Stanford Artificial Intelligence Laboratory June 1976
Memo AIM-28 1.1 revised March 1977

Computer Science Department
Report No. STAN-CS-76-658

Is “sometime” sometimes better than “always”?
Intermittent assertions in proving
program correctness

by
Zohar Manna Richard Waldinger
Artificial Intelligence Lab Artificial Intelligence Center
Stanford University Stanford Research Institute
- Stanford, Ca. Menlo Park, Ca.

Research sponsoreh by
Advanced Research Projects Agency
National Science Foundation

and
Office of Naval Research

COMPUTER SCIENCE DEPARTMENT
Stanford University

Stanford Artificial Intelligence Laboratory June 1976
Memo AXM-28 1.1 revised March 1977

Computer Science Department
Report No. STAN-CS-76-658

Is “sometime” sometimes better than “always”?
Intermittent assertions in proving
program correctness

by
Zohar Manna Richard Waldinger
Artificial Intelligence Lab Attificial Intelligence Center
Stanford University Stanford Research Institute
Stanford, Ca. Menlo Park, Ca.
ABSTRACT

This paper explores a technique for proving the correctness and termination of programs
simultaneously. ~ This approach, which we call the intermittent-assertion method, involves
documenting the program with assertions that must be true at some time when control passes
through the corresponding point, but that need not be true every time. The method, introduced
by Burstall, promises to provide a valuable complement to the more conventional methods.

We first introduce the intermittent-assertion method with a number of examples of correctness
and termination proofs. Some of these proofs are markedly simpler than their convetional
counterparts. On the other hand, we show that a proof of correctness or termination by any of
the conventional techniques can be rephrased directly as a proof using intermittent assertions.
Finally, we show how the intermittent assertion method can be applied to prove the validity of
program transformations and the correctness of continuously operating programs.

This is a revised and simplified version of a previous paper with the same title (AIM-281, June
1976).

T his research was supported in part by the Advanced Research Projects Agency under Contract
M DA903-76-C-0206, by the National Science Foundation under Grant G J-36046, by the Office of
Naval Research under Contracts N00014-76-C-0687 and N00014-75-C-0816, and by a grant from
the United States-Israel Binational Science Foundation (BSF), Jerusalem, Israel. The United
States Government has at least a royalty-free, non-exclusive and irrevocable license throughout the
world for Government purposes to publish, translate, reproduce, deliver, perform, dispose of, and to
authorize others so to do, all or any portion of this work.

T ke views and conclusions contained in this document are those of the author(s) and should not be

interpreted as necessarily representing the official policies, either expressed or implied, of Stanford
University or any agency of the U.S. Government.

Reproduced in the U.S.A. Available from the National Technical information Service, Springfield,
Virginia 22161.

Manna & Waldinger

Table of Contents

II.

II.

IV.

V.

VL

Introduction

The Intermittent-Assertion Method: Examples
1. Counting the tips of a tree
2. The Ackermann function
3. The greatest common divisor of two numbers

Relation to Conventional Proof Techniques
1. Invariant-assertion method
2. Subgoal-assertion method
3. Well-founded ordering method
Application: Validity of Transformations that Eliminate Recursion

Application: Correctness of Continuously Operating Programs

Conclusions

VII. References

Manna & Waldinger

I. Introduction

The most prevalent approach to prove that a program satisfies a given property has been the
invariant-assertion method, made known largely through the work of Floyd {1967} and Hoare
[1969]. In this method, the program being studied is supplied with formal documentation in
the form of comments, called invariant assertions, which express relationships between the
different variables manipulated by the program. Such an invariant assertion is attached to a
given point in the program with the understanding that the assertion is to hold every time
control passes through the point.

Assuming that an appropriate invariant assertion, called the input specification, holds at the
start of the program, the method allows us to prove that the other invariant assertions hold at
the corresponding points in the program. In particular, we can prove that the output
specification, the assertion associated with the program’s exit, will hold whenever control
reaches the exit. ~If this output specification reflects what the program is intended to achieve,
we have succeeded in proving the correctness of the program.

It is in fact possible to prove that an invariant assertion holds at some point even though
control never reaches that point, since then the assertion holds vacuously every time control
passes through the point in question. In particular, using the invariant-assertion method, one
might prove that an output specification holds at the exit even though control never reaches
that exit. If we manage to prove that a program’s output specification holds, but neglect to show
that the program terminates, we are said to have proved the program’s partial correctness.

A separate proof, by a different method, is required to prove that the program does terminate.
Typically, a termination proof is conducted by choosing a well-founded set, one whose elements
are ordered in such a way that no infinite decreasing sequences of elements exist. (The
nonnegative integers under the regular greater-than ordering, for example, constitute a
well-founded set.) For some designated label within each loop of the program an expression
involving the variables of the program is then selected whose value always belongs to the
well-founded set. These expressions must be chosen so that each time control passes from one
designated loop label to the next, the value of the expression corresponding to the second label
is smaller than the value of the expression corresponding to the first label. Here, “smaller”
means with respect to the well-founded ordering, the ordering of the chosen well-founded set.
This establishes termination of the program, because if there were an infinite computation of
the program, control would traverse an infinite sequence of designated loop labels; the
successive values of the corresponding expressions would constitute an infinite decreasing
sequence of elements of the well-founded set, thereby contradicting the defining property of the
set. This well-founded ordering method constitutes the conventional way of proving the
termination of a program (Floyd [1967]).

Manna & Waldinger

If a program both terminates and satisfies its output specification, that program is said to be
totally correct.

Burstall [1974] introduced a method whereby the total correctness of a program can be shown
in a single proof. The approach had been applied to specific programs earlier, by Knuth
([1968) Section 2.3.1) and others. This technique again involves affixing comments to points in
the program but with the intention that sometime control will pass through the point and
satisfy the attached assertion. Consequently, control may pass through a point many times
without satisfying the assertion, but control must pass through the point at least once with the
assertion satisfied; therefore we call these comments intermittent assertions. If we prove the
output specification as an intermittent assertion at the program’'s exit, we have simultaneously
shown that the program must halt and satisfy the specification. This establishes the program’s
total correctness. Since the conventional approach requires two separate proofs to establish total
correctness, the intermittent-assertion method invites further —attention.

We will use the phrase
sometime Qat L

to denote that Q is an intermittent assertion at label L, i.e. that sometime control will pass
through L with assertion Q satisfied. (Similarly, we could use the phrase “always Q@ at L" to
indicate that @ is an invariant assertion at L.) If the entrance of a program is labelled start and
its exit is labelled finish, we can express its total correctness with respect to an input
specification P and an output specification R by

Theorem: if sometime P at start
then sometime R at finish.

- This theorem entails the termination as well as the partial correctness of the program, because it
implies that control must eventually reach the program’s exit, and satisfy the desired output
specification.

If we are only interested in whether the program terminates, but don’t care if it satisfies any
particular output specification, we can fry fo prove

Theorem: if sometime P at start
then sometime at finish.

The conclusion “sometime at finish” expresses that control must eventually reach the program’s
exit, but does not require that any relation be satisfied. (It could have been written as
“sometime true at finisA", because the assertion true always holds.)

Manna & Waldinger

Generally, to prove the total correctness or termination theorem for a program, we must affix
intermittent assertions to some of the program’s internal points, and supply lemmas to relate
these assertions. The proofs of the lemmas often involve complete induction over a well-founded
ordering (see Manna [1974]). In proving such a lemma we assume that the lemma holds for all
elements of the well-founded set smaller (in the ordering) than a given element, and show that
the lemma then holds for the given element as well.

The intermittent-assertion method has begun to attract a good deal of attention. Different
approaches to its formalization have been attempted, using predicate calculus (Schwarz [1976]),
Hoare-style axiomatization (Wang [1976]), modal logic (Pratt {1976]), and the Lucid formalism
(Ashcroft [1976)). Topor [1977] applied the method to proving the correctness of the
Schorr-Waite algorithm, a complicated garbage-collecting scheme.

In this paper, we first present and illustrate the intermittent-assertion method with a variety of
examples for proving correctness and termination. Some of these proofs are markedly simpler
than their conventional counterparts. On the other hand, we prove that the
intermittent-assertion method is at least as powerful as the conventional invariant-assertion
method and the well-founded ordering method, in addition to the more recent
subgoal-assertion method (Manna [1971), Morris and Wegbreit [1976)) for proving partial
correctness. Finally, we show that the intermittent-assertion method can also be applied to
establish the validity of program transformations, and to prove the correctness of continuously
operating programs, programs that are intended never to terminate.

Manna & Waldinger
II. The Intermittent-Assertion Method: Examples

Rather than present a formal definition of the intermittent-assertion method, we prefer to
illuminate it by means of a sequence of examples. Each example has been selected to illustrate

a different aspect of the method.
1. Counting the tips of a tree

Let us consider a simple program as a vehicle for demonstrating the basic technique. This is
an algorithm to count the tips of a binary tree, those nodes that have no descendents. A
recursive definition of a function tips(tree) that counts the tips of a binary tree tree is

tips(tree) <= if treeis a tip
then 1
else tipsleft(tree)) + tips(right(tree)),

where left(tree) and right(tree) are the left and right subtrees of rree respectively.

An iterative program to count the tips of a binary tree tree is

input(tree)
start: stack « (tree)
count « 0
more: if stack= ()
then finish: output(count)
else if head(stack) is a tip
then count « count t1
stack « tail(stack)
got0 more
else first « head(stack)
stack « left(first) - [right(first) tail(stack)]
got0 more.

(This program is similar to one used by Burstall in his [1974] paper.) We have used the
notation () to denote the empty list, (x) to denote the list whose sole element is x, and x« I to
denote the list formed by adding the element X at the beginning of the list 1. [Note that (x) is
the same as x-().] If the list / iS not empty, then head() is its first element and tail(l) is the list
of its remaining elements. The indentation of the program indicates that if Aead(stack) is a tip,
all three instructions following then are to be executed; otherwise, all three instructions

following else are to be executed.

Manna & Waldinger

This program initially inserts the given free as the single element of the stack. At each
iteration, the first element is removed from the stack. If it is a tip, the element is counted;
otherwise, its left and right subtrees are inserted as the first and second elements of the stack.
The process terminates when the stack is empty; count is then the number of tips in the given

tree.

Using intermittent assertions, we can express the total correctness of this program by the
following theorem

Theorem: if sometime tree =t at start
then sometime count = tips(t) at finish.

This theorem states the termination of the program in addition to its partial correctness,
because it implies that control must eventually reach the program’s exit, and satisfy the
appropriate output specification.

In order to apply the intermittent-assertion method, we supply a lemma to describe the
behavior of the program’s loop. In this case correctness of the program depends on the
following property: if we enter the loop with some element ¢ at the head of the stack, then
eventually the tips of twill be counted and twill be removed from the stack. (Note that we may
need to return to mote many times before the tips of tare counted.) This property is expressed
more precisely by the following lemma:

Lemma: if sometime count =c and stack =t s at more
then sometime count =ct tips(t) and stack =$ at more.

The hypothesis count = ¢ in the antecedent allows us to refer to the original value of count in
the consequent, even though the value may have changed subsequently.

It is not difficult to see that this lemma implies the theorem. Suppose
sometime tree =t at start.

Then, following the computation specified by the program, we set stack to (t), count to 0, and
reach more, so that

sometime count =0and stack = (t) = t+() at more.
The lemma then tells us, taking c to be 0 and $ to be (), that

sometime count =0t tips(t) and stack = () at more.

Manna & Waldinger

Because we are at more with stack={), the computation proceeds to finish, so that
sometime count = tips(t) at finish,

and the theorem is thereby established.

The proof of the lemma is by complete induction on the structure of ¢ in other words, we
suppose the antecedent of the lemma, that

sometime count = ¢ and stack =t s at more,

and we assume inductively that the lemma holds whenever count = c’ and stack = ¢'s s', where ¢’
is any subtree of ¢. We will then show the consequent of the lemma, that

sometime count = c t tips(t) and stack =s at more.
The proof distinguishes between two cases, depending on whether or not ¢ is a tip.

Case ¢t is a tip: Then tips(t)= 1 by the recursive definition of tips. Since stack=t.s, it is
. clearly not empty, but its head, ¢, is a tip. The program therefore increases count by 1 and
removes ¢ from the stack. Thus,

sometime count = ct1=c + tips(t) and stack = s at more,
establishing the conclusion of the lemma in this case.

Case tis not a tip. Then tips(t) =tips(lefe(t)) + tips(right(t)), by the recursive definition of
tips. Since ¢ is not a tip, we pass around the else branch of the loop this time: we remove ¢
from the stack, break it down into its left and right subtrees, replace these on the stack as its
first and second elements, and return to more. Thus,

sometime count =c and stack = left(t)* [right(t). s at more

We: can then apply the induction hypothesis [taking ¢’ to be c, ¢ to be left(t) and s’ to be
right(t). s}, since left(t) is a subtree of t. The induction hypothesis tells us that

sometime count =c t tipsleft(t)) and stack = right(t)* s at more.

Since right(t) is also a subtree of ¢, we can apply the induction hypothesis again [taking ¢’ to be
c+tips(lefi(t)), 1’ 1o be right(t) and s'to be 5], yielding

sometime count = c + tips(left(t)) t tips(right(t)) and stack = s at more.

Manna & Waldinger
In other words, since tips(t) = tipsilefi(t)) t tips(right(t)),
sometime count =ct tips(t) and stack = s at more.

This is the desired conclusion of the lemma.

Note that once the lemma was formulated and the basis for the induction decided, the proofs
proceeded in a fairly mechanical manner. On the other hand, choosing the lemma and the
basis for induction required some ingenuity.

The proof of the lemma called upon the full power of the intermittent-assertion method.
Although the recursive program that defines the fips function can count the tips of a subtree
with a single recursive call, the iterative program may require many traversals of the loop
before the tips of a subtree are counted. The intermittent-assertion method allows us to relate
the point at which we are about to count the tips of a subtree? with the point at which we
have completed the counting, and to consider the many executions of the body of the loop
between these points as a single unit, which corresponds naturally to a single recursive call of

tips(t).

The conventional invariant-assertion method, on the other hand, requires that we identify a
condition that allows us to relate the situation before and after each single execution of the
body of the loop. There may be no natural connection between these two points; consequently
our invariant-assertion must be exceptionally complete. In this case, such an assertion is

tips(tree) = r+ Z tips(s at more,
ps(eree) = coun s estack psts)

where ;Sfack tips(s) is the sum of the tips of all the elements of the stack (cf. London

[1975]). Once we know this assertion, the invariant-assertion proof is also straightforward.
However, to formulate the above assertion we are required to relate all the elements of the
stack, while to understand the program or to produce the intermittent-assertion proof we only
needed to consider the first element of the stack.

The intermittent-assertion proof established termination at the same time as correctness; to
prove termination by the conventional well-founded ordering approach, we can show that the
value of the pair

(tips(tree) - counr tips(head(stack)))

always decreases in the lexicographic ordering each time we return to more. In other words,
either the first component tips(tree) - count is reduced, or the first component remains fixed

Manna & Waldinger

and the second component tips(head(stack)) is reduced. Both components remain nonnegative
at all times. Although finding the above pair requires a bit of ingenuity, this termination proof
is relatively straightforward. In the next section we will see a program for which the simplest

known conventional termination proof is significantly more complicated than the
intermittent-assertion proof of total correctness.

2. The Ackermann Function

The Ackermann function, denoted by A(x %), is defined recursively for nonnegative integers x

and y as

Alx y) <=ifx= 0
then y+I
elsé if y= 0
then A(x-11)
else A(x-1A(xy- 1)).

. For example, A(1 1)= A0 A(10))=A0A01)=A02) =3
This function is of theoretical interest, in part because its value grows extremely quickly; for

instance,

2
22

A9 =22" _3

An iterative program to compute the same function is

Manna & Waldinger

input(x, yo)
start: stack[1] « xq
stack[2] yo-
index « 2
more: W index =1
then finish: output(stack[1])
else if stack[index-1]= 0
then stack(index-1] « stacklindex)+ 1
index « index- 1
got(0 more
else if stack[index)= 0
then stacklindex- 1)« stack(index- 1 - |
stacklindex] « 1
gotO) more
- elsatacklindex+ 1) « stack{index]- |
stack[index] « stacklindex-1]
stacklindex- 1]« stack[index- 1]-|
index « index+ 1
got0 more.

This iterative program represents a direct translation of the recursive definition. If at some
stage the recursive program is computing

Also Alsy. a* Als;_ 15).)),
then at the corresponding stage of the iterative computation
stack = (89 8y ... $;_15;) and index =i.
Using intermittent assertions, we can express the program’s total correctness by the

Theorem: if sometime xg302 0 at start
then sometime stack[11=A(xq yo) at finish.

In proving this theorem we will employ the following lemma,

Lemma: if sometime index =1, 122, stack[1:-2]=s,
stackli- 11 = a and stack{i] = b at more,
then sometime index = i- 1, stack[1:{~2] = s
and stackli-1]= A(a 6) at more.

10

Manna & Waidinger

Here, s represents a tuple of stack elements. The abbreviation stackl[1: i-2]=s will be used to
denote that s equals the tuple of elements (stack[1]stack[2]. .. stackli-2]); this expression is
included in the hypothesis and the conclusion of the lemma to convey that the initial segment
of the array, the first i-2 elements, are unchanged when we return to more.

It is straightforward to see that the lemma implies the theorem. For éndex is 2, stack[1] is xo,
and stackl2] is yg the first time we reach more. Then the lemma implies that eventually we will
reach more again, with index= 1and stack[1] = A(xg yo). Since index = 1 we then pass to finish

with the desired output.

To prove the lemma let us suppose

sometime index =i, i 2 2, stack[1:i-2]=5,
stackli-1]= a and stack(il=b at more.

Our proof will be by induction on the pair (stacklindex-1] stack[index]) under the
lexicographic ordering over the nonnegative integers; in other words, we will assume the lemma
holds whenever stacklindex-1]=a and stack[index] =¥, where a’ and &' are any nonnegative
. integers such that a’ <aq, or such that a =aand b’ <b, and show that it then holds when
stacklindex- 1 }=a and stacklindex)=b,ie.

sometime index=i- 1, stack[1 :i-2]=s, and
stackli- 1 J=A(ab) at more.

The proof distinguishes between three cases, corresponding to the conditional tests in the
recursive definition of the Ackermann function.

Case a=0: Then A(a b)=b+1Dby the recursive definition of the Ackermann function. But
since index » 1, and stacklindex-1]=a = 0, we return to mote with index =i-1 and
stack[i- 1] =b+ 1, satisfying the conclusion of the lemma.

Case a> 0, b=0: Here, A(a b) =A(a-11) by the definition of the Ackermann function.
Because index = 1, stacklindex-1]=a= 0 and stacklindex)=b= (0, we return to more with
index =i, stackli- 11 =qa- 1, and stacklil= 1. Since stackli- 11 =a- 1 < a, we have

(stackli- 1] stackli)) = (a- 11)<(a 0),

and, therefore, the inductive hypothesis can be applied [taking @’ to be a-I and & to be 1], to
yield that

sometime index =i- 1, stack[1:-2)=5 and
stackli- 1] = A(a- 1 1) at more.

1

Manna & Waidinger
Because A(ab) = A(a-11), the lemma is established in this case.

Case a>0, 6> 0: Then A(a 6) -A(a-IAVA(a b-)), by the recursive definition. Since
index » |, stack(index-1]= a0, and stacklindex] = 6 » 0, we return to more with

index = i+ |,

stack{i-1)=a- 1,
stacklil= g, and
stack[i+1)=b-1.

Because index = i+ 1 and (stack[i] stackli+1]) = (a b- 1) < (a¥), our induction hypothesis applies
[taking @’ to be aand ¥ to be b- 11, yielding

sometime index =i, stack[1:i-2]=3s,
stackli-1)= a- 1, and stack[f) =A(ab- 1) at more,

Note that we could conclude that stack[i-1]= a- 1 because the induction hypothesis, for
index =i+ 1, states that the first i- 1 array elements are unchanged.

Because index =i and (stackli- 1] stack[i]) = (a- 1 A(a b- 1)) < (a b), we can apply the induction
hypothesis once more [taking a' to be a- 1 and &' to be A@@b-1)), to obtain that

sometime index = 1i- 1, stack[1:i-2]=s,
and stack[i-1]=A(a-1A(ab-1)) at more,

which is the desired conclusion in this case.

This completes the intermittent-assertion proof of the total correctness of the Ackermann
program; we believe it reflects our understanding of the way the program works. The
invariant-assertion proof of the partial correctness is quite natural; at each iteration it can be

shown that

A(stack[1) A(stack[2] .. A(stacklindex- 1] stacklindex))..)) = A(xg 9o)
at more and, when the program terminates, that

stack{ 1 J= A (xg o).

On the other hand, the known proofs of the termination of this iterative program using the
conventional well-founded ordering method are extremely complicated, and we challenge the
intrepid reader to construct such a proof.

Manna & Waidinger
3, The greatest common divisor of two numbers

In the previous two examples, we have applied the intermittent-assertion method to programs
involving only one loop. The following program, which computes the greatest common divisor
(gcd) of two positive integers, is introduced to show how the intermittent-assertion method is

applied to a program with a more complex loop structure.

We define ged(x y), where x and y are positive integers, as the greatest integer that divides both
x and y, that is,

ged(x y) =max{u : u|x and u |y}
For instance, gcd(912) =3 and ged(12 25) = 1.

The program is -

input(x)
start:
more: if x =y
then finish: output(y)
else reducex: if x>y
then x ¢ x-y
got0 reducex
reducey: if y>x
then y« y-x
gotO reducey
got0 more.

This program is motivated by the following properties of the gcd:
gedlx y) =y if x=19,
ged(x y) = ged(x-y y) if x>9 and
ged(x y) = ged(x y-x) if y>x.

We would like to use the intermittent-assertion method to prove the total correctness of the this
program. The total correctness can be expressed as follows:

Theorem: if sometime x=a, y=band a,b>0 at start
then sometime y = ged(a b) at finish.

To prove this theorem, we need a lemma that describes the internal behavior of the program.

13

Manna & Waidinger

Lemma: if sometime X=q, y=b, and @>6>0 at reducex
or sometime X=qa, § =b, and 6 > a > 0 at reducey
then sometime y = geda b) at finish.

To show that the lemma implies the theorem, we assume that
sometime X¥=q, =5, and a,b> 0 at start.

We must distinguish between three cases.

Case a= 6: Control passes directly to finish. Thus
sometime y = b at finish.

But because in this case 6=ged(a b), by a given property of the gcd, we have y= gcd(a 6) at
finish. --

Case a > b: Control passes directly to reducex, so
sometime x =g, = 6, and a >b> 0 at reducex.

The lemma then asserts that
sometime y = ged(a 6) at finish.

Case 6 > a: Here, control passes directly to reducey, so that
sometime X=qg, y=bandb > a > 0 atreducey.

Again, the lemma yields the desired result.

The proof of the lemma proceeds by induction on a+b. We suppose

sometime X=q, y= banda> b > 0 at reducex
or sometime ¥=a,y =b, and b>a > 0 at reducey.

We assume inductively that the lemma holds whenever ¥=a’ and y= b, where a’ + 6’ <a + 6,
and show that

sometime y = gcd(a b) at finish.
The hypothesis of the lemma is a disjunction of two possibilities. We consider each possibility

separately.

14

Manna & Waidinger
First, suppose
sometime X=q, y=6, and a >b> 0 at reducex.
Here control passes around the top inner loop, so that
sometime x=ab and y=b at reducex.

For simplicity, let us denote a-b and b by a’ and ¥', respectively. Note that

a, b'>0
a+b¥<a+ 6 and
ged(a' 6°) = gcd(a-b b) = gcd(a b).

This last condition follows by a given property of the ged. We now distinguish between three
cases.

Case a’ =b" Control passes directly to finish, so
sometime § = ged(a' b’) = ged(a b) at finish.

Case a’>b" Here
sometime x=a’, y=0b', and a’ >b' > 0 at reducex.

Because a’ +b'<a+6, we can apply the induction hypothesis to deduce that
sometime y= gcd(a’ b') = ged(ab) at finish.

" Case b' > a’: Control passes to reducey and we can apply the induction hypothesis in the same
way.

The second possibility from the hypothesis of the lemma, that
sometime x=a, 9=b, and b> a> 0 at reducey,

is disposed of in a symmetric manner. This completes the proof of the total correctness of the
ged.

It is not difficult to prove the partial correctness of the above program using the conventional
invariant-assertion method. For instance, to prove that the program is partially correct with
respect to the input specification

15

Manna & Waldinger

xo> 0 and y> 0
and output specification

y = ged(xo o)

(where xq and yg are the initial values of ¥ and 9) we can use the same invariant assertion
x,y > 0 and ged(x y) = ged(xg 9o0)

at each of the labels more, reducex and reducey.

In contrast, the termination of this program is awkward to prove by the conventional
well-founded ordering method, because it is possible to pass from more to reducex, reducex to
reducey, or from reducey to more without changing any of the program variables. One of the
simplest proofs of the termination of the gcd program by this method involves taking the
well-founded set to be the pairs of nonnegative integers ordered by the regular lexicographic
ordering. When the expressions corresponding to the loop labels are taken to be

(x+y 2) at more,
if x = y then (x+y 1) else (x+y4) at reducex, and
if x < y then (x+y 0) else (x+y3) at reducey,

it can be shown that their successive values decrease as control passes from one loop label to the
next (Katz and Manna [1975]). Although this method is effective, it is not the most natural in
establishing the termination of the gcd program.

16

Manna & Waidinger
III. Relation to Conventional Proof Techniques

One question that naturally arises in presenting a new proof technique is its relationship to the
more conventional methods. In the previous section we have seen examples of
intermittent-assertion proofs of correctness and termination that are simpler than any known
conventional counterparts. In this section we will show that the reverse is never the case; in
fact, we can directly rephrase any partial-correctness proof using the invariant-assertion
method as an intermittent-assertion proof. The same result applies to another standard
partial-correctness proof technique, the “subgoal assertion method”. Furthermore, we will show
that any termination proof using the well-founded ordering method can also be expressed
using intermittent assertions instead. Therefore, we can always use the intermittent-assertion
method in place of the established techniques.

To characterize the conventional techniques precisely, we find it convenient to introduce some
new notations, which are described more fully in Manna [1974). Let x be a complete list of the
variables of a given program, and let xo denote their initial values. Suppose that we have
designated a special set of labels Lg,Ly,.... Lj, where L and L, are the program’s entrance

(start) and exit (finish) respectively. It is assumed that each of the program’s loops passes

. through at least one of the designated labels. A path between two designated labels is said to

be basic if it does not pass through any designated label (except at its endpoints). For each
basic path a from label L; to L;, we let ¢,(x) denote the condition that must hold for control to

pass from L; along path a to L;, and we let g,(x) be the transformation of the values of x
effected in traversing the path a Thus, if x =aatL;, and condition t,(a) holds, then control

will pass along path a, reaching Lj with x = g,(a).

We now define the ordering that will enable us to mimic conventional partial-correctness
proofs by the intermittent-assertion method. Suppose that the program is intended to apply to
inputs satisfying the input specification P(¥g). Then the ordering » induced by the computation

is defined as follows:

(ai)> ()

if control passes through L; with x = a and then eventually passes through Lj with x = b, for

some computation that initially satisfies the input specification P(xg) and that ultimately
terminates. This ordering is well-founded, because any infinite decreasing sequence in the
ordering would correspond to an infinite computation of the program, but we have only
defined the ordering for finite (terminating) computations.

Now let us see how the concepts we have introduced allow us to rephrase an

17

Manna & Waidinger

invariant-assertion proof of the partial correctness of a program as an intermittent-assertion

proof.

1. invariant-assertion method

Suppose that we have used the invariant-assertion technique to prove that a program is
partially correct with respect to some input specification P(xg) and output specification R(xq x).

Then we have a set of invariant assertions Op{xp ¥), Q;{xp %), Qyp(xp x) corresponding to the

designated labels Lo, L}, L, for which we have proved that for every x¢ and x:

(1) P(xg) => Qg(xp xp)

(the input specification implies the initial invariant assertion), and
(2) Qp(xp %) => R(xg x)

(the final invariant assertion implies the output specification),

and, for each basic path a from L;to Lj, we have proved the verification condition

(3s) Qixp x) and t,(x) => 9\.(5 §olx))
(the invariant assertion before the path implies the invariant assertion after).

Conditions (1) and (3,) establish that each Q;(xg¥) is indeed an invariant assertion atLy; it has
the property that each time we pass through L;, Q;(% x) will be true for the current value of x.

Condition (2) then implies that if the program terminates, the desired output specification will
be satisfied. Together, these conditions establish the partial correctness of our program.

From the given prwf of the partial correctness of the program, we can extract an
. intermittent-assertion proof of the same result. The theorem that expresses the partial
correctness in the intermittent-assertion notation is as follows:

Theorem: if sometime x=xg and P(xp) at start
and the computation terminates
then sometime R{xq) at finish.

This theorem expresses the partial correctness of the program, because it includes the explicit
assumption that the particular computation being considered terminates. Given the assertions

18

Manna & Waidinger

Cli(xo x) from the invariant-assertion proof, we can construct the following lemma, which will

enable us to prove the partial-correctness theorem:

Lemma: for every i, 0 sish,
if sometime % =g, P(xg) and Q,(xo a) at L;

and the computation terminates
then sometime R{xq x) at finish.

To prove that the lemma implies the theorem, assume

sometime x =xg and P(xp) at start
and the computation terminates.

Our invariant-assertion proof includes a proof of (1), that P(xp) => Qo(xg ¥g). That proof can
be incorporated here, to-yield

sometime ¥ =xq, P(¥g) and Qg(¥g %p) at Lo
and the computation terminates,

. (because Ly is identical to start). Taking i = O in the lemma, we may deduce
sometime R(xg x) at finish,
which is the desired conclusion of the theorem.
To prove the lemma, we suppose

sometime ¥ =@, P(xo) and Qy{x a) at L;
. and the computation terminates,

for some i between 0 and 4. The proof is by induction on the ordering » induced by the
computation. Thus, we assume inductively that the lemma holds whenever x = a’ at Ly, where

(ai)> (@' i)
The proof distinguishes between two cases.
If i = A, we have supposed that

sometime ¥ =q and Q(xo a) at L.

Incorporating the proof of (2) and recalling that L is finish, we have

Manna & Waidinger
sometime R{xg x) at finish,
which is the desired conclusion of the lemma. ~

On the other hand, if 0 <i <A, control must follow some basic path a to a designated label Lj
For this path, ¢,(a) must be true, and ¥ = g,(a) when control reaches Lj. Because Qyxg) and

t(a) are true, we can reproduce the proof of (3,) to deduce that ﬂj(xo g«(a))is true. Thus

sometime ¥ = g,(a) and Qj(xo gla)) at Lj.

Because xo has been assumed to satisfy the input specification P(xg), and because the
computation has been assumed to terminate, we have that

(@i > (g.la))

by the definition of the ordering induced by the computation, and therefore that
sometime R(xg x) at finish,

by our induction hypothesis.

This completes the proof of the lemma.

We have thus constructed an intermittent-assertion proof of the partial correctness of the
program, assuming that we were given an invariant-assertion proof. In the next section we will
indicate how the same procedure can be applied to subgoal-assertion proofs.

2. Subgoal-assertion method

The invariant-assertion approach always relates the current values of the program variables to
their initial values. Another approach for proving partial correctness, the subgoal~assertion
method, relates these variables to their ultimate values when the program halts. We will first
present the method, and then show as before that if we have proved the partial correctness of a
program using this method, then we can rephrase the same proof with intermittent assertions

instead.

Suppose now that we have used the subgoal-assertion method to prove that a program is
partially correct with respect to some input specification P(%g) and output specification R(xq x).

; *
Then we have a set of subgoal assertions Qg(* *3), Qr(x %p), Qylx xp) corresponding to the

20

Manna & Waldinger

., %
designated labels Lo, Lj, .., Lp, with the intuitive meaning that Qj(x x4) must hold for the
current value of ¥ as control passes through L; and the ultimate value xp of x when the

computation halts. For these assertions we have proved that for every ¥g, ¥ and Xp:

(1% Q;:(x,, xp)

the final subgoal assertion always holds for the final value of x), and

(2%) P(xp) and Dg(xo %) => R(xg %p)

(the input specification and the initial subgoal assertion imply the output
specification),

and, for each basic path-a from L; to Lj, we have proved the verification condition

* % %
(34) OJ(gd(x) xp) and f,(x) => 0% xp)
(the subgoal assertion after the path implies the subgoal assertion before).
The subgoal-assertion method works backward through the computation, whereas the

invariant-assertion method works forward. Condition (I¥) implies that the final subgoal

assertion always holds. Conditions (3,) say that if the appropriate subgoal assertion holds

when control reaches the end of a path, then the corresponding subgoal assertion holds when

control is at the beginning of the path. If the program does terminate, conditions (1¥) and (3,)
imply that each Q;?x xp) is indeed a subgoal assertion atLy it has the property that each time

we pass through L; 0;(x x,) will be true for the current value of the program’s variables, x,

and . its ultimate value, x4. Condition (2%) then implies that if the program terminates, the

desired output specification will be satisfied. Together, these conditions imply the partial
correctness of the given program.

To contrast the invariant-assertion and the subgoal-assertion method, let us consider a simple
program to compute the ged:

21

Manna & Waldinger

input(x y)
start:
more: if x=0
then finish: output(y)
else (x y) « (rem(y x) x)
got0 more,

Here, rem(y x) is the result of dividing y by *. The notation (x %) « (rem(y x) x) means that the
values of x and y are simultaneously assigned to be rem(y x) and %, respectively.

To show that this program is partially correct with respect to the Input specification
P(xg ¥o) : %> 0 and %> 0,

and the output specification
Rixo yo 9 : = ged(xo Yo,

we can employ the invariant-assertions
Qgpare®o 70 ¥y = Plxgyo) :%9>0and yo> 0

QporelXo Yo X 9) : X2 0 and >0 and ged(x y) = ged(xg yo)

Opingsa®o 70 * 9) = Rixo 36; 9) : 5 = gedlxo 3o .

On the other hand, to prove the same result by the subgoal-assertion method, we can use the
subgoal assertions

Q*grard® 9 94): x2 0 and 9> 0 => g = ged(x y)
Q*pore(® ¥ yp) : % 2 0 and § > 0 => 3 = ged(x y)

Q*finish® Y 90): 9 = I -

The reader may observe that the invariant assertions relate the program variables ¥ and y with
their initial values xg and y¢ and the subgoal assertions relate the programs variables with the

ultimate final value of ¥, y.

22

Manna & Waldinger

Let us return to the general case. From a given subgoal-assertion proof of the partial
correctness of a program, we can mechanically paraphrase the argument as an
intermittent-assertion proof, just as we did for the invariant-assertion method.

The theorem that expresses the partial correctness of the program is again:

Theorem: if sometime x = o and P(xp) at start

and the computation terminates
then sometime R{xg x) at finish.

The lemma that we will use in proving the theorem, however, is different from the lemma in
the invariant-assertion case:

Lemma: foreveryi,0<sish
if sometime x = a and P(xp) at L;

and the computation terminates

%
then sometime Q{a x) at finish .

. To construct a proof that the lemma implies the theorem, we take £= O and extract the

justification for Condition (2¥) from the given subgoal assertion proof.

The proof of the lemma is constructed in a way analogous to the earlier invariant-assertion
case. Induction is again based on the ordering > induced by the computation. When i =4 we

use the proof of Condition (1*), and if 0 i <& we use the inductive hypothesis and the proof

of (3:).

* We have remarked that the invariant-assertion method relates the current values of the
program variables to their initial values, whereas the subgoal-assertion method relates the
current values to their final values. The intermittent-assertion technique can imitate both of
these methods because it can relate the values of the program variables at any two stages In the
computation.

3. Well-founded ordering method

The above constructions enabled us to mirror conventional partial-correctness proofs using
intermittent assertions. In fact, we can also use the intermittent-assertion method to express
conventional termination proofs that use the well-founded ordering approach.

23

Manna & Waldinger

Suppose that we have used the well-founded ordering approach to prove the termination of a
given program with respect to some input specification P(¥g). Then we have found a

well-founded ordering > over a set W, and for some set of designated labels Lo, L y,.., Ly, we
have found a set of invariant assertions Qo(xg x),Q;(¥g %), Qx(xo ¥) and aset of expressions

Eofxg x), E (xg %), . ., Ep(xgx) for which we have proved the following conditions for every xq

and x:
(1) P(xg) => Qp(xo Xo)
(the input specification implies the initial invariant assertion),

(2,) Qi{xp x) and £ (x) => Qj(xo g,(x)) for every basic path a from L; to Lj

(the invariant assertion before the path implies the invariant assertion after),

(3;) Q(xg x) => Ej{xg x) € W for each label L;

(the value of the expression belongs to W when control passes through L), and

(40) O30 ¥) an d 1elx) => Ey{%o %) > Effxo g(¥))

for every basic path a from L; to Ly

(as control passes from L;to Lj, the value of the corresponding expression is reduced).

The above conditions establish the termination of the program. Conditions (1) and (2,) ensure
that each ui("o x) is indeed an invariant assertion at Ly whenever control passes through L;,

assertion Qy(xg x) is true for the current value of #. Condition (3) then tells us that each time

control passes through L;, the value of the expression Ej{%g) belongs to W.

- Now, suppose that Conditions (1)-(4) are satisfied but the program does not terminate for some
input xq satisfying the input specification P(xp). Control then passes through an infinite

sequence of designated labels; the values of the corresponding expressions Ey{xg ¥) constitute an
infinite sequence of elements of W. Condition (4) then implies that this is a decreasing

sequence under the well-founded ordering, thereby contradicting the definition of a
well-founded set. Conditions (1)-(4) therefore suffice to establish the termination of the given

program.

It is our task to transform a proof by the above method into an intermittent-assertion proof of
the termination of the program. The following theorem expresses the desired property

24

Manna & Walidinger

Theorem: if sometime x=xg and P(xp) at start
then sometime at finish .

Recall that “sometime atfinish” expresses the termination of the program in the
. intermittent-assertion notation. We can prove this theorem by establishing the following

lemma

Lemma: for every i, 0 Si<h
if sometime x = a and Q;{%p a) at L;

then sometime at finish .

To construct a proof that the lemma implies the theorem, we take i tobe O in thelemma and
incorporate the given proof of Condition (1) into the intermittent-assertion prwf of the
theorem.

To prove the lemma we use induction over the same well-founded ordering > that we
employed in the given termination proof. Suppose that

sometime x = and Q(xg a) atL;

for some designated label L;. We assume inductively that the lemma holds whenever ¥ = 2’ and
Qxp a’) at Ly, where Efxga)>Eqxpa). If i =A, termination has already occurred.

Otherwise, control must follow some path a from L; to Lj, 1.€. t,(a) is true. Thus

sometime % =g.(a) at L.

Because both Qi xe a) and t,(a) hold, the proof of Condition (2) enables usto deduce

bj(xo g(a)). The proof of Condition (3) can be incorporated to yield
E/xga)e W and Ej(xo gla) €W,

because both Q;(xg a) and Qj(xo g,(a)> are true. By Condition (4) then, we have
Ei(xo a) > Ej(xo £.(a) .

We can now use the induction hypothesis, with i'=j and a’ = g.(a), yielding the desired
conclusion

sometime at finish.

25

Manna & Waldinger

In this section we have shown how proofs by the conventional methods for establishing partial
correctness and termination of programs may be translated into intermittent-assertion proofs of
the same results. The translation process is purely mechanical and does not increase the
complexity of the proof. For this reason we can conclude that in employing the
intermittent-assertion method we have not lost any of the power of the existing methods.

Is it possible that a similar translation could be performed in the other direction? For
example, couldn’t we devise a procedure for translating any partial-correctness proof by the
intermittent-assertion method into a conventional invariant-assertion proof of comparable
complexity? We believe not. We have seen no invariant-assertion proof for the tips program
that does not require consideration of the sum of the tips of ail the elements in the stack. We
have seen no termination proof of the iterative Ackermann program by the conventional
method that employs such a simple well-founded ordering as the intermittent-assertion proof.
Without formulating a precise notion of the “complexity” of a proof, we cannot argue rigorously
that the intermittent-assetion method is strictly more powerful than the conventional. methods,
but our experience and our intuition lead us to maintain that this is so.

26

Manna & Waldinger

IV. Application: Validity of Transformations That
Eliminate Recursion

In discussing the tips program (Section II-I) we remarked that part of the difficulty in proving
the correctness of the program arose because the program was developed by introducing a stack
to remove the recursion from the original definition. It has been argued (e.g. Knuth [1974],
Burstaii and Darlington [1975], Gerhart [1975)) that, in such cases, we should first prove the
correctness of the original recursive program, and then develop the more efficient iterative
version by applying one or more transformations to the recursive one. These transformations
are intended to increase the efficiency of the program (at the possible expense of clarity) while
still maintaining its correctness.

If we were applying this methodology in producing our tips program, therefore, we would first
prove the correctness of the recursive version (a trivial task, since that version is completely
transparent); we would then develop the iterative tips program by systematically transforming
the recursive program” -- removing its recursion and introducing a stack instead.
Consequently, the proof we presented in Section Il would be completely unnecessary, since the
program would have been produced by applying to a correct recursive program a sequence of
transformations that are guaranteed not to change that program’s specifications.

To realize such a plan, however, we must be certain that the transformations we use are valid;
i.e. that they actually do produce a program equivalent to the original one. Given the same
input, the two programs must be guaranteed to return the same output. In other words, we
must be certain that bugs cannot be introduced during the transformation process.

In this section we will illustrate how intermittent assertions can be employed to establish the
validity of such transformations. We will present the intermittent-assertion proof of the
validity of a transformation that removes a recursion by introducing a stack. This
transformation could have been used to produce our iterative tips program from its recursive
definition.

Suppose we have a recursive program of form

F(x) <= if p(x)
then f(x)
else A(F(g (x)) F(g(x)).

(For simplicity, let us assume that p, f, g;, g2 and 4 are defined for all arguments). If we know
that

27

Manna & Waldinger

(1) A(u A(v w)) =h(h(u v) w) for every u, v and w
(A is associative), and

(2) Ale u) =u for every u
(e is a left identity of A),

then we can transform our program into an equivalent-iterative program, of form

input(x)
start: stack « (x)
Zee
more: If stack =()
then finish: output(x)
else if plhead(stack))
then z « Az flhead(stack)))
stack « tail{stack)
got0 more
else first « head(stack)
stack « g ((first) . [go{first) . tail(stack)}
got0 more

The validity of this transformation is expressed by the following two theorems,

Theorem 1:if sometime x = a at start
and F(a) is defined
then sometime z = F(a) at finish.

and

Theorem 2: if sometime ¥ = a at start
and the iterative computation terminates
then F(a) is defined.

Theorem I contains the condition that F(a) is defined (that the recursive computation of F with
input a will terminate). This condition is necessary for, otherwise, the iterative program will
not terminate, and therefore control will never reach finish at all. If we succeed in proving
Theorem 1, we will have established that the iterative program terminates whenever the
original recursive program does, and returns the same output; in other words, the iterative
program computes an extension of the function computed by the recursive program, rather than
the exact same function. Theorem 2 shows that the recursive program halts whenever the

28

Manna & Waldinger

iterative program does. Together, Theorems 1 and 2 imply that the recursive and iterative
programs are equivalent. The proof of Theorem lis analogous to the proof of the total
correctness of the tips program; it can be proved using the following lemma:

Lemma 1: if sometime z = ¢ and stack =a+sat more
and F(a) is defined
then sometime z =A(¢c F(a)) and stack =s at more.

To show that the lemma implies Theorem 1, assume
sometime ¥ =g at start

and that F(a) is defined. Then immediately control passes to more, so that
sometime z= ¢ and stack = (a) = a- () at more.

By the lemma [taking ¢ to be e and $ to be ()], we have
sometime z = A(e F(a)) and srack =() at more.

But A(e F(a)) = F(a) by Property (2), that eis a left identity of A. Because stack is (), control
passes to finish, and we deduce

sometime 2= F{a) at finish,
which is the desired conclusion of the theorem.

To prove the lemma, suppose

sometime z= ¢ and stack =a-s at more,

where F(a) is defined. The proof employs complete induction on a, over the ordering > induced
by the recursive computation. This is the ordering such that

d>da,

where F(R) is called recursively during the computation of F(d), and where the computation of
F(d) terminates. In particular, if F(d) is defined, @ > g,(d) and d > g&d). This ordering’ > is
well-founded, because an infinite decreasing sequence in the ordering would correspond to an
infinite, nonterminating computation of the recursive program, but the ordering has only been
defined for finite (terminating) computations.

29

Manna & Waldinger

We will assume inductively that the lemma holds whenever z = ¢’ and stack =a'+ s', where a > a'
in the ordering > induced by the recursive computation, and show that it holds when z = ¢ and
stack = a- s as well. We distinguish between two cases, depending on the truth of p(a).

Case p(a) Is true: Then F(a)= fla), by the recursive definition of F. Because @ is at the
head of the stack, the stack is not empty and p(kead(stack)) is true; therefore we follow the then
branch of the program, so that

sometime z = A(c fla)) and srack = s at more.
But fla) = F(a), so we have

sometime z= A(c F(a)) and stack = s at more,
which is the desired conclusion.

Case p(a) Is false: Here F(a) = A(F(g,(a)) F(g2(a))), by the recursive definition of F. Note
that F(u) is defined; therefore F(g,(a)) and F(ga(a)) are also defined. Because stack is not empty
and p(head(stack)) is false, control follows the else branch of the loop body, so that

sometime 2 = ¢ and stack = gy(a)-[go(a). s]at more.

Recall that a > g,(a), because we have assumed that F(a) is defined; therefore we can apply the
induction hypothesis [taking ¢'to be ¢, a' to be g1(a), and s’ to be ga(a): 5] to obtain

sometime z = A(c F(g,(a))) and srack = ga(a)+ s at more.

Because a > g,(a), we can apply the induction hypothesis a second time [taking ¢’ to be
h(cF(g , (a)), a’ to be gx(a), and s'=s). We derive

sometime z = A(k(c F(g 1(a))) F(g,(a))) and stack = s at mote.
By the associativity of A (Property (I)), and the recursive definition of F, we have
A(h(c F(g(a))) F(gx(a)) = Alc A(F(g, (a) F(ga(a))) = hic F(a)).
Therefore we can conclude
sometime z=A{c F(u)) and stack=s at more,

completing the proof of the lemma.

30

Manna & Waldinger

So far we have only established Theorem 1, that the function computed by the iterative
program is an extension of the function computed by the recursive program. We still need to
prove Theorem 2, that if the iterative program terminates, then the recursive program also
terminates. This proof depends on another lemma.

Lemma 2: if sometime z= ¢ and stack =a.sat more
and the iterative computation terminates
then F(a) is defined.

Lemma 2 implies Theorem 2 directly, because the srack is initialized to (a) =a-().

The proof of the lemma employs induction over the ordering » induced by the iterative
computation. In this ordering, (¢;5;)>(cz5,), where cl and ¢; are successive values of the’
variable z at more, and s; and s, are successive values of the stack at more, during a

terminating computation-of the iterative program.
To prove the lemma, suppose that
sometime Z= ¢ and stack =a+$ at more,

and that the iterative computation terminates. We assume inductively that the lemma holds
whenever z= ¢’ and stack = a'-s' where (c a+5)> (¢’ a'»§") in the ordering induced by the
computation, and show that F(a) is then defined.

We distinguish between two cases.
Case p(a) is true: Here F(a) = fla) by the recursive program, and therefore F(a) is defined.

Case p(a) Is false: Here F(a) = 4(F(g,(a)) F(g2(a))), by the recursive program. Since stack is
not empty and p(head(stack)) is false, the iterative computation follows the else branch, so that

sometime z=c and stack = g,(a)[ga(a): s)at more.
Because the computation was assumed to terminate, we have that
(c ars) > (¢ ga)-[gxla) 5),
and therefore, by our induction hypothesis, that
F(g,(a)) is defined.

By Lemma I, we have that

31

Manna & Waidinger

sometime 2 = A{c F(g(a))) and stack = ga(a):s at more.

Again, by the induction hypothesis, we have that F(gx(a)) is defined. Because both F(g,(a))and
F(ga(a)) are defined, and F(a) = A(F(g,(a)) F(g2(a))), we can conclude that F(a) is defined.

We have just shown the validity of the transformation that was actually used to produce the
iterative tips program in Section II-1. As in that section, we could have used the conventional
invariant-assertion technique in the proof of Theorem 1. However, although we could employ

the standard Z notation to denote repeated applications of the + operation in the tips

invariant assertion, we would have had to invent a new notation to denote repeated application
of the function 4 in the invariant assertion for the iteratiye program here.

In the next section we will discuss an entirely different application of the intermittent-assertion
method.

32

Manna & Waldinger

V . Application: Correotness of Continuously Operating

Programs

Conventionally, in proving the correctness of a program, we describe its expected behavior in
terms of an output specification, which is intended to hold when the program terminates. Some
programs, such as operating systems, airline-reservation systems and management information
systems, however, are never expected to terminate. Such programs will be said to be
continuously operating (see, for example, Francez and Pneuli [1977]). The correctness of
continuously operating programs therefore cannot be expressed by output specifications, but
rather by their intended behavior while running.

Furthermore, we conventionally describe the internal workings of a program with an invariant
assertion, which is intended to hold every time control passes through the corresponding point.
The description of the workings of a continuously operating program, however, often involves
a relationship that some event A is inevitably followed by some other event B. Such a
relationship connects two different states of the program and, generally, cannot be phrased as
an invariant assertion.

. In other words, the standard tools for proving the correctness of terminating programs,
input-output specifications and invariant assertions, are not appropriate for continuously
operating programs. The intermittent-assertion method provides a natural complement here,
both as a means for specifying the internal and external behavior of these programs, and as a
technique for proving the specifications correct.

We will use one very simple example, an imaginary sequential operating system, to illustrate
this point:

- more: read(requests)
setup: ¥ requests =()
then goto more
else (lob requests) « (head(requests) tail(requests))
execute: process(job)
got0 setup.

At each iteration this program reads a list, requests, of jobs to be processed. If requests is
empty, the program will read a new list, and will repeat this operation indefinitely until a
nonempty request list is read. The system will then process the jobs one by one; when they are
all processed, the system will again attempt to read a request list.

What we wish to establish about this program is that if a job f is read into the request list, it

33

Manna & Waldinger

will eventually be processed. Although this claim is not representable as an input-output
specification, it is directly expressed in the following

Theorem; if sometime | € requests at setup
then sometime job =] at execute.

Here, j € requests means that j belongs to the list of current requests.
To prove the theorem, assume that

sometime j € request3 at setup.
Then requests is not empty and is of the form

af B, _

where a and @ are the sublists of jobs occuring before and after j, respectively, in the request
list. Our proof will be by complete induction on the structure of a: we assume the theorem

holds whenever requests is of form
ojB,
for any sublist a’ of a. The proof distinguishes between two cases

Case a =() Then j=head(requests). Since requests (), we reach execute with
job = head(requests) = j, satisfying the conclusion of the theorem.

Case a w(): Then a = head(«)+ tail(a). Because again requests = (), we process job = head(a),
and return to setup with requests reset to tail(a) j B. Since W(a) is a sublist of a, we can
conclude from our inductive assumption that

sometime job =j at execute,

“as we had hoped.

This program is very simple, but it may serve to suggest how the intermittent-assertion method
can be applied to the more realistic examples.

Note that when we make a statement of form
if sometime P at L,

then sometime @ at Ly,

34

Manna & Waldinger

we do not necessarily imply that condition Qs satisfied at Ly after condition P is satisfied at
L;; in fact, condition Q could hold before condition P. Thus, in the above example, we should
be perfectly content if some especially fast operating system were able to process the job before
it was submitted. In fact, the proof techniques that we have used in this paper will only allow
us to prove an implication of the above form if @ holds at L, after P holds at L;. Additional
techniques would be necessary if we wanted to prove such an implication if Q actually holds
before P.

Throughout this paper, in proving an implication of the above form, we have tacitly assumed
that conditions P and Q are satisfied at different stages of the same computation. Itis possible
to relax this assumption and relate different computations by extending our notation
appropriately. We believe one could then apply the intermittent-assertion method to prove
properties of nondeterministic and concurrent programs as well.

35

Manna & Waidinger

VI. Conolusions

The intermittent-assertion method not only- serves as a valuable tool, but also provides a
general framework encompassing a wide variety of techniques for the logical analysis of
programs. Diverse methods for establishing partial correctness, termination, and equivalence fit
easily within this framework. Furthermore, some proofs, naturally expressed with intermittent
assertions, are not as easily conveyed by the more conventional methods.

It has yet to be determined which phases of the intermittent-assertion proof process will be
accessible to implementation in verification systems. If the lemmas and the well-founded
orderings for the induction are provided by the programmer, to construct the remainder of the
proof appears to be fairly mechanical. On the other hand, to find the appropriate lemmas and
the corresponding orderings may require some ingenuity. We believe that the
intermittent-assertion method will have practical impact because it allows us to incorporate our
intuitive understanding about the way a program works directly into a proof of its correctness.

Acknowledgements

We would like to thank Rod Burstall and Nachum Dershowitz for many helpful discussions
related to this work. We would also like to thank Ed Ashcroft, Edsger Dijkstra and Jim King
for their careful critical reading of the manuscript, and their many suggested revisions.

VII. Referenoes

Ashcroft, E.A. [Nov. 1976), Intermittent-assertion proofs in LUCID, Research Report,
University of Waterloo, Waterloo, Canada.

" Burstail, R.M. [Aug. 1974), Program proving as hand simulation with a little
induction, Information Processing 1974, North-Holland Publishing
Company, Amsterdam, pp. 308-312.

Burstail, R.M. and Darlington, J. [Apr. 19751, Some transformations for developing
recursive programs, Proceedings of In ternationai Conference on Reliable
Software, Los Angeles, Ca., pp. 465-472.

Floyd, R.-W. [1967), A ssigning meaning to programs, Proceedings of Symposium in

36

Manna & Waldinger

Applied Mathematics, V. 19 (J.T. Schwartz, ed), American Mathematical
Society, pp. 19-32.

Francez, N. and Pnueli, A. [1977), A proof method for cyclic programs, Acta
Informatica (to appear).

Gerhart, S.L. [Jan. 1975], Correctness-preserving program transformations,
Proceedings of the Second Symposium on Principles of Programming
Languages, Palo Alto, Ca., pp. 54-65.

Hoare, C.A.R. [Oct. 1969], An axiomatic basis of computer programming, CACM, Vol.
12, No. 10, pp. 576-580, 583.

Katz, S.M. and Manna, Z. [Dec. 1975}, A closer look at termination, Acta Informatica,
Vol. 5, pp. 333-352.

Knuth, D.E. [1968}, The Art of Computer Programming, Volume I: Fundamental
Algorithms, Addison-Wesley Publishers, Reading, Mass.

Knuth, D.E. [Dec. 1974}, Structured programming with goto statements, Computing
Surveys, Vol. 6, No. 4, pp. 261-301.

London, R.L. [April 19751, A view of program verification, Proceedings of the
International Conference on Reliable Software, Los Angeles, Ca., pp.
534- 545.

Manna, Z. [June 1971), Mathematical theory of partial correctness, Journal of
Computer and System Sciences, Vol. 5, No. 3, pp. 239-253.

Manna, z. ([1974], Mathematical Theory of Computation, McGraw-Hill Book
Company, New York, N.Y.

Morris, J.H. and Wegbreit, B. [Feb. 19761, Subgoal induction, Memo, Xerox Research
Center, Palo Alto, Ca.

Pratt, V.R. [Oct. 1976), Semantical considerations on Floyd-Hoare logic, Proceedings
of the 17th Symposium on Foundations of Computer Science, Houston,

Texas, pp. 109-121.

Schwarz, J. [July 19761, Event-based reasoning - A system for proving correct
termination of programs, Proceedings of the Third International Colloquium
on Automata, Languages and Programming, Edinburgh, Scotland, pp.
131-146.

37

Manna & Waldinger

Topor, RW. [1977), A simple proof of the Schorr-Waite garbage collection algorithm,
Acta Informatica (to appear).

Wang, A. [1976]), An axiomatic basis for proving total correctness of goto-programs,
BIT, Vol.16, pp. 88- 102.

38

