTAPE CLOSE CLOSIN CLOSO 7) BRCHAR: a reference parameter
in which the character on which INPUT

broke will be saved.

5.3.1.1 Device Opening
8) EOF: a reference parameter

chane GETCHAN; which is set to TRUE when the file is at

the end. |,

GETCHAN obtains the number of a free channel.
On a TOPS-10 system, channel numbers are 0 The CHANNEL, “DEVICE”, and MODE parameters
through ‘17. GETCHAN finds the number of a are passed to the OPEN UUQ; INBUFS and
channel not currently in use by Sail and returns OUTBUEFS tell the Sail runtime system how many
that number. The. user is advised to use buffers should be set up for data transfers; and
GETCHAN to obtain a channel number rather than the COUNT, BRCHAR and EOF variables are cells

using absolute channel numbers. that are used by Sail bookkeeping. N.B.: many of
7 the above parameters have additional meanings

OPEN (chan, “device”, mode, inbufs, as given in the Sail manual. The examples in this
outbufs, mount, Ubrchar, @eof); section are intended to demonstrate how to do

simple things.
The OPEN procedure corresponds to the TOPS-

31

Input/Output SAIL TUTORIAL

RELEASE (chan); BEGIN
INTEGER INCHAN, INBRCHRR, INEOF;

The RELEASE function, which takes the channel

number as an argument, finishes all the input and OPEN (INCHAN« GETCHAN, “TTY”, 8, 2, 8, 288,
output and makes the channel available for other INBRCHAR, INECF)3
use. COMMENT

Opens the TTY in mode 8 (characters), uith

The following routine illustrates how to open a 2 input buffers, 8 output buffers.At most
device (in this case, the device is only the 208 charactors will be road in uith ® ach
teletype) and output to that device. The. CPRINT INPUT statement, and the break character
function, which is like PRINT except that its uiii be put into variable INBRCHRR. The

output goes to an arbitrary channel destination, end-of-file will be signalled b y INE OF
IS used. bring setto TRUE aftersome cai | to an

input function has found that there is no
BEG IN more data in tho fi les

INTEGER OUTCHAN;
WHILE NOT INEOF 00

OPEN (OUTCHAN « GETCHAN,"TTY",8,0,2,0,8,0); BEGIN |
COMMENT « code to do input -- see below. . . .

(1) Obtain a channoi number, using END;
GETCHRN, and save it in variable OUTCHAN. RELEASE (INCHRN);

(2) Specify device TTY, in mode 8,
uith 8 input and 2 output buffrrs. END;

(3) Ignorethe COUNT, BRCHAR, and EOF
variables, which are typically not needed if
the file is only for output.}

| 5.3.2 Reading and Writing Disk Files
CPR INT (OUTCHAN, "Message for OUTCHRN

"); Most input and output will probably be done to
COMMENT Actual data transfor.; the disk. The disk (and, typically, the DECtape)

are directory devices, which means that logically
_RELEASE (OUTCHAN) 3 separate files are associated with the device.
COMMENT Close channoi; When using a directory device, it is necessary to
END; associate a file name with the channel that is

open to the device.
The following example illustrates how to read
text from a device, again using the teletype as LOOKUP (CHAN, "FILENAME", €FLRG) ;
the device. ENTER (CHAN, "FILENRME" @FLAG);

File names are associated with channels by three
functions: LOOKUP, ENTER, and RENAME. We will
discuss LOOKUP and ENTER here. Both LOOKUP

and ENTER take three arguments: a channel
number, such as returned by GETCHAN, which
has already been opened; a text string which is
the name of the file, using the file name
conventions of the operating system; and a
reference flag that will be set to FALSE if the
operation is successful, or TRUE otherwise. (The
TRUE value is a bit pattern indicating the exact
cause of failure, but we will not be concerned

with that here.) There are three permutations of
LOOKUP and ENTER that are useful:

1) LOOKUP alone: this is done when
you want to read an already existing file.

2) ENTER alone: this is done when

32 |

SAIL TUTORIAL Input/Output

EF . you want to write a file. If a file already ENTER (OUTCHAN, FILENAHE « INCHUL, FLAG)|
exists with the selected name, then a new IF NOT FLAG THEN DONE ELSE

one is created, and upon closing of the PRINT ("Cannot writef i i r *, FILENANE,
| file, the old version is deleted altogether. "try again.

- This is the standard way to write a file. ")3 xD !

| 3) A LOOKUP followed by an ENTER
using the same name: this is the standard vo NOW Writethe text to OUTCHAN . . .
way to read and write an already
existing file. RELERSE (OUTCHAN) |

END;

The following program will read an already

existing text file, (e.g., with the INPUT, REALIN, 5.3.2.1 Reading and Writing Full Words
and INTIN functions, which scan ASCII text.) Note

| that the LOOKUP function is used to see if the Reading 36-bit PDP10 words, using WORDIN and
| file is there, obtaining the name of the file from ARRYIN, and writing words using WORDOUT and

the user. See below for details about the ARRYOUT, is accomplished by opening the file
functions that are used for the actual reading of using a binary mode such as ‘14. We recommend
the data in the file. the use of binary mode, with 2 or more input

| and/or output buffers selected in the call to the
| BEGIN OPEN function. There are other modes available,

INTEGER INCHRN, INBRCHAR, INEOF , FLAG; . such as mode ‘17 for dump mode transfers; see
STRING F ILENANE; the timesharing manual for the operating system.

OPEN (INCHRN« GETCHRN, “DSK”, 8, 2, 8, 288,
INBRCHRR, INEOF);

] 5.3.2.2 Other Input /Output Facilities
UHILE TRUE DO

] BEGIN Files can be renamed using the RENAME function.
o PRINT("Input file name 2"); Some random input and output is offered by the

| LOOKUP (INCHAN, FILENAME « INCHWL, FLAG); USETI and USETOQ functions, but random input. and
IF FLAG THEN OONE ELSE output produces strange results in TOPS-10 Sail.
PRINT ("Cannot find file ", FILENAHE, Best results are obtained by using USETI and

“try again. USETO and reading or writing 128-word arrays
"); to the disk with ARRYIN and ARRYOUT.

| END;

Magnetic tape operations are performed with the
UHILE NOT JINEOF 00 MTAPE function.

| BEGIN “INPUT

: see below f 0 r reading characters... See the Sail manual (Sec. 7) for more details
{ END “INPUT”; about these functions. In particular, we stress

that we have not covered all the capabilities of

EL RELEASE (INCHAN) ; the functions that we have discussed.
END;

1 The following program opens a file for writing
FE characters. 5.3.3 TENEX Sail Channel, and File Handling

BEGIN TENEX Sail has included all of the TOPS-I 0 Sail

f INTEGER OUTCHAN, FLAG; functions described in Section 7.2 of the Salil
STR ING F ILENANE| manual for reasons of compatibility and has

implemented them suitably to work on TENEX.
: OPEN (OUTCHRN« GETCHRN, “DSK”, 0, 8, 2, 8, Descriptions of how these functions actually

8, 8); | | work in TENEX are given in Section 12.2 of the
| manual. However, they are less efficient than

UHILE TRUE DO the new set of specifically TENEX routines which
BEG IN

PRINT ("Output f i le name 2")|

; 33

; Input/Output SAIL TUTORIAL

have been added to TENEX Sail so you probably that has not been used before. N does not mean
J should skip these sections of the manual. The a new version as one might have expected. In

new TENEX routines are also greatly simplified general, the 1/0 routines use the relevant JSYS’s
| for the user so that a number of the steps to directly and thus include all of the design errors
i establishing the I/O are done transparently. and bugs in the JSYS’s themselves.

i Basically, you only need to know three INTEGER infile,outfile,defaultsFile;
commands: 1) OPENFILE which establishes a file PRINT (“Input f i les");

; on a channel, 2) SETINPUT which establishes inFi lo « OPENFILE (NULL, "rc");
certain parameters for the subsequent inputs PRINT ("Output f i le: ");
from the file, and 3) CFILE which closes the file ou tFi | @« OPENF ILE (NULL, "we");

| and releases the channel when you are finished. defaultsfile «
OPENF ILE (“user-defaul tt. tmp","w");

chan# OPENFILE(" filename", “modes”)

| We now have files “open” on 3 channels--one for
The OPENFILE function takes 2 arguments: a reading and two for writing. We have the
string containing the device and/or filename and channel numbers stored in inFile, outFile, and
a string constant containing a list of the desired defaultsFile so that we can refer to the
modes. OPENFILE returns an integer which is the appropriate channel for each input or output.
channel number to be used in all subsequent Next we need to do a SETINPUT on the channel
inputs or outputs. If you give NULL as the open for input (reading).

| filename then OPENFILE goes to the user's
terminal to get the name. (Be sure if you do this SETINPUT (chand, count , ebrchar, eeof)
that you first PRINT a prompt to the
terminal.) The modes are listed in the Sail There are four arguments:
manual (Sec. 12.3) but not all of those listed are
commonly used. The following are the ones that 1) The channel number.
you will usually give:

2) An integer number which is the
- R or W or A for Read, Write, or Append | maximum number of characters to be

depending on what you intend to do read in any input operation (the default if
with the file. no SETINPUT is done is 200).

x if you are allowing multi-file 3) A reference integer variable
specifications, e.g., data.*;*. where the input function will put the

break character.

C if the user is giving the
filename from the terminal, C mode 4) A reference integer variable
will prompt for [confirm]. where the input function will. put true or

false for whether or not the end-of-file

E if the user is giving the was reached (or the error number if an
filename and an error occurs error was encountered while reading).
(typically when the wrong filename
is typed), the E mode returns So here we need:
control to your program. If, E is not
specified the user is automatically INTEGER infileBrChr,infileEof;
asked to try again. SETINPUT (infile, 280, inf i lebrchr, inf i leEof);

Modes 0 and N for Old or New File are also Now we do the relevant input/output operations
allowed but probably shouldn't be used. They and when finished:
are misleading. The defaults, e.g. without either
0 or N specified, are the usual conditions (read CFILECinfile)
an old version and write a new version). The 0 CFILE(outt ile);
and N options are peculiar. For -example, “NW” CFILE (defaultsFile);
means that you must specify a completely new
filename for the file to be written, e.g., a name A simple example of the use of these routines

for opening a file and outputting to it is:

34

LL—

SAIL -TUTORIAL Input/Output

| INTEGER outfile; the user gives an incorrect filename then
PRINT ("Type filename for output: ")} OPENFILE will return -1 rather than a channel
outf i te«OPENFILE(NULL, "nc"); number and the TENEX error number will be

, CPRINT(outf ile, "message...”); returned in SKIP. Remember to declare
EC CFILE (outfile); EXTERNAL INTEGER !SKIP! if you are going to be

looking at it. Handling the errors yourself is
where CPRINT is like PRINT except for the often a good idea. TENEX is unmerciful. If the
additional first argument which is the channel user gives a bad filename, it will ask again and
number. keep on asking forever even when it is obvious

after a certain number of tries that there .is a

The OPENFILE, SETINPUT, and CFILE commands genuine problem that needs to be resolved.
| . will handle most situations. If you have unusual

requirements or like to get really fancy then Another use for the "E® mode is to offer the user
there are many variations of file handling the option of typing a bare <CR> to get a default
available. A few of the more commonly used will file. If the "E® mode has been specified and the
be covered in the next section; but do not read user types a carriage-return for the filename

| this section until you have tried the regular then we know that the error number returned in
routines and need to do more (if ever). On first ISKIP! will be the number (listed in the JSYS
reading, you should now skip to Section 5.4. manual) for “Null filename not allowed.” so we

can intercept this error and simply do another
| OPENFILE with the default filename, e.g.,

5.3.4 Advanced ‘TENEX Sail Channel and EXTERNRL INTEGER !SKIPI;

File Handling outfilee-1;
WILE outfiles -1 DO

If you want to use multiple file designators with BEGIN
%’s, you should give "s+" as one of the options to PRINT("Filename (cCR> for TTY:) &");

| OPENFILE. Then you will need to use INDEXFILE outfile~OPENFILE (NULL, "we");
| to- sequence through the multiple files. The | Flskip!= ’6080115 THEN

syntax is END outf i 1e+OPENFILE("TTY:","u");
| foundlanother!f | le « INDEXFILE (chan#)

The GTJFNL and GTJFN routines are useful if you
| where tound'another!fite is@ boolean variable. need more options than are provided in the

INDEXFILE accomplishes two things. First, if OPENFILE routine, but neither of these actually
there is another file in the sequence, it is opens the file so you will need an OPENF or

| properly initialized on the channel; and second, OPENFILE after the GTJFNL or GTJFN unless your
INDEXFILE returns TRUE to indicate that it has purpose in using the GTJFN is specifically that
gotten another file. Note . that the original you do not want to open the file. The GTJFNL
OPENFILE gets the first file in the sequence on routine is actually the long form of the GTJFN
the channel so that you don’t use the INDEXFILE JSYS; and the GTJFN routine is the short form of

; until you have finished processing the first file the GTJFN JSYS. See the TENEX JSYS manual for
= and are ready for the second. This is done details.

conveniently with a DO...UNTIL where the test is
j not made until after the first time through the Another use of GTJFNL is to combine filename

loop; e.g., specification from a string with filename
| specification from the user. This is a simple way

mul t IFi et » OPENFILE ("data.*", rx"); to preprocess the filename from the user, i.e., to
DO check if it is really a "?" rather than a filename.

BEGIN First, you need to declare SKIP! and ask the user
| .v.<input and process current file>..s for a filename:

END

UNTIL NOT INDEXFILE (muitiFiles) EXTERNAL INTEGER ! SK IP {3
| WHILE TRUE 0O
] Another available option to the OPENFILE routine BEGIN "get{ilename"

which you should consider using is the “E” option PRINT("Type Input 7 | lename or 3 1");

| for error handling. If you specify this option and

| 35

Input/Output SAIL TUTORIAL

Next do a regular INTTY to get the reply into a confirm) are turned on. Remember that the bits
string: start with Bit 0 on the left. The jfnjfn will

probably always be 000100000101. This
s o INTTY; argument is for the input and output devices to

be used if the string needs to be supplemented.
Then you process the string in any way that you Here the controlling terminal is used for both.
choose, e.g., check if it is a "?" or some other Devices on the system have an octal number
special keyword: associated with them. The controlling terminal as

input device is ‘100 and as output is 101. For
IF s= "?" THEN BEGIN most purposes you can refer to the terminal by

givehelp; its “name” which is TTY: but here the number is
CONTINUE “getfilename"; required. The input and output devices are

| ENO; given in half word format which means that ‘100
is in the left and ‘101 in the right half of the

If you decide it is a proper filename and want to word with the appropriate O's filled out for the
use it then you give that string (with the break rest.
character from INTTY which will be in !SKIP!

appended back on to the end of the string) to The next six arguments to GTJFNL are for
the GTJFNL. defaults if you want to give them for: device,

directory, file name, file extension, file
chan#« GTJFNL (s&!SKIP!, ‘160080000088, protection, and file account. |f no default is

‘808106800181, NULL, NULL, NULL, given for a field then the standard default (if
NULL, NULL, NULL); any) is used, e.g., DSK: for device and Connected

Directory for directory. This is another reason

If the string ended in altmode meaning that the why you may choose GTJFNL over OPENFILE for
user wanted filename recognition then that will getting a filename. In this way, you can set up
be done; and if the string is not enough for defaults for the filename or extension. You can
recognition and more typein is needed then the also use GTJFNL to simulate a directory search
GTJFNL will ring the bell and go back to the path. For example, the EXEC when accepting the
uset’s terminal without the user knowing that name of a program to be run follows a search
any processing has gone on in the meantime, i.e., path to locate the file. First it looks on
to the user it looks exactly like the ordinary <SUBSYS> for a file of that name with a .SAV
OPENFILE. Thus the GTJFNL goes first to the extension. Next it looks on the connected
string ‘that you give it but can then go to the directory and finally on the login directory. If
terminal if more is needed. you have an analogous situation, you can use a

hierarchical series o f GTJFNL’s with the

After the GTJFNL don’t forget that you still need appropriate defaults specified:
to OPENF the file. For reading a disk file,

EXTERNAL INTEGER !SKIP!;
OPENF (chan#, 448808280888) j INTEGER logdir,condir,t tyno;

STRING logdirstr,condirstr;

IS a reasonable default, and for writing:
GJINF (logdir,condir,ttyno);

OPENF (chan#, ‘4488001880081; COMMENT puts the directory numbers for login
and connected directory and the tty# in

The arguments to GTJFNL are: its reference integer arguments
logdirstr«DIRST (logdir);

chan# « GTJFNL("{ i lename", flags, jfnjfn, condirstr«DIRST(condir);
“dev”, “dir”, “name”, "ext", COMMENT returns a string for the name
“protection”, "acct"); corresponding to directory#;

WHILE true DO

where the-flag specification is made by looking BEGIN “ge tname"
up the FLAGS for the GTJFN JSYS in the JSYS PRINT ("Type the name of the program: “I;
manual and figuring out which bits you want IF EQU (upper (NAME « INTTY),"EXEC") THEN
turned on and which off. The 36-bit resulting BEGIN
word can be given here in its octal name«"<SYSTEM>EXEC.SAV";
representation. ‘160000000000 means bits 2 DONE “getname’;
(old file only), 3 (give messages) and 4 (require END;

IF name ="?" THEN

36

SAIL-TUTORIAL Input/Output

BEGIN will be difficult to use if you are not familiar with
givehelp; the JSYS’s and the JSYS manual.
CONTINUE "getname";

| END:
name&tame8 | SK IP I}

COMMENT put the break char back on; 5.4 input from a File
DEFINE f | ag = <’10800008088088>,

| jfnjfn = <*100008181>; In this section, we will assume that you have a
| F (tempChan<GTJFNL (name, flag, jinjfn,NULL, file opened for reading on some channel and are

| "SUBSYS",NULL,"SAV" ,NULL,NULL)) = -] ready to input. Also that you have appropriately
THEN established the end-of-file and break character

IF (tempChaneGTJFNL (name, f lag, variables to be used by the input routines and
| jénjfn,NULL,condirstr NULL, the break table if needed.

"SAV",NULL,,NULL)) = -1 THEN

IF CtempChan«GTJIFNL (name, f lag, Another function which can be used in
jinjin, NULL, logdirstr, NULL, conjunction with the various input functions is
"SAV", NULL,NULL)}= -1 THEN SETPL:

BEGIN

PRINT(* ?",crift); SETPL (chan#, @ | ine#, gpaged, esos?)
CONTINUE "getname";

END; This allows you to set up the three reference
COMMENT try each default and if not found integer variables iine#, page#, and sos# to be
then try next unt i | none are found then associated with the channel so that any input

; print ? and try again; function on the channel will update their values.
name « JFNS (tempChan,8); The \ine# variable is incremented each time a ‘12
COMMENT gets name of file on than--8 (If) is input’ and the page# variable is incremented

means in normal format: (and iine# reset to 0) each time a ‘14 (formfeed)

CFILE (tempChan); is input. The last SOS line number input (if any)
COMMENT channel not opened but does will be in the sos# variable. The SETPL should be

need to ‘be released: given before the inputting begins.
B DONE "ge tname”;

END: The major input function for text is INPUT.

In this case, we did not want to open a channel “result”e+ INPUT (chan#, thI|® #);
| at all since we will not be either reading or

writing the .SAV file. At the end of the above where you give as arguments the channel
code, the complete filename is stored in STRING number and the break table number; and the
name. We might wish to run the program with the resulting input string is returned. This is very

| RUNPRG routine. GTJFN and GTJFNL are often similar to SCAN.

used for the purpose of establishing filenames
even though they are not to be opened at the To input one line at a time from a file (where
moment. However, the Sail channel does need to infite is the channel number and infiteEot is the
be released afterwards. end-of-file variable):

Some of the other JSYS’s which have been SETBRERK (readL ine«GETBRERK,| f,NULL,* ina");

implemented in the runtime package were used 00
! in this program: GJINF, DIRST, and JFNS. JFNS in BEGIN
j particular is very useful. It returns a string STRING| ine
] which is the name of the file open on the line INPUT (infile, readline);
i channel. You might need this name to record or . «o<process thr line>...
| to print on the terminal or because you will be END
] outputting to a new version of the input file UNTIL infileEof;

which you can’t do unless you know its name.
| } If the INPUT function sets the eof variable to
j These and a number of other routines are TRUE then’ either the end-of-file was

covered in Section 12 of the Sail manual. You encountered or there was a read error of some

| should probably glance through and see what is sort.
1 there. Many of these commands correspond
] directly to utility JSYS’s available in TENEX and
1 37

Input/Output SAIL TUTORIAL

If the INPUT terminated because a break “result”

character was read then the break character will SINI(chan#, maxlength, break-character)

be in the brchar variable. If brchar-O then you
have to look at the eof variable also to does a very fast input of a string which is
determine what happened: If eof=sTRUE then that terminated by either reading naxiength characters
was what terminated the INPUT but if eof=FALSE or encountering the obreak-character. Note that
and brchar=0 then the INPUT was terminated by the break-character here is not a reference
reaching the maximum count per input that was integer where the break character is to be
specified for the channel. returned; rather it actually is the break

character to be used like the “break-characters”

If you are inputting numbers from the channel established in a break table except that only one
| then character can be specified. If the SINI terminated

| for reaching maxiength then SKIP!= -1 else !SKIP!
reaiVar « RERL IN (chan#) will contain the break character.

integerVar « INTIN (chand)
TENEX Sail also offers random I/O which is not

which are like REALSCAN and INTSCAN can be available in TOPS-10 Sail. A file bytepointer is
used. The brchar established for the channel maintained for each file and is initialized to point
will be used rather than needing to give it as an at the beginning of the file which is byte O. It
argument as in the REALSCAN and INTSCAN. subsequently moves through the file always

pointing to the character where the next read or
INPUT is designed for files of text. Several other write will begin. In fact the same file may be
input functions are available for other sorts of read and written at the same time (assuming it
files. has been opened in the appropriate way). If the

pointer could only move in this way then only
Number & WOROIN (chan) sequential I/O would be available. However, you

| can reset the pointer to any random position in
will read in a 36-bit word from a binary format the file and begin the read/write at that point

| file. For details see the manual. which is called random I/O.
RRRYIN(chan#, @loc, count) charptr « RCHPTR (chan#)

Is used for filling arrays with data from binary returns the current position of the character
. format files. count is the number of 36-bit words pointer. This is given as an integer representing
to be read in from the file. They are placed in the number of characters (bytes) from the start
consecutive locations starting with the location of the file which is byte 0. You can reset the
specified by lee, e.g., pointer by

INTEGER ARRAY numbs [1:max]) SCHPTR (chand#, newp tr)
ARRYIN (datafile, numbs (1), max);

If newptr is given’ as -1 then the pointer will be
ARRYIN can only be used for INTEGER and REAL set to the end-of-file.
arrays (not STRING arrays).

There are many uses for random [/O. For

5.4.1 Addit ional TENEX Sail input Routines example, you can store the help text for a
program in a separate file and keep track of the

Two extra input routines which are quite fast bytepointer to the start of each individual
have been added to TENEX Sail to utilize the message. Then when you want to print out one
available input JSYS’s. of the messages, you can set the file pointer to

the start of the appropriate message and print it
c h ar « CHARIN (chan#) out.

inputs a single character which can be assigned RWDPTR AND SWDPTR are also available for
to an integer variable. If the file is at the end random I/O with words (36-bit bytes) as the
then CHARIN returns O. primary unit rather than characters (7-bit bytes).

38

SAIL -TUTORIAL Input/Output

| 5.5 Output to a File

The CPRINT function is used for outputting to
text files.

CPRINT (chan®, @® (gl arg2,, argN)

CPRINT is just like PRINT except that the channel
must be given as the first argument.

FOR ie] STEP 1 UNTIL maxWorkers DO

CPRINY (outt ile, namelil}, " ",
salarylil,crit)y

Each subsequent argument is converted to a
string if necessary and printed out to the
channel.

NORDOUT (chan#, number)

writes a single 36-bit word to the channel.

ARRYOUT (chand, loc, count)

| writes out an array by outputting count number
of consecutive words starting at location fee.

REAL ARRAY resu | ts [11 max);

|] ARRYOUT (resul tFile, resul ts [1], max);

TENEX Sail also has the routine: :

| CHAROUT (chan, char)

which outputs a single character to the channel.

The OUT function is generally obsolete now that
CPRINT is available.

| 39

Records SAIL TUTORIAL

SECTION 6 rp « NEHIRECORD (person);

Records creates a person, with ail fields initially 0 (or
NULL for strings, etc). Records are created
dynamically by the program and are garbage
collected when there is no longer a way to
access them.

Records are the newest data structure in Sail.

They take us beyond the basic part of the When a record is created, NEW!IRECORD returns a
language, but we describe them here in the hope pointer to the new record. This pointer is
that they will be very useful to users of the typically stored ir a RECORD!POINTER.
language. Sail records are similar to those in RECORD!POINTERs are variables which must be
ALGOL W (see Appendix A for the differences). declared. The RECORD!POINTER rp was used
Some other languages that contain record-like above. There is a very important distinction to
structures are SIMULA and PASCAL. be made between a RECORD!POINTER and a

RECORD. A RECORD is a block of variables called

Records. can be extremely useful in ‘setting up fields, and a RECORDIPOINTER is an entity that
complicated data structures. They allow the Sail points to some RECORD (hence can be thought of
programmer: 1) a means of program controlled as the “name” or “address” of a RECORD)., A

storage allocation, and 2) a simple method of RECORD has fields, but a RECORD!POINTER does
referring to bundles of information. (Location(x) not, although its associated RECORD may have
and memory Ix}, which are not discussed here and fields. The following is a complete program that
should be thought of as liberation from Sail, declares a RECORDICLASS declares a
allow one to deal with addresses of things.) RECORD!POINTER, and creates ‘a record in the

RECORD!CLASS with the pointer to the new

6.1 Declaring and Creating Records record stored in the RECORD!POINTER.

A record is rather like an array that can have BEGIN
objects of different syntactic types. Usually the RECORD !CLASS person (STRING name, address;
record represents different kinds of information INTEGER account;
about one object. For example, we can have a REAL balance);
class of records called person that contains RECORD POINTER (person) rp;

. records with information about people for an
accounting program. Thus, we might want to COMMENT program starts hero;
keep: the person’s name, address, account rp « NEN'RECORD (person)j
number, monetary balance. We could declare a END;
record class thus:

RECORD!CLASS psrson (STRING name, address; RECORD!POINTERs are usually associated with
INTEGER account; particular record class(es). Notice that in the
REAL bal® ncr) above program the declaration of

RECORD!POINTER mentions the class psrson:
This occurs at declaration level, and the

identifier person is available within the current RECORD!POINTER (person) rp;
block -- just like any other identifier.

This means that the compiler will do type
RECORD!CLASS declarations do not actually checking and make sure that only pointers to
reserve any storage space. instead they define records of class person will be stored into rp. A
a pattern or template for the class, showing what RECORD!POINTER can be of several classes, as in:
fields the-pattern has. in the above, name, addrsss,
account and batance are all fields of the RECORD!POINTER (person, university) rp;
RECORD!CLASS person.

assuming that we had a RECORDICLASS
To create a record (e.g., when you get the data university.
on an actual person) you need to call the
NEW!RECORD procedure, which takes as its RECORD!POINTERs can be of any class if we say:
argument the RECORDICLASS. Thus,

40

SAIL- TUTORIAL Records

RECORD !POINTER (ANYICLASS) rp;

but declaring the class(es) of record pointers 6.3 Linking Records Together
gives compilation time checking of record class
agreement. This becomes an advantage when Notice, in the above example, that as we create
you have several classes, since the compiler will the persons, we have to store the pointers to
complain about many of the simple mistakes you the records somewhere or else they will become
can make by mis-assigning record pointers. ‘missing persons”. One way to do this would be

to use an array of record pointers, allocating as
many pointers as we expect to have people. If
the number of people is not known in advance

6.2 Accessing Fields of Records then the more customary approach is to link the
records together, which is done by using |

The fields of records can be read/written just additional fields in the records.
like the elements of arrays. Developing the
above program a bit more, suppose we have Suppose we upgrade the above example to the
created a new record of class person, and stored following:
the pointer to that record in rp. Then, we can
give the “person” a name, address, etc., with the RECORD!CLASS person WRING name, address;
following statements. INTEGER account;

REAL balance;

person:namelrpl« “ Jo hn Doe”; RECORD!POINTER(ANY!CLASS) next);
person: address [rp)e “181 East Lansing Street"

person: accountlrple 14; Notice now that there is a RECORD!POINTER field
person: ba lance lrple 3888.871 in the template. This may be used to keep a

pointer to the next person. The header to the
and we could write these fields out with the entire- list of persons will be kept in asingle

statement: RECORD!POINTER.

PRINT (“Name is ", personinamelrpl,crif, Thus, the following program would create
“Address is", person:addressirp), crif, persons dynamically and put them into a “linked
“Account is ", persontaccount(rpl, erlf, list” with the newest at the head of the list. This
“Balance is ", person:balancelrp], crif); technique allows you to write programs that are

not restricted to some fixed maximum number of

The syntax for fields has the following features: persons, but instead allocate the memory space
necessary for a new person when you need it.

1) The fields are available within
the lexical scope where the
RECORD!ICLASS was declared, and follow BEGIN
ALGOL block structure. RECORO!ICLRSS person (STRING name, address;

INTEGER account; RERL balance;

2) The fields in different classes RECORD !POINTER(RNY !CLRSS) next);
may have the same name, e.g., parent :name

{ and chi Id: name. RECORD !POINTER (ANY ICLRSS) header;

3) The syntax is rather like that for WHILE TRUE 00
arrays -- using brackets to surround the BEGIN
record pointer in the same way brackets STRING 3

; are used for the array index. RECORD !POINTER (ANY!ICLRSS) tamp;

4) The fields can be read or written PRINT ("Name of next person, CR if donor”);
| into, also like array locations. IF NOT LENGTH(s « INCHWL) THEN DONE;

5) It IS necessary .to write COMMENT put neu person at head of tisty
class: f ield[pointer) -- i.E., you have to temp . NEW!RECORD (person);
include the name of the class (here COMMENT muke aneu record;
person) with a ™" before the name of the person: next | temp) « header;
field. COMMENT the old head becomes the second:

| 41

Records SAIL TUTORIAL

header « tamp;
COMMENT the n e w record becomes the head; A = 0 (RI:1, J:3)(B I:1, J12)

(C Isl, J:3) (D 1:1, J:3)
COMMENT now fill information fields;

person: name [temp) o 83 Note that two RECORD!POINTERs are only equal if
COMMENT nou we can fill address, account, they point to the same record (regardless of

. balance if we want...; whether the fields of the records that they point
END; to are equal). At the end of executing the

previous example, there are 3 distinct records,
END; one pointed to by RECORD!POINTER », One

pointed to by RECORD!POINTER c, and one
pointed to by RECORD!POINTERsa and 4. When

‘ A very powerful feature of record structures is the line that reads: pair:jld) « 3; is executed,
the ability to have different sets of pointers. the j-field of the record pointed at by
For example, there might be both forward and RECORDIPOINTER dis changed to 3, not the j-field
backward links (in the above, we used a forward of d (RECORD!IPOINTERs have no fields). Since
link). Structures such as binary trees, sparse that is the same record as the one pointed to by
matrices, -deques, priority queues, arid so on are RECORD!POINTER a when we print pairrj tal, we
natural applications of records, but it will take a get the value 3, not 2.
little study of the structures in order to
understand how to build them, and what they are Records can also help your programs to be more
good for. readable, by using a record as a means of

returning a collection of values from a procedure
Be warned about the difference. between (no Sail procedure can return more than one
records, record pointers, record classes, and the value). If you wish to return a RECORD!POINTER,
fields of records: they are all distinct things, and then the procedure declaration must indicate this

you can get in trouble if you forget it. Perhaps as an additional type-qualifier on the procedure
a simple example will show you what is meant: declaration, for example:

BEGIN RECORD!POINTER (person) PROCEOURE maxBaiance;
“RECORD !CLRSS pair (INTEGER 1,j); BEGIN
RECORD!POINTER (pair) a, b, c, d; RECOROIPOINTER (person) tempHeader,

currentfaxPerson;
a « NEW!RECORD (pair); RERL currentllax]
pair: i (a)e I; tempHeader « header;
pair:) (ae 2; currentfax« personrbalance [tempHeader);
de =o currentMaxPerson « tempHeader;
b « NEW!RECORD (pair); WHILE tempHeader+ personrnext [tempHeaderl 00
pair: ible 1; IF personr balance | tempHeader]> currentMax THEN
pair: jbl « 2; BEGIN
c « NEW!RECORD (pair); currentflax « person:balance [tempheader);
pairtife)le 1: currentfaxPerson + tempHeader;
pair: j le) eo 3; END;
IF a= b THEN PRINT("R=B "); RETURN (currenttaxPerson);
pair: jldle 3; END;
IF a = c¢ THEN PRINT("A = C");

IF ¢c « d THEN PRINT(" Cs 0"); This procedure goes through the linked list of
IF a = d THEN PRINT(" R=0"); records and finds the person with the highest
PRINTC"(R I : « | pair: i [a),", J1*¥, balance. It then returns a record pointer to the

pair:j (al, ")"); record of that person. Thus, through the single
PRINT(" (BI:", pair; ilbl,", J", RETURN statement allowed, you get both the

pair: jbl, ")"); name of the person and the balance.
PRINTC" (CI t", pair: i lel, ", Js",

pair: jlel, "I"; RECORD!POINTERs can also be used as arguments
PRINT(* (D I:", pairsi (d], *, Ji", to procedures; they are by default VALUE

© pairs) ld), ")"); parameters when used. Consider the following
END; quite complicated example:

will print: RECORD !CLRSS pnt (REAL x,y,z)}
RECORO!POINTER (pnt) PROCEDURE midpoint

(RECORD !POINTER (pnt) a,b) ;

42

SAIL -TUTORIAL Records

BEGIN

RECORD !POINTER (pnt) retval;
retval « NEHIRECORD (pnt)

pnt:x Iretvall «(pntsx[al + pnt:x bl} / 2;
pnt:y tretvall « (pnt:y [a) + pnt:y (bl) / 23
pntiz Iretvall « (pnt:tz (a) 4 pntiz [b)) / 2;
RETURN(retval);
END;

p emidpoint(gq , r);

While this procedure may appear a bit clumsy, it
makes it easy to talk about such things as pnts
later, using simply a record pointer to represent
each pnt. Another common method for
“returning” more than one thing from a
procedure is to use REFERENCE parameters, as in
the following example:

PROCEOURE midpoint (REFERENCE REAL rx,ry,rz;
REAL ax,ay,az,bx,by,b2);

BEGIN

) rxe (ax + bx)/ 2;
ry «Cay + by) / 2
rze (at + b2)/ 2
ENO;

MIDPOINT(px, py, PZ, ax, gq y , 8Z, rx, ry, rz,);

Here the code for the procedure looks .quite
simple, but there are so many arguments to it
that you can easily get lost in the main code.
Much of the confusion comes about because

procedures simply cannot return more than one
value, and the record structure allows you to
return the name of a bundle of information.

| 43

Conditional Compilation SAIL TUTORIAL

SECTION 7 If. this feature were not available then the

following would have to be used:

Conditional Compilation
BOOLEAN smal (Version;
smal iVersion « TRUE;

IF smaliVersionTHEN max « 18xtotal

Conditional compilation is available so that the ELSE oom o 188xtotal;
same source file can be used to compile slightly ‘vos
different versions of the program for different
purposes. Conditional compilation is handled by so that a conditional would actually appear, in
the scanner in a way similar to the handling of your program.
macros. The text of the source file is

manipulated before it is compiled. The format is Some typical uses of conditional compilation are:

IFCR boo loan THENC code ELSEC code ENOC 1) Insertion of debugging or testing
code for experimental versions of a

This construction is not a statement or an program and then removal for the final
expression. It is not followed by a semi-colon version. Note that the code will still be
but just appears at any point in your program. in your source file and can be turned
The ELSEC is optional. The ENDC. must be back on (recompilation is of course
included to mark the end but no begin is used. required) at any time that you again need
The code which follows the THENC (and ELSEC if to debug. When you do not turn on
used) can be any valid Sail syntax or fragment of debugging, the code completely
syntax. As with macros, the scanner is simply disappears from your program but not
manipulating text and does not check that the from your source file.
text is valid syntax.

2) Maintainence of a single source
The boolean must be one which has a value at fle for a program which is to be
compile time. This means it cannot be any value exported to several sites with minor
computed by your program. Usually, the boolean differences.
will be DEFINE’d by a macro. For example:

DEF INE sumex = <TRUE>,

DEFINE smal iVersions <TRUE>; is is <FALSE>; .

IFCR smal IVersion THENC max «i8xtotal; IFCR sumex THENC docdir "DOC"; ENOC
ELSEC max «188%total; ENOC IFCR tsi THENC docdir + "DOCUMENTATION"; ENOC

where every.difference in the program between
the small and large versions is handled with a where only one site is set to TRUE for
similar IFCR...THENC...ENDC construction. For this each compilation.
construction, the scanner checks the value of the

boolean; and if it is TRUE, the text following 3) “Commenting out” large portions
~ THENC is inserted in the source being sent to the of the program. Sometimes you need to
inner compiler--otherwise the text is simply temporarily remove a large section of the
thrown away and the code following the ELSEC program. You can insert the word
(if any) is used. Here the code used for the COMMENT preceding every statement to
above will be max «~18xtotal;, and if you edit the be removed but this is a lot of extra
program and instead work. A better way is to use:

DEFINE smallVersions <FALSE>; IFCR FRLSE THENC

the result willbe max «180stotal;. <all the code 10 be "removed">

The code following the THENC and ELSEC will be ENOC
taken exactly as is so that statements which
need final semi-colons should have them. The

above format of statement j eLsec IS correct.

44

SAIL TUTORIAL Systems Building in Sail

SECTION 8 2) Code them in a similar “style” for
readability among programmers.

Systems Building in Sail
: 3) Make the points of interface and

communication between the programs as
clear and explicit as possible.

Many new Sail users will find their first Sail 4) Clear up questions about which
project involved with adding to an already- modules govern system resources (Sail
existing system of large size that has been and the timesharing system), such as
worked on by many people over a period of files, terminals, etc. sothat they are not
years. These systems include the speech competing with each other for these
recognition programs at Carnegie-Mellon, the resources.
hand-eye software at Stanford Al, large CAI

systems at Stanford IMSSS, and various medical 8.1 The Load Module
programs at SUMEX and NIH. This section does
not attempt to deal with these individual systems The most effective separation of modules is
in any detail, but instead tries to describe some achieved through separate compilations. This is
of the features of Sail that are frequently used done by having two or more separate source
in systems building, and are common to all these files, which are compiled separately and then
systems. The exact documentation of these loaded together. Consider the following design
features is given elsewhere; this is intended to for an Al system QWERT. QWERT will contain
be a guide to those features. three modules: a scanner module XSCAN, a

parser module PARSE, and a main program
The Sail language itself is procedural, and this QWERT. We give below the three files for
means that programs can be broken down into QWERT.
components that represent conceptual blocks
comprising the system. The block structuring of First, the QWERT program, contained in file
ALGOL also allows for local variables, which QWERT.SAI:
should be used wherever possible. The first rule
of systems building is: break the system down BEGIN"QNERT"
into modules corresponding to conceptual units.
This is partly a question of the design of the EXTERNAL STRING PROCEDURE XSCAN (STRINGS);
system--indeed, some systems by their very REQUIRE "XSCAN"LORD ! MODULE;
design philosophy will defy modularity to a
certain extent. As a theory about the EXTERNAL STRING PROCEDURE PARSE (STRINGS) ;
represent at ion of knowledge in computer REQUIRE "PARSE" LORD !MODULE;
programs, this may be necessary; but programs
should, most people would agree, be as modular WHILE TRUE DO
“as possible”. BEGIN

PRINT ("%*, PARSE (XSCAN (INCHHL)));

Once modularized, most of the parts of the END;
system can be separate files, and we shall show
below how this is possible. Of course, the END"QNERT";
modules will have to communicate together, and
may have to share common data (global arrays, Notice two features about QWERT.SAI:
flags, etc.). Also, since the modules will be
sharing the same core image (or job), there are 1) There are two EXTERNAL
certain Sail and timesharing system resources declarations. An EXTERNAL declaration
that will have to be commonly shared. The rules says that some identifier (procedure or
to follow-here are: variable) is to be used in the current

program, but it will be found somewhere
1) Make the various modules of a else. The EXTERNAL causes the compiler

system as independent and separate as to permit the use of the identifier, as
design philosophy allows. requested, and then to issue a request

for a global fixup to the LOADER
program.

45

Systems Building in Sail SAIL TUTORIAL

EC 2) Secondly, there are two REQUIRE LINK10) that are available on the system.
 LOAD!MODULE statements in the In particular, there is no way to associate

program. A load module is a file that is an external symbol with a particular
| loaded by the loader, presumably the LOAD!MODULE.
| output of some compiler or assembler.

These REQUIRE statements cause the 2) The names of identifiers are

| compiler to request that the loader load limited to six characters, and the
| modules XSCAN.REL and PARSE.REL when character set permissible is slightly less

we load MAIN.REL. This will hopefully than might be expected. The symbol "!"
satisfy the global requests: i.e., the is, for example, mapped into “." in global
loader will find the two procedures in the: symbol requests.

| two mentioned files, and link the

programs all together into one “system”. 3) The “semantics” of asymbol
| (e.g., whether the symbol names an

| Second, the code for modules XSCAN and PARSE: integer or a string procedure) is in no
way checked during loading.

ENTRY XSCAN;
BEGIN Initialization routines in a LOAD!MODULE can be

performed automatically by including a REQUIRE
INTERNRL STRING PROCEDURE XSCAN(STRINGS); .. INITIALIZATION procedure. For example,
BEGIN suppose that INIT is a simple parameterless,

..... code for XSCAN. . valueless procedure that does the initialization
RETURN (resulting string); for a given module:
END

SINPLE PROCEDURE INIT;

END; BEGIN
.+oinitialization code...

and now PARSE.SAI: END;

- ENTRY PARSE; REQUIRE INIT INITIALIZATION;
BEGIN .

will run INIT prior to the outer block of the main
INTERNRL STRING PROCEDURE PARSE (STRINGS) program. It is difficult to control the order in
BEGIN which initializations are done, so it is advisable

to make initializations that do not conflict with

....code for PARSE.... each other.

RETURN (resulting string);
END;

END; 8.2 Source Files

Both of these modules begin with an ENTRY In addition to the ability to compile programs
declaration. This has the effect of saying that separately, Sail allows a single compilation to be
the prdgram to be compiled is not a “main” made by inserting entire files into the scan
program (there can be only one main program in stream during compilation. The construction:
a core image), and also says that PARSE is to be
found as an INTERNAL within this file. The list of REQUIRE "FILENM.SRI"SOURCE !FILE;

tokens after the ENTRY construction is mainly
used for LIBRARYs rather than LOAD!MODULES, inserts the text of file FILENM.SAI into the stream
and we do not discuss the difference here, since of characters being scanned--having the same
LIBRARYs _are not much used in system building effect that would be obtained by copying all of
due to the difficulty in constructing them. FILENM.SAI into the current file.

A few important remarks about LOAD!MODULES: One pedestrian use of this is to divide afile into
smaller files for easier editing. While this can be

1) The use o f LOAD'MODULES convenient, it can also unnecessarily fragment a
depends on the loaders (LOADER and program into little pieces without purpose.

46

salL TUTORIAL Systems Building in Sail

There are, however, some real purposes of the DEFINE DEBUGGING=<FALSE>;
| SOURCE!FILE construction in systems building. COMMENT false if not debugging;

One use is to include code that is needed in

several places into one file, then “REQUIRE” that and then use it
file in the places that it is needed. Macros are a
common example. + For example, a file of global IFCR DEBUGGING THENC
definitions might be put into a file MACROS.SAI: PRINT ("Now at PROC PR ",I," ",J,CRLF); ENDC

: REWIRE "<><>" DELIMITERS; (See Section 7 on conditional compilation for
DEFINE RRRAYSIZE=<189>, more details.) In the above example, the code will

NUMBEROFSTUDENTS=<2080>, define the switch to be FALSE, and the PRINT
FILENAME=<"F IL.DAT">; statement will not be compiled, since it is in the

FALSE consequent of an IFCR . ..THENC. In using
A common use of source files is to provide a switches, it is common that there is a default
SOURCE'FILE that links to a load module: the setting that one generally wants. The following
source file contains the EXTERNAL- declarations condition al compilation checks to see if
for the procedures (and data) to be found in a DEBUGGING has already been defined (or
module, and also requires that file as a load declared), and if not, defines it to be false. Thus
module. Such a file is sometimes called a the default is established.

“header” file. Consider the file XSCAN.HDR for

the above XSCAN load module: IFCR NOT DECLARATION (DEBUGGING) THENC
DEFINE DEBUGGING=<FALSE>; ENDC

EXTERNAL STRING PROCEDURE XSCAN (STRINGS);

REQUIRE "XSCAN"LOAD {MODULE ; Then, another file, inserted prior to this one, sets
the compilation mode to get the DEBUGGING

The use of header files ameliorates some of the version if needed.

deficiencies of the loader: the header file can,

for example, be carefully designed to contain the Macros and conditional compilation also allow a
declarations of the EXTERNAL procedures and number of complex compile-time operations, such
data, reducing the likelihood of an error caused as building tables. These are beyond our

| by misdeclaration. Remember, if you declare: discussion here, except to note that complex
macros are often used (overused?) in systems

INTERNAL STRING PROCEDURE XSCAN(STRINGS); building with Sail.
BEGIN END;

in one file and

EXTERNAL INTEGER PROCEDURE XSCAN(STRINGS); |

in another, the correct linkages will not be made,
and the program may crash quite strangely.

| 8.3 Macros and Conditional Compilation

Macros, especially those contained in global
| macro files, can assist in system building.

Parameters, file names, and the like can be
"macroized”.

Condition-al compilation also assists in systems
building by allowing the same source files to do
different things depending on _ the setting of
switches. For example, suppose a file FILE is
being used for both a debugging and a
“product ion” version of. the same module. We
can include a definition of the form:

47

Sail and ALGOL W Comparison SAIL TUTORIAL

APPENDIX A 5) The first case in the CASE statement in Sail is
0 rather than 1 as in ALGOL W. (Note that

Sail and ALGOL W Comparison Sail also has CASE expressions.)

6) <, = and > will not work for alphabetizing
Sail strings. They are arithmetic operators

There are many variants of ALGOL. This only.
Appendix will cover only the main differences
between Sail and ALGOL W. 7) ALGOL W parameter passing conventions

vary slightly from Sail. The ALGOL W
The following are differences in terminology: RESULT parameter is close to the Sail

REFERENCE parameter, but there is a
ALGOL H Sail difference, in that the Sail REFERENCE

parameter passes an address, whereas the
| - Rssignment operator - ALGOL W RESULT parameter creates a copy
x Exponentiation operator t of the value during the execution of the
~= Not equal = or NEQ procedure.
<e Less than or equal € or LEQ

>= Greater than or equal 2 or GEQ 8) A FORWARD PROCEDURE declaration is
REM Division remainder operator MOD needed in Sail if another procedure calls an
END. Program end END as yet undeclared procedure. Sail is a one-
RESULT Procedure parameter type REFERENCE Pass compiler.
str(i}j) Substrings strli+l for jl

STRING(i) s String declarations STRING 8 9) Sail uses SIMPLE PROCEDURE, PROCEDURE,
arry (1) Array subscript arry (1) and RECURSIVE PROCEDURE where ALGOL
arry (1: : 18) Array declaration arry tl: 18) has only PROCEDURE (equivalent to Sail’s

RECURSIVE PROCEDURE).

The following are not available in Sail: 10) Scalar variables in Sail are not cleared on
block entry in non-RECURSIVE procedures.

ODD ROUND ENTIER

11) Outer block arrays in Sail must have
TRUNCATE Truncation is default conversion. constant bounds.

WRITE,HRITEON Use PRINT statement for both. 12) The RECORD syntax is considerably
different. See below.

REROON Use INPUT, RERLIN, INTIN.

Block expressions

Sail features (or improvements) not in ALGOL W:
Procedure expressions

Use RETURN statement a) Better string facilities with more flexibility.
in procedures.

b) More complete RECORD structures.
Other differences are:

c) Use of DONE and CONTINUE statements for
1) Iteration variables and Labels must be easier control of loops.

declared in Sail, but the iteration variable is

more general since it can be tested after d) Assignment expressions for more compact
the loop. code.

2) STEP UNTIL cannot be left out in the FOR- e) Complete I/O facilities.
statement -in Sail.

f) Easy interface to machine instructions.
3) Sail strings do not have length declared and

are not filled out with blanks.

4) EQU not = is used for Sail strings.

48

SAIL TUTORIAL Sail and ALGOL'W Comparison

The following compares Sail and ALGOL W REFERENCES
records in several important aspects.

| Aspect Sail ALGOL H
EE PEE PEPE PEEP PETER 1. Reiser, John (ed.), Sail, Memo AIM-289,
Declaration RECORD !CLASS RECORD Stanford Artificial Intelligence Laboratory,
of class August 1976.

Declaration of RECORD!POINTER REFERENCE 2. Frost, Martin, UUO Manual (Second Edition),
record pointer Stanford Artificial Intelligence Laboratory

Pointers can be pointers must Operating Note 55.4, July 1975.
several classes or be to one

ANY !CLASS class 3. Harvey, Brian (M. Frost, ed.), Monitor Command
Manual, Stanford Artificial Intelligence

Empty record Reserved uord Reserved uord Laboratory Operating Note 54.5, January
NULL!RECORD NULL 1976.

Fields of record 4. Feldman, J.A., Low, J.A., Swinehart, D.C.,
Use brackets Use parens Taylor, R.H., “Recent Developments in Sail”,

AFIPS FJCC 1972, p. 1193-1202.
llust use Don’ t use

CLRSS: brfore the class name 5. DECSYTEMIO0 Assembly Language Handbook
field name before field (3rd Edition), Digital Equipment Corporation,

Maynard, Massachusetts, 1973.

6. DECSYSTEMI0 Users Handbook (2nd Edition),
Digital Equipment Corporation, Maynard,
Massachusetts, 1972.

7. Myer, Theodore and Barnaby, John, TENEX
EXECUTIVE Manual (revised by William
Plummer), Bolt, Beranek and Newman,
Cambridge, Massachusetts, 1973.

8. JSYS Manual (2nd Revision), Bolt, Beranek and
Newman, Cambridge, Massachusetts, 1973.

49

INDEX SAIL TUTORIAL

INDEX

data 38

deallocation 15

debugging 44
Declarations 2

SKIP! 30 DEFINE 25

delimiters 25

& 12 directory devices 31, 32
DIRST 37

ALGOL 48 DO..UNTIL 17

allocation 15 DONE 18

Altmode 30 dynamic 15 |
ANY!CLASS 41

Arguments 20 ELSEC 44
array 4, 7 emulator 1
arrays 15, 16, 38 END 2
ARRCLR “15 end-of-file 37, 38 :
ARRYIN 33, 38 ENDC 44
ARRYOUT 33, 39 ENTER 32

assignment expressions 10 ENTRY 46
assignment operator 10 eol 30
Assignment statements 5 EQU §, 11 :

equality 8
BEGIN 2 error handling 35
binary format files 38 expression 5, 6
bits 36 expressions 10
block 2 EXTERNAL 30, 45
block name 14

blocks 9, 13 FALSE 2
BOOLEAN 2 fields 40

boolean expression 8 file bytepointer 38
break character 27, 30, 38 file name 32
break tables 27 files 30

built-in procedures 6, 19 flag specification 36
FOR statement 15

CASE expressions 11 format 4
CFILE 34 FORWARD 2 1

channel 34, 37 free format 4
channel number 31

CHARIN 38 garbage collections 12
CHAROUT 39 GETBREAK 2 7

Commenting’ 44 GETCHAN 3 1
compile time 15 GJINF 37
compound statement 9 global 14
Conditional compilation 44 GTJFN 35
condition al expressions 11 GTJFNL 35
conditionals 7

connected directory 36 half word format 36
constants 3
CONTINUE - 18 1/0 30
control statements 7 identifiers 3

controlling-terminal 30, 36 IF.THEN statement 7
CPRINT 39 IFCR 44

crif 30° INCHWL 6, 30
CVD 6 indefinite iteration 17

50

| SAIL_ TUTORIAL INDEX

INDEXFILE 35

initialization 15 RCHPTR 38

f Initialization routines 46 read error 37

| | N P U T27,37 REAL2
input/output 30, 31 REALIN 3 8
INTEGER 2 REALSCAN 2 9

INTIN 3 8 RECORD!CLASS 40

INTSCAN 2 9 RECORD!POINTER 40

INTTY 3 0 Records 40

iteration variable 16 RECURSIVE 15, 21
| REFERENCE 24

| JFNS 37 reinitialization 15

| RELEASE 32

| LENGTH 12 RENAME 32

| line terminators 28 reserved words 2,3
line-editing 30 RETURN statement 21
LOAD!MQDULE 4 5 runtime 1 5
LOADER 45

local 14 °° scalar variables 15

login directory 36 SCAN 27
1 LOOKUP 32 scanner 25
| LOP 12 SCHPTR 38

lowercase 4 scope of the variable 14
search path 36

macro expansion 25 semi-colon 8

macros 25 sequential I/O 38
modularity 45 SETBREAK 2 7
MTAPE 33 SETFORMAT 13

multi-dimensioned arrays 4 SETINPUT 3 4
multiple file designators 35 SETPL 37

SETPRINT 3 0

nested 9, 14 side-effect 23

NEW!RECORD 4.0 SIMPLE 21

NUL character 13 SINI 3 8

NULL 3 SOS line numbers 28

SOURCE!FILE 47

octal representation 36 SQRT +6
OPEN 31 Statements 2

| OPENFILE 3 4 statements 5

| order of evaluation 10 Storage allocation 15
outer block 2 STRING 2

CWN 15 string descriptor 12
1 STRING operators 11

[PA1050 1 string space 12
; parallel arrays 4 strings 27

parameter list 20 subscripts 5
parameterized procedure 20 substrings 12
parent hesized 11
predeclared identifiers 3 tables 13

PRINT 6 Teletype I/O 30
PRINT statement 25 TENEX Sail 1

procedure 19 THENC 44
procedure body 21 TOPS-10 Sail 1
procedure call 19 TRUE 2

1 TTY: 36

random [/O 38 type conversion 6

; 51

INDEX SAIL TUTORIAL

typed procedures 22

untyped procedures 22

uppercase 4, 20, 28, 30
USETI 3 3

USETO 3 3

VALUE 24

variables 3, 14

WHILE..DO 1 7

WORDIN 33, 38
WORDOUT 383, 39

52

