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Abstract

This paper is concerned with least squares problems when the least
squares matrix A is near a matrix that is not of full rank.

A definition of numerical rank is given. [t is shown that under
certain conditions when A has numerical rank r there is a dis-
tinguished r dimensional subspace of the column space of A
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columns of A. The consequences of this fact for the least squares
problem are examined. Algorithms are described for approximating
the stable part of the column space of A.
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1. Introduction

In this paper we shall be concerned with the following problem.
Let A be an m x n matrix with m = n, and suppose that A is near (in
a sense to be made precise later) a matrix B whose rank is less than
n. Can one find a set of linearly independent columns of A that span
a good approximation to the column space of B?

The solution of this problem is important in a number of applica-

t ions. In this paper we shall be chiefly interested in the case where
the columns of A represent factors or carriers in a linear model

which is to be fit to a vector of observations b. In some such applica-
tions, where the elements of A can be specified exactly (e.g. the
analysis of variance), the presence of rank degeneracy in A can be

dealt with by explicit mathematical formulas and causes no essential
difficulties. 1In other applications, however, the presence of degeneracy
is not at all obvious, and the failure to detect it can result in meaning-
less results or even the catastrophic failure of the numerical algorithms
being used to solve the problem.

The organization of this paper is the following. In the next sec-
tion we shall give a precise definition of approximate degeneracy in terms
of the singular value decomposition of A. In Section 3 we shall show
that under certain conditions there is associated with A a subspace
that is insensitive to how it is approximated by various choices of the
columns of A, and in Section 4 we shall apply this result to the solution
of the least squares problem. Sections 5, 6, and 7 will be concerned with

algorithms for selecting a basis for the stable subspace from among the



columns of A.

The ideas underlying our approach are by no means new. We use the
singular values of the matrix A to detect degeneracy and the singular
vectors of A to rectify it. The squares of the singular values are

the eigenvalues of the correlation matrix ATA, and the right

singular vectors are the eigenvectors of ATA, that is the principal
components of the problem. The use of principal components to eliminate
colinearities has been proposed in the literature (e.g. see [4,9,16,17]).
This paper extends these proposals in two ways. First we prove theorems
that express quantitatively the results of deciding that certain columns
of A can be ignored. Second we describe in detail how existing compu-
tational techniques can be used to realize our methods.

A word on notation is appropriate here. We have assumed a linear
model of the form b = Ax + e, where b is an m-vector of observations
and x is an n-vector of parameters. This is in contrast to the usual
statistical notation in which the model is written in the form y = XB + e,
where y is an n-vector of observations and B is a p-vector of parameters.
The reason for this is that we wish to draw on a body of theorems and
algorithms from numerical linear algebra that have traditionally been
couched in the first notation. We feel that this dichotomy in notation be-
tween statisticians and numerical analysts has hindered communication
between the two groups. Perhaps a partial solution to this problem is the
occasional appearance of notation from numerical analysis in statistical
journals and vice versa, so that each group may have a chance to learn the

other’s notation.
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Throughout this paper we shall use two norms. The first is the

Euclidean vector norm ||'||2 defined for an n-vector x by
n
w2 _ 2
'ty = Z X
i=1
and its subordinate matrix norm defined by

A, = sup JiAx],.
Icll;=1

The second is the Frobenius matrix norm defined for the m x n matrix A by

2
Al = ) ) a%..
Fosr g

Both these norms are consistent in the sense that

llz"\BHp = IAIL Bl P = 2,F)

whenever the product AB is defined. They are also unitarily invariant;

that is if U and V are orthogonal matrices then
IAI = IUTAlL = AVl e =2,F)
P p P )
For more on these matrix norms see [14].

2. Rank Degeneracy

The usual mathematical notion of rank is not very useful when the
matrices in question are not known exactly. For example, suppose that A
is an m x n matrix that was originally of rank r < n but whose elements
have been perturbed by some small errors (e.g. rounding or measurement
errors). It is extremely unlikely that these errors will conspire to

keep the rank of A' exactly equal to r; indeed what is most likely is
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that the perturbed matrix will have full rank n. Nonetheless, the
nearness of A to a matrix of defective rank will often cause it to
behave erratically when it is subjected to statistical and numerical
algorithms.

One way of circumventing the difficulties of the mathematical
definition of rank is to specify a tolerance and say that A is numeri-
cally defective in rank if to within that tolerance it is near a defective
matrix. Specifically we might say that A has e-rank r with respect

to the norm [+ if
(2.1) r = inf (rank(B): |JA-B||=¢€}.

However, this definition has the defect that a slight increase in ¢

can decrease the numerical rank. What is needed is an upper bound on
the values of € for which the numerical rank remains at least equal to

r. Such a number is provided by any number 6 satisfying
(2.2) e<6= sup {n:||A-B|l=mn= rank(B) = r).
Accordingly we make the following definition.

- Definition 2.1. A matrix A has numerical rank (8,e,r) with

respect to the norm [[*||if 6,e, and r satisfy (2.1) and (2.2).

When the norm in definition 2.1 is either the 2-norm or the Frobenius
norm, the problem of determining the numerical rank of a matrix can be
solved in terms of the singular value decomposition of the matrix. This
decomposition, which has many applications (e.g. see [7]), is described in

the following theorem.
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Theorem 2.2. Let A be an m x n matrix with m > n. Then there

is an orthogonal matrix U or order m and an orthogonal matrix V

of order n such that

2
(2.3) ulAv = < )
0

where
Z = diag(O'l,O'Z,. o ’On)

and

For proofs of this theorem and the results cited below see [14]. The
numbers G120+ +50p5 which are unique, are called the singular values
of A. The columns UpsUgsees U of U are called the left singular

vectors of A, and the columns Vi:Vys---»V, are called the right singular

vectors of A. The matrix A has rank r if and only if

2.4 =
( ) O'r >0 0r+1’

in which case the vectors ul,uz,...,urform an orthonormal basis for the
column space of A (hereafter denoted by R(A)).

It is the intimate relation of the singular values of a matrix to
its spectral and Frobenius norms that enables us to characterize numeri-
cal rank in terms of singular values. Specifically the spectral norm of

A is given by the expression.
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Moreover, if TIZTZ st are the singular values of B = A + E, then
05773 | = HEII2 i=1,2,...,n).
In view of (2.4) this implies that

(2.5) inf ||A-B|

rank(B)=r 2 r+l

and this infimum is actually attained for the matrix B defined by

Zi
(2.6) B = U( )vT,
) 0

where Z' = diag(ol,oz,.. .,or,O,. .., 0).

Likewise

22 )
HAHF— op toyt ... * o,

and

inf JA-BIE=ol ¢ ..+ ol

rank (B)=r r+l
The infimum is attained for the matrix B defined by (2.6).
Using these facts we can characterize the notion of numerical rank.
In the following theorem we use the notation rank (5,e,r)p to mean numeri-

cal rank with respect to the norm H'Hp.

Theorem 2.3. Let 01 20,2...20 be the singular values of A.

Then A has numerical rank (6,5,1’)2 if and only if

(2-7) O'r =>28>¢ = crr+1.
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Also A has numerical rank (B,e,r)F if and only if

< . 2 ogl ol s )
r + o ewmm F =8 €7 = ‘
oT+l n - r+] —— CJ-n'

Proof. We prove the result for the spectral norm, the proof for
the Frobenius norm being similar. First suppose that (2.7) holds. Then
by (2.5) if IIB-AH2 <8 we must have rank (B) = r. Consequently § satis-

fies (2.2). This also shows that
min {rank(B): ||[B-Al|se}=r.

But the matrix B of (2.6) is of rank r and satisfies ”A'B”255-
Hence ¢ satisfies (2.1).

Conversely, suppose 8,e, and r satisfy (2.1) and (2.2). Then
by (2.5),650r. Also €20.,¢5 for if not by (2.1) there is a matrix
B of rank r satisfying ||A-B|l<or+1, which contradicts (2.5).o

Because of the simplicity of the characterization (2.7) we shall
restrict ourselves to rank defectiveness measured in terms of the spectral
norm.

We shall need two other facts about singular values in the sequel.

First define

(2.8) inf(A) = inf 1],
”X”2=1
Then
inf(A) = %

where ° is the smallest singular value of A. Second, let X and Y

be any matrices with orthonormal columns and let TP T 2T be
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the singular values of C = X]:AY. Then

(2.9) o,z T (i= 1,2,...,k)
and
(2.10) T i+1 > O i+l i=1,2,..., k).

3. The e-Section of R(A)

Having confirmed that a matrix A has numerical rank (6,e,r)2
with r < n, one must decide what to do about it. If the singular value
decomposition has been computed as a preliminary to determining the
numerical rank, one solution naturally presents itself. This is to work
with the matrix B defined by (2.6). Because B has an explicit repre-
sentation in terms of Z', the usual difficulties associated with zero singular
values can be avoided. Moreover, the solution so obtained is the exact
solution of a small perturbation of A.

However, this solution has the important defect that it does not
) reduce the size of the problem. For example, if the problem at hand is
to approximate a vector of observations b, the procedure sketched above
will express the approximation as a linear combination of all the columns of
A,: even though some of them are clearly redundant. What is needed is a
device for selecting a set of r linearly independent columns of A.
In Sections 5 and 6 we shall discuss numerical techniques for actually
making such a selection. In this section and the next we shall concern
ourselves with the question of when making such a selection is sensible.

The main difficulty is that there are many different sets of r
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linearly independent columns of the matrix A, and not all these
sets may be suitable for the problem at hand. For example, if the
problem is again that of approximating a vector of observations b,
then for each set of columns we shall attempt to find a vector in
the subspace spanned by the columns that is in some sense a best
approximation to b. Now if the subspace determined by a set varies
widely from set to set, then our approximation to b will not be sta-
ble. Therefore, we turn to the problem of determining when these
subspaces are stable.

We shall attack the problem by comparing the subspaces with a
particular subspace that is determined by the singular value decomposition.
Let A have numerical rank (6,e,T). Let the matrix U in (2.3) be

partitioned in the form
u=,0),

where Ua has the r columns UpsUsseensll Then we shall call R(Ue)
the c-section of R(A). Note that the e-section of R(A) is precisely the
column space of the matrix B defined in (2.6).

We shall compare subspaces in terms of the difference of the ortho-
. gonal projections upon them. Specifically for any matrix X let PX
denote the orthogonal projection onto R(X). Then for two subspaces R(X)
and R(Y) we shall measure the distance between them by IIPX-PYH2 (for
the various geometric interpretations of this number, which is related

to canonical correlations and the angle between subspaces, see [1,2,13]).

It is known that if Y has orthonormal columns and X has orthonormal
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columns spanning the orthogonal complement of 77(X), then

(3.1) IPy-Pyll, = 187,

The selection of r columns al.l,aiz,...,a.r from the matrix
A= (al,az,...,an) has the following matrix interpretation. Let W
be the n x r matrix formed by taking columns il’iZ""’ir from the n xn
identity matrix. Then it is easily verified that (al. Ay peees @y ) = AW.
Of course V\T W =TI, so that W has orthonormal columns, aid this fs all

that is needed for the following comparison theorem.

Theorem 3.1. Let A have numerical rank (6,5,1‘)2 and let U
14
. be defined as above. Let W be an n X r matrix with orthonormal columns

and suppose that
(3.2) v = inf(AW) > 0,
where inf(X) is defined by (2.8). Then

Proof. The matrix WTATAW is positive definite and hence has a
nonsingular positive definite square root. Set Y = Aw(q{lv‘q:z\‘AW)‘"T/‘. It
is easily verified that Y has orthonormal columns spanning R(AW).

Moreover, from (3.2)

-1/2 1

(3. howaTan Y, = 7L,

The matrix ﬁe also has orthonormal columns, and they span the orthogonal
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complement of R(Ua)° It follows from (2.3) that
T <
(3.5) HUEATI2 < e.

Hence from (3.1),(3.4), and (3.5)

i AT, T.T, T.-1/2
1By Pl = 10 ANGEATAR 2

-1/2

IA

T T T
U Al WL v A A 2y

IA

e/vy.o

Theorem 3.1 has the following interpretation. The number y measures
the linear independence of the columns of AW. [f it is small compared to
AW then the columns of AW themselves must be nearly dependent. Thus

Theorem 3.1 says that if we can isolate a set of r columns of A that

are strongly independent, then the space spanned by them must be a good

approximation to the s-section R(US).

However, there are limits to how far we can go with this process.
By (2.8) the number vy satisfies o. >y, and by the definition of numeri-

cal rank 520r+1' Consequently, the best ration we can obtain in (3.3) is

0r+1/or. Thus the theorem is not very meaningful unless there is a well
. defined gap between Or+l and' o.. One cure for this problem is to in-

crease ¢ in an attempt to find a gap; however, such a gap need not exist

(e-g. suppose o,

i1 Gi/z (i=1,2,...,n-1)). What to do when the matrix

A exhibits a gradual rather than a precipitous decline into degeneracy
is a difficult problem, whose solution must almost certainly depend on

additional information.
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A second difficulty is that it may be impossible to obtain the

ideal ratio because in practice we must restrict our choice of W to
columns of the identity matrix; i.e. we must choose from among columns

of A. That this is a real possibility is shown by the following example.

Example 3.2. Let e(n) denote the vector (1,1,...,1)T with n

components. Thematrix

has singular values 1,1,...,1,0, so that it has numerical rank (1,0,n—1)2.
Thus we should like to remove a single column of An to obtain an approxi-
mation to the O-section of A. Owing to symmetry, it does not matter which
column we remove. If we remove the last one, the resulting matrix An

has the form

T
e @1

A' = E
n n n

- where En consists of the first n-l1 columns of the identity matrix.

-1 -1
R e(n_l) _ 1 e(n ) Cnel e(n )
nAT n-1 0 n 1

Thus

from which it follows that



SN |

and

v = inf(A") 5—1‘%

It should be observed that the factor n_l/2 exhibited in the
example is not extremely small. For n = 25 it is only 1/5. Unfortunately
no lower bound on ¥ is known, although with the computational algorithms
to be described in Sections 5 and 6 it is easy enough to check the com-
puted value.

A final problem associated with Theorem 3.1 is that it is not
invariant under scaling. By scaling we mean the multiplicative scaling
of rows and columns of A and not additive scaling such as the subtrac-
tion of means or a time factor from the columns of A (this latter
scaling can be handled by including the factors explicitly in the model).
Since by multiplying a column by a sufficiently small constant one can
produce as small a singular value as one desires without essentially alter-
ing the model, Theorem 3.1 can be coaxed into detecting degeneracies that
are not really there. This means that one must look outside the hypo-
theses of Theorem 3.1 for a natural scaling. While we are suspicious of
pat scaling strategies, we think that the following criterionis reason-
able for many applications. Specifically, the rows and columns of A

should be scaled so that the errors in the individual elements of A are
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as nearly as possible equal. This scaling has also been proposed in

[4], and an efficient algorithm for accomplishing it is described in

[S].

The rationale for this scaling is the following. From the defini-

tion of the singular value decomposition it follows that
Avi = a'ui i=1,2,..., n).

Now if we imagine that our matrix is in error and that our true matrix

is A + E, then
(3.6) (A+E)Vi =o.us + EV'1'

If we have balanced our matrix as suggested above, then all of the elements

of E are roughly the same size, and ”EViHZ ~ ||E]2, Thus i f [Gil < IEll,,
equation (3.6) says that up to error v, is a null vector of A + E, and
the matrix is degenerate.

We recognize that this scaling criterion raises as many questions as
it answers. An important one is what to do when such scaling cannot be
achieved. Another question is raised by the observation that in regres-
sion row scaling is equivalent to weighting observations, hich amounts
to changing the model. * s this justified simply to make Theorem 3.1
meaningful? Although this question has no easy answer, we should like to

point out that it may be appropriate to use one scaling to eliminate

colinearities in A and another for subsequent regressions.

*
We are indebted to John Chambers and Roy Welsh for pointing this out.
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In the next section we are going to examine the implications of
Theorem 3.1 for the linear least squares problem in which a vector of
observations b is optimally approximated in the 2-norm by linear combina-

tions of the columns of A:
b ~ Ax.

In some applications the 2-norm is not the best possible choice, and one
may wish to minimize ¢(b-Ax), where ¢ is a function that may not even
be a norm. Eor example, in robust regression one approach is to minimize
a function that may reduce the influence of wild points. We shall not pur-
sue this subject here; but we believe that Theorem 3.1 has important impli-
cations for these problems. Namely, if we are searching for an approxi-
mation to b in R(A), we cannot expect the solution to be well determined
unless R(A) itself is. Theorem 3.1 provides a theoretical basis for
finding stable subspaces of R(A); however, specific theorems must wait

the development of a good perturbation theory for approximation in norms

other than the 2-norm.

4. The Linear Least Squares Problem

In this section we shall consider the linear least squares problem
C 2
(4.1) minimize |b-Ax ”2'

It is well known that this problem always has a solution, which is unique
if and only if A is of full column rank. At the solution, the residual

vector

r =b-AxXx
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is the projection of b onto the orthogonal complement of R(A).
When A has numerical rank (6,e,r)2, the solution to (4.1) may

be large, and some of the individual cdfnponents of the solution will

certainly have large variances. [If the ratio ¢/6 is sufficiently
small a stable solution can be computed by restricting oneself to the

c-section of A. Computationally this can be done as follows. Define

U6 and ﬁs as in Section 3, and further define

A

Ve = (Vl’VZ""’Vr)’Ve = (Vr+1,...,v)

and
2, = diag(ol,oz,. . .,or), ZS: diag(0r+l yeees on).
Then the matrix B of (2.6) is given by
B= U3 V..
e e €
Moreover the vector
1

u'b
1)

x =V

€ g ¢

is the unique solution of the problem of minimizing
Ib-Bx],

that is of minimum 2-norm. [t is easily seen that
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As we indicated in the last section, this solution is not entirely
satisfactory, since it involves all the columns of A, whereas we might
hope to obtain a satisfactory representation of b in terms of r
suitably chosen columns; that is with a model having only r carriers.
It is a consequence of Theorem 3.1 that any set of r reasonably inde-

pendent columns will do, although in practice additional considerations
may make some choices preferable to others.

Theorem 4.1. Assuming the notation and hypothesis of Theorem 3.1,
let x_  and r_ be defined as above. Let Yy be the solution of the

linear least squares problem
. 2
minimize ||b-AWy|| 2
and let Ty be the residual
Ty = b - AWy

Then

”rs'rwllz

—-"FH-Z— = E/‘Y’.

Proof. By the properties of the least squares residual

r_ =(I-Py )b and Ty = (I-Py)b. Hence
€
= - £
It~ Tyl = 1l @y Byp)bll, = 2 1Bl 5-0
€

Theorem 4.1 partially answers a question raised by Hotelling [10];

namely if carriers are chosen to eliminate dependencies, what guarantees
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that one such set will not fit b better than another? The answer is
that if there is a well defined gap be“tween 8 and e, then any set of
r strongly independent columns will give approximately the same resi-
dual. However, there remains the possibility that by including more
columns of A a considerably smaller residual could be obtained. We
stress that such a solution cannot be very stable. By (2.8) any matrix
consisting of more than r columns of A must have a singular value
less than or equal to €, and it follows from the perturbation theory
for the least sque»ffes problem [15] that the solution must be sensitive
to perturbations in A and b. (Another way of seeing this is to note
. that 5_2 is a lower bound for II(ATA)-IHZ, so that the solution must have

a large covariance matrix.)

However, one might be willing to put up with the instabilities in the

solution provided it gives a good approximation to b. We shall now show

that any solution that substantially reduces the residual over r is not
£

only unstable, it is also large.

Theorem 4.2. Let T, be defined as above. Given the vector x, let

r=b- Ax. If ||T€H2 > ||rl|2, then

Ir |1.- izl
x|, =% 2

2 - €

Proof. Let z = VTx and let
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. . .. T .T,T
where ¢ is an n-vector. Then if we partition z = (z ,ze)' and

€
T..T . . .
c= (c‘e,ce)]::onformally with the previous partitions of U, V, and

Z, we have

2 T
ey = 1" o-AWTx) |2

WRIWE)

2 2
le-2z)15 + i3

I

) a a2 2
Ie,-2.206 + 1€~z 2 115 + ).
Consequently

2 A A oA 2 2
4.2 > -
(4.2) lells = 1€ -2 2 _II5 + lld]l5.

Now the vector Ye = \;rxE is given by

so that
2 A 2 2
4.3) e I3 = 1€, 115 + 1dl5.

From (4.2)

2 2 ~ a A a3 (o] ~
Arlgldlz = 18,-8.2 1, = 18,1 - 151,121,

v

12,01, - ellz,l,-
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Hence

~

e L,/ lIr 13- 11

Il = 12,1, ' :
and from (4.3)
A
x1l, = 5
el < ey
z —&7 .

The theorem ;hows that even a slight decrease in the residual must
result in a great increase in the size of the solution. It is hardly
. necessary to add that a large solution is seldom acceptable in practice:
it must have high variance, and it may be physically meaningless.

The results of this section have implications for a common practice
in data analysis, namely that of fitting a large number of subsets of the
columns of A in an attempt to obtain a good fit with fewer than the full
complement of columns (for example, see [6]). We have, in effect, shown
-that if the ratio ¢/s is reasonable, this procedure is not likely to be
very productive. Any set of r independent columns will give about the
same residual, and any larger set that significantly reduces the residual
must produce an unacceptably large solution. There are, however, two cases
where this procedure might be of some help. First when it is hoped that
fewer than r columns can produce a good fit, and second when the &-§
ration is not very small. An approach to the second problem that uses the

singular value decomposition of the augmented matrix (A,b) is described

in [9] and [16,17].
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5. Extraction of Independent Columns: the QR Factorization

We now turn to the problem of extracting a set of numerically inde-
pendent columns. The first method we shall consider is based on the QR
factorization of the matrix A. Specifically, if A is an m x n matrix

with m = n, then A can be written in the form
A = QR,

where Q has orthonormal columns (QT Q=I) and R is upper triangular.
If A has full column rank, then the factorization is unique up to the
signs of the columns of Q anti the corresponding rows of R. [t should
be noted that the columns of Q form an orthonormal basis for R(A).

A knowledge of the QR factorization of A enables one to solve the
least squares problem (4.1). Specifically, any solution x of (4.1)

must satisfy the equation
Rx = QTb,

which can be easily solved since R is upper triangular. Moreover, since

ATA = RTR, we have

@yl o gl T

so that one can use the matrix R in the factorization to estimate the
covariance matrix of the solution.
An especially desirable feature of the QR factorization is that it

can be used to solve a truncated least squares problem in which only an
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initial set of columns are fit. If Al denotes the matrix consisting
of the first r columns of A and er denotes the leading principal

submatrix of order r of A, then

(5.1) AT = IRIT,

Since R' is upper triangular and er has orthonormal columns,
equation (5.1) gives the QR factorization of A'r and can be used as
described above to solve least squares problems involving A‘r.

The basis for using the QR factorization to extract a linearly

independent set of columns from the matrix A is contained in the

following theorem.

Theorem 5.1. Let the QR factorization of A be partitioned in the
form

Ri1 R12)

0 Ry

where Al,QléRmxr and Rlleerxr. If

||R22||2 = g< § = inf(Rll)’

then A has rank (6,s,r)2. Moreover,

inf (All) = 6.

Proof. Because the columns of Q are orthonormal, the singular
values of A and of R are the same. Now 6 is the r-th singular

value of Rj1> and hence by (2.9) 6 is less than or equal to the r-th
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singular value of Aj; i.e. o 2 6. Likewise from (2.10),520r+1-

Thus A has rank (8,e,r). Moreover, since Q1 has orthonormal columns,

inf(Al) = inf(QlRll) = inf(Rll) = 6.0

The application of this theorem is obvious. If, after having
computed the QR factorization of A, we encounter a small matrix R22
and a matrix R11 with a suitably large infinum, then the columns of

A, span a good approximation to the c-section of A.  Because

1

of (5.1), we -have at hand the QR factorization of A, and can proceed

1
immediately to the solution of least squares problems involving Al'
There remain two problems. First how can one insure that the first r
columns of A are linearly independent, and second how can one estimate
inf(Rll)?

The solution to the first problem depends on the method by which the
QR factorization is computed. Probably the best numerical algorithm is
one based on Householder transformations in which the QR factorizations

'k Q'erIE are computed successively for k = 1,2,...,n (e.g. see [14]).

Ik

A
At the k-th step, just before ( and R'T( are computed, there is the

- possibility of replacing the k-th column of A by one of the columns

81128 e 08 If the column that maximizes the (k k) - element of
R is chosen to replace aps then there will be a tendency for indepen-
dent columns to be processed first, Jeaving the dependent columns at the

end of the matrix. An ALGOL program incorporating this "column pivoting"

is given in [3] and a FORTRAN program is given in [11].
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Once a satisfactory QR decomposition has been calculated, we can

estimate IIR22 ”2 by the bound

IRyl = VIRy, T TR, T
where

IXlly = max 3 |x..]|
1 P i
and
X1 =miaxj 2|xl.j|.

Likewise one can estimate inf(Rll) by computing RH (an easy task

since R11 is upper triangular) and using the relations

1

AR T IR

o

. -1,-1
lnf(Rll) = ”R11”2 =

The procedure sketched above is completely reliable in the sense
that it cannot fool one into thinking a set of dependent columns are
independent. However, it can fail to obtain a set of linearly indepen-

dent columns, as the following example shows.

Bxample2 . Let An be the matrix of order n illustrated below

for n = 5:
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-1/7/2 -1//3 -1//4 -1//5
0 1/V2 -1/V3 -1//4 -1//5

—_—

Ag = 0 0 1/V/3 -1//% -1//5
0 0 0, 1//% -1//5
\ 0 0 0 0 1/V5 /

Letting )cIT1 = (1,v2/2,V/3/4,/4/8,. . . ,;/H/Zn_l), it is easily verified that

_ »~h
Anxn =2 e

where eT= (1,1,..., 1). Thus An has the approximate null vector Xn
and must have nearly dependent columns. However, computing the QR factori-
zation of An’ even with column pivoting, leaves An undisturbed. Sjipce
no element of An is very small, we shall have R22 void; i.e. no depen-
dent column will be found.

It should be observed that in the above example there is no danger
of the degeneracy in An going undetected. Since R22 is void, Rll =An
and any attempt to estimate inf(Rll) will reveal the degeneracy.

It may be objected that the matrix An in Example 5.2 shows an
obvious sign of degeneracy; viz. its determinant (p}) -1/2 goes rapidly
to zero with increasing n. However, the matrix lAnl’ obtained from An
by taking the absolute value of its elements, has the same determinant
yet its columns are strongly independent. Thus the example confirms a

fact well known to practical computers: the value of a determinant is

worthless as an indication of singularity.
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6. Extraction of Independent Columns: the Singular Value Decomposition

When the singular value decomposition of A has been computed (an
ALGOL program is given in [8] and a FORTRAN program in [11]), a different

way of selecting independent columns is available. The method is based on

the following theorem.

Theorem 6.1. Let A have the singular value decomposition

Z
Ay = .
0

Let V be partitioned in the form

V A
V = < el Ve )
VeZ e2

where V51 is T x r, and let A be partitioned in the form

<

A = CAl’AZ)’
where A1 has r columns. Let 6 = Ops € = 0p4q and
y=256 1nf(V€1).

Then A has numerical rank (5,8,1‘)2 and
(6.1) inf(Al) > v,

Proof. The fact that A has numerical rank (ﬁ,a,r)z follows

immediately from Theorem 2.3. To establish (6.1), observe that if we

write
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AV=S= (S,S,)

where S1 has r columns, then S'{SZ= 0. Now since A=SVT, we have

T

T A
A1 =S V. 4+ SZV51'

1 el

Since S;S, =0,

inf(A) = mf(slvzl) > inf(Sl)inf(VZl)

= o. 1nf(V81) =Y.0

As with the QR factorization, Theorem 6.1 provides us with a way of
determining when an initial set of r columns of A are independent.
Since an initial set may be degenerate, we must adopt some kind of inter-
change strategy to bring an independent set of columns into the initial

positions. If P is any permutation matrix, then

2
ul @y @Tv) = ( ) ,
0

so that in the singular value decomposition an interchange of columns of
A corresponds to an interchange of the corresponding rows of V. This
" suggests that we exchange rows of V until inf(Vel) becomes acceptably

large. One way of accomplishing this is to start with the r x n matrix

T T T
Vi = (VepoVeo)

and compute its QR factorization with column pivoting to force a set

of independent columns into the first r positions. Alternatively one
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could apply an algorithm such as Gaussian elimination with complete
pivoting to Vr{ (e.g. see [14]).

If either of the above suggestions is followed, the final matrix
Vzl will be upper triangular, and its infimum can be bounded by the method
suggested in the last section.

If r is small, significant savings can be obtained by observing
that the singular values in [0,1) of Vsl and \782 are the same (see
the appendix of [15] for a proof). Thus one can start with the smaller

matrix

(6.2) v, = (L0

and use the QR factorization with column pivoting to determine the
dependent columns of A. Note that when r = n-l1 the column to be stricken
corresponds to the largest element of the row vector V;.

The question of whether to use the QR factorization or the singular
value decomposition is primarily one of computational efficiency. Although
Example 5.2 shows that the QR factorization can fail to isolate a set of
-independent cohmns in a case where the singular value decomposition does,
this is an unusual phenomenon (see Example 7.2) and in most cases the QR
factorization with column pivoting is effective in locating' independent
columns. When m is not too much greater than n, the calculation of the
singular value decomposition is considerably more expensive than the

calculation of the QR factorization, and it is more efficient to stick with

the latter, if possible.
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When m >> n, we can begin by computing the QR factorization of A.

The matrix R has the same singular values as A, and indeed if
(6.3) URV =3

is the singular value decomposition of R, then V is the matrix of

right singular vectors of A. Since R is an n x n matrix, the reduc-
tion (6.3) is computationally far less expensive than the initial com-

putation of R, and there seems to be no reason not to use the singular

value decomposition.

7. Examples

In this section we shall give some examples illustrating the pre-
ceding material. The numerical computations were done in double precision

on an IBM 360; i.e. to about sixteen decimal digits.

Example 7.1. This example has been deliberately chosen to be un-

complicated. For fixed n, let
2 T
H =1 - H ee ,

n

T
where e = (1,1,...,1). It is easily verified that Hn is orthogonal.

Let
z = diag(l,l,l,l,l,0,0,0,0,0)

and
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Then A has five nonzero singular values equal to unity and five zero
singular values, and thus it should have five linearly independent
columns.

The singular values of A were computed to be 1,1,1,1,1,.35x10_16,
0,0,0,0, so that A can be regarded as having rank (1,e,5) where

e = 10_16.

The pivoting strategy described in Section 6 was used to
isolate a set of five linearly independent columns. These turned out to
be columns 1,2,4,5, and 9. The associated matrix V61 had an infimum
of .45 which is very close to the optimal value of unity. As a final
check, we compute IIPU-PAWII, where W = (e|.eye g e5) gis the matrix

'‘that selects the independent columns from A (cf. Theorem 3.1). The

result is

_ -14
HPUE-PAWHZ = .37 x 1074,

which shows that columns 1,2,4,5, and 9 of the matrix A almost exactly
span the E-section of A.
The QR factorization with column pivoting that is described in Sec-

tion 5 was also applied to A. The pivot columns and their norms were

.89
.86
.81
.71
.44 i
.45 x 10
.13 x 10

16
30

OO 00 =1 — O\ WD~ n

0
0
0

p—
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If the gap is taken to lie after the fifth vector we have

16

inf (R IR = .20 x 10 "°,

10= L IRyail

Thus the QR factorization exhibits the same sharp gap as the singular
value decomposition. However, the five columns 2,3,4,5, and 6 desig-
nated as independent are different from those chosen by means of the
singular value decomposition. Nonetheless, for W = (62’63’64’85’e6)

we have

14

Iy -Ppyll = -37 x 1077,

9]
so that this choice of columns is as good as the one predicted by the

singular value decomposition.

Incidentally the estimate of ||R22“2 using the 1- and m-norms is

MRS TEGAT -16

which is not a gross overestimate.

Example 7.2. This is the matrix A25 of Example 5.2. The singular

values ‘of this matrix ‘are

7

=3.7,0,=1.6,. .31,0,.=.77 x 107",

1 ©2020" 25

Again there is a well defined gap, and we may take A to have rank
(.31,e,24) where €= 10-7. This time there is only a single dependent
vector which can be found by looking for the largest component of the
right singular vector v,. corresponding to 025 (cf. the comments at

equation (6.2)). This component, ,75, is the first, which indicates
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that column one should be discarded. For this selection we have

7

12 .49 x 1077,

u Panlz =
€
In principle, the QR factorization should fail to isolate a depen-
dent column of AZS' However, because the elements of A25 were

entered with rounding error, the pivot order with column norms turned

out to be

I 1.0
25 .08
6 .88
24 37
) 15x 10710

This again gives a well defined gap and indicates that column 2 should
be thrown out (the second component of Voo is .53 so that also from the
point of view of the singular value decomposition the second column is

a candidate for rejection). For this subspace we have

US_PAW” = .11 x10°°,

Thus the QR factorization gives only slightly worse results than the
singular value decomposition, in spite of the fact that the example was

concocted to make the QR decomposition fail.

Example3 . To show that our theory may be of some use even where
there is not a sharply defined gap in the singular values, we consider the

Longley test data [12], which has frequently been cited in the literature.
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Since it is a common practice to subtract means from raw data, we have
included a column of ones in the model. Specifically the columns of
A are as follows:

I -- ones

2 -- GNP Implicit Price Deflator, 1954 - 100

3 -- GNP

4 -- Unemployment

5 -- Size of armed forces

6 -- Noninstitutional population. = 14 years old

7 -= Time (years)
The scaling of this data will critically affect our results. For the
purposes of this experiment we assume that columns two through six are
known to about three significant figures. Accordingly each of these
columns was multiplied by a factor that made its mean equal to 500.
The column of ones is known exactly and by the equal error scaling
criterion ought to be scaled by a factor of infinity. As an approxima-
tion we took the scaling factor to be 1010,

The column of years can be treated in two ways. First the errors in
the time of measurement can be attributed to the column itself, which
would result in the column being assigned a low accuracy. However, we
observe that any constant bias in the time of measurement is accounted
for by the column of ones, and any other errors can be attributed to the
measured data. Consequently we have preferred to regard the years as
known exactly and scale the seventh column by 1010.

The singular values of the matrix thus scaled are



.78 x 10
.94 x 108

.58 x 103~
.26 x 103

.26 x 102
.22 x 102
.51 x 101

Since the error in A is of order unity, the last singular value must
be regarded as pure noise, and we may take A to have rank (22,5.1,6)2.

The largest component of the seventh singular vector is the sixth and has

a value of .90. When the sixth column is removed from the matrix, the

resulting subspace compares with U51 as follows:

P .12.

Pl =
Ug | AW'2

5.
The relatively poor determination of the 5.1-section of A suggests

that not much useful information can be obtained from a least squares

fit, even when the sixth column is ignored. The next gap that presents

itself is between the fourth and fifth singular values. If we regard A

as having rank (260,26,4)2 and use the pivoting strategy of Section 6 to

isolate a set of four independent columns, we choose columns 1,4,5, and 7

with
inf(Vsl) = ,00].

For this choice of columns

I -
Py’ = 0.011,

p
U260
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a far more satisfactory result.
If the QR factorization is applied to A, there results the follow-

ing sequence of pivot columns and nomms:

.78 x 1014

.94 x 108

.47 x 103

.31 x 103

.24 x 102

.21 x 102

.57 x 101

SN W o B~ i —

This agrees completely'with the results from the singular value decomposi-
tion. Either one or three columns should be discarded, and columns 6, 2,
and 3, in that order, are candidates.

Although these results indicate that columns 2, 3, and 6 should be
discarded from the model, they are not conclusive, since there may be
other sets containing some of these columns that give a satisfactory
approximation to the 260-section of A. However, a singular value decompos-
ition of the matrix consisting of columns 1,2,3,6, and 7 gives the singular

values

.78 x 10%4
.94 x 108

.50 x 102
.25 x 102
.10 x 102

which shows that none of these columns is a really good candidate for inclu-

sion in the model.
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To sum up: if the raw Longley data is taken to be accurate to three
significant figures, if years are assumed to be exact, and if means are
subtracted from the columns, then the column corresponding to noninstitu-
tional population is redundant, and the columns corresponding to the GNP
implicit price deflator and the GNP are so nearly redundant that their
inclusion in the model will affect the stability of the residuals from any

regressions.



—
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