
Stanford Artificial Intelligence Laboratory | June 1976
Memo AIM-28 1.1 revised March 1977

Computer Science Department
Report No. STAN-CS-76-658

Is “sometime” sometimes better than “always”?
Intermittent assertions in proving

| program correctness

by

Zohar Manna Richard Waldinger
Artificial Intelligence Lab Artificial Intelligence Center
Stanford University Stanford Research Institute

_ Stanford, Ca. Menlo Park, Ca.

Research sponsoreh by

Advanced Research Projects Agency

National Science Foundation

and

Office of Naval Research

COMPUTER SCIENCE DEPARTMENT

Stanford University

J§ ay

NopFang -

Stanford Artificial Intelligence Laboratory June 1976
Memo AXM-28 1.1 revised March 1977

Computer Science Department
Report No. STAN-CS-76-658

Is “sometime” sometimes better than “always”?
| Intermittent assertions in proving

program correctness

by

Zohar Manna Richard Waldinger
Artificial Intelligence Lab Artificial Intelligence Center
Stanford University Stanford Research Institute
Stanford, Ca. Menlo Park, Ca.

ABSTRACT

: This paper explores a technique for proving the correctness and termination of programs
simultaneously. This approach, which we call the intermittent-assertion method, involves

] documenting the program with assertions that must be true at some time when control passes
through the corresponding point, but that need not be true every time. The method, introduced
by Burstall, promises to provide a valuable complement to the more conventional methods.

We first introduce the intermittent-assertion method with a number of examples of correctness
and termination proofs. Some of these proofs are markedly simpler than their convetional
counterparts. On the other hand, we show that a proof of correctness or termination by any of
the conventional techniques can be rephrased directly as a proof using intermittent assertions.
Finally, we show how the intermittent assertion method can be applied to prove the validity of

- program transformations and the correctness of continuously operating programs.

This 1s a revised and simplified version of a previous paper with the same title (AIM-281, June
1976).

T his research was supported in part by the Advanced Research Projects Agency under Contract
M DA903-76-C-0206, by the National Science Foundation under Grant GJ-36046, by the Office of
Naval Research under Contracts N00014-76-C-0687 and N00014-75-C-0816, and by a grant from
the United States-Israel Binational Science Foundation (BSF), Jerusalem, Israel. The United

States Government has at least a royalty-free, non-exclusive and irrevocable license throughout the
world for Government purposes to publish, translate, reproduce, deliver, perform, dispose of, and to

. authorize others so to do, all or any portion of this work.

T he views and conclusions contained in this document are those of the author(s) and should not be

n

interpreted as necessarily representing the official policies, either expressed or implied, of Stanford
University or any agency of the U. S. Government.

Reproduced in the U.S.A. Available from the National Technical information Service, Springfield,
Virginia 22161.

ou

Manna & Waldinger

Table of Contents

I. Introduction |

[I. The Intermittent-Assertion Method: Examples

1. Counting the tips of a tree
2. The Ackermann function

3. The greatest common divisor of two numbers

III. Relation to Conventional Proof Techniques
1. Invariant-assertion method

2. Subgoal-assertion method

3. Well-founded ordering method

IV. Application: Validity of Transformations that Eliminate Recursion

V. Application: Correctness of Continuously Operating Programs

VI. Conclusions

VII. References

=

Manna & Waldinger

I. Introduction

The most prevalent approach to prove that a program satisfies a given property has been the

invariant-assertion method, made known largely through the work of Floyd [1967] and Hoare

[1969]. In this method, the program being studied 1s supplied with formal documentation in

the form of comments, called invariant assertions, which express relationships between the

different variables manipulated by the program. Such an invariant assertion 1s attached to a

given point in the program with the understanding that the assertion is to hold every time

control passes through the point.

Assuming that an appropriate invariant assertion, called the input specification, holds at the
start of the program, the method allows us to prove that the other invariant assertions hold at

the corresponding points in the program. In particular, we can prove that the output
specification, the assertion associated with the program’s exit, will hold whenever control
reaches the exit. “If this output specification reflects what the program is intended to achieve,

we have succeeded in proving the correctness of the program.

It 1s in fact possible to prove that an invariant assertion holds at some point even though

‘ control never reaches that point, since then the assertion holds vacuously every time control

passes through the point in question. In particular, using the invariant-assertion method, one

might prove that an output specification holds at the exit even though control never reaches

that exit. If we manage to prove that a program’s output specification holds, but neglect to show

that the program terminates, we are said to have proved the program’s partial correctness.

A separate proof, by a different method, is required to prove that the program does terminate.

Typically, a termination proof 1s conducted by choosing a well-founded set, one whose elements

are ordered in such a way that no infinite decreasing sequences of elements exist. (The

; nonnegative integers under the regular greater-than ordering, for example, constitute a

well-founded set.) For some designated label within each loop of the program an expression

involving the variables of the program is then selected whose value always belongs to the

well-founded set. These expressions must be chosen so that each time control passes from one

"designated loop label to the next, the value of the expression corresponding to the second label

1s smaller than the value of the expression corresponding to the first label. Here, “smaller”

means with respect to the well-founded ordering, the ordering of the chosen well-founded set.

This establishes termination of the program, because if there were an infinite computation of

the program, control would traverse an infinite sequence of designated loop labels; the

successive values of the corresponding expressions would constitute an infinite decreasing

sequence of elements of the well-founded set, thereby contradicting the defining property of the

set. This well-founded ordering method constitutes the conventional way of proving the

j termination of a program (Floyd [1967)).

2

—

Manna & Waldinger

If a program both terminates and satisfies its output specification, that program 1s said to be

totally correct.

Burstall [1974] introduced a method whereby the total correctness of a program can be shown

in a single proof. The approach had been applied to specific programs earlier, by Knuth

([1968] Section 2.3.1) and others. This technique again involves affixing comments to points in

the program but with the intention that sometime control will pass through the point and

satisfy the attached assertion. Consequently, control may pass through a point many times

without satisfying the assertion, but control must pass through the point at least once with the

assertion satisfied; therefore we call these comments intermittent assertions. If we prove the

output specification as an intermittent assertion at the program's exit, we have simultaneously

shown that the program must halt and satisfy the specification. This establishes the program’s

total correctness. Since the conventional approach requires two separate proofs to establish total

correctness, the intermittent-assertion method invites further attention.

We will use the phrase

sometime @ at L

to denote that Q 1s an intermittent assertion at label L, 1.e. that sometime control will pass

through L with assertion Q satisfied. (Similarly, we could use the phrase “always @ at L" to

indicate that @ is an invariant assertion at L.) If the entrance of a program is labelled start and

its exit 1s labelled finish, we can express its total correctness with respect to an input

specification P and an output specification R by

Theorem: if sometime P at start

then sometime R at finish.

- This theorem entails the termination as well as the partial correctness of the program, because it

implies that control must eventually reach the program's exit, and satisfy the desired output

specification.

If we are only interested in whether the program terminates, but don’t care if it satisfies any

particular output specification, we can try fo prove

Theorem: if sometime P at start

then sometime at finish.

The conclusion “sometime at finish” expresses that control must eventually reach the program’s

exit, but does not require that any relation be satisfied. (It could have been written as

“sometime true at finish", because the assertion true always holds.)

3

Manna & Waldinger

Generally, to prove the total correctness or termination theorem for a program, we must affix

intermittent assertions to some of the program’s internal points, and supply lemmas to relate

these assertions. The proofs of the lemmas often involve complete induction over a well-founded

ordering (see Manna [1974]). In proving such a lemma we assume that the lemma holds for all

elements of the well-founded set smaller (in the ordering) than a given element, and show that

the lemma then holds for the given element as well.

| The intermittent-assertion method has begun to attract a good deal of attention. Different

approaches to its formalization have been attempted, using predicate calculus (Schwarz [1976]),

Hoare-style axiomatization (Wang [1976]), modal logic (Pratt {1976)), and the Lucid formalism
(Ashcroft [1976])). Topor [1977] applied the method to proving the correctness of the
Schorr-Waite algorithm, a complicated garbage-collecting scheme.

In this paper, we first present and illustrate the intermittent-assertion method with a variety of

examples for proving correctness and termination. Some of these proofs are markedly simpler

than their conventional counterparts. On the other hand, we prove that the

intermittent-assertion method 1s at least as powerful as the conventional invariant-assertion

method and the well-founded ordering method, in addition to the more recent
subgoal-assertion method (Manna [1971), Morris and Wegbreit [1976)) for proving partial
correctness. Finally, we show that the intermittent-assertion method can also be applied to

establish the validity of program transformations, and to prove the correctness of continuously

operating programs, programs that are intended never to terminate.

=

Manna & Waldinger

II. The Intermittent-Assertion Method: Examples

Rather than present a formal definition of the intermittent-assertion method, we prefer to

illuminate it by means of a sequence of examples. Each example has been selected to illustrate
a different aspect of the method.

1. Counting the tips of a tree

| Let us consider a simple program as a vehicle for demonstrating the basic technique. This is
an algorithm to count the tips of a binary tree, those nodes that have no descendents. A

recursive definition of a function tips(tree) that counts the tips of a binary tree tree is

tips(tree) <= if treeis a tip
then |

else tips(left(tree)) + tips(right(tree)),

where left(tree) and right(tree) are the left and right subtrees of tree respectively.

An iterative program to count the tips of a binary tree free 1s

input(zree)

start: stack « (tree)

count « 0

more: if stack = ()

then finish: output(count)

else if head(stack) 1s a tip

then count « count t 1

stack « tail(stack)

gotO more

else first « head(stack)

stack « left(first) - [right(first) - tail(stack))

gotO more.

(This program is similar to one used by Burstall in his [1974] paper.) We have used the
notation () to denote the empty list, (x) to denote the list whose sole element 1s x, and x« 1 to

denote the list formed by adding the element X at the beginning of the list 1. [Note that (x) is

the same as x-().] If the list { iS not empty, then head(l) 1s its first element and rail(l) is the list

of its remaining elements. The indentation of the program indicates that if Aead(stack) is a tip,

all three instructions following then are to be executed; otherwise, all three instructions

following else are to be executed. |

5

H

Manna & Waldinger

This program initially inserts the given free as the single element of the stack. At each

. iteration, the first element is removed from the stack. If it is a tip, the element is counted;

otherwise, its left and right subtrees are inserted as the first and second elements of the stack.

The process terminates when the stack 1s empty; count 1s then the number of tips in the given
tree.

Using intermittent assertions, we can express the total correctness of this program by the

following theorem

Theorem: if sometime tree = t at start

then sometime count = tips(t) at finish.

This theorem states the termination of the program in addition to its partial correctness,

because it implies that control must eventually reach the program’s exit, and satisfy the
appropriate output specification.

In order to apply the intermittent-assertion method, we supply a lemma to describe the

behavior of the program’s loop. In this case correctness of the program depends on the

’ following property: if we enter the loop with some element ¢ at the head of the stack, then

eventually the tips of twill be counted and t will be removed from the stack. (Note that we may

need to return to mote many times before the fips of tare counted.) This property 1s expressed

more precisely by the following lemma:

Lemma: if sometime count =c and stack = t+ s at more
then sometime count =ct tips(t) and stack =$§ at more.

The hypothesis count = c in the antecedent allows us to refer to the original value of count in

- the consequent, even though the value may have changed subsequently.

It 1s not difficult to see that this lemma implies the theorem. Suppose

sometime free =t at start.

Then, following the computation specified by the program, we set stack to (t), count to 0, and

reach more, so that

sometime count =0and stack = (t) =t+() at more.

The lemma then tells us, taking c to be 0 and $ to be), that

sometime count =0t tips(t) and stack =() at more.

6

—

Manna & Waldinger

Because we are at more with stack={), the computation proceeds to finish, so that

sometime count = tips(t) atfinish,)

and the theorem 1s thereby established.

The proof of the lemma is by complete induction on the structure of f. in other words, we

suppose the antecedent of the lemma, that

sometime count = c and stack =t« sat more,

and we assume inductively that the lemma holds whenever count = ¢’ and stack =t'« s', where t'

1s any subtree of ¢. We will then show the consequent of the lemma, that

sometime count = c ¢ tips(t) and stack =s at more.

The proof distinguishes between two cases, depending on whether or not tis a tip.

Case tis a tip: Then tips(t)= 1 by the recursive definition of tips. Since stack =t.s, it is

. clearly not empty, but its head, ¢, 1s a tip. The program therefore increases count by 1 and

removes t from the stack. Thus,

sometime count = ct1=c + tips(t) and stack = s at more,

establishing the conclusion of the lemma in this case.

Case tis not a tip. Then tips(t) =tipslefi(t))+ tips(right(t)), by the recursive definition of

tips. Since t 1s not a tip, we pass around the else branch of the loop this time: we remove ¢

_ from the stack, break it down into its left and right subtrees, replace these on the stack as its
first and second elements, and return to more. Thus,

sometime count =c and stack = left(t)* [right(t). s] at more

We: can then apply the induction hypothesis [taking ¢’ to be c, ¢ to be left(t) and s' to be

right(t). s), since left(t) is a subtree of ¢. The induction hypothesis tells us that

sometime count = ct tips{left(t)) and stack = right(t)* s at more.

Since right(t) 1s also a subtree of ¢, we can apply the induction hypothesis again [taking c¢’ to be

c+tips(left(t)), 1’ to be right(t) and s' to be 3), yielding

sometime count = c + tips(lef(t)) t tips(right(t)) and stack = s at more.

i

Manna & Waldinger

In other words, since tips(t) = tips(left(t)) t tips(right(t)),

sometime count =cttips(t) and stack = s at more.

This 1s the desired conclusion of the lemma.

Note that once the lemma was formulated and the basis for the induction decided, the proofs

proceeded in a fairly mechanical manner. On the other hand, choosing the lemma and the

| basis for induction required some ingenuity.

The proof of the lemma called upon the full power of the intermittent-assertion method.
Although the recursive program that defines the tips function can count the tips of a subtree

with a single recursive call, the iterative program may require many traversals of the loop

before the tips of a subtree are counted. The intermittent-assertion method allows us to relate

the point at which we are about to count the tips of a subtreet with the point at which we

have completed the counting, and to consider the many executions of the body of the loop

between these points as a single unit, which corresponds naturally to a single recursive call of

tips(t).

: The conventional invariant-assertion method, on the other hand, requires that we identify a

condition that allows us to relate the situation before and after each single execution of the

body of the loop. There may be no natural connection between these two points; consequently

our invariant-assertion must be exceptionally complete. In this case, such an assertion is

tips(tree) = r+ 2. tips(s at more,psleree) = coun s € stack pots)

where PI tips(s) 1s the sum of the tips of all the elements of the stack (cf. London€

[1975]). Once we know this assertion, the invariant-assertion proof is also straightforward.

However, to formulate the above assertion we are required to relate all the elements of the

stack, while to understand the program or to produce the intermittent-assertion proof we only
needed to consider the first element of the stack.

The intermittent-assertion proof established termination at the same time as correctness; to

prove termination by the conventional well-founded ordering approach, we can show that the

value of the pair

(tips(tree) - count tips(head(stack)))

always decreases in the lexicographic ordering each time we return to more. In other words,

either the first component tips(tree) - count is reduced, or the first component remains fixed

8

u

Manna & Waldinger

and the second component tips(head(stack)) is reduced. Both components remain nonnegative

at all times. Although finding the above pair requires a bit of ingenuity, this termination proof

is relatively straightforward. In the next section we will see a program for which the simplest

known conventional termination proof is significantly more complicated than the

intermittent-assertion proof of total correctness.

2. The Ackermann Function

The Ackermann function, denoted by A(x ¥), is defined recursively for nonnegative integers x
and y as

A(x y) <=ifx= 0

then y+I

else if y= 0
then A(x-11)

else A(x-1 A(x y- 1)).

. For example, A(1 1)= AO A(1 0))=A0A@01)=A02) =3.

This function 1s of theoretical interest, in part because its value grows extremely quickly; for

instance,

2
92

22

A(4 4) = 22 ~-3

An iterative program to compute the same function 1s

9

-

Manna & Waldinger

input(x, Yo)

start: stack{ 1] « x,

stack(2) yo-
index & 2

more: I index =1

then finish: output(stack{1])
else if stacklindex-1]= 0

then stack(index-1] « stacklindex)+ 1

index « index- 1

gotO more
else if stack[index) = 0

then stack[index- 1] stack[index- 1 }-|

stacklindex] « 1

got0 more

-- elsgtacklindex+ 1] « stack{index]-|

stacklindex] « stacklindex- 11]

stacklindex~ 1] « stacklindex- 11-1

index « index+ 1

got0 more.

This iterative program represents a direct translation of the recursive definition. If at some

stage the recursive program 1s computing

Also Als. a* A(s;_ 1 5p)..0),

then at the corresponding stage of the iterative computation

stack = (So $y .. $;_ 1 3;) and index =i.

Using intermittent assertions, we can express the program’s total correctness by the

Theorem: if sometime xp,%¢ 2 0 at start

then sometime stackl 11 = A(xg yo) at finish.

In proving this theorem we will employ the following lemma,

Lemma: if sometime index =1,12 2, stack[1:i-2] = s,
stack[i- 11 = a and stackli] =b at more,

then sometime index = i- 1, stack 1:{~2] = s

and stackli-1]= A(a 6) at more.

10

Manna & Waidinger

Here, s represents a tuple of stack elements. The abbreviation stack[l:i-2]=s will be used to

denote that s equals the tuple of elements (stack[1] stack[2)... stackli-2]); this expression is
included in the hypothesis and the conclusion of the lemmato convey that the initial segment

of the array, the first i-2 elements, are unchanged when we return to more.

It is straightforward to see that the lemma implies the theorem. For index is 2, stack[1] is xo,

and stack[2] is yo the first time we reach more. Then the lemma implies that eventually we will

reach more again, with index= 1 and stack[1] = A(x yg). Since index = 1 we then pass to finish

with the desired output.

To prove the lemma let us suppose

sometime index =i, i2 2, stack[1:i-2}=s,

stack[i-1]= a and stack[il=b at more.

Our proof will be by induction on the pair (stacklindex-1] stacklindex]) under the

lexicographic ordering over the nonnegative integers; in other words, we will assume the lemma

holds whenever stacklindex-1]= a and stacklindex) = ¥, where a’ and § are any nonnegative

. integers such that a’ <q, or such that a =a and <b, and show that it then holds when
stacklindex- 1 }=a and stacklindex])=b, i.e.

sometime ~~ index=i- 1, stack[1 :i-2]=s, and

stackli- 1 J=A(ab) at more.

The proof distinguishes between three cases, corresponding to the conditional tests in the
recursive definition of the Ackermann function.

Case a = 0: Then A(a b) = b+1 by the recursive definition of the Ackermann function. But

“since index » 1, and stacklindex-1]=a = 0, we return to mote with index =i-1 and

stack[i-1]= b+ 1, satisfying the conclusion of the lemma.

Case a> 0, b=0: Here, A(a b) =A(a-11) by the definition of the Ackermann function.
Because index = 1, stacklindex-1)=a= 0 and stacklindex)=b= (0, we return to more with

index =i, stackli- 11 = a- 1, and stacklil=1. Since stackli- 11 =a- 1 <a, we have

(stackli- 1] stacklil) = (a- 11)<(a 0),

and, therefore, the inductive hypothesis can be applied [taking a’ to be a-/ and & to be 1], to

yield that

sometime index =i- 1, stack[1:i~2]=5 and

stackli- 1] =Ala- 11) at more.

11

Manna & Waidinger

Because A(ab) = A(a-11), the lemma is established in this case.

Case a>0, 6> 0: Then A(a 6) =Afa-1 Ala b-)), by the recursive definition. Since
index » 1, stacklindex-1]= a» 0, and stacklindex] = 6 » 0, we return to more with

index = i+ |,

stackli-1)=qa- 1,
stacklil= aq and

| stack[i+1]=b- 1.

Because index = i+ 1 and (stack[i] stackli+1]) = (a b- 1) (ab), our induction hypothesis applies

[taking a’ to be aand ¥ to be b- 11, yielding

sometime index =i, stack[1:i-2)=s,

stackli-1]=a- 1, and stack[i) =A(ab- 1) at more,

Note that we could conclude that stackli-1]= a- 1 because the induction hypothesis, for

index =i+ 1, states that the first i- 1 array elements are unchanged.

Because index =i and (stackli-1] stack[il) = (a- 1 Aa b- 1))< (a b), we can apply the induction

hypothesis once more [taking a to be a- 1 and ¥' to be A(ab-1)], to obtain that

sometime index = i- 1, stack[1:i-2]=3s,

and stackli- 1]=A(a-1A(ab-1)) at more,

which 1s the desired conclusion in this case.

This completes the intermittent-assertion proof of the total correctness of the Ackermann

program; we believe it reflects our understanding of the way the program works. The

) invariant-assertion proof of the partial correctness is quite natural; at each iteration it can be
shown that

A(stack[1]) A(stack[2] . A(stacklindex- |] stacklindex])..))= A(xg 90)

at more and, when the program terminates, that

stack{ 1 J= A (xg yo).

On the other hand, the known proofs of the termination of this iterative program using the

conventional well-founded ordering method are extremely complicated, and we challenge the

intrepid reader to construct such a proof.

12

.

Manna & Waidinger

3, The greatest common divisor of two numbers

In the previous two examples, we have applied the intermittent-assertion method to programs

involving only one loop. The following program, which computes the greatest common divisor

(ged) of two positive integers, is introduced to show how the intermittent-assertion method 1s

applied to a program with a more complex loop structure.

We define ged(x 9), where x and y are positive integers, as the greatest integer that divides both
x and ¥, that 1s,

ged(x 9) =max{u : u|x and u |y}.

For instance, gcd(9 12) = 3 and ged(12 25) = 1.

The program is -

input(x y)
start:

more: if x =

then finish: output(y)

else reducex: if x>9y

then x ¢ x-9

gotO reducex

reducey: if y > x

then ye y-x

got reducey

got more.

This program 1s motivated by the following properties of the gcd:

ged(x 9) = 9 if x =,
ged(x 9) = ged(x-y y) if x>9, and
ged(x y) = ged(x y-x) if y> x.

We would like to use the intermittent-assertion method to prove the total correctness of the this

program. The total correctness can be expressed as follows:

Theorem: 1f sometime x=a, y=b and ¢,b> 0 at start

then sometime y= ged(ab) at finish.

To prove this theorem, we need a lemma that describes the internal behavior of the program.

13

_

Manna & Waidinger

| Lemma: if sometime x=a, 9=b, and a>6>0 at reducex
or sometime X=a, § =b, and 6 >a > 0 at reducey

then sometime y= geda b) atfinish.

To show that the lemma implies the theorem, we assume that

sometime X=gq y=b, and a,b > 0 at start.

| We must distinguish between three cases.

Case a= 6: Control passes directly to finish. Thus

sometime y = b at finish.

But because in this case 6=gcd(a b), by a given property of the gcd, we have 9= gcd(a 6) at

finish. --

Case a > b: Control passes directly to reducex, so

sometime ¥=q, y= 6, and a >b> 0 at reducex.

The lemma then asserts that

sometime y= ged(a 6) atfinish.

Case 6 > a: Here, control passes directly to reducey, so that

sometime X=qg, y=bandb > a > 0 atreducey.

. Again, the lemma yields the desired result.

The proof of the lemma proceeds by induction on a+b. We suppose

sometime X=q, y= b,anda> b > 0 at reducex
or sometime X=a,y =b, and b> a> 0 at reducey.

We assume inductively that the lemma holds whenever X= a’ and y= b', where a’ + 6’ <a + 6,
and show that

sometime § = gcd(a b) atfinish.

The hypothesis of the lemma is a disjunction of two possibilities. We consider each possibility

separately.

14

Manna & Waidinger

First, suppose

sometime X¥=q, y= 6, and a >b> 0 at reducex.

Here control passes around the top inner loop, so that

sometime X= ab and y= b at reducex.

For simplicity, let us denote a-b and b by a’ and ¥', respectively. Note that

a, b>0

a +b<a+ 6, and

ged(a' 6°) = ged(a-b b) = ged(a b).

This last condition follows by a given property of the ged. We now distinguish between three
cases.

Case a’ = b" Control passes directly to finish, so

sometime y= ged(a' b’) = ged(a b) atfinish.

Case a’ >b" Here

sometime x=a’, 9=08', and a’ >b'> 0 at reducex.

Because a’ +b <a+6, we can apply the induction hypothesis to deduce that

sometime y= gcd(a’ b') = ged(a bd) at finish.

" Case b' > a’: Control passes to reducey and we can apply the induction hypothesis in the same
way.

The second possibility from the hypothesis of the lemma, that

sometime x=a, y=0, and b> a> 0 at reducey,

is disposed of in a symmetric manner. This completes the proof of the total correctness of the

ged.

It 1s not difficult to prove the partial correctness of the above program using the conventional

invariant-assertion method. For instance, to prove that the program is partially correct with

respect to the put specification

13

.

Manna & Waldinger

xo > 0 and 99> 0

and output specification ’

y = gedlxo yo)

(where xg and yg are the initial values of and 9) we can use the same invariant assertion

| x,y > 0 and ged(x 3) = ged(xg 90)

at each of the labels more, reducex and reducey.

In contrast, the termination of this program is awkward to prove by the conventional

well-founded ordering method, because it is possible to pass from more to reducex, reducex to

reducey, or from reducey to more without changing any of the program variables. One of the

simplest proofs of the termination of the gcd program by this method involves taking the

well-founded set to be the pairs of nonnegative integers ordered by the regular lexicographic

ordering. When the expressions corresponding to the loop labels are taken to be

(x+y 2) at more,
if x = y then (x+y 1) else (x+94) at reducex, and
if x < y then (x+y 0) else (x+y 3) at reducey,

it can be shown that their successive values decrease as control passes from one loop label to the

next (Katz and Manna (1975]). Although this method is effective, it iS not the most natural in

establishing the termination of the gcd program.

16

a

Manna & Waidinger

III. Relation to Conventional Proof Techniques

One question that naturally arises in presenting a new proof technique 1s its relationship to the

more conventional methods. In the previous section we have seen examples of

intermittent-assertion proofs of correctness and termination that are simpler than any known

conventional counterparts. In this section we will show that the reverse is never the case; in

fact, we can directly rephrase any partial-correctness proof using the invariant-assertion

method as an intermittent-assertion proof. The same result applies to another standard

partial-correctness proof technique, the “subgoal assertion method”. Furthermore, we will show

that any termination proof using the well-founded ordering method can also be expressed

using intermittent assertions instead. Therefore, we can always use the intermittent-assertion

method in place of the established techniques.

To characterize the conventional techniques precisely, we find it convenient to introduce some

new notations, which are described more fully in Manna [1974]. Let x be a complete list of the

variables of a given program, and let ¥g denote their initial values. Suppose that we have

designated a special set of labels Lg, Ly,.... Lj, where Ly and Lj are the program’s entrance

(start) and exit (finish) respectively. It is assumed that each of the program’s loops passes

. through at least one of the designated labels. A path between two designated labels is said to

be basic if 1t does not pass through any designated label (except at its endpoints). For each

basic path a from label L; to Lj, we let ¢(x) denote the condition that must hold for control to
pass from L; along path a to Ls, and we let g(x) be the transformation of the values of x
effected In traversing the path a Thus, if x =aatL; and condition t,(a) holds, then control

will pass along path a, reaching L; with X = g,(a).

We now define the ordering that will enable us to mimic conventional partial-correctness

-proofs by the intermittent-assertion method. Suppose that the program is intended to apply to

inputs satisfying the input specification P(xg). Then the ordering > induced by the computation
1s defined as follows:

(ai) >)

if control passes through L; with x = a and then eventually passes through Ly with x= b, for
some computation that initially satisfies the input specification P(xg) and that ultimately

terminates. This ordering 1s well-founded, because any infinite decreasing sequence in the

ordering would correspond to an infinite computation of the program, but we have only

defined the ordering for finite (terminating) computations.

Now let us see how the concepts we have introduced allow us to rephrase an

I'l

Manna & Waidinger

invariant-assertion proof of the partial correctness of a program as an intermittent-assertion

proof.

1. invariant-assertion method

Suppose that we have used the invariant-assertion technique to prove that a program 1s

partially correct with respect to some input specification P(x) and output specification R(xq x).

| Then we have a set of invariant assertions Qp(xg %), Qj{xg %), Qp(xg Xx) corresponding to the

designated labels Lg, Ly, Lj, for which we have proved that for every xq and x:

(1) P(xg) => Qp(xg x0)

(the mput specification implies the initial invariant assertion), and

(2) Qplxp x) => R(xg x)

(the final invariant assertion implies the output specification),

and, for each basic path a from L; to Lj, we have proved the verification condition

(3) Qi(xp x) and ty(x) => Ok g(x)

(the invariant assertion before the path implies the Invariant assertion after).

Conditions (1) and (3,) establish that each Q(x) is indeed an invariant assertion atL;; it has

the property that each time we pass through L;, Q;(x¢ x) will be true for the current value of x.

- Condition (2) then implies that if the program terminates, the desired output specification will

be satisfied. Together, these conditions establish the partial correctness of our program.

From the given prwi of the partial correctness of the program, we can extract an

. Intermittent-assertion proof of the same result. The theorem that expresses the partial
correctness 1n the intermittent-assertion notation is as follows:

Theorem: if sometime x=xg and P(x) at start

and the computation terminates

then sometime R(x x) atfinish.

This theorem expresses the partial correctness of the program, because it includes the explicit

assumption that the particular computation being considered terminates. Given the assertions

18

a

Manna & Waidinger

Q;(xo x) from the invariant-assertion proof, we can construct the following lemma, which will

enable us to prove the partial-correctness theorem:

Lemma: for every i, 0 Sigh,

if sometime x =a, P(xo) and Q;{xg a) at L;

and the computation terminates

then sometime R{xg X) at finish.

To prove that the lemma implies the theorem, assume

sometime x =xq and P(xp) at start
and the computation terminates.

Our invariant-assertion proof includes a proof of (1), that P{xg) => Qg(xq %o). That proof can

be incorporated here, to-yield

sometime x =xg, P(xg) and Qo(xg Xo) at Lo
and the computation terminates,

. (because Lg is identical to start). Taking i = 0 in the lemma, we may deduce

sometime R(xq x) atfinish,

which 1s the desired conclusion of the theorem.

To prove the lemma, we suppose

sometime ¥ =a, P(xg) and 0x a) at L;
- and the computation terminates,

for some i between 0 and A. The proof 1s by induction on the ordering > induced by the

computation. Thus, we assume inductively that the lemma holds whenever x = a’ at Lp, where

(ai)> (a1).

The proof distinguishes between two cases.

If i =A, we have supposed that

sometime x =a and Uy(xg a) at Ly.

Incorporating the proof of (2) and recalling that Lisfinish, we have

19

_

Manna & Waidinger

sometime Rxg x) atfinish,

which 1s the desired conclusion of the lemma. -

On the other hand, if 0 <i <4, control must follow some basic path a to a designated label L
For this path, ¢,(e¢) must be true, and ¥ = g,(a) when control reaches Ly Because Q(x a) and
t,(a) are true, we can reproduce the proof of (3,) to deduce that Ufo g«(a)) is true. Thus

sometime X= g,(a) and Oxo £2) at Ly

Because xg has been assumed to satisfy the input specification P(xg), and because the

computation has been assumed to terminate, we have that

(a i) > (gla) f)

by the definition of the ordering induced by the computation, and therefore that

sometime R(xq x) atfinish,

by our induction hypothesis.

This completes the proof of the lemma.

We have thus constructed an intermittent-assertion proof of the partial correctness of the

program, assuming that we were given an invariant-assertion proof. In the next section we will

indicate how the same procedure can be applied to subgoal-assertion proofs.

2. Subgoal-assertion method

The 1nvariant-assertion approach always relates the current values of the program variables to

- their initial values. Another approach for proving partial correctness, the subgoal-assertion

method, relates these variables to their ultimate values when the program halts. We will first

present the method, and then show as before that if we have proved the partial correctness of a

program using this method, then we can rephrase the same proof with intermittent assertions
instead.

Suppose now that we have used the subgoal-assertion method to prove that a program 1s

partially correct with respect to some input specification P(%g) and output specification R(xq Xx).
5% % % :

Then we have a set of subgoal assertions Qo(x #4), Ay(x x4), Qx{x ¥,) corresponding to the

20

_

Manna & Waldinger

designated labels Lg, Lj, .., Lj, with the intuitive meaning that Q;(xx4) must hold for the
current value of ¥ as control passes through L; and the ultimate value xj of x when the

computation halts. For these assertions we have proved that for every ¥g, ¥ and xp:

on oF
(1%) Qplxp xp)

the final subgoal assertion always holds for the final value of x), and

%

(2%) P(x) and Qplxg xp) => R(x xp)

(the input specification and the initial subgoal assertion imply the output

specification),

and, for each basic path-a from L; to Ly, we have proved the verification condition

(34) Ug (x) Xp) and f,(x) => Q(x Xp)

(the subgoal assertion after the path implies the subgoal assertion before).

The subgoal-assertion method works backward through the computation, whereas the

invariant-assertion method works forward. Condition (I¥) implies that the final subgoal

assertion always holds. Conditions (3,) say that if the appropriate subgoal assertion holds

when control reaches the end of a path, then the corresponding subgoal assertion holds when

control is at the beginning of the path. If the program does terminate, conditions (1%) and (34)

imply that each a(x xp) 1S indeed a subgoal assertion at Lg it has the property that each time

we pass through L;, 0x x) will be true for the current value of the program’s variables, x,

and . its ultimate value, x4. Condition (2%) then implies that if the program terminates, the

desired output specification will be satisfied. Together, these conditions imply the partial

correctness of the given program.

To contrast the invariant-assertion and the subgoal-assertion method, let us consider a simple

program to compute the ged:

21

u

Manna & Waldinger

input(x y)
start:

more: if x=0

then finish: output(y)

else (xy) « (rem(y x) x)

got0 more,

Here, rem(y x) is the result of dividing 9 by %. The notation (x y) « (rem(y x) x) means that the
values of x and y are simultaneously assigned to be rem(y x) and x, respectively.

To show that this program 1s partially correct with respect to the Input specification

P(xo 90) : Xo > 0 and yg > 0,

and the output specification

Rixo 50 9) : 3 = ged(xo Yo),

we can employ the invariant-assertions

Qrarel®o 70 9) = Pxg yo) i %0>0 and yo>0

0 Ip 7 Yo * y):x20 and 9>0 and ged(x i) = ged(xo Yo)

Qpinishl®o 70 * 3) = Rixo Joi 9) : 9 = gedlxo 30)

On the other hand, to prove the same result by the subgoal-assertion method, we can use the

- subgoal assertions

0%pare 9 94): x2 0 and 9> 0 => 3, = ged(x 9)

Q%ppre(® 9 9p) : x 2 0 and § > 0 => y; = ged(x y)

0*finish 9 94): 5 = 9p

The reader may observe that the invariant assertions relate the program variables x and y with

their initial values xg and 99 and the subgoal assertions relate the programs variables with the

ultimate final value of ¥, ¥,.

22

Manna & Waldinger

Let us return to the general case. From a given subgoal-assertion proof of the partial

correctness of a program, we can mechanically paraphrase the argument as an

intermittent-assertion proof, just as we did for the invariant-assertion method.

The theorem that expresses the partial correctness of the program is again:

Theorem: if sometime x = x4 and P(x) at start

and the computation terminates

then sometime R{xg x) at finish.

The lemma that we will use 1n proving the theorem, however, 1s different from the lemma in

the invariant-assertion case:

Lemma: forevery1, 0<i<h

if sometime % = a and P(x) at L;

and the computation terminates
%

then sometime Qa x) at finish .

. To construct a proof that the lemma implies the theorem, we take f= (and extract the

justification for Condition (2¥) from the given subgoal assertion proof.

The proof of the lemma 1s constructed in a way analogous to the earlier invariant-assertion

case. Induction is again based on the ordering >» induced by the computation. When i =A we

use the proof of Condition (1%), and if 0 i <4 we use the inductive hypothesis and the proof

of (3).

* We have remarked that the invariant-assertion method relates the current values of the

program variables to their initial values, whereas the subgoal-assertion method relates the

current values to their final values. The intermittent-assertion technique can imitate both of

these methods because it can relate the values of the program variables at any two stages In the

computation.

3. Well-founded ordering method

The above constructions enabled us to mirror conventional partial-correctness proofs using

intermittent assertions. In fact, we can also use the intermittent-assertion method to express

conventional termination proofs that use the well-founded ordering approach.

23

_

Manna & Waldlnger

Suppose that we have used the well-founded ordering approach to prove the termination of a

given program with respect to some input specification P(xg). Then we have found a

well-founded ordering » over a set W, and for some set of designated labels Lg, L y,..., Lj, we

have found a set of invariant assertions Qolxg¥),0;(xg%),.... Qplxg x) and aset of expressions

Eofxo x), E (xg %), . .., Ep(xpx) for which we have proved the following conditions for every xq
and x:

| (1) P(xg) => Qolxg Xo)

(the input specification implies the initial invariant assertion),

(24) Qylxp x) and (x) => Oxo g,(x)) for every basic path a from L; to L

(the invariant assertion before the path implies the invariant assertion after),

(3;) Q;(xp x) => E;(xgx)€ W for each label L;

(the value of the expression belongs to W when control passes through Ly), and

(40) Qilxp %) and u(x) => Exo x) > Efl%o go fx)

for every basic path a from L; to Ly

(as control passes from L; to Ly, the value of the corresponding expression 1s reduced).

The above conditions establish the termination of the program. Conditions (1) and (2,) ensure

that each Q(xg x) is indeed an invariant assertion at Lg whenever control passes through Lg,

] assertion Qu{xg x) is true for the current value of ¥. Condition (3) then tells us that each time

control passes through L;, the value of the expression Ei{xg ¥) belongs to W.

Now, suppose that Conditions (1)-(4) are satisfied but the program does not terminate for some
input x, satisfying the input specification P(x). Control then passes through an infinite

sequence of designated labels; the values of the corresponding expressions E(x ¥) constitute an

infinite sequence of elements of W. Condition (4) then implies that this is a decreasing

sequence under the well-founded ordering, thereby contradicting the definition of a

well-founded set. Conditions (1)-(4) therefore suffice to establish the termination of the given

program.

It 1s our task to transform a proof by the above method into an Intermittent-assertion proof of

the termination of the program. The following theorem expresses the desired property

24

Manna & Waldinger

Theorem: if sometime x =x and P(xg) at start

then sometime at finish .

Recall that “sometime at finish” expresses the termination of the program in the

. intermittent-assertion notation. We can prove this theorem by establishing the following
lemma

Lemma: for every i, 0 Si <h

if sometime x= a and Qy{xp a) at L;

then sometime at finish .

To construct a proof that the lemma implies the theorem, we take i tobe 0 in the lemma and

incorporate the given proof of Condition (1) into the intermittent-assertion prwf of the
theorem.

To prove the lemma we use induction over the same well-founded ordering > that we

employed in the given termination proof. Suppose that

sometime x =a and Q;(xg a) at L;

for some designated label L;. We assume inductively that the lemma holds whenever X = a” and

Qi{xg a’) at Lp, where Ejfxg a) > Exxg a’). If i =A, termination has already occurred.

Otherwise, control must follow some path a from L; to Ly 1.e. t,(a) 1s true. Thus

sometime x = g(a) at Ly.

Because both Qgxe a) and t,(a) hold, the proof of Condition (2) enables usto deduce

Uilxo g,(a)). The proof of Condition (3) can be incorporated to yield

E/xoa)e W and Exo gla) ew,

because both Q(xp a) and Qylxo g,(a)> are true. By Condition (4) then, we have

We can now use the induction hypothesis, with i'=j and a’ = g(a), yielding the desired
conclusion

sometime at finish.

25

-

Manna & Waldinger

In this section we have shown how proofs by the conventional methods for establishing partial

correctness and termination of programs may be translated into intermittent-assertion proofs of

the same results. The translation process 1s purely mechanical and does not increase the

complexity of the proof. For this reason we can conclude that in employing the

intermittent-assertion method we have not lost any of the power of the existing methods.

Is it possible that a similar translation could be performed in the other direction? For

example, couldn’t we devise a procedure for translating any partial-correctness proof by the

intermittent-assertion method into a conventional invariant-assertion proof of comparable

complexity? We believe not. We have seen no invariant-assertion proof for the tips program
that does not require consideration of the sum of the tips of ail the elements in the stack. We

have seen no termination proof of the iterative Ackermann program by the conventional

method that employs such a simple well-founded ordering as the intermittent-assertion proof.

Without formulating a precise notion of the “complexity” of a proof, we cannot argue rigorously

that the intermittent-assetion method is strictly more powerful than the conventional. methods,

but our experience and our intuition lead us to maintain that this 1s so.

26

Manna & Waldinger

IV. Application! Validity of Transformations That
Eliminate Recursion

In discussing the rips program (Section II-I) we remarked that part of the difficulty in proving

the correctness of the program arose because the program was developed by introducing a stack

to remove the recursion from the original definition. It has been argued (e.g. Knuth [1974],
Burstaii and Darlington [1975], Gerhart [1975)) that, in such cases, we should first prove the

correctness of the original recursive program, and then develop the more efficient iterative

version by applying one or more transformations to the recursive one. These transformations

are intended to increase the efficiency of the program (at the possible expense of clarity) while

still maintaining its correctness.

If we were applying this methodology in producing our tips program, therefore, we would first

prove the correctness of the recursive version (a trivial task, since that version 1s completely

transparent); we would then develop the iterative tips program by systematically transforming

the recursive program” -- removing its recursion and introducing a stack instead.

Consequently, the proof we presented in Section Il would be completely unnecessary, since the

program would have been produced by applying to a correct recursive program a sequence of

transformations that are guaranteed not to change that program’s specifications.

To realize such a plan, however, we must be certain that the transformations we use are valid;

1.e. that they actually do produce a program equivalent to the original one. Given the same

input, the two programs must be guaranteed to return the same output. In other words, we

must be certain that bugs cannot be introduced during the transformation process.

In this section we will illustrate how intermittent assertions can be employed to establish the

validity of such transformations. We will present the intermittent-assertion proof of the

validity of a transformation that removes a recursion by introducing a stack. This

transformation could have been used to produce our iterative tips program from its recursive
definition.

Suppose we have a recursive program of form

F(x) <= if p(x)

then f(x)

else A(F(g (x) F(g,(x))).

(For simplicity, let us assume that p, f, g,, £2 and 4 are defined for all arguments). If we know
that

27

ul

Manna & Waldinger

(1) Au A(v w)) =h(A(u v) w) for every u, v and w

(A 1s associative), and

(2) Ale u) =u for every u

(e is a left identity of A),

then we can transform our program into an equivalent-iterative program, of form

input(x)

start; stack « (x)

Zee

more: If stack =()

then finish: output(x)

else if plhead(stack))

~ then z « k(z flhead(stack)))
stack e tail(stack)

got0 more

else first « head(stack)

stack « g (first) . [go(first) . tail(stack)]

gotO more

The validity of this transformation is expressed by the following two theorems,

Theorem 4: if sometime x= a at start

and F(a) is defined

then sometime z = F(a) at finish.

- and

Theorem 2: if sometime X= a at start

and the iterative computation terminates

then F(a) 1s defined.

Theorem I contains the condition that F(a) is defined (that the recursive computation of F with

input a will terminate). This condition 1s necessary for, otherwise, the iterative program will

not terminate, and therefore control will never reach finish at all. If we succeed in proving
Theorem 1, we will have established that the iterative program terminates whenever the

original recursive program does, and returns the same output; in other words, the iterative

program computes an extension of the function computed by the recursive program, rather than

the exact same function. Theorem 2 shows that the recursive program halts whenever the

28

Manna & Waldinger

iterative program does. Together, Theorems 1 and 2 imply that the recursive and iterative

programs are equivalent. The proof of Theorem lis analogous to the proof of the total

correctness of the rips program; it can be proved using the following lemma:

Lemma 1: if sometime z = ¢c and stack =a+s at more

and F(a) is defined

then sometime z =A(¢ F(a)) and stack =s at more.

To show that the lemma implies Theorem 1, assume

sometime x = a at start

and that F(a) 1s defined. Then immediately control passes to more, so that

sometime z= ¢ and stack = (a) = a-() at more.

By the lemma [taking cto be ¢ and $ to be ()], we have

sometime z = Ale F(a)) and stack =() at more.

But Ale F(a)) = F(a) by Property (2), that eis a left identity of A. Because stack is (), control

passes to finish, and we deduce

sometime 2= F(a) at finish,

which 1s the desired conclusion of the theorem.

To prove the lemma, suppose

) sometime z= c and stack =a-$ at more,

where F(a) 1s defined. The proof employs complete induction on a, over the ordering » induced

by the recursive computation. This is the ordering such that

d>d,

where F(R) 1s called recursively during the computation of F(d), and where the computation of

F(d) terminates. In particular, if F(d) is defined, d > g,(d) and d >» g&d). This ordering’ > is

well-founded, because an infinite decreasing sequence in the ordering would correspond to an

infinite, nonterminating computation of the recursive program, but the ordering has only been

defined for fimte (terminating) computations.

29

a

Manna & Waldinger

We will assume inductively that the lemma holds whenever z = ¢’ and stack =a’ 8', where a > a’

in the ordering » induced by the recursive computation, and show that it holds when z = ¢ and

stack = a+ 5s as well. We distinguish between two cases, depending on the truth of p(a).

Case p(a) Is true: Then F(a)= fla), by the recursive definition of F. Because @ is at the
head of the stack, the stack is not empty and p(head(stack)) is true; therefore we follow the then

branch of the program, so that

sometime z = A(¢ fla)) and stack = s at more.

But fla) = F(a), so we have

sometime z= A(c F(a) and stack = s at more,

which 1s the desired conclusion.

Case p(a) Is false: Here F(a) = A(F(g,(a)) F(gx(a))), by the recursive definition of F. Note

that F(u) is defined; therefore F(g(a)) and F(gx(a)) are also defined. Because stack is not empty

and p(head(stack)) is false, control follows the else branch of the loop body, so that

sometime 2 = ¢ and stack = g(a): [g,(a). s)at more.

Recall that a > g(a), because we have assumed that F(a) is defined; therefore we can apply the

induction hypothesis [taking ¢'to bec, a’ to be g(a), and §' to be gz(a)- s] to obtain

sometime z = A(c F(g,(a))) and stack = g»(a): s at more.

Because a > g,(a), we can apply the induction hypothesis a second time [taking ¢' to be

h(cF(g (a), a’ to be gx(a), and s' = 5). We derive

sometime z = A(A(c F(g 1(@))) F(gx(a))) and stack = s at mote.

By the associativity of A (Property (I)), and the recursive definition of F, we have |

(hic F(g (a) F(gx(a))) = Alc /(F(g, (a) F(ga(a))) = h(c F(a)).

Therefore we can conclude

sometime z= A{c F(u)) and stack =s at more,

completing the proof of the lemma.

30

Manna & Waldinger

So far we have only established Theorem 1, that the function computed by the iterative

program is an extension of the function computed by the recursive program. We still need to

prove Theorem 2, that if the iterative program terminates, then the recursive program also

terminates. This proof depends on another lemma.

Lemma 2: if sometime z= ¢ and stack=a. sat more

and the iterative computation terminates

then F(a) 1s defined.

Lemma 2 implies Theorem 2 directly, because the stack is initialized to (a) =a-().

The proof of the lemma employs induction over the ordering » induced by the iterative

computation. In this ordering, (c;$;)>{c555), where cl and ¢; are successive values of the’

variable z at more, and 5; and s, are successive values of the stack at more, during a

terminating computation-of the iterative program.

To prove the lemma, suppose that

sometime Z=c and stack =a-+$ at more,

and that the iterative computation terminates. We assume inductively that the lemma holds

whenever z= ¢’ and stack = a'+s' where (c a-$)> (¢’ @'+5') in the ordering induced by the

computation, and show that F(a) 1s then defined.

We distinguish between two cases.

Case pla) is true: Here F(a) = fla) by the recursive program, and therefore F(a) is defined.

Case p(a) Is false: Here F(a) = #(F(g(a)) F(g(a))), by the recursive program. Since stack is
not empty and plhead(stack)) is false, the iterative computation follows the else branch, so that

sometime z= c and stack = g(a): [ga(a) slat more.

Because the computation was assumed to terminate, we have that

(c ars) > (c g(a): [gafa) 5),

and therefore, by our induction hypothesis, that

F(g(a)) is defined.

By Lemma |, we have that

3

-

Manna & Waidlnger

sometime 2 = A{c F(g(@))) and stack = gpa):s at more.

. Again, by the induction hypothesis, we have that F(go(a)) is defined. Because both F(g,(a))and
F(go(a)) are defined, and F(a) = A(F(g,(a)) F(g2(a)), we can conclude that F(a) is defined.

We have just shown the validity of the transformation that was actually used to produce the

iterative tips program in Section II-1. As in that section, we could have used the conventional
invariant-assertion technique in the proof of Theorem 1. However, although we could employ

the standard >. notation to denote repeated applications of the + operation in the tips
invariant assertion, we would have had to invent a new notation to denote repeated application

of the function A in the invariant assertion for the iteratiye program here.

In the next section we will discuss an entirely different application of the intermittent-assertion
method.

32

a

Manna & Waldinger

V . Application! Correotness of Continuously Operating

Programs)

Conventionally, in proving the correctness of a program, we describe its expected behavior in

terms of an output specification, which is intended to hold when the program terminates. Some

programs, such as operating systems, airline-reservation systems and management information

systems, however, are never expected to terminate. Such programs will be said to be

continuously operating (see, for example, Francez and Pneuli [1977]). The correctness of

continuously operating programs therefore cannot be expressed by output specifications, but

rather by their intended behavior while running.

Furthermore, we conventionally describe the internal workings of a program with an invariant

assertion, which 1s intended to hold every time control passes through the corresponding point.

The description of the workings of a continuously operating program, however, often involves
a relationship that some event A is inevitably followed by some other event B. Such a

relationship connects two different states of the program and, generally, cannot be phrased as
an Invariant assertion.

. In other words, the standard tools for proving the correctness of terminating programs,

input-output specifications and invariant assertions, are not appropriate for continuously

operating programs. The intermittent-assertion method provides a natural complement here,

both as a means for specifying the internal and external behavior of these programs, and as a

technique for proving the specifications correct.

We will use one very simple example, an imaginary sequential operating system, to illustrate

this point:

- more: read(requests)

setup: it requests =()

then goto more

else (lob requests) « (head(requests) tail(requests))

execute: process(job)

gotO0 setup.

At each iteration this program reads a list, requests, of jobs to be processed. If requests 1s

empty, the program will read a new list, and will repeat this operation indefinitely until a

nonempty request list is read. The system will then process the jobs one by one; when they are

all processed, the system will again attempt to read a request list.

What we wish to establish about this program is that if a job § 1s read into the request list, it

33

—

Manna & Waldinger

will eventually be processed. Although this claim is not representable as an input-output

specification, it 1s directly expressed in the following

Theorem; if sometimej € requests at setup

then sometime job =| at execute.

Here, j € requests means that j belongs to the list of current requests.

To prove the theorem, assume that

sometime j € request3 at setup.

Then requests 1s not empty and is of the form

af B, _

where a and @ are the sublists of jobs occuring before and after j, respectively, in the request

list. Our proof will be by complete induction on the structure of a: we assume the theorem

holds whenever requests 1s of form

of B,

for any sublist a’ of a. The proof distinguishes between two cases

Case a =(): Then j=head(requests). Since requests (), we reach execute with

job = head(requests)= j, satisfying the conclusion of the theorem.

Case a »(): Then a = head()+ tail(a). Because again requests = (), we process job = head(a),

; and return to setup with requests reset to tail(a) j B. Since W(a) is a sublist of a, we can

conclude from our inductive assumption that

sometime job =j at execute,

“as we had hoped.

This program 1s very simple, but it may serve to suggest how the intermittent-assertion method

can be applied to the more realistic examples.

Note that when we make a statement of form

if sometime P at L;

then sometime Q at Lj,

34

Manna & Waldinger

we do not necessarily imply that condition Q is satisfied at L, after condition P 1s satisfied at

Ly; 1n fact, condition @ could hold before condition P. Thus, in the above example, we should

be perfectly content if some especially fast operating system were able to process the job before

it was submitted. In fact, the proof techniques that we have used in this paper will only allow

us to prove an implication of the above form if Q holds at L, after P holds at L;. Additional

techniques would be necessary if we wanted to prove such an implication if @ actually holds
before P.

Throughout this paper, in proving an implication of the above form, we have tacitly assumed

that conditions P and Q are satisfied at different stages of the same computation. It1s possible

to relax this assumption and relate different computations by extending our notation

appropriately. We believe one could then apply the intermittent-assertion method to prove

properties of nondeterministic and concurrent programs as well.

35

=

Manna & Waidinger

VI. Conolusions

The intermittent-assertion method not only- serves as a valuable tool, but also provides a

general framework encompassing a wide variety of techniques for the logical analysis of

programs. Diverse methods for establishing partial correctness, termination, and equivalence fit

easily within this framework. Furthermore, some proofs, naturally expressed with intermittent

assertions, are not as easily conveyed by the more conventional methods.

It has yet to be determined which phases of the intermittent-assertion proof process will be

accessible to implementation in verification systems. If the lemmas and the well-founded

orderings for the induction are provided by the programmer, to construct the remainder of the

proof appears to be fairly mechanical. On the other hand, to find the appropriate lemmas and

the corresponding orderings may require some ingenuity. We believe that the

intermittent-assertion method will have practical impact because it allows us to incorporate our

intuitive understanding about the way a program works directly into a proof of its correctness.

Acknowledgements

We would like to thank Rod Burstall and Nachum Dershowitz for many helpful discussions

related to this work. We would also like to thank Ed Ashcroft, Edsger Dijkstra and Jim King

| for their careful critical reading of the manuscript, and their many suggested revisions.

] VII. Referenoes

Ashcroft, E.A. [Nov. 1976), Intermittent-assertion proofs in LUCID, Research Report,
University of Waterloo, Waterloo, Canada.

" Burstail, R.M. [Aug. 1974), Program proving as hand simulation with a little

induction, Information Processing 1974, North-Holland Publishing

Company, Amsterdam, pp. 308-312.

Burstail, R.M. and Darlington, J. [Apr. 19751, Some transformations for developing

recursive programs, Proceedings of In ternational Conference on Reliable

Software, Los Angeles, Ca., pp. 465-472.

Floyd, R.-W. [1967], Assigning meaning to programs, Proceedings of Symposium in

36

Manna & Waldinger

Applied Mathematics, V. 19 (J.T. Schwartz, ed), American Mathematical

Society, pp. 19-32.

Francez, N. and Pnueli, A. [1977), A proof method for cyclic programs, Acta

Informatica (to appear).

Gerhart, S.L. [Jan. 1975), Correctness-preserving program transformations,

Proceedings of the Second Symposium on Principles of Programming

Languages, Palo Alto, Ca., pp. 54-65.

Hoare, C.AR. [Oct. 1969], An axiomatic basis of computer programming, CACM, Vol.

12, No. 10, pp. 576-580, 583.

Katz, S.M. and Manna, Z. [Dec. 1975), A closer look at termination, Acta Informatica,

Vol. 5, pp. 333-352.

Knuth, D.E. [1968], The Art of Computer Programming, Volume I: Fundamental

Algorithms, Addison-Wesley Publishers, Reading, Mass.

Knuth, D.E. [Dec. 1974}, Structured programming with goto statements, Computing
Surveys, Vol. 6, No. 4, pp. 261-301.

London, R.L. [April 19751, A view ofprogram verification, Proceedings of the

International Conference on Reliable Software, Los Angeles, Ca., pp.
534- 545.

Manna, Z. [June 1971), Mathematical theory of partial correctness, Journal of

Computer and System Sciences, Vol. 5, No. 3, pp. 239-253.

) Manna, z. [1974], Mathematical Theory of Computation, McGraw-Hill Book
Company, New York, N.Y.

“Morris, J.LH. and Wegbreit, B. [Feb. 19761, Subgoal induction, Memo, Xerox Research

Center, Palo Alto, Ca.

Pratt, V.R. [Oct. 1976), Semantical considerations on Floyd-Hoare logic, Proceedings
of the 17th Symposium on Foundations of Computer Science, Houston,

Texas, pp. 109-121.

Schwarz, J. [July 19761, Event-based reasoning - A system for proving correct

termination ofprograms, Proceedings of the Third International Colloquium

on Automata, Languages and Programming, Edinburgh, Scotland, pp.
131-146.

37

Manna & Waldinger

Topor, RW. [1977], A simple proof of the Schorr-Waite garbage collection algorithm,
Acta Informatica (to appear).

Wang, A. [1976], An axiomatic basis for proving total correctness of goto-programs,
BIT, Vol. 16, pp. 88- 102.

38

[E

.

