Stanford Artificial Intelligence Laboratory September 1976
Memo AIM-288

Computer Science Department
Report No. STAN-CS-7 657 2

An FOL Primer

by

Robert E. Filman
and
Richard W. Weyhrauch .

Research sponsored by

Advanced Research Projects Agency
ARPA Order No. 2434

COMPUTER SCIENCE DEPARTMENT
Stanford University

STANFORD ARTIFICIAL INTELLIGENCE LABORATORY September 2, 1976
MEMO AIM-288

STANFORD COMPUTER SCIENCE DEPARTMENT

REPORT NO. STAN-GS-76-572

. An FOL Primer

by
Robert E. Filman
and
Richard W. Weyhrauch

Abstract:

This primer is an introduction to FOL, an interact&e proof checker for first order logic. Its
examples can be used to learn the FOL system, or read independently for a flavor of our
style of interactive proof checking. Several example proofs are presented, successively
increasing in the complexity of the FOL commands employed.

FOL runs on the computer at the Stanford Artificial Intelligence Laboratory. It can be used
over the ARPA net after arrangements have been made with Richard Weyhrauch (network
address R W W eSU-AI).

The research described here was rupportrd by the Advanced Research Projects Agency of the Office of the Secretary of Defense
under contract MDA903-76-C-0206.

The views rnd conclurionr contained in this document are those of the authors and should not beinterpreted as necessarily
representing the official pokier, either @ xprorsod or implied, of the Advanced Research Projects Agency or the US. Government.

Reproduced in the USA Available from the National Technical Information Service, Springfield, Virginia 22161.

g
.

—— e g———

AN’FOL PRIMER

CONTENTS

I INthe beginning.. i ittiie i iiities s itattetesectiacnneaenanananes
2 Another SIMPle Proof - -« -« v« oo v e et
3 DecClarations - - - v i e e e
3.1 Individual Constantso it e
3.2 Predicate declarations e
3.3 Operator deClarations « -« « -« «« v v ettt
3.4 Otherdeclarations..ot e e

4 TERMS aNd WS o0ttt iitttieveeeeneeassasssssssssasssnsennssonssnsasesans

B THE FOL Proof » oo v iei e it ieiet s iseionsnssssasossasensenesnnsasesensns o
6.1 Introdudigothe Twoplwo Colored Grid World +vvvvvuvvvvnvnin s,
6.2 Sample Proof in the Grids World - oo

7 Simplification mechanisms
7.1 The Grids World Revisitedo

8 Administrative commmands
8.1 The show commmMand
8.2, The BacKUP File « « « « « « v oottt e et e
8.3 Erasing Proof Steps.. oot
8.4 Readingin FOLCommand Files ,iuiiiiiiiiiiinninnnnnnareranns
8.5 Using FOL from non-Stanfordterminals i i,
8.6 Saving the state of the Proof « v« v veveeiersiiiiiietiiitetietisei e

9 Pointers to additional information L L L L L

i0
10
11
12
13
15
18
22
27
27
29
29
29
30
30’
31
32
33

AN FOL PRIMER

An FOL Primer

FOL, a checker for first order predicate calculus proofs, has been written by the Stanford formal
reasoning group under John McCarthy and Richard Weyhrauch. FOL checks proofs using the
formalism of natural deduction described in Prawitz[1965). This paper is an introductory
explanation of how to use FOL. Detailed expositions of predicate calculus can be found in most
introductory logic texts, for example, Kleene[19681, Mendelson[19641, and Mann a[1974].

The first section contains some very simple examples to help a new user get started playing with
FOL. The later chapters are more difficult and explain additional features of FOL. A detailed
description of the language can be found in the users manual, Weyhrauch and Glassmire[1976).

section 1 In the beginning

In this section we demonstrate the use of FOL to generate a simple proof. Any reader with with
access to the FOL proof checker is urged to actually run the program using the example commands.
FOL is invoked on the SAIL operating system with the monitor command, R FOL.

We will begin with what is perhaps the most classical proof inlogic, and study its expression in
FOL. Even a person who has never had a course in formal logic understands the syllogism:

Socrates is aman
All men are mortal
therefore
Socrates is mortal

First we have to express the assertions -as a well formed formula (WFF) of first order logic. For this
purpose we need an individual constant (INDCONST) Socrates, two predicate constants
(PREDCONSTs), MAN and MORTAL, each of one argument, and an individual variable (INDVAR), x, to
express the all men part of the second line. The exact rules for forming WFFs can be found in the
FOL users manual. The three parts above are represented as

MAN (Socrates)
Vx. (MAN({x)>MORTAL (x))
MORTAL (Socrates)

The upside down A, "¥", is called a universal quantifier and is read for all, i.e. for all x if MAN (x)
then MORTAL (x). Our goal is to prove

(MAN (Socrates) AVx. (MAN (x) SMORTAL (x))) 5MORTAL (Socrates)
FOL expects that all identifiers used in a proof be declared, much as a programming language like

ALGOL expects identifiers to be declared. Later we will go into greater detail on the syntax and
options of declarations. For our present proof, the following declarations will suffice.

2 AN FOL PRIMER

xDECLARE INOCONST Socrates:
**xx*DECLARE PREDCONST MORTAL MAN 1;
*xxxxxDECLARE INDVAR x;

FOL prompts you for input by typing five stars. Note that all FOL commands except comments end
with a semicolon (;). In this paper we will use:

THIS FONT for things typed by auser to'FOL,
THIS FONT for things typed by FOL,

FOL knows many commands for generating steps of a proof. These are called rules of inference.
An easy one to use is the ASSUME command. One can assume any WFF. FOL permits the resulting
proof step to be used elsewhere in the proof, and remembers which new lines depend on which
assumptions. A good way to start to prove an implication 1S to assume its hypothesis, that is, its first
half. The FOL command looks like:

*+xxxASSUME MAN (Socrates)a¥x. (MAN (x)oMORTAL (x));
1 MAN(Socrates)aVx.(MAN(x)>MORTAL(x)) (1)

FOL types out the proof step generated by the command, preceded by its line number (one in this
case), and followed by a list of the lines in the proof it depends on. Assumptions depend on
themselves.

We want to instantiate the second half of line one (the for all part) to the particular MAN, Socrates.
First we must get this WFF onto a line of its own. The FOL command TAUT is used for deciding
t au tological consequences of proof steps. Tautologies are WFFs which are the theorems of
propositional calculus. We type TAUT followed by the WFF we want, and then the line numbers of
those lines from which we think it follows.

s2x£xTAUT Vx. (MAN (x) SMORTAL (x)) 1 ;
2 V¥x.(MAN(x)>MORTAL(x)) (1)

Note that this line also depends on line one. Proof step two has as its main connective (major
symbol), a for all sign. The FOL command for specializing statements that are true of all
individuals to a specific individual is called forall elimination. To use this command one types the
word VE followed by the number of the line on which the elimination is to take place, and a list of
individuals to replace the variables in the expression. We want to instantiate line two to the
individual Socrates, so we say,

*x*x*%*VE 2 Socrates:

3 MAN(Socrates)>MORTAL(Socrates) (1)

It now follows, tautologically, from lines one and three, that Socrates must be MORTAL. Using the
TAUT command again gets this result. Note that more than one line can be given in the reason
part of the TAUT command.

AN FOL PRIMER 3

sx+x# TAUT MORTAL (Socrates) 1,3;
4 MORTAL(Socrates) (1)

To some extent, this is the desired result. But we’re not home free yet; this line still depends upon
the original assumption. We eliminate this dependence by creating an implication of the first line
implying the fourth. FOL has a command for the introduction of implications, I (implication
introduction). It creates the proof step composed of its first argument implying its second. The
dependencies of this new line of proof are those of the second argument to the oI command, less any
line whose WFF is the same as the first argument. It is a useful command for eliminating
dependencies. Applied to lines one and four, we get

sxxx*x>] 1543

5 (MAN(Socrates)aYx.(MAN(x)>MORTAL(x)))oMORTAL(Socrates)

This is the WFF we want. It has no dependencies; it is a theorem. It is roughly equivalent to the
English sentence, If Socrates is a man, and for all x if x is a man, then % is mortal, then Socrates is
mortal.

section 2 Another Simple Proof.

Let us next try the expression and solution, in FOL, of the following puzzle, loosely adapted from
Gardner [1959).

You have three boxes, one containing only black marbles, one only white,
and the third, both black marbles and white marbles, The boxes were
originally labeled BB, WW, and BW, respectively, to indicate their
contents, but now someone has come along and switched the labels so
that every box is labeled incorrectly, How can one remove and examine
one marbla from only one box, and thereby determine w hat the correct
labeling of the boxes should be?

A solution to this problem goes as follows. One selects a marble from the box labeled BW. Let us
assume this marble is black. As the box labeled BW is incorrectly labeled, the other marbles in this
box must also be black. Therefore, the box labeled BW must have only black marbles. As the box
labeled WW must have black marbles (otherwise it would be correctly labeled), and cannot be the
box with only black marbles (for that is the box BW), then it must have marbles of both colors. It
immediately follows that the box labeled BB must have only white marbles. The reasoning is
similar when the marble drawn is white.

To express these lines in predicate calculus, we need to establish several conventions. There are
eight individuals in this problem, the three boxes, which we will call ONE, TWO and THREE,
respectively, the three labels, BB, ww, and BW, and the two kinds of marbles, BLACKS and WHITES.
The following declaration creates these eight individual constants (INDCONSTS)..

++x+2DECLARE INDCONST ONE, TWO, THREE, BB, Ww, BW, BLACKS, WHITES;

4 AN FOL PRIMER

Some of these objects are boxes, others are not. We will naturally want to distinguish between the
boxes and the not boxes. We can conveniently do this by defining a predicate constant (PREDCONST),
BOX that will be true when its argument is a box.

*+xxxDECLARE PREDCONST BOX 1;

The “1” at the end of the predicate declaration indicates that this predicate has only one argument.

There are also three PREDCONSTs with two arguments in this problem, IS, LABELED and HAS. The
predicate IS will describe the true contents of the box, basically, what the box would be labeled if it
were correctly labeled. We will think of a box being LABELED with a label, and it HAS white and

black marbles. We declare these predicates:
*x*x*DECLARE PREDCONST IS LABELED HAS 2;

It is also useful to have a few individual variables (INDOVARs).
xx*%x*DECLARE INDVAR x,y, Z;

These are the necessary primitives for translating the puzzle. The first phrase of the puzzle states
that there are three boxes in the world. We have decided to call our three boxes ONE, TWO and
THREE. A WEF expressing part of the equivalence of the predicate BOX and these individuals is:

Vx.(BOX(x)= (x=ONE v x=TWO v x=THREE))

We can use this in our proof by making it into an axiom. Axioms can be used just like lines in a
proof, but axioms have names, instead of line numbers. They are assumptions which do not
introduce any dependencies into the proof. To make the above WFF an AXIOM, we say:

xxxxxAXI0M AREBOX: '
* Vx, (BOX(x) = {(x=ONE v x=TWO v x=THREE));;

This axiom is now called AREBOX. Note the pair of semicolons at the end of the axiom. This is
one of the more unpleasant syntactic constructs of FOL.

The meaning of each label is expressed in the axiom LABEL. This defines the predicate IS on
BOXes and marbles.

*sxx¥xAXIOM LABEL:

* V x. (IS(x,BB) = (HAS (x,BLACKS)A-HAS (x,WHITES))},
* v X. (IS{x,WW) = (HAS (x,WHITES)A-HAS (x,BLACKS))),
* V x. (IS(x,BW) = (HAS(x,WHITES)A HAS(x,BLACKS)));

[}
’

Note the use of one name for these three axioms. When we wish to refer to the second axiom, we
will call it LABEL?2.

If boxes were labeled correctly, we could determine which marbles the box has from the above
axiom. However, the problem states the opposite; all labels are wrong.

xx+x*AXI0M WRONG-LABEL< ,

AN FOL PRIMER 5

% V x Y. (LABELED (x,y)2>~1S(x,y))33
We also know that there is one box of each kind.

*xxxxAXI0M IS-EACH:

* 3 x. (BOX{x) A IS(x,BB)),
* 3X. (BOX({x) a 1S{x,Wd}),
* 3 x. (BOX{x) a IS(x,BW))s;

Once again, the parts of this axiom will be refered to as IS_LEACHI,IS_EACH2, and IS_EACH3.

The “3” in this axiom is called an existential quantifier and is read there exists, i.e. there exists a
BOX, x which has only black marbles in it, i.e., IS (x,BB).

AXIOM names can be used in proof generating commands just as line numbers can. To instantiate
the AXIOM WRONG-LABEL to the individual ONE and the label BB, we say:

*xxx*YE WRONG-LABEL ONE BB8;
1 LABELED(ONE,BB)>~IS({ONE,BB)

Similarly, to apply this axiom to the other two box label pairs, we give FOL the commands:

*+xxxYE WRONG-LABEL TWO WW;

2 LABELED(TWO,WW)>-IS{ TWO,WW)
ss222VE WRONG-LABEL THREE BW;

3 LABELED(THREE,BW)>-IS(THREE,BW)

Note that we have arbitrarily decided which box is labeled with which tag.

We will also need to know what it means for a box to be ww. The axiom LABEL provides this
definition .

ss+4xVE LABEL ONE:

4 IS(ONE,BB)s(HAS(ONE,BLACKS)A-HAS(ONE,WHITES))
sxxxsVYE LABEL2 TWO:

5 IS(TWO,WW)s(HAS(TWO,WHITES)A-HAS(TWO,BLACKS))
sxx*xVYE LABEL3 THREE;

6 IS(THREE,BW)=(HAS(THREE,WHITES)AHAS(THREE,BLACKS))

We know from the axiom IS-EACH of the existence of some boxes. We want to use this axiom, but
we cannot until we remove the existential quantifiers of its parts. The command to accomplish this

1s 3E or existential elimination.

6 AN FOL PRIMER

WFFs with the major connective of Vrefer to all individuals; we can apply them to anything at all.
WFFs quantified by an 3, on the other hand, refer to some nameless individual; all we can do is give
it aname. To say, in effect, Let’s call it x. The form of the 3E command is the same as VE; but the
created line has the form of an assumption and depends only on itself. When a future consequence
of this assumption no longer mentions this new name, FOL will automatically remove this
assumption as a dependency and replace it with those of the existential statement.

xxxxx3JE]S_EACHL x ;
7 BOX(x)AIS(x,BB) (7)
*x%+%3E |S_EACHZ y;
8 BOX(y)AIS(y,WW) (8)
+*++*x+3E [S-EACH3 z;
9 BOX(z)aIS(z,BW) (9)

We can now talk about these x, y, and z. Note that we used different names in each 3E. To have
called them the same would be to imply their equality; this is clearly not so, and FOL would
remember such a tacit assumption. As each of x, y, and z is .a box, the axiom AREBOX can be
applied to them.

*xxxxVE AREBOX x;
1 0 BOX(x)=(x=ONEv(x=TWOvx=THREE))
xxxx*xVE AREBOX y ;
11 BOX(y)=(y=ONEv(y=TWOvy=THREE))
xxx¥xVE AREBOX z:

12 BOX(z)c(z=ONEv(z=TWOvz=THREE))

The TAUT command doesn’t know about the predicate = (equals), but there is a command,
TAUTEQ, which can decide (some) tautologies using knowledge of the equality predicate. Its form
is the same as the TAUT command used in the last proof; note that axioms can be used, just as line
numbers in its list of reasons. One invocation of the TAUTEQ command will yield us the solution
to the puzzle.

AN FOL PRIMER

++xx2 TAUTEQ

* {LABELED (ONE BB) ALABELED(TWO WW)ALABELED (THREE BW))o(
* (HAS (THREE BLACKS)>

x (IS(THREE BB)AIS(ONE WWIAIS(TWO BW))) A

* (HAS (THREE WHITES)>

* {IS(THREE WW)AIS(ONE BW)AIS(TWO BB))})) 1:12;

13 (LABELED(ONE,BB)A(LABELED(TWO,WW)ALABELED(THREE,BW)))o(
(HAS(THREE,BLACKS)>(IS(-THREE,BB)A(IS(ONE,WW)AIS(TWO,BW))))A
(HAS(THREE,WHITES)o(IS(THREE,WW)A(IS(ONE,BW)AIS(TWO,BB)))))

FOL automatically deletes dependencies created by the 3E command when the introduced variables

are no longer in the proof. As line 13 doésn’t mention x,y or z, it is not dependent upon the fact

that we used x in line 7, and not some other INDVAR. As line 13 has no dependencies, it is a

theorem; Note the explicit assumption in this-theorem that box ONE is labeled BB, etc. Also note the

use of the expression 1:12 in the line number part of the command. This tells FOL to use all of the

lines between line one and line twelve, inclusive, in trying to decide this tautology.

section 3 Declarations
We now consider, in turn, most of the FOL commands in greater detail.

As we have previously stated, FOL expects that all individuals, predicates, and operators used in a
proof be declared. The general form of a declaration is the word DECLARE, followed by the type
(SYNTYPE) of the declaration, followed by the identifiers to be declared of that type, often with other
useful information, such as the number of arguments of a predicate or operator, or the SORT to
which a individual belongs. A common cause of syntax errors in FOL is an incorrect or missing
declaration.

section 3.1 Individual Constants

Following the scheme above, we declare individual constants KingofSpades, QueenofHear t s and
Jacko f0iamonds with the command:

#kxDECLARE INDCONST KingofSpadesQueenofHear ts JackofDiamonds;

All natural numbers come as predeclared INDCONSTs in FOL. Any LISP s-expression, proceeded by
the quote character ', is treated by FOL as an INDCONST.

Remember that all FOL commands, except the COMMENT command, are terminated by semi-colons.

section 3.2 Predicate declarations

The declaration of a predicate constant is similar. One gives the predicate’s name, followed by the
number of arguments it takes. Thus to have predicates PLAYINGCARD and BLACKCARD, each of one
argument, we would declare:

8 AN FOL PRIMER

*»**DECLARE PREDCONST PLAYINGCARD BLACKCARD f1;

The number of arguments of a predicate or operator is its ARITY. FOL will treat any predicate
constant of arity 1 as a SORT, that is, as denoting the collection of individuals for which it is true,
FOL also assumes that every SORT is non-empty; there at least one individual which satisfies every
predicate of arity 1.

More information than the mere existence of a constant can be conveyed to FOL by a declaration.
To tell FOL that the individual constant NineofSpades was of the SORT PLAYINGCARD we would
state:

=+DECLARE INDCDNST NineofSpades ¢ PLAYINGCARD;

the ¢ symbol denoting membership, much as an individual can be the element of a set.

To state in its declaration that all REDCARDs are of the SORT PLAY INCCARD, we give the commands:
+*xx*x+DECLARE PREDCONST REDCARD 1;
+**xxxMOREGENERAL PLAYINGCARDz (REDCARD! ;

The MOREGENERAL command tells FOL that every REDCARD is a PLAYINGCARD. While a given
predicate can be declared only once, it can appear in a MOREGENERAL statement as often as
desired. MOREGENERAL may be abbreviated MG.

If we want the PREDCONST SPADE to take its argument without parentheses, we can declare it to be a
prefix predicate, with the command:

*****DECLARE PREDCONST SPADE 1 [PRE];
A typical FOL command using the prefix sort SPADE would be:

+*++xASSUME SPADE NineofSpades;
1 SPADE NineofSpades (1);

The PReDCONST SAMESUI T can be declared by:
++x%xDECLARE PREDCONST SAMESUIT 2;

To declare the symbol “<" to be an infix PREDCONST, used between its arguments, without
paren thesis, we state:

##¥*DECLARE PREDCONST <2 [INF13
Other example of predicate declarations are:

***»*DECLARE PREDCONST ACE, JACK, TEN,NINE 1 [PRE];
*****DECLARE PREDCONST ROYALFLUSH 5:

AN FOL PRIMER

*+xxxDECLARE PREDCONST CAPTURES 2;

PREDCONSTs can be declared to range over other sorts. Thus the predicate §on the natural numbers
can be declared:

*xxxxDECLARE PREDCONST < (NATNUM,NATNUM) [INF1 4

Declaring a predicate on a domain has no effect on the proof. Making declarations in this
manner, however, leads to a more easily understood proof; it is a convention we will use in the rest
of this paper.

Several PREDCONSTs come predeclared in FOL. The most important is the arity 2 infix PREDCONST
= (equals). FOL has a command for the substitution of equals for equals. This command will be
explained in a later section of this primer.

Other predefined ARITY 1 PREDCONSTs (SORTs)include the NATNUMs (natural numbers and zero) and
the SEXPRs (LISP s-expressions).

It is possible to declare a parsing hierarchy stating which infix or prefix predicate or operator is to
be evaluated first. Details on this procedure can be found in the FOL manual.

While FOL declarations may be inserted anywhere in a proof, it is a good practice to make all
declarations at the begining of the proof. It is also good practice to declare ARITY one PREDCONSTs
(SORTSs) first, as it is possible to obtain an incorrect default declaration for a SORT by using it in
another declaration prior to its own.

section 3.3 Operator declarations

Operator (function) declarations are the similar to predicate declarations. One can, for instance,
declare one argument operators SINand COS with:

*xxxx0JECLARE OPCONST SIN COS 1;

And, like PREDCONSTs, OPCONST can be declared to range over certain sorts. For example, the
operator CONS on s-expressions and s-expressions can be declared:

+xxx2DECLARE DPCONST CONS (SEXPR, SEXPR);

One’can also specify the range of an operator in a declaration. Thus, to declare an infix OPCONST +,
of two arguments, on the domain of NATNUMs @ NATNUMs into the set of NATNUMs, we say:

*****DECLARE OPCONST +(NATNUM, NATNUM) =NATNUM [INF1;
The operator-P I ECEON which returns the chesspiece on a given square of a given board is declared:

+*+%xDECLARE OPCONST PIECEON (BOARD, SQUARE) =CHESSPIECE;

10 AN FOL PRIMER

Unlike PREDCONSTs, declaring the domain and the range of an OPCONST imparts information to the
proof checker. Such a declaration assures FOL that whenever the arguments of an operator are in
the declared domain SORTS, the result of the function will be of the SORT of the range. Thus, with
the declaration above, FOL knows that whenever the arguments of PIECEON are a BOARD and a
SQUARE, respectively, the value of PIECEON will be a CHESSPIECE.

sect ion 3.4 Other declarations

While FOL accepts several other SYNTYPEs in declarations, only two others are of interest to us.
Individual variables are are declared like individual constants, with the word INDVAR substituted for
INDCONST. Giving a SORT for the variable informs FOL that whenever this variable is used, it may
be presumed to be of that SORT. INDVARs are used both as variables, bound in quantified WFFs, and
as parameters, free in WFFs. Examples of declarations of INDVARs are:

*xxkDECLARE INDVAR X, y, 23
*xxx¥DECLARE INDVAR day date month ¢ TIME;
**x+xxxDECLARE INDVARCI C2 C3 ¢ PLAYI NGCARDS:

The other important type of FOL identifier is the predicate parameter (PREDPAR). Any predicate
may be substituted for a predicate parameter, provided their arguments match. Predicate
parameters are found in induction axioms and the like; we will touch briefly upon their use later in
this chapter.

section 4 TERMs and WFFs

In FOL, individual constants and variables, and result of the application of operators are examples
of TERMs. Thus, with the obvious declarations, KingofSpades, Black_Kings_Rook_Pawn,3+4, and
Sin {(Cos (Tan (5+3)%2)) are all examples of FOL TERMS. The arguments of predicates and
operators are always terms. FOL also accepts TERMs representing sets, n-tuples, and LISP s-
ex pressions. Details on these features may be found in the FOL manual.

A predicate, with its arguments, forms an ATOMIC WELL FORMED FORMULA, or AWFF, for short.
Examples of AWFFs are:

SAMESUIT (KingofSpades,QueenofHear ts)
3=Black_Kings_Rook_Paun
RED (Sin(Cos(3x4)-2))

Any AWFF is a WELL FORMED FORMULA, (or WFF for short). WFFs may also be formed by joining
WFFs with the infix sentential connectives A (and), v (or), & (equivalence), and > (implication), and by
prefixing the connective = (not) to any WFF. These connectives have their usual propositional
calculus meaning when used in a WFF. Examples of WFFs include:

KINGS (KingofSpades) ASPADE (KingofSpades)
(TELEPHONE (x) > (IS_RINGING (x}) >SOMEONEHASCALLED (x)))
- (3+4=5+254x5%y=S i n (2))& (F (x)} =7vy=2)

AN FOL PRIMER 11

WFFs may be built by adding a quantified individual variable (INDVAR) to another WFF. Thus to
state that the above WFF concerning SOMEONEHASCALLEO is true of all telephones, we write:

Yu. (TELEPHONE (u) > (IS_RINGING (u) >5SOMEONEHASCALLED (u)))

To state that for all x, there exists ay such that y=Sin({x), we write:
Vx. 3y.y=Sin(x)

The quantified variables need not appear in the matrix of the WFF. For example, the WFF, there
exists an x and a 'y such that 3-4, would be:

3x y. (3=4)

Consider a WFF A=¥Yx.B, where B is also a WFF. The scope the quantified variable x is B. The
variable x is said to be bound in the WFF A. Any variable bound in B is also bound in A. All other
variables mentioned in A are said to be free in A. The same rules apply, of course, for the WFFs
employing the 3 quantifier rather than the V quantifier. Thus, in the WFF:

Vx. (3y. (xx@=y-y)>{z=3))

the INDVAR x and y are BOUND, while the INDVAR z is free. The scope of Vx in this WFF s
3y.(xx%@=y-y) >(z=3). The scope of Iy in this WFF is (xkB=y-y).WFFs can be transformed into
equivalent WFF by correctly renaming the bound variables. Thus, if INDVAR x and w are of the same
SORT, the above WFF is equivalent to:

Vu, (Jy. (uxB=y-y) > (z=3))

Declaring an INDVAR to be an element of a SORT assures FOL that whenever that variable is used, it
will be in that SORT. Thus, if the variable u was declared to be of SORT TELEPHONE, then our first

forall statement about ringing telephone would be equivalent to:

Vu. (IS_RINGING (u) >SOMEONEHASCALLED (u))

section 5 Axioms

One way of expressing definitions and known facts about the world to FOL is by the use of AXIOMs.
An axiom,command consists of the word AXIOM, followed by an identifier and a colon, a list of WFFs
separated by commas, and terminated by two semicolons. If the “list of” WFFs contains only one WFF,
then that WFF is referred to by the identifier. If more than one WFF is included in the list of WFFs,
then they are refered to collectively by the identifier, or individually by new identifier formed by
appending the number of the WFF in the list to the identifier. This is perhaps better explained by
the use of an-example:

12 AN FOL PRIMER

e AXIOM ACES:

* Vx y. { (ACE (x) a-ACE {y)) o>CAPTURES (x y)),
* Vs. (ISSUIT(s)>3x. (ACE(x)ASUIT (x)=s)),
* SUIT (AceofSpades)=Spade,

* Vx. (ACE (x)=RANK(x)=Ace) ;;

The first WFF on this list is named ACES], the second, ACES2, and so forth. They can be
collectively referenced as ACES.

If we gave the following statement to FOL:
*kkEE AXIOM ZEROADD: vx. (x+8=x);;
then this wrr would be referable only by the name ZEROADD, not as ZEROADD.

It is also possible to nest axioms, creating a hierarchy of names to refer to them. The FOL manual
contains details on this procedure.

Axioms that contain predicate parameters (PREDPAR) are AXIOM SCHEMA. Any predicate may be
substituted for the PREDPAR in an axiom schema, provided it has the same number of arguments as
the PREDPAR which it is replacing. Axiom schema are useful in axioms that are valid for any
properly used predicate, such as induction axioms. Information on the use of axiom schema is in
the FOL manual.

It is important to remember that a proof is only as valid as the axioms upon which it is based.
From axioms that do not describe the “real” situation, it is possible to prove “unreal” theorems; from
axioms that are mutually contradictory, it is possible to prove anything.

sect ion 6 The FOL Proof

There are three kinds of commands that can be given to FOL: Declarative commands, of which
declarations and axioms are examples, administrative commands, which are used to obtain
information about the state of the proof, and proof generating commands.

A FOL proof consists of a set of declarations, axioms, and other declarative commands, followed by
a series of legal FOL inferences. Each of these deductions generates a line of a PROOF. Proof steps
are numbered consecutively, starting with line 1, and may be refered to by their line number. These
lines may or not be dependent upon other steps of the proof. The validity of any line with a
dependency has not been proven to be greater than that of the steps it is dependent upon. A line
with no dependencies is a theorem in the given axiom system.

Each command for generating a line of a proof is a rule of inference. Each such rule requires
stating either the WFF that is to be infered, a list of previous proof lines and axioms from which to
make the inference, or both of these.

AN FOL PRIMER 13

section 6.1 Introduction to the Two by Two Colored Grid World

To demonstrate the various proof generating commands in FOL, we shall axiomatize a small section
of the two by two colored grids world. Conceptually, the two bytwo colored grid world consists of
square grids of four squares, each colored wi th one of a set of colors, in this case, RED, GREEN,
veLLow and BLUE. The squares are identified as S11,812,521 and S22, where we use the numbers
as row and column coordinates. This is a sample grid:

Sl S12
RED BLUE
S21 §22
GREEN RED
Agrid

We want each of the four colors, and each of the four squares, to be different; that is, RED is not
equal to GREEN, and S11is not S22. We can speak of the COLOROF a particular grid-square

combination, and the next square clockwise, of any square, an operator we designate as "-»". The
FOL declarations of these facts look like:

**xx+xDECLARE PREDCONST COLOR SQUARE GRID 1[PRE];
***x**DECLARE INDCONST RED GREEN YELLOW BLUE¢COLOR;
*+**xDECLARE INDCONST S11 S12 s21 s22 ¢ SQUARE;
#xE¥DECLARE OPCONST COLOROF (GRID SQUARE) =COLOR:
xxxxxDECLARE OPCONST - (SQUARE) =SQUARE ;

The reader with access to the FOL proof checker is urged to run the FOL program, and give it the
commands in this section. Remember that the five asterisks are the FOL prompt, typed by FOL, not
the user.

We have declared the ARITY one PREDCONSTs to be prefix operators. This permits us to use them
with or without parentheses around their arguments.

We will also want variables for each of our SORTs, so the following declarations will prove handy:

*****DECLARE INDVAR GG1G2¢ GRID:
4+ DECLARE INDVAR S 51 S2 ¢ SQUARE;
#*k* %+ DECLARE INDVAR C C1 C2 CA CB ¢ COLOR:

As grids are composed of their four colors, we will have use for an operator MAKEGRID, which takes
four colors, and forms a grid from them. We declare it:

14 AN FOL PRIMER

++*xxDECLARE OPCONST MAKEGRID(COLOR,COLOR,COLOR, COLOR) =GRID;

The extent of the SORT of colors and the SORT of squares may be axiomatized with t he following
two AXIOMs. We will later consider a better way of telling FOL about these two finite sets.

xxxxxAXI0OM EXTCOLOR:VYC. (C=REDVC=GREENVC=YELLOWVC=BLUE),
-RED=GREEN,

-RED=YELLOMW,

-RED=BLUE,

-GREEN=YELLOW,

-GREEN=BLUE,

- YELLOW BLUE; ;

**xxxxAXI0M EXTSQUARE:VS. (S=S511vS=512vS=521v5=522),
-511=512,
-511=621,
-511=522,
-512=521,
-512=522,
~521 =522; 4

H oK WO W

O K N o X

The fact that any grid is the sum of the colors of its squares is expressed by the axiom GRIDSIZE.

*xxxxAX10M GRIOSIZE:

* VG. (G=MAKEGRID(COLOROF (G S11)

* COLOROF (G S12),

*, COLOROF (G S21},

* COLOROF (G S22))) 33

And the particular clockwise ordering of the squares by the axiom NEXTSQUARE.

**+*xxAXIOM NEXTSQUARE:' ={S11)=512,

* » (812) =522,
* . =~(822)=521,
* -+(521)=511;;

We are now free to explore the concepts involved in the two by two grid world. Let us begin by
declaring four predicates that express facts about grids that interest us.

We wish the predicate HAS, on grids and colors, to be true whenever one of the squares of the
given grid is the stated color. Similarly, FREEQOF shall be true if no square of the given grid is of

the given color. ALLTHESAHE states that every square of its grid argument is the sane color,
ALLDI FFERENT, that each square is colored differently. A grid is PLAID if the squares alternate in
color. Thus, we get the following declarations and axioms:

**x++DECLARE PREDCONST ALLTHESAME (GRID) [PRE];
#4444 DECLARE PREDCONST ~ ALLOI FFERENT (GRID) [PRE];
+xx+xDECLARE PREDCONST HAS(GRID COLOR):
#*xx+xDECLARE PREOCONST PLAID(GRID) [PRE];
++++xxDECLARE PREDCONST FREEOF (GRID COLOR);

AN FOL PRIMER 15

sxx2xAX]0M DEFI N TI ONS:

YG. (ALLTHESAME G=3C. vS. COLOROF (G S)=C),

YG. (ALLD I FFERENT G=

VSl s2. (COLOROF (G S1)=COLOROF (G S2)551=52)),

VG C. (HAS(G C)=3S.COLOROF (G S)=C),

VG. (PLAID G=VS1.3C1 2. (~Cl1=C2A(COLOROF (G S1)=Clna
COLOROF (G =(S1))=C2n
COLOROF (G +(+(S1)))=C1))),

VG C. (FREEOF (G C)=YS,-COLOROF (G S)=C);;

LK BE 3R R BE BE N 3

sectiori 6.2 Sample Proof in the Grids World

For our first grids world proof, we wish to prove that for any grid, G, if all the squares of G are
colored identically (ALLTHESAME), and the color of (COLOROF) square S21 on G is RED, then G has no
square that is GREEN (it is FREEOF GREEN).

The first proof step generating command is t he ASSUME command, described in our proof of the
mortality of Socrates. FOL will remember t he dependence of those sections of t he proof that rely on
an assumption. Remember that a theorem is not proven until it is free of dependencies.

We are trying to prove the WFF:
VG. ((ALLTHESAVE GACOLOROF (G, S21) =RED) 5FREEOF (G, GREEN))

arid find it useful to assume the first half of the implication, for some general variable, G. If we can
prove this true for any G, we will be able to universally generalize, and assert its truth for all G.

To repeat, commands to FOL begin after t he five star prompt, and continue until the semicolon.
The numbered lines are the proof steps that FOL prints. Statement sinthi s font are
commands typed to FOL; Statements in this font are FOL's responses. In this paper,
some of FOL'’s responses have been reformatted for easier reading.

sxxxxASSUME ALLTHESAME GACOLOROF (G, S21) =RED;
1 ALLTHESAME GACOLOROF(G,521)=RED (1)

The parenthesized one at the end of t he line signifies that this proof step is dependent upon
line one. As line one was an assumption, this is only fair. Any deduction that uses line one will
also be dependent upon line one. Proof steps may be dependent upon several other lines.

Many axioms and proof steps are of the form “for all x , y ... " where X,y,...is a list of variables.
For instance, all of the axiom DEFINITIONS is of this form. The FOL command for specializing
an axiom or proof step whose major connective is a V t o aparticular individual is VE. VE stands
for foralf elimination. For each of the sentential connectives and quantifiers (A, v, &2,-, V, and 3)
FOL has a rule for the introduction of that connective, and another for its elimination. These are
abbreviated with the two character command formed by joining t he connective or quantifier in
question, with an / or an &, depending upon whether that connective (or quantifier) is to be
introduced into or eliminated from the given WFF. As nost of the functions of these rules can be

16 AN FOL PRIMER

done by the TAUT and TAUTEQ rules, we shall consider only those among these commands that
cannot be done any other way.

We assumed that the grid Gis an ALLTHESAME grid. What is an ALLTHESAME grid? The axiom
DEFINITIONSI1 tells us. To use it, we must specialize its variable to G. To eliminate the V
character, we use the VE rule. The syntax of the VErule isthe word VE, followed by either the
name of a WFF that is an axiom (that is, DEFINITIONSI, not DEFINITIONS) or a line number,
followed by a list of TERMs. If the SORT of a TERM is not the same as (or less general than), the SORT
of the variable it wishes to instantiate, FOL will insert that as a condition of the proof step. The VE
command is terminated by a semicolon (of course). This rule can only be applied to proof steps or
axioms that have as their main connective a Vv, followed by at least as many variables as we wish t o
eliminate.

In the, future, we will refer to the concept of proof step or axiom that is a WFF as a VL. Each VL has
its own dependencies. The origin of the name VLis obscure.

*+%xxVYE DEFINITIONSI G ;
2 ALLTHESAME 6=3C.VS.COLOROF(G,S)=C

The line now refers to a specific grid, G, rather than to all grids, as the axiom did. Note that since
this fact is obtained exclusively through the use of an axiom, this line has no dependencies.

The TAUT command, introduced in the first proof, will decide all propositional tautologies. The
command consists of the word TAUT, followed by a WFF, followed by alist of line numbers and
axiom names, separated by commas. This list is called the reason list for this inference. If the WFF
is a tautological consequence of the given lines and axioms, then a new proof step with that WFF is
created; if not, an error message is printed. The second half of line two is a tautological consequence
of lines one and two; we obtain it in one step.

*xx*xTAUT 3C.VS.COLOROF(G,S)=C 1,2;
3 3C.VS.COLOROF(G,S)=C (1)

Since a line with a dependency of line one was used in t he reason list of this TAUT, this line is also
dependent upon 1.

Note that the tautology decider can determine the equivalence of WFFs identical except for the
renaming of bound variables, but cannot look inside the matrix of a quantified WFF any further than
that. That is the reason for the heavy emphasis on the VE and the 3E rules.

Line three states that there exists some color, C, such that for all squares, S, the COLOROF (G,S) is
C. We want to have a name for this color, so we use the 3E command used in the second proof. We
apply it to the WFF on line three.

*xxx3E 3 c;

4 YS.COLOROF(G,S5)=C (4)

AN FOL PRIMER 17

This line is dependent upon itself (4), not on line one. This is because by using the 3E command,
we have said, in effect, “Assume that this fact is true of the individual C”. Any statement we can
prove which is not dependent upon the fact that we called the variable C will not have four as a
dependency. Instead, FOL will make that proof step dependent upon the same lines as step three
depends upon.

We now have the fact that COLDROF (G,S) =C for all squares S. We wish to apply this to two
different squares. First, we know what the COLOROF (G S21) is (red) from our original assumption.
This will tell us that C is RED. Secondly, we are going to want to make a statement about all squares
S (that the COLOROF (G S) is not GREEN), so we are going to want to instantiate line four to a general
S. Lines five and six are the result of these commands.

*xxxxVE 4 521 ;

5 COLOROF(G,S21)=C (4).
*x¥2xVE 4 S;

6 COLOROF(G,S)=C (4)

Recall the second command for deciding tautologies, TAUTEQ, Whereas TAUT knows only about
propositional tautologies, TAUTEQ knows the meaning of the predicate =, and can substitute equals
for equals in predicates, though not in operators. While TAUTEQ is more powerful than TAUT,
it is also much slower, and its use, when not required, is not recommended.

*xxxx+ TAUTEQ -~COLOROF (G, S) =GREEN 1.5.8.EXTCOLOR;
7 —~(COLOROF(G,S)=GREEN) (1)

Here the use of the axiom name EXTCOLOR refers to all of the subparts of EXTCOLOR. Note that the
dependency on line 4 has disappeared. This dependency was introduced by an 3E, and, like the
similar dependencies in the second proof, has been removed when the named variable (C) is out of

the proof.

Having established this fact for the square S, we wish to generalize it to all S. This process, which
is often called universal generalization, is accomplished through the use of the vicommand (for
for-all introduction).

wREEFV] T g
8 VYS.-(COLOROF(G,S)=GREEN) (1)

The axiom DEFINITIONSS states that a grid is free of a color if for all squares S, the color of that
grid on that square is not the given color. Just like in step two, we use the instantiation rule for

forall statements with this axiom, getting

sxx£2VE DEFINITIONSS G GREEN,
9 FREEOF(G,GREEN)=VS.-(COLOROF(G,S)=GREEN)

18 AN FOL PRIMER

Our tautology decider can now tell us that grid G is free of GREEN. We give the TAUT rule the
WEFF we wish to establish, and the VLs which imply it.

xx% TAUT FREEOF (G GREEN) 8 9:
1 0 FREEOF(G,GREEN) (1)

This was the conclusion we desired. To remove the dependency upon line one, we introduce an
implication, with line one as the premise, and line ten as the conclusion. This is done by the use of
the I command. Of all of the commands we have considered so far, only the I command removes
dependencies. (Dependencies caused by the use of 3E commands are removed when the variable or
variables instantiated by that command are no longer in the proof). Later, we shall also consider the
-I'and -E rules, which also eliminate dependencies.

srrrs] 1519
11 (ALLTHESAME GACOLOROF(G,S21)=RED)>FREEOF(G,GREEN)

We note that line eleven is not dependent upon any other line. It is true, to the extent that our
axiom system is valid. Being free of dependencies, we can generalize its variables to all individuals
of their SORTs. (FOL will not let us generalize proof steps that contain variables which are free in
their dependencies -- to do so would be equivalent to letting us conclude that because some single
apple x is red, that all apples are red.

The command for generalizing a proof step to all elements of a SORT is, once again, forall
introduction, VI.

*xxxxV] 11 G:
12 VG.((ALLTHESAME GACOLOROF(G,S21)=RED)>FREEOF(G,GREEN))

Line twelve is our desired theorem. Note that it is free of dependencies. Any line with a
dependency is not a valid theorem.

section 7 Simpliflcation mechanisms

One of the motivations for the use of predicate calculus in artificial intelligence research is as a
vehicle for the expression of reasoning in a well understood machine manipulative form. Not all
intelligent action is based purely on -deduction; in fact, most of human intelligence relies more upon
observation than reasoning. We look at ‘a book. The book is seen to be “green”, as an immediate
observation, not as a deduction involving, say, analysis of wavelengths of light and sensory receptors
in the eye. Similarly, humans cross streets without conscious analysis of the traffic flow, add numbers
without resorting to basic set theory, and play chess without considering each move in terms of the
geometry-of the board and the axioms of number theory.

FOL has a method of doing purely computational tasks. SIMPLIFY permits the attachment of
computational functions and predicates in the programming language LISP to the operators and

AN FOL PRIMER 19

predicates of the FOL proof structure. When a LISP function is attached to a FOL operator, we
are assuring FOL that the value of that function can be computed by evaluating the associated
LISP function.

This paper will not attempt to explain the use of the LISP language. The reader unfamiliar with
LISP is refered to McCarthy[1962) or Weissmann [1967].

In FOL, the mapping between the FOL proof structure and LISP is generated by the ATTACH
command. Attachment generates no proof steps; rather, it is a declaration, and like the other
declarative commands, may contain axiomatic information.

FOL permits mapping between PREDCONSTs and LISP predicate functions, OPCONSTs and LISP
functions, and INDCONSTs and LISP atoms and s-expressions. The specified map can be either one
way, from FOL to LISP, or, in the case of INDCONSTs, two way, in both directions.

Let us return to the two by two colored grid world. We wish our proof checker to be capable of
manipulating these grids, so we need an internal representation for them. FOL allows a user to
have more than one representation of each object in LISP. The details are beyond the scope of this
primer, but may be found in the FOL manual. In cases where only one representation is being used
the following command must precede all attachment commands.

=+xxx«REPRESENT x AS UNIVERSE:

A suitable internal format is to represent a grid as a two element list, with each element being a two
efement list of colors. The FOL command to declare this attachment is:

*+x++ATTACH GRID (DE GRID (L) (AND

(EQ (LENGTH L)2)

(EQ (LENGTH (CAR L))2)

(EQ (LENGTH (CADRL))2)
COLOR (CAARL))
COLOR (CADARL))
COLOR (CAACRL))
COLOR (CADADRL))));

LK IR BE BN K B J

Here LENGTH is the standard LISP LENGTH function that returns the integral length of the top
level of a list. But the predicate COLOR is unknown to LISP. Hence, we must also define an
attachment to COLOR. The LISP function MEMQ provides a convenient method.

nuaATTACH COLOR (DE COLOR (X)
(MEMQ X (QUOTE (RED GREEN YELLOW BLUE))) I;

Note the form of an attachment to a function or predicate: the word ATTACH, followed by the
predicate’s name, a LISP function, and a semicolon. The LISP function can be a standard,
predefined function, like CAR or LENGTH, a DEFPROP or DE expression (which also puts the
function of that name on the property list of that atom), or a LISP LAMBDA expression.

The given attachments are still not enough, as we must tell FOL that the LISP atoms RED, GREEN,
YELLOW and BLUE are to correspond to the FOL INDCONSTs RED, GREEN, YELLOW and BLUE. This

20 AN FOL PRIMER

leads us to the other kind of attachment statement, where an INDCONST is attached to a LISP atom or
s-expression. The appropriate FOL commands would be:

*xxxxATTACH RED e RED;
*xxx*ATTACH GREEN & GREEN;
#k*k%k ATTACH YELLOW e YELLOW
#*k%%k ATTACH BLUE & BLUE;

The o in this command tells FOL that the stated map is two way; that if the atom YELLOW is t he
result of the evaluation of a LISP function that is attached to a FOL OPCONST, then that atom
YELLOW is meant to correspond to the FOL INDCONST YELLOW. If we had wanted to represent
YELLOW internal to LISP as the atom Y, we would have said:

*kEE¥ ATTACH YELLOW o Y,

The simplification structure knows of yet another type of declaration, the EXTENSION command.
Many real problems, and especially those of a non-mathematical nature, deal with small finite sets.
For example, the set of playing cards in the deck, the people in the room where the body was found,
and colors in the grids world are all examples of small finite sets. Declaring the extension of such a
set enables the SIMPLIFY command of FOL to do two things: to search the items in that set when
seeking to satisfy a forall or there exists statement, and implicitly to differentiate between the items of
the extension set. That is, if a SORT P has an extension of A B C and D, then the simplification
mechanism may use the fact that A=B, A=C, B=D, and so forth. Either of these properties can be
simulated without the use of the extension statement; the first, through the use of an axiom listing
the elements of the set, the second through another axiom explicitly stating the inequalities involved.
But both of these methods are long and clumsy, and are best avoided.

The FOL extension command consists of the word EXTENSION, followed by a SORT, and a set
expression (a set, or the union or intersection of sets) which constitutes the extension of that SORT.
Other SORTs whose extension has already been defined may be used as sets in an extension
command. In our two by two colored grids world example, the extension of COLOR can be declared
by the statement:

+xxxxEXTENSION COLOR {YELLOW BLUE GREEN RED};

After this declaration, the simplification mechanism can conclude the axiom EXTCOLOR.
Similarly the axiom EXTSQUARE can be replaced by the declaration:

44+ EXTENSTON SQUARE {S11 S12 S21 522}

The same INDCONST may belong to more than one extension; however, the only things FOL will
permit to be declared elements of an extension are INDCONSTs. (remembering, of course, that LISP
S-expressions and the natural numbers are also INDCONSTs.)

Suppose we have a particular grid in mind. We might want to call the grid whose top row is
YELLOW and whose bottom row, BLUE, by the name, MYGRID.

AN FOL PRIMER

Sil. Si2
YELLOW | YELLOW
S21 $22
BLUE BLUE
HYGRID

We would make the declaration:

*xxxxDECLARE INDCDNST MYGRID ¢ GRID:

Following ‘the structure for grids mentioned above, we’d want to include the attachment:

*++£¢ATTACH MYGRIO « ((YELLOW YELLOW) (BLUE BLUE))

21

Let us make the following attachments to the PREDCONSTs HAS and FREEOF. Note that the function

FREEOF is defined in terms of the function’ HAS.

+xxx¢ATTACH HAS (DE HAS (GC)

* (AND (GRID G)
* (OR
* (MEMQ C (CAR G))

* (MEMQ C (CADRG)))))
#++%+ATTACH FREEOF (LAMBDA (GC) (AND (GRID G) (NOT (HAS GC))));

We can then- give FOL the following commands, obtaining the stated proof steps.

s*++2SIMPLIFY -YELLOW=BLUE;

1 ~(YELLOW=BLUE)

*+x£xxSIMPLIFYHAS (MYGRID YELLOW) ;

2 HAS(MYGRID,YELLOW)
s*xxxS[MPLIFY HAS (MYGRID RED) ;

3 -~HAS(MYGRID,RED)

sx+x+SIMPLIFY FREEOF (MYGRID GREEN) ;
4 FREEOF(MYGRID,GREEN)

22

**xxxxSIMPLIFY VC. (HAS(MYGRID C)o ((C=YELLOWVC=BLUE)A-C=RED)) ;
5 VC.(HAS(MYGRID,C)>((C=YELLOWvC=BLUE)A~(C=RED)))

The simplify nechani sm has allowed us to deduce these facts by simple commands. Each of them
would require either a complicated derivation, or a specific axiom, to do without simplification.

By use of the FUNCTION command, it is possible to declare auxiliary functions to FOL.
Functions so declared may be used, like the standard LISP functions, in attachments and ot her
function statements. Only EXPRs (not FEXPRs or MACROs) may be declared by the
FUNCTION command. If we had declared the auxiliary function MAKEPAIR by

*+x+xFUNCTION (DE MAKEPAIR (X Y) (CONS X (CONS Y NIL)));
then an *attachment to MAKEGRID would be:

x*xxxATTACH NAKEGRIO (LAMBDA (A B C D)
* (MAKEPAIR (MAKEPAIR A B) (MAKEPAIR C D))}

The value of this command is not immediately apparent in this simple example. However, as
attachments increase in complexity its worth becomes more obvious.

section 7.1 The Grids World Revisited

As a final sample proof, we present a proof by contradiction, intended to illustrate t he =I and
substitution proof generating commands, and a few of the proof administrative commands.

In this proof, we seek to show that if a grid is plaid, and square §12 is RED, then square $11is not
RED. Expressed in predicate calculus, this looks like:

VG. ((PLAID GACOLOROF (G S12)=RED)>-COLOROF (G S11)=RED)

For this proof it will be useful to have an attachment for the operator =; the auxiliary function
NEXT is defined for the use of the attachment function. Similarly, we must tell FOL of the
mapping between the external, FOL interpretation of the individual squares, and the internal,
LISP representation. For this, we have chosen the obvious mapping of the square names into
themselves. The following declarations are therefore presented to FOL.

*xxxxFUNCTION (DE NEXT (S L)
* (COND ((EQ (CcAR L) S) (CADR L)) (T (NEXT S (COR L)))));

*x%x*ATTACH » (DE - (S) (NEXT S (QUOTE (S11 S12 S22 S21 S11))));

##%%% ATTACH S11 o S11;
#xxx+ATTACH S12 o S512;
*xxx*ATTACH S21 e S21;
*+x+xATTACH S22 « S22:

AN FOL PRIMER 23

It is often convenient to refer to lines in a proof not by their line number (which is apt to change if
a few lines are added or removed from the proof), but rather by some symbolic or relative tag. FOL
provides several mechanisms for doing this. One of these is the LABEL command. The basic form
of this command is the word LABEL, an identifier, and a line number. Ifthe line number iS omitted,
the next line is presumed. Once an identifier has been declared a label, it may be used wherever

that line number could be used. In this example, the next command given is

e LABEL THI SLI NE;

As no implicit line number is given, THISLINE is presuned to apply to the next proof step (line I).
THISLINE can now be used as a synonym for the VL 1 in any FOL command. Note that the label is
not permanently attached to the named line; a label may be redeclared for a different line.

As the theorem we wish to prove is a universal generalization of A>B, we find it useful, in this
proof, to start by assuming the “A” part, for some general grid G.

*+xxxASSUME PLAID GACOLOROF (G,S12) =RED;
1 PLAID GACOLOROF(G,S12)=RED (1)

We want a proof by contradiction, so we assume the contrary of the desired result. If our
assumption in line two leads to a contradiction (a conclusion of FALSE) then we will have proven our
theorem.

#xk4% ASSUVE COLOROF (G, S11) =RED;
2 COLOROF(G,S11)=RED (2)

We now consult our definition of a plaid grid. The axiom DEFINITIONS4 defines plaid grids; we
use VE to instantiate it to our grid G.

sxxxxVYE DEFINI TIONS4 G;

3 PLAID 6=VS1.3C1C2.(~(C1=C2)A(COLOROF(G,S1)=C1A(COLOROF(G,-»(S1))=C2n
COLOROF (G,»(~(S1)))=C1)))

We will wish to apply the second part of this VL. to two different squares; to do so, we must first
isolate the quantified part. The TAUT command will get it for us. Note the introduction of the
subpart designator, the :#2 in the taut command. FOL provides a method for refering to part of a
previously mentioned WFF by use of a subpart designator. The WFF that is on any VL may be
accessed by appending a : to that VLs name; successive first operands and second operands of the
main connective of a WFF are accessed by appending #!'s and #2’s to the colon. For instance, the
main connective of line two is », the first operand, the TERM COLOROF (G,S11). Thus, in this proof,
FOL will treat 2: #1 as synonymous with COLOROF (G,S11). Similarly, 1: #2#1#1isthe INDVAR G
The reader is urged to experiment with subpart designators; the relief from the recopying of long
WFFs is certainly a good incentive for their use. Subpart designators may be used wherever a WFF
or TERM is required. Care must be exercised, however, to insure that the expression designated is
the desired one.

Let us call the resulting VL. ALLSQ

24 AN FOL PRIMER

x*xxxxLABEL ALLSQ;
*xxxxTAUT 3: #21,3;

4 V¥S1.3C1C2.(~(C1=C2)A(COLOROF(G,S1)=CIA(COLOROF(G,~»(S1))=C2n
COLOROF(G,-(»(S1)))=C1))) (1)

This fact is to be applied first to the square S12. Here we use another method of refering to ot her
lines in FOL, the 7. When used in place of a line number, a single T refers to the previous line;
each additional T moves the referent back a line. Thus, the string 11 refers to the proof step two
lines ago; the line five back would be 11111.

xx*xxxVE [’ 512;

5 3C1¢2.(~(C1=C2)A(COLOROF(G,S12)=C1A(COLOROF(G,»(S12))=C2A
COLOROF (6,+(»(S12)))=C1))) (1)

The definition so produced refers to colors Cl and C2; to get to the matrix of this expression, we
need to remove the quantifier.

*¥xxx3E 1 Cl C2;

6 =(€1=C2)A(COLOROF(G,S12)=C1A(COLOROF(G,»{S12))=C2n
COLOROF (G, (~(S12)))=C1)) (6)

Note that this line was produced by an existential elimination, and is therefore dependent only upon
itself.

We can consult the simplification mechanism for the value of = (+(S21)) (the square two away,
clockwise, from the upper right hand corner)

*xxxxSIMPLIFY -(-(S12));
7 +(+(S12))=S21

The last remaining important class of proof step generating commands are the substitution
commands, SUBST and SUBSTR. A substitution command is of the form SUBST <v/> IN <vi>;.
The first <v¢> is presumed to be of the form A-B or A=B;if SUBST is used, every occurrence of B in
the second <wv/> is replaced by A, and the resulting WFF becomes the next proof step, its
dependencies the union of the dependencies of the first and second <w>s. SUBSTR is used for
replacing A by B.

Substitutions may occasionally result in the automatic renaming of a bound variable. This is rare,
but its occurrence should not unduly alarm the user.

*xxxxSUBSTR P IN M

8 ~(C1=C2)A(COLOROF(G,S12)=CIA(COLOROF(G,»(S12))=C2n
COLOROF(G,S21)=C1)) (6)

Thus, we have established the color of square S21 in grid G. Another instantiation to line four will
allow us to say something about the desired square, S11.

AN FOL PRIMER 25

*x¥¢3xVYE ALLSQ S21;

9 3C1C2.(~(C1=C2)A(COLOROF(G,S21)=C1A(COLOROF(G,~(S21))=C2n
COLOROF(6,»(=»(S21)))=C1))) (1)

Once again we need names for the two colors in line nine. Calling them CI and C2 will lead to
trouble; we have not established that they are the same as the colors referred to in line six' (even
though they can be proven to be the same). So let us call them CA and CB. Note the renaming by

the 3E command.

*+xxx3E 1t CA CB:

10 ~(CA=CB)A(COLOROF(G,S21)=CAn(COLOROF (G,»(S21)

=CBA
COLOROF(G.»(-»(SZI)))

)=CA)) (10)
The successor square to S21 is S11. Notice that SIMPLIFY can evaluate both operators and
predicates.

*x2xxSIMPLIFY S11=-(S21);
11 S11=+(S21)
And another substitution, this time with the SUBST command.

*xx*xSUBST* IN 4+ OCC 1;

12 =(CA=CB)A(COLOROF(G,S21)= CAA(COLOROF(Sl1l

)=CBA
COLOROF(G,~»(S11)

)=CA)) (10)

We see here another ‘modification of the substitution commands, the occurrence list. If the
substitution command has, before the semicolon, the word OCC, followed by an ordered list of
integers, then the substitution is made only for those instances specified by the occurrence list. That
is, if the command were SUBST thisline IN thatline OGC 1 3 5;, then the substitution would occur
only in the first, third, and fifth occurrences in thatline.

This proof has produced a contradiction; lines 1, 8, and 12 imply that square S11 cannot be RED; the
assumed line 2 demands it. We can use TAUTEQ to infer the WFF FALSE. In this command, we
see yet another way of giving a series of line numbers to a FOL command, the RANGELIST. The
lines from line M to line N, inclusive of M and N, can be shortened to M:N. If the M is omitted,
the first line of the proof is presumed; if the N is absent, the last line of the proof (1) is assumed.
Note that we have given TAUTEQ not only lines 1,2,8 and 12, needed for the contradiction, but
also the superfluous lines 9, 10 and 11.

*+++x TAUTEQ FALSE THISLINE, 2,8:%;

13 FALSE (1 2)

Ttie variables Cl, C2, CA and CB are no longer mentioned in this line, (or in any line which this line
depends upon), hence this line no longer depends on line 5.

26 AN FOL PRIMER

We cone to the other major FOL command for removing dependencies, -I. If a contradiction
(FALSE) has been generated as a proof step, then we can conclude, dependent upon the other lines in
the dependency of the FALSE line, the negation of one of the assumptions that caused that line, If
the FALSE line has no dependencies, there is a contradiction in the axiom system.

There also exists as ~E command, parallel in use to the ~I command, for the elimination of a
negation, rather than its introduction.

We illustrate here another type of relative line numbers. A label can have appended an additive or
subtractive constant, which then refers to that many lines before or after the line associated with that
label. Thus, LINEX+3 is the third line after the line LINEX; LINEX-1 is the line before LINEX.

xxxx%-] 1, THISLINE+1;
14 -(COLOROF(G,S11)=RED) (1)

All that now remains is the insertion of t he implication symbol, and the generalization of this proof
to all grids.

xxxxx>] THISLINED?T;

15 (PLAID GACOLOROF(G,S12)=RED)>~(COLOROF(G,S11)=RED)

xxkkxV] 1 GeGl;

16 VG1.((PLAIDGIACOLOROF(G1,S12)=RED)>~(COLOROF(G1,S11)=RED))

Notice the renaming (from G to G1) accomplished in this use of VI. The WFF on line 16 is, of course,
equivalent to the same WF with G1 replaced by G (or, by G2, for that matter).

We have proven the theorem.

The astute reader may have noticed several shortcomings and have several questions about our
proof. It is certainly longer than it needs be, and a much more powerful theorem relating the
difference of colors of squares on plaid grids could certainly have been proven with the same effort.
But the purpose of this exercise was to introduce the use of the line referents and the substitution
commands, not to prove powerful grids world theorems. The reader may also reasonably inquire
about the necessity of the substitution commands. They are needed because the TAUTEQ
command is capable of substituting equals for equals in predicates, but not in functions. That is, if
a and b are individuals, P a predicate, and F a function, TAUTEQ can conclude from a=b t hat

P(a)=P(b), but cannot conclude that F(a)=F(b). One can establish the equality of F(A) and F(B)
using the SUBST and SUBSTR commands. .

AN FOL PRIMER 27

section 8 Administrative commmands

section 8.1 The show commmand

Several administrative commands are worth mentioning. The SHOW command displays details of
the present proof structure on your console. There are several varieties of SHOW. One can have
the current proof listed by responding to the five star prompt by typing SHOW PROOF;. SHOW PROOF
42, LINEX, %, L INEX+2:#%%4; would list, in order, line 42, the line labeled LINEX, the previous line,
and all lines from two lines after LINEX to four lines ago.

The other show commands are:

¥+xx2SHOW AXI OVS;

lists all axioms;
+++xxSHOW AXIOMS DEFINITIONS,EXTCOLORI;

lists both axioms DEFINITIONS and EXTCOLORI.
#+%+xSHOW DECLARATI ONS <syntype>;

lists all things declared to be of that syntype;
xxxxxSHOW DECLARATIONS <list of identifiers,;

lists the declaration information for each identifier in the list.
#rkkk SHOW GENERALITY <SORT list>;

lists the SORTS both more and less general than the requested SORTs.
*x#%%SHOW LABELS <ranges;

lists the labels and associated line numbers in that range.
*xxx+SHOW LABELS <identifier list>;

lists the line number for each identifier in the list.

.For example, the various show commands, in the context of the last proof:

+xx+3SHOW PROOF THISLINE,7,M1:%;
**&ASSUME PLAID GACOLOROF(G,S12)=RED;
1 PLAID GACOLOROF(G,S12)=RED (1)
*x++xSIMPLIFY ;
7 +(=2(S12))=821

*kkkx-] t,COLOROF(G,S11)=RED;
14 ~(COLOROF(G,S11)=RED) (1)
+¥x3x>1 1ot ;

15 (PLAID GACOLOROF(G,S12)=RED)>~(COLOROF(G,S11)=RED)

28 AN FOL PRIMER

*xxx%xVI t GeGl;
16 VG1.{(PLAID GIACOLOROF(G1,S12)=RED)>~(COLOROF(G1,S11)=RED))
*xx%*SHOW AXI OMS OEFINITIONS3,NEXTSQUARE;

DEFINITIONS3: VG C.(HAS(G,C)=3S.COLOROF(G,S)=C)
NEXTSQUARE: NEXTSQUARE1l: +(S11)=S12
NEXTSQUARE2: -(S12)=822
NEXTSQUARE3: +(S22)=S21
NEXTSQUARE4: +(S21)=S11

#*%x¥SHOW DECLARATI ONS I NDCONST:

INDCONST
MYGRID S22 S21 S12 S11 BLUE YELLOW GREEN RED

x%xxxSHOW DECLARATIONS G,MAKEGRID,COLOR, YELLOW,FOOBAZ;
G is INDVAR of SORT GRID

MAKEGRID is OPCONST
The dommin is COLOR e COLOR @ COLOR ® COLOR, and the range is GRID

COLOR is PREDCONST
The dommin is UNIVERSAL[R<1000]
COLOR is a SORT with:
INDCONSTs BLUE YELLOW GREEN RED
INDVARs CB CA 2 CIC
YELLOW i s INDCONST of sort COLOR
No declaration for FOOBAZ
+xx#*SHOW LABELS 1:12;
label ALLSQ 6
label THISLINE 1
*x%%*SHOW LABELS THI SLI NE;

THISLINE: 1 PLAID GACOLOROF(G,S12)=RED

The output of any show command can be directed to a file by inserting a right arrow and a file
nane before the closing semicolon. Thus, the command:

*+%xxSHOW PROOF 8:475 - THIS.PRF [FOL,REF];

will list the proof steps nine through 475 onto the file THIS.PRF[FOL,REF].

AN FOL PRIMER 29

section 8.2 The Backup File

FOL keeps a transcription of everything typed to it on the file BACKUP.TMP. If the system
crashes during an execution of FOL, this file may be edited to recover the lost input.

section 8.3 Erasing Proof Steps

Lines may be deleted from the proof by the use of the CANCEL command. CANCEL
<|inenumber>; removes all lines of that number or greater from the proof; CANCEL: renpves just
the last line. As the dependence of each proof step on the other lines of the proof is not easily
determined, FOL does not allow for removal of lines from the middle of proofs.

sect ion 8.4 Reading in FOL Command Files

Input files of FOL commands may be read into FOL by the use of the FETCH command. FETCH
<fiilename>; opens the file <filename>, and reads and executes the commands on that file; FETCH
<filename> FROM <identifier>; searches the file <filename> for a command MARK <identifier>: and
begins reading from that point; FETCH <filename> TO <identifier>: reads the file until MARK
<identifier> ; is encountered. The FETCH command may contain both a FROM and a TO marker.
For example,

xx+xxFETCH INPUT.FOL FROM MARKI TO MARKEND;
would begin reading the file INPUT.FOL, and search for the command

MARK MARK1;

FOL would begin processing commands from that point, until the command

MARK MARKEND;

was read. Control would then be returned to the previous level.

Fetches may be nested (to a depth of ten); thatis, a fetched file may use the fetch command.
Remember, the five asterisks so frequently repeated in this paper are FOL's prompt, and not part of
the command. If you intlude them in a fetched file, an error nessage results.

Comments may be included in the fetched file through the use of the comment command. If FOL
reads a statement of the form:

COMMVENT x ... thisis a
- two | ine comment . . . %

then the string between the asterisks is: ignored by the command parser. Note that there is no
semicolon after the comment command. The use of asterisks here is arbitrary; any matching pair of
delimiters (except %) would do. Asthe COMVENT command ignores semicolons, it is useful for

30 AN FOL PRIMER

removing large sections of input commands from the FOL input stream, without actually deleting
them from the input file.

If FOL encounters an error i n reading a fetched file, the fetch is terminated, and command returns
to the user.

section 8.5 Using FOL from non-Stanford terminals

There are certain difficulties in trying to use FOL from non-Stanford terminals. The most
important of these is the lack of the logical connectives and quantifers (A,v,~,2,8,Y,3) on most non-
Stanford keyboards. Even from a non-local terminal with the full character set, a minor difficulty
arises when the monitor interprets the exists character (3) as a control U, and ignores the line on
which it” was typed. It is possible to overcome these problems, and use FOL from a non-Stanford
terminal or over the ARPA net by the use of the TTY command. The command

sxxxxT1Y;

will rename the sentential connectives and quantifiers to be &, OR, NOT, IMP, IFF, FA and EX.
FOL will now print those characters with their new names, and will accept these new names in WFFs.
The various quantifier and connective introduction and elimitiation commands mentioned in this
text also have synonyms. One may use DED for 1, NI for -I, NE for -E, UC for VI, US for VE,
EC for 31, and ES for 3E. The derivation of these names may be found in the FOL manual.

The command

*xxxxUNTTY;

undoes the action of the TTY command. After the UNTTY command, the connectives and quantifiers
will print using their usual nanes, and the FOL parser will cease to recognize the TTY mode names.
One can switch arbitrarily between TTY and UNTTY modes.

section 8.6 Saving the state of the proof

The our last administrative command is the EXIT command. EXIT; returns the user to the monitor;
the monitor SAVE program will then save the FOL core image for later restarting. Thus, a typical
sequence for saving the FOL core image and listing a proof on the lineprinter is:

**x*xSHOW PROOF - MY.PRF;
xxxxxEX] T,
The EXIT conmmmand does a garbage collection and takes a while

Exit
tC
.SAMYFOL (we're talking to the monitor here)

J(():b saved in 130 pages. (Upper not saved)
t

AN FOL PRIMER 31

.SPOOL MY. PRF (Request a listing on the lineprinter)

Exit

tC .
.RU MYFOL (Get back into FOL)
Saving input on: BACKUP. TMWP

*kk%E (We can continue with the proof here)

section 9 Pointers to additional information

The source file for t hi s paper is FOLPRM.REF[AIM,DOC]. The FOL commands used in this
primer, and practice exercises for FOL can be found on.the file EXERCIL.FOL[UP,DOC].

We wish tothank John McCarthy and Bill Classmire for their many helpful suggestions on and
corrections to the drafts of this primer.

32 AN FOL PRIMER

Bibliography.

Gardner, M. (1959) The Scientific American book of Mathematical Puzzles and Diversions, Simon and

Schuster, New York
Kleene, S.C. (1968) Mathematical Logic, John Wiley & Sons, Inc. New York
Manna, Z. (1974) Mathematical Theory of Computation, McGraw-Hill Book do. New York
McCarthy, J. (1962) er. al. LISP 1.5 Programmer’s Manual MIT Press, Cambridge, Massachusetts
Mendelson, E. (1964) Introduction to Mathematical Logio D. Van Nostrand Co. Inc., New York
Prawitz, D. (1965) Natural Deduction - a proof theoretical study, Almquist & Wiksell, Stockholm
Weissman, C. (196°7) LISP 1.5 Programmer? Manual, MIT Press, Cambridge, Massachusetts
Weyhrauch, R. and W. Glassrnire (to appear) A Users Manual for FOL

Weyhrauch, R. and A. J. Thomas (1974) FOL: a Proof Checker for Flrst-order Logic, Stanford A.lL.
Memo 235

AN FOL PRIMER

-, in show command 28
-, operator 13
=1, inference rule 26
€ 8

Q1

QE, inference rule 2, 15

V1, inference rule 17

o 20

= 9

administrative commands 27

A LLDIFFERENT, predicate 14

A LLTHESAME, predicate 14
ARITY -8

ARPA net, using FOL over the 30
ASSUME, inference rule 2,15
ATTACH 19

attachment 18

AWEFF 10

AXIOM SCHEMA 12

axioms 4, 11

backup file 29

BACKUP.TMP 29

boxes, puzzle about 3

CANCEL 29

colored grids world 13, 22
Comments 29

declarations 1, 7

declarations, individual constants 7
declarations, individual variable 10
declarations, operator constant 9
declarations, predicate constant 7
declarations, predicate parameter 10
DECLARE 7

dependencies 2, 3, 12, 15
dependencies, created by 3E command 6,7, 17
errors, syntax 7

exercises 3 1

EXIT 30

EXTENSION 20

FETCH 29

FOL 1

FOL, commands 12

FOL, how to run |

FOL, proof 12

fonts 2

FREEOF, predicate 14

FROM, in FETCH command 29
FUNCTION 22

33

Index

HAS, predconst 4

HAS, predicate 14

INDCONST 1

INDCONST, declarations 7
individual constants, declarations 7
individual variable, declarations 10
INDVAR 1

INDVAR, declarations 10
inference rule, -1 26

inference rule, QE 2, 15
inference rule, VI 17

inference rule, ASSUME 2, 15
inference rule, SIMPLIFY 18, 20
inference rule, SWBST 24
inference rule, SUBSTR 24
inference rule, TAUT 2, 16
inference rule, TAUTEQ 6, 17
inference rule, 3E 5

inference rule, oI 3, 18

infix &

IS, predconst 4

LABEL 23, 26

LABELED, predconst 4

line number 23, 24, 25, 26

LISP 7, 19

main connective 2, 16
MAKEGRID, operator 13
marbles, puzzle about 3

MARK, in FETCH command 29
MC 8

MOREGENERAL 8

MYCRID, indconst 20
NATNUM 9

natural deduction 1

OCC 25

occurrence list 25

operator constant, declarations 9
PLAID, predicate 14
PREDCONST 1
PREDCONST, declarations 8
PREDCONST, predeclared 9
predeclared, PREDCONST 9
predicate constant, declarations 7
predicate parameter 12

predicate parameter, declarations 10
PREDPAR 12

PREDPA R, declarations 10
prefix 8, 13

34

RANGELIST 25

reason list 16
REPRESENT 19
representation 19

rules of inference 2, 12
SEXPR 9

SHOW 27

simplification 18

SIMPLIFY, inference rule 18, 20
Socrates, proof about 1
SORT?78

source file for this paper 3l
subpart designator 23
SUBST, inference rule 24
substitution 24

SUBSTR, inference rule 24
SYNTYPE 7, 10

TAUT, inference rule 2, 16
TAUTEQ, inference rule 6, 17
TAUTEQ, substitution by 26
TERM 10

TO, in FETCH command 29
TTY 30

UNTTY 30

variable, bound 11

variable, free 11, 18
.variable, scope 11

VL 16, 23
WFF 1, 10
T 24
35

3E, inference rule 5
oI, inference rule 3, 18

AN FOL PRIMER

