MATHEMAT ICAL PROGRAMMING LANGUAGE --USER'S GUIDE

by
Donald R. Woods

STAN-CS-76-56l
AUGUST 1976

COMPUTER SC IENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UN IVERS ITY

TABLE OF CORTERTS

Pro'.c. EEEEEEEEEREEEEEREERE X N N N I RS I I B RCEE B BRI B BT BN BB B RN I BB BB BRI B IR B B Y] iv

SECHION | oo oo o se00e00sotsevssseessesssesstossnsesosersssssssossssscesssssssasse 1

— e b e
LN wWwN—

Do

(NSRS} \)
W N =

WwWN—

~ W W W w

RIS
N bW -

oA
Q. o uﬂz’);\)u} w
F-N4 —

NN~
WN

Getting Started 1
Characters and Symbol 8 e 3
Identifiers and Keywordso 3
CONStaNtS .o 4
070 10111 =Y 011 5
Dl IMI OIS -t vt ittt e et e e e e e e e e 6
Data Types and StructureBttt 6
TUPBS .. i 6
S UCTUNE S .« v ettt e e e e e e e e 7
Defining Variables ... e 8
EXPrESS | ONS o ot ittt 10
Operators and Precedenceot 11
SUbSCIIPtiNgG .o e 13
Vector Generators ...t 14
Program Structure 16
Simple and Compound Statementsouiiiniiiiiiinnannann.. 16
Assignment Statement 18
IF Statement 19
WHILE Statement e e 28
FOR Statementot e e et 22
GO TO Statement ... oottt 25
STOP Statement . ..ottt e e e e e 26
INPUt/OULPUL .o 27
Unformatted Datacoiiiiii e 27
DU P UL ot ettt e 28
I P UL e e 28
Writing MeSSageS .« ot vttt it e 23
HOW 10 USE MPL ..ttt e e e e e e e 30
Restrictions, Cautions, and Pitfalls 31
MPL In General ... e e 31
Compiler-Specific Warningsouti e 33
Programming Pltfal 1so 34

MPL User’s Guide Table of Contents

SeCtiOﬂ” IR R RN R R B IR RC NI RN SR RN A I B I I R BB BB SRR SR Y N B R B B N B 33

P00 00 I

| Data Types and Structures (Revisited) 33
1.1 More Data TYPeS « vttt ettt ettt i 33
1.2 More Data StruCtureso.iiin i e 41
2 Expressions (Revisited) i 43
2.1 MOre OPerators ...ttt e e e 43
2.2 SUDBSCIIPIING o ettt 46
2.3 Set GeNeratOrS o e ittt 47
3 More Statements 48
3.1 Subscripted Assignment 43
3.2 dF Statement .ottt 50
3.3 CASE Statementottt 51
3.4 FOR Statementttt e e 53
4 PrOCEAUIES . ittt 54
4.1 No Argument s, No Result, 55
4.2 Arguments (Parameters)t 58
4.3 Procedures Wi th ResUltS . ..viirit i e e 65
4.4 RETURN Statement .. .cvii it et e e e et et et 68
4.5 Library FUNGCHIONS ..ttt 63
5 BIOCK StrUCIUIE oottt e e e e e e e 70
5.1 Block-Structured Programsiiiiiiiiiiiiiiii 70
5.2 Definition of @ BloCK ... vii i 72
6 Input/Qutput (Revisited) ... 73
6.1 Semi-formatted OUtPUL it 73
6.2 Formatted 1/0 ... 14
7 The LET Statementttt e e ettt 82
I O What [t DOBS « ittt it et 82
2 HOW It DOBS It veee ettt e e e e e e 84
3 What It Can Do (But DON’t) «viivii e 85
How to Use MPL (Revisited)uuniri e 86

1 Creating MPL Librariesuuuiiiii i 86
2 Compilation Parameterso 83
Section Wl ... 91
| Special Data StruCtUIresiuiit it 91
Lol MatrixX Sets .ottt e e e 91

MPL User’s Guide Table of Contents

1.2 Partition MatriCes « e ettt et e et 32
1.3 Shape Afributesoouiiii e 33
2 Special Operator9t 34
2.l MU o e 34
2.2 IS NULL + ot it ettt e e e e e e 35
0 T = =Y =Yo =Y o e J 35
3 Procedures (Revisited)vviriimiii i 36
3.1 Parameter-Passing Conventions i, 36
3.2 Separately Compiled Procedurescoouiuiieiiiieinnaaan.. 100
3.3 RECUISION « ettt ettt et et e e e e e e e e 101
3.4 Parametric ProCedUIeS vttt 105
4 Miscellaneous FeatUres -« vvv it e e ettt e ee e 106
4.1 The EMPTY Specificationouiiiiii i 1 0 6
4.2 The DYNAMIC AtribULE « ot v vttt ettt 107
4.3 The ABEND Statement .. .ovvinin ittt 107
4.4 The RELEASE Statement .. cvvivet ittt e et e et 108
4.5 Program EffiCIenCY - vt e 108

Appendix A (Library Functions) - - - - - « « « v v o i e L0

Appendix BIEPPOP MESSAgES) « « v v vt ettt et e et e 112
1 Compile-Time Errors ... it 112
2 Code-Generator Errors ... e 115
3 LiSt Of Error MeSSages v vvtntnt ettt et 116
4 RUN-TIME ErTOrS &ttt ettt et e et e et ettt ettt e es 122
Appendix C (Operators and Operands) -« -« « v vttt 125
Appendix D (KeYWOIrdS) - -« v v v v vttt e 131

Historical Note (Contributors to MPL) eessessessacscessossserccercnnesocsansees 133

PREFACE

Mathematical Programming Language {MPL) is a programming language
specifically designed for the implementation of mathematical software and,
in particular, experimental mathematical programming software. In the past
there has been a wide gulf between the applied mathematicians who design
mathematical algorithms (but often have little appreciation of the fine
points of computing) and the professional programmer, who may have I i tile
or no understanding of the mathematics of the problem he is programming.
The result is that a vast number of mathematical algorithms have been
devised and published, with only a small fraction being actual ly
implemented and experimentally compared on selected representative
problems.

MPL is designed to be as close as possible to the terminology used by
the mathematician while retaining as far as possible programming
sophistications which make for good software systems. The result is a
programming language wh:ch (hopefully!) allows the writing of clear,
concise, easi ly read programs, especially by per sons who are not
professional programmers.

Use of This Manual

As this manual is intended for use by people with | ittle or no
programming experience, as wel | as by those who are significantly more
exper i enced, it has been organized into three sections. Section |

describes those features of MPL which are necessary, or at least extremely
handy, for doing anything useful with the language. These inc | ude such
things as basic syntax (what a program looks like), simple operations (+,
, e'w.% and the more useful commands. Section Il describes features
uhichare helpful for doing anything complicated, such as procedures, row
and column vectors, and so forth. Final ly, Section Ill describes features
which are available for doing anything fancy and wonderful. In using this
manual to learn MPL, we recommend that you stop at the end of each Section
in order to assimi late and experiment with what you have just | earned.
Proceed to the next Section once you have the confidence (or need) to do
S0O.

Although this manual is not intended as a general text on programming,
there will be occasional comments on programming techniques, which are
intended solely for the inexperienced programmer. These discussions are
set in slightly smaller type tO distinguish them from the rest of the manual.
Such topics as how to use keypunching machines or how to run jobs on the
computer are not covered at all.

Acknowledgzement

We grateful |y acknowledge the Stanford Artificial Intelligence
Laboratory for providing the programs and equipment which produced this
manua .

- Vv -

SECTIORN T

1: GETTING STARTED

To give you some idea of what MPL is all about, we are starting off
with a simple but substantial sample of an MPL program, You are not
expected to understand it yet, but if you desire proof that MPL is more
than just some professor’'s bad dream you may punch a copy of the deck shown
(substi tuting your own computer account number in place of X000, your bin
number in place of 123, and your keyword in place of FO0) and try running
it yourself.

The program reads from data cards (also shown) 3 parameters: m, r, and
n. It then reads 2 matrices, A (m by r) and B (r by n). Final ly, it
verifies the relation IABlg < IAllz«1Blig, where IMif represents a special

function of a matrix M, defined by

- M = (2, 1,2 12
(This function, in case you're interested, is known as the "Frobenius
norm”. l1fi t sounds esoteric, fear note You needn’ t understand i t s
significance to understand the program,) The deck i s shown on the next
page.

The cards PROGRAM through END contain the MPL program; the
indentation used through it is for readabi | i ty only and in no way affects
the program. The cards ful | of numbers near the end of the deck are the
data. For the cur i ous-but- | azy, the norms should be roughly (according to
hand calculations) IABll = 26.644156, A= 2.930017, and IBl;= 16.52967.

Briefly, the program works as follows. After the PROGRAM card which
marks the start of the program, the next 3 lines define the parameters and
data, and simultaneously read the values from the data cards supplied at
the end of the deck, Next, we define a special function called Norm wuith
a matrix as its only argument. This function starts a summation with zero
and goes through each row and column of the matrix, adding the square of
each element. Then it raises the sum to the 0.5 power and “yields” the
result. The marks | and | are used to separate from the rest of the
program the set of statements that define how the FUNCTION is evaluated.
Final ly, the Norm function is evaluated with three different matr ix
arguments and the relation described earlier is tested. On the basis of
this test, some appropriate messages are written out.

MPL User’s Guide Section I

//SAMPLE JOB (X000, 123), ‘MPL. USER’

/7*KEY FOO

/7/ EXEC MPLC

//COMP.SYSIN DD =%

PROGRAM

GIVEN (m, r, n) INTEGERS;

GIVEN A REAL MATRIX m BY r, B REAL MATRIX r BY n;

FUNCTION F := Norm (M) WVHEREMI S MATRIX,F SCALAR;
| o DEFINE s um:=0.0;
FOR1 IN (1,...,ROWSIZE(M)),
FOR j1 n~n{1,...,COLSIZE(M)),
sum := sum + M(i, j)*M(i, j);
F := sum %% 0.5

-l
| F Norm (A%B) > Norm (A) * Norm (B) THEN
WRITE (<<It didn't work!>>)
ELSE
WRITE (<<Itworked(whatasurprisel).>>);
WRITE (<<For the record, Norm (A%B) is:>>, Norm (A%B),

<<Norm (A) is:>>, Norm (A),
<<Norm (B) is:>>, Norm (B))

END

/7%

//GO.SYSIN DD %

3 4

.5 1.0 0.2 -2.
.25 =-.7 1.2 0.0
-.1 8.3 .45 -1.
1.25 =2.3

0.55 10.86

-8.6 =7.9

.35 =-4.15

/7%

If you find all of this difficult to believe, go back and examine the
program until you are convinced that a computer just might be able to
figure it out. Trust us: it's been done. The problem at hand is getting
you to the point where you could have written the program yourself
(assuming you had some far-fetched reason for wanting to do so).

Having now given you a taste of the main course, as it were, we shall
back off and start over with the appetizer.

I.1.1 Getting Started

1.1: Characters and Symbols

The character set for MPL consists of a subset of EBCDIC, the IBM 368
character set. A “character” is a single stroke on the terminal or
keypunch. The following groups of characters are recognized by MPL:

Alphabetic: abcdefghi jk Imnopqfs tuviixyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ

Special Alphabetic _Characters: _8$°
Numeric: 0123456789

Special Characters: HE&x () -+=3 3", ./ | <>=1{]}

Blank: (1 stroke of the space bar on a terminal or keypunch)

The above are the only characters which have any meaning in MPL. In
addit ion, however, there are certain multiple-character symbols consisting
of 2 or more special characters occurring together with no intervening spaces,
which have special meanings distinct from those of the individual
characters. These symbol s are:

*k 1= - e
- <= <
| >> Swm)>

Note: The symbols <{ and)> are treated exactly like the characters { and },
respectively, and are available only because { and } are not easi ly
produced on a keypunch. Throughout this manual, however, | and | uill be
used exclusively, as they are much more readable and c | oser to the
mathematical notations with which they correspond.

Whenever a string of adjacent characters first appears that forms one
of the above symbols, the group is interpreted by MPL as being the
multiple-character symbol. Thus %% i s al ways considered to be a x*symbol
followed by a %, as opposed to vice versa or 3 single * characters. (All
three interpretations happen to be invalid syntax in an MPL program, but
that does not concern us here.) Note in particular that in testing a
relation such as n < (axb), the characters < and (must be separated by a
blank to avoid being treated as a single <{ symbol. Similar cautions apply
to) followed by >.

1.2: Identifiers and Keywords

"ldentifiers" in MPL are symbolic names that are used to represent
variables, procedures, and | abels. They consist of strings of from 1 to 72
non-blank characters (preceded and followed by a delimiter (as defined in
section 1.5) to mark the beginning and end of the string) satisfying the
following rules:

-3 -

MPL User sGu i de Section |

1. The first character must be alphabetic.

2. The second and following characters may be numeric, alphabetic, the
dol lar sign (8), or the underscore (_).

3. Any number of single quotes (') may appear, but only at the end of the

string.

Examples,
1.2 legal
1AB illegal, first character not alphabetic
A'b i | legal, quote not at end
fix’ * legal, two single quotes at end okay
Mx" ‘illegal, double-quote not allowed
i1088% l e g a l
_ABC illegal, first character not alphabetic ’
I legal

Typically, if the same identifier appears in more than one place in a program, it refers to
the same object each time. This allows you to compute a value and save it using some ident if ier
name, and later refer to that earlier value by using that name. Normal practice is to use an
ident if ier name which has some mnemonic significance pertaining to its intended use, such as "Norm"
in the sampie on page 2 Tepresenting the Frobenius norm function and "sum™ for the cumulative sum.

Certain identifiers have a special pre-def ined meaning in HPL and may
not be used as normal identifiers in the sense described above. These
identifiers, cal led keywords, are exclusively upper-case alphabetic
characters, and are pr i nted in thi s manua | using bold-face type to he | p you

. distinguish them from other identifiers being used for variables.

Keywords are used to represent commands and other program spec i f icat ions. Keywords in the
sample program include PROGRAM, GIVEN, INTEGERS, REAL, MATRIX, BY, FUNCTION, and many others.

A complete list of keywords is supplied in Appendix D.

1.3: Constants

There are several types of constant quantities which may be

- represented in an HPL program. Some of them will be covered later, when

you are more proficient in the language. For now, you need only concern
yourself with 2 types: integer and real.

1.3.1:. Integer constants

An integer constant is represented by a string of decimal digits
optionally preceded by a + or - sign (aleading + is ignored). The
magnitude of the number must not be greater than 231-1, or 2147483647.
Note that groups of digits are not separated by commas.

1.1.4 Getting Started

1.3.2: Real constants

Due to the way in which the computer handles real values, a real
constant x is subject to a magnitude restriction such that either

187% > |x|>1878, or else x= 0. Real values are accurate to 14
hexadecimal digits, or about 15-16 decimal digits. In the course of comput ing neu
real values from two or more old values, imprecisions may of course accumulate. (If you don’ t see
hou this could be so, {try adding one-third to itself 3 times, maintaining accuracy to, say, 5
decimal digits. You'l | get 0.33333+40.33333+.033333:0.99999 instead of 1.000008.) Arranging
computations so as to minimize these and related imprecisions is a fairly sophisticated area of
computer science, but you should at least not be overly surprised if your program computes, say,

o' 2 and produces 1.9999999999997.

Real constants may be written using any of the following forms:

+ddd. ddd +. ddd
+ddd. dddE+nn +.dddE+nn
+dddE+nn

where ‘ddd’ represents any number (at least 1) of decimal digits, ‘+’ may
be ei ther ‘+' or ‘-* or omitted entirely (it may not be a blank), and ‘nn’
represents 1 or 2 decimal digits. If an ‘E’ appears, it indicates that the
value of the constant preceding the ‘E’ is to be considered multiplied by

10 raised to the power of the number following. (The ‘E* stands for
‘Exponent’. For various mystical reasons, a D may be used
interchangeably with the ‘E’.)
Examp | es:

12.5 Real constant

1.1.38E18 I llegal real (2 decimal points)

-12E5 Real constant with value -1200000

18099 lllegal real (value is >187%)

109 Integer constant

-0 Integer constant with value @

12E 3 Illegal real {imbedded blank not allowed)

103, Real constant

.10-5 Real constant with value .0880801

1,000,800 | | legal (don’t put commas in numbers)

1.4: Comments

In an HPL program, any string of characters enclosed in double-quotes,
" ... " is ignored along with the surrounding quotes. Such strings,
- called (comments, may contain any characters except double-quotes and may
 not be continued to another card (if a comment will not fit on one card,
put i t on2 cards as 2 separate quoted strings). When a comment i s the
last item on a line, the trailing quote may be omitted.

Comments are generally used to include descriptions of how the program is supposed to Work.
It is considered good practice to include |iberal amounts of such documentat ion in your programs,
particulariy any programs which you expect somebody else will have to understand, and also any

-5 -

MPL User’s Guide Section |

programs to which you yourself anticipate coming back after 3 few weeks of disuse. (You'd be amazed
athoudifficultitcanbetoremember how your oun programs work !) 0f course, with simple programs
which you intend 1o use for a few days and then discard, the time involved in commenting makes it
fess worthwhile, but you should still comment such programs in order to get into the habit. Care
should also be exercised that comments provide useful information. To take a section of program
which reads N+’ and comment “add N and M'" is not overly i | luminating. Huch more constructive
would be something like "add perturbation matrix to original data”,

1.5: Delimiters

Each ident i f ier, keyword, integer, or real constant must be punched
wholly on a single card. (Forexample, the constant 79 may not be crri tten
with the 7 on one card and the 9 on the next) Also, identifiers,
keywords, and constants must be separated by delimiters, i.e., something to
indicate where they begin and end. Delimiters include blanks, special
characters (e.g. parentheses), and the end of the card. HMuitiple blanks
may be used to add to readability: they are ignored (except insofar as they
act as a delimiter). Blanks may also be added for readabi | ity wherever
other del imi ters occur, For instance, (X,Y) is equivalent to (X, Y),

So much for what programe look | ike. Let us move on to what they can
include.

2: DATA TYPES AND STRUCTURES

Probably the most central concept in most modern programming languages is the notion of
variables. The idea is very similar to that of algebra--the use of symbolic names (ident if iers) to
represent potentially unknown, and possibly varying, quantities., Thus we can assign some va lue to a
variable, x, and procesd to compute & result based on this value of x. He can then change the value
of x and go back so as to use the same program to compute a ned resuit based on this new value.

A variable in MPL is any identifier which can be assigned a value.
Variables in MPL have two primary characteristics: tube (the values they
may assume, e.9., real) and structure (the shape in which they are
arranged, e.g.,vector)., These characteristics are not to be confused with
the actual values assigned to a given variable.

2.1: Types

As was the case ui th constants, al though MPL al lows several different
variable types, only a few need concern you at this point.

1.2.2 Data Types and Structures

2.1.1: Real

A double-precision floating-point data element used to hold most
numeric quantities. (If this jargon loses you, don’t worry about It. It effectively means
that a real variable can take on the sama sort of values as can be represented by a real constant.
‘Data element’ refers to an element of storage used to hold data in the memory of the computer.)

2.1.2: Integer -

A single-precision fixed-point data element used to hold signed
integers, particularly variables used as counters.

2.1.3: Labels

Instructions in a program are executed in sequential order. Sometimes, however, you may wmant
o ‘branch’ to another part of the program. The place which you wishtogotomustbegivenaname,
called a label, so thal the MPL compiler can locate it. For example, it you wish the program to
return to some starting point, you might label that point START, The form of a label will be
discussed later.

A label may only be used as the argument of a GO TO statement, e.g.,
GO TO START (see section 4.6). Its ‘value’ is the location in the
program code where it occurs. As will be noted later, labels are usually
unnecessary, and should be avoided whenever possible since their use makes
i t more difficult for people to understand the sequential flow of the
program, and can also interfere with efficient evaluation of programs by
t he computer.

2.2: Structures

The structure of a variable is for the most part simply its
dimensional ity,meaning, the number of dimensions it has. There are some
more obscure structures which will be introduced later: for now we shal |
continue to confine ourselves to the basics, as described in the sections
below. A variable may be assigned any structure regardless of its type,
and vice versa.

2.2.1: Scalar

The “scalar dimensional ity” describes a single datum of the type it is
defined as being. Thus a scalar integer is any single integer value, and
similarly for scalar reals.

2.2.2: Vector

A vector is a one-dimensional array of scalar data elements, It may
‘be thought of as a finite ordered set of n such elements where n2B is some
integer. The values assigned to a vector may be used all at once, as in
taking a vector inner product or summing two vectors, or individual
elements may be selected by specifying their ordinal position in the
vector. T his latter operation is known as subscripting and wi Il be
described in section 3.2,

-7 -

MPL User'sGuide Section 1

2.2.3: Matrix

A matrix is a two-dimensional array of scalar data elements. Like
vectors, matr ices may be used “en masse” or may be subscripted (using 2
ordinal positions) to yield individual data elements.

2.2.4: Array

An “array” in an MPL program refers exclusively to a three-dimensional
array of scalar data elements. Certain operations may be performed on an
entire array, or it may be subscripted (using 3 ordinals) to yield single
elements.

2.3: Defining Variables

Before any variable is first used (except for FOR index variables and
formal procedure parameters, both of which we'li get to later), it must be
"declared", i.e., you must tell MPL what kind of beast it is. This is done
by describing it in a DEFINE or GIVEN statement. The latter is simply a
means of combining a DEFINE with a READ, so we will hold off on it until we
come to the READ statement in section 5.3.

The DEFINE statement has the form
DEFINE <identifier list> <attributes>

where <identifier list> is either a single identifier or a list of
identifiers(al | to be given the same attributes) separated by commas and
enclosed in parentheses, and <attributes> is a description of the
variable(s) named.

Examp | es:
DEFINE FROG REAL MATRIX p BY g
DEFINE S SCALAR
DEFINE T SCALAR
DEFINE (S,T) SCALARS

The last example above is equivalent to the second and third examples
combined. Multiple definitions with different attributes may be combined
into a single statement by separating them with commas, thusiy:

DEFINE (A, A’) REAL MATRICES 5 BY 10, k SCALAR

Another form is the defining assignment statement. 1t is described in
greater detai | in the section on assignment statements. Briefly, its
action is to define a variable whose value is that of an expression and
whose attributes are those of that expression, It has the form

DEFINE <identifier> ¢= <expression>

The symbo | ‘=' may be substituted for

t=', Thus, for example, assuming we

-8 -

1.2.3 Data Types and Structures

had previously defined a matrix cai led ‘A’ and assigned it some values,
then the statement

DEFINE B-A

would create a second matrix with the same dimensions and values as the
first. The two types may be combined, as in

DEFINE p=5,q=38,
M MATRIX p BY a.
M’ MATRIX q BY p

The attributes specified for each definition consist of a single
" type” attribute and a single “dimensional i ty" (structure) at tr i bute,
separated by blanks. The order of the two attributes is unimportant, and
either or both may be omitted, in which case a “default” attribute is
assumed. (After ail, every variable has to have some type and structure,
and i f you don’ t spec i fy anything then MPL has to assume something.) Type
attributes include:

INTEGER
REAL

| f omitted, the-default is REAL. Dimensionality attributes include:

SCALAR

VECTOR <size>

MATRIX <size> BY <size>

ARRAY <size> BY <size> BY <size>

where each <size> may be any constant, variable, or expression whose value
is a non-negative scalar integer. A vector of size zero is called a “nui |
vector”; it has no elements. flatrices and arrays may not have sizes of
zero. |If the dimensionality attribute is omitted, the default is SCALAR.

For readabi | i ty, the foi lowing plural forms may be used
interchangeably with their obvious counterparts:

INTEGERS
REALS
SCALARS
VECTORS
MATRICES
ARRAYS

-Examn | es:

DEFINE (i,j,k) INTEGERS;
“defines 3 scalar integer variables”

DEFINE a, b, c INTEGERS!
“because there are no parentheses around ‘a, b, ¢’
"(probably by mistake), this defines a and b as
“real scalars (no attributes being specified, this
“is the default) and ¢ as an integer scalar”

DEFINE GLORK_SIZE=18;

-9-

MPL User’s Guide Section |

“since ‘10’ is an integer scalar constant,
"GLORK-SIZE is defined as a scalar integer
“variable, and is assigned the value 10~
DEFINE GLORK MATRIX GLORK-SIZE BY GLORK_S1ZE+5;
“assuming GLORK-SIZE is as defined above,
“GLORK is defined to be a real matrix with
"18 rows and 15 coi umns" ™
DEFINE (V,¥*') VECTORS 100, Array INTEGER
ARRAY 3 BY -(-3) BY (2+7}/3
“defines 2 real vectors with 100 elements in each,
“and a 3x3x3 integer array, the hard way”

Note that, in the last example, a | though ARRAY i s a keyword and thus may
not be used as a variable name, the identifier “Array” (with lower-case) is
perfect Iy val id. (It’s not particularly recommended, however, since
keypunches and some printers are geared toward producing only upper-case
letters.) In the third example, note that if the value of GLORK-SIZE is
| a ter changed, it does not change the dimensions of GLORK unless GLORK i s
explicitly re-defined by executing this (or possibly some other) DEFINE
statement. This brings to mind another impor tant point: the same
ident i f ier may appear in more than one DEFINE statement. If so, the
attributes must be the same in each appearance, though the sires may change.
For instance, if--you define a real matrix

DEFINE M REAL MATRIX 5 BY 10
you may re-define it later as

DEFINE M REAL MATRIX 100 BY 7
but it must always remain a reai matrix, Thus you could not do

DEFINE M VECTOR 50
nor

DEFINE M INTEGER MATRIX 5 BY 10

In general, when MPL defines a variable, any previous values or

dimensions which that variable may have had are discarded and lost. The
crucial exception to this will come up under “block structure” in Section

Il of this manual, where variables within a block can have total iy
di f ferent def init ions from those outside,

3: EXPRESSIONS

Expressions in MPL consist of one or more values, typical iy variables
and/or constants, operated on singly or in pairs by MPL operators. The
resui t of any operator may in turn be wused as a value for another
operation.

- 10 -

1.3.1 Expressions

3.1: Qperators and Precedence

MPL allows many operations natural to the various data structures to
be specified in clear yet concise forms. You should take particular note
of the fact that certain operators may mean different things at different
times, depending upon the dimensionaiity of the things being operated upon.
For instance, XxY would be a matrix product if X and Y were matrices, a
vector inner product if they were vectors, and other things in other cases.
The following paragraphs discuss each operator and describe generally where
it may be legally used.

In these discussions, the term "unary operator" means an operator which acts on the single

value which tollows it, and "binary operator" means one which acts on two vaiues, one on each side
of it. AiIl of this corresponds to standard algebraic notation and terminology.

3.1.1: Pius and minus

Denoted by ‘+' and *-', these may be used as both unary and binary
operators. Unary plus is a null operation; it has no effect. Unary minus
negates its argument, acting component-wise on non-scalar arguments. Thus
-15,7,-3,2b yields {-5,-7,3,-2}.

Binary addition and subtraction are allowed between two scalars,
between two non-scalars of equal dimensional i ty and size (the operations
are performed component-wise), and between a scalar and a non-scalar (the
sca | ar is added to or subtracted from each element of the non-scalar in a
manner analogous to the mathematical interpretation of scalar
multiplication).

Examp | es:
7.9 4+9.7 yields 17.6
{1,2,31+13,-2,1} yields {4,8,4)
{1,4,91 - 3.5 yields {-2.5,8,5,5.5}

-3.5 + {1,4,3} yields {-2.5,8.5,5.5!}

-{3.5} + 1,4,9} vyields an error (differing sizes)
-{3.5} yields {-3.51
{1,21-1,2,3} yields an error

differing sizes)

Note in the first error-example that MPL interprets {3.5} as a vector of
size 1 and does not treat it as a scalar in this context.

3.1.2: Multiplication

Denoted by ‘x', multiplication is allowed as a binary operation
between two scalars, two vectors, two matrices, or any non-scalar uith a
~ scalar. For vectors, the operation is the inner product, and the two
. vectors must be the same size. For matrices, standard matrix
mul tiplication is performed, with the usual requirement that the column

size of the first operand conforms to the row size of the second. T If you are

*Throughout this manual, the “column size” of a matrix is taken to
mean the number of columns, as opbposed to the size of each column, A
simi iar interpretation is applied to “row size”.

- 11 -

MPL User’s Guide Section |

used to using some other programming language w i thits own k i t of mu | t i -
dimensional operations, take particular note of the preceding definition of
multiplication. Note that, unlike PL/l1 and APL (and others), NPL has no
operator which multiplies two vectors component-wise to yield a vector
result in a manner analogous to vector addition, l.e., there is no
operator @ such that {1,2,3}e1{4,5,6} yields {4,18,18}.

Examp | es:
. 7%3 yields 6.3
{1,2,41%8 yields {8,16,32}
{1,2,41%18,8,81 yields 56

Note that, u n 1ike usual mathematical notation which uses only single characters as ident if iers,
computer appl icat ions of ten require multiple-character names. Rccordingly, two adjacent quantities
are not multiplied. l.e., ‘AB’ is a single identifier, not ‘A’ times ‘B”. Nor is ‘3(R4B)’ alloued
to designate ‘3x(R+B)’.

3.1.3: Division

Denoted by ‘/', division is permitted only when the divisor (the
right-hand argument) is a scalar. Each component of the dividend is
divided by the scalar divisor to yield the corresponding component in the
result. Division by zero will be flagged as an error when the program is
executed. ~

The quotient has type ‘real’ if either the divisor or the dividend is
real. Note especially that when an integer is divided by another integer the
result is rounded toward zero (as in FORTRAN) to yield an integer result, .
Thus 7/3a(-7)/(-3)= 2, and (-7)/3=7/(-3)= -2, whereas 7.8/3=7/3.08 =

. 2.33333.. .

3.1.4: Relational comparisons

Two values may be compared using the binary operators =,>,<,-=,<=,
and >=. (The last 3 represent #,<, and 2, which do not exist in the
character set. Note also that ‘=>" and ‘=<' may not be used in place of
‘>=' and ‘<="'.,) The outcome from such a comparison may be used to determine
the result of an IF statement (described insection4.3). The two
operands of a relational operator must be of the same dimensionality and
size (if non-scalar). comparisons between non-scalars are defined in the
usual mathematical sense, i.e., the relation must hold between each pair of
corresponding elements for it to hold overall. T hus{1,2,31<=11,3,5}is
‘true’,. butfl,2,31<{1,3,5lis ‘false’. None of the six relations holds
between {7,9,18} and {18,3,71}.

3.1.5: Precedence

lhen more than one operator is used In an expression, it usually makes a difference in what
order the operations are performed. For example, ‘445%2’ could mean &4+(5x2), which = 14, or
(445)%2, which = 18. In MPL, as in most programming languages, the operators have been assigned a
precedence specifying what order should be assumed in the absance of parentheses.

In expressions without parentheses operators are evaluated according
to the precedence shown below. To force a given operator and its operands

- 12 -

1.3.2 Express i one

to be evaluated before others it may be necessary to enclose certain terms
of the expression in parentheses. Such parenthetical sub-expressions are
always evaluated before the surrounding operations are performed.

in the following table, ali operators shown at any given level are
performed before any from lower levels. Among binary operators of equal
precedence, operations are evaluated from left to right: unary operators
are evaluated from right to left.

First: subscripting (see next section)
+ - (unary)
x /
+ - (binary)

Last: relational5

Examp | es:
-243%4 yields (-2)+3%x4)= 1 0
-(243%4) yields -(2+(3%4))= -1 4
-(2+3) x4 yields (-(243))%4 = -20
1-2-3-4 yields ((1-21-31-4 = -8
1-(2-3-4) yields 1-((2-3)-4) = 6

1- (2-(3-4)) yields 1-(2-(3-4))= -2

342.471.6%.8) < (342.4)/.6%.8 yields
3+(2.4/(.6%.8)) < ((3+2.4)/.6)%.8
i.8,, 8 < 7.2 which is ‘false’

Paren theses may, and shou | d, also be used to clarify non-obvious
express i one. For example, since integer division discards the remainder
(see section3.1,3), and since ‘/'and ‘*%' have equa | precedence, the
expression ‘m-m/n¥n’ yields m mod n (assuming m and n are scalar integers >

8). Mathematical ly, however, many people tend to read thi s as ‘m-m/ (n?)*,
50 it is wise to include parentheses, writing it as ‘ni- (m/n)%n’, even
though it makes no difference in the actual meaning of the expression.

Precedence remains the same regardless of the structures involved;
i.e., matrix multiplication and vector inner product have the same

precedence as does scalar multiplication. Scalars were used throughout the
above examples only because they make for simpler i | lustrations.

3.2: Subscripting

The term ‘subscripting’ refers to the selection of a single datum from

:a vector, matrix, or array. In MPL subscripting may be thought of as a
unary operator that may be applied to any non-scalar variable or
expression. Subscripting differs from most operators in that i t is

specified after its operand rather than before as with other operators. The
subscripting operator consists of a list of from one to three ‘subscripts’
separated by commas and enclosed in parentheses. For example, in
‘(1,X,Y+2)', the subscripts are ‘1', ‘X’, and ‘Y+Z'. Each subscript may be

- 13 -

MPL User s Guide Section |

any expression (i t may even involve additional subscripting operations)
which evaluates to a scalar between 1l and the size of the corresponding
dimension (as specified for variables when they are defined). If a
subscript is real, it is rounded down to yield the actual subscript, The
number of subscripts must equal the dimensionality of the operand being
subscripted. Thus the example just given could only be used to subscript
an array, or to pick out an element of "an expression whose value is an
array.

Examples:
DEFINE n := 10;
DEFINE V INTEGER VECTOR n, "V thus has 10 e | ements"
M MATRIX 2 BY 3,
M MATRIX 3 BY 2,
i=l, j=2;

"Assume there is more code inserted here which assigns
“values to V, M, and M’ as follows:

2 s
Vp=p® f 0 r 12ps18, M o=p+q, N pq=P/a

“Then: "

v) yields 7" element of .V or 49

Vin/j+i) yields 6™ 8 lement of.¥ .4r & AL

VIVID+V()) yields S™element (V(1)+V(2)=5) of V,ar 25

v (8) yields an error (8 isn't between 1 and18)
M(2) yields an error (matrices need 2 subscripts)
i(j) yields an error (scalars can’t be subscripted)
M(i, j) yields 1% row, 2™ column of M, or 3

MV ,V(j)) uyields an error (V(j)=4, but the second
subscript must bebetuween 1 and 3)
MV ,vejp/ma,in

yields M{1,4/2), or 3
V(M'(3,2)) yields V({1.5},i.e.V(l),07r 1

(MM*) (i, j) yields 1® row, 2™ column of (MxM’), or 10

MxM® (i, j) yields the 2 by 3 matrix which is M mul tipl ied
by the scalar M'(1,2)=8.5 (remember
subscripting has higher precedence than
multiplication)

(VxV) (i) yields an error (VxV is a scalar and
cannot be subscripted)

3.3: Vector Generators

MPL has various constructs which allow you to write vectors in
different ways depending upon the structure of the values in them. These
constructs are known in general as “vector generators”, The two most
useful forms are described here. In these discussions, the word “set” is
notused in the strict mathematical sense. Rather, the MPL vector
generators give results which are more accurately described as aqrdered
sets.

- 14 -

1.3.3 Expressions

3.3.1: N-tuples

An "N-tuple" is written as a list of scalar data elements, al | of the
same type, separated by commas and enclosed in braces, {}. (Recal | that
‘<(' and ‘)>’ are equivalent to ‘{’ and ‘1'.) This represents a vector
whose size is the number of components specified and whose elements are
those in the list, in sequence. Thus{l,8,6,6} represents a 4-element
integer vector with first element 1, second element 0, and remaining
elements both 6. The individual components may be any scalar expressions,
e . g .li,jxk, V(i/)), 1{1,21%(3,41}, but keep in mind that the types must
al | be the same. Thusil, 3.14159, 18} is invalid: it would have to be
written as {1., 3.14159, 18.1}.

You'llrecal | that when an expression is used as the <sizes of a
vector in a DEFINE statement, later changes in the values of variables in
the expression does not affect the size of that vector, Similarly, if an
expression is used in an N-tuple, changing the values of variables used in
the expression does not affect earlier uses of the N-tuple. Thus, if you
assign V the value {i,ixi,ixixil when i has the value 2, then V wi | | be
{2,4,8}. If i is then given the wvalue 3, V remains as {2,4,8}, _not
{3,9,27}. In_general, nothing which occurs while a program is executing has any
retroactive effects.

3.3.2: Index sets (arithmetic progressions)

A vector whose elements, in sequence, form an integer arithmetic
progres sion may be written as

{<first>,<second>,...,<last>]

where <first>, <second>, and <last> each represents any scalar integer
expression. Note that ‘,...," is a single symbol in MPL and thus may not
have any i mbedded blanks, This format, called an “index set” because of
its use with FOR statement indices, represents a vector whose elements are
the arithmetic progression defined by <first> and <second>. That is, the
first element Is the value of <first>, the second element is <first>+«a, the
third is <first>+20, and so on, where a = <second> - <first>. Also
permitted is the alternate form

f<first>,...,<last>]
in which case the increment a is taken to be 1.

The vector consists of all elements of the progression, in sequence,

such that no element is greater than <last> if «>8, or no element is less

than <last> if a<B. |If <first> itself does not satisfy the condition just

- stated then the vector is nul I3 it has size zero. If <first>=<second> a n
> error results, since this would generate an infinite number of components,

Examples:
1,3,¢..,3} yields {1,3,5,7,3]
1,044,391 yields {1,2,3,4,5,6,7,8,9)
5,...,1] yields {5,6,...,1}, a nul | vector
{5,4,...,1] yields {5,4,3,2,1}

MPL User’s Guide Section |

{",1' '2,. ..,-5} yle|dS (-1.-2.-3.-4,-5}

{-1,...,-5} yields {-1,8,1,...,-5}, a null vector

{3,6,...,20} vields 1{3,6,9,12,15,18}

{1,1.85,...,2} yields an error (non-integer)

{1}, ... ,i5}1} yields an error (non-scalar)

i1,...,,5,8] yields an error (can’t combine index sets
with -extra items, so this is
not{l,2,3,4,5,81)

ii, i*iyees,128/i} yields {3,9,15,21,27,33,39}i f i3
{4'16|28'| fi=4
{51 if i=5
a null vector if i=28
an error if i=8 or 1 (<first>=<second>)

4: PROGRAM STRUCTURE

At long last we have reached the point where you shall learn how to

put al | the pieces_together to form an MPL program. The sections which foliou
d i scuss the forms used in MPL programs. If you are not particularly experienced at programming (a nd
i f you are then you shouidn’ t be readmg these flne-prlnt sections anyway) youmayaisotindusetul

the occasional discussions concerning how ons can use the various forms. SO0, without further
ado, we proceed on to

4.1: Simple and Compound Statements

In MPL the smallest unit of program control is knoun as a “simple
statement”. The preceding, Unfortunately, is ngot_such a simple statement.
The reason is that some so-called “simple statements" can contain other,
smal ler simple statements. For instance, in the statement

IF i-j THEN do-this ELSE do-that

the total meaning is to test uhether i=j is true, and {f so to perform the
sub-statement ‘do-this’, else to perform ‘do-that’. ere, ‘do_this’ and
‘do-that’ are both simple statements, and the entire line containing them
is also a simple statement. Fortunately, since we are not dealing with the
quantum mechanics of programming, the precise meaning of ‘smallest unit of
program control’ is not vital, and our main concern is to distinguish
‘simple’ statements from ‘compound’ ones.

In addition to the various constructs which combine simple statements

as parts of larger simple statements (as i | lustrated above), there is a way
to combine arbitrary statements to form what is called a “compound
statement”. This is done by, separating the statements by semicolons (3)

and enclosing the uhole thing between the pair of keywords ‘BEGIN and END.
(This syntax should be familiar to ALGOL programmers.) Alternatively, *|_’

- 16 -

1.4.1 Program Structure

and ‘_|" may be substituted for ‘BEGIN’ and ‘END’. Compound statements are
syntactically equivalent to simple statements (i.e., they may be used
wherever simple statements can), so simple and compound statements are
conglomerately referred to as just ‘statements’.

Executing a compound statement is exactly equivaient to executing each of the sub-statements
insequence. The difference is thalt a compound statement is treated as a single statement, and can
thus be used in places where a single statement is required. For example, instead of writing

IF i=j, do_this;
IF i=j, do_that;
IF i=), do_something sise

He may urite
IF i=j, |_ do_this; do_that; do_something_elise _|

Note, however, that in the second form, if ‘do_this’ changes the value of i or j, we ui | | sti ||
cont inue with ‘do_that’ and ‘do_something_eiss’, which is probably what we want. T O dothe same
thing using the f irst form, we would have had to f irst create some spare variable (often called a
‘temporary’ variable) to ‘remember’ whether i=j were true, i.e., whose value is unaltered by doing
do_this or do_that,

If you are used to FORTRAN or PL/1 and are not fami | iar with ALGOL’s
use of semicolons (which i s the same as MPL’s, in case you wonder why we
bring i tup),~i t may help you to bear in mind the following maxim:
Semicolons separate statements from other statements. They do not
necessarily separate statements from keywords, They do not necessarily
mark the ends of statements. Thus we do not write

BEGIN; do-th i 83
IFi=j THEN do-that; ELSE do_tell; END;

but instead

BEGIN do-this;
IF i= j THEN do-that ELSE do-tel | END

The keyword END may have to have a semi-colon after it if another
statement follows it, as in

BEGIN do-t his;
IF i-j THEN do-that ELSE do-tel | END;
do-away

If you don’t see how it could fail to have another statement fol lowing it,
consider this possibi ti ty:

IF a-b THEN

BEGIN do-thi s;

IF i-j THEN do-that ELSE do-tell END
ELSE

do-away

Simple statements in MPL may be broken into two classes--the

-17 -

MPL User’s Guide Section |

assignment statement and keyword statements. Keyword statements are
identified by the appearance of some keyword or another as the first thing
in the statement, and are used or control functions and /0
(input/output). Assignment statements are used to set variables equal to
new values or sets of values. MWe shall describe the latter first,

4.2: Assignment Statement

The assignment statement has the form
<leftside>t= <expression>

The symbol ‘=’ may be used in place of ‘t=', This statement causes the
value(s) of the <expression> to be assigned to the <left side>, replacing
previous values (i f any) assigned there. The <left side> must be either a
variable or a subscripted variable: in the latter case only the specified
element is affected by the assignment. (le introduce the nomenclature
‘<left side>' so that we may refer to it when the same construction is used
in other types of statements,) The <expression>, as you would expect* is
any valid MPL expression.

The variable named in the left side must have been previously defined
(see section 2.3), and the left side must have the same dimensionality and
size as the expression. (Thus if the left side is a subscripted variable
(that is, a single component of a non-scalar variable), the expression must
be scalar, regard | ess of the dimensions of the variable.) if the
expression is scalar but the left side is an unsubscripted non-scalar
variable, the scalar value will be assigned to each component of the non-
scalar variable. A real value assigned to an integer is truncated toward
zero to yield an integer value.

The expression is evaluated completely before any of the resultant
values are assigned to the left side. Thus if Mis a square matrix, the
statement

Mos= MxM

computes M-squared and temporarily stores it elsewhere, then transfers it
to where M is stored, It does it this way because if each element of M
were replaced as soon as the corresponding element of M-squared were
computed, it would affect the computation of later elements.

) Although the symbo! ‘=’ (as used in FORTRAN and PL/1) is permitted in place of ‘:=’ (as used
in ALGOL), the latter is recommended as it can help you remember that the statement is an .
assignment, not an algebraic statement of equality. The canonical example used to emphasize this is

I tm iel
This is a valid statement, meaning ‘replace the value of i by that vaiue plus 1’ and store the new

value in the same location in memory. It in no way implies the algebraic impossibi | i ty *i equals
i+1°,

- 18 -

174.3 Program S truc ture

An alternate form of the assignment statement is
DEFINE <variable> t= <expression>

where, again, ‘=' may be used. Note, however, that the left side may not
be subscripted. That is, it must refer to an entire variable and not to
one of its components* When using this form, the variable need not have
been previously defined nor, if Ipreviously def inecl, need i t have the same
dimensions as the expression. If previously defined, however, it must have
the same type and structure as the expression, since type and structure are
not allowed to change (see section 2.3). The effect of this statement is
to evaluate the expression, define the variable to have the same type and
dimensional i ty as the expression, and then assign the values just
evaluated. As with ordinary DEFINE statements, any previous dimensions or
values of the variable are discarded and forgotten.

Examp | es:
DEFINE V VECTOR 4,
p=3, g=2, "p and g are now scalar integers”
M MATRIX p BY q, “Mis3 by 27
M* MATRIX g BY p3"M'is 2 by 3”
DEFINE i t=3; "iis now a scalar integer”
V ot= fi,i%i,.0s,25}3 "V has the value {3.,9.,15.,21.1"
V(i) := VxV/5; "V is {3.,9.,151.2,21.}"
V 1= 73; “Since V isreal, the 73 is treated as 79.0,
"V has the value 179.8,79.8,79.6,79.08}"
V= {1,...,3t; “lllegal (V has size 4}"
DEFINE V :=1{8.,0.,08.}; ‘Redefines V as a 3-element
“real zero-vector”
V= {1,...,3ly “Legal this time since V is now size 3.
"V becomes {1.8, 2.0, 3.6}"
M:=Ms “l | legal (sires don’'t match)”
M(1,2) :=M"(2,3); “Copies one element from M’ into M"
M =M (2,3); “Replaces every element of M by the
"scalarM'(2,3)"
DEFINE W INTEGER VECTOR 3;
W 1={-7.9,08.,7.91; “Since Wisinteger, it is
“assigned -7, 8,7}"
DEFINEW:= [-7.3, 8.,7.8ty “lllegal (Wis integer
“and cannot be redefined as real)”

4.3: IE_Statement
The IF statement causes one of two statements to be executed depending
upon some condition. The form is
IF <condition> THEN <statement 1> ELSE <statement 2>
where a comma (,) may be used in place of ‘THEN' and ‘OTHERWISE’ in place

of ‘ELSFE’. The <condition> may be any of the relational operations

- 19 -

MPL User's Guide Section |

discussed in section 3.1.4. (More compl icated conditions ui | | be described
in Sectionll.) If it is true, then <statement 1> is executed and
<statement 2> is ignored. If the condition is false, then <statement 1> is

ignored and <statement 2> is executed. Both <statement 1> and <statement
2> must be single statements, but they may be compound statements. The IF
statement, in the form shown above, is itself a single statement regardless
of the internal structure of <statement I> and <statement 2>.

If no action is desired when the condition is false (no action, that
is, other than proceeding to the next statement), the ‘ELSE <statement 2>’
may be omi tted. This leads to the canonical ‘ambiguous else’ problem,
which is resolved in the canonical manner: An ELSE-clause is always
associated uith the most recent IF uhich does not as vyet have a
corresponding ELSE. If you are fami liar with this, you may skip the fine
print belowu.

The ‘ambiguous eise’ referstothefollowing Statement, which is pertfectiy vatid in HPL:

IF i1l THEN
IF i>5 THEN j=8
ELSE j=i

(Note, incidentally, that the ‘j=0’ and ‘j=1’ are assignments, not conditions. See why we prefer
‘12*?) The problem here is that the ‘ELSE j=1' could be part of esither IF, the other IF being
Withou t an ‘ELSE-c | ause’., [1f the ELSE belongs to the first IF, the net meaning is "if i>5 then j is
assigned the value 8, If i<l then j gets 1, if 52i>] then) is unchanged”. 1If the ELSE belongs to’
the second IF, the meaning is "if i>5 then | gets 8, if 52i>]1 then j gets I, if iSl then j js
unchanged". MNPL resolves this by the rule given above, Which is the same way RALGOL, SRIL, PL/i, and
others do. In the example shoun, this corresponds to the second interpretation. To force the first
interpretation, an IF may be put inside a compound statement:

IF i>1 THEN
[_ IF i>5 THEN j=@ _|
ELSE Jul

Since the ‘_|’ cannot appear inside the middie of @ statement, the ‘ELSE j=1' must bs part of the
tirst IF.

Examp | es:
IF x-0 THEN i=1 “If x is zero then i is assigned
ELSE i-2 “the value 1, otheruise 27
IF i “If i differs from j then

- j,
| _ DEFINE TEHP t=i; “interchange their values”
i tm j;3 j s= TEHP _|

4.4: WHILE Statement

1 t has been proven that al | program control structures (i.e., things which control the order
in which @ program exscutes, such as [F statements, as opposed to things which control what a
program does, such as data structures and assignment statements) can be reformed into three basic
structures: compound statements, IF statements, and loops--the abil ity to repeat @ section of code

-2 -

l.4.4 Program Structure

Wwithout having to write it more than once in the program. Now, although these three forms are
sufficient for designing any program, other forms are of ten more convenient. HPL has some ot these
more convenient forms, as we'il see later. MWe’ve described compound statements and IF statements--
that leaves loops.

Typical uses of loops in MPL might be:t (i) creating a Hilbert matrix by repeating the
statement NCi, j)t=1,8/Ci+j-1) for various values of i and j; (i i) computing successive terms of a
Taylor series unt i | the terms become insigniticant; (i |i) performing an entire program using
different sets of data by reading some data, executing the program, and then repeating those two
steps unt i | there is no more data to be read. Notice that in the first case the statement is to be
repeated with certain variables (i and j) having different values over some range. In the last two
cases tha repetition is to continue as long as some condition is met; either the terms are st i I |
significant or there is data left. The first type of loop is written using a FOR statement. The
second uses & WHILE statement, which we shall nou describe.

The WHILE statement provides a means for repeating the execu tion of a
statement as long a3 some condition remain3 true. The form is

WHILE <condit ion> DO <statement>

where a comma (,) may be used in pi ace of ‘DO. T he <condition> is the
same as for IF statements, as described in section 4.3, and the <statement>
is any one statement, possibly compound. The condition may be false to
begin with, in which case the <statement> is not executed at all. The
above form is equivalent to

loop:
IF <condition>,
| _ <statement>; GOTO loop_|

where the ‘GO TO’ statement means just what you’d expect. (If you’re not
sure just what you’d expect, forget we mentioned it.)

Examp | es:
"(1) Compute n! =1.2.3....+(n-1)en, called ‘n factorial’.
“The variable ‘fact’ contains the result.”
DEFINE i :=n; “Copy n into a temporary variable’
DEFINE fact := 1.0: “Initial ize result to 17
WHILEi>8 DO "Multiply by each factor”
|_ fact &= factxis i := i1 _|
‘The above loop could also be done using a FOR statement,
“as we shall see later”

"{2) The following is Euclid’s algorithm for finding the
‘greatest common divisor of two positive integers, m and n.
"Unl ike the previous example, this loop changes the values
“of its input variables,”

WHILE n == 0,
BEGIN DEFINE temp ¢ = m- {m/n) *n;
“As noted ear | ier, the above yields m mod n"
m t= ng
n ¢= temp
END
‘The answer is the current value of m"

"(3) This next example doesn’t do anything useful. It does,

- 21 -

MPL User s Gu i de Section |

“however, use much of what we’ve covered so far, so it
“might be a useful exercise for you to step through it
“and see how it works.”
DEFINE V VECTOR 9,
(i, j) INTEGERS:
i 1= 1;
j s= 20; N
WHILE | -= (i/2)%2 "i.e,, while i is odd” DO
IF j== (j/2}%2 THEN
WHILE j<38 DO
f_ iemi=ly je=j+i=7/iy V{1.Sxids=i4j _|
ELSE
WHILE i%j<188 DO
- t=i+2s ji=j-ly V(i/2):=j _|
“When all. the thrashing is over,iis 4, j is 32, and V is
*{19.,29.,17.,33.,«,36.,31.,8,28.}, where a and 8 could
“be anything, since we never assigned any values to Y(5)
“or V(8). If you have trouble getting these results,
“remember that integer division truncates. i should take
“on the sequence of values 1, 3, 5 7, 6, 5 4, 3, 5, 4.
"j should be 20, 19, 18, 17, 22, 26, 29, 38, 29, 32.”

"(4) This final example compute9 the sine of a variable X,
“using a rather blunt approach--evaluation of the Taylor
“series until additional terms are insignificant. That
“is, adding them to the sum produce9 no change in i ts
“value. This happens due to the limited precision of
“real values: 1.0 t 1E-28 yields 1.0, ‘exactly’.”
DEFINE term t= X; “First term of series”

DEFINE sin :=X; “Sum of series after 1 term”
DEFINE old :=8; “Value to compare against”
DEFINE i := 1; “Index of last term computed”
WHILE old == sin,

|_ old t+= siny “Remember what we had so far”

it= it2; “Compute next term: terms are
term t= ~termkXkX/((i-1)xi);"2X/i!'for i odd”
sin t=sint term “Add term into series”

I
‘Note that if X=8, the loop is never executed, and
“the program immediately yields sin=8, as it should.’

Actual ly, although example (4) above is a perfectly good example of
one way you might use a WHILE loop, there i 9 a ‘bug’ in i t. Can you spot
it? It is a rather obscure problem, which we’ll cover in section 7.

4.5: FOR_Statement

The FOR statement al lows repeti tire execution of a statement wi th a
varying index variable: i.e., a variable which is automatically assigned a
new value before each execution of the statement. Note: If you're used to

-2 .

1.4.5 Program Structure

similar loop-structures in ALGOL, FORTRAN, PL/1, or the like, watch
closely--MPL is just a wee bit different. The form of the statement is

FOR <for index> IN <integer vector> DO <statement>

where ‘="' or ‘:=* may replace ‘IN' and a comma {,) may rep | ace ‘DO’. The
<for index> is any variable, sometimes called the ‘index variable’ of the
FOR loop. It need not have been defined previously. Whether or not it
has, it wi | | be temporarily redefined as a scalar integer for the duration
of the FOR statement, after which it wil | regain its previous attributes
and value (if any), The <integer vector> is just what it says--any
express i on whose va lue is a vector of integers. The <statement> is any
single statement, as with WHILE loops.

For each element of the integer vector, in sequence, the index
variable is assigned the value of that element and the <statement> is
executed. Thus the simple statement

FOR i ={1,...,31 D O Y(i):=ixi
is equivalent to the compound statement

I i e=_1g VUi o= ikl
iot= 2y V0I) 1= ixig
i 3= 33 V(i) o= it _|

The <integer vector> may be nul |, in which case the <statement> is
never performed. Thus

FOR i IN{l,...,n} DO <statement>
wi | | do nothing if ns8.

Examp | es:

“(1) Compute a Hilbert matrix of order n.l.e.,Hy=1/(i+j-1}"
DEFINE H MATRIX n BY n;
FOR i IN {1,...,n},

FOR jIN {l,.esyn},
H(i,j) := 1.0 /7(i+j-1) "Use 1.0 to avoid integ div"

“At this point, we are outside the i and j loops, so that
“these i and j are no longer defined”

"(2) Find the sum of the elements of an integer vector V"
DEFINE sum ¢=0;

FOR i IN V DO
sum:= sumti “Note, notV(i)"
“As an exercise, suppose V=13,2,2l. Compare the results of

"sums=sum+i with those of sum:=sum+VY(i),"

"{3) Compute the first 100 fibonacci numbers: 8,1,1,2,3,5,8,13..."
DEFINE FIB VECTOR 100; “Hake a place for them”

FIB(1):= 0 ; “Start the recurrence relation”
FIB(2) s« 13
FOR | .(3.0'0.108) DO

- 23 -

MPL User’'s Gu i de Section |

FiB(i) 1= FIB(i-1) t FIB(i-2)

"(4) Find n! =1:2¢,,,en"
DEFINE fact:= 1.0;
FOR is={l,...,n}, fact := factxki

"(5) Sieve of Eratosthenes. Print a list of all primes £ 10000”
DEFINE A INTEGER VECTOR 1080888;
“We shall have A(i)=1 if i is prime, else A(i}=0."
A=1; A(1)=8; “Start with everything 22 tentatively prime”
FOR i;“l..o..laaaa}.
IF Ali}=1, "iis prime”
I WRITE i
“Now to’ sieve out al i multiples of i"
FOR | = {2%i,3%i,...,100088}, A(j)=0
-l

Notle: Since the FOR index variabie temporarily ‘overrides’ any other variable with the same
namg, it is bad practice to use the same name for a FOR index as for a ‘normal’ variable, as it can
lead to confusion should you wish to refer to the ‘normal’ variable while in the FOR loop. For
example:

DEFINE a=ly-
FOR a= {21,
bsay
c=z8
"b is nou 2, while ¢ has the value 1"

Within the statement, or ‘body’, of the FOR loop, you're not al lowed
to change the values of the FOR-vector. |If you do so, the results are at
best confusing, at worst disastrous, and in any event unpredictable.

Examp | es:
DEFINE sum ¢ = 0;
DEFINE V :={2,.,.,6};
FOR i IN V,
| sum := sumti;
IF i <= 5,
V(i) t=V(i) + 1 “This is a no-no!”

.|
"The sum will probably be 2+4+4+7+6 = 23, but we
“don’t guarantee it.”

DEFINE sum : =03

DEFINE V :={1,...,1808};

FOR i IN V,

|_ DEFINE V :=18,i,...,1088}; “Good luck!”
sum t= sum t (VxV)

"We won't even try to guess what this would do!

- 24 -

1.4,6 Program Structure

4.6: GQ TO Statement

A GO TO statement causes the program to continue executing starting
from some specified statement, instead of proceding normally to the next
statement in sequence. The form of the CO TO statement is

GO TO <label>
where the <label> identifies the statement to which to transfer (see
section 2.1.3). A label is any identifier (section 1.2) and is ‘attached’
to its associated statement by a separating colon, thusly:

<label>: <statement>
Examp | es:

"(1) Test two values, save the larger one and replace it by zero’
IF x>y, GO TO X-BIGGER,;

zZ 1= y; "y is bigger”

y := 0

GO TO JOIN: “Skip around next part”
X-BIGGERG:. Z t=X; "% is bigger”

x t= B3

JOIN: "Program continues from here”

"{2) Compute the sum of the first n squares, assuming n2@"

DEFINE i :=8; “Set up a counter”
DEFINE sum : = 0; "Accumu | at ed sum”

LOOP: sum := sum + ixij “Add next square”
i s= i+l

IFi<=n, GO TO LOOP “Repeat unti | i>n"

Actually (and hopefully), you may be wondering why the above examples

are so clumsy. In fact, you may be wondering why we used GO TO statements
at all, since the same effects can be obtained by the following programs:
IF x >y,
l_zt=x3 xt=8 _|"x is bigger
ELSE
f_z:= y: y:=8_["yis bigger”
DEFINE sum :=8; “Accumu | at ed sum”
FOR i : ={1,...,n}, sum = sum t i*i
‘Well, you're right. The latter examples ar¢ more readable. They also

-produce more efficient programs. This is because when the program reaches
a GO TO, then whoever is trying to understand the program’ be it you or the
MPL compiler, has to drop everything and figure out what variables and
loops exist at the section of program to which you've gone,

For these and other considerations, more and more programmers are
beginning to favor "goto-less" code. (In case you hadn’ t guessed, we the

- 25 -

MPL User’s Guide Section |

authors share this view.) In fact, it has been proven"' that, given the
construc ts BEGIN-END, IF-THEN-ELSE, and WHILE, i t i s never necessary to use
a GO TO. In all fairness, however, certain programs are clearer if GO TOs
are used. (Some languages have additional constructs to handle these
cases, but MPL does not.) For example, suppose you have 3vectorscall ed
X, Y, and Z, and you want to count the nymber of Pythagorean trios, i.e.,

values of xeX, ycY, and zeZ such thatx2+gzszz. Thus if X=1{8,7,208},

Y=1{24,15,6}, Z=1{18,17,25}, you would count 8%+152«172, 82:62=1@2,

7242422252, and 2024152252, for a total of 4. Al | right, no problem,
here’s the program:

DEFINE count : =83
FOR x IN X, FOR y IN Y, FOR z IN Z,
IF xtx t yxy = zxz,
count : =count+l

Al | very simple, very straightforward, very goto-less, But now suppose we
just want to find any one such trio. In that case, once we find one trio
we want to ‘stop’ the FOR loops, since it is a waste of time to look any
further. Unfortunately, there’s no easy way to do this, so we are better
off just leaving the loop altogether. The new program would be:

FOR x IN X, FORy INY, FOR z IN Z,
IF xtx + ykxy = zxz,
|_ DEFINE Trio ¢= {x,y,2z}§ GO TO FOUND _|;
DEFINE Trio :=1{1,1,1}; “Special vector to show no trio found”
FOUND: “Rest of program...Note that if no trio exists, it can be
‘determined by testing if Trio ={1,1,1}."

4.7: STOP_Statement

Presumably at some point your program wi |l have done al | that is
expected of it, and you will want it to stop. You can do this in either of
two ways. You can reach the end of the program (i.e., the last card), at
which point you just sort of fall off the edge of the world, and the

_ program wraps things up and goes away. | f you don’ t happen to be at the
end of the program, you can stop by executing a STOP statement, which
consists of the single keyword

STOP

(You could get the same effect by putting a label at the end of the program
and going to that label, but heaven forbid that we should make you use a
GOTO when al | you real ly want to do is STOP.)

R STOP may be used anywhere in the program. You could be inside Q@ FOR loop inside an IF
inside @ MWHILE loop; it doesn’t matter. Once you execute @ STOP, that’s the last thing the program
will do. (This is not to imply that you can never use the program again! But you will have to tell
the computer to go get MPL again before you can rerun your program.)

*Bohm and Jacopini, Communications of the ACM, May 1966.
- 26 -

1.5 Input/Output

5 : INPUT/OUTPUT

If the primary purpose of this manual were to teach programming to novices, as opposed to
teach ing HPL to everyone, we Would probably have started with this section. The terms " inpu t" and
"output" refer respectively to the reading of data into the program (typicatiy from cards) and to
the printing of results. It is diff icul t to conceive of any useful program which does not at some
point need to produce some sort of output indicating the resuits of its computations, and few
programs are so simple as to require no input data. Such data couild be ‘bul It into’ a program by
assigning constants toseveral variables, butb y inputting the data you make it possible to change
thatdatawithout having tomodifythe program.

5.1: Unformatted Data

The input/output (1/0) statements described here are “unformatted”.
This means that data being read is in the form of a series of constants (as
described in section 1.3), as many (or as few) per card as you desire, with
one or more spaces separating them. Values being output are printed ina
fixed form which leaves room for several digits even if they are not there.
For examp | e, an integer is printed as 14 characters, many of which may be
leading blanks, followed by 2 blanks. Real values print using 22
characters, agadin followed by 2 blanks. Examples of unformatted output
will be shown shortly.

These data forms are called "unformatied", or sometimes "free-format”, to distinguish them
from (What else?) "formatted" data, wmhich will be introduced in Section Il. Formatted 1/0 al lows
you to specity exactly how many characters are to represent the external data (on cards or in the
printout), how many significant digits to print, and so forth. This is nice for output if you need
to set up tables or other output requiring alignment into columns, etc. For input, however, free-
format is usual ly preferable. As an example of free-format input data, any of the following would
be acceptable data to represent the real vector {2.,3.,4.1.

2.8 3.8. 4.0
or

23
4

or

2.
(b | ank card)
V3E+1
+408

For all 1/0 statements, matrices and arrays are processed in row-major
order. That is, a 2 by 3 matrix M would have its elements read or written
in the order M(1,1), M(1,2), M(1,3), M(2,1), M(2,2), M(2,3). (This is the

same as in a | major languages except FORTRAN,)

- 27 -

MPL User’s Gu i de Section |
5.2: Oulpul

Unformatted output is accomplished via the WRITE statement, which has
the form

WRITE <expression | ist>

where ANSWER may be used in place of WRITE. The <expression list> is a
| ist of one or more expressions separated by commas. The list may be
enclosed in parentheses if you feel this makes it clearer, but they are not
required. The express i ons (which may be variables, constants, or more
complicated expressions) have their values printed in the order in which
they appear in the WRITE statement. Each WRITE statement starts a new | ine
in the output, but more than one value may be written on a line by a single
WRITE,

Example:
DEFINE V INTEGER VECTOR 3,
s REAL SCALAR:

s = -7.9;
V = 1012345, -43210, 8};
WRITE s “See sample output below

WRITE (V)3 “to see what this does.”
ANSWER sxs, V%V, (Vxs) /100000

“This last statement writes a real scalar, ah
“integer scalar, and a real vector”

The above would produce:
~?7.908000009080000
12345 -43216 []
67.4100800000000 2019503125 -8.97525%000000000 3.41359000000000

5.3: Input

Unformatted input is done with the READ, statement, which has the form
READ <left-side | ist>

The <left-side list> is a list of <leftside»s as defined in section 4.2,
which is to say that each must be either a variable or a subscripted
variable, and must be previously defined. As with the WRITE statement, the
i terns in the | ist are separated by commas and the | ist may (if desired) be
erc | osed in parentheses. The effect of the READ statement is to scan
input data for as many values as are needed to fi I | the i terns named, and
assign those values to the i terns in the listt Note: Only the first 72
characters of each input line are used.

- 28 -

[.5.4 Input/Output

Example:
DEFINE V VECTOR 5;
DEFINE i = 2;
READ V, i, V(i)

If the input data looked like

1.2 -3 4E2 202 79 4 -3E3 1234

then the READ would first assign V the vector (1.2, -3.0, 400.0, 0.02,
7.9). It would then assign i the value 4, and finally read V{4), so V
would end up as {1.2, -3.0, 488.8, -0.003, 7.9}, The ‘12.34" would be
unused and could be read by a later READ statement.

An’ alternate form of the input statement is the GIVEN statement. It
looks exactly like a DEFINE statement with the keyword GIVEN replacing
DEFINE.

GIVEN (a, b, c) INTEGERS,
V REAL MATRIX 2 BY 3

A GIVEN statement is equivalent to a DEFINE followed by a READ. Thus the

above example would define 3 integer scalars and a real matrix, and would

read 9 data items and assign the values to the newly-defined variables.
Each variable is read before the next is defined, so the statement

GIVEN Vs i ze INTEGER,
V VECTOR Veize

is perfectly valid. By the time V is defined, Vsize wil have been
assigned a value.

5.4: Writing Messages

You'll probably want to include some words in your output, to identify what all the numbers
mean. Restages are also commonly used to SAY what happened if something goes wrong.

Arbitrary strings of characters may be output by enclosing them
between double-angles (‘<<' and ‘»>') and including them as items in a
WRITE statement.

Example:

IF y=8,

WRITE <<Error: y is zero.>>
OTHERWISE

WRITE <<x/y=>>, xly

Such strings may not include a ‘>>’ symbol, since that symbol is being used
to identify the end of the string.

- 29 -

MPL User’s Guide Section 1

6: HOW TO USE MPL
In Section IT we’ | | show you some of the fancier ways you can use MPL.
For now we’ | | cover just the ‘standard’ way to run an MPL program. There

are three aspects to this. First, there are a few finishing touches to put
on your program. Second, there are some-details concerning how to type or
punch it. Third, there are the control cards (JCL} which turn the program
into a job which can be run on the computer. None of this is really very
compl icated, so let’s get on with it.

Assuming you’ve written your programas asequence of statements,
separated by semicolons, just precede the first statement with the line

PROGRAM
and follow the last statement with the line
END.

(note the period), Thus a program to read a square matrix and print its
square might look like this:

PROGRAM.
GIVEN n INTEGER,
M MATRIX n BY n;
ANSWER MxM
END.

In typing or punching your program, be careful never to use more than
the first 72 characters of each line. Anything typed in columns 73 through

80 wi | | appear in your program listing, but wi | | be ignored by the MPL
compi ler. Thus they may be used for sequence informat ion or WYLBUR | i ne
number s.

1 t you don’ t know about KYLBUR, don® t worry about i t . Rs for what we mean by ‘sequence
information’, a frequent use of columns 73-88 of punched cards is to put numbers there, in effect
number ing the cards of the deck. Than if you accidentally drop your deck there are machines umhich

Wi | | sort the cards back in to their proper order, & nice feature to have wWith large decks. If you
do dec ide to put sequencé numbers on y o u r cards, use multiples of 18 (19, 20, 38, etc.) instead of
numbering the cards 1, 2, 3 . .. That way you’il be able to insert new cards later without having

to renumber everything.
Finally, here is the JCL, showing you what the whole ‘job’ should look

| ike. Lower-case letters indicate information which should be euppl ied by
you.

- 30 -

1.7 Restrictions, Cautions, and Pi tfal Is

// jobname JOB (accounting information),'your name’
*KEY keyword
// EXEC MPL
//COMP.SYSIN O O =%
your program goes here, complete with PROGRAM and END I ines
/% -
//GO.SYSIN O O %
free-format input data goes here: if your program uses no READ
or GIVEN statements, the GO.SYSIN card and the following /% card
, may be omitted
*

7: RESTRICTIONS, CAUTIONS. AND PITFALL

| t is our purpose in this section to emphasize certain specific
problems you should watch out for. Some of these are restrictions which we
have not as yet ment ioned. Others are things which, though legal in MPL,
should be used with caution. Still others are pitfal Is into which people
new to MPL often seem to stumble. All of these warnings are presented here
in an order less jumble: the precise nature of any specific problem (i.e.,
whether it is a restriction, a caution, or a pitfall) should be clear from
its description.

7.1: MPL _In General

7.1.1: Definitions

We have mentioned this once before, but it deserves to be mentioned
again. If you leave the parentheses out of a DEFINE statement, it wi | |
usually still be a valid statement, but it will generally not mean what you
intended, Thus the two statements

DEFINE (a, b, ¢} INTEGERS:
DEFINE a, b, ¢ INTEGERS:

perform different actions. The first defines three integers. The second
defines ¢ to be integer, but a and b to be real, since no attributes are
- specified for them.

7.1.2: Redefinitions
Another problem to watch out for arises from the fact that only the
dimensions of a variable may change through redefinition; dimensional i ty

and type must (at least until we learn about block structure) remain fixed
throughout the program. This does not generally cause difficulties, but

- 31 -

MPL User’s Guide Section 1

can lead to trouble in the use of 'temporary' variables--variables intended
to be used briefly in one small section of the program. An example in
section 4.3 included this code for interchanging the values of two
variables.

DEFINE temp t=ijit=jsji=temp

Suppose that, elsewhere in this same program, you wish to s‘uap the values
of two Other variables, x and y, and you use the code

DEFINE temp t=x3xt=y;yt= temp

| f i and | are integers whereas x and y are real, or i and j are scalars
whereas x and y are vectors (among other possibilities), this is invalid.
It would be caught by the MPL compiler as an attempt to define temp as two
di f ferent objects. It is probably bad programming practice in general to
use the same name for variables, even temporary variables, with two
di fferent uses. We shal | not argue the point here, In MPL, however, it is
certainly wise to use different names for different variables. In the
preceding example, you might use ‘temp_i’ and ‘temp_x' for the tuo
temporary names.

7.1.3: Vector aenerators

Remember that each element of an N-tuple must be of the same type.
Thus il, 1.25, 1.5, 1.75, 2} is invalid and would have to be written as
t1., 1.25, 1.5, 1.75, 2.}. Recall also that only integers may appear in an
arithmetic prozgression, so the preceding may not be replaced by
1., 1.25,..., 2.},

Another thing to bear in mind with regard to arithmetic progressions
is that the symbol ‘,...,' may not have any internal blanks. Thus
{1, 2,18t is invalid. Although this caution applies to al Imulti-
character symbols, we emphasize it in this particular case due to the
tendency to follow all commas with blanks.

7.1.4: FOR 100ps

This is actual ly the opposite of a warning. It is a reminder that
something is safe. You were warned once about changing the vector of a FOR
statement during the FOR loop. You should remember though that changing a
variable which appears in a vector does not affect that vector, so a FOR
statement with the vector {l,...,ntis al lowed to change n. As a, perhaps
unl ikely, example, suppose you wish to replace n by the sum of the numbers
1 through n. This could be done by the loop:

FOR | IN u.....n-l}.n:-n-ﬂ

This is probably not the clearest way to do this, but our point here is
that it at least is legal.

-32 -

1.7.2 Restrictions, Cautions, and Pitfal Is

7.2: Compiler-Specific Warnings

The HPL ‘compi ler’ , in case you've read this far without finding out, isthe pr o g r a m which
reads in your MPL program and transforms it into instructions the computer can understand. At the
time ofthis uritingthereisoniyone PL compiler, and It has certain quirks which ought to be
brought UP. -~

7.2.1: List sizes

In a DEFINE statement, the number of variable names which may be
grouped together by parentheses and given a common set of attributes is
limited to 30. Thus, the statement

DEFINE (vB1, v@82, v83, vB4, v@5, vBe, v@7, v@s,
ves, vl1@, v1l, vi2, v13, vl4, v15, vib,
vl7, v18, v19, v28, v21, v22, v23, v24,
v25, v26, v27, v28, v29, v38, v31) INTEGERS

is invalid, and would have to be broken up, as in

DEFINE (v8l1, vB82, v83, vB4, vB5, vB6, vB7, vB8,
v@9, vle, vil, v12,v13,v14,vl5) INTEGERS,
- - . (vle, v17, v18, v18, v28, v21, v22, v23,
v24,v25, v26, v27, v28,v29,v308,v31l) INTEGERS

The same limit also applies to the number of variables or expressions which
may appear in any single 1/0 statement,

7.2.2: Wri ting expressions

If the keyword WRITE is followed by a left parenthesis, the MPL
compiler assumes that what you are doing is enclosing the output list in
parentheses {(you may recall that this is optional, such that

WRITE a, b, ¢ and WRITE (a, b, c)

are equivalent statements). Unfortunately, this can lead to trouble, as in
the statement

WRITE (a+b) % (c+d)

This statement is valid according to the definition of the language, but
the MPL compiler gets confused by it. So if the first thing ina WRITE
statement starts with a parenthesis, be sure you include the ‘optional’
parentheses around the entire list, thusly:

WRITE ((a+b)x(c+d))
7.2.3: Constant subscripts

While your program is running, every subscript wi | | be checked before
i t i s used so as to insure i t is in the proper range, For efficiency,
however, this checking is foregone when the subscript is a constant. (The

- 33 -

MPL User’s Guide Section |

compi ler assumes you know better than to explicitly use the 18™ element of
a 5-element vector!) This means that it will go undetected if by some
mishap you do misuse a constant subscript, say by using the wrong matrix or
by thinking that V(8) exists. The specific case of a zero (or, in general,
non-positive) constant subscript may be detected by a later version of the
compi ler, but at present it is not.

7.3: Programming Pitfalls

7.3.1: WHILE | oops

It should be fairly obvious that if you want a WHILE loop to terminate
normal ly (without your having to use a GO TO or §TOP statement) then
something within the loop must affect the WHILE-condition. Thatis, for
example, if you have a loop ‘WHILE i>j’, then something in the loop had
better change the value of either i orj, lest the loop never terminate.

Yet despite this obvious fact, it seems to be a common problem, and
‘infinite loops' come ub every day. MWe don’t know the reasons--perhaps by
the t i me a programmer finishes writing a 38-statement loop he tends to
forget al | about that one little statement he had been meaning to tack on
at the end. 1f that is indeed part of the problem, remember that it’'s
perfectly all right, when writing a program, to skip a |l i ttle ways doun the
page and write the end of the loop before sitting back to decide what goes
ahead of it.

7.3.2: Usina integers instead of reals

You may recal | that, when we described WHILE loops back in section
4.4, we noted the existence of a bug in one of the examples. The error is
a common one, though subtle, and involves the unintentional use of an
integer variable where a real one is needed. Let us reproduce the program
for purposes of perusal,

‘This little example computed the sine of a variable X,
‘using a rather blunt approach--evaluation of the Taylor
“series until additional terms are insignificant. That
“is, adding them to the sum produces no change in its
“value. This happens due to the limited precision of
“real values; 1.0 + 1E-28 yields 1.0, ‘exactly’.”
DEFINE term :=X; “First term of series”

DEFINE sin := X; ‘Sum of series after 1 term”

DEFINE old :=8; “Value to compare against”

DEFINE i : = 1; “Index of last term computed”

WHILE old == sin,

|_ old :=sin: "Remember what we had so far”
i t= P42 “Compute next term: terms are
term t= —termkXxX/((i-1)xi); "X/ i ! for i odd”
sin t=s sin + term “Add term into series”

‘Note that if X=8, the loop is never executed, and
“the program immediately yields 8in=8, as it should.’

- 34 -

1.7.3 Restrictions, Cautions, and Pi tfal Is

The intent is that-, within the loop, the variable ‘old’ is used to store
the current value of the series summation. Then the next term in the
series is computed and added into the sum. The WHILE | oop compares the new
sum with the old one and terminates if they are equal, indicating that the
latest term was insignificant. The problem is that ‘old’ is initial Iy
clef ined equal to zero, an integer zero! s o ‘old’ is an integer and, for
typical values of X, will always remain zero (since for small X the sum is
always between £1). When we do ‘old := sin’, the value i s rounded toward
zero, discarding the fractional part of ‘sin’. But when the loop tests
whether ‘old == sin’, it converts ‘old’ to real for the comparison; since
0.0 -= sin, the test fails and the looping never terminates.

Let’s drive this home with another example. Suppose we wanted to
compute the harmonic number H, = 1+{1/2)+(1/3)}+...+(1/n). We try the

following program:

DEFINE Hn : =8;
FOR i IN {1,...,n},
Hnis=Hn t (1.8/i)

Since Hn is being defined as an Integer, we first add 1.8 to it, giving a
total of 1, but after that its value wi Il never be changed. When i=2, Hn
is assigned 1+8:5, which gets rounded down to 1. Then i-3, and Hn s
assigned 1+48.333..., which again is 1. And so forth.

The problem of using integer constants when defining what is meant to
be a real variable is hard to spot, because the symptoms may vary. Inthe
sine computation, the program works for X=0, but loops forever for any
other value of X, making it appear that the series simply isn’t converging.
In the harmonic sum, the program will finish but yields erroneous results.
So the best time to watch for this is when you’re writing the program;
you' | | no doubt have more than enough bugs to worry about once you try
running it!

7.3.3: Using reals instead of integers

Despite the title above, this problem bears little relation to that
just discussed, except insofar as both involve the use of a data type which
is unable to maintain the accuracy you need. In this instance the problem
centers on the fact that real values are actually stored as binary
fractions, with a limited number of significant bits (binary digits). Thus
when you write 0.001, which is an infinite repeating fraction in binary,
what you actually get is the nearest finite approximation, which is
sl ightly above or below 0.001, The difference is practically negligible,
al though in doing thousands of operations the rounding error may
-accumulate. This is the realm of the numerical analyst, and we shal | not
discuss i t here. There are times, however, when even an insignificant

‘rounding error such as one part in 10' may suddenly make a difference.

Suppose we wish to find the sum: s8in(.082)tsin(.884) + . . . +
sin{.938). MWe could try doing it this way:

- 35 -

MPL User 5 Gu i de Section |

DEFINE sum-of-sines := 0.0,
argument := 0.002;
WHILE argument <1.8, “Can’t use FOR with real values”
DEFINE X := argument:
“This routine for computing sin X should be familiar
“to you by now.” .
DEFINE term := X;
DEFINE sin = X;
DEFINE old :=8.8;
DEFINE i := 1;
WHILE old ~= sin,
|. old &= sin;
i 1= 42
term t= —termkXxX/((i-1)%i);
sin t= sin t term

I3
sum-of-sines t= sum-of-sines + sin;
argument = argument t 0,002

This might Wwork, but it might not. Suppose that the nearest approximation
to 0.002 turns out to be slightiy smaller, say 8.882-¢? (This happens to
be the case; €~ 1.26x18°%°,) Then we will get sin(,882-¢)tsin(,804-2¢) +

+ 8in(,998-493¢). Of course, ¢is very small, so the errors in the
sines are not enough to worry about. But after we compute sin(.3398-493¢)
and add it to the sum, we increment the argument to be 1.888-588¢<. Since
thisis less than 10 the loop will not terminate until we have added sin(1-

. 588c¢) to the sum, which is not what we wanted to do.

We could take .care of this by using
WHILE argument <= 0.338

but this would fail if 0.002 turned out to be approximated by 8.802+¢,
since B.998+433¢ is greater than 0,998. If we use a ‘middle ground’, as in

WHILE argument < 0,999

this will work, but it is dodging the issue and is unclear besides. The
recommended tactic here is to use an_integer counter, since integer values

- are represented exactly, then divide to obtain the real values required.
In the case above, this becomes

DEFINE sum-of-sines :=0.8;
FOR argument ={2,4,..,,9398}, “Can use FOR this way!”
|_ DEFINE X :=argument/10088.8;
“Compute sin as before...code not shown”
sum-of-sines ¢= sum_of_sines t sin

- 36 -

1.7.3 Restrictions, Cautions, and Pi tfal |6

7.3.4: ‘Mixed mode’ arithmetic

Most of the time you can mix integer and real values in an expression
and never have to worry., HPL will automatically treat integers as the
equivalent real values whenever real and integer values are being combined.
We have already warned about the consequences of accidentally assigning a
real result into an integer variable.-. Our point here is a different one.
The appearance of a real value in an expression does not cause everything
in the expression to be treated as real. An integer value remains an
integer until the ‘last moment’, when i t i s about to be combined wi th a
real value. As an example, suppose i and j are integers with the values 1
and 2, respectively, and x is real with value 2.0. Then the expression
j+i/x is real with value 2.5, while the expression x+i/jis also real but
with value 2.0. This is because the division i/j is done as an integer
division, and 1/2 yields zero.

To see how this might arise in practice, suppose the harmonic
summationdiscussed earl ier had been written as

DEFINE Hn : = 0.8; “Remember to make i treal !'"
FOR i IN f1,...,n},
Hn ¢= Hn + 1/i "Should use *‘1.87i"'"

This wi | | yield exactly the same resui ts as if Hn were defined to be an
integer, since all terms for i>l wii i be zero.

7.3.5: Inteqer overflow

When we discussed integer6 and reals in section 1.3 we mentioned

limi ts on the magnitudes of such values, You might we | | ask, what happens
if these limits are exceeded? Withreals the result is fairly clear, |If a
real value gets too large (say you try to compute 1ES8%1ES@) you wi | | get
an error message. |If it gets too smali (as in 1E-58%1E-58) the result is
taken to be zero. If an integer gets too large, the resui ts are more
vague.

If an integer expression resui ts in a value not between -2147483648
and 42147483647 (yes, we didn’t admit it before, but negative integers can

get 1 larger than posi t ive ones), i .e.-23" and +2%'-1, then 2% is added to
or subtracted from the value until it is within the required range. Thus
i f you add 1 to 2147483647, you get -2147483648, and if you double this you
get 0. This can have bizarre results. Suppose you want to per form some
loop for i=(08,500000008,. . . 6 2000880088}, and for some obscure reason you
use a WHILE instead of a FOR. Let us look at what might happen.

DEFINE i = 0O;
WHILE i <= 2000000000,
|- WRITEi;

| i +=1it 500000000

Thisuillwrite8, 500000000, 1000000000, 1500000000, and 2000000000, as
expected. But then i t add6é 500000000 to i and gets -1794967296, uhichis
l ess than 2000000000, so the loop continues, printing -1734367296,

- 37 -

MPL User's Guide Section |

-1294967296, . . ., 1705032704, At this point adding 500800000 again yields
a negative result, -2089934592, and on i t goes, The loop will print a
total of 38 numbers, after which i becomes 2115098112.

But now comes the best part. Due to the way the HPL compiler handles
index sets in FOR loops, if you use the vector {8,5880808008,...,2880002000}
in a FOR loop you wil | get the same effect as above! That is,

FOR i IN {8,500800008, . . . , 2000008008} , WRITE i

will print the same 38 numbers. (This is really a compiler-specific ‘bug’,
but it is a problem which is likely to be shared by future MPL compi iers,
so watch out!) Interestingly, the statement

WRITE {8,508000008, .. .,2000088000)
works correctly, printing only 5 numbers.

Another place where integer overflow might cause trouble is when you
are multiplying to create an over-sized number, which you then intend to
divide back down. For instance, in computing a binomial coefficient such
as (3) using the formula nx(n-1)x(n-2)/6, you will get erroneous results
for values of n between 1292 and 2345, (For n>2345 the final resui t would
be too large anyway.) For n=2808, for instance, the answer you want is
1331334000. Unfortunately, 20808%1333%1338 yields -601930592, and the final
resui t comes up -100321765. In such cases, where you expect integer

expressions near 23! use real values instead. Real variables can

represent integer6 up’ to about 18'? uith no rounding errors, and though
they are somewhat slower to use, they atleast work, Remember that rea |
division does not truncate as does integer division, even when the values
involved happen to be whole numbers.

- 38 -

SECTION IT

You have just (presumably) learned the rudimentaries of MPL--enough to
be able to use it for non-trivial programs. |f you are new to programming
(or vi ceversa) you may have been overwhe | med by how much there i s to MPL.
We apologize; practice it, use it, become fami | iar with it. If you are
accustomed to programming, you may have been disappointed by how | ittle
there is to HPL. We apologize: keep reading.

These fine-print séctions will become scarcer as you proceed through the manual, There are
two reasons for this. First, you are hopefully becoming a more sophisticated programmer. Second,
the subject matter is becoming more complex, 50 wWhat might have been presented in fine print is
instead presented normaliy, for the benefit of experienced programmers and novices alike.

1: DATA TYPES AND STRUCTURES (REVISITED)

Al | right, we admit it. There are data types other than integer and
real, and structure6 other than scalar, vector, matrix, and array. If
you've read this far (and if you haven’t then you had better catch up in a
hurry) then you should be ready to hear about some of them,

1 .1: More Data Types

Warning! The data types about to be introduced here can not be input
using unformatted READ or GIVEN statements. Formatted input wi | | be
discussed in section 6.2.

1.1.1: Logical

A logical constant or variable may have one of two values, ‘true’ or

‘false’. Logical constants consist of one of the keywords TRUE or FALSE.
As you shal | see, the condition of an IF statement is real ly a logical
expression, and may be more complex than was shown in Section I. It may

also be simpler. Forexample, the statement
IF flag THEN x t=1.8/x

is valid if ‘flag’ is a logical scalar variable. We’ll see more of this in
section 2.1 and section 3.2.

In a DEFINE or GIVEN statement, logical variables are declared with the
type attribute LOGICAL.

-39 -

MPL User’s Guide Section 11

1.1.2: Character

Character constants and variables are strange beasts. The only other
language we know of which handles them similarly to MPL is APL, so if
you’re not familiar with APL you should pay very close attention.

A character datum is any single character which you can punch, type,
or in any way force into the computer. Forexample; if you take any
punched card, it may be thought of as containing exactly 80 individual

characters, There are two cautions you should keep in mind. First,
characters are not restricted to the MPL character set given at the start
of Section |I. Thus, although the character ‘?’ has no meaning in MPL, it

may be stored in a character variable. Similarly, a multi-character symbol
such as ‘<(’ or ‘~=", which MPL treats as a single entity, cannot be stored
as a single character. Thus *,...,' taken as character data would have to
be treated as 5 distinct characters.

A l-character constant is written by putting the character between
double-angles (‘<<’ and *>>'). Forexample, <<8>> is a scalar character
constant whose value is the single character ‘8'. Character constants with
more than 1 character are wri tten the same way, and are treated as vectors.
Thus <<FROG>>is "a 4-element vector equivalent to {<<F>>, <<R>>, <<0>>,
<<G>>}. MPL does not currently permit the use of <<>>, which would be a 8-
element character vector. Note that multiple blanks, which are normal iy
ignored, are counted as separate characters in a character constant. Thus
<<X Y>> is a s-character vector, while <<XY>> is a $-character vector. A
character constant cannot contain the sequence ‘>>', since that is used to

"denote the end of the string. The examples include a way of ‘creating’
such a constant if you should happen to want it.

Character variables are defined using the type attribute CHARACTER.

Examp | es:
DEFINE Name CHARACTER VECTOR 20;
Name := <<x>>; “Name now contains 20 asterisks”
Name(28) := <<.>>; “Name is now 19 t’s followed by a period”
Name:= <<George>>; “lllegal {<<George>> is only a
“6-element vector)”
DEFINE Name := <<George>>; “Name is now 6 elements”

IF Name = <<George>>, “This test is ‘true”™
WRITE Name:
IF Name = <<Dantzig>>, “l | legal (can’t compare 6-element
WRITE Name: “vector with 7-element vector)”
DEFINE Name : =<<X>>; “Il legal (<<X>> is scalar, and you

“can’t redefine a vector as a scalar)”

“Here are three ways to create a string of n asterisks.”
DEFINE stri ngl CHARACTER VECTOR n;
stringl := <<x>>; “Set every element to *x'"
DEFINE s_temp={l,...,n}-1{8,...,n-1}, “Yields n ones”
string2 = <<%.>>({(s_temp);
"<<x.>>(1)} is the first character of ‘*.', namely .‘%’. Because
"s_temp contains n I's, string2 is assigned n x's. You must in-
"clude the period (or some other random character) in <<%.>> so
‘that it will be a vector and can thus be subscripted (<<k>> is

- 40 -

11.1.2 Data Types and Structures (Revisited)

“a scalar) . Notice also the use of a vector (stemp) as a sub-
“script. We haven’t mentioned that yet, but we'l | get to it in
“section 2.2. In the meantime, we can of course comb i ne th i ngs
“and get the following simpler form.”

DEFINE Strings :<<*.>>(“yc-.,n‘—{a,...,n-l}):

“Here’'s how to create the character string ‘>>'.We take the
“3-character string .5, ahd-extract the *>’, twice.”
DEFINE special-string =<<.>.>>({2,21};

You might also have realized by now that, when you were writing
messages as described back in Sectionl, you were actually writing
character constants.

Be careful to always include the closing ‘>>' because, unlike
comnien ts, character constants can run over several cards. Consider the
following example.

IF x=y THEN
DEFINE word = <<Frog::
ELSE
DEFINE word =<<Toad>>
Here the ‘>>' was accidentally typed as ‘::', a fairly typical keypunching
error. The intended statement would have set ‘Word' equal to one of two 4-
character vectors. The statement as actually shown either leaves ‘word’
alone (if xey) or sets it to be a very long vector (148 characters, to be
precise) starting uith ‘Frog::” and several blanks, and ending with
‘s <<Toad’.

1.2: More Data Structures

There are a couple fairly bizarre data structures which we’ll save for
Section III. For now we shal | introduce two fairly common mathematical
structures, namely row and column vectors.

12.1: Row vectors

A row vector is treated, mathematically at least, exactly like a 1 by
n matrix, where n is the size of the row vector. A row vector may thus be
used in the same places a matrix could be used, and is subject to the usual
rules of matrix operations. As for the program, however, rou vectors look
a lot like ordinary vectors. They are defined with a single dimension
(using the keyword ROW or, optionally, the pair of keywords ROW VECTOR)
and are subscripted with a single subscript. See the examples in section
1.2.3 for cases where the difference between vectors and rows becomes
apparent.

- 41 -

MPL User s Guide Section 11

1.2.2: Column vectors

Column vectors are n by 1 matrices just as rows are 1 by n. They are
defined using the keyword COLUMN or, optional ly, COLUMN VECTOR.

1.2.3: Special transformations

To convert vectors into rows and columns, and vice versa’ there are
some special operations provided. (These are actually ‘I ibrary functions’,
as wi Il be described in section 4.5.) To change a vector V of any type
(integer, character, etc.) into a row or column of the same type and size,
ur i te ROW(Y) or COLUMN(V). To change any row or column vector RC into an

ordinary vector, write VECTOR rO)t, Note: These operations do not
actual lychange the structure of V. Rather they yield a result which has
the same values as V but is in a different structure. This is just like
the ordinary arithmetic operations. | f you write -V it does not cause the

value of V to change, but instead yields a result whose value is negative
that of V.

For convenience, MPL recognizes the special case of a vector value
being assigned to a row or column variable. Technically, this should be
i |1 legal, since you can’t assign a matrix variable a vector value. But,
provided the row or column is the same size as the vector, MPL lets you get
away with it.

Let’s see some of these concepts in action.

Examp | es:

DEFINE V INTEGER VECTOR 10’

R INTEGER ROW VECTOR 18,

(C1,C2) INTEGER COLUMNS 10;
Vi= {1,...,18};
R := {1,...,18}; “Legal (see second paragraph above)’
R :=ROW({1,,..,18}); ‘Equivalent to preceding statement”
CL :=R; “illegal (18 by 1 is not the same as 1 by 18)"
Cls:=V: “Legal”
C2 := (Cl-1)x2; "C2is nou {8,2,...,181"
DEFINE Z =C1xC2; “lllegal (incompatible dimensions)”
“Note: You can multiply one column by another, provided
“the second column has size 1."

DEFINE Y =R«Cl; "Y is a scalar, value 1%+2%...+10%-385"
DEFINE X =Cl1xR; "XisalOby 10 matrix, X(i,jl=i%j"
DEFINE W =XxCl; “Matrix times a column yields a column”
DEFINE W =Rx%X; “Row times matrix yields a row, so this is
"i 1 legal (can’t redefine structure of W)"
“Note that, though rows and columns are both matrices, MPL
“considers this a redefinition of structure. Note also
“a matrix and a normal vector cannot be multiplied at all.”
V := VECTOR (R}t2 % VECTOR (Cl}; "V is now {3,6,...,381"
DEFINE bland = {V(4),R{4),C1(4),X(4,4)}
“This last statement (above), with typical bland disregard

ury though ‘ROW’, ‘COLUMN’, and ‘VECTOR’ are normal ly keywords, their
use here is distinct from their keyword interpretations, so we shal | not
print them in bold-face.

- 42 -

.2 Expressions (Revisited)

“for the actual structures involved, pulls out one element
“each from a vector, a row, a column, and a matrix, demon-
“strating how one subscripts each structure. The resulting
“4-element vector happens to be {12,4,4,16}."

2: EXPRESSIONS (REVISITED)

Now the fun really begins. We're about to laden you with al | sorts of
additional operators and related hocus-pocus. Some of these unfortunately
do not have a standard mathematical notation: some of them have s t andard
notations which do not readi ly adapt themselves to keypunching, Thus ue’ ve
had to concoct our own notations. Where possible we have used ‘standard’
cohiputer-language forms, Oh well, enough excuses. Let’s get on with it.

2.1: More Operators

2.1.1: Exponentiation

Denoted by the Z-character symbol ‘xx’, exponentiation is alloued as a
binary operation between scalars only. Thus exponentation may not be used
to find powers of a matrix, nor to square every element of an array.

The result is real if either operand is real: otherwise it is integer.
If the second operand {(the exponent) is real then the first operand (the
base) must be positive.

Examp les:
Sxx3 yields 125
2.5%x(-2) yields 8.16
o 7%%, 9 yields 0.725418 (approximately)
(=10 %xk yields -1ifkis odd
+1 if k is even
an error if k is not an integer
(-3} %%x3 yields -27
3k (-3) yields 0 (33 = (1/27) = 8)

(-3.8)xx(-3) yields -0.037037 (approximately)
(-3} xx(-3.8) yields an error (first operand (-3} not positive)
3xx(-3.0) yields 0.037037

2.1.2: Horizontal and vertical concatenation

Denoted respectively by ‘|’ and‘#', horizontal and vertical
concatenation are al lowed as binary operations on vectors, rows, columns,
and ma trices. 1f two things are to be concatenated, they must be the same
type (e.g., character), with the exception that one may be integer and the

-43 -

MPL User’s Guide Section I1

other real. (In this case the integer operand is treated as if it were
real.) Moreover, the row sizes (number of rows) must be equal for
horizontal concatenation, and the column sizes must be equal for vertical
concatenation.

The result of a concatenation operation is always a matrix, Even
concatenating two rows yields a 1 "by =n matrix, not a row.
(Mathematically, of course, there is no difference, but MPL thinks of the
two structures slightly differently.) One except ion: horizontal

concatenation of two vectors yields another vector. Refer to Appendix C
for complete information concerning the structure of the result of a
concatenation operation.

Examp | es:
DEFINE V :=1{l,...,41, V"' :=Vx8.5,
R5 ROW 5, R7 ROW 7,
C5 COLUMN 5, C7 COLUMN 7,
tl MATRIX 5 BY 7:

(v-1) | (v41) yields 16,1,2,3,2,3,4,5}

v |V yields f{1.,2.,3.,4.,08.5,1,,1.5,2.}

v #V yields a 2 by 4 real matrix

V | <<freg>> yields an error (incompatible types)

RS | R7 uields a 1 by 12 matrix

RS # RS yields a 2 by Smatr ix

R5 # R7 yields an error (different column sizes)
C5 | M yields a 5 by 8 matrix

I yields a 5 by 14 matrix

MH#N yields a 10 by 7 matrix

C7| (R7#M#R7)|C7 yields a 7 by 3 matrix

2.1.3: Reiational comparisons

There's nothing new about relational operators (‘=',*==", etc.), but
we want to point out that what they really do is yield a scalar logical
result. These logical results may then be combined wusing logical
operators, which we shall discuss next. Incidentally, you might note that,
i f'p' is a logical scalar, then "p = TRUE” is equivalent to "p".

2.1.4: Logical operations

Logical conjunction, disjunction, and negation (common |y known as
‘and , ‘or’, and ‘not’) are represented respectively by the keywords AND,
OR, and NOT. (The character ‘~*, as used in certain other languages, is
al towed in place of ‘NOT’.) These operations are defined only on logical
va tues.

AND and OR are allowed as binary operations between logical scalars
or between hiatrices (not vectors!) of equal sizes. Matrix operations are
done coniponen t-w i se. The operations are def inecl in the usual way, i.e., i f
P is the logical vector {TRUE, FALSE, TRUE, FALSE! and Qis {TRUE, TRUE,
FALSE, FALSE} then (if vector operations were al lowed, which they’re not)
we would have:

- 44 -

11.2.1 Expressions (Revisited)

P AND Q yields {TRUE, FALSE, FALSE, FALSEI}
PORAQ yields {TRUE, TRUE, TRUE, FALSE!}

NOT is allowed as a unary operator on scalars and non-scalars. It is
defined in the usual sense: NOT TRUE yields FALSE and NOT FALSE yields
TRUE. "

2.1.5: Membership

The operators IN and NOT IN are permitted only between a scalar and a
vector, and are used to test whether the scalar occurs as a member of the
vector. The operators each yield a scalar logical result. *‘x IN V' is
TRUE if and only if xcVs ‘xNOTIN V' is equivalent to NOT (x IN V).

The operands must be integer or real. MPL may soon be extended to
allow character operands, but this is not currently the case,

The right-hand operand is permitted to be a nul I vector, in which case
the resu | t i s FALSE (for IN) or TRUE (for NOT IN).

Examp les:
5 IN{1,3,...,18] yields TRUE
5 IN {1,4,...,108] yields FALSE
7 NOT IN{1,4,...,18} yields FALSE
<<X>> NOT IN <<Benedict>> yields TRUE (not yet implemented)
{3,54IN {1,3,...,18} yields an error ({3,5} i sn’ t scalar)
1 IN{1,...,0! yields FALSE

2.1.6: Precedence
The precedences among operators mentioned so far are:

First: subscripting, ‘functions’ (ROW, etc.)
; - (unary)

ok
x /
+ = (binary)
relationale, IN, NOT IN
NOT
AND

Last: OR

:Examp | es shou | dn’ t be necessary here, but two i terns are worth noting.

-First, whereas normal mathematical notation interprets a> as a®,MPL’ s
‘precedence rules (left to right among binary operators of equal precedence)

wi | | cause it to interpret akxbskc as (a®)°, use awklbxkc) to get the
first interpretation. In fact, use (axxb)xxc for the second
interpretation, just to save yourself some confusion. Second, a | though
-lxxk wi | | yield the same results as (-1)xxk, we recommend you get into the
habit of including the parentheses anyway, since some languages would treat
the unparenthesized form as -({lxxk).

-45 -

MPL User s Guide Section |l

2.2: Subscripting

In the course of learning to use MPL, have you ever uanted to specify
a single row of a matrix? Al | but the first element of a vector? The
reversal of a vector? Did you go crazy trying to do these things by
subscripting one element at a time? We hope not, because i f you needed
these things it was probably time to go on to Section Il. Weli, here you
are in SectionII, and here’s the secret: You can use vectors as

subscripts, For instance, 11,3,51(11,31) yields {1,5},i.e.the 1% and 3"
elements of {1,3,51.

The first thing you might notice is that, whereas the result of
subscripting has hitherto been a scalar value, the resul t above was a
vec tor. The general rule is as follows: The result of a subscripting
operation has one level of dimensionality for each vector subsciipt, Thus,
i f A is an array (and is at least 2 by 2 by 2) then

AU, 2, 2) yields a scalar

A({l,2}, 2, 2) yields a 2-element vector
A(i1,2),2 ,11,21) yields a 2 by 2 matrix
A({1,2},12},11,2}) yieldsa 2 by 1 by 2 array

A rou or column subécripted by a vector yields a new row or column with the
same number of elements as the subscript.

Note: When a matrix is subscripted by a vector in one dimension and a
scalar in the other, MPL treats this as a special case. Instead of
. yielding a I-dimensional vector result, as the above examples would imply,
MPL produces a row or column vector, depending upon which subscript was the
vector. This was generally found to be more useful than a I-dimensional
result. If you uant a vector result, use the ‘VECTOR(...}' construction
described in section 1.2.3.

Further note: MPL wi | | currently produce a run-time error if you use a
vector to subscript an array. This oversight should be corrected in the
near future.

You may al so use, in place of a numeric subscript, a single asterisk
(‘x*). This has the same effect as if you had wused a subscript of
‘41,...,n' where n is the size of the corresponding dimension. Thus, if M

is a5 by 7 matrix, then M(3,%) is the 39 row of the matrix, and by the
rule just given it would be a T-element row vector. M{x,2)uwould be the

2™ column of the matrix, Such subscripts are sometimes referred to as
“cross-sect ions”.

. Reaching into the future again (section 4.5), we wi | | tel | you now
that if you need to know the size of a vector V, you may write ‘SIZE (VI'.
Similarly, to find the number of rouws or columns in a matrix M, use
‘ROWSIZE (MI' or ‘COLSIZE (M)', respectively. We mention these now because
(a) they’re handy to have around and (b)ue're going to use them in the
upcoming examples, and it uould be nice if you knew what we were doing.

- 46 -

11.2.3 Expressions (Revisited)

Examp | es:
DEFINE V :={2,5,...,508};
WRITE V({3,9,3,151}; ‘Wri tes 8, 26, 8, and 44~
DEFINE Vrev := Y({SIZE(V),SIZE(V}-1,...,1});
“Vrev is now the reverse of V, i.e. {58,47,...,2}."
DEFINEV := V({1@,...,SIZEMV)} | {1,...,91);
"V has been ‘rotated’. Itis nou {29,32,...,47,58,2,5,...,26}."
DEFINE V :=V({2,...,SIZE(V)});
“The first element of V has been ‘discarded’.”
DEFINE R= ROW (V),C = COLUMN (VI,
M =C({14,2}) %« R({7,...,91);
"M is a 2 by 3 matrix which looks like: 1000 40 100
" 1750 70 175
M := M(x, {COLSIZE(M),COLSIZE(M)-1,...,1));
“This reverses each rouw of MM is now: 100 40 1000
" 175 70 1750

“As a final example, the following code would create a matrix
"P* which is the transpose of a real matrix P. There is an
“easier way of doing this, but we’ll talk about that later.
‘The idea here is to give you another look at how cross-sec-
"tions work.”
DEFINE, P’ MATRIX COLSIZE (P) BY ROWSIZE (P);
FOR i:=f{1,...,RONSIZE(P)}, “For each row of P,

P (%,i) 1= P(i,%); “copy it into a column of P*"

Vector subscripts must in general be non-null, that is they must have
at least one element. In the special case of a vector subscripted by
another vector the vector subscript may be null, in which case the result
is also a null vector.

2.3: Set Generators

There is a third type of vector generator to go with N-tuples and
index sets. This third type is called a “set generator”, The term is
unfortunately a bit misleading, since in a sense all vector generators in
MPL are set generators. Since set generators are effectively FOR loops put
inside vectors, perhaps a better term would be ‘FOR vectors’, but that’s
what we cal | the vector inside a FOR statement’ ‘Vector mappings’,
perhaps? Ohwel |, we’ll call them set generators, and maybe after we’'ve
described them you’ll be able to think of an appropriate name for them.

The general form of a set generator is
{FOR <for index> IN <integer vector>, <expression>}

where ‘=" or ‘1=’ mayreplace ‘IN’ and ‘DO’ may replace the comma. The
<for index> and <integer vector> are the same as for normal FOR statements,
namely any variable and any integer vector. As with FOR loops, the index
variable need not have been defined, and if it has it will be temporarily
redefined within the set generator.

- 47 -

MPL Users Gu i de Section I1

The value of a set generator is the vector whose elements are the
<expression> evaluated for each value of the index variable, in sequence.
The expression must yield a scalar result. Let us make this clear with
some

Examp | es:

‘FOR| IN‘l’QQ..S}’i*i} v
yields {1,4,9,16,25

{FORi | N {1,3,1008,10824}1, ix%8.5}
yields {1.,3.,18.,32.}

{FOR i={FOR j=15,4,...,11 D O jxj}, ixi/1E3}
yields {.625,.256,.0881,.016,.001}

(FOR] i= {1.3.-0-.18}, (lgcct'j}*{l|oo.'jl}
yields {1,14,55,148,285}

{FOR frog IN {2,...,4},11,. .., frogl}
yields an error (<expression> not scalar)

not {1,2,1,2,3,1,2,3,4}

In case this isn't enough to give you what you want, there’s even a
more powerful form of set generator, which looks like

(FOR <for_index> IN <integer vector>: <condi t ion>, <expression>)
where *=',% =", and ‘DO’ may be substituted as before. Whereas the first
form puts a FOR loop inside a vector, this form conditions the FOR loop
with an IF statement. The <condition> is any logical expression, and only
those values of the index variable which cause the condition to be true
“will be used in creating the new vector. This probably needs more
explanation, so let’s try to clear it up with a few more

Examp les:

{FORiIN11,...,5bs0 - 2, ixi}
yields {1,3,16,25}

{FORj IN{l,...,18) : j<=4 O R j>=8, (j/2)%x2]
yields 18,2,2,4,8,8,18}

{(FOR j = {l,..., 4} | {8,...,18}, (j/2)%2} (horizontal
concatenation instead of a condition)
also yields 18,2,2,4,8,8,10}

{FOR | 3-‘1,oon.15}=i.<7 ORi-(i/3)*3"-1,i}
yields 1,2,3,4,5,6,8,9,11,12,14,15})

~ 3: MORE_STATEMENTS

We shal | now introduce some neu statements, as well as some new twists
to old statements.

- 48 -

11.3.1 More Statements

3. 1+ Subseripted Assignment

Since subscripts have become a little more complicated, so has
subscripted assignment (i.e., assignment into a subscripted component of a
non-scalar variable). If you recall, back in Section lue introduced
something called a <teft side> which could be assigned values in an
assignment or READ statement. At that time we said a <left side> had to
be either a variable or a subscripted variable. With the broader scope of
subscripts now at your disposal, we must be a bit more specific.

A «<left side> is either an unsubscripted variable (possibly non-
scalar) or a variable subscripted using scalars, asterisks, and/or index
sets. This does not permit the use of N-tuples, set generators, or vector
expressions as subscripts. Such subscripts are valid in an expression, but
not wi thin a <left side>. Recall that subscripts of any type are forbidden
on the left side of a defining assignment statement.

Examp | es:
DEFINE M MATRIX 3 BY 5,
V INTEGER VECTOR 3;

v 3-,_!1'3"'0'5}3
M := COLUMN (VI *x ROW ({1,...,5});
"M is now 1. 2. 3. 4. 5,
v 3. 6. 9. 12. 15,
5 10, 15. 20. 257

||||||

il S 24+ 78]
ifl isgnowgl. 29 3. 4. §

" 5. 10. 15, 20. 9."
M(2,v) := {11., 9.5, .6}; “lllegal left side (even though
“V’s value is an index set)”
M2, {1,3,54):={11., 9 . 5, .6}; "N-tuple illegal in left side”
M2, 1,3 ,...,5}) := (11.. 8 5, .6l; “Index set is legal”
"M is now 1. 2. 3. 9.

" 11. 6. 9.5 7 0.6
Maaz,...,31)5.10. 15. 20. 9. "
1= M(3,V);

“Vlsa legal subscript_on the rlgqht side, though illegal on
“the left. M is now 5. 9.

n 11. 6. 9.5 7 0.6

n 5 . 10. 15, 28. 9. "

“Now for a feu somewhat complicated maneuvers.”
MO11,...,2}, 12,5,...5}) 1= M{(2,3],4)x MU, 4,2});
“Since M({2,31,4) is a column vector, and M(1,1{4,2}) is a
“row vector, the right-hand side is evaluated as the
“matrix product of a 2 by 1 matrix with a 1 by 2 matrix,
“yielding a 2 by 2 matrix which is then assigned into the
“2 by 2 submatrix of M specified on the left. M is now

! 5. 28. 3. 4 1065.

" 11, 80. 3.5 7: 300:

! 5. 10. 15. 20. 9~

- 49 -

MPL User s Guide Section 11

M(1,15,2,...,2}) := VECTOR ({M(x,{1,2,4}})({1,2},3));

“The right side subscripts M to get a 3 by 3 submatrix, then
“subscripts that to get a 2-element column vector. This is
‘then converted to a normal vector by the VECTOR operation.
‘Meanwhile, the left-hand side subscripts a row vector in M,
“This row vector is assigned the 2-element vector on the
“right. + Misnmow 5. 7. 8. 4. 4,

" 11: 88. 9:; 7: 300:

" 5. 10. 15. 2a. 9.”

M= M(x,1) x M(1,%);

"M{x,1) is a column: M({l,%) is a rou. Thus M is assigned

“a new 3 by 5 matrix, M is nou 25. 35. 45. 20, 20.

. 55. 77. 99. 44, 44,

" 25. 35, 45. 20. 20.”

“It is possible to use a vector subscript other than a con-
"stant in a left side. for our final demonstration, we shal |
"jliustrate such a situation,”
FOR k :=f{1,...,3},
Mk, {1,... ,2%k-1} := O;
"M is now 0. 35. 45, 20. 20.
" O. O, ’a- 44. 44.
ff - 0. al 0. 0- 0.,

Even though it is quite likely that you yourself ui I | never do anything
quite so bizarre as some of the preceding examples, or perhaps because of
this, we urge you to work through them unti | you are confident you
understand what's going on,

3.2: IF_Statement

We shouldn’t have to reiterate what an IF statement does or what it
looks | ike. What we want to say here is that the <condition> is not
restricted to being a relational operation, The <condition> may in fact be
any expression which yields a scalar logical result.

Examp | es:
“(1)1¢ the scalar i is not yet in V but i<188, append ito V."
IFi<100 AND i NOTINY, .
DEFINEV := V |{il;

"(2) Given an integer vector S, create an integer vector V
‘consisting of all positive elements of S, with duplicate
“elements removed.”

“Since null vectors are not allowed in an assignment, we
‘will put one element at the front of V and then remove
" it when we are done. "
DEFINE V:={ll};
FOR i IN S,

IF 1>8 AND 1 NOT IN V,

DEFINEV := V | {il;

“We now remove the ‘dummy’ element from the front of V.

- 50 -

11.3.3 More Statements

“This will give an error if S had no positive elements.”
DEFINE V :=V({2,...,S1ZE(V)});

"(3) Veri fy that 3 vectors, V1, V2, and V3, are mutual ly orthogonal,
“If they are not, print an error message and stop.”
IF VixV2-= 0 OR VImV3 == 0 OR V2%V3 == 0,
|_ WRITE <<Vectors not orthogonal,>>;
STOP

"(4) Same as (3) above, but apply DeMorgan’s law. Which form is
“more readable is a matter of personal preference.”
IF NOT (VikV2= 0 AND V1xV3= 0 AND V2xV3=0),
|_ WRITE <<Vectors sti | | not orthogonal.>>;
STOP

s

Warning! Some languages specify that the left-hand argument of ‘AND’
is evaluated first, and if the value is false then the right-hand argument
i s ignored, since the result of the ‘AND’ is already known to be false.
(Similar specifications apply to ‘OR’'.) MPL does not do this. Thus, in NPL,
the statement --.

IFk>@ AND V(k)=q, etc.

wi | | cause trouble when k is non-positive: you will get an error for trying
to subscript V(k). You must break up the above statement, as in

IF k>8 THEN IF Y{k)=q, efc.

3.3: CASE _Statement

The CASE statement is an extension of the IF statement, An |F
statement allows you to execute either one of two statements based on some
condition. A CASE statement allows you to execute any one of several
statements based on some condition. Here the condition is an integer value
from 1 to n, where n is the number of statements among which you are

selecting, If the ‘condition’ has the value k, then the k! of the n
statements is selected to be executed. The general form is

CASE <scalar integer expression> OF BEGIN <statement 1>

<statement 2>;.. .3 <statement n> END
‘where as usual ‘|_" and ‘_|' may replace the keywords ‘BEGIN’ and ‘END’ :
Each <statement i> must be a single statement, but may be a compound
statement. lf the <scalar integer expression> does not yield a value
between 1 and n when the CASE statement is executed then an error wi | | be
repor ted. If we cal | the expression ‘x* the above general form is exactly
equivalent to the statement

- 51 -

MPL User’s Guide Section 11

IF x-1 THEN <statementl>
ELSE IF x-2 THEN <statement 2>
ELSE IF x-3 THEN <statement 3>

ELSE Il:' x=n THEN <statement n>
ELSE <error>

and thus, not surprisingly, it is when we uish to do the above sort of
thing that it is a good idea to use a CASE statement.

Example:

“Suppose you’ve just finished executing a program for solving
“a | inear programming problem. The program creates a scalar,
"cal led ‘flag’, which is 1 if the problem was infeasible, 2
“if it was unbounded, and 3 if there was an optimal solution,
“in which case ‘Xbar’ is a vector containing the solution.
“Here is a likely piece of code to do next.”
CASE flag OF

WRITE <<Infeasible.>>;

WRITE <<Unbounded. >>;

| WRITE <<Optimal solution:>>; “Use 2WRITEs to get

WRITE Xbar “separate output | ines"
-

Another typical case, ah, that is, situation, where you would probably
use a CASE statement, is when you want to run the same program several
times uith certain small variations, and you don’ t want to have to change
the program each time, For instance, suppose you're uri t ing a program to
approximate the area under a curve using numerical integration. You're
interested in comparing various approximation formulae, say rectangular,
trapezoidal, and Simpson’s rule. You simply put together a 3-way CASE
statement to select among them, and then by putting your whole program
(excluding the surrounding PROGRAM and END lines) inside an appropriate
FOR | oop for {1,...,3l, you can test al i3 formulae with one program, run -~
once.

As an aside, we shouid mention that i t is good programming sense, when you have a program
surrounded by a FOR loop tike this, to test the program for one of the simpler c a s e s first. In the
preceding example, the overall program looks somathing like this:

PROGRAM
FOR case-flag =il,...,31,
|- :

"Here there is some relatively large chunk of code to do
"the desired numerical integration a n d print the results.
"Somewhers in it is & statemsnt of the forms"

" CASE case_f lag OF

" |- X :z (put rectangular formula here);

" X t= (put trapezoidal formula here);

" X 1= (put Simpson’s rule formula hers)

L

-l
"Toward the end there is probably another section which

-5 -

11.3.4 More Statements

" looks | ike:

" HRITE <<Integration formula usedi>>;
" . CRSE case_f lag OF

" |- HRITE <<Rectangular>>;

" HRITE <<Trapszoidai>>;

" WRITE <<Simpson’s>>

L]

I

"Eventually it’s all done, and we close out the FOR loop."
-
END.

Supposeyou have just uritten this program and are about to run it on the computer for the first
time. It is the height of arrogance to presume it wil | work the { irst time. Assuming it doesn’t,
you Mill have wasted 3 timesa smuch computer time (and money) as necessary, since if you had
replaced the FOR ltoop with

FOR case_f lag = 11}, "If it runs okay, delete this statement
"and remove quotes from the one beiow"
" FOR case_flag = i1,...,3},

it probably would have been sufficient to demonstrate uWhatever problems might exist, Not
necessarily-—-there might be an error in the computation of one of the othar formulas, for example.
But unt i | you have reason to expsct that the program might work next time, it doesn’t makes c n s o to
gamble at triple-or-npthing. And there might be more than a 3-to-1 risk Involved. Suppose that,
for each formuta, you also want to try each of 3 functions to be integrated, and over each of 5
ranges of integration. It would be inexcusable to run the program for all 45 cases before the bulk
of the program had besn tested on one or two samples. Using quoted reminders and keeping the
alternative statement in the program as a comment (as shown) makes it very easy to make the
necessary modifications once the program is working correctly.

3.4: FOR Statement

When we introduced set generators in section 2.3 we described two
slightly different forms. The first put a FOR loop inside a vector; the
second put an IF inside the FOR loop. It may not come as much of a
surprise then when we tel | you you can do the same thing with FOR loops
outside of vectors. The syntax is the same; follow the FOR-vector with
‘t<condition>’, and the loop wil | be executed only for those index values
which satisfy the condition. This is all directly analogous toset
generators, so we shall not go over it any further here, The examples show
an ‘old-style’ FOR loop and a very similar conditional one.

Examp | es:
“(1) Find the product of the elements of an integer vector V,"
DEFINE product : =13
FOR i IN V,
product t= product %i3

"(2) Find the product of the non-zero elements of the same vector.”
DEFINE product : =13
FOR | IN Vii-=8,
product ¢= product % i

- 53 -

MPL User’s Guide Section 11

4: PROCEDURES

Many times it behooves us to perform the same sequence of code several times, perhaps wi th
slight variations, perhaps in ditferent sections of the program. Loops (FOR and NHILE statements)
do not provide all the power we need for this since, al though they al low us to repeat a section of
code, they regquire ail the repetitions to occur consecutiveiy--nothing else can be interjected
be tueen them.

In the NPL sampie way back on page 2 we needed to compute the ‘Frobenius norms’® of 3
matrices., We could have done this with the following loop:

FOR index IN {i,...,31, "Compute 3 Frobenius norms"
|- CASE index OF "Decide which matrix to work with this time"
|- BEFINE M = R;
DEFINE M = B;
DEFINE M = AzB

13
DEFINE sum := 8.8; "Initialize sum to (real) zero"
FOR IN 11,...,RONSIZE(M)},

FOR j IN 11,...,COLSIZE(NY,

sum 3= sum + MCi,)M (i, j); "Compute sum of squares”

DEFINE F := sum %% 8.5; "Take square root--F is now Frobenius norm of M"
CASE index OF "Decide where to save result"
|- DEFINE Norm_R = F;

DEFINE Norm_B = F;

~DEFINE Norm_AB = F
-l
-1

He cou Id then have used the 3 var iab les Norm_R, Norm_B, and Norm_RB whenever ue needead them | a ter i n
the program. This would work, but It is somewhat clumsy, and there are cases where this
construct ion Is not possible. For example, suppose we need to compute the sine function several
* times throughout a program, and we don’t know ahead of time what al | ot the arguments are going to
be. The loop structure is clearly inadequate for this, yet we don’t want to write into our code a
separate copy of the sine routine at each place us need to use it. ‘Rh!’ you say, ‘Hhat about using
GO 70s?’. Very well, we write one section of code which computes the sine of the value in ‘X’ and
stores the result in the variable ‘sin’. Then whenever we need to compute & sine we simply set X to
the value of the argument and GO TO to the sine routine. It then computes the sine and, er, . . .
hou does i t get back to where we were? Hell, we could set up some other variable ‘sin_index' to a
unique integer before going to tha sine routine, and then the sine routine could end Wi th a CRSE
statement doing one of several GO T0s to get back, but this is getting clumsy again.

Hhat we want is a totaliy new program structure, something which allous us to say, in effect,
‘Do that section of code over there, and then come back.’ Many languages, including MPL, aliow this
to happen even in the middie of an expression, in which case the ‘other code’ can specify a vaiue
which is to be ‘plugged in’ as part of the expression. For instance, turning again to the sample on
pagse 2, the [F-condition in

IF Norm (RxB) > Norm (R) & Norm (B)

causes us to transter 3 times to the ‘Norm’ routine. The values computed b y the Norm function are
then plugged in in place of the ‘Norm (...)’ for each respective case. He'll give more detailed
examples once we’ve described things more thoroughly. Right now, let’s just wrap up this fine-print
section.

These ‘subordinate’ sections of code are called various things in different computer
languages. Most common are the terms ‘subroutine’, ‘function’, and ‘procedure’. They must be set
off from the rest of the program in certain ways, and they may be used only in certain ways. So now
It’s time to tell you and our home audience exactly how our game is played.

[1.4.1 Procedures

Subroutines, functions, procedures--whatever you’re used to calling
them, in MPL we cal | them al | ‘procedures”, and identify them by the
keyword PROCEDURE, There is also a special type of procedure, identified
by the keyword FUNCTION. Functions differ only subtly from procedures, so
we won't bother discussing them until Section 111,

There are only two significant variations among procedures--they may
or may not have ‘arguments’, and they may or may not yield a result. (To
say that a procedure has no result does not imply that it accompl ishes
nothing to use it. We’ll get to this in a little while.) Let’s start with
the simplest case.

4.1: No Arguments, No Result

A procedure without arguments and which returns no result is written
as follows:

PROCEDURE <name>: <statement>

where <name> is_the name of the procedure and may be any legal identifier.
The <statement> is the procedure hody and may be any single statement.
Usual Iy the body is a compound statement, but this is not required. When
the above construction is inserted into a program (probably followed by a
semicolon to separate it from whatever comes next) it ‘defines’ the
procedure and g i ves it the name specified. The procedure may then be
invoked anywhere further on in the program by using its name in any of the
three statements

CALL <name>
or

EXECUTE <name>
or simply

<name>
(The third form is just the name of the procedure written alone.) We shall
be using the third form in most of our examples, but in order to be able to
tailk about these statements (the way we can talk about a FOR loop or a
WRITE statement) we'l | refer to them as CALL statements.

When the procedure is invoked, it causes the <statement> to be

-per formed, after which the program continues execution in normal sequence
fol lowing the CALL statement. The effect is to take the <statement>, which

may be quite complex, and ‘abbreviate’ it into a single simple statement,
namely the CALL.

The first two examples show typical no-argument-no-result procedures.

- 55 -

MPL User’ s Gu i de Section Il

The third is a somewhat more contrived case, and shows a complete program
using a procedure.

Exampies:

"(1) Suppose you have a set of variables--foo, mumble, and
“toad--which you wish to simultaneously reset to zero at
“various places in the program.” ~
PROCEDURE reset
| foo :=8;

mumble :=8;
toad :1=90

-

"Note that the above procedure implies you are able to
“change, in a procedure, the values of variables outside
“of that procedure. Thus you must be careful that you do
“not use the same names for variables in the procedure as
“for variables elsewhere in the program (unless you do it
“with the deliberate intention of changing those variables®
“values as in the example), lest the procedure destroy a
“needed value. FOR indices within a procedure are, of
“course, not subject to this restriction, since they are
“automatically redefined and then restored after the loop.’

‘On the other hand, any variable which is defined inside
“a procedure body becomes ‘undefined’ upon returning from
‘the procedure (in exactly the same fashion as a FOR index
‘becomes undefined after the FOR loop), regaining whatever

“attributes and values it had (if any) before the procedure
“was ca | | ed."

"(2) Several times throughout a program we may wish to perform
“various tests to see if there is an error. E.g., is the
‘matrix we are inverting singular, or is the scalar whose
‘square root we need negative? If anything is ever found

. “to be wrong, whatever the problem happens to be, we wish
“to print a standard error message, wr i te out some pert i~
"nent variables, and stop. So we write a procedure, and
"cal | it quits.”

PROCEDURE qu i t s3

|_ WRITE <<Error in phase>>, phase:
WRITE <<Pertinent (and impertinent) data:>>;
WRITE <<frog=>>, frog, <<glork=>>, glork;
WRITE <<M=>>,M;
STOP

-t

"t!lotes:(a) The variables phase, frog, glork, and M must

“all have been defined prior to the above code. This re-
“qu i rement i s physical; the definitions must appear ahead
“of the procedure. It is not sufficient to define them
“later, even though it may be prior to the use of the
“procedure. The reason is that the MPL compiler is not
“executing your program, but is reading it sequentially,
‘and when it sees the above chunk of code it has to know
“what types and structures to expect. (b} The above pro-
“cedure, if executed, would not return to the section of

- 56 -

11.4.1 Procedures

“code which invoked it, due to the STOP statement. This
“is legal,”

"(3) Create a real vector Y of size n such that V(i)= the
“first element of {(n-i)‘,i"-n',(n+i)°‘75} which is 2n.
"I f none of the three is 2n, then V(i)=8., (For n=5, V
“would be {8.,9,,8.,393.,5.6234}.) This could be
“done in various ways, but let’s see one way to do it
“using a procedure. "

PROGRAM

GIVEN n INTEGER;
DEFINE tV,V') VECTORS n;

v = B.3

PROCEDURE overlay; “I-statement procedure, so no |_ _| marks”
FOR i IN {1,...,n}, "V, V', and n are

IF V(i)=8 AND V'’ (i)>=n, “already defined,
Vi) 1= V' (i) “as requ i red”

Vo ot=~{FORi INI{l,...,nl, (n-i)xxils

overlay:

V' :={FORi INfl,e.o,n},ittn - nkxil;

over lay:

V' 1={FOR i IN {1,..., nl, (n+i) *x B.75};

overlay:

WRITE <<n=>>, n, <<V=>>, V
END.

Note: Al though procedures are most often used as a means of
abbreviating a piece of code which would otherwise have to be duplicated
several times throughout a program, it is often wise, especially in large
programs, to have procedures which are invoked in only one place. The
latter’s purpose is to break up a program into logical components so as to
make it more understandable, For instance, i f you were wr i t ing a program
to set up and solve a system of simultaneous equations, you might consider
wr i t ing three procedures: one to set up the equations, one to solve them,
and one to print the results. HMost people find it easier to write and
understand these smal ler, separate routines, than to try merging them into
a single long program. The program would now iook something like this.

PROGRAM

PROCEDURE Set up:
stc.,
etc.

PROCEDURE So | vey
I etc.
etc.

- 57 -

MPL User’s Guide Section 11

PROCEDURE Print;
| etc.
etc.

Setup:
Solve:
Print

END.

This also makes it easier to modify the program, since if you decide to
change, say, the ‘Solve’ routine, it is much less likely to require any
changes elsewhere in the program.

4.2: Arguments (Parameters)

The procedure: discussed in the preceding section were more or less
autonomous; the only way to pass data into or out of them was wusing a
‘shared’ variable, such as V'’ in the last example. There i s a more compact
notation for passing data into a procedure. This is done in the form of
one or more arqument s (also cal led parameters). Rather than give the
general form, which is beginning to look overly complicated, we’l | use an

.examp | e. Don’t worry about the keyword VALUE: we’ll explain that shortly.

Example:
PROCEDURE Swap (V,i, j)
WHERE V IS VECTOR, (i, j) ARE SCALAR INTEGER VALUES:
“This procedure swaps V(i) with V{j}."
|_ DEFINE swap-temp t=V{(il;
V(i) t= V(j);
V{j) := swap-temp

In the above example, the procedure has 3 arguments, Y,i, and j. The
argument list must be enclosed in parentheses as shown. The type and
- structure of each argument must be specified after the keyword WHERE,
unless the default attributes (REAL SCALAR) are desired. Note, however,
that the size of V is not specified. Thus V may be different sizes at
di f ferent invocations of Swap, but V must aluays be a real vector (in this
particular example, that is. } The keywords IS and ARE are interchangeable

and may in fact be omitted entirely if you feel they get in the way. Note
where the semicolon goes, after the HWHERE portion. (The otlher semicolons are used, as usual, to
separate the statements within the procedure body.) RAs before, another semicolon wWill normaily be
required after the ‘_|' in order to separate the procedure from whatever statement follows it.

A typical invocation of the above procedure might be

Swap X, 1, SIZE (X))

- 58 -

11.4.2 Procedure3

which would swap the first and last elements of the vector X. (If X is not
a real vector an error will result.) Note that, using this construction,
the variable X need not be defined before defining the procedure. This was
required in the previous examples so that the compi ier would know, when it
read the procedure, what the types and structures of the variables were.
Here, however, the procedure includes the information that V is going to be
a real vector, which is ail the compii-er needs to know at this point. Of
course, X must be defined before it can be used as an argument to the
procedure.

4.2.1: The VALUE attribute

Now, as to the VALUE at tribute. This has to do with ‘parameter-
passing conventions’, which is a real can of worms, and which we don’t
intend to cover in detail until Section IlIl. Unfortunately, if you're
going to use procedures with arguments, you have to know about the ‘VALUE’
attribute. Let’'s see if we can explain what’'s happening, We’ |1 warn at
the outset that you probably won’t understand al i of this. If you get
completely lost, try reading section 4.2.2 instead.

We'l | start by mentioning that everything we’re about to say applies
only to scalar arguments. Non-scalar arguments are different and we’ll
explain them in a moment. For scalar arguments, the default (i.e., what
happens i f you don’t say VALUE) is to treat them as fol lows. Suppose you
cai | ‘Swap’ using

Suap X, p, gl
to swap X{p) with X{g). What happens is that the values of p and q are

copied, i.e. are assigned to the variables i and j of the procedure. (We
should note that, like the index of a FOR loop, the arguments inside a
procedure (in this case, V, i, and j) are ‘local’” to the procedure: they
are temporarily redefined within the procedure, But that’s another story.)
Now we get to the situation which wi | | eventually cause us trouble.

Suppose our procedure were writtendi f ferent ly, such that it changes the
values of i and j? Well, since we made_copies of p and q, the values of p
and g are not affected during execution of the procedure. But, vuhen you
| eave the procedure, the new values of i and j are copied back into p and
g. Let's see if we can come up with an example demonstrating al | of this.

Example;
DEFINE frog=7, toad=2,5;

PROCEDURE change (toad} WHERE toad IS INTEGER;
“Because ‘toad’ is the argument of a procedure, it is legal
“to ‘redefine’ it as an integer. The argument ‘toad’ bears
"no relation to the real variable ‘toad’” which was defined
“outside the procedure. On the other hand ‘frog’, which
“also appears in the procedure body below, is not defined
‘within the procedure and thus is the same variable as that
“defined above. "
“We shal | number the WRITE statements for future reference.
|_ WRITE frog, toad: "1"

toad t=3;

”

- 59 -

HPL User’s Guide ’ Section 11

WRITE frog, toad; “27
s

WRITE frog, toad: “3”
CALL change (frog);
WRITE frog, toad “4"

Whatdoes al | this do? We first define two scalars: an integer (frog) and
a real {toad) and assign values to them. Next we define a procedure named
‘change ': we don’t actually execute it yet, so nothing is changed, We then
reach statement “3” and print two numbers, 7 and 25. Now we cal |
‘change’. ‘frog’ has the value 7, so this value is copied and the new
variable * toad’ (distinct from the one just printed) is given the value 7.
W e do statement "1", printing 7 and 7. Now ‘toad’ is set to 9, but ‘frog’
is unchanged. Statement "2" prints 7 and 3.We finish executing ‘change’,
whereupon the new value of ‘toad’ (3) is assigned back into ‘frog’. The
argument ‘toad’ disappears, leaving us wuith the old, real ‘toad’.
Statement "4" prints 3 and 2.5.

Now, if you claim to understand all of that then you’'re either a
genius or a liar. This sort of thing is nearly impossible to explain even
in an interactive classroom environment. So let us stress one particular
point: The value of_ ‘frog’ was altered by the cal | to ‘change’. So,
consider what would happen if we said instead:

CALL change (3)

When we finished executing ‘change’, we would try to take the new value of
‘toad’, namely 9,and assign it to the constant 3! What happens i f we now
try to use the constant 3 somewhere else? Do we get 3, or 3?2 Something
must be done to prevent this sort of shenanigans, and here’s what we did.

When you cal | a procedure, the values supplied (called
the ‘actual parameters’) for all scalar arguments must
be legal <left side>s, as defined for assignment
statements.

Wel |, that certainly takes care of the problem, You can’t use ‘3’ as an
‘actual parameter’, so the problem can never come up. But wait a minute!
This is too restrictive! Besides, the first example we gave used ‘1’ and
‘SIZE (X}' as arguments, and neither of those is a legal <left side>. This
is where VALUE comes in, If an argument ui thin a procedure {(cal led a
formal parameter to distinguish it from the ‘actual parameters’ supplied
when the procedure is invoked) is defined in the WHERE clause using the
special attribute VALUE, then the procedure is free to do anything at all
to the formal parameter, and it wi | | not affect the actual parameter.
That’s what VALUE does for you. Moreover

If a formal parameter is given the VALUE attribute,
the corresponding actual parameter may be any
expr?ssion of the appropriate type (integer, real,
etc.).

Note: 1t makes no difference whether or not the procedure actual ly does

- b6 -

11.4.2 Procedures

assign new values to its arguments. If you want to be able to use
arbitrary expressions as arguments you must use the VALUE attribute, as we
did in ‘Swap’.

As a n aside, we should probably explain just how on earth it is even conceivable that a

constant could h a v e its value changad. Rfter al |, the very idea that a constant is, well,
inconstant, must come as quite a surprise to most mathematicians. The reason is this: the computer
does not actuaily know W h a t we mean by a "constant". It deals solely with "numbers" (even MPL

character values are represaented internally by numbers), and by the construct ion of the machine al |
numbers in i t s "memory", its working space, are subject to change. Thus, when you wri te "7.3:X",
the MPL compiler te!ls the computer to pick up the current value of X, then to multiply it by 7.3.
But there is no instruction which telis the computer to multiply by 7.3. (There @ r e several dozen
simple instructions which the computer is c a p a b | e of performing directly (the purpose of the MPL
compiler is to rephrase your program in terms of these very simple instructions), but there is no
way there could be a separate instruction for multipiying by every conceivable real constant!) So,
when HPL wants the computer to multiply by 7.3, it creates the value 7.3 and slores it someuhere in
the computer’s memory. 1t can then tel | the computer "multiply by that number over there", which is
one of the ‘simple instructions® available. Sothat’s whyconstants have to be storedint h e
computer’s memory. Thisbesingthe case, HPL keeps track of which constants you use. If you use
"7.3" several times, MWPL notices this and creates only one copy of the constant, which is then used
everywhere you need the constant 7.3. Thus,ifyou somehow change the value stored at that location
in memory, you will ‘change’ the value of the constant 7.3 everyuhere it is used.

Final ly, remember that al | of this applies only to scalar arguments.
Because non-scalars can take up a lot of room, MPL does not make copies of
non-scalar variables when they are used as arguments. Thus, in our
original example (Swap), the value of the vector X is changed as soon as we
change V inside the procedure. Furthermore, the actual non-scalar argument
is not required to be a <leftside>. Thus the statement

Swap (2xX,1, SIZE (X))

is accepted by HPL, though it has no net effect. (2%Xis computed and
stored somewhere temporar i ly, then ‘Swap’ exchanges two elements of this
temporary vector, Then, since nothing else is being done with the vector,
i tis thrown away. X is unchanged. } On the other hand, the statement

Swap ({1.,2.,4.,8.}, 2, 3)
is also accepted, but is not recommended, It may be that a subsequent use
of {1.,2.,4.,8.1 will find the value {1.,4.,2.,8.} instead. It may even be

that a subsequent use of the scalar 2. wi Il find the value 4., and vice
versa. But none of this is guaranteed. Caveat emptor!

4.2.2: Simpler version of section 4.2’1

In case you didn’t understand anything we said in section 4.2.1, ue' ||
now give a simple set of rules which, if obeyed blindly, should at least
keep you out of trouble,

1) When describing formal parameters (in the WHERE clause), always include
the attribute VALUE (or VALUES) for all scalar arguments.

2) If you assign a new value to a scalar parameter inside a procedure, it
will not af fect anything outside the procedure.

- 61 -

MPL User’'s Guide Section 11

3)1fyou assign a new value to a non-scalar parameter, it_wi Il affect the
actual parameter outside the procedure, maybe even if i t is a constant.
Since it is not a good idea to assign new values to constants, be
careful.

4.2.3: Sample program

The examples which follow are in the form of a complete program which
uses var i ous procedures. Note in particular that al | the program itself
does is cal | one of the procedures with various arguments. This is
effectively an alternative to the technique discussed in section 3.3 (in
the fine print) for executing a program several times with minor
variations. Instead of enclosing the whole program within one or more FOR
loops, you can enclose it within a procedure body and cal | the procedure
several times. This is slightly more flexible, but it is a moot point
which method is simpler and/or more readable.

Examp | es:
PROGRAM

“This program will print out a bunch of multiplication
“tables of various sizes, and in various bases. For
‘examp | e, _it will compute that 7x3=21, then (for the
“base-4 table, say) will convert 21 to 111. The 111
‘is printed as if it were a decimal value, but would
‘be interpreted by a human reader as base-4 notation.’

‘The program uses three procedures, and here they are.’

"(1) This procedure prints out an error message. The two
“arguments, a character vector and an integer vector,
“are incorporated into the message. Unlike the earlier
‘example of an error-message procedure, this one does
“‘return to the caller’ instead of arbi trari ly stopping,
“Note also the use of a set generator as yet another way
“to get a vector of 188 asterisks.”

PROCEDURE oops (Message, Data) WHERE
Message IS CHARACTER VECTOR,
Data ARE INTEGER VECTOR; “The word ‘data’ is plura I I'"
|_ WRITE <<»>>; “Print a blank line”
WRITE {FORi={l,...,188},<<x>>}; “Line of stars”
WRITE Message; ‘Separate WRITEs for separate | ines”
IF SIZE (Data) >8 THEN “Don’t print nul | vector”
WRITE Data;
WRITE <<>>

I3

“"(2) This procedure prints an integer matrix. Instead of
“printing as many numbers per | ine as wi Il fit (which
“is what you’d get using a simple WRITE statement), it
‘prints one row of the matrix per line, double-spaced.
"It considers it an error if the number of columns is
"29, since 3 integers won’t fit on a | ine. (We' |l see
“a way to handle this is section 6.2.) In addition to
“the matrix to be printed, there is second argument, a

- 62 -

I1.4.2 Procedures

“logical value which if true causes the margins above the
“rows and to the left of the columns to be numbered, the
“numbering separated from the matrix by dotted lines. In

“this case there is a limit of 7 columns. | f you wonder
“just what all this output looks like, feel free to try
“out this program. In case you’re lazy, however, we'll

“include as a sample the output which would be produced
“by the second call.”
PROCEDURE ma tri x_print(M, flag) WHERE
MIS INTEGER MATRIX, f | ag IS LOGICAL VALUE:
IFCOLSIZE{M) > 8 OR (flag AND COLSIZE (M)=8),
" ‘AND’ has precedence over ‘OR‘; the parentheses
“are included solely for clarity.”
oops (<<Matrix too wide. Dimensions are:>>,
{ROWSIZE (M)}, COLSIZE (M) })
ELSE “The entire rest of the procedure is ‘else®”
|- IF flag, “Put out heading if requested”
|- WRITE {FOR i=1{1,...,17},<<>>},
{1,,..,COLSIZE (M}};
WRITE {FORi={l,...,18}, << >>5}, <<+>>,
(FORi={l,4s..,16 x COLSIZE (M}}, <<->>}

1
- “The headings are always to be read as decimal.
“Thus the base-4 table will indicate that 7x3=111,
“meaning 7;gx3,9=1114, instead of showing that
"13x3=111."
FOR p:=1{1,...,,RONSIZE (M},
IF flag,
|I_ WRITE p, <<|>>,M(p,%);
WRITE FORi=1{1,...,16}, << >>}, <<|>>
_|
ELSE ,
|_ WRITE M(p,%);
WRITE <<>>
|

"Note that the above procedure body is not surrounded by
«es _|. since it is a single IF statement. Also
note that it would be shorter and faster to use the form
<< >>instead of {FORi={1,...,16}, <<>>},
“and it even looks clearer. But it isn’t. It does make
“it clearer that what's being printed is a bunch of
“blanks, but the set generator makes it easier to see
“exactly how many blanks are being printed.”

"(3) This procedure, as has already been noted, is in effect
“the ‘main program‘, It has 4 arguments, x, y, b, and
“flag, and uses the preceding procedure to print a
“multiplication table of x rows and y columns in base b.
"x y, and b are integer scalars, and an error message is
“printed unless 2<h<18. The ‘matrix-print routine
“places restrictions on the value of y, but they are not
“enforced in the fol lowing procedure. (Thus if we later
"reurite ‘matrix-print’ it does not necessitate changing
“this procedure as well.) The remaining argument is a

- 63 -

MPL User’'s Guide Section I1

“logical flag which, if true, causes headings to be
“printed above and alongside the table. It is not used
“In this procedure, but is merely passed along as an
“argument to matrix_print. A general heading, perhaps
“more properly called a title, is printed regardless of

“n

“the value of ‘flag’,

“As for the method used to convert from decimal to base b,
“it is the standard technique of repeatedly dividing by b
“(integer- division) until the quotient is zero, whereupon
“the remainders are the b-ary digits in order from right
“to left. By using’scalar multiplication and division,
“all elements of the table are converted simultaneously,

“‘in parallel‘.“+
PROCEDURE table ix, y, b, flagl WHERE
{x,y,b) ARE INTEGER VALUES, f lag IS LOGICAL VALUE;
IF b<2 OR b>18,
oops (<<Invalid base for ‘table’. x,y, & b are:>>,
{x, y, bl)
ELSE “Again, the rest of the procedure is ail ‘else
|- DEFINET :=COLUMN (11 ,...,x})% ROW ({1,...,y}),
digit ¢+= 1, “initial digit in units place”
~ zeroes $=@xT, “Ha tr i x of zeroes”
ThaseB := zeroes: “Stores final result”
WHILE NOT T = zeroes “not the same as T -= zeroes ! | ",
|_ DEFINE ToverB:= T/b; “Compute & add next digit”
ThaseB := TbaseB + (T-bkxToverB) x digit;
T : =ToverB; “Save quotient"
digit 1= digit * 10 “Advance to next digit”

“)

_|s
WRITE <<Multiplication Table in base>>, b; "Title"
FOR i IN 11, 2},

WRITE <<>>; “Put out a couple blank lines”
matrix-print (TbaseB, flag); “Print table”
FOR i IN {1,...,6},

WRITE <<>> “Put out a few more blank }ines"

l .
-l

“And final ly, the ‘program’ itself.”
EXECUTE table (27, 7, 3, TRUE) ;
EXECUTE table (16, 5, 4, TRUE);
FOR i IN {2,...,8},

EXECUTE table (i, i, i, FALSE)
“That ' s enough. "

END.

tMost computers nowadays do not actually do operations in
pat-al tel, but would instead perform scalar multiplication by multiplying
each element of the matrix in turn. One of the nice things about ‘high-
level’ computer languages such as MPL is that they al low us to ignore the
drudgery involved in how computers actually work, But we digress.

- 64 -

11.4.3 Procedures

Here is the output which would be produced by the second EXECUTE
statement above,

Multiplication Table in base 4

- 1 2 3 4 5
) : 1 2 3 18 11

| 2 18 12 20 22
2 : 3 12 21 38 33

I 10 20 30 100 110
5 | 11 22 33 118 121
g = 12 30 102 128 132

| 13 32 111 138 203
8 | 28 160 128 208 228
9 { 21 182 123 218 231
18 ! 22 118 132 228 302
11 { 23 112 261 238 313
12 1 30 128 210 300 338
13 I 31 122 213 318 1001
u | 32 138 222 328 1812
15 33 132 231 338 1823
16 i 180 200 300 1600 1188

4.3: Procedures with Resulls

In the previous section we showed you how to pass information into a

. "procedure, via arguments. But the only ‘safe’ way for a procedure to pass

information back was by using ‘global’ variables, as in the examples

‘reset’ and ‘over | ay’ in section 4.1, There is a more straightforward

method, wherein a procedure can yield a specific result, which is then

‘plugged direct ly into an expression. When it is necessary to distinguish

. these procedures from the forms already discussed, we wi | | refer to these

.new ones as resul tprocedures. (In FORTRAN these are cal led ‘functions’,
‘whi te our earlier procedures would be ‘subroutines’.)

This is done by naming a result variable when the procedure s
defined. Whenever the procedure is used, the value it yields is equal to
the last value assigned to the result variable, As a typical example, here

- 65 -

MPL User’s Guide Section 11

is a procedure cal led ‘sin’ which yields the sine of its argument. The
resul t variable in this example is ‘res’. |

PROCEDURE res :=sin IX) "‘=' can replace ‘:=""
WHERE X IS REAL VALUE, res i$ REAL:
|_ DEFINE term : = X “This is_essentially the same old
res := X; “sin routine we’ve been using al |
DEFINE old :=8.8; “along, with ‘res’ replacing ‘sin’)
DEFINE i : =1; "(uwe couldn’t use ‘sin’ for the
WHILE old -= res, ‘result variable since that’'s the
I- old = Ees; “name of the procedure.”
i 1= 42

term = -termxXkX/ ({i-1)xi);
res t= ree + term

Several remarks shouid be made here. First, notice that ‘res’, in
addition to bein? included ahead of the name ‘sin’, is also listed in the
WHERE c | ause. n this particular case i t wasn’ t necessary, since the
defaul t attributes (REAL SCALAR) apply. MWe could in fact omit the WHERE
clause entirely, since X is also a real scalar, except we need to specify
VALUE for X (see section 4.2.1 or section 4.2.2). Second, we need not
worry about the newly-defined variables (old, term, and i) conflicting with
other definitions outside the procedure. As we stated in the examples in
section 4.1, any variables defined within a procedure act like FOR indices;
the new definitions temporarily ‘override’ any previous ones and di sappear
. after the procedure has finished, Thus, for instance, a program using the
‘sin’ procedure is free to have an integer matrix called ‘old’, and the
matrix will not affect the procedure, nor vice versa. Third, it is
possible (and occasionally even useful) for a procedure to have a result
even though it has no arguments. We will include an example of this later
on.

You’d probably | ike to know how to use these procedures. After al I,
i f you say

EXECUTE sin (1.3)

the procedure might well compute the sine of 1.3, but what does it do with
the result? The answer is that this isn’t how it’s done at al I, To use a
resul t procedure, you simply write its name, followed by a parenthesized
| ist of arguments, anywhere in an expression. The value returned by the
procedure is plugged into the expression at that point.

Examp | es:
DEFINE pi := 3.14159265358979, “approximately”
s :=sin(pi/4); “Cal Is ‘sin’ with an argument of

"pi/4; assigns s the result. s s
“thus .5%%.5, or about 0.70710678”

8 t=5 +sin(slxs + 1 ; "sin(s)ks =sx(sin{(s)), not
"sin(sxs). s is now 2.16647”

DEFINE t := sin(sin(sin(l.))};

-66 -

11.4.3

Procedures

“Cal Is sin with an argument of 1., then cal Is sin again,

“giving it as an argument the result from the first call.

“The result from the second call is the argument for yet

“a third cal I, and the third result is assigned to t,

“This final result turns out to be about 0.67843”

DEFINE V t={sin(pi},sinipi/2),sin(pi/4),sin{pi/B)};

"V is the real vector (8.8, 110, 0.70710678, 8.51"

| Fsin(s)<sin(t), "sin{2.1665}=.8278, sin(.6784}=.6276,
STOP: “so this STOP is not done”

DEFINE V' := {FOR i IN{1,2,4,6},sin(pi/Zi)};"V'=V"

What sort of procedure would use no arguments but return a useful
result? Wel I, one such might be a ‘random number generator’, which returns
a uniformly selected random real scalar between 8 and 1 . When you invoke
such a procedure, since there are no arguments, you may leave off the usual
parentheses. Le., instead of writing "random()", just write “random”.)

Example;

PROGRAM

“This program performs simple tests on an equally simple
“random number generator (RNG). The RNG assumes an integer
“scalar variable, ‘seed’, exists, and that its value is an

“odd number between 0 and 1048576 (2%°). The value of the
“seed uniquely determines the number produced, and the RNG
‘modifies the seed such that successive uses of the RNG
“produce a pseudo-random sequence of values, Unless the
“seed is altered by another part of the program, the se-

"quence repeats after 2'® (262144) values. The ‘random
“numbers’ are uniformly distributed over the range 8to1."

“The tests being performed are, as mentioned already, quite
“trivial. First, 1000 random numbers are averaged. This
“result should be close to one-half. Next, the squares of
“another 1000 random numbers are averaged, This result
“should be about one-third. Last, another 2000 random
“numbers are multiplied in pairs, and the 1000 products are
“averaged. I|f consecutive values in the random sequence
“are i ndeed i ndependen t, the average should be one-fourth.”

GIVEN seed INTEGER; "Must define before used in procedure”

PROCEDURE r:=random; “No WHERE needed (risrealscalar)"
“Random number generators tend to be ful | of ‘magic’
“numbers. This one is no exception.”
|_ seed := seed x 1027;

seed := seed - (seed/1848576)%1848576;

r :=seed / 1048576.0 “Don’t want integer division”

DEFINE sum : = 0.0;
FOR i IN {1,...,1888}, sum := sum t random;
WRITE <<Average: >>,sum/1088;

-67 -

MPL User’s Guide Section |l

sum = 0.0:
FORiIN{l,.. ., 10888}, sum t= sum + randomx%2;
WRITE <<Average squares>>,sum/1008;

“Compare the preceding loop to the next one. You see,
"‘randomxx2' is not the same as ‘randomxrandom’, because
“random’ has a different value each time it appears!”

sum :=8.8;
FOR iIN{1,...,1808}, sum t= sum + randomkrandom;
WRITE <<Average product: >>,sum/1008;

“The preceding 3 loops are so similar that we are tempted
“to try to combine them-using loops and/or procedures.
‘But they are so short anyway, how much could we hope to
“save? Anyway, that’s if.”

END.

Incidentally, when the above program was run_with an input value of 78 for
the seed, it produced the numbers .4954, .3344, and .2437, which look
reasonab | e.

As a final exa?ﬁple, consider the following procedure, which would have
been useful in the multiplication-table program (section 4.2.3).

PROCEDURE string ¢= repeat (char, number)
WHERE char IS CHARACTER VALUE,
number IS INTEGER VALUE,
string IS CHARACTER VECTOR:
‘Create a string consisting of ‘number’ repetitions of
‘the single character stored in the scalar ‘char’.
“Use DEFINE to set size of vector result.”
DEFINE string t={FORi:={l,...,number}, char)

I f we had had this in that earlier program, we could have replaced such
statement9 as

WRITE {FORi={1,...,1B}, << >3}, <<4>>,
{FORi={l,.s.,16 x COLSIZE M), <<=>»}

with the more readable form

WRITE repeat (<<>>,1B),<<+>>, repeat (<<->>,16%COLSIZE (M))

* 4.4: RETURN Statement

RETURN i s to a procedure what STOP is to a program. | f,in a
procedure, the statement

RETURN

- 68 -

11.4.5 Procedures

is executed, the procedure terminates at once and returns to the cal ler.
If the procedure has a result, it is the value fthe result variable at
the time the RETURN is performed.

RETURN statements are rarely necessary, but they are sometimes
convenient. As an example, we'l | rewrite the ‘matrix-print’ procedure of
section 4.2.3 using a RETURN, Whi le we're at it, we’ll assume the existence
of the ‘repeat’ procedure for character strings,

PROCEDURE matrix-print (M, flag) WHERE
M IS INTEGER MATRIX, f | ag IS LOGICAL VALUE:
|- IF COLSIZE (M)> 8 OR (flag AND COLSIZE (M)=8),
|_ oops (<<Matrix too wide. Dimensions are:>>,
{ROWSIZE (M), COLSIZE (M1);
RETURN

$
“If we get this far, the IF must have been false.”
“The rest of the procedure is largely unchanged,
“except it is no longer inside an ELSE-clause.”
IF flag,
|- WRITE repeat(<<>>,17),1{1,...,COLSIZE(M) }

WRITE repeat (<<>>, 16), <<+>>,

- repeat (<<->>,16xCOLSIZE (M)
I3

FOR p t=1{l,...,RONSIZE(M)},
IF flag,
|l WRITE p,<<|>>,M{p,%);
WRITE repeat (<<>>,18),<<|>>

_

ELSE

I_ WRITE M(p,x);
WRITE <<>>

|

I3

45: Library Functions

HPL has several ‘pre-def ined’ procedures available for you to use,
which do things like compute the inverse of a matrix, or the transpose, or
find themaximum element of a vector. These procedures, called !library
functions, are used | ike any other procedure. In fact, SIZE, ROWSIZE,
VECTOR, etc., are really library functions, This being the case, we’ve had
several examples showing how to use them, 80 we won’ t give any examp | es
here. A complete list of available functions is in Appendix A.

Many more functions are available in the standard FORTRAN library,
including sin, cos, log, and dozens more. It is possible to use FORTRAN
functions in an HPL program, We’ll cover this in Section Ill.

Note that, while certain of the HPL library functions are also

- 63 -

HPL User’s Guide Section 11

keywords, most are not. This means you can use them as identifiers,
overriding their pre-defined meanings. Thi s i a not recommended, however,
since strange things can occur. Consider this sequence:

DEFINE X =12,1,4};

WRITE SIZE (X); “Outputs ‘3" "
DEFINE SIZE =1{4,2,3,5,1}; -
WRITE SIZE (X} "Outputs * 2 4 5""

5: BLOCK STRUCTURE

In Section | we cautioned you that it is illegal to redefine the type
or structure of a variable. We also said there was one particular
exception to this rule, which would be discussed under ‘block structure’.
Since then we’ve seen some specific exceptions, such as FOR indices and
arguments to procedures. We shall now show that, with suitable hand-
waving, most of these exceptions (all but the FOR indices) can be explained
as an aspect of block structure.

5.1: Bloeck=Structured Programs

The basic idea is that a program consists of blocks of code. Little
blocks go inside bigger blocks, which in turn go inside still bigger
blocks. Just as with physical building blocks, program blocks cannot
‘partially overlap’. That is, if two blocks overlap at all it is because
one of them is entirely contained within the other. In an HPL program the
biggestblock is the entire program. Each procedure is also a block,
contained within the program’s block. In a moment we'l | specify exactly
uhat defines a block, but first we want to explain how block structuring
affects the redefinition of variables, We shal | use the terms_inner block
andouter block with the interpretation that the inner block is any block
contained in some other block, which is the outer block.

When you enter an inner block, all of the variables, labels (for
GO TOs), and procedures which have been defined in the outer block are
sti | | defined, They may thus be used within the inner block. Houever, if
you wi sh, you may redefine any or al | of them without regard for their
previous clef initions. If you do this, then the external definitions (i.e.,
the meanings which the identifiers had in the outer block) are no longer
accessible to the inner block,

When you leave an inner block, any definitions which took place inside
that block are ‘undone’. If the identifiers in question had been defined
in the outer block as well, then they are restored to their previous
attributes and values; otherwise they become undefined.

-70 -

11.5.1

Example:

Block Structure

PROGRAM

DEFINE (a, b) INTEGER SCALARS,
a =73 -
b :t=9;

PROCEDURE resul t1:= f1(k) WHERE k IS INTEGER VALUE,
resul t1 IS INTEGER,;
resultl s= kxkt

PROCEDURE resul t2 := f2 (k) WHERE k IS INTEGER VALUE,
resul t2 IS INTEGER;
result2 1= -3%ks

WRITE a, b, f1(2),£2(2);
‘So far this is nothing new. We’'ve just written out 4
“integers, namely 7, 9, 4, and -6."

PROCEDURE examp | €;
‘Since-procedures are sub-blocks within the main program,
“we’ve just entered an ‘inner block’, Therefore we may
“now redefine anything we wish.”
|_ DEFINE (b, c) REAL SCALARS:
a 1= 1.61803;
b :=2.71828;
c :=3.14159;
“Since we didn’t redefine ‘a’, the only ,'a’ we’ve
‘got is the one we defined back at the beginning.
‘Therefore, when this procedure gets executed, we
‘will change the value of that ‘a’. 0On the other
“hand, since we redefined ‘b’, the one defined at
“the beginning wil | be unaffected, When we leave
“this procedure, ‘a’ will have the value 1, since
‘1.61803 gets rounded down, but ‘b’ will again be
“9. However, within the procedure, ‘b’ is a real
“scalar wi th'value 2.71828.”
DEFINE f2 :=1{5,18,...,1008};
"f2 used to be a procedure, Within this ‘example’
“procedure, f2 is redefined as an integer vector.
“We haven’t done anything with fl, so it remains
“a procedure. "
WRITE a, b, ¢, f1(2},2(2)
‘This will write 1, 2.71828, 3.14159, 4, and 10.
“Note that ‘f1(2)' says to execute fl with k=2,
“while *f2(2)' now means the second element of
“the vector f2."

-l
EXECUTE examp | 3 “Per form the above act ions”

WRITE a, b, f1(2),f2(2);

“Since b and f2 were redefined within the inner block of
“‘example', they have now reverted to their old defini-
“tions, namely b is 9 and f2 is a procedure. Since ‘a’

-71 -

MPL User's Guide Section 11

“was not redefined in ‘example’, its value in the outer
“block has been changed. So this WRITE statement prints
“the values 1, 9, 4, and -6.”

WRITEc “I | legal (¢ is no longer defined)”
END.

Hopefully the preceding example has given you some idea of the effects
of block structure. Effectively what it allows you to do is write
procedures which can be used in several different programs wi thout your
having to worry about whether the variable names in the procedures conflict
with those in the programs.

5.2: Definition _of a Block

Now it’s time for us to state explicitly what a block is. There are
real ly only 3 kinds, and we’ve already mentioned two of them. The whole
program is a blogk, and outside that block is where the library functions
are defined for you, (This explains why you can use the library functions,
but are al lowed to redefine them if you like. The main program is like an
inner block within the MPL universe.) The second type of block is a
procedure. Every procedure is a block, within which the formal parameters
and result variable (if any) are defined automatically for you by MPL.
(This explains why a formal parameter can have the same name as a variable
in the main program, as in the example in section 4.2.1.} The third type
of block is one which you explicitly designate. Itlooks exactlylike a
compound statement, except instead of BEGIN and END (|_ and _|) you use
BLOCK and END,

Example:
“This program does some sort of bizarre calculation, The
“only important things going on are in the comments. if
“you get turned on by strange mathematical formulae, you
“can try to figure out just what gets computed by al | this.”

“The problem is, there’s hardly ever a need for explicit
“BLOCK statements; certainly never in smal | programs.
“So we just put together something moderately complex,’

DEFINE x-10000, y-I 3
WHILE y <x,
BLOCK “Block used just as if it were *|_""
DEFINE x = yx%.5; “This doesn’t affect the x in the
“WHILE statement, since that is
“*outside this block.”
WRITE y, x%%x3
g - ‘9.....9] X ll.oao.g+1)
END; “End of special block”
WRITE y , x “This x is still equal to 10000

- 72 -

11.6 Input/Output (Revisited)

"(y happens to be 4665760)"

"For the insatiably curious, the garbage that gets printed
“by this useless program is
l 1.0

E 2 1.6325
I 8 18.93 --
i 240 2. 7355E+18
i 4665760 10000
In case you hadn’t guessed, explicit blocks (BLOCK . . . END) are not

particularly useful, but they are there if you need them. One possible use
is when you've got a big program in which, by mistake, you used the same
identifier for different types of variables in different sect ions,
resulting in an error (illegal redefinition). Rather than going through
half your program changing variable names, you might(if you're lucky) b e
able to get away with just slapping a BLOCK . . . END around one chunk of
the program, such that the redefinition is permitted. By ‘lucky’ we mean
that this won’t work unless your program is easily broken into independent
chunks, since when you leave the block all of the variables defined within
it ‘go away’. (Of course, i f your program can be broken up this way, you
should have written it as a bunch of procedures, as suggasted in section
4.1. This way you would have avoided all this trouble in the first place,
since procedures are automatically blocks.)

6: INPUT/QUTPUT (REVISITED)

The 1/0 facilities described in Section I were more or iess uncontroilled. The input data had
to be free-format; thers was no u a y to treat a stringofdigits as distinct one~-digit number s . The
output a | w a y s used an enormous amount of space to print ¢ a ¢ h numberj there was no way to fit more
than 8 integers or 5 reals on a single line of output.

NPL provides for three levels of control over your I1/0. The first,
unformatted 1/O, was described in Section I. The other forms we shal | term
semi-formatted and formatted.

6.1 ¢ Semi-formatted Output

There is no such thing as semi-formatted Input. Semi-formatting
~ allows you to specify to MPL how much space should be used to print integer
. and real values. This is accomplished using the special, pre-defined
variah les, INTEGERSIZE and REALSIZE. Like library functions, these two
variables have special meanings, which you can override if you wish by
defining them to be something else. | f you do so, however, you can no
longer take advantage of the special pre-defined meanings.

-~ 73 -

MPL User’s Guide Section Il

Whenever an unformatted WRITE statement prints out an integer, it uses
16 characters (many of which are blanks). It prints the integer right-
justi f led on a field of 14 characters, then tacks 2 blanks on the end.
NOW, as it happens, the special variable INTEGERSIZE starts out as an

integer scalar uhose value is 14. If you assign a new value to
INTEGERSIZE, then any subsequent unformatted WRITEs will use the new field
width. Youwi |l | sti | | get the 2 trai ling blanks, which are not counted as

part of the field width. 1If an integer is too large to be printed in the
room al lotted, it will be printed as a bunch of asterisks.

Example:
DEFINEV= {1,-18,108,-108,10060800! ;
WRITE V;
FOR i IN {18,6,4,1}1,
|_ INTEGERSIZE 1=i}
| WRITE V

This produces 5 lines of output, as follows,

1 -10 180 -108 1eg8e8
1 -10 108 -180 Le00068
| -10 180 -188 100068
1 -18 180 -188 —sx2x
1l & s 2 =

If you set INTEGERSIZE to be zero or negative, the default field width of
14 (plus 2 trailing blanks) is used instead.

REALSIZE is the analogous variable for controlling how much room to
use fo)r real values. It starts out equal to 22 (again, with 2 trai | ing
blanks).

Although semi-formatting gives you some amount of control over the
appearance of your output, it is sti | | very | imited. You can’t change
INTEGERSIZE in the middie of a WRITE statement, for example. To get ful |
control, you need to use formatted 1/0.

6.2: Formatted 1/Q

Wel I, we hate to have to say this, but we’re going to cop out on this
one. MPL formatted I/ O makes use of FORTRAN formats, and describing
FORTRAN formats would take several pages. If you want to be able to do al |
sorts of fancy things, we suggest you f i nd a good FORTRAN text and study

the section on FORMAT statements, What we shall do here is describe some
of the simpler forms of FORTRAN formats, explain how they are used in MPL,
and give a few examples.

First, the syntax. An MPL formatted READ or WRITE statement {ooks
just like an unformatted one, except the first thing in the | st of
expressions must be a character vector and must be followed by a colon

-74 -

11.6.2 Input/Output (Revisited)

instead of a comma. This character vector is then taken to be the format
and is not printed,

Examp | es:
DEFINE (¥, ¥') VECTORS 10,
Fmt: = << (5F10.4) >>3
READ <<(16F5.8)>>1 VvV | V'3 -~
WRITE Fmt 1V+V';

This would read 10 real values from one card and assign them to V, then
read 1 0 more real values from the next card (even if there is more data on
the first card) and assign them to V', It would then print the vector sum
in two | ines of five numbers each. (We'll explain thisalittle more later
on. Right now we just wanted to show you what it looked like.)

Now, as to the FORTRAN formats, First off, they must always begin
with a left parenthesis and end with a right parenthesis. As for uhat goes
in -between, well, as we’ve said, it can get quite compiex, MWe shall
discus8 the following types: Ilw {for integers), Ew.d and Fw.d (for reals),
Lw (for logicals), A w (for characters), ‘xxx’ (text constants), X, and
slash (‘/' .4n emdi a line). Throughout these discussions, we shall use ‘w’
and ‘d’to mean any non-negative integer constants. For instance, when we
say ‘Fu.d’ we mean anything like F9.4,%18.0. F13.10, etc.

The general form of a format is a series of format items, such as 17
or E10.3 or ‘frog’, separated by commas. A sl ash need not be separated
from adjacent i terns. Blanks between i terns are ignored, Thus a typical
format might look like

(13,13,13,F9.8, "glork’/A18 |, 'glork’ /A18/////// 15}

I f you want to repeat an I, E, F, L, A, or X i tern, you may do so by
prefacing it with a number indicating the number of repetitions desired.
Thus the above format is equivalent to

(313,F9.08, 'glork’ /A10,'glork' /ALB///////15)
(We got rid of the excess blanks while we were at it.) Whole sections car
be repeated by enclosing them in parentheses and putting the repetition
count ahead of the left parenthesis. Thus the above could be rewritten
(313,F9.8,2("glork'/A18),7(/), 15)

Note that, when the 7 slashes became 7(/), it was necessary to include
commas to separate them from the adjacent items,

We shal | now discuss uhat each of the different types of format i tern
.means. The formats behave slightly differently for input than for output,
. so we' | | discuss the two separately.

6.2.1:0utput formats

Integers may be written only using the Iw format Item. The value is
printed right-justified on a field of *w’ characters. You do not get any

-75 =

MPL User’'s Guide Section |1

trai | ing blanks uhen you use a formatted WRITE (this is true for real item
types as well), If the field is not wide enough to contain the number, a
bunch of asterisks Is printed out instead.

Example:
DEFINE M INTEGER MATRIX 2 BY 5;
M(l,%x}) :={1, -1, 8, 79, -79};~
M(2,%)} :=1{4444, 55555 666666, 7777777, 888888881;
WRITE <<(313, 415, 216, 110, 112)>>:M;

This would produce:
1 -18 79 -73 444455555666666%kxkxkx 88888888

Notice that some of the numbers got run together because there was not

enough room to include a leading blank. Notice also that the final item,
112, happens not to be used. Lastly, notice that the elements of the
matrix are output in the same order as for unformatted 1/0, row-major
order.

Reals may be uritten using either Eu.d or Fu.d items. Both forms
specify a field of ‘u’ characterss, Ewd uses ‘smie@ntific notation’, so
that 55 prints as.."8.550 82", and ‘d’ significant digits are printed. Fu.d
uses ordinary notation, and prints ‘d’ digits after the decimal point.
Cont inuing the previous example:

DEFINE tI’ i1=Mx 8.881;

WRITE <<(5E18.3)>>:M’ (1 ,%);

WRITE <<({4E11.2,E11.4)>>: M’ (2,%)
WRITE <<(F5.2,F7.3,3F9.4)>>1 M’ (1,%)
WRITE <<(5F7.2)5>sM'(2,%);

Thi s produces:

0.1000-02-0.1000-02 0.0 8.73960-81-8.738D-81
0.440 0 1 0.560 02 0.670 03 0.780 04 0.88890 05
0.00 -0.001 0.0 0.0790 -0.0730

4.44 55.56 666.677777.78%kxkkkx%

In the last line of output, the values 666.67 and 7777.78 got run together.
Note that 0.0 seems to be a special case. This may not be the case with
ail versions of MPL, since it depends on the local dialect of FORTRAN.

Logicals are uritten using the Lw item. A logical value prints as a
‘T’ or ‘F’ preceded by (u-1) blanks. Thus

WRITE <<(2L2,4L1,3L3,L5)>>: (FOR iIN{1,...,18},i<5 OR i=8};

produces

*Some versions of MPL may not allow this, and uiii treat these cases
as if there were insufficient room to fit the number. Also, some versions
may do other things when a number won’t fit, instead of printing asterisks.
But these are ail fairly minor details,

- 76 -

11.6.2 Input/Output (Revisited)

T TTTFF F TFF

Characters are written using the Au format item. Each such i tem
prints a single character preceded by (u-1} blanks. Thus, to print a
character vector of size 10, you should use 18Al, not Al18. In addition, if
you want to include a character_constant in your output, you can 4o it
either by putting it in the list of things to be output and printing it
wi th Al format i terns, or you can use the ‘xxx’ format item. The ‘xxx’ i tem
does not use any expressions from the output list, but simply prints
whatever is between the apostrophes. (If you want to print an apostrophe,
ur i te it as two apostrophes,) Thus the two statements

WRITE <<(14,18A1,14)>5: 79, <<1t's easy!>>, 79;
WRITE <<(14,'1t''seasy!’,14)>>:79,73;

produce the same output, namelys
731 t’s easy! 79
Cont inuing the earl ier exampless
WRITE (<<(13,":°,4(15,","))>>: M(1,%)};

This time we decided to include the optional parentheses around the whole
output | ist. This statement produces:

s+ -1, o0, 79 -79,
Notice that the text items ("1* and’,') are printed interspersed among the
elements of M. Items in the format are used in the order in which they are
encountered. (See fine print for more detailed explanation.)

Going through this more slouly, here's what happens. HWe start going through the format, and
the first thing we find is an 13. So we need an integer to print. Since M(l,%) is 5 integers, we
print the first eslement, 1. The next thing in the format is ':’, so we print & colon. Now we hit a
repetition count, which we skip over for now. The IS requires another integer to be printed. Since
we haven't finished mith M(l,%) yet, Wwe print its second element, -1. He come to the ' ,’ i tem and
80 print a comma. Now, repeating the parenthetical group, we hit IS again, and print N(1,3). And
0 on.

The X format item simply causes a blank to be printed. To get more
than one blank, use a repetition count (i.e, use 18X, not X18)}. Strict iy
speaking, you never need to use X items, but they can make formats a bit
clearer. Forexamp le, the two statements

WRITE <<(2X,512,3X, " frog’,2X,4A1)>>: {1,...,5}, <<toad>>;
WRITE <<(14,412,° frog',A3,3Al)>>11l,...,5}, <<toad>>;

produce the same output, namely:
12345 frog toad

Lastly, the slash (/) format item is used to go to the next output
line prematurely’

- 77 -

MPL User*s Guide Section Il

Example:
WRITE <<(1813)>>:{1,.. .,10};
WRITE <<(413/513/13}>>:{1,...,18}
produces
12345678910
1 2 3 4
5 6 7 8 9
Y]

In addition, if there are more things to be written than there are format
i terns to correspond to them (this therefore doesn’t count ‘text’, X, or /
format i terns), then an extra / is automatically inserted, after which the
format is restarted starting from the last left parenthesis. (Don’t
complain to us: this is all standard FORTRAN.) If the left parenthesis is
preceded by a repetition count, the count is also included in the restart.

Example:
WRITE <<(14,':',313)>»:1{1,...,18};
WRITE <<(14,':’,3(I13))>>:{1,.,.,18};
produces -
1s 2 3 4
5: 6 7 8
9: 10
1: 2 3 4
5 6 7
8 918

6.2.2: Formatted input

Using unformatted input, you could scatter your input data as widely
as you uwished--extra spaces or even blank cards betueen numbers made no
di f ference. This is not the case with formatted input. If you read a
number using an 15 format item, MPL ui | | go out and grab the next 5
characters of input, be they digits, blanks, or pure garbage. 1It’s up to
you to make sure those 5 characters represent an Integer, or the results
are unspecified. So, formatted input is generally used only when (a) your
input data is in a fairly regular form (often having been supplied to you
by someone else) and (b) unformatted input won’t handle it. There are
three main reasons why unformatted input won't handle certain data. First,
there may be numbers with no intervening spaces, such as streams of digits
intended to be taken as individual one-digit numbers. Second, you may wish
to read character or logical data, which you cannot do using an unformatted
READ or GIVEN statement, (Note: There is no such thing as a formatted
GIVEN statement,) Third, there may be useful data in columns 73-80 of the
data cards. Unformatted input ignores these columns, but formatted READ
statements may use them,

Another important difference between formatted and unformatted READs

- 78 -

11.6.2 Input/Output (Revi si ted)

is that, whereas an unformatted READ could read half of an input card and
leave the rest to be read later, a formatted READ throws away any unused
portion of an input line that may be left over when the READ is completed.
A subsequent READ,. formatted or unformatted, will start reading at the
beginning of the next input card. -

Integer values are read using Iu format items. ‘u’ input characters
are read and interpreted as an integer value. (In all formatted input, the
resul ts are unspecified if the input data cannot be interpreted in the
required way, such as if you use an 15 item and the input card says
“1234X”, or even "12.88". Leading blanks are all right,)

Example:
DEFINE M INTEGER MATRIX 2 BY 5;
READ << (313,511,14,12)>>: M;

If the input data is
123-5678901234+678 012
then M becomes _

123 =66 789 0 1
2 3 4678 0

The last two data characters ("12")} are not read and are discarded.

Real values are read using Eu.d or Fu.d items. | t does not matter
which you use; both ",35E1" and “3.5” may be read by both E and F format
i tems. ‘W’ input characters are read and interpreted as a real value. If
the input data includes a decimal point, then the ‘d’ part of the format
item is ignored. OQOtherwise a decimal point is assumed ‘d’ places from the

right of the units digit; i.e. the number is multiplied by 189, (If this
confuses you, always use zero for ‘d’ (as in F7.8), whereupon the *‘d’ part
will never have any effect whatever.)

Example:
DEFINE V REAL VECTOR 6;
READ <<(F7.8,4F7.2,ES.1)>>: V;

If the input data is
-12345 -12345 12.345 12E-31.2E-3 123,
- then V becomes {-12345., -123.45, 12.345, 0.00012, 0.0012, 123.1}.

We shall now explain the 3™ and 4'" elements in more detail. For V(3), the format was F7.2
(the second of four repetitions), and the 7 characters read were " 12,345". Since the 7 characters
included a decimal point, the vaiue was taken as is, and V(3) = 12,345, For V(4), the format was
again F7.2, and the 7 characters were " 12E-3". No decimal point was given (even though an
exponent (E-3) was specified) so a decimal point was assumed 2 places from the right of the units
position, yielding .12E-3, or .00012,

Logical values are read'using Lw items. ‘uw' characters are read, and

- 79 -

MPL User 6 Gu i de Section Il

the first ngg—g!ggg character isexamined. If it is "T", the value s
true; if it is "F", the value is false. If it is neither, -or if all *w*
characters are b | anks, the result is unspecified, -

Example;
DEFINE L LOGICAL VECTOR 8;
READ <<(3L7,5L1)>>:L;

If the input data is
FALSE TRUE FROG TFFTF
then L becomes {FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, TRUE, FALSE}.

Character values are read using Au items. (Note: The "xxx® format
item must not be used for input.) ‘W’ characters are read, and the last
one is used as the value read.

Examp | es
DEFINE € CHARACTER VECTOR 13;

READ <<(A5,3A7,7A1,A4,A5)>>:C;

If the input data is
ANYTHING THAT CAN GO WRONG, WILL GO WRONG.

then C becomes the character vector <<HAGG, WILL K.>>. (Don’t ask us who
Will W, Hagg is; we’'re still trying to figure out how he managed to get his
name into this manual, Something apparently uent wrong.)

The X format item causes a single data character to be skipped. As
Xvaith output formats, the form Xw is illegal: to skip 18 characters, use
X.

Example:
DEFINE (V1,Y2) INTEGER VECTORS 6;
READ <<(13,14,212,15,14)>>:V1;
READ <«(13,2X,312,X,214)>>:V2;
“Remember that, since the first READ discards any leftover
“portion of its input | ine, the second READ will read on
“the second | ine of input.”

Ifthe input data is

12345678901234567890
12345678901234567890

then V1 becomes {123,4567,83, 1,23456, 78961} uhi ie V2 becomes
{123,67,89,1,3456, 78901 .

Lastly, the slash(/) format item cause6 the rest of the current input
card to be thrown away. The READ continue6 on the next card. As with
output, if a format ‘run6 out’ and has to be repeated, an extra */"is
assumed,

- 88 ~

11.6.2 Input/output (Revisi ted)

Example;
DEFINE V INTEGER VECTOR 18;
READ <<(213/14,212)>51V;

If the input data is
12345678 ~

90123456
78901234
56789012
34567830

then V becomes {123,456,8012,34,56,789,12,5678,98,12} .

The *213’ reads 123 and 456, then the slash causes the rest of the line to be discarded. The
‘14,212 reads 9812, 34, and 56. The end of the format is reached, but we sti | | have more elements
of V to read, so a siash is assumed, discarding a bunch of blanks left over on the second line. Rs
it would with output, the format nou repeats starting from the last left parenthesis, which happens
to be at the beginning. ‘213’ reads 789 and 812, then ‘14,212’ reads 5678, 98, and 12 from the
fourth | ine. The last line is unused and would be read by the next RERD statement.

6.2.3: Carriage control

MPL formatted output uses the first character of each output line for
carriage control, the same as in FORTRAN. If you know what this means, you
can skip this section.

We haven’'t been completely honest with you about formatted output.
Everything gets printed just the way we said it does, except that the first
character of each line is not printed. Instead it is used to specify such
things as double-spacing, triple-spacing, etc. These things are called
‘carriage control’ (because they control the mot ion of the ‘carriage’ of
the line printer), and the first character of each | ine is referred to as
the ‘carriage control character’. This applies only to formatted output,
not to semi-formatted nor unformatted output.

The interpretations of the carriage control character are as follows.

Character Interpretation
blank Normal (single-spacing)
0 Leave a blank line ahead of this one (double-spacing)
Leave two blank lines ahead of this one (triple-spacing)
+ Print this line on top of the preceding one

1 Print this line at the top of the next page

Any other characters may have unpredictable effects, although usually they
-act as if they were blanks.

Example:
WRITE <<{'frog'/'8toad'/'+////'/15)>>: 79

Ignoring carriage control for the moment, this would print

-81 -

MPL User’s Guide Section 11

frog
Btoad
+////
79

Now, taking into account the carriage control characters, the first line
print6 normal ly, The second line is double-spaced with respect to the
first, and the third | ins print6 on top of it. The last line prints
normally, below the preceding one. The net effect is

frog

tdad
73

If you don’t want to use these features, just be sure every | ine of
formatted output starts with a blank. Much of the time you don’t even have
to think about it: if the first thing on the line is a numeric value then
it almost always starts with a blank. But be careful. Suppose you wr i te
an integer vector V using

WRITE <<{1817)>>: V “Write V in lines of 10 values each”

This is fine as long as the values in V are suitably small. But if V(1)
equa | s -100000 then you’ | | get a ‘=" in the Carriage control position, 60
the | ine wi | | print triple-spaced, and V(1) wi | | appear to be positive

~100000. Or suppose Y{1) is 1234567, Then the line wi | | print on a fresh
page, and V(1)ul Il appear to be 234567, S o if you are not explicitly
including a carriage control character, be sure your format items are large
enough, or yaur number6 smal | enough, such that a | | your ‘numbers are
guaranteed to print with leading blanks.

7: THE LET STATEMENT

7.1: What It Does

~ The LET statement defines a_sunonym which you can use at compile-time.
Just about anything we might say to describe it formal ly would use
terminology with which you may not be familiar, 60 we’ | | at tempt to exp | a in
it using examples.

Examp le:

LETF(x) := M(%,x) + xxB;
WRITE F (2)

-82 -

I1.7.1 The LET Statement

The first statement defines a synonym, F, which is very much | ike a
‘resul t° procedure. The second statement is effectively changed by MPL
into the statement

WRITE M{x%,2)+2%B

In this particular instance we could have got ten the same effect using an
ordi nary procedure, thust

PROCEDURE R :=F (x) WHERE x IS INTEGER VALUE,
R IS COLUMN;
DEFINE R t= M(%,x} + xx%B;
“Must use DEFINE in order to establish size of R."
WRITE F (2)

The LET notation has three main advantages. First, it is shorter and thus
more natural. Second, it is substituted directly into your program
wherever i1t is used. Let’s look more closely at this second difference. A
procedure is created once: the code is set up somewhere. When you use it,
your program branches over to that code, computes whatever i t' 6 supposed
to, and comes back. When you use a LET synonytn, the code i s dup | i ca ted
every time you use it, This is faster, s i nce you no | anger have to branch
back and forth,_ but it uses more storage space in the computer. Houever,
since a LET synonym has to be a single expression, it is unlikely to take
up much space. The main consideration in using LETs is thus convenience.

The third advantage is also one of convenience--you do not have to
define the type6 or structures of the arguments or result, the way you do
for procedures. In fact, you couldn’t even if you wanted to: MPL won’t
accept a WHERE clause in a LET statement. Thus if you set up the synonym

LET add (x,y)=x+y;
and define the fol lowing variables:

DEFINE RV REAL VECTOR 10,
IV INTEGER VECTOR 10,
(a, b) REAL SCALARS,

M MATRIX 7 BY 9;

then all of the following form6 (and many others) are valid:
add (a,b) yields atb, a real scalar
add (RY,b) yields RV+b, a real vector
add (1V,1V) yields IV+lV(i.e.2%IV), an integer vector
add (a,M) yield6 a+M, a real matrix
Perhaps it's time we gave the general form of a LET statement.

LET <identifier> (<argument list>):=<expression>;

The semicolon is required. The keyword $LET may replace LET (don’ t ask
why), and as usual ‘=' may replace ‘s='. If there are no arguments, the

-83 -

MPL User’6 Guide Section 11

parentheses may be omitted. Like other definitions, synonyms are subject
to block structure (section 5) and thus vanish when you exit from the
blocks in which the LET statements occur,

7.2; How_lt Does It

In case you are interested, we wi | | now describe exactly how a LET
synonym is treated by MPL. Even if you're not interested, you should skim
through the rest of this section, because at one point we’ll be mentioning
a ‘bug’ which you might run into, and which appears terribly mysterious
unless you know what’s going on.

Once you’ve defined a synonym, you may invoke it the same way you
would use a ‘resul t procedure’, as shown in the earlier examples. So here
comes MPL, trundl ing through your program, and i t comes to a synonym name
fol lowed by a list of ‘actual parameters’. Here’s what happens, broken
clown into steps. Some of these step6 may appear strange; we’ | | soon
explain the reasons behind them.

illl MPL rummages--around and finds the <expression> given in the relevant
LET statement.

{21 The actual parameters are substituted for the corresponding formal
parameters in the expression, with an extra set of parentheses
automatically put around each one,

(31 The entire expression is put inside parentheses.

[4]JMPL takes the resulting expression and pretends you wrote it instead
of the synonym cal I. (This leads to the problem we mentioned. We’'re
getting to it.)

By these rules, using the ‘add’ synonym glven earl ier, if you write
x tw add {y,z)
then MPL acts as if you had written
x |- (y) + (2))

You might well wonder why on earth all those parentheses are being tossed

in. They are there 60 that synonyms will behave like procedures. Suppose

we. have the ‘add’ synonym, and al so a ‘times’ synonym
LET times (x,yle x ®y;

Then consider the possibi lities. |If we didn’t insert parentheses around
each argument (step 2), then

time6 (3 +5,7 + 9)

- 84 -

11.7.3 The LET Statement

(which we would like to be 8%16, or 128) would yield
(3+5%7+9)

which is 3 + 35+ 3, or 47. lfue left out the extra set of parentheses
around the entire expression (step 3}, then

add(3,5) % add(7,9)

(which again we’'d like to be 128)would yield
(3) + (B x(7) + (9)

which is also 47. By the rules actually used, these two examples yield
(3 + 5 x(7 + 9)) and ((3) + (B)) % ((7) + (3))

both of which produce 8x16, or 128.

Okav. now that we’ve explained the situation and the rationale behind
it, here's the problem, Suppose you say

WRITE add({3,5) % add (7,9)
which is interpreted as
WRITE ((3) + (5)) % ({7) + (8))

This runs into the problem uith WRITE statements mentioned back in Section
| (subsection 7.2.2}, namely, the compiler does not know how to distinguish
the parentheses used to enclose the list of items to be written out from
the parentheses enclosing parts of the expression.

To get around this, you must include the ‘optional’ parentheses in a
WRITE statement uhenever the first thing being written starts with a
synonym. In this example, you’d write

WRITE (add(3,5) % add(7,3))
Note: It turns out you don’t need these parentheses if the only thing being

written is a single synonym call. You might try applying the 4 steps given
above to our first example, F{2), to see why this is so.

7.3: What It Can Do (But Don't)

Don’t read this section if you get confused easily.
I f you have a devi ous mind (as we do) you may have thought of some

bizarre ways of actually teking advantage of the extra parentheses being
forced upon you.

- 85 -

MPL User’s Guide Section |l

Example:
LET add (x,y)=x + ys “Same as before, but now., ."
LET weird (x,subscript,y)=x subscript + y;
DEFINE Q:= weird {{1,...,10} + {108,200,...,1008}, 7,
{1009,2008,...,20008}) add (7,9)

The last two statements are not strictly kosher, since in both we have two
things placed side-by-side with no operator between them. But i f we go

ahead and apply the 4-step rules to the assignment statement, it turns out
to be

DEFINE Qs=(({l,...,18} +{108,200,...,1808})(7)
+ (11008,2008,...,2000081)) ((7) + (9))

which is a valid statement after all {(the(7) and ({7)t(9)) are both used
as subscripts). @ is assigned the integer scalar 16707,

Now, the only reason we mentioned this is because, if we didn’t, some
clever person would try it anyway. By bringing it up ourselves, we can
take this opportunity to teli | you: DON'T DO THIS! We can’ t prom i se that
MPL wi Il always work this way, so you'd only be asking for troub le.

Fur thermore, you can accomplish thesame things legally by using normal
notat ion:

LET add (x,y)=x1ty;

LET weird (x,subscript,y) = x{subscript) t y;

DEFINEQ‘- Well‘d ({1...0.10} t ‘130.280,....1030}, 7 N
{1009, 2800, ...,208808}) (add (7,9))

8: HOW TO USE MPL (REVISITED)

There are several useful variations you can make on the basic method
of running an MPL program as shoun in Section I, The additional features
which we are about to discuss fall into two categories. Some of them are
used for creating external ‘libraries’ of MPL functions. We will see in
Section {11 how you can make use of such libraries, but we feel we might as

-uel | show you now how to create them. The other new features are
‘conipi lation options’, which allow you to do such things as suppress the
listing of your MPL program, or produce an ‘object deck’. (If you’'re a
computer buff you know what an object deck is; if you're not you probably
don’t care about how to get one,)

8.1: Creating MPL Libraries

By ‘li brary’ we mean a col lect ion of programs and/or procedures which
have already been compiled (this is what we're about to show you how to do)

- 86 -

11.8.1 Hou to Use MPL (Revisited)

and which can then be used by other programs without having to include the
the ‘1 ibrary’ procedures explicitly in the later programs. We'il see how
to use iibrary procedures in Section Ill. But ue felt that, as long as we
were going to be talking some more about how to use MPL, we ought to
include everything.

Every program or procedure you put into the library has got to have a
name. For procedures the name is simply the name of the procedure, For
programs, you must specify a name by putting it on the PROGRAM card. The
name must be fol lowed by @ semicolon. For example,

PROGRAM TRAFFIC;

might be the first line of a program for doing traffic flow analysis. We
might anticipate using the program several times, so we could put it into a
| ibrary under the name “TRAFFIC”.

When a procedure is being put into a library, it is written all by
itself (as opposed to being inside a program). For example, i f we had
wr i t ten a procedure which returned the reversal of its real vector
argument, and we Wished to put this procedure into a | ibrary under the name
REVERSE, ue'd wr i te:

//COMP.SYSIN D D %

PROCEDURE V' := REVERSE (V) WHERE (V, V') ARE VECTORS:
DEFINE \V t= V(ISIZE(V), SIZE(V)-1,..., 1})3

/%

Next, ue’d like to be able to compile several procedures at once and
store them al | in the same library. To do this, just put them al | one
right after another, ui th an extra card between each pair of procedures,
The extra card should read

%MPL

We'l | show an example of this in a moment, The only other thing to worry
about is how we specify where the library is going to be. This is done in
the standard way (i.e., standard among the major language processors on the
IBM system where MPL currently resides). 1 n case you don’ t know what the
standard way is, it involves putting this card ahead of your "COMP.SYSIN"
card:

//COMP.SYSLIN D D DSN=<dsname>,DISP= (NEW,KEEP) ,UNI T=<disk>,VOL=<volume>

where <dsname> is the “data-set name” of your | ibrary, <disk> is whatever a
" disk is called at your installation, and <volume> is the volume where you
. want the library to be created (i.e. the particular disk). This is all
standard IBM JCL; in other words, incomprehensible, We are even less

inclined to teach JCL than we wWere to teach FORTRAN formats, so don’ t

expect any more details.

When you wish to use these routines in a later program you Wil | have
to tell MPL what libraries to look in and where to find them. This is done
by preceding your "GO.SYSIN" card with the cards:

- 87 -

MPL User’s Guide Section Il

//GO.SYSLIN DD -
// DD ODSN=<dsname>,DISPaSHR,UNIT=, _,VOL=. ..
// D D DSN=<d8name>,DISP-SHR. UNX T.o .o .VDL'. e

The first card must be included exactly as shown. The others consist of
one card per | ibrary, where each <dsname> is the nam8 of a library, and the
UNIT and VOL parameters must be filled in with the appropriate information,
the same as they were when the library was created. (If you've
"catalogued" the library, these parameters may be omi tted. The term
"catalogued" refers to another feature of JCL, and we won’t be covering
itt)

In order to give an example of all this, we will of course have to
include something you haven’t learned yet, namely the use of separately-
compiled procedures. Hopefully the syntax will be self-explanatory. While
we’'re at it, we will include the use of the FORTRAN sine routine, ‘DSIN’.

Example:

Here are -two complete jobs. They are printed here exactly
as they looked when ue ran them, except for keyword cards!
The first creates a library with two procedures in it; the
second uses this library, and also a FORTRAN routine, DSIN.
Notice in the second job that, when the | ibrary procedures
are used, they are referred to by different names than the
ones by which they are known in the library.

//MAKELIB JOB (J888D2,382,.24),"MPL PROJECT’

// EXEC MPL

//COMP.SYSLIN D D DSN=WYL.D2.J88.LIBRARY,UNIT=DISK, VOL=SER=PUBBBZ,
// DISP={(NEW,KEEP)

//COMP.SYSIN D D %

PROCEDURE R := SQUARE (X} WHERE X | S REAL VALUE ;

s = XkX3
%HMPL
PROCEDURE FROG:
|_ WRITE <<RIBBIT>>;
WRI TE <<BREE-DEEP>>

/%

Some remarks before we present the second job. First, due
to the limitations of JCL, and the length of our <dsname>,
we had to put the DISP on a JCL “continuation” card. This
is standard JCL, 50 as usual we wi | | not discuss it. Also
note that we termlnated the second procedure with a period
from force of habit. This is acceptable,

//USELIB JOB (J888D2, 382, .24), ‘MPL PROJECT

// EXEC MPL

//COMP.SYSIND D x

PROGRAM FROGGY; “It doesn’t hurt to have a name on if.”

- 88 -

11.8.2 How to Use MPL (Revisi ted)

PROCEDURE TOAD; “Tell MPL that TOAD should refer to a library
MPL <<FROG>>3 “‘routine which is called FROG in the library,”

PROCEDURE S := SQ (Z) WHERE Z IS REAL VALUE:
MPL <<SQUARE>>;

PROCEOURE S := SIN (X) WHERE X IS REAL-VALUE,
FORTRAN <<DSIN>>;

LET Pl := 3.14159265358979;

WRITE SIN(PI),SIN(PI/2),SIN(PI/4);
WRITE SQ(SIN(PI/4)); “Should produce 0.5”
TOAD:

WRITE SQ(.5)

END.

/%

//G0.SYSLIN DD
// DD DSN=WYL.D2,J88,LIBRARY,DISP=SHR,UNIT=DISK, VOL=SER=PUBBB2

The GO.SYSIN card itselfis not needed since no input data
is called for. The output actually produced by the second
program is shown here:

3.48736849808863E-57 1.00000000000000 0.707106781186547
0.499999999999939
RIBBIT
BREE-DEEP
8.250000000000000

8.2: Compilation Parameters -

This section should be somewhat easier to swallow than the preceding
one, but everything said here is also for the most part specific to this
particular MPL compiler and this particular IBM system.

| To invoke any of the following options, modify your EXEC card to look
ike

// E X E C MPL,PARM.COMP="NOWARN, DECK"

uhere the "NOWARN,DECK" can be any number of parameters from the set given
-belou. Each parameter comes in two flavors, on or .off. For example, LIST
causes your program to be printed as it gets compiled (this is the usual
state of things), whereas NOLISTwould suppress this listing, Each pair of
parameter8 is discussed briefly in the paragraphs that follow. The default
parameter {the one which gets assumed if you don’'t specify either one) in
each pair is underlined,

WARN NOWARN

-89 -

MPL User’'8 Gulde Section 1l

Selecting NOWARN will cause the compiler to suppress any warning messages,
Error messages are st i 1l printed. (Refer to Appendix B for a complete list
of warning and error messages.)

LOAD NOLOAO

Selecting NOLOAD ui tl cause the ‘object program’, which is normally
directed to the SYSLIN data set, not to be. This results in the program
not being run, nor being written in the | ibrary. The NOLOAO opt ion
therefore is not terribly useful, unless it is used in conjunction with the
DECK parameter.

D ECK NODECK

If DECK is selected, a copy of the object pro gam is punched onto cards via
the SYSPUNCH data set, for uhlch a suitable J (. card must be included.

NOLIST

If NOLIST is selected, the source program is not listed by the compiler.
NOSUBS

Selecting NOSUBS will cause MPL to forego al | subscript range-checking at
run-t ime. This results in an increase in speed (how much of an increase
depends on hou much subscripting you're doing) at the risk of having errors
go possibly undetected. If you are doing a lot of subscripting, you might
want to specify NOSUBS once your program has been completely debugged,

TEXT NOTEXT

Specifying NOTEXT wi | | cause the output from the parser (one of the
intermediate stages of compilation) to be printed. This is usually useful
only to the MPL project people (i.e., us) as an aid in debugging the
compiler itself,

C O D E NOCOOE

Similar to the TEXT/NOTEXT options, except it is the object program which
is printed.

-30 -

SECTION ITt

In this Section we intend to describe everything about MPL which we
have not previously discussed. Some of these feature9 have not actual Iy
been implemented (ue' Il mention which ones as we come to them)and are
included here merely for: completeness, since later versions of MPL may
provide them.

The features presented in this Section are all highly advanced and
special ized. In describing them to you, we Wil | usually assume you already
understand the underlying mathematical and/or programming concepts. |f for
some features you don’t, just ignore those features. The thing to remember
here in Section Ill is that none of these things are really necessary for
you to be able to use NPL for large-scale problems. It’'s just that they
are here in case you want them. | f you don’ t happen to know what a
partition matrix is, you’re unlikely to care about how NPL represents one,
so forget about it.

| n addi tion, unlike the previous Sections, the various pieces of
Sect ion | | | are independent. You can read any part of it without having
read the rest. (We do assume you’'ve got a firm understanding of Sections |
and 11.) What we recommend you do is skim through Section IlI, just to see
what is available. Then any time you decide you could make use of one of
these features, go back and study the relevant portion.

1: SPECIAL DATA STRUCTURES

1 .| : Matrix Sels

The matrix set dimensionality refers to a vector or matrix each of
whose components is itself a matrix, A matrix set may be subscripted in
the usual manner to yield one of its submatrices, which may in turn be
subscr ipted. A matrix set may not be subscripted using anything other than

a scalar.

A one-dimensional matrix set is dimensioned (we’re talking now about
"how you define it, not how you subscript it) using 2 positive integer

“vectors, which must be the same size. The ith component matrix has a row

size equal to the i element of the first vector and a column size equal

t o the I element of the second vector. Tuo-dimensional matrix sets are
dimeneioned in a simi lar manner using 2’ positive integer matrices of
matching size.

All matrices In a given matrix set must have the same type. As
always, the default type (if none is specified) is REAL,

- 91 -

NPL User’s Guide Section I1I

Because each element of a matrix set le an individual matrix, it is
| ega | to have one appear on the left side of a defining assignment
statement. This changes the dimensions of that element matrix, uithout
affecting the other matrices in the matrix set, MWe'llinclude a case of
this in the example below.

Exampiet
“Define a set of four real matrices with sizes 2 by 3,

“3 by 5, 4 by 2, and 5 by 2, respectively.”

DEFINE MS MATRIX SET {2,...,51BY3,5,2,2};

READ MS (2); “Read9 a 3 by 5 rea | matr ix”

MS(1) :=MS(2) ({1,3}, {2,3,5})

“Sets up 2 by 3 submatrix of the 3 by 5 matrix.”

MS{4) := TRANSPOSE (MS{1)xMS(2))

“The dimensions work out right; this is legal,”

MS(3) 1= MS(2) % MS(4)3; “lllegal (MS{3}is 4 by 2 but

"MS(2)x15(4) is 3 by 2}"

DEFINE MS (3):= MS (2)xMS(4) "Lega I, MS (3) i s now
“3 by 2. MS(1), MS(2),
"&MS(4) are unchanged, "

There is no such thing as a ‘vector set’, Each component of a matrix
set must be atwo-dimensional object, although the matrix set itself may be
one-dimensional.

|.2¢ Partition Matrices

A partition matrix (also called a partition& matrix) is a matrix
structure which is divided into a set of partitions both along rous and
along columns. In the DEFINE statement, the dimensions of the partitions
are given as two integer vectors. If we cal | these two vectors R and C,
then the total number of partition9 in the partitioned matrix is
SIZE(R) x SIZE(C), and the total size of the partitioned matrix is SUM(R)
by SUN (€).

For examp | e, the statement
DEFINE PM PARTITION MATRIX {2,3,21BY (2,7}

would set up a 7 by 3 real matrix, partitioned thuslys

-92 -

I11.1.3 Special Data Structures

2 columns 7 columns
L} I I l I I i

2rous [m=d--t--d--dm—dm—fmm o f.

L L L e L
3 rous -t - Rk el et e R
I boobmmbomdomfo e

N R ik Tk ek T SR ey e

A partition matrix is subscripted using two subscripts, yielding a
submatrix (not a scalar). In the above example, PM(1,2) would be a 2 by 7

real matrix, and PM(1,2)(1,1) would be a real scalar at the 1% row and 3"
column of PM.

A partition matrix may not be subscripted using vector subscripts. |t
may be subscripted using the % to yield an entire row or column partition.
Thus PM{1,%) would be a 2 by 9 matrix, and PM{x,%) would be the entire
structure as a 7 by 9 real matrix.

A partition matrix must not appear unsubscripted. To assign (for
example) the values ixj to all components (i,j) of the whole 7 by 9 matrix
above, we would use something like

Pn‘*.*))- COLUMN ('1;!00.7}’* ROW ({1|0-0'9l)
or

FOR‘-(1.too'7}.FOR]-(1.....9}. Pn(*.*)(i' j) - "*j

1.3: Shape Atiributes

Shape attributes have not been implemented in the current HPL
compi ler.

Only matrices may have shape attributes. Like the type and structure
~attributes, shape attributes are specified when a variable is defined, and
.may not be changed by later definitions, Mathematically, the shape
-attributes have no effect. However, by declaring a matrix to be, say,
upper triangular, you are letting MPL know that it can save a lot of uork
by assuming the lower portion of the matrix is zeroes. The attributes
would carry over automatically where appropriate, so that if Ml and M2 were
both defined to be upper triangular, then

- 93 -

MPL User s Gu i de Section 111

DEFINE M3=M1%M2

would define M3 to be upper triangular asuwell. This sort of thing can
lead to problems of demarcation, which is one reason why these features
have not yet been implemented. For instance, is the sum of tuwo sparse
matrices sparse? The product? How about the inverse of a sparse matrix?
Oh well, in case they ever become available, the shape attributes are:

RECTANGULAR
UPPER TRIANGULAR
LOWER TRIANGULAR
DIAGONAL

SPARSE

The default is RECTANGULAR. Remember that only matrices may be given
shape attributes. Also note that, at present, attempting to use these
features may lead to errors.

2: SPECIAL OPERATORS
2.1t MULT

Although logical matrices cannot be multiplied using the ‘%’ operator,
it is possible to perform the boolean equivalent of matrix multiplication,
with logical ‘and” taking the place of multiplication and modulo-2

addition?t taking the place of normal addition. (Mathematical |y, this
corresponds to GF(2) matrix multiplication.) This operation is represented
by the keyword MULT, and is permitted only between two logical matrices of
compatible sizes.

Example:
DEFINE L1 LOGICAL MATRIX 3 BY 4,
L2 LOGICAL MATRIX 4 BY 53

FOR i IN f1,...,3},
FOR JIN{l,ss.,4},
L1Giyj) sm (jJ =2) O R ((i+j)/2)%x2 = (i4+]));
“I.e., either jis 2 or i+jis even.”

FOR1IN{1,...,4},
FOR jIN{l,...,5},
L2(t, jls=(i+j)>4 A N D (i+j) <8 ;

*Hodulo-Z addition between two logical values p and q may be thought
of as the ‘exclusive-or’ operation, which is defined as "{p AND NOT ¢g) OR
(¢ AND NOT p)", which is to say ‘p or g but not both’.

- 94 -

[r.2.2 Special Operators

DEFINE L3 s=L1 MULT L2; "L3 is now defined to be a
"3 by 5 logical matrix”
WRITE <<(3(4L2/)/6(5L.2/)/3(5L2/))>>:L1, L2, L3

This would print three logical matrices, namely:

TTTF
FTFT
TTTF
FFFTT
FFTTT
FTTTF
TTTFF
FTFTF
TTFTT
FTFTF
2.2: 1 NULL--

The operator IS NULL may be used to test whether a vector is nul I,
meaning it has a size of zero. Thus, "V IS NULL” is equivalent to
"SIZE(V) = B8". 1 t is simply an alternative and perhaps more natural way to
write it. The result of the operation is a scalar iogical value.

Examp | es:
f1,...,8} ISNULL yields TRUE
{1,...,2} ISNULL yields FALSE
{1,s..,n ISNULL vyields TRUE if and only if n <8
{8,...,-5} IS NULL yields TRUE

2.3: Precedence

The complete precedence table for MPL operators, including those just
described, is:

- 95 -

MPL User e Gu i de Section I11

First; subscripting, result procedures
; - (unary)

Ko
x /
+ - (binary)
reiationele, IN, NOT IN, IS NULL
MULT
NOT
AND
Last: OR

3 : PROCEDURES (REVISITED)

There are all sorts of fancy features relating to procedures which we
did not want to force upon you in Section IlI. They can be split into four
more or less distinct categories. First, there’s al | the stuff about
parameter-passing conventions, of which the VALUE attribute is but one
aspect. Second, there’'s the use of FORTRAN subroutines and separately~
compiled | i brary procedures, which we al luded to at the end of Section Il,
Third, there is the concept of recursion, a powerful programming technique
with which you may already be familiar. Last, there is the use of
‘parametric procedures’, meaning the use of the name of a procedure as an
argument to another procedure, Not too surprisingly, we shall discuss
these four categories ‘in four separate sections.

3.1+ Parameter-Passing Conventions

We ui | | assume, since you have dared to begin reading this section,
that you understand most if not al | of what we said about the VALUE
attribute in Section II. In this section we will explain the alternatives
to VALUE, what they are and what they do. I f you have already | earned
this from some other programming language, such as ALGOL, you shou | d have
very | i ttletrouble here.

In addition to the usual attributes (REAL, INTEGER, VECTOR, etc.),
formal parameters being defined in a WHERE c¢ | ause may be g i ven an
attribute describing in some sense how the argument is to be treated. This
extra attribute may be any one of the following:

VALUE

RESULT

VALUE RESULT
REFERENCE

- 36 -~

I11.3.1 Procedures (Revisited)

If you don’t specify any of these four attributes, the default is VALUE
RESULT for scalar arguments and REFERENCE for non-scalars, We will now
describe the effects of each of these four attributes.

3.1.1 1 VALUE
We’ve described this before, so we'll just summarize the important
aspects. If an argument has the VALUE attribute then, when you cal | the

procedure, a topy is made of the actual parameter given in the cal I. f
the procedure changes the value of the formal parameter, the actual
parameter is unaffected. Thus the actual parameter i s unchanged uhen you
leave the procedure. (Of course, wuithin the procedure, assigning a new
value to the formal parameter does change the value of the formal
parameter, It's just that, since the formal parameter is a_copy of the
actual parameter, the actual parameter is not affected,)

3.1.2: RESULT

This attribute indicates that the argument is being used only to pass
a result back to the cal ler. This is not to be confused with the result
variable of a procedure. The effect of using the RESULT attribute is that,
when the procedure is called, the formal parameter is assigned no value
whatsoever. That is, the actual parameter, whatever it may be, is ignored
completely when the procedure is entered. When you __exit from the
procedure, then whatever value has been assigned to the formal parameter
gets copied over into the actual parameter.

In order to prevent you from changing the values of constants, it is
i i legal to wuse anything other than a legal <leftside> as an actual
parameter for a RESULT argument.

3.1.3: VALUE RESULT

The VALUE RESULT attribute combines the features of the VALUE and
RESULT attributes. Thus, when the procedure is cai led, a copy is made of
the actual parameter, Any new values assigned to the formal parameter
ui thin the procedure affect only the formal parameter. But then, when the
procedure f inishes, the current value of the formal parameter is copied
back into the actual parameter. This corresponds exactly to what we said
(back in Section Il) would happen if you didn’t specify VALUE. This
shouidn’ t come as much of a surprise to you, since we mentioned just a
| ittle while ago that VALUERESULT is the default,

Because the VALUE RESULT attribute ‘includes’ the RESULT attribute,
the same reetr ict ions apply to the actual parameters permi t ted to
‘correspond to such an argument, namely only <left side>s.

3.1.4: REEERENCE
Arguments passed by REFERENCE are another story entirely. With all
three of the other forms discussed above, the formal parameter was kept

distinct from the actual parameter. The only differences among the three
forms involved when values were copied back and forth between the two.

-97 -

MPL User’s Guide Section 111

When an argument has the REFERENCE attribute, however, i t is not copied.
Any time the procedure uses or changes the formal parameter, i t deals
direct |y with actual parameter. (The term “reference” is used because the
formal parameter, instead of being distinct from the actual parameter,
merely refers to it.)

Examp | e:
DEFINE k t= 79;
INTEGERSIZE : = 4;

PROCEDURE P1(x) WHERE x IS INTEGER VALUE;
|l WRITE <<Pli>>, x, k¢

x t= 1

WRITE << >, x, Kk

PROCEDURE P2({x) WHERE x IS INTEGER VALUE RESULT;
|- WRITE <<P2:5>,x, k;

X = 2

WRITE << >>, X, k

PROCEDURE P3{x) WHERE x IS INTEGER REFERENCE;
I_ WRITE <<P31>>, x, k;

x 1= 3

WRITE << >>, x, k

ln
.)

WRITE <<kl%>>, k;
Pl (k);
WRITE <<%2%>>, k;
P2 (k);
WRITE <<x3%>>,k;
P3 (k)
WRITE <<x4x%x>>, k;

The character strings in the WRITE statements are there to make it easier
to associate the various pieces of the output with the appropriate
statements. The output iss

*x1x 73

Pl: 73 79
] 73

*2x%x 73

P2: 79 73
2 739

* A%

P3: 2 2
3 3

*G4% 3

In P1, the new value assigned to its argument, x, never causes a change in
the value of the actual parameter, k. Thus k is still 79 at %2, In P2,
when x is assigned the value 2, it does not affect k, so the second WRITE

- 08 -

I11.3.1 Procedures (Revisited)

in P2 prints out 2 (forx)and 73 (for k). But when P2 finishes, k gets
assigned the currentvalue of x, so 2gets printed at *3%. Finally, in P3,
when x is assigned the value 3, it immediately affects k, since x ‘refers’
directly to k. So the second WRITE in P3 prints 3 for both values. When
P3 finishes, k is still 3.

MPL does not place any restrictions on what may be used as the actual
parameter for a REFERENCE argument. Thus it is possible for you to destroy
yoursel f, or at least your program, by passing constants to a procedure
which declares the argument to be REFERENCE and then assigns it a new
value.

Example:
PROCEDURE five (x) WHERE x IS INTEGER REFERENCE;

x 1= 5
CALL five (3)3 “Suddenly, ‘3’ has the value 5!"
FOR k IN {1,...,3}, WRITE 3xk;

This would print the sequence of numbers:5, 10, 15, 20, 25, [f you do
this sort of thing deliberately, you forfeit all right to sympathy.

Al | non-scalar arguments default to REFERENCE, because making copies
of them could significantly slow down the procedure. Thus, as we warned in
Section Il, you should be careful about using constants or expressions as
non-scalar arguments in procedure cai Is, if the procedure is expected to
assign new values to those arguments.

3.1.5: Eunctions

Functions are almost exactly the same as procedures. They are written
the same way as are procedures, except the keyword PROCEDURE gets replaced
by FUNCTION. The intention is that functions should be self-contained,
just as mathematical functions have values dependent only upon their
argument(s). A procedure is al lowed to use and/or change the values of any
variables in the program, including those defined outside of itself.
Functions are allowed to use these ‘global’ values, although it is bad
practice. But functions are not allowed to change the value of any variable
which was defined outside the function, Fur thermore, functions are not
a | | owed to have RESULT or VALUE RESULT arguments. The default attribute
for scalar arguments to functions is VALUE, unlike for procedures where it
i s VALUE RESULT.

The effect of all this is to insure that a function cannot affect the
‘outside environment’ in any way, except by returning a result (via a
resul t variable, not via a RESULT argument), Actually, functions can also
.affect the calling program by doing 1/0, since if it reads some input data
“then that data can no longer be read by the main program.

If a function has a REFERENCE argument which is the subject of a

DEFINE or assignment statement within the function, you wi I | get a warning
at compi le-t ime.

- 33 -

MPL User's Guide Section 111

3.2: Seperately Compiled Procedures

At the end of Section 11, when we were showing you how to use MPL, we
explained how you could set up libraries of routines, similar to the

‘I ibrary functions’ listed in Appendix A, which you could then invoke
without having to include them in the calling programs. It is now time to
show you how to wri te programs which use these | ibrary procedures. (We
wi | | cal | them library procedures to distinguish them from the library

functions, although there is really no reason why you couldn't put
functions into a library, too.)

3.2.1t General usage

In Section | | we shoued you the ‘JCL’ which had to go outside your
program in order to tell MPL where to find the libraries. Here we are
going to show you what goes into the calling program, Essentially, you
just have to define the procedure the same way you would if it were being
included as part of the program, but instead of a ‘procedure body’ you use
one of the statements

FORTRAN <<NAME>>
or
MPL <<NAME>>

where NAME is the name of the | ibrary procedure to be used. NAME need not
be the same as the name of the procedure currently being defined, al though
in most cases it is less confusing if the names correspond. For example,
there is a standard FORTRAN function called OSIN, which takes a double-
precision real argument and returns its sine as a double-precision real
value. (All REAL items in MPL are double-precision.) If ue wanted to use
this function in an MPL program, we’d include this in our program:

FUNCTION rs= sin (x) WHERE (r,x} ARE REAL SCALARS;
FORTRAN <<DSIN>>

We could then use ‘sin’ like any other function, Two notes: First, the

, WHERE clause in the preceding example could have been omitted, since REAL
SCALAR is the default. We do not need to specify x to be VALUE since that
is the default for FUNCTIONS. Second, HPL automatical Iy looks in the
FORTRAN system | ibrary, so we wouldn’t have to do anything special in the
JCL in order to use the OSIN function.

) Refer to Section Il for more examples of the use of separately-
comp il ed procedures,

3.2.2: Notes on FORTRAN |inkage

Certain special considerations must be taken into account when using a
FORTRAN | ibrary routine, due to the fact that FORTRAN and MPL have
different internal representations for some forms of data. First off,

- 166 -

111.3.3 Procedures (Revisited)

there is the quest ion of what the MPL data types correspond to in FORTRAN,
since in FORTRAN (at least, in the version of FORTRAN at our instal iation)
there are different types of tnteger, real, and logical values. The
following table shows the correspondence between MPL and FORTRAN data
types, and also the internal form used by the two languages as implemented
on the IBM system.

MPL FORTRAN Internal
INTEGER INTEGERx4 Ful I-word (32-bit) fixed-point
REAL REAL*8 Double-precision floating-point
LOGICAL LOGICALx1 One-byte (8-bit),=8 or 1
CHARACTER LOG | CALx1 One-byte EBCDIC character

The next table shows the permissible’ correspondence between MPL and
FORTRAN data structures. Note that there are no FORTRAN structures
compatible with MPL matrix sets or partition matrices.

MPL FORTRAN
SCALAR scalar
VECTOR I-dimensional array
ROW, COLUMN, MATRIX 2-dimensional array
ARRAY 3-dimensional array

If arrays are passed to FORTRAN routines, care should be taken in
using the asterisk or index sets as subscripts. These may produce an array
which is not stored in consecutive memory locations, a phenomenon which NPL
is prepared for but which will usually cause a run-time error in a FORTRAN
routine. If an array expression of this type is required, you should
define a temporary variable to hold the value, and use the temporary
variable in the FO HRAN call.

3.3: Recursion

There’s a good chance you are already famil iar with the technique of
recursion, in which case all we have to tell you is that MPL procedures are
automat ical ly recursive. (Some | anguages, such as PL/1, require that you
explicitly state when a procedure is intended to be used recursively.) If
you don’t already know what recursion is, read on.

3.3.1:0rdinary recursion

Essential ly, a recursive procedure is simply a procedure which cal Is
Titself. This may sound like an undesirable state of affairs, since if a
procedure cal Is itself, then this second call will eventually call itself
again, and the third cal | wi | | do a fourth cal I, and , . . it sounds as if
we’d never return from any of these calls. Indeed, this problem sometimes
occurs when a recursive procedure fai Is to work correctly, and the
resultant ‘runaway recursion is very much | ike an ‘infinite loop’.
However, when a recursive routine is working correctly, i t does the

- 181 -

MPL User’ s Guide Section 111

recur si ve ca | | conditionally, so that sooner or later the recursion stops and
things begin to return.

Al though anything that can be done with recursion can also be done
with ordinary loops, and vice versa, recursion is often a more natural way
to represent what is going on, The traditional example of a recursive
function is the computation of n factorial(l.2.3....+.n) using a recursive
function, This seems a bit absurd, since we’'ve already used this as an
example of how to use loops, and loops seem to do the job quite nicely.
However, to keep the purists happy, we present here a typical function for
computing n factorial recursively. (Actual iy, by the ground rules for
Section III, we can’t assume you've read the section about functions, 50
we’ | | do it as a procedure.)

PROCEDURE nfact := factorial (n)
WHERE n IS INTEGER VALUE, nf ac t IS INTEGER,;
“We will assume n28.8 factorial = 1 factorial =1,"
IFn< 2,
nfact t=1
ELSE
nfact s= n % factorial (n-1)3

To see how this works, let’'s trace through what happens when factorial is
cal led with an argument of 3. Since n22, it tries to compute
3 x factorial (2}, So all of a sudden we’ve called factorial a second
time, this time with n=2. Again the ELSE-clause is performed, so we need
to compute 2 x factorial (1), Here we go again; we've just cal led
factorial a third time, with n=l. But this time n<2, 50 we merely set
nfact=l. This result is then returned as the result of “factorial (1)", so
the second call to factorial ends up setting nfact to be 2 % 1, or 2. This
result is then returned as the value of “factorial {2)", whereupon the
original casll to factorial can use this value to compute its final result,
3 % 2, or b,

Now that we’ve kept the purists happy, we're going to keep us happy by
giving a more reasonable, if slightly more complicated, use of recursion.
The application we’re going to use is that of sorting a real vector such
that the elements are in ascending order, There are myriad ways to do
this, but one of the simpler (yet efficient) methods involves recursion.
The main idea is that, if you have two vectors already sorted, it is very
easy to combine them into a single sorted vector. You simply step through
them simul taneously, at each step taking the smaller value and copying it
from its vector into the combined one. (Actual ly, it is slightly
misleading to say we step through the two vectors simultaneously, since at
each step we move past the smaller number, while staying in the same place
in the other vector. But the idea should be fairly obvious.) So what we
intend to do is break the original vector into two roughly equal parts,
sort each part using a recursive call, and finally merge the two sorted
halves.

Here we have a procedure which sorts its argument. The sorting is
done ‘in place’, in the sense that the actual parameter is changed. The
condition for terminating the recursion is the vector having a size of 1,
in which case it is already sorted. (Note: This algorithm is often written

- 102 -

I11.3.3 Procedures (Revisi ted)

such that it ui Il only sort vector6 whose sizes are powers of two, which
makes breaking the vector into tuo part8 fairly straightforward. Due to
the power ofMPL's subscripting forms, we will not require this
restriction.)

PROCEDURE sort (V) WHERE V IS_REAL VECTOR;
“Since V is passed by reference, any change6 made to it
“will affect the actual parameter used in the call, The
"sorted vector is stored back in V."
|_ IF SIZE (V) =1, RETURN; "V is already sorted”
DEFINE V' := V({1,3,...,51ZE(V)}),
V' osw VH2,4,...,51ZE(V)))
"V*' and V'’ partition the elements of V."
sort (V')
sort (V''})s
“The sublists are sorted. Now to merge them.
"PV'uwil | be an index for V', PV” for ¥''."
DEFINE PV’ := 1, PV*'’:=1, flag LOGICAL;
“We’re going to step through the two smaller vectors,
“copying elements into V. We'l | be done once we've
“copied as many element9 as Wwe had when we started.”
FOR PV : ={1,...,512E(V)},
f. “We wi | | set ‘flag’ to true iff the next element
“to copy is coming from ¥',"
IF PV'>SIZE(V'),
flag = FALSE “Nothing left in V*."
ELSE IFPV*' > SIZE(V''),
flag t= TRUE “Nothing left in ¥**,"
ELSE
flag 1= (V' (PV') <= V"' (PV'"));

IF ﬂag,
I_ (PY) 1= V' (PV'),
| PV' 1= PY'41

ELSE

|- VPV 1= V' (RV'?),
PV'" 1= PV' 741

-

-
K
You might want to try stepping through this procedure to see how it works
on a small vector, perhaps about six elements,

3.3.2: Foruard procedures

There is a subtle problem which can arise uhen you use recursive
procedures. As long as the only recursion involve9 procedures calling
themselves, vyou’re safe. But suppose you have two procedures, each of
which calls the other? For example, suppose you want to program the
following two logical functions over the non-negative integers:

- 183 -

MPL User’ s Guide Section 111

p(k)= TRUE i f k=@
= plk/2) if k>8 is even
= ql(k-1)/2) if k>B is odd
q(k) =FALSE if k=@
= qlk/2) if k>8 is even

- p((k-11/2) if k>8 is odd

(Another way to define these functions is: p(k) is true if and only if the
binary representation of k has an even number of 1's, and q(k) is -p(k).
But the first definition is more useful for this example.)

It is a fairly simple matter to wriie the above functions in MPL. A
typical pair of procedure6 might be:

PROCEDURE res t=p (k} WHERE k IS INTEGER VALUE, res LOGICAL:
“Assume k i 8 non-negat i ve”
IF k=8,
rss := TRUE
ELSE IF k=(k/2) %2,
res t=plk/2)
ELSE
res 1= ql(k-1)/2); “Could use q(k/2), since k is
“odd, hut this is clearer®

PROCEDURE res:=q{k) WHERE k IS INTEGER VALUE, res LOGICAL:
“Assume k i 9 non-negat i ve”
IF k-0,
res := FALSE
ELSE IF k=(k/2) %2,
res := qlk/2)
ELSE
res = pl{(k=11/2);

So what is the problem? The problem is that, when the MPL compiler
encounters the first procedure, it sees a cal | to ‘q’, but it has not yet
seen the definition of ‘q’. Normal ly you would take care of this by
putting the procedure ‘q' ahead of procedure ‘p’, but this doesn’ t work
. here because ‘q’ uses ‘p’. In effect, each of these two procedures must be
defined ahead of the other,

To take care of situations like that just shown, MPL al lows you to
define what is known in the trade as a_forward procedure.lWhat it amounts
to i s that you may specify anident i fi er which willlater be defined as a

procedure, You may then use the identifier as though the procedure
defini tion had already been given, and then at a later point in the block
give the actual definition. (MPL wi | | give an error message if the

definition is never supplied,)
To define a forward procedure, use a DEFINE statement and give the

identifier the attribute PROCEDURE (if the procedure will not have a
result) or RESULT PROCEDURE (if it will), In the latter case, you should

- 184 -

of

111.3.4 Procedures (Revisited)

also include type and structure attributes specifying the
type/dimensional ity of the anticipated resuit. (As always, the default is
REAL SCALAR.) For example, the pair of procedures given above wou Id be
preceded by the line

DEFINE q LOGICAL RESULT PROCEDURE:

Note that the forward definition does not include any information about the
arguments of the procedure.

3.4: Parametric Procedures

The idea behind parametric procedures is as simple as that underlying
recursion, namely we wish to be able to make the name of a procedure be the
argument to another procedure. This sort of thing can often be useful in
writing procedures which do some sort of analysis of an arbitrary function.
For examp | €, suppose we were writing a numerical integration routine. It
would be reasonable for the routine to have four arguments--the lower and
upper | imits of integration, the accuracy desired, and the function being
integrated. _

To make an argument be a parametric procedure, define it in the WHERE
c lause using one of the attributes PROCEDURE or RESULT PROCEDURE. Do not
give it any other attributes (such as structure or parameter-passing type)
unless it is a result procedure, in which case you must also specify the
type of the result. You may then use the formal parameter exactly as you
would any other procedure. |fyouspecify RESULT PROCEDURE i n the WHERE
clause, the parameter is assumed to be a procedure which returns a result
the specified type, and it is called by its appearance in an expression.
If you specify just PROCEDURE for the argument, it is called by a CALL
statement (or any of the equivalent forms).

A numerical integration routine would be too complex to use as an
examp | e here. instead, we’ll show how to write a procedure which gives
tables of ‘values of an arbitrary real function.

Example:
PROCEDURE tabulate (func, list)
WHERE func IS REAL RESULT PROCEDURE,
l'istIS REAL VECTOR:
“Produces a table giving the value of ‘func' for each
“element of the ‘I ist’ vector, Since ‘list’ is real,
“we can’'t use a FOR loop on it directly. Also, whi le
“we’re at it, we might as wel | print a fancy heading.”
| WRITE <<(8X,A1,13X,4A1/2X,2(13("="),3X)) >>1 <<X>>, <<f (XI>>;
FOR i IN{l,...,SIZE(list)},
WRITE <<{E15.7,E16.7) 5>} list(i), func(list(i))

A typical use of this procedure might look like this.

-105 -

MPL User’s Guide Section I11

PROCEDURE r : = sin {x) WHERE x IS REAL VALUE;
FORTRAN <<DSIN>>;

tabulate (sin, {8,...,181%8.1)

which would produce the output:

X f(X)

0.0 0.0

0.10008800D0 00 8.8983342D-81
©.20008008D 00 0.19866930 00
0.38000000 00 0.29552020 00
0.40000000 00 0.38941830 00
0.50000000 00 0.47942550 00
8.600000880 00 0.56464250 00
0.70000000 00 0.64421770 00
0.80000000 00 0.71735610 00
0.90000000 00 0.78332690 00
6.10000080 01 0.84147100 00

(The formats E15.7 and E16.7 were chosen to make the columns line up the
way they do. If you're wondering why there is only one blank at the front
of each line, you're probably forgetting about carriage control.)

Note: MPL library functions (as listed in Appendix A) may not be used
as parametric procedures. You can get around this restriction if necessary
by defining simple, procedures, such as

PROCEDURE M' :=INVRS (M) WHERE (M,M') ARE MATRICES:
M’ := INVERSE (M);

You could then use INVRS as a parametric procedure.

4: MISCELLANEOUS FEATURES

In this final section we intend to describe a small pot-pourri of
features which did not seem important enough to put in sections by
themselves.

4.1: The EMPTY Specification

Suppose you have written a procedure which uses a global variable, M,
and assumes i t to be a real matrix, Suppose further that you have put this
procedure near the front of your program, but it is not cal led unti | much
later. Since you don’t really need to have a matrix M unti | the procedure

-106 -

111.4.2 Miscellaneous Features

is cal led, you’d like not to have to create the matrix unti | it is that
time. Unfortunately, MPL insists that the matrix at least be defined when
the procedure is being defined, so that MPL can tel | what sort of

operations are being done.

What is needed here (or would at least be useful) is a means for
clef ining a matrix without actual ly creating it, since creating it might
take up lots of space in the computer. This can be done by using the
special EMPTY keyword. It is used in place of the dimensioning
information in the define statement, thusly:

DEFINE M REAL MATRIX EMPTY BY EMPTY

There is nothing unique about matrices in this regard. The EMPTY
dimension may also be used uhen defining vectors or arrays. The effect of
such a definition is to let MPL know what the type and structure of the
variable will be, without actually creating the object or even setting
aside space for it, Of course, before the variable is actually used in the
course of program execution, it had better have been assigned a value.

4.2: The DYNAMIC Aftribute

Specifying the attribute DYNAMIC for a non-scalar variable tells MPL
that the dimensions of that variable are subject to change. MPL
automatical ly assumes a variable is dynamic if it is defined wusing a
defining assignment statement, or if it appears in a RELEASE statement (see
section 4 .4).

The only time you have to uorry about this feature is if you have a
non-sea | ar var i able which i s being passed by REFERENCE to a procedure, and
which w i | | have i ts size changed by the procedure. I f you have such a
variable, and it does not appear in a defining assignment nor a RELEASE
statement, you must define it with the attribute DYNAMIC (along with all
the usual attributes).

4.3: The ABEND Statement

Executing an ABEND statement wi | | cause execution to terminate (as
for a STOP statement) with a user abend code 63 and a core dump. This is
not intended for normal use and is included here only for completeness of
documentation, @ The ABEND statement has the form:

ABEND
Notes: As currently implemented, the FORTRAN monitor wi | | intercept
the abend and ui | | terminate instead with FORTRAN error message IHC2401.

Also, if the run-time option DUMP Is specified in the JCL and any error
occur s, then the job will abend with code 101,

-107 -

MPL User’s Guide Section 1l
4.43 The RELEASE Statement

Normal ly, storage for variables defined within a block is released by
exi tiny from the block, whereupon the storage may be used for other things.
(Rear in mind that, for the foreseeable future, computers have only a
finite amount of storage space!) It is possible to release storage
explicitly in situations uhere block structure may prove inadequate.

The RELEASE statement is used to free the storage used by non-scalar
variables without having to rely on block structure. (Scalar variabies
take up so little space there is no point in ever releasing their storage.)
Each Variable specified in the RELEASE statement is mad8 ‘empty’ and its

storage ie released for general use. The variable may not be used again
without first defining it, such that it will have an expl ici t size and
value,

The form of a RELEASE statement is
RELEASE «<«list of variables>

where each variable in the list may be any unsubscripted non-scalar
variable. The items in the list are separated by commas. Matrix sets may
appear either unsubscripted, in uhich case the entire matrix set s
re leased, or subscripted uith scalars, in which case only the selected
element matrix is freed, i.e., the sizes of its dimensions are set equal to
zero. Partition matrices may not appear at all in RELEASE statements.

A DEFINE statement, when executed, always implicitly releases any old
values (of the pertinent variables) created by previous execution of it or
any other DEFINE statement contained within the same block. Definitions
outside the block will ‘reappear’ when the block is exi ted.

4.5: Program Efficiency

In the current version of the MPL compiler, certain constructs run
significant |y faster than others. Advanced programmers may uWish to at
least be aware of the more and less efficient constructs in MPL 80 as to be
able to write programs uhich run a8 fast a8 possible. There is general ly
no sacrifice in readability, since the faster constructs tend to favor
matrix operations and setgenerators.

4.5.1: Index_sets

In FOR statements, set generators, and subscripts, index sets produce
much faster code than do general vectors.

4.5.2:Storage al location

The RELEASE statement and the DYNAMIC attribute are less efficient
than the stack-oriented allocation method used by block structure.

- 108 -

I11.4.5 tliscel laneous Features

4.5,3: Non-scalar operations

The use of buil t-in array operations,’ using index sets to simulate
loops if necessary, is more efficient than coding FOR loops which

manipulate scalar elements of non-scalar structures.

Examples '
“To negate every other rou of a matrix M, do this;”
M{{1,3,...,ROLSIZE(M)}, %} := -M{{1,3,...,ROUSIZE(M)}, x%);

“Don’t use this (it’'s slouer):"
FOR i IN €1,3,...,ROUSIZEM)}, M{i,%x) = -M(i,%);

"This is slowest of all:"
FOR i IN {1,3,...,ROWSIZE(M}}, FOR jINf1,...,COLSIZE(M)},

MGi,J) 1= =MCi, j)y

Use common sense, though. [f you have to bend over backwards just to
use a matrix operation, it’s probably not worth it. For example, any one
of the following would compute the sum of the elements of a diagonal
(square) matrix M, but the first method is the most efficient.

DEFINE total :=8.8;
FOR i IN{l,...,ROUSIZE(M)}, total s= total + M(i,i);

“or.. .

DEFINE total :t= SUM (M %
COLUMN ({FORiIiN{l,...,ROWSIZE(M)]}, 1.81));

“or..,”

DEFINE total : = (ROW ({FORiIN{l,...,ROUSIZE(M)I}, 1.01)
* (Mx ONES (ROWSIZE (M), ROWSIZE(M)))) (1)

-103 -

APPERDIX A

The following library function8 are predefined outside the main block
of a MPL program.-

Eunction
ABS (S)
TRUNCATE (X)

SUM (V)
MIN (V)
ARGMIN (V)

MAX (V)
ARGMAX (V)

. TRANSPOSE (M)

INVERSE (M)

IDENTITY (J)
ONES (J,K)
ZEROES (J,K)
SIZE (V)
ROWSIZE (M)
COLSIZE (M)
VECTOR (RC)

ROW (V)
COLUMN (V)

Parameter (s)
Real or int. scalar

Real scalar

Real or int. vector
Real or int. ‘vector

Real or int, vector

Real or int. vector

Real or int. vector

Any type matrix

Real matrix

Integer scalar

Two integer scalars
Two integer scalars
Any type vector
Matrix or column
Matrix or row

Row or column

Any type vector
Any type vector

Resul
Absolute value (of same type)

Integer obtained by truncating X
toward zero

Sum of the elements
Smallest element

Index (subscript) of first occur-
rence of smallest element!

Largest element

Index (subscript) of first occur-
rence of largest element!

Transpose of matrix

Inverse of matrix (error i f Mis
non-square or singular)

Real identity matrix of rank J
Real J by K matrix of all ones
Real J by K matrix of al | zeroes
Integer number of elements
Number of rous

Number of columns

Vector with same type, size, and

value as RC

Equivalent row vector

Equivalent column vector

*The functions ARGMIN and ARGMAX are a bit strange in that they return the
index where the minimum or maximum component of a vector first occurs,
except i f the vector is generated by a set generator, in which case the

- 118 -

MPL User’s Guide Appendix A (Library Functions)

function returns the first index of the set generator loop which generated
the component. If the argument to ARGMIN or ARGMAX is empty (null) then
the result is zero. A null argument to MIN or MAX will yield an arbitrary
garbage result.

Due to a compi ler restriction, if the argument to ARGMI N or ARGMAX i s
a set generator, then the FOR-vector within the set generator must contain
only strictly positive elements.

Examp | es:
WRITE ARGNIN ({FORiIN{14,12,11,9},(i-18)%%2});
“The above outputs *11’, whereas;”
DEFINE Vi= {FOR i I N {14,12,11,3}, (i-18)%%2}
WRITE ARGNIN (V)}; “Outputs ‘3"

LET N ={l,.¢.,5}3 LET f(i)= 2%i+l;
WRITE ARGNAX ({FOR i IN Nt f (i) =2, i%x2}) "Outputs ‘@""

-111 -

APPERDIX B

Much of whatwill be said in this Appendix is specific to the current
MPL compi ler. Future versions may vary in their detection and handling of
error condi t ions.

Errors in your program may be detected at any one of three stages. 1[I¢
you write an invalid MPL statement, it will generally be detected when you
try to compile your program. If this happens, NPL will not attempt to
actual ly execute the program, but will merely scan it for further errors.
Other types of errors, such as mismatched array sizes or division by zero,
cannot be detected unti | the program is executed, since they may depend on
data read in at that time. | f such an error occurs, MPL reports i t and
immediately ceases execution, as though a STOP had been executed. | n
between these two phases is the time when MPL, having read your program,
generates from it an equivalent sequence of ‘machine-language’
instruct ions, i.e. instructions simple enough for the computer to perform
directly. Certain problems can occur here if your program is too large.
We will discuss these three areas as they would occur in chronological
order. h

1 + COMPILE-TIME ERRORS

Syntactic errors (errors in form), as well a8 most semantic errors
(errors in meaning), are detected when the program is compiled, Compile~-
time errors messages are of the form:

xxxkERROR¥x <error number> <error message>
NEAR COORDINATE <coord> FOUND NEAR "<tokens>"

The <error message> indicates the nature of the error and the <error
number> provides an index for reference to the more detailed explanations
given later in this Appendix. <coord> is the nearest source statement
coordinate to the error (the coordinates are |isted alongside your
statements when the program is compi led), and <tokens> are the last tuo and
current token being scanned by the compiler when the error occurred. (A
<token> is anything which is a single ‘entity’ to MPL, such as a single
scalar constant, or an identifier, or a semicolon,) I f an error occurs
insicde acomp | ex expression, the <tokens> displayed may be beyond the
actual occurrence of the error. | f the error is a scanner error (241
through 248) then the tokens listed will not include the item in error, but
rather will be the tokens immediately preceding it in the program,

Compile-time error messages in NPL give the location of the error and
the tokens being scanned at the time the error was detected. Most of ten,
though, the error message will be printed after an intervening line of
source program which itself contains no errors, The location of the error
must be located by comparing the coordinate given in the error message uith

-112 -

B.1 Compi le-Time Errors

the coordinates in the left-hand column of the listing, rather than
assuming that the error always occurred in the statement above the error
message. Also, the tokens printed out wi Il of ten be ‘re-worded’ ‘by NPL,
such that they do not necessarily reflect the actual program listing. For
example, MPL might say WRITE when your program said ANSWER, or it might
print ".350808 E+91" when you wrote ‘3.5".

We ui | | now present a sample program listing, showing what some of
these things actually look like. First, let’'s show you the program.

PROGRAM

FORIIN{.8, 1.5, 3.8,7.91,
|_ DEFINE VECT s={l,141,1-3},
X :=VECT % VECT
WRITE I3
WRITE VEC, X

-l
END.

The above program has 3 errors. (You might want to try to find them
yourself before-we point them out. Go ahead; we’ll wait,) First off, it
attempts to use a real vector in a FOR statement. Second, the semicolon is
missing from the end of the DEFINE statement (after the "VECT % VECT").
Third, VECT is misspelled in the second WRITE statement.

The next page shows what the program listing would look like, This is
copied verbatim from an actual listing. Since you don’t get bold-face in
an actual output, the keywords below are printed in normal type.

You can see examples of the re-wording we mentioned. Inthe first
error message, the error was detected when the comma was read, so the last
few tokens were "7.9","}" and ",". They were reported as ", 789339CE+81",
")>" (equivalent to ‘}'), and ",". Don’t worry about the ‘C’ in the real
constant; random letters may turn up at times between the last digit and
the ‘E’, but you can ignore them and you’ll be all right.

A remark concerning the “NEST” column in the listing, As in ALGOL-W,
i t keeps track of the number of unmatched BEGINs or BLOCKs you’ve, gone
past. Thus, if you have what you thought were a matching pair of ‘|_ and
‘_|" markers, then the NEST value just ahead of tHé ‘|_ should equal the
NEST value just after the ‘_|'. 1 f this i sn’ t the case, i t means you’'ve
probably got an unmatché&d|_' or ‘_|' somewhere between the ones in
quest ion.

- 113 -

MPL User's Guide Appendix B (Error Messages)

COCRD NEST SOURCE STATEMENT

00000 00 PROGRAM
00001 81
00001 81 FOR I IN {1.8, 1.5, 3.0, 7.8},
00001 81 |_ DEFINE VECT := {I, 141, -3},
*oxkERROR ok 315 <RANGE VECTOR> NOT INTEGER VECTOR IN ‘FOR'’ -
NEAR COORDINATE 1 FOUND NEAR" .783933CE+81)> , "
00002 02 X += VECT % VECT
00002 02 WRITE 1,
a0kkE RROR#okk 368 SEMICOLON MISSING
NEAR COORDINATE 2 FOUND NEAR" x VECT WRITE "
00003 02 WRITE VEC, X
»xxkE RROR#oxx 322 VEC IS UNDEFINED
N E A R COORDINATE 3 FOUND NEAR "; WRITE VEC "
00003 82 _|
00004 01
00004 01 END.

SYMTAB 33 / 1742 QUADS 34 [/ 4573 BLKTAB 1 / 45
3 ERRORS DETECTED
%xx CODE GENERATION SUPPRESSEO DUE TO ERRORS %%

000.07 SECONDS COMPILE TINE

Certain types of errors’ are particularly likely to lead to several
other errors. Specifical ly, error8 in DEFINE statements wi | | usual Iy
produce other errors later on because the compiler does not have correct
information about the attributes of a variable. Likewise, errors in block
structure or the grouping of statements (|_ ... _|) may, as in ALGOL,
resul t in incorrect variable scope and produce spurious error messages for
undefined variables and bad attributes.

Example:
“Create a 1@ by 18 integer identity matrix and a vector
“containing the first 10 squares. This is a somewhat
“inefficient method, but it’ll do for this example.”

DEFINE M INTEGER MATRIX 18BY 10,
V INTEGER VECTOR 10;

FOR i IN {1,...,18},
|- FORjIN{1,...,18},

IF i =j THEN
MEE, j)sm 1

ELSE
M(i, j) 1= B3

V(i) 3= |

- 114 -

8.2 Code-Generator Errors

Because the IF statement is the only thing being done by the inner FOR
loop, there was no need to enclose it in|_..._| marks, But suppose

that, as you were keypunching the program, you forgot this and included the
‘1" at the end, but didn’t include a ‘'|.' at the beginning, resulting in:

DEFINE M INTEGER MATRIX 18 BY 18,
V INTEGER VECTOR 183

FOR i IN1,...,18},
|_ FORjIN{l,...,181,

IF i =j THEN
MGi,jls= 1
ELSE
M(i, j)s= 0
I3
V(i) t= |

The extra ‘_|'" now acts to terminate the outer FOR loop, so that when the
statement

Vi) sm |

is encountered, you wi Il get an error message due to "1" being undefined.
Then the final ‘*_|' will be reported as extraneous, whereas in reality the
only actual error -occurred somewhat earlier. Finding this sort of thing
can be tricky sometimes, but you'l | get used to it. (Better yet, after a
uhile you'll stop making this sort of error.)

1 f you run into one of these ‘propagating’ errors, you may want to try
fixing the one major error and then re-running your program to see if there
were any other errors which weren’t caused by the blatant one. But don’ t
carry this practice too far! Many novice programmers get into the habit of
fixing the first error they find, then running the program again. In
genera |, this is awaste of time and money, since one listing wil | often
reveal several errors. Unless you have reason to believe that most of your
errors are being caused by one of the problems mentioned above, you should
try to account for (and fix) every error before running your program again.

2: CODE-GENERATOR ERRQRS

After the MPL compi ler has read through your program, it generates
-‘machine-language code which the computer will then execute. During this
‘code-generation phase certain compi ler-specific limitations may be
encountered, resulting in errors which are not real ly your fault. Since
these errors are @ bit more mysterious than those reported during the
previous phase, us will explain them separately.

The errors under discussion are numbers 881 through 1004 (don’ t worry,
there are a lot of unused number8 in between).

- 115 -

MPL User’s Guide Appendix B (Error Messages)

Message 301 is caused by too many different constants appearing in a
single block of your program (if you run into this error, refer to Section
Il for a description of block structure). To fix the problem, more blocks
must be inserted to break up the one that is too large, This may be
possible by simply changing a compound statement to a block, if this action
does not destroy the scope of variables. (Remember that, when you exi t
from a block, all variables defined uithin that block are destroyed.)

Message 902 is similar to 381 and is caused by too many variables
being defined within a single block.

Message 903, on the other hand, is caused by nesting blocks and

procedures too deeply within other blocks and procedures. That is, i f you
define a procedure inside another procedure which is defined within yet
another procedure which..., well, at some point the compiler can no longer

keep track of how far down you've dived. Thus, when breaking a program
into blocks and/or procedures (which are themselves blocks), it is better
if you break it into a sequence of independent blocks, rather than setting
up a complex hierarchy.

Message 984 is similar to 981 and is caused by too much code inside a
single block.

Message 985 is caused by FOR statements being nested greater than 1 0
deep. That is, you have a FOR loop inside a FOR loop inside a FOR loop...
If you really need this many loops inside one another, you can probably
manage it by having 10 of them, where the innermost loop calls a procedure,
The procedure can then do the remaining loops.

Message 306 is similar to 98l and is caused by too many statements in
a single block. This is not quite the same as 904, since the latter
depends on the complexity of the statements. 906 is caused by a fixed
| imi t on the actual number of statements in a single block.

Messages 1001 through 1084 are compiler errors. That is to say, they
shou | dn’ t happen. If one of them happens to you, please rerun the job with
TEXT and CODE parameters (see Section 11.8 if you don’t know how to do
this), and specify a large | ine estimate on your JOB card. Then send the
listing to the HPL project for analysis.

3: LIST OF ERROR MESSAGES

. In this section we present a list of all MPL error messages, with the
except ion of those encountered at run-t ime. The messages are ordered
according to their error numbers, and suggested corrective act ions are
given wherever the error message might not be explicit enough to isolate
the problem.

A ® after the error number indicate8 that the error is ‘fatal’, If

such an error occurs, the compilation isterminated immediately after the
error is reported.

-116 -

B.3 List of Error Messages

A ©® means the expression being examined is flushed ui thout further
scanning, Compilation continues following the end of the expression,

A o means the condition being reported is not an error, but merely a
warning, Your program may run despite these problems, but you should look
closely to make certain you intended 4o do whatever it was you did. Qne
warning which tends to come up with annoying frequency is number 358, which
occur6 whenever you convert a non-scalar integer value to real, or vice
versa.

Port ions of error messages shown here in lower-case represent thi ngs
which wi | | be filled in differently for different errors. For example, in
error 306, the <token> will be whatever token was found at the beginning of
the erroneous statement.

Messages from the input scanner:

241 ILLEGAL CONSTANT

242 INTEGER CONSTANT TOO LARGE

243 ILLEGAL IDENTIFIER

244 STRING CONSTANT LONGER THAN 256 CHARS

245 ® HASH TABLE OVERFLOW (TOO MANY | DENTIFIERS)
You have too many different names in your program, This has
nothing to do with block structure (error 982) and breaking your
program into smaller blocks will not help, This error is
unlikely to occur, since the | imit on the total number of
identifier6 in a single progam is quite large, but if you run
into ityou should try putting parts of your program into
procedure6 and compi | ing them separate ly. See Section III for
the use of separately-compiled procedures.

246 o ILLEGAL CHARACTER ENCOUNTERED

247 ILLEGAL REAL CONSTANT (700 LARGE OR TOO SMALL)

248 ® SYMBOL TABLE STRING SPACE OVERFLOW

Messages from LET processing:

250 ILLEGAL LET DEFINITION SYNTAX

251 ILLEGAL LET REFERENCE ARGUMENT LIST

252 LET VARIABLE PREVIOUSLY DEFINED

253 LET BODY SPACE OVERFLOW
A LET reference expanded to something too large for MPL to handle
in one piece, Sorry,

254 LET RECURSION STACK OVERFLOW
A LET reference expanded into something which contained a LET
reference which expanded into something which... If this goes on
too far, MPL lose6 track of what it’s supposed to be doing, and

_ gives up, producing this error.

255 LET DEFINITION IS RECURSIVE
The <expression> in a LET statement included a use of the LET
synonym being defined. Since, if thissynonym were ever used, it
could never be resolved, this error is reported.

256 MORE THAN 30 DUMMY PARAMETERS IN LET DEF
This is an arbitrary compiler-specific restriction, simi lar to
that mentioned in Sectlon [.7 uith regard to I/ O lists and DEFINE
statements.

=117 -

o —

MPL User’s Guide Appendix B (Error Messages)

257
258

WRONG NUMBER OF ACTUAL PARMS IN LET CALL

LET APPEARS IN LET CALL OR INSIDE LET DEF
Although LET expressions are allowed to involve other LET
synonyms, they must not have a right-hand side which contains the
word LET.

253 © LET EXPANSION ERROR - EXPRESSION FLUSHED

Messages from DEFINE processing:

260
261
262

263
264
265
266
267
268
269
270
271

272

273
274 o

ATTRIBUTE NOT YET IMPLEMENTED
ILLEGAL ATTRIBUTE LIST SYNTAX
MULTIPLE DEFINITION
You tried-to redefine the type or structure of an identifier.
ILLEGAL OPERATOR/KEYWORD IN DEFINITION
‘BY’ MISSING AFTER MATRIX DOMAIN SPEC.
DOMAIN SPEC. MUST BE INTEGER SCALAR
NON-IDENTIFIER IN MULTIPLE DEFINE LIST
ILLEGAL MULTIPLE DEFINE LIST
ILLEGAL DEFINITION SYNTAX
MORE THAN 30 ITEMS IN MULTIPLE DEFINE LIST
ILLEGAL ASSIGNMENT DEFINE
DOMAIN OMITTED FROM ARRAY DEFINITION
DOMAIN SPECIFIED IN 'WHERE' CLAUSE OF PROC.
You mustn’t try to specify the sizes of non-scalar arguments in a
procedure’s WHERE c | ause.
DOMAIN GIVEN IN FORMAL VALUE PROCEDURE DEFINE
The same as 272 but for the result variable.
DEFINE OF REFERENCE PARAMETER IN FUNCTION

A parameter to a function (as opposed to a procedure, see Section
I1l) was declared within the function as being passed by
reference, making it possible for the function to change the
value of the actual parameter. The function has now done a
DEFINE involving that parameter, thereby changing its value in
the cal | ing program. Funct ions aren’ t supposed to change
anything outside themselves, so this is flagged as a warning.

Messages from PROCEDURE processing:

280

281
282
283

284
285
286
287
288

NAME IN ‘WHERE’ CLAUSE NOT IN PROC HEAD
A procedure WHERE clause included. an identifier which was
neither a formal parameter nor the result variab le.

PRDCEDURE NAME MISSING

NAME APPEARS TWICE IN DUMMY PARM LIST

PROCEDURE RESULT VARIABLE NOT DEFINED
If the result variable of a procedure is non-scalar, its first
use within the procedure must be in a DEFINE or assignment DEFINE
statement, in order to establish the size of the variable.

ILLEGAL DUMMY PARAMETER LIST

SEMICOLON MISSING AFTER PROC HEAD

‘END’ EXPECTED

PROCEDURE NAME MULTIPLY DEFINED

ATTRIBUTES DO NOT BATCH THOSE FORWARD DEFINED
In a forward result procedure (Section 1I1) the result variable

- 118 -

8.3

230 o

281 o

292
233
294

295

List of Error Messages

has different attributes from those given in the forward
definition. Another possibility is that the forward definition
did not specify RESULT and the actual definition has a result
variable, or the other way around,

ARRAY PARAMETER NOT SPECIFIED AS REFERENCE

Here the term ‘array’ refers. to any non-scalar parameter. If
such a parameter is not passed by reference, MPL wi | | have to
create a copy of it uhen the procedure is called, which wastes
time and space. Always pass non-scalar arguments by reference
(this is the default) unless you explicitly desire to change the
formal parameter within the procedure without affecting the
actual parameter included in the call.

ASSIGNMENT T0 REFERENCE PARAMETER IN FUNCTION
Similar to message number 274.

DUMMY RESULT NAME MISSING IN VALUE PROC DEF

ILLEGAL FORTRAN EXTERNAL PROCEDURE HEADER

FORTRAN FUNCTION MUST HAVE SCALAR RETURN VAL

FORTRAN functions invoked from an MPL program are not al lowed to
return non-scalar results, since the internal representat ions of
the structures are not compatible between the two languages.

ILLEGAL MPL ExTERNAL PROCEDURE HEADER

Messages from statement processingt

296 o
297 ©
298 ©
299
300
301

302
303 ©
304
305
306
307

308
303
310
311
312
313 ©
314
315
316

317
318
319
320 ©

EXTRA RIGHT PAREN - DELETED
MORE THAN 30 ITEMS IN READ / WRITE LIST
ILLEGAL CASE STATEMENT SYNTAX
CASE STMT INDEX EXPR NOT INTEGER SCALAR
ILLEGAL ITEM IN RELEASE STATEMENT LIST
MULTIPLY DEFINED LABEL
That ' s pronounced “mu | t i plee", not “mu | ti plie".
ILLEGAL LEFT S10E OF ASSIGNMENT STATEMENT
:= EXPECTED AFTER IDENTIFIER
ILLEGAL DIMENSIONALITIES FOR ASSIGNMENT
ILLEGAL MIXED TYPES IN ASSIGNMENT
<token> IS ILLEGAL TO BEGIN STATEMENT
ILLEGAL TYPE/DIMEN IN <CONDEXPR>/ ‘IF° STMT
The <condi t ion> in an IF statement was not a scalar
express i on.
‘THEN’ IS MISSING AFTER ‘IF’
<identifier= IS AN UNDEFINED ‘GO TO’ LABEL
GO TO STATEMENT DOES NOT REFER TO A LABEL
ILLEGAL FORMAT IN 1/0 STATEMENT
ILLEGAL READ / WRITE STATEMENT
‘FOR’ STATEMENT INDEX VARIABLE NOT IDENTIFIER
'IN' MISSING IN ‘FOR’ STMT
<RANGE VECTOR> NOT INTEGER VECTOR IN ‘FOR’
ILLEGAL TYPE/DIMEN IN : CLAUSE AFTER ‘FOR’

The condition given following the colonin a FOR statement

(Section 11) was not a scalar logical expression.
'00' MISSING IN 'FOR' / 'WHILE' STATEMENT
ASSIGNMENT OF PARTITION MATRIX OR ARRAY
<CONDEXPR> NOT LOGICAL SCALAR IN 'WHILE'

ILLEGAL RELEASE STATEMENT SYNTAX

-119 -

logical

MPL User's Guide Appendix 13 (Error Messages)

Messages from expression processing:

321

322
323

324
325
326
27
328
329
330
331

332
3330
334
335
336
337

338

. 339

340
341

343
344
346

347 ©

348
349
350

351
352
353 ©

354 ©

355 ©

356
357

OPERATOR HISSING
You wrote two operands with no operator between them.
<identifier> IS UNDEFINED
<IDENTIFIER> (WHERE <IDENTIFIER> IS-SCALAR
You tried to subscript a scalar. Just what did you have in mind?
<operator> IS ILLEGAL OPERATOR IN EXPRESSION
<operator> IS ILLEGAL BINARY OPERATOR
<operator>| S| LLEGAL UNARY OPERATOR
ILLEGAL DIMENSIONALITY FOR SUBSCRIPT LIST
ILLEGAL TYPE FOR SUBSCRIPT LIST
<operator> ¢ ILLEGAL TYPE
<operator> ¢ ILLEGAL DIMENSIONALITY
ILLEGAL MPLBUILTIN FUNCTION ARGUMENT
A library function was used with arguments which did not meet the
criteria given in Appendix A.
EXPRESSION APPEARS IN READ LIST
ROW/COLUMN USED AS1BY 1 MATRIX FOR %/ MULT
DIMENSIONALITIES DIFFER IN A COMPARISON
UNFORMATTED READ OF NON-NUMERIC VARIABLE
WRONG NUMBER OF SUBSCRIPTS IN LIST
ILLEGAL *IS~NULL'/" IS UNDEFINED’
The keyword UNDEFINED refers to a feature which never got
implemented. Don’t worry about it.
ILLEGAL TRANSFER FUNCTION ARGUMENT
You gave a non-vector as the argument to the ROW or COLUMN
| ibrary function, or a non-row non-column to the VECTOR function,
ILLEGAL ITERATED VECTOR GENERATOR
ILLEGAL TYPE/DIMEN FOR UNARY -
ILLEGAL FUNCTION/PROCEDURE CALL
NULL EXPRESS | ON
<name>: FORWARD PROCEDURE NEVER DEFINED
<number> ACTUAL PARAMETER! MISMATCHED ACTUAL / FORMAL

The a™ actual parameter in a procedure cal | did not have the
same type and structure as the formal parameter in the procedure.

ILLEGAL EXPRESSION SYNTAX

ILLEGAL COMMA

ILLEGAL ,..., IN VECTOR EXPRESSION

ILLEGAL TYPE/DIMEN IN VECTOR EXPRESSION.
This is the error you’ | | get if you try to mix integer and real
constants in asingiée N-tuple.

ILLEGAL ITERATIVE YECTOR EXPRESSION

ILLEGAL USE OF PARTITION MATRIX/ARRAY

EXPRESS1 ON ENDS BADLY

OPERAND STACK OVERFLOW
The expression is too complicated for MPL to figure out in one
piece. Break it up into two or more smaller expressions, using
temporary variables if necessary.

OPERATOR STACK OVERFLOW
Similar to 354.

ILLEGAL TYPE/DIMEN FOR ‘IN’ / ‘NOT IN’

PROPER PROCEDURE APPEARS IN EXPRESSION
You tried to cal | a non-resul t procedure as i f i t were a result
procedure.

- 120 -

8.3 List of Error Messages

358 e ARRAY TYPE CONVERSION REQUIREQ
You performed some operation, perhaps assignment, which requires
treating an integer value as if it were real, or vice versa. MPL
is merely warning you that it will have to convert every element
of the non-scalar structure from integer to real, or vice versa,
and that this will slow down your program, You may want to
redefine some of your variables and/or change some constants from
integer to real (or vice versa) in order to cut down on this
source of inefficiency,

359 RIGHT PAREN MISSING

360 <number> ACTUAL PARAMETER: EXPR IS RESULT FORMAL PARM
This is the error youll get If you fail to define a scalar
argument with the VALUE attribute, and then cal | the procedure
with an expression as the actual argument,

Messages from overall program processing:

361 ‘PROGRAM MISSING AT START
362 ¢ ', MISSING AT END
363 "END* OMI TTED

364 ® SYMBOL TABLE OVERFLOW
Similar to 245. Same measures should be taken.

366 ® QUADRUPLE SPACE OVERFLOW
(MPL calls its intermediate form of code ‘quadruples’.) This
condition is similar to that of messages 364 and 245. The same
corrective measures apply.

367 PROGRAM IS DUMMY EXTERNAL MPL PROCEDURE

368 SEMICOLON MISSING

369 SEGMENT TABLE OVERFLOW

370 BLOCKS NESTED TOO DEEP
Must be 7 levels or less, including the main program. Similar to
message 903.

Code generator error messages:

See previous section for explanations,

901 ® SEGMENT PROLOGUE > 4K

902 ® DATA AREA OVERFLOW

903 ® FUNCTION / PROCEDURE CALLS AND BLOCKS NESTED TOO OEEP
904 ® PROGRAM SEGMENT > 8K

905 ® FOR'S NESTED > 3.0 DEEP

906 @ COORDINATE TABLE OVERFLOW

1001 @REGISTER ALLOCATION HANGUP (COMPILER ERROR SHOULD NEVER OCCUR)
-1002 @REGISTER ALLOCATION HANGUP (COMPILER ERROR SHOULD NEVER OCCUR)
11803 @REGISTER ALLOCATION HANGUP (COMPILER ERROR SHOULO NEVER OCCUR)

1004 @REGISTER ALLOCATION HANGUP (COMPILER ERROR SHOULO NEVER OCCUR)

- 121 -

MPL User's Gu i de Appendix B (Error Messages)
4: RUN-TIME ERRORS

Run-time errors in MPL may result from a variety of conditions which
cannot be detected at compile-time, such as unequal sizes in a non-scalar
assignment. ~

The information provided when a run-time error occurs includes the
source coordinate of the error, the error message, and a traceback of
procedure and block cal Is. Each location referred to in the traceback
gives the source coordinate of the location and the name of the procedure
(or “*BLOCK™*” if it is contained by an explicit block, or "xMAIN%" if it is
contained in the outer level of the main MPL program) that contains the
location.

The following is hopefully a complete list of MPL run-time error
messages and exp | anat ions. Note that the error messages tend to use the
term “array” to mean any non-scalar object.

ARRAY SUBSCRIPTING

A subscript for a non-scalar object is out of range.

CASE SELECTION INDEXING

The integer expression of a CASE statement was outside the range
{1,...,nl, where n is the number of statements among which the CASE
statement was to have selected.

FORTRAN DETECTED ERROR
An error was found by the FORTRAN run-time monitor, which MPL uses for
var i ous tasks. The line immediately preceding the MPL error message
should be an error message from the FORTRAN routine which detected the
error condition. Refer to standard FORTRAN documentation if necessary
to analyze the error,

ILLEGAL ARGUMENT FOR INVERSE

The argument matrix for the library function INVERSE was not square.

ILLEGAL ARRAY FOR FORTRAN

An array passed to an external FORTRAN subroutine was not in column-
major order.

ILLEGAL ARRAY SIZE DEFINED
In a non-assignment DEFINE statement the size(s) were non-positive.

ILLEGAL DIMEN ARG MATRIX SET

In the definition of a matrix set the dimension arrays contained non-
positive elements, were nul |, or differed in size.

- 122 -

0.4 Run-T i me Errors

ILLEGAL ITER VECTOR IN SUBARRAY

An index set used as a subscript had components that were out of range
as legal subscripts. Alan, if the object being subscripted is not a
vector, the error may have been caused by the index set being nul I.
(Only vectors may be subscripted by a nuli vector, yielding a nul |-
vector result,)

ILLEGAL PART MATRIX DIM VECT

In the definition of a partition matrix one of the dimension vectors
had non-positive elements or was null,

ILLEGAL SIZES FOR CONCAT

The row sizes for horizontal concatenation, or the column sizes for
vertical concatsnation, did not match.

ILLEGAL SIZES IN MATRIX MULT

In a matrix multiplication or logical MULT operation the column size
of the first operand did not equal the row size of the second.

INTEGER CONVERSION

An attempt was made to convert a real value to an integer, where the
magnitude was greater than the largest integer (23'-1).

REDEFINE OF NON-DYNAMIC PARM

An actual parameter corresponding to a non-scalar parameter in a
procedure, and which was assigned a new size inside the procedure, did
not have the attribute DYNAMIC.

SINGULAR ARGUMENT FOR INVERSE
The matrix argument to the library function INVERSE was singular.
STORAGE OVERFLOW

The MPL program requires more main storage than is available for your
job on the computer. You might be able to fix this by judicious use
of block structure or RELEASE statements to free up storage once
you’'re done with it.

UNDEFINED ARRAY

A non-scalar variable was referenced that had not been defined. This
may occur when the result variable for a procedure is non-scalar and
its first use inside the procedure is not in a DEFINE statement (to
specify its sizel. Such an error may get detected at compile-time.
Null vectors may also be reported as “undefined arrays” under certain
circumstances.

UNEQUAL SIZE ARRAYS ASSIGNED
- 123 -

MPL User’s Guide Appendix B (Error Messages)

The size attributes of the left side of an assignment statement do not
match those of the expression on the right. Note that in an
assignment DEFINE the right side sizel(s) are copied to the left side,
so that mismatching of this sort cannot occur.

UNEQUAL SIZE ARRAYS COMPAREOQ
The sizes of two non-scalars being compared differ.
UNEQUAL SIZE ARRAYS IN ARl TH

In an ari thmetic operat ion for non-scalars that requires operands of
equal size, the operands were not of equal size.

UNFORMATTED INPUT
The input cards for an unformatted READ or GIVEN statement contained
something other than legal arithmetic constants, or a real value was
encountered when an integer uas called for,

ZERO INCRMT INITER VECTOR

In an iterative vector (index set) the second element equal led the
first.

- 124 -

APPERDIX C

The following tables indicate what types and structures are al lowed
with each binary operator. To use these tables to determine whether a
given use of an operator is legal, first find the table for that operator.
Then check the list of legal data types to make certain the data types
you're using are permitted, Next, find the row corresponding to the data
structure of the. left operand and the column corresponding to the right
operand. The table entry for that row and column indicates the structure
of the result.

If the entry -is® it means that the operation is i | legal for that

combination of structures. There may also be a reference to one of the
footnotes at the end of this Appendix.

Addition and Subtraction: + -

Legal typest integer, real

+- | scalar vector row column matrix array
scal ar scalar vector row column matrix array
vector vector vector’ ® ® ® ®
row row ® rou’ row’ row’ ®
co | umn co | umn ® column’ column’ matrix’ &
matrix matrix ® matrix’ matrix* matrix’ @
array array ® ® ® ® array’

- 125 -

MPL User * s Guide Appendix C (Operators and Operands)

Multiplication: *

Legal types: integer, real

* scalar wvector row column matrix array
scalar scalar vector row column matrix array
vector vector scalar’ ® ® ® ®
row row ® matrix? scalar? rou? ®
column column ® matrix matrixX*matrix’®
matrix matrix ® matrixcolunn? matrix®
array array ® ® ® ® ®

Division: /
Legal types: integer, real

/ scalar vector row column matrix array
scalar scalar ® ® ® ® ®
vector vec tor ® ® ® ® ®
row row ® ® ® ® ®
co | umn co | umn ® ® ® ® ®
matrix matrix ® ® ® ® ®
array array ® ® ® ® ®

-126 -

MPL User a Gu | de Appendix C (Operators and Operands)

Horizontal Concatenation: |

Legal types: integer, real, logical, character

} scalar vector row column matrix array
scalar ® ® ® ® ® ®
vector ® vector matrix matrixXmatrix’
row ® matrix matrix matriXmatrix* @
co | umn ® matrixX matrix” matriXmatrixX’ @
matrix ® matrixXmatrixXmatrixXmatrix’ ®
array ® ® ® ® ® ®

Vertical Concatenation: #
Legal types: integer, real, logical, character

H scalar vector row column matrix array
scalar ® ® ® ® ® ®
vector ® matrix! matrix? matrix* matrix®
row ® matrixX*matrixX*matrixXmatrix'®
co | umn ® matrixX* matrix*matrix matrix'®
matrix ® matrix? matrix matrixXmatrix®
array ® ® ® ® ® ®

- 127 -

MPL User’s Guide Appendix C (Operators and Operands)

Exponentistion: %

Legal types: Integer, real

x scalar vector row column matrix array
scalar scalar ® ® ® ® ®
vec tor ® ® ® ® ® ®
row ® ® ® ® ® ®
column ® ® ® ® ® ®
matrix ® ® ® ® ® ®
array ® ® ® ® ® ®

Membership: IN, NOT IN

Legal types:integer, real (result always logical)

IN scalar vector row column matrix array
scalar ® scalar ® ® ® ®
vec tor ® ® ® ® ® ®
row ® ® ® ® ® ®
co | umn ® ® ® ® ® ®
matrix ® ® ® ® ® ®
array ® ® ® ® ® ®

- 128 -

, MPL User’'s Guide Appendix C (Operators and Operands)

Logical Multiplication: MULT
Legal types: logical

MULT scalar vector row column matrix array
scalar scalar® ® - ® ® ® ®
vector ® ® ® ® ® ®
row ® ® matrixscalar? ron? ®
column ® ® matrix matrix’ matriXe®
matrix ® ® matrix*column’ matrixX®
array ® ® @ ® ® ®
Logical ionss AND, OR

Legal types: togical

AND, OR | scalar vector row column matrix array

scalar scalar ® ® ® ®
vector ® ® ® ®
row ® rou! ® ® ®
co | umn ® ® ® column' ® ®
matrix ® ® ® ® matrix! ®
array ® ® ® @ ® ®

- 129 -

MPL User's Guide Appendix C (Operators and Operands)

Assignment: : = (or =)

Legal tupess integer, real, logical, character

t= scalar vector row column matrix array
scalar legal ® ® ® ® ®
vector legal legal’ legal’ legal ® ®
row legal legal’ legal’ legal’ legal ®
column legal legal” legal’ legal’ |legal ®
matrix legal ® legal’ legal’ legal ®
array legal ® ® ® ® legal’

Notes:

‘Size must match to be legal. E.g., row + column is legal only if both the
row and column have size 1.

2Column size of first must equal row size of second,
3Row sizes must match.
9Column sizes must match.

E’Equivalent to AND operation.

- 138 -

This is a complete list of MPL

keywords,

where in this manual they are described.

$LET

ABEND
AND
ANSWER
ARE

ARITHMETIC?
ARRAY
ARRAYS

BEGIN

and

BLOCK
BY

CALL

CASE
CHARACTER
CHARACTERS
COLUMN
COLUMNS

DEFINE

and

DEPENDENT®
DIAGONAL’

DIMENSIONAL *
DO

and
and

DOMAIN’
DYNAMIC

ELSE
-EMPTY
'END

EXECUTE
EXTERNAL’

FALSE
FOR

11.7.1

111.4.3
11.2.1.4
1.5.2
11.4.2

- 131 -

APPERDIX D

together wi

th references t o

FORTRAN 111.3.2.1
FUNCTION 11.4
and111.3.1.5
GIVEN 1.5.3
GO 1.4.6
GOTO0 1.4.6
IF 1.4.3
and 11.3.2
IN 1.4.5
and 11.2.1.5
and 110203
INDEPENDENT?
INLINES
INTEGER 1.2.3
INTEGERS 1.2.3
IS 11.4.2
and 111.2.2
LET 11.7.1
LOGICAL I1.1.1.1
LOGICALS I1.1.1.1
LOWER' 111.1.3
MATRICES 1.2.3
MATRIX 1.2.3
and 111.1.1
and I11.1.2
MPL 111.3.2.1
MULT 111.2.1
NOT 11.2.1.4
and11.2.1.5
NULL 111.2.2
OF 11.3.3
OR 11.2.1.4
OTHERWISE 1.4.3
PARTITION 111.1.2
PARTITIONED 111.1.2
PROCEDURE 1.4
and111.3.3.2
and 111.3.4
PROGRAM 1.6

MPL User’'s Guide

READ

REAL
REALS

and

RECTANGULAR’

REFERENCE
RELEASE
RESULT

RESULTS
RETURN
ROW
ROWS

SCALAR
SCALARS
SET

SPARSE’
STOP

THEN
TO

TRIANGULAR’

TRUE

UNDEFINED’
UPPER’

VALUE
VALUES

VECTOR

VECTORS

WHERE
WHILE

WITHS
WRITE

and
and

and
and

and
and

and

P Pt Dl P —

s B

AN
W

. e » e
2 e

e e BB P
—

— bt s
——
- W
—

I11.1.3

-132 -

Append ix D (Keynords)

Notes:

‘Reserved for feature not
yet implemented.

2Reserved for feature not
yet defined and thus not
included in this manual.

30bsolete; reserved to be
compatible with previous
versions of MPL.

of MPL were

NISTORICAL ROTE

Contributors to MPL

The development of the Mathematical Programming Language started in
1967 and went through a number of stage6 from initial specification to

implementation via translators and compilers.
Those responsible for (or who participated in) the first specification

Stephen K. Schuch

Paul Davies
Christoph Witzgall

David J. Gries
Paul P.Pinsky

Rudo!| f Bayer
James tl. Bigelow
George B. Dantzig

The second specification of MPL was prepared by

Vincent Nicholson

Stanley Eisenstat
) Christiana Ried|

“Thomas L. Magnant i
Steven F. Maier

A PL/1 translator of MPL to PL/1 was prepared by
Michael McGrath

Compiler specifications were prepared by

Theodore C. Tenny and Makoto Arieawa

This User’s Guide is based on the MPL compiler designed and

implemented by
Thomas S. Hedges

Some general suggestions with respect to the Hedges compiler were made by
John Tom | in and James Kalan, and some of the final stages of debugging were

done with the assistance of Donald R. Woods,
The User's Guide was written and produced by

Donald R. Woods

with technical advice from Thomas S. Hedges and editorial advice from
It was produced using the PUB document compiler and the

George B. Dantzig,
Xerox Graphics Printer at the Stanford Artificial intelligence Laborator:,

Research supported by NSF grant DCR74-23814.

-133 -

